WO2010140287A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2010140287A1
WO2010140287A1 PCT/JP2010/001619 JP2010001619W WO2010140287A1 WO 2010140287 A1 WO2010140287 A1 WO 2010140287A1 JP 2010001619 W JP2010001619 W JP 2010001619W WO 2010140287 A1 WO2010140287 A1 WO 2010140287A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
liquid crystal
crystal display
display device
gate insulating
Prior art date
Application number
PCT/JP2010/001619
Other languages
English (en)
French (fr)
Inventor
北角英人
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/322,653 priority Critical patent/US20120075270A1/en
Publication of WO2010140287A1 publication Critical patent/WO2010140287A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements

Definitions

  • the present invention relates to a liquid crystal display device capable of reducing a power supply voltage and reducing power consumption.
  • a liquid crystal display device in order to reduce power consumption, for example, when a mobile phone displays a screen with little image change such as time display, a video signal is displayed on a liquid crystal capacitor in a pixel formation unit for displaying pixels. The period of writing is increased.
  • the applied voltage must be held for a long time in the liquid crystal capacitor.
  • the liquid crystal display device as described above is referred to as a circuit having a memory function in each pixel formation portion (hereinafter referred to as “pixel memory circuit”) so that the voltage applied to the liquid crystal capacitor is held for a certain period of time. ) Is provided.
  • liquid crystal display devices for outdoor public use and control operations and high-definition image liquid crystal display devices typified by the high definition broadcasting standard and the SVGA standard for computer graphics are also actively used, as with the above portable terminals. Is coming.
  • This type of liquid crystal display device can be broadly divided into a transmission type liquid crystal display device using a transmission method and a reflection type liquid crystal display device using a reflection method.
  • a TFT Thin Film Transistor
  • a plurality of switching elements are provided on a semiconductor substrate (Si substrate) so as to be electrically separated from each other, and a plurality of layers are stacked on top of the plurality of switching elements.
  • a plurality of reflective pixel electrodes corresponding to the switching elements are provided separately from each other.
  • One pixel is formed by combining one reflective pixel electrode connected to one switching element and a storage capacitor portion for the switching element, and a plurality of the pixels are arranged in a matrix on the semiconductor substrate.
  • a transparent counter electrode that is common to all the pixels is formed on the lower surface of the transparent substrate (glass substrate) so as to face the plurality of reflective pixel electrodes, and liquid crystal is sealed between the plurality of reflective pixel electrodes and the counter electrode.
  • incident light from the transparent substrate side is incident on the liquid crystal through the counter electrode, and this incident light is optically modulated by the liquid crystal in accordance with a signal from each switching element, and then reflected by a plurality of reflective pixel electrodes. Then, it is emitted from the transparent substrate side as readout light.
  • 80% or more of the power consumption of a liquid crystal display device is due to the use of the backlight. Further, in the liquid crystal panel, most of the power consumption is consumed for charging / discharging the signal lines necessary for sending video signals to the pixels.
  • a reflective liquid crystal display device with a built-in pixel memory does not require a backlight, which causes an increase in power consumption, and when a still image is displayed due to the built-in pixel memory circuit, the signal line is charged. Discharging becomes unnecessary. Therefore, from these two factors, the reflective liquid crystal display device with a built-in pixel memory can greatly reduce power consumption.
  • the circuit in the pixel and the peripheral driver circuit are driven by a single power source of 5 V, for example.
  • TFT thin film transistor
  • the threshold voltage of the thin film transistor is approximately proportional to the subthreshold coefficient of the transistor, and the subthreshold coefficient decreases as the thickness of the gate insulating film decreases. That is, the subthreshold coefficient is reduced by reducing the thickness of the gate insulating film. By doing so, an increase in the threshold voltage of the thin film transistor can be suppressed and a reduction in the threshold voltage can be achieved.
  • the silicon film used in current TFTs is usually polycrystallized by irradiation with excimer laser light. For this reason, projections called silicon ridges are generally formed on the surface of the silicon film.
  • the gate insulating film has a two-layer structure, for example, a two-layer structure of a silicon dioxide film and a high dielectric constant film, and the gate insulating film is not degraded without causing a reduction in the capacity of the gate insulating film.
  • a structure that can increase the film thickness has been proposed (see, for example, Patent Document 1).
  • FIG. 6 shows a configuration of a conventional liquid crystal display device described in Patent Document 1.
  • a step forming film 102 made of a SiO 2 film is formed on an insulating substrate 101 made of alkali-free glass or the like.
  • a light shielding film 103 made of a refractory metal such as chromium (Cr) is formed in a region where the step forming film 102 is not formed on the insulating substrate 101 and in a peripheral region thereof.
  • a buffer layer 104 is formed on the step forming film 102 and the light shielding film 103.
  • the buffer layer 104 has a laminated structure including two layers of a SiN film and a SiO 2 film.
  • An island-shaped semiconductor film 105 made of p-Si is formed on the buffer layer 104.
  • a gate electrode 107 made of chromium (Cr) is formed on the gate insulating film 106.
  • Two layers of an SiO 2 film and an SiN film are stacked on the gate insulating film 106 and the gate electrode 107 to form an interlayer insulating film 108.
  • a source electrode 109 a and a drain signal line 109 b made of aluminum (Al) or molybdenum (Mo) are formed on the interlayer insulating film 108.
  • the source electrode 109 a penetrates the interlayer insulating film 108 and the gate insulating film 106 so as to reach the semiconductor film 105.
  • the drain signal line 109 b penetrates the interlayer insulating film 108 and the gate insulating film 106 so as to reach the semiconductor film 105.
  • a planarizing film 110 made of an organic material is laminated on the interlayer insulating film 108, the source electrode 109a, and the drain signal line 109b, and a pixel electrode 111 is formed on the planarizing film 110. .
  • the pixel electrode 111 is made of ITO (Indium / Thin / Oxide), which is a transparent conductive film, and is connected to the source electrode 109a through the planarization film 110.
  • the step forming film 102 is not formed in a portion corresponding to the semiconductor film 105, and as a result, a recess is formed in a region around the semiconductor film 105 and an inclination is formed in the light shielding film 103.
  • the light shielding film 103 prevents light from entering the channel region 105d of the semiconductor film 105 from the insulating substrate 101 side.
  • the buffer layer 104 is provided between the light shielding film 103 and the semiconductor film 105.
  • the semiconductor film 105 includes a source region 105a, a drain region 105b, a hybrid region 105c, and two channel regions 105d.
  • the source region 105a is electrically connected to the pixel electrode 111
  • the drain region 105b is electrically connected to the drain signal line 109b.
  • the hybrid region 105 c is located immediately below the region sandwiched between the two gate electrodes 107 and simultaneously has the function of the source / drain region for the two gate electrodes 107 at the same time.
  • the channel region 105 d is located immediately below the gate electrode 107.
  • Impurities are implanted into the source region 105a, the drain region 105b, and the hybrid region 105c and are activated.
  • the interlayer insulating film 108 electrically insulates the gate electrode 107 from the source electrode 109a and the drain signal line 109b.
  • the source electrode 109 a electrically connects the pixel electrode 111 and the source region 105 a of the semiconductor film 105.
  • the drain signal line 109b is electrically connected to the drain region 105b of the semiconductor film 105 and supplies a signal voltage.
  • the step forming film 102 is formed, and a recess is provided in a region overlapping with the semiconductor film 105 and its periphery, and the recess and part of the step forming film 102 and the semiconductor film are provided.
  • a light-shielding film 103 is formed between For this reason, the light directly incident on the channel region 105d from the insulating substrate 101 side can be blocked three-dimensionally from the side surface.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2003-8026 (published on January 10, 2003)”
  • the increase in threshold voltage of the two-layer gate insulating film is higher than that of the single-layer gate insulating film. Will become bigger.
  • the threshold voltage of a transistor to which a high voltage is applied varies greatly.
  • the threshold voltage of a transistor to which a low voltage is applied does not vary greatly, for example, in the case of a 3V drive transistor, the threshold voltage increases by 0.1V. This increase in threshold voltage causes circuit operation deterioration of nearly 10%, and this circuit operation deterioration is a problem in a low-voltage driven thin film transistor mounted on a liquid crystal display device with a built-in pixel memory.
  • the phenomenon as described above is not only applied to a thin film transistor mounted on a display unit for displaying an image but also to a thin film transistor mounted on a drive circuit for controlling image display by the display unit. Naturally, this phenomenon should be avoided.
  • the thin film transistor mounted on the display unit has a structure that blocks light incident from the surroundings, but the thin film transistor mounted on the drive circuit blocks the incident light. It did not have any structure.
  • the threshold voltage of the thin film transistor of the driving circuit cannot be lowered, and there is a problem that the liquid crystal display device 100 cannot be driven with a low power supply voltage and low power consumption. .
  • an object of the present invention is to provide a liquid crystal display device capable of reducing the power supply voltage of the liquid crystal display device and reducing the power consumption.
  • a liquid crystal display device includes a display unit in which a plurality of pixels for image display are arranged, and a drive unit for controlling image display by the display unit,
  • Each of the plurality of pixels is a reflective liquid crystal display device having a storage element for holding a display signal
  • the drive unit is composed of a plurality of thin film transistors, and each of the plurality of thin film transistors is A channel region and two source / drain regions disposed so as to sandwich the channel region; a gate insulating film having a multilayer structure of a plurality of films disposed at least above the channel region; and an upper portion of the gate insulating film
  • the two electrodes are connected to each other through a gate electrode disposed on the gate insulating film and a connection wiring penetrating the gate insulating film and a first interlayer film disposed on the gate insulating film.
  • the light-shielding film shields the external light.
  • the gate insulating film has a multilayer structure of a plurality of films, and the threshold voltage of the thin film transistor can be lowered.
  • the power supply voltage of the drive unit can be reduced and the power consumption can be reduced, so that a liquid crystal display device capable of driving with a low power supply voltage and reducing power consumption can be realized.
  • the driving unit is composed of a plurality of thin film transistors, and each of the plurality of thin film transistors is arranged so as to sandwich a channel region and the channel region.
  • a source / drain region; at least an upper portion of the channel region; a gate insulating film having a multilayer structure of a plurality of films; a gate electrode disposed on the gate insulating film; and the gate insulating film and the gate Two source / drain electrodes electrically connected to each of the two source / drain regions via a connection wiring penetrating the first interlayer film disposed on the insulating film; and from the periphery of the liquid crystal display device External light incident on the liquid crystal display device should be prevented from entering a part of the gate insulating film located above the channel region. , And a light shielding film for shielding the external light.
  • FIG. 1 is a block diagram showing an overall configuration of a liquid crystal display device according to Embodiment 1 of the present invention. It is a conceptual diagram of the pixel formation part of FIG. It is a figure which shows the structure of the conventional liquid crystal display device. It is a graph which shows the relationship between the irradiation time of light, and the fluctuation range of the threshold voltage of a thin-film transistor.
  • the liquid crystal display device is a reflective liquid crystal display device that employs a reflection method in which an image is displayed by reflecting light incident from the surroundings without using a backlight.
  • FIG. 4 is a block diagram showing the overall configuration of the liquid crystal display device according to Embodiment 1 of the present invention.
  • the liquid crystal display device 60 includes a liquid crystal display panel 61 and a display control circuit 66 as shown in FIG.
  • the liquid crystal display panel 61 includes a source driver (driving unit) 62, a gate driver (driving unit) 63, a display unit 64, and a memory driving driver (driving unit) 65, and a display control circuit 66 includes The memory drive control unit 67 is included.
  • the display unit 64 includes a source bus line, a gate bus line, a memory drive selection line, a first voltage supply line, a second voltage supply line, a first power supply line, and a second power supply line.
  • the source bus line is connected to the source driver 62
  • the gate bus line and the memory drive selection line are connected to the gate driver 63
  • the first voltage supply line and the second voltage supply line are the memory driver. 65 is connected.
  • the display unit 64 includes a plurality of pixel forming units (pixels) provided corresponding to the intersections of the gate bus lines and the source bus lines.
  • Each pixel formation unit includes a pixel electrode for applying a voltage according to an image to be displayed to the liquid crystal capacitor, a common electrode that is a common electrode provided in a plurality of pixel formation units, and a plurality of pixel formations. And a liquid crystal layer that is provided in common between the pixel electrode and the common electrode.
  • the display unit 64 includes three sub-pixels for R (Red: red), G (Green: green), and B (Blue: blue) when the display unit 64 is a color type that performs color display.
  • a pixel memory circuit is provided as a storage circuit capable of holding 1-bit data for each pixel (hereinafter referred to as “pixel unit”).
  • the pixel memory circuit is provided for each pixel that has a pixel pitch that is three times the pixel pitch (sub-pixel pitch) of each color of the color type. It has been.
  • the driving method can be switched between “normal driving” and “memory driving”.
  • Normal driving is a driving method that is generally performed in a liquid crystal display device, and performs writing (application of voltage) to a liquid crystal capacitor based on a video signal applied to each source bus line. It is.
  • memory driving is a method of writing to the liquid crystal capacitor based on data held in the pixel memory circuit.
  • the display control circuit 66 receives image data DAT and a display mode instruction signal M sent from the outside, receives a digital video signal DV, a source start pulse signal SSP for controlling image display on the display unit 64, a source clock signal SCK, A latch strobe signal LS, a gate start pulse signal GSP, a gate clock signal GCK, a first supply voltage control signal SLA, a second supply voltage control signal SLB, and a memory drive control signal SSEL are output.
  • the source driver 62 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 66, and applies a driving video signal to each source bus line. .
  • the gate driver 63 is activated based on the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 66 in order to sequentially select each gate bus line by one horizontal scanning period.
  • the application of a scanning signal to each gate bus line is repeated with one vertical scanning period as a cycle.
  • the gate driver 63 selects the gate bus lines sequentially from one horizontal scanning period to the gate start pulse signal GSP and the gate clock signal output from the display control circuit 66.
  • An active scanning signal is sequentially applied to each gate bus line based on GCK.
  • the gate driver 63 sequentially selects each memory drive selection line by one horizontal scanning period based on the memory drive control signal SSEL and the gate clock signal GCK output from the display control circuit 66.
  • An active signal is sequentially applied to each memory drive selection line.
  • the gate driver 63 stops applying the active scanning signal to each gate bus line, and applies the active signal to all the memory driving selection lines SEL1 to SELm.
  • the memory driving driver 65 Based on the first supply voltage control signal SLA and the second supply voltage control signal SLB output from the display control circuit 66, the memory driving driver 65 applies the first voltage supply line and the second voltage supply line. Voltage signals (VLA, VLB) are applied.
  • the voltage signal VLA is a voltage signal having a phase opposite to that of the counter voltage applied to the counter electrode, and the voltage signal VLB is a voltage signal having the same phase as the counter voltage applied to the counter electrode.
  • FIG. 5 is a conceptual diagram of the pixel forming portion.
  • the TFT substrate 71 is disposed below the liquid crystal layer 77 for image display so as to sandwich the reflective electrode 76.
  • An SRAM (memory element) 72 composed of a plurality of thin film transistors and an AC inversion driver circuit 73 are disposed on the TFT substrate 71.
  • a gate bus line 74 and a source bus line 75 are connected to the SRAM 72.
  • the pixel forming unit 70 can directly write data to the SRAM 72, it is not necessary to perform communication between the frame memory and the liquid crystal writing driver when displaying a still image. In addition, since AC inversion driving can be performed in units of pixel forming units 70, it is not necessary to charge / discharge a signal line having a heavy load capacity.
  • the liquid crystal display device 60 in the present embodiment can reduce power consumption.
  • a source driver 62, a gate driver 63, and a memory driving driver 65 (hereinafter, these three drivers are simply referred to as “a driver circuit for controlling image display by the display unit 64”. It may also be called a “driving circuit (driving unit)”.) It has a feature in the structure of a thin film transistor mounted on each.
  • the thin film transistors mounted on the source driver 62, the gate driver 63, and the memory driving driver 65 are configured such that light incident from the periphery is incident on the gate insulating film of the thin film transistor. Has a structure that is not directly irradiated.
  • FIG. 1 is a cross-sectional view showing the structure of a thin film transistor that constitutes a drive circuit of a liquid crystal display device 60 according to the present embodiment.
  • the thin film transistor 10 includes a substrate 11, a base film 12, planarizing films 13a and 13b, a lower gate insulating film 14 and an upper gate insulating film 15 constituting a gate insulating film, a gate electrode 16,
  • the first interlayer film 17, the connection wiring 18, the source / drain electrode 19, and the second interlayer film 21 are provided.
  • the base film 12 has a laminated structure of, for example, a SiO 2 film and a SiN film, and is disposed between the substrate 11 and the planarization films 13a and 13b.
  • the base film 12 prevents mobile ions (for example, sodium ions) from diffusing from the substrate 11 into the thin film transistor 10. Such prevention of mobile ion contamination is very important in ensuring the reliability (for example, threshold voltage fluctuation) of the thin film transistor 10.
  • the planarization films 13a and 13b are polycrystalline Si films that have been polycrystallized by, for example, irradiating an amorphous Si film with laser light. By flattening the planarizing films 13a and 13b, the breakdown voltage of the gate insulating film can be improved.
  • a technique for planarizing the surface of the silicon film for example, an excimer laser crystallization technique can be cited.
  • a crystallized film having excellent characteristics can be obtained by crystallization in an oxygen-containing atmosphere during the first laser crystallization.
  • a silicon ridge having the same thickness as the silicon film is formed on the silicon surface.
  • the silicon surface can be planarized by performing the second laser crystallization in a non-oxygen atmosphere (nitrogen atmosphere).
  • a CLC (Continuous-Lateral-Crystallization) technique using a solid-state laser capable of continuous oscillation is also known.
  • the planarizing films 13a and 13b can be divided into source / drain regions 13a and channel regions 13b.
  • the source / drain region 13a is formed by implanting an n-type impurity or a p-type impurity into the polycrystalline Si film using a known ion implantation technique and using the known heat treatment technique.
  • the type impurity may be activated.
  • the channel region 13b is also formed by injecting an n-type impurity or a p-type impurity into the polycrystalline Si film using a known ion implantation technique and using the known heat treatment technique. What is necessary is just to activate a p-type impurity. Impurities are implanted into the channel region 13b before the gate electrode 16 is formed.
  • the thin film transistor 10 is an n-type transistor, an n-type impurity is implanted into the source / drain region 13a, while a p-type impurity is implanted into the channel region 13b. If the thin film transistor 10 is a p-type transistor, a p-type impurity is implanted into the source / drain region 13a, and an impurity is not implanted into the channel region 13b, or a p-type impurity is implanted.
  • the impurity is implanted into the source / drain region 13a before the formation of the gate electrode 16 in the same manner as the impurity is implanted into the channel region 13b. By doing so, the positional relationship between the end of the gate electrode 16 and the end of the source / drain region 13a can be set to a desired positional relationship described later.
  • the impurity concentration of the source / drain region 13a inside the gate electrode 16 may be set to a low concentration to form a known gate overlap LDD (Lightly Doped Drain) structure.
  • the thin film transistor 10 has a gate insulating film having a two-layer structure including a lower gate insulating film 14 and an upper gate insulating film 15.
  • the lower gate insulating film 14 is, for example, a SiO 2 film
  • the upper gate insulating film 15 is, for example, a SiN film.
  • the relative dielectric constant of the SiN film is larger than that of the SiO 2 film. Therefore, for example, by thickening the upper gate insulating film 15 made of an insulating film having a high relative dielectric constant such as a SiN film, the gate insulating film is made thick without causing a reduction in the capacity of the gate insulating film. be able to.
  • a silicon ridge is formed when the amorphous Si film is irradiated with laser light to be polycrystallized. Even in such a case, the possibility that such a silicon ridge causes a breakdown voltage deterioration of the gate insulating film is reduced.
  • a gate electrode 16 is disposed on the upper gate insulating film 15.
  • the gate electrode 16 for example, aluminum (Al), molybdenum (Mo), or tungsten (W) is used.
  • a first interlayer film 17 is disposed on the upper gate insulating film 15 and the gate electrode 16.
  • an inorganic material may be used for the first interlayer film 17.
  • a laminated structure including two layers of a SiN film and a SiO 2 film may be used.
  • connection wiring 18 electrically connects the source / drain region 13 a and the source / drain electrode 19.
  • the connection wiring 18 is a metal wiring formed along the side wall of a contact hole provided so as to penetrate the lower gate insulating film 14, the upper gate insulating film 15 and the first interlayer film 17.
  • connection wiring 18 for example, aluminum (Al) or copper (Cu) is used.
  • the source / drain electrode 19 is electrically connected to the source / drain region 13 a through the connection wiring 18.
  • the source / drain electrode 19 is made of, for example, aluminum (Al) or copper (Cu), like the connection wiring 18.
  • a second interlayer film 21 is disposed on the first interlayer film 17 and the source / drain electrodes 19.
  • a resin is used for the second interlayer film 21.
  • the distance A1 between the end of the source / drain electrode 19 and the end of the gate electrode 16 and the distance B1 between the end of the source / drain region 13a and the end of the gate electrode 16 are It is set to have a predetermined relationship.
  • the distance A1 and the distance B1 prevent light incident from the periphery from being directly incident on the gate insulating film (the lower gate insulating film 14 and the upper gate insulating film 15) located above the channel region 13b. Therefore, it is set.
  • the light incident on the channel region 13b is not directly incident on the channel region 13b without being blocked by the end of the source / drain electrode 19 and the end of the gate electrode 16.
  • a distance A1 and a distance B1 are set.
  • the gate insulating film (the lower gate insulating film 14 and the upper gate insulating film 15) located above the channel region 13b.
  • the gate electrode 16 and the two source / drain electrodes 19 constitutes a light shielding film that shields external light.
  • the portion of the gate insulating film located above the channel region 13 b corresponds to the substantial gate insulating film of the thin film transistor 10. For this reason, if light is not directly incident on the channel region 13b, it is possible to prevent light from substantially entering the gate insulating film.
  • the thin film transistor 10 it is possible to prevent light from entering the gate insulating film and to suppress light deterioration due to light irradiation of the gate insulating film.
  • the first embodiment of the present invention it is possible to realize a stacked structure while preventing light deterioration due to light incidence of the gate insulating film of the thin film transistor 10 mounted in the drive circuit.
  • the threshold voltage of the thin film transistor 10 mounted in the drive circuit is lowered, and by doing so, it is possible to realize low power supply voltage drive and low power consumption of the thin film transistor 10 of the drive circuit.
  • FIG. 2 is a cross-sectional view showing the structure of the thin film transistor that constitutes the drive circuit of the liquid crystal display device in this embodiment.
  • the thin film transistor 30 includes a substrate 31, a base film 32, planarization films 33a and 33b, a lower gate insulating film 34 and an upper gate insulating film 35 constituting a gate insulating film, a gate electrode 36, A first interlayer film 37, a connection wiring 38, a source / drain electrode 39, a second interlayer film 41, a transparent electrode 42, and a reflective electrode 43 are included.
  • the substrate 31 for example, a glass substrate may be used.
  • the base film 32 has a laminated structure of, for example, a SiO 2 film and a SiN film, and is disposed between the substrate 31 and the planarization films 33a and 33b.
  • the planarization films 33a and 33b are polycrystalline Si films that have been polycrystallized by irradiating laser light to an amorphous Si film, for example.
  • the planarizing films 33a and 33b can be divided into source / drain regions 33a and channel regions 33b.
  • the source / drain region 33a is formed by implanting an n-type impurity or p-type impurity into the polycrystalline Si film using a known ion implantation technique, and using the known thermal diffusion technique. What is necessary is just to activate a p-type impurity.
  • the channel region 33b is also formed by injecting an n-type impurity or a p-type impurity into the polycrystalline Si film using a known ion implantation technique and using the known heat treatment technique. What is necessary is just to activate a p-type impurity. Impurities are implanted into the channel region 33b before the gate electrode 36 is formed.
  • the thin film transistor 30 is an n-type transistor, an n-type impurity is implanted into the source / drain region 33a, while a p-type impurity is implanted into the channel region 33b. If the thin film transistor 30 is a p-type transistor, a p-type impurity is implanted into the source / drain region 33a, while an impurity is not implanted into the channel region 33b or a p-type impurity is implanted.
  • the impurity implantation into the source / drain region 33a may be performed after the formation of the gate electrode 36.
  • the end of the gate electrode 36 and the end of the source / drain region 33a can be aligned in a self-aligning manner. Therefore, the end portion of the gate electrode 36 and the end portion of the source / drain region 33a can be aligned with high accuracy, so that the transistor characteristics of the thin film transistor 30 can be improved.
  • This thin film transistor 30 has a two-layer gate insulating film composed of a lower gate insulating film 34 and an upper gate insulating film 35.
  • the lower gate insulating film 34 is, for example, a SiO 2 film
  • the upper gate insulating film 35 is, for example, a SiN film.
  • the relative dielectric constant of the SiN film is larger than that of the SiO 2 film.
  • the gate insulating film can be increased without causing a reduction in the capacity of the gate insulating film. it can.
  • planarization films 33a and 33b are planarized on the substrate 31.
  • the possibility of causing a breakdown voltage degradation of the gate insulating film is reduced.
  • a gate electrode 36 is disposed on the upper gate insulating film 35.
  • the gate electrode 36 for example, aluminum (Al), molybdenum (Mo), or tungsten (W) is used.
  • a first interlayer film 37 is disposed on the upper gate insulating film 35 and the gate electrode 36.
  • an inorganic material may be used for the first interlayer film 37.
  • a laminated structure including two layers of a SiN film and a SiO 2 film may be used.
  • connection wiring 38 electrically connects the source / drain region 33a and the source / drain electrode 39.
  • the connection wiring 38 is a metal wiring formed along the side wall of a contact hole provided so as to penetrate the lower gate insulating film 34, the upper gate insulating film 35 and the first interlayer film 37.
  • connection wiring 38 for example, aluminum (Al) or copper (Cu) is used.
  • the source / drain electrode 39 is electrically connected to the source / drain region 33 a through the connection wiring 38.
  • the source / drain electrode 39 is made of, for example, aluminum (Al) or copper (Cu) similarly to the connection wiring 38.
  • the second interlayer film 41 is disposed on the first interlayer film 37 and the source / drain electrodes 39.
  • a resin is used for the second interlayer film 41.
  • a transparent electrode 42 and a reflective electrode 43 are disposed on the second interlayer film 41.
  • the transparent electrode 42 and the reflective electrode 43 are originally unnecessary for the thin film transistors of the source driver 62, the gate driver 63, and the memory driving driver 65, respectively.
  • the transparent electrode and the reflective electrode of the thin film transistor of the display portion 64 also for the thin film transistor of the driving circuit, light can be more reliably incident on the gate insulating film.
  • ITO may be used.
  • the reflective electrode 43 may be made of aluminum (Al), for example.
  • the distance A2 between the end of the reflective electrode 43 and the end of the source / drain electrode 39, and the distance B2 between the end of the source / drain electrode 39 and the end of the gate electrode 36 are It is set to have a predetermined relationship.
  • the distance A2 and the distance B2 prevent light incident from the surroundings from directly entering the gate insulating film (the lower gate insulating film 34 and the upper gate insulating film 35) located above the channel region 33b. Therefore, it is set.
  • the light incident on the channel region 33b without being blocked by the end of the reflective electrode 43, the end of the source / drain electrode 39, and the end of the gate electrode 36 is channel region 33b.
  • the distance A2 and the distance B2 are set so that they are not directly incident on the.
  • the gate insulating film (the lower gate insulating film 34 and the upper gate insulating film 35) located above the channel region 33b. Therefore, it can be said that at least one of the gate electrode 36, the two source / drain electrodes 39, and the reflective electrode 43 constitutes a light shielding film.
  • the portion of the gate insulating film located above the channel region 33 b corresponds to the substantial gate insulating film of the thin film transistor 30. Therefore, if light is not directly incident on the channel region 33b, it is possible to prevent light from being substantially incident on the gate insulating film.
  • the thin film transistor 30 it is possible to prevent light from entering the gate insulating film and to suppress light deterioration due to light irradiation of the gate insulating film.
  • the stacked structure is realized while more effectively preventing the light deterioration due to the light incidence of the gate insulating film of the thin film transistor 30 mounted in the drive circuit. be able to.
  • the threshold voltage of the thin film transistor 30 mounted in the drive circuit is more reliably lowered, and by doing so, low power supply voltage drive and low power consumption of the thin film transistor 30 of the drive circuit can be realized. it can.
  • the source / drain region 33a can be formed in a self-aligned manner with respect to the gate electrode 36, the transistor characteristics of the thin film transistor 30 can be improved.
  • FIG. 3 is a cross-sectional view showing a part of the structure of the drive circuit of the liquid crystal display device in the present embodiment.
  • a plurality of thin film transistors are formed in the transistor formation region, and a plurality of metal wirings for connecting the plurality of thin film transistors in the transistor formation region are formed in the wiring region.
  • the transistor formation region is, for example, a region from the silicon film formation region of the transistor to a region outside about 5 ⁇ m.
  • the drive circuit 50 includes a substrate 51, a base film 52, planarization films 53a and 53b, a lower gate insulating film 54 and an upper gate insulating film 55 constituting a gate insulating film, a gate electrode 56,
  • the first interlayer film 57, the connection wiring 58, the source / drain electrode 59, the second interlayer film 81, the transparent electrode 82, the reflection electrode (reflection layer) 83, and the routing wiring 84 are provided. Yes.
  • the substrate 51 for example, a glass substrate may be used.
  • the base film 52 has a laminated structure of, for example, a SiO 2 film and a SiN film, and is disposed between the substrate 51 and the planarization films 53a and 53b.
  • the planarization films 53a and 53b are, for example, polycrystalline Si films that are polycrystallized by irradiating an amorphous Si film with laser light.
  • the planarizing films 53a and 53b can be divided into source / drain regions 53a and channel regions 53b.
  • the source / drain region 53a is formed by implanting an n-type impurity or a p-type impurity into the polycrystalline Si film by using a known ion implantation technique and using the known heat treatment technique.
  • the type impurity may be activated.
  • the channel region 53b is also produced by implanting an n-type impurity or a p-type impurity into the polycrystalline Si film using a known ion implantation technique, and using the known thermal diffusion technique. And p-type impurities may be activated. Impurities are implanted into the channel region 53b before the gate electrode 56 is formed.
  • the thin film transistor formed in the transistor formation region of the drive circuit 50 is an n-type transistor, an n-type impurity is implanted into the source / drain region 53a, while a p-type impurity is implanted into the channel region 53b.
  • the thin film transistor of the driving circuit 50 is a p-type transistor, a p-type impurity is implanted into the source / drain region 53a, while an impurity is not implanted into the channel region 53b or a p-type impurity is implanted.
  • Impurities may be implanted into the source / drain region 53a after the formation of the gate electrode 56. By doing so, the end of the gate electrode 56 and the end of the source / drain region 53a can be aligned in a self-aligning manner. Therefore, the end portion of the gate electrode 56 and the end portion of the source / drain region 53a can be accurately aligned, so that the transistor characteristics of the thin film transistor of the drive circuit 50 can be improved.
  • This thin film transistor has a two-layer gate insulating film composed of a lower gate insulating film 54 and an upper gate insulating film 55.
  • the lower gate insulating film 54 is an SiO 2 film, for example
  • the upper gate insulating film 55 is an SiN film, for example.
  • the relative dielectric constant of the SiN film is larger than that of the SiO 2 film.
  • the gate insulating film can be increased without reducing the capacity of the gate insulating film. it can.
  • planarization films 53a and 53b are planarized on the substrate 51.
  • the possibility of causing a breakdown voltage degradation of the gate insulation film is reduced.
  • a gate electrode 56 is disposed on the upper gate insulating film 55.
  • the gate electrode 56 for example, an aluminum (Al), molybdenum (Mo), or tungsten (W) film is used.
  • a first interlayer film 57 is disposed on the upper gate insulating film 55 and the gate electrode 56.
  • an inorganic material may be used for the first interlayer film 57.
  • a laminated structure including two layers of a SiN film and a SiO 2 film may be used.
  • connection wiring 58 electrically connects the source / drain region 53a and the source / drain electrode 59.
  • the connection wiring 58 is a metal wiring formed along the side wall of a contact hole provided so as to penetrate the lower gate insulating film 54, the upper gate insulating film 55 and the first interlayer film 57.
  • connection wiring 58 for example, aluminum (Al) or copper (Cu) is used.
  • the source / drain electrode 59 is electrically connected to the source / drain region 53a through the connection wiring 58.
  • the source / drain electrode 59 is made of, for example, aluminum (Al) or copper (Cu), like the connection wiring 58.
  • the lead wiring 84 is formed in the wiring region using the same wiring as the source / drain electrode 59.
  • a second interlayer film 81 is disposed above the first interlayer film 57, the source / drain electrode 59 and the routing wiring 84.
  • a resin is used for the second interlayer film 81.
  • a transparent electrode 82 and a reflective electrode 83 are disposed on the second interlayer film 81.
  • the transparent electrode 82 and the reflective electrode 83 are originally unnecessary for the thin film transistors of the source driver 62, the gate driver 63, and the memory driving driver 65, respectively.
  • the transparent electrode and the reflective electrode of the thin film transistor of the display portion 64 also for the thin film transistor of the driving circuit, light can be more reliably incident on the gate insulating film.
  • ITO may be used.
  • the reflective electrode 83 may be made of aluminum (Al), for example.
  • the thin film transistor of the drive circuit 50 has a reflective electrode 83 using the same wiring layer as the reflective electrode of the thin film transistor of the display unit 64.
  • the reflective electrode 83 is disposed only in the transistor formation region of the drive circuit 50.
  • the distance A3 between the end of the reflective electrode 83 and the end of the gate electrode 56 and the distance B3 between the end of the source / drain electrode 59 and the end of the gate electrode 56 It is set to be a relationship.
  • the distance A3 and the distance B3 prevent light incident from the periphery from being directly incident on the gate insulating film (the lower gate insulating film 54 and the upper gate insulating film 55) positioned above the channel region 53b. Therefore, it is set.
  • the light incident on the channel region 53b without being blocked by the end of the reflective electrode 53, the end of the source / drain electrode 59, and the end of the gate electrode 56 is channel region 53b.
  • the distance A3 and the distance B3 are set so that they are not directly incident on the.
  • the gate insulating film (the lower gate insulating film 54 and the upper gate insulating film 55) located above the channel region 53b. Therefore, it can be said that at least one of the gate electrode 56, the two source / drain electrodes 59, and the reflective electrode 53 constitutes a light shielding film.
  • the portion of the gate insulating film located above the channel region 53b corresponds to the substantial gate insulating film of the thin film transistor of FIG. Therefore, if light is not directly incident on the channel region 53b, it is possible to prevent light from being substantially incident on the gate insulating film.
  • the thin film transistor of FIG. 3 it is possible to prevent light from entering the gate insulating film and to suppress light deterioration due to light irradiation of the gate insulating film.
  • the transparent electrode 82 and the reflective electrode 83 are formed in the transistor formation region, but not in the wiring region.
  • a plurality of lead wires 84 are formed in the wiring region, and the lead wires 84 are made of a metal material as described above. For this reason, when the transparent electrode 82 and the reflective electrode 83 are disposed on the second interlayer film 81, a wiring capacitance is formed between the transparent electrode 82 and the reflective electrode 83 and the routing wiring 84.
  • This wiring capacity causes problems such as mutual interference between the routing wires 84 and a delay in the propagation speed of the routing wires 84.
  • the transparent electrode 82 and the reflective electrode 83 are not formed in the wiring region, thereby avoiding such a problem and preventing the operating speed of the drive circuit from deteriorating.
  • the third embodiment of the present invention realizes a stacked structure while more effectively preventing light deterioration due to light incidence on the gate insulating film of the thin film transistor mounted on the drive circuit 50. be able to.
  • the threshold voltage of the thin film transistor mounted on the drive circuit 50 is more reliably lowered, and by doing so, low power supply voltage drive and low power consumption of the thin film transistor of the drive circuit 50 can be realized. it can.
  • the source / drain region 53a can be formed in a self-aligned manner with respect to the gate electrode 56, the transistor characteristics of the thin film transistor can be improved.
  • the above-described effects can be realized without deteriorating the operation speed of the drive circuit 50.
  • the present invention is most effective when applied to a reflective liquid crystal display device.
  • the present invention can reduce the voltage and increase the reliability of drive circuits in other display devices such as a transmissive liquid crystal display device and an organic EL display device. Is also effective.
  • the deterioration phenomenon due to light is more problematic in the transistor of the driver circuit than in the transistor of the display portion.
  • an on-state signal is input to the gate electrode of the transistor for one-hundredth of the gate bus line, that is, one-hundredth of the time.
  • the gate electrode This is because there is a transistor to which an on-state signal is input for 99% or more time. For this reason, the arrangement of the light shielding film under the transistor of the peripheral circuit is important, which is why the application of the present invention is effective.
  • the liquid crystal display device includes a display unit in which a plurality of pixels for image display are arranged, and a drive unit for controlling image display by the display unit, and each of the plurality of pixels is A reflective liquid crystal display device having a memory element for holding a display signal, wherein the driving unit is composed of a plurality of thin film transistors, and each of the plurality of thin film transistors includes a channel region and the channel region.
  • Two source / drain regions arranged so as to sandwich the gate electrode, a gate insulating film arranged at least above the channel region and having a multilayer structure of a plurality of films, and a gate electrode arranged above the gate insulating film And the two source / drains via a connection wiring that penetrates the gate insulating film and a first interlayer film disposed on the gate insulating film.
  • Two source / drain electrodes electrically connected to each of the regions, and external light incident on the liquid crystal display device from the periphery of the liquid crystal display device is formed on the gate insulating film located above the channel region.
  • a light-shielding film that shields the external light is provided.
  • the gate insulating film has a multilayer structure of a plurality of films, and the threshold voltage of the thin film transistor can be lowered.
  • the power supply voltage of the drive unit can be reduced and the power consumption can be reduced, so that a liquid crystal display device capable of driving with a low power supply voltage and reducing power consumption can be realized.
  • the light shielding film is preferably at least one of the gate electrode and the two source / drain electrodes.
  • the gate electrode can be formed after the two source / drain regions are formed. For this reason, the gate electrode can be arranged in accordance with the channel region sandwiched between the source / drain regions, so that light incidence to a part of the gate insulating film located above the channel region is reliably blocked. be able to.
  • the light shielding film has two source / drain electrodes, two source / drain regions can be formed in a self-aligned manner with respect to the gate electrode.
  • the display unit includes a reflective electrode that reflects the external light and generates light used for image display by the display unit, and each of the plurality of thin film transistors is the same as the reflective electrode of the display unit
  • the light-shielding film is at least one of the gate electrode, the two source / drain electrodes, and the reflective film.
  • the light shielding film is a reflective film
  • the light shielding film can be formed over a wide range, so that the incidence of light can be more reliably blocked.
  • the gate electrode can be formed after the two source / drain regions are formed. For this reason, the gate electrode can be arranged in accordance with the channel region sandwiched between the source / drain regions, so that light incidence to a part of the gate insulating film located above the channel region is reliably blocked. be able to.
  • the light shielding film has two source / drain electrodes, two source / drain regions can be formed in a self-aligned manner with respect to the gate electrode.
  • the reflective film is disposed only in the transistor formation region of the driving unit.
  • the channel region and the two source / drain regions are preferably formed in a flattened silicon film, and the flattened silicon film has an unevenness of 1 ⁇ 2 or less of its own film thickness. More preferably, it is provided on the surface on the gate insulating film side.
  • the withstand voltage of the gate insulating film disposed above the channel region and the two source / drain regions can be further improved.
  • the reflective liquid crystal display device is a reflective liquid crystal display device having a memory circuit for holding a display signal in a pixel, and the gate insulating film of a thin film transistor constituting a circuit and a switching element has a two-layer structure.
  • the silicon film side is formed of a silicon dioxide film and the gate electrode side is formed of a film having a higher dielectric constant than that of the silicon dioxide film, over the gate insulating film on the channel of the thin film transistor and on the source / drain end next to the channel.
  • a film for shielding external light is formed.
  • the external light shielding film is formed of a gate electrode.
  • the external light shielding film is preferably formed of source / drain electrodes, and the source electrode and the drain electrode are preferably formed so as to overlap with the gate electrode.
  • the external light shielding film is formed in the same layer as the pixel reflective electrode.
  • the external light shielding film is formed only in the transistor formation region and not in the signal wiring and power supply wiring regions.
  • the unevenness (silicon ridge) on the surface of the silicon film is not more than half of the silicon film thickness.
  • the liquid crystal display device of the present invention can be suitably used for portable devices, personal computers, and video cameras.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

 液晶表示装置の電源電圧の低電圧化および、消費電力の低減を図ることができる液晶表示装置を提供する。本発明の液晶表示装置は、画素メモリ内蔵の反射型液晶表示装置である。本発明の液晶表示装置の駆動回路を構成する薄膜トランジスタ(10)では、液晶表示装置の周囲から入射される外光が、チャネル領域(13b)の上部に位置するゲート絶縁膜(14、15)の一部に入射することを防止すべく、ゲート電極(16)および2つのソース/ドレイン電極(19)が外光を遮光する。

Description

液晶表示装置
 本発明は、電源電圧の低電圧化および消費電力の低減化を図ることができる液晶表示装置に関する。
 近年、携帯電話に代表される携帯端末においては、多機能化に伴う消費電力の増加が問題となって来ている。そこで、携帯端末において少しでも消費電力を低減させるために、電力消費の特に多い表示部を構成している液晶表示装置における省電力化が図られている。
 液晶表示装置において、消費電力を低減するために、例えば、携帯電話において時刻表示等の画像変化の少ない画面の表示が行われる際には画素を表示するための画素形成部内の液晶容量に映像信号を書き込む周期を長くすることが行われている。
 しかしながら、液晶容量への映像信号の書き込み周期を長くすると、液晶容量において長時間、印加された電圧が保持されなければならない。
 このため、上述のような液晶表示装置には、液晶容量に印加された電圧が一定時間保持されるように、各画素形成部にメモリ機能を有する回路(以下、「画素メモリ回路」と呼ぶ。)が設けられている。
 一方、屋外公衆用や管制業務用の液晶表示装置や、ハイビジョン放送規格やコンピュータ・グラフィクスのSVGA規格に代表される高精細映像の液晶表示装置等も、上記の携帯端末と同様、盛んに利用されて来ている。
 この種の液晶表示装置には、大別すると透過方式を用いた透過型液晶表示装置と、反射方式を用いた反射型液晶表示装置とに分けられる。前者の透過型液晶表示装置の場合には、各画素に設けられたTFT(Thin Film Transistor:薄膜トランジスタ)の領域が光を透過させる画素の透過領域とならないために開口率が小さくなるという欠点を有している。このため、後者の反射型液晶表示装置が注目されている。
 一般に、反射型液晶表示装置では、半導体基板(Si基板)上に複数のスイッチング素子をそれぞれ電気的に分離して設け、複数のスイッチング素子の上方に積層した多層膜のうちで最上層に複数のスッチング素子と対応する複数の反射画素電極をそれぞれ電気的に分離して設ける。
 一つのスイッチング素子に接続した一つの反射画素電極およびスイッチング素子用の保持容量部を組にして一つの画素を形成し、この画素を半導体基板上にマトリックス状に複数配置する。
 複数の反射画素電極に対向して全画素共通となる透明な対向電極を透明基板(ガラス基板)の下面に成膜して、複数の反射画素電極と対向電極との間に液晶を封入する。
 そして、透明基板側からの入射光を、対向電極を介して液晶内に入射させ、この入射光を各スイッチング素子からの信号に応じて液晶で光変調した後、複数の反射画素電極で反射させ、読み出し光として透明基板側から出射させる。
 ところで、このような反射型液晶表示装置に上述した画素メモリ回路を搭載することにより、消費電力を大幅に低減することが可能となる。すなわち、画素メモリ内蔵の反射型液晶ディスプレイにおいては、以下の理由により、消費電力の大幅な低減を達成することができる。
 一般に、液晶表示装置の消費電力の80%以上は、そのバックライトの使用によるものである。さらに、その液晶パネル内では、画素に映像信号を送るために必要な信号線の充放電に大半の消費電力が消費される。
 これに対し、画素メモリ内蔵反射型液晶表示装置では、消費電力増加の要因となるバックライトが不要であり、また、画素メモリ回路の内蔵により静止画を表示している時は信号線への充放電が不要となる。したがって、これら2つの要因から、画素メモリ内蔵反射型液晶表示装置は、消費電力を大幅に削減することができる。
 ところで、現状の画素メモリ内蔵反射型液晶表示装置では、例えば5Vの単一電源で画素内回路および周辺ドライバ回路の駆動が行なわれている。しかし、さらなる低消費電力化を実現するためには、画素内回路および周辺ドライバ回路を駆動するための電源電圧の低電圧化が必須である。
 電源電圧の低電圧化、すなわち、薄膜トランジスタ(TFT)の低電圧化には、薄膜トランジスタのしきい値電圧の低電圧化が必要となる。そのためには、薄膜トランジスタのゲート絶縁膜の薄膜化が必須となる。
 薄膜トランジスタのしきい値電圧は、トランジスタのサブスレッショルド係数におおよそ比例し、このサブスレッショルド係数は、ゲート絶縁膜の膜厚が薄いほど、小さくなるからである。つまり、ゲート絶縁膜の膜厚を薄くすることで、サブスレッショルド係数を小さくする。そうすることにより、薄膜トランジスタのしきい値電圧の上昇を抑え、しきい値電圧の低電圧化を達成することができる。
 しかしながら、現在のTFTに使用されているシリコン膜は、通常、エキシマレーザー光の照射により多結晶化させている。このため、シリコンリッジと呼ばれる突起がシリコン膜の表面に形成されてしまうのが一般的である。
 このシリコンリッジが形成されると、薄膜化されたゲート絶縁膜の耐圧不良を招き、ひいては、ゲート絶縁膜を介するリーク電流の発生や、ゲート絶縁膜自体の破壊を招くことになる。これらのことは、薄膜トランジスタおよびその信号保持容量の不良を引き起こす要因となるものである。
 このような課題を解決するために、ゲート絶縁膜を2層構造、例えば、二酸化シリコン膜と高誘電率膜との2層構造とし、ゲート絶縁膜の容量の低下を招くことなく、そのゲート絶縁膜を厚膜化できる構造が提案されている(例えば、特許文献1を参照)。
 図6に、この特許文献1に記載された従来の液晶表示装置の構成を示す。この従来の液晶表示装置100では、無アルカリガラス等からなる絶縁基板101上に、SiO膜からなる段差形成膜102が形成されている。絶縁基板101上の段差形成膜102が形成されていない領域およびその周辺の領域には、クロム(Cr)等の高融点金属からなる遮光膜103が形成されている。
 段差形成膜102および遮光膜103の上部には、バッファ層104が形成されている。バッファ層104は、SiN膜およびSiO膜の2層からなる積層構造を有している。バッファ層104の上部には、p-Siからなる島状の半導体膜105が形成されている。バッファ層104および半導体膜105の上には、SiO膜およびSiN膜の2層が積層され、ゲート絶縁膜106が形成されている。
 ゲート絶縁膜106の上部には、クロム(Cr)からなるゲート電極107が形成されている。ゲート絶縁膜106およびゲート電極107の上部には、SiO膜とSiN膜の2層が積層され、層間絶縁膜108を構成している。層間絶縁膜108の上部には、アルミニウム(Al)若しくはモリブデン(Mo)からなるソース電極109aおよびドレイン信号線109bが形成されている。
 ソース電極109aは、半導体膜105に到達するように、層間絶縁膜108およびゲート絶縁膜106を貫通している。ドレイン信号線109bは、半導体膜105に到達するように、層間絶縁膜108およびゲート絶縁膜106を貫通している。
 層間絶縁膜108、ソース電極109aおよびドレイン信号線109bの上部には、有機系材料からなる平坦化膜110が積層され、さらに、その平坦化膜110の上部には画素電極111が形成されている。
 この画素電極111は透明導電膜であるITO(Indium Thin Oxide)からなり、平坦化膜110を貫通してソース電極109aに接続されている。段差形成膜102は、半導体膜105に対応する部分には形成されておらず、その結果、半導体膜105の周辺の領域に凹部を形成し、遮光膜103に傾斜を形成する。
 この遮光膜103は、絶縁基板101側から半導体膜105のチャネル領域105dに光が入射するのを防いでいる。半導体膜105の下部に金属からなる遮光膜103を設けると、不純物を拡散させる原因となるため、遮光膜103と半導体膜105との間には、バッファ層104が設けられている。
 半導体膜105は、ソース領域105aおよびドレイン領域105b、ハイブリッド領域105cおよび2つのチャネル領域105dで構成されている。ソース領域105aは、画素電極111と電気的に接続され、ドレイン領域105bは、ドレイン信号線109bと電気的に接続されている。
 ハイブリッド領域105cは、2つのゲート電極107に挟まれた領域の直下に位置し、同時に2つのゲート電極107に対してソース・ドレイン領域の機能を同時に持つ領域である。チャネル領域105dは、ゲート電極107の真下に位置している。
 ソース領域105a、ドレイン領域105bおよびハイブリッド領域105cには、不純物が注入され、活性化されている。
 層間絶縁膜108は、ゲート電極107と、ソース電極109aおよびドレイン信号線109bとを電気的に絶縁する。ソース電極109aは、画素電極111と半導体膜105のソース領域105aとを電気的に接続する。ドレイン信号線109bは、半導体膜105のドレイン領域105bに電気的に接続され、信号電圧を供給する。
 このようにして従来の液晶表示装置100では、段差形成膜102を形成して半導体膜105およびその周辺に対応して重なる領域に凹部を設け、その凹部および段差形成膜102の一部と半導体膜105との間に遮光膜103を形成している。このため、絶縁基板101側から直接チャネル領域105dに入射する光を側面から立体的に遮断することができる。
日本国公開特許公報「特開2003-8026号公報(2003年1月10日公開)」
 ところで、2層の積層構造で形成されたゲート絶縁膜を有する薄膜トランジスタに対して、ゲート電圧を印加しながら光を照射すると、時間の経過とともに、薄膜トランジスタのしきい値電圧の上昇を招いてしまうといった現象が分かっている。
 具体的には、図7に示すように、光の照射時間であるストレス時間が同一の場合でも、単層ゲート絶縁膜と比較して2層ゲート絶縁膜の方がしきい値電圧の上昇幅が大きくなってしまう。
 反射型液晶表示装置であれば、バックライトがないため、バックライトによる薄膜トランジスタの光劣化は無い。しかしながら、液晶表示装置の表面から入射する光により劣化してしまう。
 また、トップゲート構造の薄膜トランジスタであれば、チャネル上にゲート電極がセルフアラインで配置されているため、垂直入射する光は問題ない。しかしながら、斜め入射光が問題となる。この斜め入射光により励起こされた電子は、ゲート電極端の2層ゲート絶縁膜にトラップされ、しきい値電圧を変動させる。
 特に、高電圧が印加されたトランジスタのしきい値電圧は大きく変動してしまう。一方、低電圧が印加されたトランジスタのしきい値電圧は大きく変動はしないものの、例えば3V駆動トランジスタであれば、そのしきい値電圧が0.1V増大してしまう。このしきい値電圧の増大は、10%近くの回路動作劣化を招き、画素メモリ内蔵液晶表示装置に搭載される低電圧駆動の薄膜トランジスタにおいては、この回路動作劣化は問題である。
 このような劣化は、プラス方向へのしきい値電圧変動を招く。その結果、n型トランジスタに関しては電流駆動力の劣化を起こし、p型トランジスタに関してはサブスレッショルド領域のリーク電流増大が問題となる。
 上述したような現象は、通常の液晶表示装置においては、画像を表示する表示部に搭載された薄膜トランジスタのみならず、その表示部による画像表示を制御するための駆動回路に搭載された薄膜トランジスタについても当然のことながら回避すべき現象である。
 しかしながら、従来の液晶表示装置100では、表示部に搭載された薄膜トランジスタについては周囲から入射される光を遮断する構造を有しているものの、駆動回路に搭載された薄膜トランジスタについては入射光を遮断する構造を何ら有するものではなかった。
 このため、上述したような現象は、駆動回路に搭載された薄膜トランジスタにおいては発生してしまい、液晶表示装置100の表示部による液晶表示を精度良く行なうことができなかった。
 その結果、駆動回路の薄膜トランジスタのしきい値を低電圧化することができず、延いては、液晶表示装置100の低電源電圧駆動および低消費電力化を実現することができないといった課題があった。
 上記課題に鑑み、本発明の目的は、液晶表示装置の電源電圧の低電圧化および消費電力の低減化を図ることができる液晶表示装置を提供することである。
 上記目的を達成するために、本発明における液晶表示装置は、画像表示するための複数の画素が配置された表示部と、前記表示部による画像表示を制御するための駆動部とを備え、前記複数の画素の各々は、表示信号を保持するための記憶素子を有する反射型の液晶表示装置であって、前記駆動部は、複数の薄膜トランジスタから構成されており、前記複数の薄膜トランジスタの各々は、チャネル領域および前記チャネル領域を挟むように配置された2つのソース/ドレイン領域と、少なくとも前記チャネル領域の上部に配置され、複数の膜の多層構造からなるゲート絶縁膜と、前記ゲート絶縁膜の上部に配置されたゲート電極と、前記ゲート絶縁膜および前記ゲート絶縁膜の上部に配置された第1層間膜を貫く接続配線を介して前記2つのソース/ドレイン領域の各々と電気的に接続された2つのソース/ドレイン電極と、前記液晶表示装置の周囲から前記液晶表示装置に入射される外光が、前記チャネル領域の上部に位置する前記ゲート絶縁膜の一部に入射することを防止すべく、前記外光を遮光する遮光膜とを有している。
 上記の液晶表示装置では、駆動部を構成する複数の薄膜トランジスタの各々について、液晶表示装置の周囲から入射される外光が、チャネル領域の上部に位置するゲート絶縁膜の一部に入射することを防止すべく、外光を遮光する遮光膜を有している。
 このため、ゲート絶縁膜への光照射を防止することができるので、ゲート絶縁膜を複数の膜の多層構造とし、薄膜トランジスタのしきい値電圧を低電圧化することができる。そうすることにより、駆動部の電源電圧の低電圧化および、消費電力の低減を図ることができるので、低電源電圧駆動および低消費電力化可能な液晶表示装置を実現することができる。
 本発明の液晶表示装置は、以上のように、前記駆動部は、複数の薄膜トランジスタから構成されており、前記複数の薄膜トランジスタの各々は、チャネル領域および前記チャネル領域を挟むように配置された2つのソース/ドレイン領域と、少なくとも前記チャネル領域の上部に配置され、複数の膜の多層構造からなるゲート絶縁膜と、前記ゲート絶縁膜の上部に配置されたゲート電極と、前記ゲート絶縁膜および前記ゲート絶縁膜の上部に配置された第1層間膜を貫く接続配線を介して前記2つのソース/ドレイン領域の各々と電気的に接続された2つのソース/ドレイン電極と、前記液晶表示装置の周囲から前記液晶表示装置に入射される外光が、前記チャネル領域の上部に位置する前記ゲート絶縁膜の一部に入射することを防止すべく、前記外光を遮光する遮光膜とを有している。
 それゆえ、液晶表示装置の電源電圧の低電圧化および消費電力の低減化を図ることができるという効果を奏する。
本発明の実施の形態1における液晶表示装置の駆動回路を構成する薄膜トランジスタの構造を示す断面図である。 本発明の実施の形態2における液晶表示装置の駆動回路を構成する薄膜トランジスタの構造を示す断面図である。 本発明の実施の形態3における液晶表示装置の駆動回路の一部の構造を示す断面図である。 本発明の実施の形態1における液晶表示装置の全体構成を示すブロック図である。 図4の画素形成部の概念図である。 従来の液晶表示装置の構成を示す図である。 光の照射時間と薄膜トランジスタのしきい値電圧の変動幅との関係を示すグラフ図である。
 以下図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号を付している。なお、以下で参照する各図は、説明の便宜上、本発明の実施の形態における構成部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。したがって、本発明の液晶表示装置は、本明細書が参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率等を忠実に表したものではない。
 (実施の形態1)
 本発明の実施の形態1における液晶表示装置は、バックライトを用いずに、周囲より入射される光を反射させることにより画像表示を行なう反射方式を採用する反射型液晶表示装置である。
 図4は、本発明の実施の形態1における液晶表示装置の全体構成を示すブロック図である。
 本発明の実施の形態1における液晶表示装置60は、図4に示すように、液晶表示パネル61と、表示制御回路66と、を備えている。そして、液晶表示パネル61は、ソースドライバ(駆動部)62と、ゲートドライバ(駆動部)63と、表示部64と、メモリ駆動用ドライバ(駆動部)65と、有し、表示制御回路66は、メモリ駆動制御部67を有している。
 表示部64には、ソースバスライン、ゲートバスライン、メモリ駆動選択ライン、第1の電圧供給ライン、第2の電圧供給ライン、第1の電源ラインおよび、第2の電源ラインが含まれている。なお、ソースバスラインは、ソースドライバ62に接続され、ゲートバスラインおよびメモリ駆動選択ラインは、ゲートドライバ63に接続され、第1の電圧供給ラインおよび第2の電圧供給ラインは、メモリ駆動用ドライバ65に接続されている。
 また、表示部64は、ゲートバスラインとソースバスラインとの交差点にそれぞれ対応して設けられた複数の画素形成部(画素)を含んでいる。各画素形成部は、表示すべき画像に応じた電圧を液晶容量に印加するための画素電極と、複数の画素形成部に共通的に設けられた対向電極である共通電極と、複数の画素形成部に共通的に設けられ画素電極と共通電極との間に挟持された液晶層と、からなる。
 また、表示部64には、表示部64がカラー表示を行なうカラータイプの場合、R(Red:赤色)用、G(Green:緑色)用、およびB(Blue:青色)用の3つのサブ画素からなる画素(以下、「画素ユニット」と呼ぶ。)毎に1ビットのデータの保持が可能な記憶回路としての画素メモリ回路が設けられている。
 さらに、表示部64には、表示部64がモノクローム表示を行なう白黒タイプの場合、カラータイプの各色の画素ピッチ(サブ画素ピッチ)の3倍の画素ピッチとなる画素毎に上記画素メモリ回路が設けられている。
 本実施の形態における液晶表示装置60においては、駆動方法が「通常駆動」と「メモリ駆動」とで切り替えることが可能である。「通常駆動」とは、液晶表示装置において一般的に行われている駆動方法であって、各ソースバスラインに印加される映像信号に基づいて液晶容量への書き込み(電圧の印加)を行なう方法である。一方、「メモリ駆動」とは、画素メモリ回路に保持されたデータに基づいて液晶容量への書き込みを行なう方法である。
 表示制御回路66は、外部から送られる画像データDATと表示モード指示信号Mとを受け取り、デジタル映像信号DV、表示部64における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、ゲートクロック信号GCK、第1の供給電圧制御信号SLA、第2の供給電圧制御信号SLBおよび、メモリ駆動制御信号SSELを出力する。
 ソースドライバ62は、表示制御回路66から出力されたデジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCKおよび、ラッチストローブ信号LSを受け取り、各ソースバスラインに駆動用の映像信号を印加する。
 ゲートドライバ63は、通常駆動時には、各ゲートバスラインを1水平走査期間ずつ順次に選択するために、表示制御回路66から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号の各ゲートバスラインへの印加を、1垂直走査期間を周期として繰り返す。
 通常駆動からメモリ駆動に切り替わる際には、ゲートドライバ63は、各ゲートバスラインを1水平走査期間ずつ順次に選択するために、表示制御回路66から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号を各ゲートバスラインに順次に印加する。その印加とともに、ゲートドライバ63は、各メモリ駆動選択ラインを1水平走査期間ずつ順次に選択するために、表示制御回路66から出力されたメモリ駆動制御信号SSELとゲートクロック信号GCKとに基づいて、アクティブな信号を各メモリ駆動選択ラインに順次に印加する。メモリ駆動時には、ゲートドライバ63は、各ゲートバスラインへのアクティブな走査信号の印加を停止し、全てのメモリ駆動選択ラインSEL1~SELmにアクティブな信号を印加する。
 メモリ駆動用ドライバ65は、表示制御回路66から出力された第1の供給電圧制御信号SLAおよび第2の供給電圧制御信号SLBに基づいて、第1の電圧供給ラインおよび第2の電圧供給ラインに電圧信号(VLA、VLB)を印加する。上記の電圧信号VLAは、対向電極に印加される対向電圧と逆位相の電圧信号であり、上記の電圧信号VLBは、対向電極に印加される対向電圧と同位相の電圧信号である。
 次に、本実施の形態における液晶表示装置60の表示部64の画素形成部に設けられた画素メモリ回路について説明する。図5は、画素形成部の概念図である。
 図5の画素形成部70では、画像表示用の液晶層77の下部には、反射電極76を挟むようにして、TFT基板71が配置されている。そして、複数の薄膜トランジスタからなるSRAM(記憶素子)72と、交流反転用のドライバ回路73が、TFT基板71上に配置されている。SRAM72にはゲートバスライン74およびソースバスライン75が接続されている。
 この画素形成部70では、SRAM72にデータを直接書き込むことができるため、静止画表示時にはフレームメモリと液晶書き込み用のドライバとの間で通信を行なう必要がない。また、交流反転駆動を画素形成部70単位で行なうことができるため、重い負荷容量を持つ信号線の充放電を行なう必要もない。
 このため、本実施の形態における液晶表示装置60は、消費電力の低減が可能となる。
 次に、本実施の形態における液晶表示装置60の特徴部分について説明する。
 本実施の形態における液晶表示装置60では、表示部64による画像表示を制御するための駆動回路であるソースドライバ62、ゲートドライバ63および、メモリ駆動用ドライバ65(以下、これら3つのドライバを単に「駆動回路(駆動部)」と呼ぶ場合もある。)それぞれに搭載される薄膜トランジスタの構造に特徴を有している。
 具体的には、本実施の形態における液晶表示装置60では、ソースドライバ62、ゲートドライバ63および、メモリ駆動用ドライバ65それぞれに搭載される薄膜トランジスタは、周囲から入射される光が薄膜トランジスタのゲート絶縁膜に直接照射されない構造を有している。
 以下、この構造について説明する。図1は、本実施の形態における液晶表示装置60の駆動回路を構成する薄膜トランジスタの構造を示す断面図である。
 図1において、この薄膜トランジスタ10は、基板11と、下地膜12と、平坦化膜13a、13bと、ゲート絶縁膜を構成する下層ゲート絶縁膜14および上層ゲート絶縁膜15と、ゲート電極16と、第1層間膜17と、接続配線18と、ソース/ドレイン電極19と、第2層間膜21と、を有している。
 基板11は、例えばガラス基板を用いればよい。下地膜12は、例えばSiO膜とSiN膜との積層構造を有し、基板11と平坦化膜13a、13bとの間に配置されている。この下地膜12は、基板11から可動イオン(例えば、ナトリウムイオン)が薄膜トランジスタ10に拡散してしまうことを防止する。このような可動イオンの混入防止は、薄膜トランジスタ10の信頼性(例えば、しきい値電圧変動)を確保する上で非常に重要な事柄である。
 平坦化膜13a、13bは、例えばアモルファスSi膜にレーザー光を照射することにより多結晶化された多結晶Si膜である。平坦化膜13a、13bの平坦化によって、ゲート絶縁膜の絶縁破壊耐圧を向上させることが可能となる。
 ここで、シリコン膜表面の平坦化技術としては、例えばエキシマレーザー結晶化技術が挙げられる。この場合は、1回目のレーザー結晶化時に酸素含有雰囲気で結晶化することにより特性の優れた結晶化膜が得られる。一般的には、この状態で結晶化処理が完了するため、シリコン表面はシリコン膜厚と同程度のシリコンリッジが形成されている。
 そこで、2回目のレーザー結晶化を非酸素雰囲気(窒素雰囲気)で行なうことにより、シリコン表面を平坦化できる。
 なお、1回のレーザー結晶化でシリコン表面を平坦化する技術として、連続発振が可能な固体レーザーを使用したCLC(Continuous Lateral Crystallization)技術も知られている。
 そして、平坦化膜13a、13bは、ソース/ドレイン領域13aとチャネル領域13bとに分けることができる。ソース/ドレイン領域13aの生成は、多結晶Si膜に公知のイオン注入技術を用いてn型不純物やp型不純物を注入し、公知の熱処理技術を用いて、その注入されたn型不純物やp型不純物を活性化すればよい。
 同様に、チャネル領域13bの生成も、多結晶Si膜に公知のイオン注入技術を用いてn型不純物やp型不純物を注入し、公知の熱処理技術を用いて、その注入されたn型不純物やp型不純物を活性化すればよい。チャネル領域13bへの不純物の注入は、ゲート電極16の形成以前に行なわれる。
 例えば、この薄膜トランジスタ10がn型トランジスタであれば、ソース/ドレイン領域13aにはn型不純物が注入される一方、チャネル領域13bにはp型不純物が注入される。また、この薄膜トランジスタ10がp型トランジスタであれば、ソース/ドレイン領域13aにはp型不純物が注入され、チャネル領域13bには不純物が注入されないか、p型不純物が注入される。
 ソース/ドレイン領域13aへの不純物の注入は、チャネル領域13bへの不純物の注入と同様、ゲート電極16の形成以前に行なわれる。そうすることにより、ゲート電極16の端部とソース/ドレイン領域13aの端部との位置関係を、後述する所望の位置関係に設定することができる。
 なお、ゲート電極16より内側のソース/ドレイン領域13aの不純物濃度を低濃度として、公知のゲートオーバーラップLDD(Lightly Doped Drain)構造としてもよい。
 この薄膜トランジスタ10は、下層ゲート絶縁膜14と上層ゲート絶縁膜15とからなる2層構造のゲート絶縁膜を有している。下層ゲート絶縁膜14は、例えばSiO膜であり、上層ゲート絶縁膜15は、例えばSiN膜である。SiN膜の比誘電率は、SiO膜の比誘電率よりも大きい。したがって、例えばSiN膜のような比誘電率の大きい絶縁膜からなる上層ゲート絶縁膜15を厚膜化することにより、ゲート絶縁膜の容量の低下を招くことなく、ゲート絶縁膜を厚膜化することができる。
 本実施の形態においては、ゲート絶縁膜を厚膜化し、且つ、平坦化膜13a、13bを平坦化することにより、アモルファスSi膜にレーザー光を照射して多結晶化する際にシリコンリッジが形成された場合でも、そのようなシリコンリッジがゲート絶縁膜の耐圧劣化を引き起こす要因となる可能性を低下させている。
 上層ゲート絶縁膜15の上部にはゲート電極16が配置されている。ゲート電極16は、例えばアルミニウム(Al)、モリブデン(Mo)、タングステン(W)が用いられる。
 上層ゲート絶縁膜15およびゲート電極16の上部には、第1層間膜17が配置されている。この第1層間膜17は、例えば無機材料を用いればよい。また、SiN膜とSiO膜の2層からなる積層構造であってもよい。
 接続配線18は、ソース/ドレイン領域13aとソース/ドレイン電極19とを電気的に接続する。この接続配線18は、下層ゲート絶縁膜14、上層ゲート絶縁膜15および第1層間膜17を貫くように設けられたコンタクトホールの側壁に沿って成膜された金属配線である。接続配線18には、例えばアルミニウム(Al)、銅(Cu)が用いられる。
 ソース/ドレイン電極19は、接続配線18を介して、ソース/ドレイン領域13aと電気的に接続している。ソース/ドレイン電極19は、接続配線18と同様、例えばアルミニウム(Al)、銅(Cu)が用いられる。
 第1層間膜17およびソース/ドレイン電極19の上部には、第2層間膜21が配置されている。第2層間膜21は、例えば樹脂が用いられる。
 次に、薄膜トランジスタ10の特徴部分について説明する。
 図1に示すように、ソース/ドレイン電極19の端部とゲート電極16の端部間の距離A1、および、ソース/ドレイン領域13aの端部とゲート電極16の端部間の距離B1は、所定の関係となるように設定されている。
 具体的には、距離A1および距離B1は、周囲から入射される光がチャネル領域13bの上部に位置するゲート絶縁膜(下層ゲート絶縁膜14、上層ゲート絶縁膜15)に直接入射されないようにすべく、設定されている。
 より具体的には、ソース/ドレイン電極19の端部およびゲート電極16の端部により遮断されることなく、チャネル領域13bに向かって入射された光が、チャネル領域13bに直接入射されないように、距離A1および距離B1が設定されている。
 すなわち、液晶表示装置60の周囲から液晶表示装置60に入射される外光が、チャネル領域13bの上部に位置するゲート絶縁膜(下層ゲート絶縁膜14、上層ゲート絶縁膜15)に入射することを防止すべく、ゲート電極16および2つのソース/ドレイン電極19のうちの少なくとも一方が外光を遮光する遮光膜を構成しているといえる。
 ゲート絶縁膜のうち、チャネル領域13bの上部に位置する部分が、この薄膜トランジスタ10の実質的なゲート絶縁膜に相当する。このため、チャネル領域13bに直接光が入射されないようにすれば、この実質的なゲート絶縁膜に対する光の入射も防止することが可能となる。
 したがって、薄膜トランジスタ10では、ゲート絶縁膜への光の入射を防止し、ゲート絶縁膜の光照射による光劣化を抑えることができる。
 以上説明したように、本発明の実施の形態1では、駆動回路に搭載される薄膜トランジスタ10のゲート絶縁膜の光入射による光劣化を防止しつつ、その積層構造化を実現することができる。
 このため、駆動回路に搭載される薄膜トランジスタ10のしきい値電圧を低電圧化し、そうすることにより、駆動回路の薄膜トランジスタ10の低電源電圧駆動および低消費電力化を実現することができる。
 (実施の形態2)
 次に、本発明の実施の形態2について説明する。上記の実施の形態1は、チャネル領域に向かう光の遮断は、ゲート電極の端部およびソース/ドレイン電極の端部を用いて行なうものであった。
 これに対し、本実施の形態では、ゲート電極の端部およびソース/ドレイン領域の端部に加え、反射電極の端部も用いて光の遮断を行なう実施の形態である。
 図2は、本実施の形態における液晶表示装置の駆動回路を構成する薄膜トランジスタの構造を示す断面図である。
 図2において、この薄膜トランジスタ30は、基板31と、下地膜32と、平坦化膜33a、33bと、ゲート絶縁膜を構成する下層ゲート絶縁膜34および上層ゲート絶縁膜35と、ゲート電極36と、第1層間膜37と、接続配線38と、ソース/ドレイン電極39と、第2層間膜41と、透明電極42と、反射電極43と、を有している。
 基板31は、例えばガラス基板を用いればよい。下地膜32は、例えばSiO膜とSiN膜との積層構造を有し、基板31と平坦化膜33a、33bとの間に配置されている。
 平坦化膜33a、33bは、例えばアモルファスSi膜にレーザー光を照射することにより多結晶化された多結晶Si膜である。そして、平坦化膜33a、33bは、ソース/ドレイン領域33aとチャネル領域33bとに分けることができる。ソース/ドレイン領域33aの生成は、多結晶Si膜に公知のイオン注入技術を用いてn型不純物やp型不純物を注入し、公知の熱拡散技術を用いて、その注入されたn型不純物やp型不純物を活性化すればよい。
 同様に、チャネル領域33bの生成も、多結晶Si膜に公知のイオン注入技術を用いてn型不純物やp型不純物を注入し、公知の熱処理技術を用いて、その注入されたn型不純物やp型不純物を活性化すればよい。チャネル領域33bへの不純物の注入は、ゲート電極36の形成以前に行なわれる。
 例えば、この薄膜トランジスタ30がn型トランジスタであれば、ソース/ドレイン領域33aにはn型不純物が注入される一方、チャネル領域33bにはp型不純物が注入される。また、この薄膜トランジスタ30がp型トランジスタであれば、ソース/ドレイン領域33aにはp型不純物が注入される一方、チャネル領域33bには不純物が注入されないか、p型不純物が注入される。
 ソース/ドレイン領域33aへの不純物の注入は、上記の実施の形態1とは異なり、ゲート電極36の形成以後に行なえばよい。そうすることにより、ゲート電極36の端部とソース/ドレイン領域33aの端部とを自己整合的に合わせることができる。したがって、ゲート電極36の端部とソース/ドレイン領域33aの端部との位置あわせを精度良く行なうことができるので、薄膜トランジスタ30のトランジスタ特性を向上させることができる。
 この薄膜トランジスタ30は、下層ゲート絶縁膜34と上層ゲート絶縁膜35とからなる2層構造のゲート絶縁膜を有している。下層ゲート絶縁膜34は、例えばSiO膜であり、上層ゲート絶縁膜35は、例えばSiN膜である。SiN膜の比誘電率は、SiO膜の比誘電率よりも大きい。例えばSiN膜のような比誘電率の大きい絶縁膜からなる上層ゲート絶縁膜35を厚膜化することにより、ゲート絶縁膜の容量の低下を招くことなく、ゲート絶縁膜を厚膜化することができる。
 さらに、平坦化膜33a、33bは、基板31上で平坦化されている。
 本実施の形態においては、ゲート絶縁膜を厚膜化し、且つ、平坦化膜33a、33bを平坦化することにより、ゲート絶縁膜の耐圧劣化を引き起こす要因となる可能性を低下させている。
 上層ゲート絶縁膜35の上部にはゲート電極36が配置されている。ゲート電極36は、例えばアルミニウム(Al)、モリブデン(Mo)、タングステン(W)が用いられる。
 上層ゲート絶縁膜35およびゲート電極36の上部には、第1層間膜37が配置されている。この第1層間膜37は、例えば無機材料を用いればよい。また、SiN膜とSiO膜の2層からなる積層構造であってもよい。
 接続配線38は、ソース/ドレイン領域33aとソース/ドレイン電極39とを電気的に接続する。この接続配線38は、下層ゲート絶縁膜34、上層ゲート絶縁膜35および第1層間膜37を貫くように設けられたコンタクトホールの側壁に沿って成膜された金属配線である。接続配線38には、例えばアルミニウム(Al)、銅(Cu)が用いられる。
 ソース/ドレイン電極39は、接続配線38を介して、ソース/ドレイン領域33aと電気的に接続している。ソース/ドレイン電極39は、接続配線38と同様、例えばアルミニウム(Al)、銅(Cu)が用いられる。
 第1層間膜37およびソース/ドレイン電極39の上部には、第2層間膜41が配置されている。第2層間膜41は、例えば樹脂が用いられる。
 第2層間膜41の上部には、透明電極42および反射電極43が配置されている。これら透明電極42および反射電極43は、本来、ソースドライバ62、ゲートドライバ63およびメモリ駆動用ドライバ65それぞれの薄膜トランジスタには不要である。本実施の形態では、表示部64の薄膜トランジスタの透明電極および反射電極を、駆動回路の薄膜トランジスタにも利用することで、ゲート絶縁膜への光の入射をより確実に行なうことができる。透明電極42は、例えばITOを用いればよい。また、反射電極43は、例えばアルミニウム(Al)を用いればよい。
 次に、薄膜トランジスタ30の特徴部分について説明する。
 図2に示すように、反射電極43の端部とソース/ドレイン電極39の端部間の距離A2、および、ソース/ドレイン電極39の端部とゲート電極36の端部間の距離B2は、所定の関係となるように設定されている。
 具体的には、距離A2および距離B2は、周囲から入射される光がチャネル領域33bの上部に位置するゲート絶縁膜(下層ゲート絶縁膜34、上層ゲート絶縁膜35)に直接入射されないようにすべく、設定されている。
 より具体的には、反射電極43の端部、ソース/ドレイン電極39の端部およびゲート電極36の端部により遮断されることなく、チャネル領域33bに向かって入射された光が、チャネル領域33bに直接入射されないように、距離A2および距離B2が設定されている。
 すなわち、液晶表示装置の周囲から液晶表示装置に入射される外光が、チャネル領域33bの上部に位置するゲート絶縁膜(下層ゲート絶縁膜34、上層ゲート絶縁膜35)に入射することを防止すべく、ゲート電極36、2つのソース/ドレイン電極39および反射電極43のうちの少なくともいずれかが遮光膜を構成しているといえる。
 ゲート絶縁膜のうち、チャネル領域33bの上部に位置する部分が、この薄膜トランジスタ30の実質的なゲート絶縁膜に相当する。このため、チャネル領域33bに直接光が入射されないようにすれば、この実質的なゲート絶縁膜に対する光の入射も防止することが可能となる。
 したがって、薄膜トランジスタ30では、ゲート絶縁膜への光の入射を防止し、ゲート絶縁膜の光照射による光劣化を抑えることができる。
 以上説明したように、本発明の実施の形態2では、駆動回路に搭載される薄膜トランジスタ30のゲート絶縁膜の光入射による光劣化を、より効果的に防止しつつ、その積層構造化を実現することができる。
 このため、駆動回路に搭載される薄膜トランジスタ30のしきい値電圧を、より確実に低電圧化し、そうすることにより、駆動回路の薄膜トランジスタ30の低電源電圧駆動および低消費電力化を実現することができる。
 さらに、ソース/ドレイン領域33aをゲート電極36に対して自己整合的に形成することができるので、薄膜トランジスタ30のトランジスタ特性の向上を図ることができる。
 (実施の形態3)
 次に、本発明の実施の形態3について説明する。上記の実施の形態2では、ゲート電極の端部、ソース/ドレイン領域の端部および、反射電極の端部を用いて光の遮断を行なう実施の形態であった。本実施の形態では、上記の実施の形態2の反射電極を、駆動回路のトランジスタ形成領域のみに配置する実施の形態である。
 図3は、本実施の形態における液晶表示装置の駆動回路の一部の構造を示す断面図である。図3に示すように、トランジスタ形成領域には複数の薄膜トランジスタが形成されており、配線領域にはトランジスタ形成領域の複数の薄膜トランジスタ間を接続するための複数の金属配線が形成されている。なお、トランジスタ形成領域とは、例えばトランジスタのシリコン膜形成領域から約5μm外側の領域までの領域である。
 図3において、この駆動回路50は、基板51と、下地膜52と、平坦化膜53a、53bと、ゲート絶縁膜を構成する下層ゲート絶縁膜54および上層ゲート絶縁膜55と、ゲート電極56と、第1層間膜57と、接続配線58と、ソース/ドレイン電極59と、第2層間膜81と、透明電極82と、反射電極(反射層)83と、引き回し配線84と、を有している。
 基板51は、例えばガラス基板を用いればよい。下地膜52は、例えばSiO膜とSiN膜との積層構造を有し、基板51と平坦化膜53a、53bとの間に配置されている。
 平坦化膜53a、53bは、例えばアモルファスSi膜にレーザー光を照射することにより多結晶化された多結晶Si膜である。そして、平坦化膜53a、53bは、ソース/ドレイン領域53aとチャネル領域53bとに分けることができる。ソース/ドレイン領域53aの生成は、多結晶Si膜に公知のイオン注入技術を用いてn型不純物やp型不純物を注入し、公知の熱処理技術を用いて、その注入されたn型不純物やp型不純物を活性化すればよい。
 同様に、チャネル領域53bの生成も、多結晶Si膜に公知のイオン注入技術を用いてn型不純物やp型不純物を注入し、公知の熱拡散技術を用いて、その注入されたn型不純物やp型不純物を活性化すればよい。チャネル領域53bへの不純物の注入は、ゲート電極56の形成以前に行なわれる。
 例えば、駆動回路50のトランジスタ形成領域に形成される薄膜トランジスタがn型トランジスタであれば、ソース/ドレイン領域53aにはn型不純物が注入される一方、チャネル領域53bにはp型不純物が注入される。また、駆動回路50の薄膜トランジスタがp型トランジスタであれば、ソース/ドレイン領域53aにはp型不純物が注入される一方、チャネル領域53bには不純物が注入されないか、p型不純物が注入される。
 ソース/ドレイン領域53aへの不純物の注入は、ゲート電極56の形成以後に行なえばよい。そうすることにより、ゲート電極56の端部とソース/ドレイン領域53aの端部とを自己整合的に合わせることができる。したがって、ゲート電極56の端部とソース/ドレイン領域53aの端部との位置あわせを精度良く行なうことができるので、駆動回路50の薄膜トランジスタのトランジスタ特性を向上させることができる。
 この薄膜トランジスタは、下層ゲート絶縁膜54と上層ゲート絶縁膜55とからなる2層構造のゲート絶縁膜を有している。下層ゲート絶縁膜54は、例えばSiO膜であり、上層ゲート絶縁膜55は、例えばSiN膜である。SiN膜の比誘電率は、SiO膜の比誘電率よりも大きい。例えばSiN膜のような比誘電率の大きい絶縁膜からなる上層ゲート絶縁膜55を厚膜化することにより、ゲート絶縁膜の容量の低下を招くことなく、ゲート絶縁膜を厚膜化することができる。
 さらに、平坦化膜53a、53bは、基板51上で平坦化されている。
 本実施の形態においては、ゲート絶縁膜を厚膜化し、且つ、平坦化膜53a、53bを平坦化することにより、ゲート絶縁膜の耐圧劣化を引き起こす要因となる可能性を低下させている。
 上層ゲート絶縁膜55の上部にはゲート電極56が配置されている。ゲート電極56は、例えばアルミニウム(Al)、モリブデン(Mo)、タングステン(W)膜が用いられる。
 上層ゲート絶縁膜55およびゲート電極56の上部には、第1層間膜57が配置されている。この第1層間膜57は、例えば無機材料を用いればよい。また、SiN膜とSiO膜の2層からなる積層構造であってもよい。
 接続配線58は、ソース/ドレイン領域53aとソース/ドレイン電極59とを電気的に接続する。この接続配線58は、下層ゲート絶縁膜54、上層ゲート絶縁膜55および第1層間膜57を貫くように設けられたコンタクトホールの側壁に沿って成膜された金属配線である。接続配線58には、例えばアルミニウム(Al)、銅(Cu)が用いられる。
 ソース/ドレイン電極59は、接続配線58を介して、ソース/ドレイン領域53aと電気的に接続している。ソース/ドレイン電極59は、接続配線58と同様、例えばアルミニウム(Al)、銅(Cu)が用いられる。
 また、このソース/ドレイン電極59と同一の配線を用いて、引き回し配線84が配線領域に形成されている。
 第1層間膜57、ソース/ドレイン電極59および引き回し配線84の上部には、第2層間膜81が配置されている。第2層間膜81は、例えば樹脂が用いられる。
 第2層間膜81の上部には、透明電極82および反射電極83が配置されている。これら透明電極82および反射電極83は、本来、ソースドライバ62、ゲートドライバ63およびメモリ駆動用ドライバ65それぞれの薄膜トランジスタには不要である。本実施の形態では、表示部64の薄膜トランジスタの透明電極および反射電極を、駆動回路の薄膜トランジスタにも利用することで、ゲート絶縁膜への光の入射をより確実に行なうことができる。透明電極82は、例えばITOを用いればよい。また、反射電極83は、例えばアルミニウム(Al)を用いればよい。
 すなわち、駆動回路50の薄膜トランジスタは、表示部64の薄膜トランジスタの反射電極と同一の配線層を用いた反射電極83を有している。そして、反射電極83は、駆動回路50のトランジスタ形成領域のみに配置されている。
 図3に示すように、反射電極83の端部とゲート電極56の端部間の距離A3、および、ソース/ドレイン電極59の端部とゲート電極56の端部間の距離B3は、所定の関係となるように設定されている。
 具体的には、距離A3および距離B3は、周囲から入射される光がチャネル領域53bの上部に位置するゲート絶縁膜(下層ゲート絶縁膜54、上層ゲート絶縁膜55)に直接入射されないようにすべく、設定されている。
 より具体的には、反射電極53の端部、ソース/ドレイン電極59の端部およびゲート電極56の端部により遮断されることなく、チャネル領域53bに向かって入射された光が、チャネル領域53bに直接入射されないように、距離A3および距離B3が設定されている。
 すなわち、液晶表示装置の周囲から液晶表示装置に入射される外光が、チャネル領域53bの上部に位置するゲート絶縁膜(下層ゲート絶縁膜54、上層ゲート絶縁膜55)に入射することを防止すべく、ゲート電極56、2つのソース/ドレイン電極59および反射電極53のうちの少なくともいずれかが遮光膜を構成しているといえる。
 ゲート絶縁膜のうち、チャネル領域53bの上部に位置する部分が、図3の薄膜トランジスタの実質的なゲート絶縁膜に相当する。このため、チャネル領域53bに直接光が入射されないようにすれば、この実質的なゲート絶縁膜に対する光の入射も防止することが可能となる。
 したがって、図3の薄膜トランジスタでは、ゲート絶縁膜への光の入射を防止し、ゲート絶縁膜の光照射による光劣化を抑えることができる。
 また、本実施の形態では、透明電極82および反射電極83は、トランジスタ形成領域に形成され、配線領域に形成されていない。配線領域には複数の引き回し配線84が形成されており、これら引き回し配線84は上述したように金属材料が用いられている。このため、第2層間膜81上に透明電極82および反射電極83が配置された場合、これら透明電極82および反射電極83と引き回し配線84間で配線容量を構成してしまう。この配線容量は、引き回し配線84間の相互干渉、引き回し配線84の伝搬速度の遅延といった不具合が生じてしまう。
 このため、本実施の形態では、透明電極82および反射電極83を配線領域に形成しないことにより、このような不具合を回避し、駆動回路の動作速度の劣化を防止している。
 以上説明したように、本発明の実施の形態3では、駆動回路50に搭載される薄膜トランジスタのゲート絶縁膜の光入射による光劣化を、より効果的に防止しつつ、その積層構造化を実現することができる。
 このため、駆動回路50に搭載される薄膜トランジスタのしきい値電圧を、より確実に低電圧化し、そうすることにより、駆動回路50の薄膜トランジスタの低電源電圧駆動および低消費電力化を実現することができる。
 さらに、ソース/ドレイン領域53aをゲート電極56に対して自己整合的に形成することができるので、薄膜トランジスタのトランジスタ特性の向上を図ることができる。
 また、本実施の形態によれば、駆動回路50の動作速度を劣化させることなく、上記の効果を実現することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、反射型液晶表示装置に適用した場合に最も効果的ではあるが、透過型液晶表示装置や有機EL表示装置等、他の表示装置における駆動回路の低電圧化や高信頼性化にも有効である。
 なお、透過型液晶表示装置の場合、光による劣化現象は、表示部のトランジスタよりも駆動回路のトランジスタのほうが特に問題となる。これは、表示部では、トランジスタのゲート電極にオン状態の信号が入力されるのはゲートバスライン数分の1、すなわち、数百分の1の時間である一方、周辺回路では、ゲート電極に99%以上の時間、オン状態の信号が入力されているトランジスタが存在してしまうからである。このため、周辺回路のトランジスタ下の遮光膜の配置が重要であり、本発明の適用が有効となる所以である。
 なお、本発明は、以下のようにも表現することができる。すなわち、本発明における液晶表示装置は、画像表示するための複数の画素が配置された表示部と、前記表示部による画像表示を制御するための駆動部とを備え、前記複数の画素の各々は、表示信号を保持するための記憶素子を有する反射型の液晶表示装置であって、前記駆動部は、複数の薄膜トランジスタから構成されており、前記複数の薄膜トランジスタの各々は、チャネル領域および前記チャネル領域を挟むように配置された2つのソース/ドレイン領域と、少なくとも前記チャネル領域の上部に配置され、複数の膜の多層構造からなるゲート絶縁膜と、前記ゲート絶縁膜の上部に配置されたゲート電極と、前記ゲート絶縁膜および前記ゲート絶縁膜の上部に配置された第1層間膜を貫く接続配線を介して前記2つのソース/ドレイン領域の各々と電気的に接続された2つのソース/ドレイン電極と、前記液晶表示装置の周囲から前記液晶表示装置に入射される外光が、前記チャネル領域の上部に位置する前記ゲート絶縁膜の一部に入射することを防止すべく、前記外光を遮光する遮光膜とを有している。
 上記の液晶表示装置では、駆動部を構成する複数の薄膜トランジスタの各々について、液晶表示装置の周囲から入射される外光が、チャネル領域の上部に位置するゲート絶縁膜の一部に入射することを防止すべく、外光を遮光する遮光膜を有している。
 このため、ゲート絶縁膜への光照射を防止することができるので、ゲート絶縁膜を複数の膜の多層構造とし、薄膜トランジスタのしきい値電圧を低電圧化することができる。そうすることにより、駆動部の電源電圧の低電圧化および、消費電力の低減を図ることができるので、低電源電圧駆動および低消費電力化可能な液晶表示装置を実現することができる。
 前記遮光膜は、前記ゲート電極および前記2つのソース/ドレイン電極のうちの少なくとも一方であることが好ましい。
 この場合、遮光膜がゲート電極であれば、2つのソース/ドレイン領域の形成後にゲート電極を形成することができる。このため、ゲート電極を、ソース/ドレイン領域に挟まれたチャネル領域に合わせて配置することができるので、チャネル領域の上部に位置するゲート絶縁膜の一部への光の入射を確実に遮断することができる。
 また、遮光膜が2つのソース/ドレイン電極であれば、2つのソース/ドレイン領域をゲート電極に対し自己整合的に形成することができる。
 前記表示部は、前記外光を反射し、前記表示部による画像表示に利用される光を生成する反射電極を有しており、前記複数の薄膜トランジスタの各々は、前記表示部の反射電極と同一の配線層を用いた反射膜を有し、前記遮光膜は、前記ゲート電極、前記2つのソース/ドレイン電極および前記反射膜のうちの少なくともいずれかであることが好ましい。
 この場合、遮光膜が反射膜であれば、遮光膜を広範囲に渡って形成することができるので、光の入射をより確実に遮断することができる。
 遮光膜がゲート電極であれば、2つのソース/ドレイン領域の形成後にゲート電極を形成することができる。このため、ゲート電極を、ソース/ドレイン領域に挟まれたチャネル領域に合わせて配置することができるので、チャネル領域の上部に位置するゲート絶縁膜の一部への光の入射を確実に遮断することができる。
 遮光膜が2つのソース/ドレイン電極であれば、2つのソース/ドレイン領域をゲート電極に対し自己整合的に形成することができる。
 前記反射膜は、前記駆動部のトランジスタ形成領域のみに配置されていることが好ましい。
 この場合、駆動部の配線領域における信号伝搬遅延を防止することができるので、駆動部の高速動作を実現される。
 前記チャネル領域および前記2つのソース/ドレイン領域は、平坦化されたシリコン膜に形成されていることが好ましく、前記平坦化されたシリコン膜は、自身の膜厚の1/2以下の凹凸を前記ゲート絶縁膜側の表面に有することがより好ましい。
 この場合、チャネル領域および2つのソース/ドレイン領域の上部に配置されたゲート絶縁膜の絶縁耐圧をより向上させることができる。
 また、本発明は、以下のようにも表現することができる。すなわち、本発明における反射型液晶表示装置は、画素内に表示信号を保持するためのメモリ回路を有する反射型液晶表示装置において、回路およびスイッチング素子を構成する薄膜トランジスタのゲート絶縁膜が2層構成となっており、シリコン膜側が二酸化シリコン膜、ゲート電極側が二酸化シリコン膜よりも誘電率が高い膜で形成されていること、薄膜トランジスタのチャネル上およびチャネル横のソース/ドレイン端上のゲート絶縁膜上方に外部光を遮光するための膜が形成されている。
 前記外部光遮光膜がゲート電極で形成されていることが好ましい。
 前記外部光遮光膜が、ソース/ドレイン電極で形成されており、ソース電極およびドレイン電極は各々ゲート電極と重なるように形成されていることが好ましい。
 前記外部光遮光膜が、画素反射電極と同一層で形成されていることが好ましい。
 前記外部光遮光膜は、トランジスタ形成領域にのみ形成され、信号配線、電源配線領域には形成されないことが好ましい。
 前記外部遮光膜を2つ以上使用して、外部光を遮光することが好ましい。
 前記薄膜トランジスタにおいて、シリコン膜表面の凹凸(シリコンリッジ)がシリコン膜厚の半分以下であることが好ましい。
 本発明の液晶表示装置は、携帯機器や、パーソナルコンピュータ、ビデオカメラに好適に利用することができる。
 10、30  薄膜トランジスタ
 11、31、51  基板
 12、32、52  下地膜
 13a、33a、53a  ソース/ドレイン領域
 13b、33b、53b  チャネル領域
 14、34、54  下層ゲート絶縁膜
 15、35、55  上層ゲート絶縁膜
 16、36、56  ゲート電極
 17、37、57  第1層間膜
 18、38、58  接続配線
 19、39、59  ソース/ドレイン電極
 21、41、81  第2層間膜
 42、82  透過電極
 43、76  反射電極
 50  駆動回路(駆動部)
 60  液晶表示装置
 61  液晶表示パネル
 62  ソースドライバ(駆動部)
 63  ゲートドライバ(駆動部)
 64  表示部
 65  メモリ駆動用ドライバ
 66  表示制御回路
 67  メモリ駆動制御部
 70  画像形成部(画素)
 71  TFT基板
 72  SRAM(記憶素子)
 73  交流反転用ドライバ回路
 74  ゲートバスライン
 75  ソースバスライン
 77  液晶層
 83  反射電極(反射層)
 84  引き回し配線
 100  液晶表示装置
 101  絶縁基板
 102  段差形成膜
 103  遮光膜
 104  バッファ層
 105  半導体膜
 105a  ソース領域
 105b  ドレイン領域
 105c  ハイブリッド領域
 105d  チャネル領域
 106  ゲート絶縁膜
 107  ゲート電極
 108  層間絶縁膜
 109a  ソース電極
 109b  ドレイン信号線
 110  平坦化膜
 111  画素電極

Claims (6)

  1.  画像表示するための複数の画素が配置された表示部と、前記表示部による画像表示を制御するための駆動部とを備え、前記複数の画素の各々は、表示信号を保持するための記憶素子を有する反射型の液晶表示装置であって、
     前記駆動部は、複数の薄膜トランジスタから構成されており、
     前記複数の薄膜トランジスタの各々は、
     チャネル領域および前記チャネル領域を挟むように配置された2つのソース/ドレイン領域と、
     少なくとも前記チャネル領域の上部に配置され、複数の膜の多層構造からなるゲート絶縁膜と、
     前記ゲート絶縁膜の上部に配置されたゲート電極と、
     前記ゲート絶縁膜および前記ゲート絶縁膜の上部に配置された第1層間膜を貫く接続配線を介して前記2つのソース/ドレイン領域の各々と電気的に接続された2つのソース/ドレイン電極と、
     前記液晶表示装置の周囲から前記液晶表示装置に入射される外光が、前記チャネル領域の上部に位置する前記ゲート絶縁膜の一部に入射することを防止すべく、前記外光を遮光する遮光膜と
    を有していることを特徴とする液晶表示装置。
  2.  前記遮光膜は、前記ゲート電極および前記2つのソース/ドレイン電極のうちの少なくとも一方であることを特徴とする請求項1に記載の液晶表示装置。
  3.  前記表示部は、前記外光を反射し、前記表示部による画像表示に利用される光を生成する反射電極を有しており、
     前記複数の薄膜トランジスタの各々は、前記表示部の反射電極と同一の配線層を用いた反射膜を有し、前記遮光膜は、前記ゲート電極、前記2つのソース/ドレイン電極および前記反射膜のうちの少なくともいずれかであることを特徴とする請求項1に記載の液晶表示装置。
  4.  前記反射膜は、前記駆動部のトランジスタ形成領域のみに配置されていることを特徴とする請求項3に記載の液晶表示装置。
  5.  前記チャネル領域および前記2つのソース/ドレイン領域は、平坦化されたシリコン膜に形成されていることを特徴とする請求項1~4のいずれか1項に記載の液晶表示装置。
  6.  前記平坦化されたシリコン膜は、自身の膜厚の1/2以下の凹凸を前記ゲート絶縁膜側の表面に有することを特徴とする請求項5に記載の液晶表示装置。
PCT/JP2010/001619 2009-06-03 2010-03-08 液晶表示装置 WO2010140287A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/322,653 US20120075270A1 (en) 2009-06-03 2010-03-08 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009134063 2009-06-03
JP2009-134063 2009-06-03

Publications (1)

Publication Number Publication Date
WO2010140287A1 true WO2010140287A1 (ja) 2010-12-09

Family

ID=43297430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001619 WO2010140287A1 (ja) 2009-06-03 2010-03-08 液晶表示装置

Country Status (2)

Country Link
US (1) US20120075270A1 (ja)
WO (1) WO2010140287A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8704591B1 (en) * 2012-11-08 2014-04-22 Lsi Corporation High-voltage tolerant biasing arrangement using low-voltage devices
TWM472858U (zh) * 2013-07-18 2014-02-21 Univ Chung Hua 外界觸發記憶型液晶光學薄膜
KR102227476B1 (ko) * 2014-06-23 2021-03-15 삼성디스플레이 주식회사 유기 발광 표시 장치
TW201603249A (zh) * 2014-07-14 2016-01-16 元太科技工業股份有限公司 電路保護結構與具有電路保護結構的顯示裝置
US9935127B2 (en) * 2015-07-29 2018-04-03 Wuhan China Star Optoelectronics Technology Co., Ltd. Control circuit of thin film transistor
US10546881B2 (en) * 2018-04-19 2020-01-28 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Thin film transistor array substrate and display panel
CN112366226B (zh) * 2021-01-13 2021-04-06 京东方科技集团股份有限公司 显示基板及其制作方法和显示装置
CN113097230B (zh) * 2021-03-29 2023-01-10 深圳市华星光电半导体显示技术有限公司 阵列基板及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016153A1 (fr) * 1998-09-10 2000-03-23 Seiko Epson Corporation Substrat pour panneau a cristaux liquides, panneau a cristaux liquides, appareil electronique comprenant ce panneau, et procede de fabrication d'un substrat pour panneau a cristaux liquides
JP2003008026A (ja) * 2001-06-26 2003-01-10 Sanyo Electric Co Ltd 半導体装置及びそれを用いたアクティブマトリクス型表示装置
JP2003142402A (ja) * 2001-08-10 2003-05-16 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100310946B1 (ko) * 1999-08-07 2001-10-18 구본준, 론 위라하디락사 액정표시장치 및 그 제조방법
KR100858295B1 (ko) * 2002-02-26 2008-09-11 삼성전자주식회사 반사-투과형 액정표시장치 및 이의 제조 방법
US7365494B2 (en) * 2004-12-03 2008-04-29 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
KR20080110347A (ko) * 2007-06-15 2008-12-18 삼성전자주식회사 전기 영동 표시 장치 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016153A1 (fr) * 1998-09-10 2000-03-23 Seiko Epson Corporation Substrat pour panneau a cristaux liquides, panneau a cristaux liquides, appareil electronique comprenant ce panneau, et procede de fabrication d'un substrat pour panneau a cristaux liquides
JP2003008026A (ja) * 2001-06-26 2003-01-10 Sanyo Electric Co Ltd 半導体装置及びそれを用いたアクティブマトリクス型表示装置
JP2003142402A (ja) * 2001-08-10 2003-05-16 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法

Also Published As

Publication number Publication date
US20120075270A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
WO2010140287A1 (ja) 液晶表示装置
US6812912B2 (en) Active matrix display device with storage capacitor for each pixel
JP3381718B2 (ja) 電気光学装置及びその製造方法並びに電子機器
US6999150B2 (en) Electro-optical device, method for making the same, and electronic apparatus
JP3858880B2 (ja) 電気光学装置及び電子機器
US20030147018A1 (en) Display apparatus having polycrystalline semiconductor layer
US7388633B2 (en) Reflective liquid crystal display
JP2009122253A (ja) 電気光学装置及び電子機器
JP3520417B2 (ja) 電気光学パネルおよび電子機器
WO2010127515A1 (zh) 显示面板
JP3719343B2 (ja) 電気光学装置用基板、電気光学装置、電気光学装置の駆動方法及び電子機器並びに投射型表示装置
JP4187027B2 (ja) 表示装置
JPH11109923A (ja) 液晶表示装置の駆動方法
JP3767221B2 (ja) 電気光学装置及びその製造方法
JP5481790B2 (ja) 電気光学装置
JP2002297060A (ja) アクティブマトリクス型表示装置
JP2002296619A (ja) アクティブマトリクス型表示装置
JP2009199029A (ja) 電気光学装置、電子機器
JP2008249975A (ja) 電気光学装置、及びこれを備えた電子機器
JP2000206565A (ja) 表示装置用半導体素子及びこれを用いた液晶表示装置
JP2002297058A (ja) アクティブマトリクス型表示装置
JP4026398B2 (ja) 電気光学装置及び電子機器
JP3867027B2 (ja) 電気光学装置及び電子機器
US20240260392A1 (en) Display apparatus
JP3867026B2 (ja) 電気光学装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13322653

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP