JP3719343B2 - 電気光学装置用基板、電気光学装置、電気光学装置の駆動方法及び電子機器並びに投射型表示装置 - Google Patents

電気光学装置用基板、電気光学装置、電気光学装置の駆動方法及び電子機器並びに投射型表示装置 Download PDF

Info

Publication number
JP3719343B2
JP3719343B2 JP36750498A JP36750498A JP3719343B2 JP 3719343 B2 JP3719343 B2 JP 3719343B2 JP 36750498 A JP36750498 A JP 36750498A JP 36750498 A JP36750498 A JP 36750498A JP 3719343 B2 JP3719343 B2 JP 3719343B2
Authority
JP
Japan
Prior art keywords
transistor
substrate
electro
optical device
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36750498A
Other languages
English (en)
Other versions
JP2000241829A (ja
Inventor
茂憲 片山
昌宏 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP36750498A priority Critical patent/JP3719343B2/ja
Publication of JP2000241829A publication Critical patent/JP2000241829A/ja
Application granted granted Critical
Publication of JP3719343B2 publication Critical patent/JP3719343B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気光学装置用基板、電気光学装置、電気光学装置の駆動方法及び電子機器並びに投射型表示装置に関する発明である。
【0002】
【従来の技術】
支持基板上に単結晶シリコン薄膜を形成し、そのシリコン薄膜に半導体デバイスを形成する半導体技術はSOI(Silicon On Insulator)技術と呼ばれ、そのシリコン薄膜により形成されたトランジスタ素子の高速化や低消費電力化、高集積化等の利点を有することから広く研究されている。
【0003】
一般に絶縁体層上に、多結晶シリコンを成長させることは比較的易しいが、単結晶シリコンを成長させることは困難である。そこで、SIMOX(Separation by Implanted Oxygen)法、或いは、貼り合わせ法などといったSOI技術を用いることが考えられている。ここで、SIMOX法とは、単結晶シリコン基板中に酸素イオンを注入し、表面に単結晶シリコン層を残して単結晶シリコン基板内部にシリコン酸化膜からなる絶縁体層を形成する方法である。また、貼り合わせ法とは、2枚の単結晶基板の片方、或いは両方の表面に熱酸化膜を形成し、これらを貼り合わせた後、片方の単結晶基板を薄く削って素子層とする方法である。この貼り合わせ法を応用したものとして、単結晶シリコン基板に水素イオンを注入し、これを支持基板と貼り合わせた後、熱処理によって薄膜シリコン層を単結晶シリコン基板の水素注入領域から分離する手法(US Patent No.5,374,564)や、表面を多孔質化したシリコン基板上に単結晶シリコン層をエピタキシャル成長させ、これを支持基板と貼り合わせた後にシリコン基板を除去し、多孔質シリコン層をエッチングすることにより支持基板上にエピタキシャル単結晶シリコン薄膜を形成する手法(特開平4−346418号)などが知られている。
【0004】
この薄膜SOI構造のMOS型半導体素子では、通常のバルク型のMOS型半導体素子と比較して寄生容量が小さいことが挙げられる。これは、バルク型のMOS型半導体素子で課題となっていたソース/ドレイン領域と基板との接合容量や、基板とこの基板上に形成される配線との間に寄生する配線容量が、SOI構造のMOS型半導体素子とすることによって少なくとも基板表面が絶縁物となるため、バルク型のMOS型半導体素子と比較して大きく低減することができるからである。また、薄膜SOI構造のMOS型半導体素子では、バルク型のMOS型半導体素子にて問題となった基板側の深い層に発生する電流の経路が形成されなくなるため、いわゆるパンチスルー現象に対して強くなる。
【0005】
このようなSOI構造のMOS型半導体素子が形成された基板(SOI基板)は通常のバルク型のMOS型半導体素子が形成された基板(バルク型半導体基板)と同様に、さまざまなデバイスの製造に用いられているが、従来のバルク型半導体基板と異なる特徴として、支持基板に様々な材料を使用することが可能な点を挙げることができる。すなわち支持基板として通常のシリコン基板はもちろんのこと、透明な石英ガラス、あるいは通常のガラス基板などを用いることができる。その結果、例えば透明な基板上に単結晶シリコン薄膜を形成することによって、光透過性を必要とするデバイス、例えば透過型の液晶表示デバイスなどにも結晶性に優れた単結晶シリコンを用いて高性能なトランジスタ素子を形成することが可能となる。
【0006】
【発明が解決しようとする課題】
しかし、薄膜SOI構造のMOS型半導体素子には、上述してきたような数々の利点がある反面、基板浮遊効果という問題がある。この基板浮遊効果とは、基トランジスタが形成される基板表面が絶縁物であるために、チャネル領域に蓄積する余剰キャリアが放出されることなく蓄積してしまうことである。特に、SOI構造における薄膜トランジスタにおいて、チャネルを単結晶シリコン層で形成した場合、単結晶シリコンは電荷移動度が高いために、ソース・ドレイン間に電位差が生ずると、薄膜トランジスタがオフであるにも係わらずチャネルにキャリア(電荷)が蓄積しやすくなる。また、トランジスタがオンの場合でも過剰な電流が流れやすくなる。薄膜トランジスタのチャネルにそのようなキャリア(電荷)が蓄積したり流れたりすると、薄膜構造においては、その余分なキャリア(電荷)によってトランジスタ素子のドレインの耐破壊電圧が低下したり、トランジスタ素子の電流電圧特性にキンクが生じたりするといった種々の問題が引き起こされるものである。
【0007】
本発明の目的は前述の問題点に対処して、絶縁物上に形成されたトランジスタの信頼性を向上した電気光学装置用基板、それを用いた電気光学装置、電気光学装置の駆動方法、更にはその電気光学装置を用いた電子機器並びに投射型表示装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の電気光学装置用基板は、上記課題を解決するために、基板上にマトリクス状に形成される複数の画素領域の各画素領域毎にトランジスタが配置される電気光学装置用基板において、前記基板上に前記トランジスタのチャネル領域となる半導体層が形成されてなり、該チャネル領域となる半導体層は、当該トランジスタのゲート電極が電気的に接続される走査信号線とは異なる走査信号線と電気的に接続されてなることを特徴とする。本発明によれば、チャネル領域に蓄積された余剰キャリアをそこから走査信号線に引き抜くことにより、基板浮遊効果を抑制することができ、それによりトランジスタの耐圧を向上し、電流電圧特性のキンクを抑制することができる。このため、本発明の電気光学装置用基板を用いれば、良好なトランジスタ特性を有するデバイスを作成することが可能となる。
【0009】
また、本発明においては、前記異なる走査信号線は、当該トランジスタのが電気的に接続される走査信号線よりも前段側に位置する走査信号線であることが望ましい。トランジスタのチャネル領域が、自己の画素より前段側の走査信号線に接続されれば、選択電位が印加される選択期間が終了し、通常、選択期間よりも長い非選択期間に移行しているので、前段の走査信号線に印加された安定した非選択電位によって、チャネル領域の余剰キャリア(なお、本発明ではキャリアを電荷と同意として扱う)を引き抜くことができる。なお、前段の走査信号線は、直前の走査信号線であることが望ましいが、2以上前の走査信号線でも構わない。
【0010】
また、本発明においては、前記トランジスタはNチャネル型トランジスタであって、前記前段側の走査信号線には前記トランジスタに供給される画像信号の電位以下の電位が印加されることが望ましい。Nチャネル型トランジスタには、電子(負の電荷)がチャネル領域に蓄積される。この蓄積された余剰キャリアを引き抜くためには、チャネルに接続される走査信号線は低い電位になければならない。チャネルには画像信号に基づく電流が流れるので、チャネルに接続される走査信号線には画像信号の電位以下の電位が印加されることにより効果的にキャリアを引き抜ける。
【0011】
また、本発明においては、前記トランジスタはPチャネル型トランジスタであって、前記前段側の走査信号線には前記トランジスタに供給される画像信号の電位以上の電位が印加されることが望ましい。Pチャネル型トランジスタには、正孔(正の電荷)がチャネル領域に蓄積される。この蓄積された余剰キャリアを引き抜くためには、チャネルに接続される走査信号線は低い電位になければならない。チャネルには画像信号に基づく電流が流れるので、チャネルに接続される走査信号線には画像信号の電位以上の電位が印加されることにより効果的にキャリアを引き抜ける。
【0012】
また、本発明においては、前記トランジスタのチャネル領域の半導体層は、当該トランジスタのソース・ドレイン領域を構成する半導体層と互いに異なる導電型とすることが望ましい。チャネルにはソース・ドレインと異なる不純物イオンを導入することにより、トランジスタ素子の閾値電圧を制御できるだけでなく、導電性を持たせることによりチャネルに蓄積された電荷を容易に逃しやすくなる。
【0013】
また、本発明においては、前記トランジスタのチャネル領域の半導体層には、当該トランジスタのソース・ドレイン領域を構成する半導体層よりも低い濃度の不純物が導入されてなることが望ましい。トランジスタの非導通時のリーク電流を大きくしないようにするためには、チャネルの不純物濃度は低濃度にしておくことが好ましい。
【0014】
また、本発明においては、前記チャネル領域となる半導体層は延在部を有し、該延在部とにおいて当該チャネル領域を有するトランジスタのゲート電極が電気的に接続される走査信号線とは異なる走査信号線に電気的に接続されてなることが望ましい。チャネル領域の直下や直上に引き抜きのコンタクトホールを設けずに、チャネル領域の半導体層を引き伸ばして、そこで別の走査信号線に対して、チャネル領域から余剰キャリアを引き抜くので、チャネルの膜厚は変更されるものではなく、トランジスタのスイッチング動作に影響を与えない。
【0015】
また、本発明においては、前記チャネル領域の半導体層とこれを延在した前記延在部の半導体層は、前記トランジスタのソース・ドレイン領域を構成する半導体層と互いに異なる導電型とすることが望ましい。チャネルと延在部は、同一導電型の不純物を同時に導入して形成した同一導電型半導体層であると、延在部からチャネルの余剰キャリアを引き抜き易い。
【0016】
また、本発明においては、前記延在部の半導体層には前記チャネル領域よりも高濃度の不純物が導入されてなることが望ましい。延在部での抵抗が小さくなるので、トランジスタのチャネル領域から延在部を介して電荷の移動が容易となり、電荷を引き抜き易くなる。
【0017】
また、本発明においては、前記トランジスタはNチャネル型トランジスタであって、前記異なる走査信号線には前記トランジスタに供給される画像信号の電位以下の非選択電位が印加されてなることが望ましい。Nチャネル型トランジスタには、電子(負の電荷)がチャネル領域に蓄積される。この蓄積された余剰キャリアを引き抜くためには、チャネルに接続される走査信号線は低い電位になければならない。チャネルには画像信号に基づく電流が流れるので、チャネルに接続される走査信号線には画像信号の電位以下の電位が印加されることが必要となる。
【0018】
また、本発明においては、前記トランジスタはPチャネル型トランジスタであって、前記異なる走査信号線には前記トランジスタに供給される画像信号の電位以上の非選択電位が印加されてなることが望ましい。Pチャネル型トランジスタには、正孔(正の電荷)がチャネル領域に蓄積される。この蓄積された余剰キャリアを引き抜くためには、チャネルに接続される走査信号線は高い電位になければならない。チャネルには画像信号に基づく電流が流れるので、チャネルに接続される走査信号線には画像信号の電位以上の電位が印加されることが必要となる。
【0019】
また、本発明においては、前記トランジスタのチャネル領域は単結晶シリコン層からなるので、トランジスタとしての電荷の移動度が大きく、導通から非導通に移行した際に、チャネルに電荷が蓄積しやすくなる。従って、本発明のように、それを引き抜く構成とすることにより、トランジスタの信頼性を向上することができる。よって、前記トランジスタのチャネル領域に蓄積した電荷が、前記異なる走査信号線に引き抜かれることが好ましい。
【0020】
さらに、本発明の電気光学装置用基板は、上記課題を解決するために、基板上にマトリクス状に形成される複数の画素領域の各画素領域毎にNチャネル型トランジスタが配置される電気光学装置用基板において、前記基板上に前記Nチャネル型トランジスタのチャネル領域となる半導体層が形成されてなり、該チャネル領域となる半導体層は当該トランジスタに供給される画像信号の電位以下の電位が印加された導電層と電気的に接続されてなることを特徴とする。本発明によれば、チャネル領域に蓄積された余剰キャリアをそこから走査信号線に引き抜くことにより、基板浮遊効果を抑制することができ、それによりトランジスタの耐圧を向上し、電流電圧特性のキンクを抑制することができる。このため、本発明の電気光学装置用基板を用いれば、良好なトランジスタ特性を有するデバイスを作成することが可能となる。さらに、Nチャネル型トランジスタには、電子(負の電荷)がチャネル領域に蓄積される。この蓄積された余剰キャリアを引き抜くためには、チャネルに接続される走査信号線は低い電位になければならない。チャネルには画像信号に基づく電流が流れるので、チャネルに接続される走査信号線には画像信号の電位以下の電位が印加されることにより効果的にキャリアが引き抜ける。
【0021】
また、本発明においては、前記導電層は、当該チャネル領域を有するトランジスタのゲート電極が電気的に接続される走査信号線よりも前段側に位置する走査信号線とする、あるいは、当該チャネル領域を有するトランジスタに一方の電極が電気的に接続される蓄積容量の他方の電極とすることにより、特別なキャリア引き抜き用の配線を画素領域内に延在させることが不要となる。
【0022】
また、本発明においては、前記チャネル領域の半導体層とこれを延在して前記導電層と電気的に接続するための延在部の半導体層とは、P型の不純物が導入されてなることが望ましい。これにより、Nチャネル型トランジスタには、電子(負の電荷)がチャネル領域に蓄積されるので、キャリアを引き抜くためには半導体層をP型として、キャリアの移動をし易くすることが好ましい。
【0023】
さらに、本発明の電気光学装置用基板は、上記課題を解決するために、基板上にマトリクス状に形成される複数の画素領域の各画素領域毎にPチャネル型トランジスタが配置される電気光学装置用基板において、前記基板上に前記Pチャネル型トランジスタのチャネル領域となる半導体層が形成されてなり、該チャネル領域となる半導体層は当該トランジスタに供給される画像信号の電位以上の電位が印加された導電層と電気的に接続されてなることを特徴とする。本発明によれば、チャネル領域に蓄積された余剰キャリアをそこから走査信号線に引き抜くことにより、基板浮遊効果を抑制することができ、それによりトランジスタの耐圧を向上し、電流電圧特性のキンクを抑制することができる。このため、本発明の電気光学装置用基板を用いれば、良好なトランジスタ特性を有するデバイスを作成することが可能となる。さらに、Pチャネル型トランジスタには、電子(正の電荷)がチャネル領域に蓄積される。この蓄積された余剰キャリアを引き抜くためには、チャネルに接続される走査信号線は高い電位になければならない。チャネルには画像信号に基づく電流が流れるので、チャネルに接続される走査信号線には画像信号の電位以上の電位が印加されることにより効果的にキャリアが引き抜ける。
【0024】
また、本発明においては、前記導電層は、当該チャネル領域を有するトランジスタのゲート電極が電気的に接続される走査信号線よりも前段側に位置する走査信号線とする、あるいは、当該チャネル領域を有するトランジスタに一方の電極が電気的に接続される蓄積容量の他方の電極とすることにより、特別なキャリア引き抜き用の配線を画素領域内に延在させることが不要となる。
【0025】
また、本発明においては、前記チャネル領域の半導体層とこれを延在して前記導電層と電気的に接続するための延在部の半導体層とは、N型の不純物が導入されてなることが望ましい。これにより、Pチャネル型トランジスタには、正孔(正の電荷)がチャネル領域に蓄積されるので、キャリアを引き抜くためには半導体層をN型として、キャリアの移動をし易くすることが好ましい。
【0026】
さらに、本発明の電気光学装置用基板は、上記課題を解決するために、基板上にマトリクス状に形成される複数の画素領域の各画素領域毎に、トランジスタと、前記トランジスタソース又はドレインに一方の電極が電気的に接続される容量とが配置される電気光学装置用基板において、前記基板上に前記トランジスタのチャネル領域となる半導体層が形成されてなり、該チャネル領域となる半導体層は、前記容量の他方の電極と電気的に接続されてなることを特徴とする。本発明によれば、チャネル領域に蓄積された余剰キャリアをそこから蓄積容量の電極に引き抜くことにより、基板浮遊効果を抑制することができ、それによりトランジスタの耐圧を向上し、電流電圧特性のキンクを抑制することができる。このため、本発明の電気光学装置用基板を用いれば、良好なトランジスタ特性を有するデバイスを作成することが可能となる。
【0027】
また、本発明においては、前記トランジスタはNチャネル型トランジスタであって、前記蓄積容量の他方の電極には、当該トランジスタに供給される画像信号の電位以下の低電位が印加されることが望ましい。Nチャネル型トランジスタには、電子(負の電荷)がチャネル領域に蓄積される。この蓄積された余剰キャリアを引き抜くためには、チャネルに接続される蓄積容量の電極は低い電位になければならない。チャネルには画像信号に基づく電流が流れるので、チャネルに接続される蓄積容量の電極には画像信号の電位より低電位が印加されることにより効果的にキャリアが引き抜ける。
【0028】
また、本発明においては、前記トランジスタはPチャネル型トランジスタであって、前記蓄積容量の他方の電極には、当該トランジスタに供給される画像信号の電位以上の高電位が印加されることが望ましい。Pチャネル型トランジスタには、正孔(正の電荷)がチャネル領域に蓄積される。この蓄積された余剰キャリアを引き抜くためには、チャネルに接続される蓄積容量の電極は高い電位になければならない。チャネルには画像信号に基づく電流が流れるので、チャネルに接続される蓄積容量の電極には画像信号の電位より高電位が印加されることにより効果的にキャリアが引き抜ける。
【0029】
また、本発明においては、前記トランジスタのチャネル領域の半導体層は、当該トランジスタのソース・ドレイン領域を構成する半導体層と互いに異なる導電型とすることが望ましい。チャネルにはソース・ドレインと異なる不純物イオンを導入することにより、トランジスタ素子の閾値電圧を制御できるだけでなく、導電性を持たせることによりチャネルに蓄積された電荷を容易に逃しやすくなる。
【0030】
また、本発明においては、前記トランジスタのチャネル領域の半導体層には、当該トランジスタのソース・ドレイン領域を構成する半導体層よりも低い濃度の不純物が導入されてなることが望ましい。トランジスタの非導通時のリーク電流を大きくしないようにするためには、チャネルの不純物濃度は低濃度にしておくことが好ましい。
【0031】
また、本発明においては、前記チャネル領域となる半導体層は延在部を有し、該延在部において前記蓄積容量の他方の電極に電気的に接続されてなることが望ましい。チャネル領域の直下や直上に引き抜きのコンタクトホールを設けずに、チャネル領域の半導体層を引き伸ばして、そこで蓄積容量の電極に対して、チャネル領域から余剰キャリアを引き抜くので、チャネルの膜厚は変更されるものではなく、トランジスタのスイッチング動作に影響を与えない。
【0032】
また、本発明においては、前記チャネル領域の半導体層とこれを延在した前記延在部の半導体層は、前記トランジスタのソース・ドレイン領域を構成する半導体層と互いに異なる導電型とすることが望ましい。チャネルと延在部は、同一導電型の不純物を同時に導入して形成した同一導電型半導体層であると、延在部からチャネルの余剰キャリアを引き抜き易い。
【0033】
また、本発明においては、前記延在部の半導体層には前記チャネル領域よりも高濃度の不純物が導入されてなることが望ましい。延在部での抵抗が小さくなるので、トランジスタのチャネル領域から延在部を介して電荷の移動が容易となり、電荷を引き抜き易くなる。
【0034】
また、本発明においては、前記トランジスタのチャネル領域は単結晶シリコン層からなるので、トランジスタとしての電荷の移動度が大きく、トランジスタがオフの場合でもソース・ドレイン間に電位差が生じるとチャネルに電荷が蓄積しやすくなる。また、トランジスタオンでも過剰な電流が流れ易くなる。これらのキャリアは、トランジスタのドレイン破壊を引き起こすものであり、好ましくない。従って、本発明のように、その余剰な電荷を引き抜く構成とすることにより、トランジスタの信頼性を向上することができる。よって、前記トランジスタのチャネル領域に蓄積した電荷が、前記蓄積容量の他方の電極に引き抜かれることが好ましい。
【0035】
また、本発明においては、前記チャネル領域は、前記異なる走査信号線から分岐した配線あるいは前記異なる走査信号線に接続された配線と電気的に接続されてなることが好ましい。チャネル領域となる半導体層を異なる画素行の走査信号線まで引き伸ばすことは、その延在が長いと抵抗が大きくなって、チャネルの余剰キャリアを引き抜きにくきなるが、通常、半導体層より抵抗率の低い導電層からなる上記配線を延ばして接続する構成とするので、チャネルと走査信号線の間の総配線抵抗が小さくなり、余剰キャリアを引き抜きやすくなる。また、チャネル領域の半導体層の面積を増やすと容量が増すが、そうするとトランジスタのスイッチング特性が劣化する。しかし、本発明のように走査信号線を分岐した配線やそれに接続された配線を引き回すのであれば、チャネルと走査信号線の間の総配線抵抗が小さくなり、トランジスタの特性を劣化させずにキャリアを引き抜き易くできる。特に、走査信号線を分岐して延在すれば、余分な配線追加して引き回されないので開口率を低下させずにすむ。また、走査信号線に接続する配線とチャネル領域を接続する場合は、走査信号線と積層するように他の配線層を用いて延在できるので、配線層を積層して引き回すことができ、開口率を低下させずにすむ。
【0036】
また、本発明においては、前記異なる走査信号線から分岐した配線あるいは前記異なる走査信号線に接続された配線は、一画素の領域内の周辺部に沿って配置されることが望ましい。上記配線は、画素電極の邪魔になって開口率を落とさないように、画素電極の端部付近に沿って配線される。これにより、透過型液晶パネルの開口率を劣化しないようにできる。
【0037】
また、本発明においては、前記異なる走査信号線から分岐した配線あるいは前記異なる走査信号線に接続された配線は、前記走査信号線と交差する画像信号線に沿って配置され、且つ前記トランジスタのチャネル領域近傍に配置される前記走査信号線に沿って配置されることが望ましい。トランジスタ素子のチャネルとこれに接続すべき走査信号線は離れているので、上記配線は、開口率を落とさないように画像信号線に沿って配置される。画像信号線と異な導電層によりこの配線が形成されるのであれば、画像信号線と層間絶縁膜を介して重なるように配置してもよい。また、上記配線は、開口率を落とさないように走査信号線に沿って配置される。走査信号線と異なる導電層によりこの配線が形成されるのであれば、走査信号線と層間絶縁膜を介して重なるように配置してもよい。
【0038】
また、本発明においては、前記異なる走査信号線から分岐した配線あるいは前記異なる走査信号線に接続された配線と、当該配線に隣接する前記画像信号線及び前記走査信号線とは、前記半導体層の下方の前記基板上に形成される遮光層と平面的に重なるように配置されることが望ましい。上記配線と画像信号線が並置(重なる場合も含む)されるのであれば、基板上に形成される遮光層により両配線をまとめて遮光することができる。上記配線と走査信号線が並置(重なる場合も含む)されるのであれば、基板上に形成される遮光層により両配線をまとめて遮光することができる。また、遮光層により、チャネル領域も、配線及び走査信号線から連続的に遮光されるので、半導体層での光の影響を防止できる。
【0039】
また、本発明においては、前記チャネル領域及び前記延在部の半導体層は、該半導体層の下方の前記基板上に形成された遮光層と平面的に重なるように配置されることが望ましい。遮光層により、チャネル領域と延在部とを遮光できるので、余剰キャリアの引き抜きを光入射により阻害されることがない。
【0040】
また、本発明においては、前記基板は透明基板からなり、特にはガラスにより形成されてなることが好ましい。また、その場合、前記トランジスタに接続される画素電極は透明電極や反射電極を用いることができる。
【0041】
また、本発明においては、前記基板は半導体基板からなり、特には単結晶シリコンにより形成されてなることが好ましい。また、その場合、前記トランジスタに接続される画素電極は反射電極を用いることができる。
【0042】
以上のように、本発明の電気光学装置用基板には光透過性のガラス基板を用いることができるだけでなく、半導体基板を用いることができる。また、画素電極も透明電極や反射電極を用いることができる。すなわち、透過型と反射型の電気光学装置の両方に、本発明の電気光学装置用基板を用いることができる。
【0043】
また、本発明においては、前記トランジスタの上方に平坦化された絶縁膜が形成されてなり、該平坦化された絶縁膜上に画素電極を形成してなることが望ましい。また、前記トランジスタの上方に複数層の絶縁膜を形成してなり、該複数層の絶縁膜のうちの上層の該絶縁膜は平坦化され、該平坦化された上層の絶縁膜上に画素電極を形成してなることが望ましい。以上のように、平坦化された絶縁膜上に画素電極を形成することにより、液晶層に面する画素電極も平坦化される。従って、本発明の電気光学装置用基板の内面をラビングする配向処理において、配向むらが減少する。また、画素電極を反射電極とすれば、反射むらが少なくできる。
【0044】
さらに、本発明の電気光学装置は、上記の何れかに記載の電気光学装置用基板と、対向基板とが間隙を有して配置されるとともに、該間隙内に電気光学材料が封入されて構成される。これにより、高性能なトランジスタ素子を有するアクティブマトリクス型液晶パネル等の電気光学装置を提供することができる。また、この電気光学装置は、画素電極の形成材料の選択により、透過型、反射型のどちらにも適用することがきる。
【0045】
さらに、本発明の電子機器は、上記の電気光学装置を表示装置として用いるので、表示装置の信頼性を向上することができる。
【0046】
さらに、本発明の投射型表示装置は、光源と、前記光源からの光を変調する上記の電気光学装置と、前記電気光学装置により変調された光を投射する投射光学手段とを備える。本発明の電気光学装置は、強力な光源を電気光学装置に照射する投射型表示装置のライトバルブとして用いることに最適である。
【0047】
さらに、本発明の電気光学装置の駆動方法は、マトリクス状に配置される各画素に、走査信号線にゲート電極が接続されるトランジスタを有する電気光学装置の駆動方法において、前記走査信号線に選択電位を印加して前記トランジスタを導通させ、当該トランジスタのチャネル領域を介して画像信号を画素に印加し、前記走査信号線に非選択電位を印加して前記トランジスタを非導通としてなり、前記トランジスタからは前記チャネル領域に存在する余分な電荷を引き抜くことを特徴とする。本発明によれば、チャネル領域に蓄積された余剰キャリア(電荷)をそこから引き抜くことにより、基板浮遊効果を抑制することができ、それによりトランジスタの耐圧を向上し、電流電圧特性のキンクを抑制することができる。また、キャリア(電荷)を引き抜く先は、前記走査信号線あるいは容量線であることが好ましい。
【0048】
【発明の実施の形態】
以下、本発明の好適な実施形態を図面に基づいて説明する。
【0049】
(第1の実施形態)
図1は本発明を適用した電気光学装置の一例である液晶パネル用基板の画素部を示す第1の実施形態の断面図である。また、図9(A)(B)及び図10(A)(B)は、本発明の液晶パネル用基板の画素部の平面図を示す。各図面において、同一の符号は同一のものを示している。
【0050】
図1に示すように第1の実施形態による液晶パネル用基板は、SOI技術を用いて製造されたSOI構造のMOS型半導体素子を有するものである。
【0051】
支持基板3の上方には、トランジスタ素子の光リーク電流を防止するために設けられた遮光層4が形成される。この遮光層4は支持基板3が光透過性の場合に裏面からトランジスタ素子に入射する光を遮光するものである。さらに、遮光層4の上方にはSOI技術を用いて形成された第1の絶縁膜5が形成され、第1の絶縁膜5の上方に、半導体層が形成される。本実施の形態では、トランジスタ素子をNチャネル型の薄膜トランジスタとするために、その半導体層に、N型不純物を高濃度に導入したN型拡散層からなるソース領域6A及びドレイン領域6Cと、P型不純物を高濃度に導入したP型拡散層からなるチャネル領域6Bが形成される。チャネル領域6Bの上方にはゲート絶縁膜となる第2の絶縁膜7が形成され、第2の絶縁膜7の上方にゲート電極8が形成されてトランジスタ素子が構成される。ゲート電極8の上方にはさらに第3の絶縁膜10が形成され、第3の絶縁膜10の上方にソース電極11Aが形成されている。
【0052】
本発明においては、MOS半導体素子として、絶縁ゲート型電界効果トランジスタを例示する。また、このような絶縁物上に形成されたトランジスタを薄膜トランジスタ(TFT)として呼称する。
【0053】
本実施形態においては支持基板3として厚さ1.1mmの石英ガラスを用いた。なお、この支持基板3の材料は本実施形態に限定されるものではない。例えばOAガラス基板のような透明基板,単結晶シリコン基板(半導体基板)のような不透明基板を用いてもよい。なお、半導体基板を用いた場合には、その表面に選択酸化膜(LOCOS)を形成しておく必要がある。いずれにしても、支持基板3としては、少なくとも素子が形成される側の表面が絶縁性である基板が用いられる。
【0054】
遮光層4は、SOI技術により半導体層(6A,6B,6C)が形成される前に、モリブデンをスパッタ法により100〜1000nm程度の厚さに堆積することにより得る。本実施形態においてはモリブデンを400nmの厚さに堆積した。なお、この遮光層4の材料は本実施形態に限定されるものではなく、製造するデバイスの熱プロセス最高温度に対して安定な材料であればどのような材料を用いても問題はない。例えば他にもタングステン,タンタルなどの高融点金属や多結晶シリコン、さらにはタングステンシリサイド、モリブデンシリサイド等のシリサイドが好ましい材料として用いられ、形成法もスパッタ法の他、CVD法、電子ビーム加熱蒸着法などを用いることができる。なお、この遮光層4は、支持基板3として不透明基板を用いた場合は形成不要となる。
【0055】
つぎに、遮光層4とその上に形成されるソース領域6A、ドレイン領域6C、チャネル領域6Bとの絶縁を確保するために、第1の絶縁膜5を堆積した。この第1の絶縁膜5はシリコン酸化膜を用いた。このシリコン酸化膜は、例えばスパッタ法、あるいはTEOS(テトラエチルオルソシリケート)を用いたプラズマCVD法により形成できる。本実施形態においては、シリコン酸化膜をTEOSのプラズマCVDにより1000nm堆積させた。
【0056】
つぎに、SOI技術によって、支持基板3の表面に単結晶シリコン基板を貼り合わせその大部分を剥離やエッチングして支持基板3の表面に単結晶シリコン薄膜(半導体層)を形成する。さらにこれをパターニングして単結晶シリコン部と形成する。さらに、単結晶シリコン部には、チャネル領域6BをP型不純物のイオン打ち込みにより形成し、ソース領域6A、ドレイン領域6CをN型不純物イオンのイオン打ち込みにより形成した。このチャネル領域6Bには後述する単結晶シリコン部の延在部6Dが同時に設けられるが、そこにもチャネル領域と同時にP型不純物がイオン打ち込みにより導入される。さらに、ドレイン領域6Cの単結晶シリコン部は延在されて保持容量の一方の電極となる容量電極部6Eを有するが、この容量電極部6Eにはドレインと同一のN型不純物が同時にイオン打ち込みにより導入される。このようにして、単結晶シリコン部には不純物が導入され、活性化されて導電性が付与される。本実施形態においては、Nチャネル型トランジスタを配置するので、チャネル領域6Bと延在部6DはP型、ソース領域6Aとドレイン領域6Cと容量電極部6EはN型の半導体層とした。Pチャネル型トランジスタを配置する場合には、チャネル領域6Bと延在部6DはN型、ソース領域6Aとドレイン領域6Cと容量電極部6EはP型の半導体層としなければならない。なお、チャネル領域6Bの不純物濃度は、ソース領域6Aとドレイン領域6Cと容量電極部6Eの不純物濃度より低くする。チャネル領域6Bの不純物濃度が高いと、トランジスタの非導通時にリーク電流が多くなるからである。また、コンタクトを形成する延在部6Dの不純物濃度は、チャネル領域6Bと同じでもよいが、チャネル領域6Bから電荷を引き出すためには、チャネル領域6Bよりも不純物濃度が高い方が好ましい。その方が、延在部6Dでの抵抗値が低く、コンタクト部分でのコンタクト抵抗も小さくできて、電荷を引き抜き易くなる。延在部6Dの不純物濃度を高くするためには、チャネル領域6Bの不純物ドーズ工程において延在部6Dにもドーズし、その後再度、延在部6Dのみに同一導電型の不純物をドーズすればよい。
【0057】
なお、後述するように、容量電極部6Eは、ドレイン領域6Cの半導体層を延在させて、隣接する画素のトランジスタのゲート電極に接続される走査信号線8Aの直下にまで配置し、保持容量(蓄積容量と同意)Csの一方の電極とする。容量電極部6Eは走査信号線8Aと絶縁膜7を介して重なり、画素の保持容量を構成する。
【0058】
つぎにソース領域6A、ドレイン領域6C、チャネル領域6Bと第1の導電膜からなるゲート電極8との絶縁を確保するために、第2の絶縁膜からなるゲート絶縁膜7を形成した。この第2の絶縁膜にはシリコン酸化膜を用いた。本実施形態では、このシリコン酸化膜は、LTO(Low Temperature Oxide)によるシリコン酸化膜とした。この絶縁膜は熱酸化膜でも、窒化膜でも構わない。また複数層の積層でも構わない。
【0059】
つぎにゲート電極となるポリシリコン等からなる第1の導電膜8を形成した。この第1の導電膜8はポリシリコンに高融点金属を積層したシリサイド構造としてもよい。
【0060】
また図10でも説明するが、チャネル領域6Bは、このチャネル領域6Bを駆動する走査信号線8A(Xn,Xiのiは整数で一垂直走査期間内において選択される走査信号線の順番を示す。)の配列方向に隣接した前段の走査信号線8A(Xn-1)と電気的に接続されている。第1の導電膜の上方には、ゲート電極8とソース電極11Aとの絶縁を確保するために、BPSG(Boron Phosphorus Silicate Glass)膜のような絶縁膜からなる第3の絶縁膜10を形成し、この第3の絶縁膜10の上方には、第3の絶縁膜10に開口したコンタクトホールを介してソース領域6Aと接続するように、ソース電極11Aとなるアルミニウム等からなる第2の導電膜を形成した。つぎに、第3の絶縁膜10に開口したコンタクトホールを介してドレイン領域6Cに接続するように画素電極14Aを形成した。画素電極にはITO(Indium Tin Oxide)のような透明導電膜を用いた。
【0061】
図9及び図10は、上記した図1における断面構成に基づく画素部の平面図を示すものである。
【0062】
図9(A)は、基板3上に上述した方法により遮光層4を形成し、この遮光層4から画素電極の形成される領域15をパターニングして開口した状態を示すものである。この図のパターンは、基板3をガラス等の透明基板とし、画素電極14Aを透明電極とする場合のものである。
【0063】
図9(B)は、図9(A)にて形成した遮光層4上に、上述した方法により単結晶シリコン層6を形成しパターニングしたパターンを示すものである。6Aは単結晶シリコン層に形成したN型ソース領域、6Cは同じくN型ドレイン領域である。6Bは単結晶シリコン層に形成したP型チャネル領域を示す。チャネル領域6Bから延在される単結晶シリコン層6Dは、チャネルと同様にP型不純物が導入された延在部である。ドレイン領域6Cから延在される単結晶シリコン層6Eは、ドレインと同様にN型不純物が導入された容量電極部である。
【0064】
ソース領域6Aはコンタクトホール7Aを介してソース電極11Aに接続される。このソース電極11Aは後述するように画像信号線となる。また、ドレイン領域6Cは画像信号線11Aの配置方向(図面の上方)に沿って延在され、コンタクトホール7Bを介して後述する画素電極14Aに接続される。また、ドレイン領域6Cは図面の左方向に延在され、隣接する走査信号線8Aと絶縁膜7を介して重なる容量電極部6Eとなり、保持容量Csは走査信号線8A及び容量電極部6Eとを第2の絶縁膜7を介する一対の電極として構成される。また、チャネル領域6Bからの延在部6Dは後述するようにコンタクトホール7Cを介して前段の走査信号線8Aに電気的に接続される。
【0065】
図10(A)(B)はそれぞれ、図9(B)にて示した単結晶シリコン層6上に、ゲート絶縁膜7、ゲート電極8、絶縁膜10、ソース・ドレイン電極11、画素電極14を形成した平面図を示している。
【0066】
図10(A)において、左下がりの斜線の施された配線層は第1の導電膜を示す。また、右下がりの密な斜線の施された配線層は第2の導電膜を示す。点線は画素電極14の端部を示す。
【0067】
第1の導電膜により形成されるのは、走査信号線とトランジスタ素子のチャネル領域6Bから延在された延在部6Dとコンタクトホール7Cにより接続される配線である。図の左右方向に平行に配置される第1の導電膜は走査信号線8Aを示す。走査信号線8Aが絶縁膜7を介してチャネル領域6Bと重なる部分がゲート電極となり、ソース・ドレイン・チャネル及びゲート絶縁膜・ゲート電極により薄膜トランジスタ(TFT)が構成される。また、走査信号線8Aの上方には絶縁膜10を介してソース電極11Aが形成される。ソース電極11Aは、絶縁膜7及び絶縁膜10に形成されたコンタクトホール7Aを介してソース領域6Aと接続されるものであり、画像信号線Yとなる。また、ドレイン領域6Cは、絶縁膜7及び絶縁膜10に形成されたコンタクトホール7Bを介して画素電極14と接続される。さらに、容量電極部6Eは隣接する画素の走査信号線8Aの下方まで延在され、絶縁膜7を介して重なることにより保持容量を構成する。
【0068】
本発明の特徴であるチャネル領域6Bを延在した延在部6Dは、前段の走査信号線8A(Xn-1)から分岐され走査信号線と同一層の配線8Bと、絶縁膜7に形成したコンタクトホール7Cを介して接続する。配線8Bは画像信号線11Aに沿って延在され、さらに後段の走査信号線8A(Xn)に沿って延在され、後段の画素のトランジスタ近傍に配置されるコンタクトホール7Cにて後段画素のトランジスタのチャネルから延在された延在部6Dと接続される。
【0069】
これにより、チャネル領域に蓄積された余剰キャリアを、延在部6D、配線8B、前段の走査信号線8A(Xn)の経路で引き抜くことにより、基板浮遊効果を抑制することができる。走査信号線8Aは順次走査され、選択期間には選択電位が、非選択期間には非選択電位が印加されるので、前段の走査信号線8A(Xn-1)が選択された後、次段の走査信号線8A(Xn)が選択期間となると前段の走査信号線8A(Xn-1)は次のフレームまで非選択状態に移行する。従って、非選択期間に既に移行して走査信号線の電位が非選択電位に安定している前段の走査信号線8A(Xn-1)に、選択された段の走査信号線8A(Xn)に接続され導通されたトランジスタのチャネルから余剰キャリアを逃がすようにすればよい。なお、非選択電位は、通常、画像信号線11Aを介して伝送されてトランジスタを介して画素電極に印加される画像信号の最低電位と等しいか、それより低い電位に設定されているので、余剰キャリアを非選択電位状態にある前段の走査信号線に引き抜くことができる。
【0070】
なお、配線8Bは走査信号線8Aを分岐して走査信号線と同一層で形成される。走査信号線8Aは、シリサイド構造とすることにより抵抗値を下げて延在部6Dよりも比抵抗を小さくできるので、延在部6Dを長く配線せず、走査信号線8Aの導電層を分岐させて配線し、チャネル領域6Bから走査信号線8Aまでの総抵抗を低減することができる。また、分岐した配線8Bは、画像信号線11Aと併走させることによりその下の遮光層4と平面的に重ねて、まとめて遮光することができる。画像信号線11Aと配線8Bは層が異なるので、2つの配線を重ねて配置すれば、遮光領域は少なくして開口率を向上できる。また、配線8Bは走査信号線8Aとも併走させることによりその下の遮光層4と平面的に重ねて、まとめて遮光することができる。
【0071】
次に図10(B)は、図10(A)とは異なる実施形態を示す図である。図10(B)は、図9(A)と図9(B)までの構成は、図10(A)と同じである。さらに、単結晶シリコン層6上に、ゲート絶縁膜7、ゲート電極8、絶縁膜10、ソース・ドレイン電極11、画素電極14を形成するパターン形状や構造も図10(A)と同じである。異なる構成は、薄膜トランジスタ素子のチャネル領域6Bから延在した延在部6Dに、コンタクトホール7Cを介して接続する配線を、走査信号線8Aから分岐した配線8Bではなく、その上層の画像信号線(及びソース電極)11Aと同一層の第2の導電膜により形成した配線11Cに置き換えて構成したことにある。配線11Cは、前段の走査信号線8A(Xn-1)と絶縁膜10に設けたコンタクトホール10Aを介して接続され、延在部6Dとコンタクトホール7Cを介して接続される。チャネル領域に蓄積された余剰キャリアを、延在部6D、配線11C、前段の走査信号線8A(Xn)の経路で引き抜くことにより、基板浮遊効果を抑制することができる。従って、画像信号線11A及び配線11Cはアルミニウム等からなる低抵抗の導電層であるので、チャネル領域6Bから前段の走査信号線8A(Xn)までの総抵抗値を小さくして、チャネルの余剰キャリアを引き抜き易くすることができる。
【0072】
なお、配線11Cは、画像信号線11Aと併走させることによりその下の遮光層4と平面的に重ねて、まとめて遮光することができる。配線11Cは走査信号線8Aとも併走させることによりその下の遮光層4と平面的に重ねて、まとめて遮光することができる。
【0073】
次に、図11に、本実施形態による液晶パネル用基板と対向基板を液晶層を介在させて構成した液晶パネルの等価回路図を示す。特に、図11は図10の平面構成に基づく等価回路図である。
【0074】
アクティブマトリクス型液晶表示装置における液晶パネルは、画像信号線11A(Yn-1,Yn)と走査信号線8A(Xn-2,Xn-1,Xn)とがマトリクス平面上に配設され、この平面上の交差点近傍には薄膜トランジスタ素子がそれぞれ配置される。トランジスタのソース6Aは画像信号線8Aに接続され、ゲート電極は走査信号線8Aに接続されており、ドレイン6Cは画素電極14と容量電極6Eに接続される。画素電極14は、対向基板内面に配置された対向電極33と液晶層を挟んで対向し、両電極間の液晶を極性反転駆動する。対向電極33には極性反転駆動の基準電位となる共通電位VLCが印加され、画素電極14と対向電極33とは液晶層を誘電体とする液晶容量CLCを構成する。また、容量電極6Eは、後段の走査信号線8A(Xn)との間に保持容量(蓄積容量)Csを構成する。すなわち、一画素は、トランジスタとそれに接続された液晶容量と保持容量により構成される。
【0075】
トランジスタのチャネル領域6Bは、このトランジスタを駆動する走査信号線に対して前段となる走査信号線に電気的に接続される。すなわち、走査信号線8A(Xn)にゲートが接続されたトランジスタは、その前段の走査信号線8A(Xn-1)に電気的に接続される。このように各トランジスタのチャネル領域は隣接した前段の走査信号線(ゲート電極)に電気的に接続され、チャネル領域から蓄積された余剰キャリアを走査信号線に引き抜くことにより基板浮遊効果を抑制している。
【0076】
次に、図12の駆動タイミングチャートに基づいて液晶パネルの駆動とトランジスタのチャネル領域からの余剰キャリアの引き抜きについて説明する。
【0077】
VGは走査信号線8A(Xn-1)に印加される走査信号波形である。走査信号は垂直走査期間毎に到来する選択期間T1に選択電位VG1となって、本実施形態のNチャネル型TFTをオンさせる。その後、非選択期間T2となって低電位の非選択電位VG2となり、TFTをオフさせる。なお、順次駆動であるので、選択期間T1の直後から次段の走査信号線8A(Xn)に選択電位が印加され、これが順次繰り返される。
【0078】
VIDは画像信号線11Aに印加される画像信号の電位波形である。Vcは画像信号VIDの中心電位を示す。画像信号VIDは、垂直走査期間(フレーム又はフィールド)毎に中心電位Vcに対して極性を反転させた電位波形となる。Vpは画像信号線11Aにおける画像信号VIDが、本実施形態のNチャネル型薄膜トランジスタを介して画素電極14に印加されてなる画素電極電位である。VLCは対向電極33に印加される共通電位である。共通電位VLCは、画素電極電位Vpの極性反転する電位波形がほぼ正負で対称となるような電位に設定されることにより、液晶層に印加される電圧が一方の極性に偏らないようにして交流駆動することにより、液晶の劣化を防止している。
【0079】
なお、ΔVは、Nチャネル型TFTの寄生容量に基づく画素電極電位Vpの電圧劣化分を示している。選択期間T1の終了時には、Nチャネル型TFTのチャネル領域6Bには電荷が蓄積し、ドレイン領域6Cとゲート電極(走査信号線)8との間の寄生容量に電荷が蓄積する。この電荷は、非選択期間T2になってゲート電極が非選択電位に下がることにより、ドレイン側に流れて画素電極14に印加され、選択期間T1中に画像信号線11Aと同等レベルまで充電していた画素電極電位VpをΔVだけ降下させ、液晶層への印加電圧を下げてしまう。従って、VLCをずらして画素電極電位Vpが正負対称の波形となるようにしている。しかし、せっかく書き込んだ電圧を十分に活かせておらず、且つVLCの調整は難しいので、ΔVをできるだけ小さくすることが表示品質を向上するためには望ましく、そのためには、余剰キャリアを少なくしなければならない。従って、本発明では、チャネル領域から余剰キャリアを引き抜いている。特に、本発明のように、TFTが電荷移動度が高い単結晶シリコンのチャネル領域の場合は、TFTをオフにした時に余剰キャリアが残り易いので、本発明の構成を採用することにより、表示品質をも向上させることができる。
【0080】
本実施形態においてはNチャネル型TFTであるため、チャネル領域6Bに蓄積する電荷は、画像信号VIDがチャネル領域を伝達されることによって発生した電子(負電荷)である。チャネル領域6Bに電気的に接続されるのは、既に選択期間T1が終了して非選択期間T2となり非選択電位VG2となっている前段の走査信号線8Aである。非選択電位VG2は、画像信号VIDの最低電位よりも低い電位であるので、チャネル領域6Bに蓄積した電荷は、前段側の走査信号線8Aへと流れることになる。従って、非選択電位VG2は、少なくとも画像信号VIDの電位以下であることが必要である。
【0081】
なお、チャネル領域が走査信号線に接続されることにより画素に書き込んだ画像データを消去するようなリセット作用も存在する。Xn番目の走査信号線8Aにゲートが接続されたトランジスタは、Xn番目の走査信号線に隣接したXn-1番目の走査信号線8Aに電気的に接続される。トランジスタがNチャネルの場合には、Xn-1番目の走査信号線に高電位の選択電位が供給された際、Xn番目の走査信号線に接続されたトランジスタのチャネル領域(P型)6Bはそれに接合するドレイン領域(N型)6Cより高電位となり、チャネル領域(P型)とドレイン領域(N型)の間に形成されたP−N接合部には、順方向バイアスが加えられる。従って、このP−N接合部において電流が流れ、Xn番目の画素において前フレームにて液晶容量及び保持容量に蓄積された画像信号の電圧が失われてしまう。しかし、それまで低電位の非選択電位であったXn番目の走査信号線に、その直後に、高電位の選択電位が供給され、このトランジスタが導通して画像信号が液晶容量及び保持容量に書き込まれる。走査信号線のフレーム周波数を60Hzとすると、画像信号の電圧が失われてから、再び電圧が書き込まれるまでに、僅か10〜20msecしか要さず、人の目にはデータが失われても見分けがつかない仕組みになっている。
【0082】
なお、以上の第1の実施形態及び後述する以降の各実施形態において、トランジスタのソースとドレインの呼称は入れ替えることができる。すなわち、ドレインが画像信号線に接続され、ソースが画素電極14及び容量電極6Eに接続されてもよい。
【0083】
また、図9及び図10、図11においては、各画素の保持容量Csは、容量電極部6Eと後段の走査信号線8Aとを絶縁膜を介在させて構成していたが、本発明はこれに限られるものではない。すなわち、保持容量Csは、容量電極部6Eと前段の走査信号線8Aとの絶縁膜を介した対向により構成してもよい。図13は保持容量Csを前段の走査信号線8Aとの間に形成した液晶パネルの画素の等価回路例を示す図である。図11と図13の相違は、保持容量Csの他方の電極が、後段の走査信号線(図11)であるか、前段の走査信号線(図13)であるかの違いだけであり、本発明の作用効果は、図13のような保持容量Csを前段の走査信号線とで形成した場合でも同様に得ることができる。
【0084】
さらに、容量線を新たに配置し、容量線又はこれに接続された電極と容量電極部6Eとを絶縁膜を介して対向させ、それにより保持容量を構成してもよい。図14は保持容量Csを容量線8Cとの間に形成した液晶パネルの画素の等価回路例を示す図である。図11と図14の相違は、保持容量Csの他方の電極が、後段の走査信号線(図11)であるか、容量線(図14)であるかの違いだけであり、本発明の作用効果は、図14のような保持容量Csを容量線8Cとで形成した場合でも同様に得ることができる。なお、容量線8Cには、図12におけるVLCの電位が印加される。
【0085】
なお、各実施形態において、チャネル領域に接続する前段の走査信号線は、実施形態においては直前の前段の走査信号線(例えば、Xnに対してXn-1)であるが、2つ前の前段側の走査信号線(例えば、Xnに対してXn-2)でも構わないし、3つ前の前段側の走査信号線(例えば、Xnに対してXn-3)でも構わない。いずれにしても、前段側の走査信号線であれば同様の作用効果を得ることができるが、より隣接する側、特には一つ前段の走査信号線が好ましい。
【0086】
また、各実施形態では、Nチャネル型トランジスタを用いて説明しているが、Pチャネル型トランジスタに置換しても、Nチャネル型TFTの場合と全く同一の構造・パターンとなり、同様の作用効果を得ることができる。但し、図12の各種信号電位は、高低が全く逆になり、図の上側が低電位、下側が高電位となる。従って、走査信号線8Aに印加される非選択電位VG2は、画像信号VIDの最高電位以上にすることにより、Pチャネル型トランジスタのチャネル領域6Bに蓄積した正孔(正電荷)の余剰キャリアを前段の走査信号線8Aに引き抜くことができる。
【0087】
(第2の実施形態)
次に、本発明を適用した電気光学装置の一例である液晶パネル用基板において、各画素のトランジスタのチャネル領域を各画素に設けられる保持容量(蓄積容量)の他方の電極(容量線の電極)に電気的に接続した実施形態を説明する。また、本実施形態では容量線を配置するので、第1の実施形態のように走査信号線を用いて保持容量を構成するのではなく、この容量線を用いて保持容量を構成する。
【0088】
なお、本実施形態においては、断面図は第1の実施形態と基本的に同じであるので、説明を省略する。また、本実施形態における第1の実施形態と同じ符号は、特段説明しない限りは同じものを意味する。
【0089】
図15及び図16は、本実施形態の構成を具体的にした画素部の平面図を示すものである。図17はトランジスタのチャネル領域6Bを保持容量Csの他方の電極と電気的に接続して容量線にチャネル領域の余剰キャリアを引き抜くと共に、保持容量Csを容量線の電極と容量電極部6Eとで形成した場合の等価回路を示す図である。図15(A)は図9(A)に対応する図、図15(B)は図9(B)に対応する図、図16(A)は図10(A)に対応する図、図16(B)は図10(B)に対応する図、図17は図11に対応する図である。それぞれ同じ符号は同じものを指している。
【0090】
容量線は図16(A)(B)及び図17において8Cで示される第1の導電膜8により形成された導電配線である。この容量線8Cは走査信号線8Aと並行に配置される同一層の導電配線である。図16(A)においては、容量線8Cは分岐して電極配線8Bとして延在され、単結晶シリコン層6の容量電極部6Eと第2の絶縁膜を挟んで重なり、その部分で保持容量Csを形成している。図16(B)においては、容量線8Cは分岐せずに、画像信号線11Aと同一層の第2の導電膜11により形成される導電配線11Cと、第3の絶縁膜10に形成されたコンタクトホール10Bを介して接続される。容量線8Cに繋がった導電配線11Cは延在されて、単結晶シリコン層6の容量電極部6Eと第2の絶縁膜7又は第3の絶縁膜10を挟んで重なり、その部分で保持容量Csを形成している。なお、図16(B)の構成において、保持容量Csを形成する場合、第2及び第3の絶縁膜を誘電体とするのでは容量が十分に形成できないので、保持容量の形成部においては一方の絶縁膜が除去されて、残された方の絶縁膜を誘電体とすることが好ましい。
【0091】
さらに、図16(A)の構成では、容量線8Cは、そこから分岐された導電配線8Bの先端部において、第2の絶縁膜7に形成されたコンタクトホール7Bを介して、トランジスタのチャネル領域6Bとなる単結晶シリコン層(半導体層)が延在された延在部6Dと電気的に接続される。従って、トランジスタのチャネル領域6Bに蓄積された余剰キャリアは、延在部6Dと容量線から分岐された導電配線8Bを介して容量線8Cに引き抜かれる。また、図16(B)の構成では、容量線8Cは、その上層の導電配線11Cにコンタクトホール10Bを介して接続され、その導電配線11Cの先端部において、第2の絶縁膜7又は第3の絶縁膜に形成されたコンタクトホール7Bを介して、トランジスタのチャネル領域6Bとなる単結晶シリコン層(半導体層)が延在された延在部6Dと電気的に接続される。従って、トランジスタのチャネル領域6Bに蓄積された余剰キャリアは、延在部6Dと導電配線11Cを介して容量線8Cに引き抜かれる。
【0092】
本実施形態においては、容量線8Cの電位は、チャネル領域からキャリアを引き抜くために、第1の実施形態で説明した図12の非選択電位VG2と同じにしている。すなわち、トランジスタがNチャネル型TFTの場合は、図12に図示するように、画像信号VIDの最低電位以下の低い電位が容量線8Cに印加され、トランジスタがPチャネル型TFTの場合には、先に説明したのと同様に、画像信号VIDの最高電位以上の高い電位が容量線8Cに印加される。
【0093】
以上のように、本実施形態においても、第1の実施形態と同様な作用効果により、トランジスタのチャネル領域に蓄積された余剰キャリアを容量線に引き抜くことができるので、基板浮遊効果を抑制することができる。なお、本実施の形態では、キャリアを引き抜く先の容量線8Cは、常に電位が固定されているので、キャリアを安定して引き抜くことが可能となる。
【0094】
(第3の実施形態)
図2は本発明を適用した電気光学装置用基板の一例の液晶パネル用基板の画素部を示す第3の実施形態の断面図を示す。この実施形態は、第1の実施形態及び第2の実施形態の画素部の断面図を変形した例であり、第1の実施形態及び第2の実施形態と異なる箇所以外は、第1の実施形態及び第2の実施形態と同様の構成とする。すなわち、本実施形態及び以降の各実施形態において、第1の実施形態及び第2の実施形態と同じ符号は同一の構成を意味する。
【0095】
本実施形態においては、画素電極14Bには鏡面反射電極を用いた。反射電極の反射率は、下方の第3の絶縁膜10の表面状態により大幅に変動する。この反射率の変動を防止するため、第3の絶縁膜10の表面を基板全体にわたりグローバルに研磨して平坦化した。平坦化の手法は、CMP(化学的機械研磨)法を用いた。第3の絶縁膜10をCMP(化学的機械研磨)法により平坦化し、この平坦化された第3の絶縁膜10の上方に反射電極となる画素電極14Bを形成した。画素電極にはアルミニウムを低温スパッタ法により形成した。以上のプロセスにより、90%以上の高反射率を有する画素電極13を形成することができた。また、画素電極14は第2の導電膜11Aと同じ工程で形成しても良い。この場合、工程プロセスの簡略化の点から非常に有効である。
【0096】
(第4の実施形態)
図3は本発明を適用した電気光学装置用基板の一例の液晶パネル用基板の画素部を示す第4の実施形態の断面図を示す。この実施形態は、第1の実施形態及び第2の実施形態の画素部の断面図を変形した例であり、第1の実施形態及び第2の実施形態と異なる箇所以外は、第1の実施形態及び第2の実施形態と同様の構成とする。
【0097】
本実施形態は、第3の実施形態と同様な構成を採用しているが、異なる点は画素電極を反射電極としている点にある。本実施形態のように、画素電極14Bを反射電極とし、反射電極14Bとソース電極11Aの間隙部を非常に少なくすると、上記の導電膜14は遮光膜としても機能する。このため、特にトランジスタの光リークを防止するための遮光層4を形成しなくても良い。この場合、工程プロセスの簡略化の点から、非常に有効である。
【0098】
(第5の実施形態)
図4は本発明を適用した電気光学装置用基板の一例の液晶パネル用基板の画素部を示す第5の実施形態の断面図である。この実施形態は、第1の実施形態及び第2の実施形態の画素部の断面図を変形した例であり、第1の実施形態及び第2の実施形態と異なる箇所以外は、第1の実施形態及び第2の実施形態と同様の構成とする。
【0099】
本実施形態では、ドレイン領域6Cには、シリコン酸化膜のような第3の絶縁膜10を介して第2の導電膜11Bが接続されており、この第2の導電膜11Bには、シリコン酸化膜のような第4の絶縁膜12を介して画素電極14Aが接続されている。画素電極には、ITO(Indium Tin Oxide)のような透明導電膜を用いた。この実施形態においては、第3の絶縁膜10と第4の絶縁膜12をそれぞれ別途にエッチングを行って、それぞれ別々にコンタクトホールを形成している。第3の絶縁膜10と第4の絶縁膜12が、例えば窒化シリコンSiNと二酸化シリコンSiOや酸化タンタルTaOxと二酸化シリコンSiOのような異なる膜で構成された場合、同一のエッチングガスあるいはエッチャントでエッチングを行うと、各々の絶縁膜のエッチングレートの違いにより、一方の絶縁膜がサイドエッチングされ易いため、庇状の加工形状になりやすい。一方、各々の絶縁膜に適したエッチングガスあるいはエッチャントでエッチングを行うと、サイドエッチングされないため、良好なエッチング形状を得ることができる。このため、第3の絶縁膜10と第4の絶縁膜12が異なる膜で形成された場合において、この実施形態は特に有効である。
【0100】
(第6の実施形態)
図5は本発明を適用した電気光学装置用基板の一例の液晶パネル用基板の画素部を示す第6の実施形態の断面図である。この実施形態は、第1の実施形態及び第2の実施形態の画素部の断面図を変形した例であり、第1の実施形態及び第2の実施形態と異なる箇所以外は、第1の実施形態及び第2の実施形態と同様の構成とする。
【0101】
本実施形態では、第5の実施形態と同様な構成を採用しているが、異なる点は、画素電極と反射電極とし、ドレイン領域6Cと反射電極である画素電極14Bを、接続プラグ13により電気的に接続しているところにある。接続プラグ13の材料にはタングステン等の高融点金属を用いた。また、画素電極14Bには低温スパッタによるアルミニウムを用いた。このとき、第2の導電膜11Aは鏡面電極である必要はなく、例えば窒化チタンのような反射防止膜を表面に有するアルミニウムを、高温スパッタにより形成できるため、ソースドレイン電極の抵抗低減,信頼性確保の点において、非常に有効である。
【0102】
(第7の実施形態)
図6は本発明を適用した電気光学装置用基板の一例の液晶パネル用基板の画素部を示す第7の実施形態の断面図である。この実施形態は、第1の実施形態及び第2の実施形態の画素部の断面図を変形した例であり、第1の実施形態及び第2の実施形態と異なる箇所以外は、第1の実施形態及び第2の実施形態と同様の構成とする。
【0103】
本実施形態では、ドレイン領域6Cと第2の導電膜11Bを介して画素電極14Bを形成している。第5の実施形態と同様に、本実施形態では、ドレイン領域6Cには、シリコン酸化膜のような第3の絶縁膜10を介して第2の導電膜11Bが接続されており、この第2の導電膜11Bには、シリコン酸化膜のような第4の絶縁膜12を介して画素電極14Bが接続されている。画素電極には、低温スパッタによるアルミニウムを用いて反射電極とした。この実施形態においては、第5の実施形態と同様に、第3の絶縁膜10と第4の絶縁膜12のそれぞれに適したエッチングガスあるいはエッチャントでエッチングを行うことができ、サイドエッチングされないため、良好なエッチング形状を得ることができる。このため、第3の絶縁膜10と第4の絶縁膜12が異なる膜で形成された場合において、この実施形態は特に有効である。
【0104】
(第8の実施形態)
図7は本発明を適用した電気光学装置用基板の一例の液晶パネル用基板の画素部を示す第8の実施形態の断面図である。この実施形態は、第1の実施形態及び第2の実施形態の画素部の断面図を変形した例であり、第1の実施形態及び第2の実施形態と異なる箇所以外は、第1の実施形態及び第2の実施形態と同様の構成とする。
【0105】
本実施形態は、第6の実施形態と同様な構成を採用しているが、異なる点は遮光層4を形成していない点にある。本実施形態のように、画素電極14Bが反射電極の場合、第2の導電膜11Aの間隙部は非常に少なく、特にトランジスタの光リークを防止するための遮光層4を形成する必要はない。本実施形態は、工程プロセスの簡略化という点において、非常に有効である。
【0106】
(第9の実施形態)
図8は本発明を適用した電気光学装置用基板の一例の液晶パネル用基板の画素部を示す第9の実施形態の断面図である。この実施形態は、第1の実施形態及び第2の実施形態の画素部の断面図を変形した例であり、第1の実施形態及び第2の実施形態と異なる箇所以外は、第1の実施形態及び第2の実施形態と同様の構成とする。
【0107】
本実施形態は、第7の実施形態と同様な構成であるが、異なる点は、画素電極を反射電極とし、遮光層を無くした点にある。本実施形態のように、画素電極14Bが反射電極の場合、第2の導電膜11Aの間隙部は非常に少なく、前記導電膜は、遮光膜としても機能する。このため、特にトランジスタの光リークを防止するための遮光層4を形成する必要はない。本実施形態は、工程プロセスの簡略化という点において、非常に有効である。また実施形態4および6と同様に、第3の絶縁膜10と第4の絶縁膜12のそれぞれに適したエッチングガスあるいはエッチャントでエッチングを行うことができ、サイドエッチングされないため、良好なエッチング形状を得ることができる。このため、第3の絶縁膜10と第4の絶縁膜12が異なる膜で形成された場合において、この実施形態は特に有効である。
【0108】
(本発明の液晶パネルの実施形態)
本発明の電気光学装置用基板を用いて作成された電気光学装置の一例である液晶パネルの構成を、図面を用いて説明する。
【0109】
図18は上記第1〜第9の実施形態を適用した液晶パネル用基板の全体の平面図を示す。図18に示されているように、この実施形態においては、基板の周縁部に設けられている周辺回路21、22、23、24に光が入射するのを防止する遮光膜(図中の点線で挟まれた領域)25が設けられている。周辺回路は、画素電極がマトリックス状に配置された画素領域20の周辺に設けられ、画像信号線11Aに画像データに応じた画像信号を供給するデータ線駆動回路21や走査信号線8Aを順番に走査する走査信号線駆動回路22、パッド領域26を介して外部から入力される画像データを取り込む入力回路23、これらの回路を制御するタイミング制御回路24等の回路であり、これらの回路は画素に形成されるトランジスタ素子と同様の工程により基板に製造された素子とこれに抵抗や容量などの負荷素子を組み合わせることで構成される。
【0110】
この実施形態においては、遮光膜25は、図1〜8に示されている第2の導電膜11或いは第3の導電膜14Bと同一工程で形成され、電源電圧や画像信号の中心電位あるいは共通電位VLC等の所定電位が印加されるように構成されている。遮光膜25に所定の電位を印加することでフローティングや他の電位である場合に比べて反射を少なくすることができる。26は電源電圧を供給するために使用されるパッドもしくは端子が形成されたパッド領域である。
【0111】
図19は本発明の液晶パネル用基板31を適用した液晶パネルの断面構成を示す。図19に示すように、本発明の液晶パネル用基板31は、必要に応じてその裏面にガラスもしくはセラミック等からなる補強基板32が接着剤により接着されている。これとともに、その表面側には、共通電位VLCが印加される透明導電膜(ITO)からなる対向電極(共通電極ともいう)33を有する入射側のガラス基板35が適当な間隔をおいて配置され、周囲をシール材36で封止された間隙内に、周知のTN(Twisted Nematic)型液晶、電圧無印加状態で液晶分子がほぼ垂直配向された垂直配向(Homeotropic)型液晶、電圧無印加状態で液晶分子がねじれずにほぼ水平配向された水平配向(Homogeneous)型液晶、強誘電型液晶あるいは高分子分散型液晶等の液晶37などが充填されて液晶パネル30として構成されている。なお、外部から信号を入力したり、パッド領域26は前記シール材936の外側に来るようにシール材を設ける位置が設定されている。
【0112】
周辺回路上の遮光膜25は、液晶37を介在して対向電極33と対向されるように構成されている。そして、遮光膜25に共通電位VLCを印加すれば、対向電極33には共通電位VLCが印加されるので、その間に介在する液晶には直流電圧が印加されなくなる。よってTN型液晶であれば常に液晶分子がほぼ90°ねじれたままとなり、垂直配向型液晶や水平配向型液晶であれば常に垂直配向や水平配向された状態に液晶分子が保たれる。
【0113】
この実施形態においては、半導体基板からなる前記液晶パネル基板31は、その裏面にガラスもしくはセラミック等からなる支持基板が接着剤により接合されているため、その強度が著しく高められる。その結果、液晶パネル基板31に支持基板32を接合させてから対向基板との貼り合わせを行うようにすると、パネル全体にわたって液晶層のギャップが均一になるという利点がある。
【0114】
(本発明の液晶パネルをライトバルブに用いた投射型表示装置の説明)
図20及び図21は、本発明の電気光学装置の一例である液晶パネルをライトバルブに用いた投射型表示装置の光学構成を示す図である。
【0115】
図20は、透明導電膜を画素電極とする本発明の液晶パネルを用いた投射型表示装置の要部を示す概略構成図である。図中、410は光源、413,414はダイクロイックミラー、415,416,417は反射ミラー、418,419,420はリレーレンズ、422,423,424は液晶ライトバルブ、425はクロスダイクロイックプリズム、426は投射レンズを示す。青色光・緑色光反射のダイクロイックミラー413は、光源410からの白色光束のうちの赤色光を透過させるとともに、青色光と緑色光とを反射する。透過した赤色光は反射ミラー417で反射されて、赤色光用液晶ライトバルブ422に入射される。一方、ダイクロイックミラー413で反射された色光のうち緑色光は緑色光反射のダイクロイックミラー414によって反射され、緑色光用液晶ライトバルブ423に入射される。一方、青色光は第2のダイクロイックミラー414も透過する。青色光に対しては、入射レンズ418、リレーレンズ419、出射レンズ420を含むリレーレンズ系からなる導光手段421が設けられ、これを介して青色光が青色光用液晶ライトバルブ424に入射される。各ライトバルブにより変調された3つの色光はクロスダイクロイックプリズム425に入射され、各色光が合成されて、カラー画像を表す光が形成される。合成された光は、投射光学系である投射レンズ426によってスクリーン427上に投射され、画像が拡大されて表示される。
【0116】
図21は、反射電極を画素電極とする本発明の液晶パネルを用いた投射型表示装置の要部の概略構成図である。光源110、インテグレータレンズ120、偏光変換素子130から概略構成される偏光照明装置100、偏光照明装置100から出射されたS偏光光束をS偏光光束反射面201により反射させる偏光ビームスプリッタ200、偏光ビームスプリッタ200のS偏光反射面201から反射された光のうち、青色光(B)の成分を分離するダイクロイックミラー412、分離された青色光(B)を青色光を変調する反射型液晶ライトバルブ300B、青色光が分離された後の光束のうち赤色光(R)の成分を反射させて分離するダイクロイックミラー413、分離された赤色光(R)を変調する反射型液晶ライトバルブ300R、ダイクロイックミラー413を透過する残りの緑色光(G)を変調する反射型液晶ライトバルブ300G、3つの反射型液晶ライトバルブ300R、300G、300Bにて変調された光をダイクロイックミラー412,413,偏光ビームスプリッタ200にて合成し、この合成光をスクリーン600に投射する投射レンズからなる投射光学系500から構成されている。上記3つの反射型液晶ライトバルブ300R、300G、300Bには、それぞれ前述の液晶パネルが用いられている。
【0117】
いずれの投射型表示装置の構成例においても、液晶パネルの各画素には、トランジスタのチャネルの余剰キャリアを抜くことのできる保護構造を有しているため、高性能で高耐圧のアクティブマトリクス型液晶パネルを用いて表示することができる。
【0118】
(本発明の液晶パネルを表示装置に用いた電子機器の説明)
図22は、本発明の電気光学装置の一例である液晶パネルを表示装置に用いた電子機器の概観図を示す。図22(A)は、携帯電話1000の表示部1001に本発明の液晶パネルを用いた例を示す。図22(B)は、腕時計型の機器1100の表示部1101に本発明の液晶パネルを用いた例を示す。図22(C)は、コンピュータ1200の表示部1206に本発明の液晶パネルを用いた例を示す。1204は本体、1202はキーボード等の入力部を示す。
【0119】
いずれの電子機器の構成例においても、液晶パネルの各画素には、トランジスタのチャネルの余剰キャリアを抜くことのできる保護構造を有しているため、高性能で高耐圧のアクティブマトリクス型液晶パネルを用いて表示することができる。
【0120】
(本発明の変形例)
以上に説明した本実施形態の電気光学装置は、これに限定されるものではなく、本発明の趣旨を変えない範囲で種々に変更することができる。
【0121】
例えば、画素のスイッチングトランジスタとしては、相補型の薄膜トランジスタを用いてもよい。それぞれのトランジスタのチャネル領域からは、以上に説明した実施形態を採用することにより余剰キャリアを引き抜くことができる。
【0122】
また、単結晶シリコン層をソース・ドレイン・チャネルとするMOSFET(TFT)を前提として説明したが、多結晶シリコン層或いは非晶質シリコン層をソース・ドレイン・チャネルとする薄膜トランジスタにおいて、チャネルの余剰キャリアの問題がある場合にも、本発明を適用することができるので、半導体層は単結晶シリコンに限られるものではない。
【0123】
また、液晶パネルを前提に実施形態を説明したが、液晶パネル以外でもよい。例えば、発光ポリマーを用いたエレクトロルミネッセンス(EL)や、プラズマディスプレイ(PDO)や、電界放出素子(FED)等の自発光素子の各画素をスイッチングするトランジスタにおいて、本発明を適用することもできる。さらに、マイクロミラーデバイス(DMD)等のように各画素のミラーの角度を変更するようなミラーデバイスにおいて、画素のトランジスタに本発明を適用するこもできる。
【0124】
【発明の効果】
このように本発明による電気光学装置用基板は、画素電極に接続されるトランジスタのチャネル領域となる半導体層から余剰キャリアを走査信号線に引き抜くことにより、基板浮遊効果を抑制することができ、それにより余剰キャリアによるトランジスタの耐圧劣化を抑え、信頼性を向上することができる。このため、本発明の電気光学装置用基板を用いれば、良好なトランジスタ特性を有するデバイスを作成することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態における液晶パネル用基板の断面図。
【図2】本発明の第3の実施形態における液晶パネル用基板の断面図。
【図3】本発明の第4の実施形態における液晶パネル用基板の断面図。
【図4】本発明の第5の実施形態における液晶パネル用基板の断面図。
【図5】本発明の第6の実施形態における液晶パネル用基板の断面図。
【図6】本発明の第7の実施形態における液晶パネル用基板の断面図。
【図7】本発明の第8の実施形態における液晶パネル用基板の断面図。
【図8】本発明の第9の実施形態における液晶パネル用基板の断面図。
【図9】本発明の第1の実施形態における液晶パネル用基板の平面図。
【図10】本発明の第1の実施形態における液晶パネル用基板の平面図。
【図11】本発明の第1の実施形態における液晶パネルの等価回路図。
【図12】本発明における液晶パネルの駆動波形図。
【図13】本発明の第1の実施形態における液晶パネルの等価回路図。
【図14】本発明の第1の実施形態における液晶パネルの等価回路図。
【図15】本発明の第2の実施形態における液晶パネル用基板の平面図。
【図16】本発明の第2の実施形態における液晶パネル用基板の平面図。
【図17】本発明の第2の実施形態における液晶パネルの等価回路図。
【図18】本発明による液晶パネル用基板の平面図。
【図19】本発明による液晶パネルの断面図。
【図20】本発明による投射型表示装置の光学構成図。
【図21】本発明による投射型表示装置の光学構成図。
【図22】本発明による電子機器の概観図。
【符号の説明】
3 支持基板
4 遮光膜
5 第1の絶縁膜
6A ソース(またはドレイン)領域
6B チャネル領域
6C ドレイン(またはソース)領域
7 第2の絶縁膜
8 第1の導電膜(ゲート電極8,分岐中継配線8B)
10第3の絶縁膜
11A 第2の導電膜(ソースまたはドレイン電極)
11B 第2の導電膜(ドレインまたはソース電極)
12 第4の絶縁膜
13 接続プラグ
14 画素電極
14A 画素電極(透明電極)
14B 画素電極(反射電極)
15 開口部
20 画素領域
21 データ線駆動回路
22 走査信号線駆動回路
23 入力回路
24 タイミング制御回路
25 遮光膜
26 パッド領域
30 液晶パネル
31 液晶パネル用基板
32 補強基板
33 対向電極
35 入射側のガラス基板
36 シール材
37 液晶

Claims (51)

  1. 基板上にマトリクス状に形成される複数の画素領域の各画素領域毎にトランジスタが配置される電気光学装置用基板において、
    前記基板上に前記トランジスタのチャネル領域となる半導体層が形成されてなり、該チャネル領域となる半導体層は、当該トランジスタのゲート電極が電気的に接続される走査信号線とは異なる走査信号線と電気的に接続されてなる
    ことを特徴とする電気光学装置用基板。
  2. 前記異なる走査信号線は、当該トランジスタのゲート電極が電気的に接続される走査信号線よりも前段側に位置する走査信号線であることを特徴とする請求項1記載の電気光学装置用基板。
  3. 前記トランジスタはNチャネル型トランジスタであって、前記前段側の走査信号線には前記トランジスタに供給される画像信号の電位以下の電位が印加されることを特徴とする請求項2記載の電気光学装置用基板。
  4. 前記トランジスタはPチャネル型トランジスタであって、前記前段側の走査信号線には前記トランジスタに供給される画像信号の電位以上の電位が印加されることを特徴とする請求項2記載の電気光学装置用基板。
  5. 前記トランジスタのチャネル領域の半導体層は、当該トランジスタのソース・ドレイン領域を構成する半導体層と互いに異なる導電型とすることを特徴とする請求項1記載の電気光学装置用基板。
  6. 前記トランジスタのチャネル領域の半導体層には、当該トランジスタのソース・ドレイン領域を構成する半導体層よりも低い濃度の不純物が導入されてなることを特徴とする請求項5記載の電気光学装置用基板。
  7. 前記チャネル領域となる半導体層は延在部を有し、該延在部において当該チャネル領域を有するトランジスタのゲート電極が電気的に接続される走査信号線とは異なる走査信号線に電気的に接続されてなることを特徴とする請求項1に記載の電気光学装置用基板。
  8. 前記チャネル領域の半導体層とこれを延在した前記延在部の半導体層は、前記トランジスタのソース・ドレイン領域を構成する半導体層と互いに異なる導電型とすることを特徴とする請求項7に記載の電気光学装置用基板。
  9. 前記延在部の半導体層には前記チャネル領域よりも高濃度の不純物が導入されてなることを特徴とする請求項8記載の電気光学装置用基板。
  10. 前記トランジスタはNチャネル型トランジスタであって、前記異なる走査信号線には前記トランジスタに供給される画像信号の電位以下の非選択電位が印加されてなることを特徴とする請求項1記載の電気光学装置用基板。
  11. 前記トランジスタはPチャネル型トランジスタであって、前記異なる走査信号線には前記トランジスタに供給される画像信号の電位以上の非選択電位が印加されてなることを特徴とする請求項1記載の電気光学装置用基板。
  12. 前記トランジスタのチャネル領域は単結晶シリコン層からなることを特徴とする請求項1記載の電気光学装置用基板。
  13. 前記トランジスタのチャネル領域から、前記異なる走査信号線に電荷が引き抜かれてなることを特徴とする請求項12記載の電気光学装置用基板。
  14. 基板上にマトリクス状に形成される複数の画素領域の各画素領域毎にNチャネル型トランジスタが配置される電気光学装置用基板において、
    前記基板上に前記Nチャネル型トランジスタのチャネル領域となる半導体層が形成されてなり、該チャネル領域となる半導体層は当該トランジスタに供給される画像信号の電位以下の電位が印加された導電層と電気的に接続されてなる
    ことを特徴とする電気光学装置用基板。
  15. 前記導電層は、当該チャネル領域を有するトランジスタのゲート電極が電気的に接続される走査信号線よりも前段側に位置する走査信号線であることを特徴とする請求項14記載の電気光学装置用基板。
  16. 前記導電層は、当該チャネル領域を有するトランジスタに一方の電極が電気的に接続される容量の他方の電極とすることを特徴とする請求項14記載の電気光学装置用基板。
  17. 前記チャネル領域の半導体層とこれを延在して前記導電層と電気的に接続するための延在部の半導体層とは、P型の不純物が導入されてなることを特徴とする請求項14記載の電気光学装置用基板。
  18. 基板上にマトリクス状に形成される複数の画素領域の各画素領域毎にPチャネル型トランジスタが配置される電気光学装置用基板において、
    前記基板上に前記Pチャネル型トランジスタのチャネル領域となる半導体層が形成されてなり、該チャネル領域となる半導体層は当該トランジスタに供給される画像信号の電位以上の電位が印加された導電層と電気的に接続されてなる
    ことを特徴とする電気光学装置用基板。
  19. 前記導電層は、当該チャネル領域を有するトランジスタのゲート電極が電気的に接続される走査信号線よりも前段側に位置する走査信号線であることを特徴とする請求項18記載の電気光学装置用基板。
  20. 前記導電層は、当該チャネル領域を有するトランジスタに一方の電極が電気的に接続される容量の他方の電極とすることを特徴とする請求項18記載の電気光学装置用基板。
  21. 前記チャネル領域の半導体層とこれを延在して前記導電層と電気的に接続するための延在部の半導体層とは、N型の不純物が導入されてなることを特徴とする請求項18記載の電気光学装置用基板。
  22. 基板上にマトリクス状に形成される複数の画素領域の各画素領域毎に、トランジスタと、前記トランジスタソース又はドレインに一方の電極が電気的に接続される容量とが配置される電気光学装置用基板において、
    前記基板上に前記トランジスタのチャネル領域となる半導体層が形成されてなり、該チャネル領域となる半導体層は、前記容量の他方の電極と電気的に接続されてなる
    ことを特徴とする電気光学装置用基板。
  23. 前記トランジスタはNチャネル型トランジスタであって、前記容量の他方の電極には、当該トランジスタに供給される画像信号の電位以下の電位が印加されることを特徴とする請求項22記載の電気光学装置用基板。
  24. 前記トランジスタはPチャネル型トランジスタであって、前記容量の他方の電極には、当該トランジスタに供給される画像信号の電位以上の電位が印加されることを特徴とする請求項22記載の電気光学装置用基板。
  25. 前記トランジスタのチャネル領域の半導体層は、当該トランジスタのソース・ドレイン領域を構成する半導体層と互いに異なる導電型とすることを特徴とする請求項22記載の電気光学装置用基板。
  26. 前記トランジスタのチャネル領域の半導体層には、当該トランジスタのソース・ドレイン領域を構成する半導体層よりも低い濃度の不純物が導入されてなることを特徴とする請求項25記載の電気光学装置用基板。
  27. 前記チャネル領域となる半導体層は延在部を有し、該延在部において前記容量の他方の電極に電気的に接続されてなることを特徴とする請求項22に記載の電気光学装置用基板。
  28. 前記チャネル領域の半導体層とこれを延在した前記延在部の半導体層は、前記トランジスタのソース・ドレイン領域を構成する半導体層と互いに異なる導電型とすることを特徴とする請求項27に記載の電気光学装置用基板。
  29. 前記延在部の半導体層には前記チャネル領域よりも高濃度の不純物が導入されてなることを特徴とする請求項28記載の電気光学装置用基板。
  30. 前記トランジスタのチャネル領域は単結晶シリコン層からなることを特徴とする請求項22記載の電気光学装置用基板。
  31. 前記トランジスタのチャネル領域に蓄積した電荷が、前記容量の他方の電極に引き抜かれてなることを特徴とする請求項30記載の電気光学装置用基板。
  32. 前記チャネル領域は、前記異なる走査信号線から分岐した配線あるいは前記異なる走査信号線に接続された配線と電気的に接続されてなることを特徴とする請求項1記載の電気光学装置用基板。
  33. 前記異なる走査信号線から分岐した配線あるいは前記異なる走査信号線に接続された配線は、一画素の領域内の周辺部に沿って配置されることを特徴とする請求項32記載の電気光学装置用基板。
  34. 前記異なる走査信号線から分岐した配線あるいは前記異なる走査信号線に接続された配線は、前記走査信号線と交差する画像信号線に沿って配置され、且つ前記トランジスタのチャネル領域近傍に配置される前記走査信号線に沿って配置されることを特徴とする請求項33記載の電気光学装置用基板。
  35. 前記異なる走査信号線から分岐した配線あるいは前記異なる走査信号線に接続された配線と、当該配線に隣接する前記画像信号線及び前記走査信号線とは、前記半導体層の下方の前記基板上に形成される遮光層と平面的に重なるように配置されることを特徴とする請求項34記載の電気光学装置用基板。
  36. 前記チャネル領域及び前記延在部の半導体層は、該半導体層の下方の前記基板上に形成された遮光層と平面的に重なるように配置されることを特徴とする請求項8又は28記載の電気光学装置用基板。
  37. 前記基板は透明基板からなることを特徴とする請求項1、14、18又は22に記載の電気光学装置用基板。
  38. 前記透明基板はガラスにより形成されてなることを特徴とする請求項37記載の電気光学装置用基板。
  39. 前記トランジスタに接続される画素電極は透明電極であることを特徴とする請求項37載の電気光学装置用基板。
  40. 前記トランジスタに接続される画素電極は反射電極であることを特徴とする請求項37記載の電気光学装置用基板。
  41. 前記基板は半導体基板からなることを特徴とする請求項1、14、18又は22に記載の電気光学装置用基板。
  42. 前記基板は単結晶シリコンにより形成されてなることを特徴とする請求項41記載の電気光学装置用基板。
  43. 前記トランジスタに接続される画素電極は反射電極であることを特徴とする請求項42記載の電気光学装置用基板。
  44. 前記トランジスタの上方に平坦化された絶縁膜が形成されてなり、該平坦化された絶縁膜上に画素電極を形成してなることを特徴とする請求項1、14、18又は22に記載の電気光学装置用基板。
  45. 前記トランジスタの上方に複数層の絶縁膜を形成してなり、該複数層の絶縁膜のうちの上層の該絶縁膜は平坦化され、該平坦化された上層の絶縁膜上に画素電極を形成してなることを特徴とする請求項1、14、18又は22に記載の電気光学装置用基板。
  46. 請求項1乃至45の何れかに記載の電気光学装置用基板と、対向基板とが間隙を有して配置されるとともに、該間隙内に電気光学材料が封入されて構成されることを特徴とする電気光学装置。
  47. 請求項46に記載の電気光学装置を表示装置として用いることを特徴とする電子機器。
  48. 光源と、前記光源からの光を変調する請求項46に記載の電気光学装置と、前記電気光学装置により変調された光を投射する投射光学手段とを備えることを特徴とする投射型表示装置。
  49. マトリクス状に配置される各画素に、走査信号線にゲート電極が接続されるトランジスタを有する電気光学装置の駆動方法において、
    前記走査信号線に選択電位を印加して前記トランジスタを導通させ、当該トランジスタのチャネル領域を介して画像信号を画素に印加し、
    前記走査信号線に非選択電位を印加して前記トランジスタを非導通としてなり、
    前記トランジスタからは前記チャネル領域に存在する余分な電荷を引き抜く
    ことを特徴とする電気光学装置の駆動方法。
  50. 前記チャネル領域における電荷は、前記走査信号線とは異なる走査信号線に引き抜かれることを特徴とする請求項49記載の電気光学装置の駆動方法。
  51. 前記チャネル領域における電荷は、容量線に引き抜かれることを特徴とする請求項49記載の電気光学装置の駆動方法。
JP36750498A 1997-12-25 1998-12-24 電気光学装置用基板、電気光学装置、電気光学装置の駆動方法及び電子機器並びに投射型表示装置 Expired - Fee Related JP3719343B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36750498A JP3719343B2 (ja) 1997-12-25 1998-12-24 電気光学装置用基板、電気光学装置、電気光学装置の駆動方法及び電子機器並びに投射型表示装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP35862297 1997-12-25
JP9-358622 1997-12-25
JP36258998 1998-12-21
JP10-362589 1998-12-21
JP36750498A JP3719343B2 (ja) 1997-12-25 1998-12-24 電気光学装置用基板、電気光学装置、電気光学装置の駆動方法及び電子機器並びに投射型表示装置

Publications (2)

Publication Number Publication Date
JP2000241829A JP2000241829A (ja) 2000-09-08
JP3719343B2 true JP3719343B2 (ja) 2005-11-24

Family

ID=27341587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36750498A Expired - Fee Related JP3719343B2 (ja) 1997-12-25 1998-12-24 電気光学装置用基板、電気光学装置、電気光学装置の駆動方法及び電子機器並びに投射型表示装置

Country Status (1)

Country Link
JP (1) JP3719343B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879281B2 (ja) * 1998-11-06 2007-02-07 カシオ計算機株式会社 表示装置及び表示装置の駆動方法
JP3941440B2 (ja) * 2000-11-17 2007-07-04 セイコーエプソン株式会社 電気光学装置及びその製造方法、並びに投射型表示装置
JP2002297058A (ja) * 2001-03-30 2002-10-09 Sanyo Electric Co Ltd アクティブマトリクス型表示装置
US20040164299A1 (en) * 2003-02-24 2004-08-26 Gem Line Technology Co., Ltd. Reflective type thin film transistor display device and methods for fabricating the same
US7317434B2 (en) * 2004-12-03 2008-01-08 Dupont Displays, Inc. Circuits including switches for electronic devices and methods of using the electronic devices
JP5498670B2 (ja) 2007-07-13 2014-05-21 株式会社半導体エネルギー研究所 半導体基板の作製方法
KR101547574B1 (ko) 2007-12-03 2015-08-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치용 tft 배치
KR101943589B1 (ko) * 2008-11-12 2019-01-30 삼성디스플레이 주식회사 표시 장치
JP2019075572A (ja) * 2018-12-18 2019-05-16 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
JP2000241829A (ja) 2000-09-08

Similar Documents

Publication Publication Date Title
US6066860A (en) Substrate for electro-optical apparatus, electro-optical apparatus, method for driving electro-optical apparatus, electronic device and projection display device
JP4211063B2 (ja) 電気光学装置用基板、電気光学装置及び電子機器並びに投射型表示装置
EP0991126B1 (en) Method of manufacturing an electrooptic device
US20030180979A1 (en) Electrooptical substrate device and manufacturing method for same, electrooptical apparatus, electronic apparatus and manufacturing method for a substrate device
KR100490496B1 (ko) 전기광학 장치 및 전기광학 장치의 제조 방법, 및 투사형표시 장치, 전자기기
JP3575402B2 (ja) 電気光学装置の製造方法、電気光学装置及び電子機器
TW200414097A (en) Electro-optical device, process for manufacturing the same, and electronic apparatus
TW200411607A (en) Active matrix substrate, photoelectric apparatus, and electronic machine
JP2000323715A (ja) 表示用薄膜半導体素子及び表示装置
JP3719343B2 (ja) 電気光学装置用基板、電気光学装置、電気光学装置の駆動方法及び電子機器並びに投射型表示装置
JP3541650B2 (ja) 液晶パネル用基板、液晶パネル、及びそれを用いた電子機器並びに投写型表示装置
US7245330B2 (en) Electrooptic device, liquid crystal device, and projection display device with line defects
JPH08190106A (ja) アクティブマトリクス装置及びその駆動方法
JP2008225338A (ja) 電気光学装置およびその製造方法、電子機器
JP3757658B2 (ja) 電気光学装置の製造方法、電気光学装置及び電子機器
JP3663825B2 (ja) 液晶パネルおよび液晶パネル用基板および電子機器並びに投写型表示装置
JP2001257355A (ja) 電気光学基板、電気光学装置及び電子機器
JPH10253989A (ja) 表示装置
JP3070503B2 (ja) アクティブマトリクスパネル及びアクティブマトリクスパネル用駆動回路、ビューファインダー並びに投写型表示装置
JP3187736B2 (ja) アクティブマトリクスパネル及びアクティブマトリクスパネル用駆動回路、ビューファインダー並びに投写型表示装置
JP4701487B2 (ja) 電気光学装置用基板の製造方法
JP2004206134A (ja) 液晶パネル用基板、液晶パネル、及びそれを用いた電子機器並びに投写型表示装置
JP2008124179A (ja) 半導体基板の製造方法、半導体基板、半導体装置、電気光学装置、及び電子機器
JP3067671B2 (ja) アクティブマトリクスパネル、ビューファインダー並びに投写型表示装置
JP3170217B2 (ja) アクティブマトリクスパネル及びアクティブマトリクスパネル用駆動回路、ビューファインダー並びに投写型表示装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees