WO2010137284A1 - ガス拡散電極装着イオン交換膜電解槽 - Google Patents

ガス拡散電極装着イオン交換膜電解槽 Download PDF

Info

Publication number
WO2010137284A1
WO2010137284A1 PCT/JP2010/003470 JP2010003470W WO2010137284A1 WO 2010137284 A1 WO2010137284 A1 WO 2010137284A1 JP 2010003470 W JP2010003470 W JP 2010003470W WO 2010137284 A1 WO2010137284 A1 WO 2010137284A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
diffusion electrode
exchange membrane
electrolytic cell
ion exchange
Prior art date
Application number
PCT/JP2010/003470
Other languages
English (en)
French (fr)
Inventor
浅海清人
井口幸徳
浜守光晴
Original Assignee
クロリンエンジニアズ株式会社
東亞合成株式会社
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クロリンエンジニアズ株式会社, 東亞合成株式会社, 株式会社カネカ filed Critical クロリンエンジニアズ株式会社
Priority to CN2010800333300A priority Critical patent/CN102459708A/zh
Priority to EP10780245.6A priority patent/EP2436804A4/en
Priority to JP2011515878A priority patent/JP5785492B2/ja
Priority to US13/322,492 priority patent/US20120125782A1/en
Publication of WO2010137284A1 publication Critical patent/WO2010137284A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections

Definitions

  • the present invention relates to an ion exchange membrane electrolytic cell equipped with a gas diffusion electrode used for electrolysis of an aqueous alkali metal chloride solution such as saline, and is particularly suitable for an ion exchange membrane electrolytic cell equipped with a two-chamber method gas diffusion electrode. It is a thing.
  • a gas diffusion electrode-equipped ion exchange membrane electrolytic cell provided with a gas diffusion electrode is used as a means for reducing an electrolysis voltage by reacting with a gas taken from outside in the gas diffusion electrode.
  • an ion exchange membrane electrolyzer equipped with an aqueous solution of an alkali metal chloride using a gas diffusion electrode as a cathode an aqueous alkali chloride solution is supplied to the anode chamber, and chlorine gas is generated at the anode.
  • an oxygen-containing gas is supplied to the cathode chamber to reduce oxygen and produce an alkali metal hydroxide aqueous solution at the gas diffusion electrode.
  • the gas diffusion electrode cannot be made to flow over the entire surface of the gas diffusion electrode unless it is kept in close contact with the ion exchange membrane. The current cannot flow. Therefore, an elastic member having air permeability is arranged between the back plate of the gas diffusion electrode and the cathode chamber, and the gas diffusion electrode is closely attached to the ion exchange membrane, and from the back plate of the cathode chamber to the gas diffusion electrode. There has been proposed an ion exchange membrane electrolytic cell in which the energization is ensured. Further, since the alkali metal hydroxide aqueous solution and oxygen are present in the cathode chamber, an oxidizing environment is formed on the inner wall surface of the cathode chamber.
  • a passive film is formed on the surface of nickel or a nickel alloy by oxidation.
  • the gas diffusion electrode is energized by contact with the elastic member from the back plate of the cathode chamber by the passive film.
  • a large energization resistance is generated in the circuit. Therefore, in order to prevent a decrease in conductivity due to the passive film, it has been proposed to prevent the energization resistance from increasing by silver plating the back plate and the elastic member of the cathode chamber (see, for example, Patent Document 1). ).
  • the ion-exchange membrane electrolytic cell equipped with a gas diffusion electrode it is possible to prevent a decrease in conductivity by applying silver plating to the surface of a constituent member such as a back plate of a cathode chamber and an elastic member, and to prevent an increase in energization resistance. Although this is an effective means for preventing an increase in electrolytic cell voltage, an increase in electrolytic cell voltage could not be avoided if electrolysis was continued for a long period of time.
  • the present invention in an ion exchange membrane electrolytic cell equipped with a gas diffusion electrode, prevents an increase in electrolytic cell voltage due to an increase in energization resistance in an energization circuit from the gas diffusion electrode in the cathode chamber to the back plate of the cathode chamber. It is an object of the present invention to provide a gas diffusion electrode-mounted ion exchange membrane electrolytic cell that can be operated with a low electrolytic cell voltage, which is a characteristic of the gas diffusion electrode-mounted ion exchange membrane electrolytic cell.
  • the present invention is an ion exchange membrane electrolytic cell having a gas diffusion electrode having a cathode chamber in which an anode, an ion exchange membrane, and a gas diffusion electrode are arranged, and is formed on the opposite side of the back plate of the cathode chamber and the electrolysis surface of the gas diffusion electrode.
  • a gas-permeable elastic member is disposed between the gas diffusion electrode and the back plate, and the elastic member is bonded to the back plate, and the corrosion resistance of a plurality of current-carrying members having a corrosion-resistant conductive layer formed on the surface.
  • a gas diffusion electrode-equipped ion exchange membrane electrolytic cell in which a conductive connection is formed between the gas diffusion electrode and the back plate in contact with a conductive layer.
  • the energizing member is the gas diffusion electrode-mounted ion exchange membrane electrolytic cell having a corrosion-resistant conductive layer containing silver or a platinum group metal on a nickel or nickel alloy foil or plate.
  • the energization member is the gas diffusion electrode-mounted ion exchange membrane electrolytic cell in which a corrosion-resistant conductive layer containing silver or a platinum group metal is integrated by plating, cladding, or baking coating.
  • the energization member is the gas diffusion electrode-attached ion exchange membrane electrolytic cell in which part or all of the energization member is joined to the back plate.
  • the elastic member is a gas diffusion electrode-equipped ion exchange membrane electrolytic cell in which a corrosion-resistant conductive layer is formed on the conductive contact surface or the entire surface.
  • a plurality of current-carrying members having a corrosion-resistant conductive layer formed on the surface thereof are provided on the surface where the elastic member that conducts the gas diffusion electrode and the back plate of the cathode chamber are in contact with each other. Since it is arranged and energized, the characteristics of the contact portion with the elastic member that energizes the gas diffusion electrode are stable, and an ion exchange membrane electrolytic cell equipped with a gas diffusion electrode that has a stable and low electrolytic cell voltage over a long period of time can be provided. it can.
  • FIG. 1 is a cross-sectional view illustrating an embodiment of an ion exchange membrane electrolytic cell equipped with a gas diffusion electrode according to the present invention.
  • FIG. 2 is an exploded perspective view illustrating an embodiment of the ion-exchange membrane electrolytic cell equipped with a gas diffusion electrode according to the present invention.
  • FIG. 3 is a view for explaining an embodiment of the ion-exchange membrane electrolytic cell equipped with a gas diffusion electrode of the present invention, and is a view for explaining a current-carrying member.
  • FIG. 3A shows a case where a current-carrying member having a relatively large area is attached to the back plate.
  • FIG. 3B is a diagram in which a large number of current-carrying member plates having a smaller area than that shown in FIG.
  • FIG. 4 is a view for explaining an example and a comparative example of an ion exchange membrane electrolytic cell equipped with a gas diffusion electrode of the present invention.
  • FIG. 5 is a diagram for explaining an embodiment of an ion exchange membrane electrolytic cell equipped with a gas diffusion electrode of the present invention.
  • Partial peeling of the coating layer made of silver or the like having excellent conductivity formed on the conductive contact surface of the back plate of the cathode chamber of the ion exchange membrane electrolytic cell equipped with the gas diffusion electrode is not applied to the coating layer formed by plating or the like. It has been found that the cause is the occurrence of a site having different electrochemical characteristics due to unevenness in thickness and the like. In other words, since the back plate of the cathode chamber is surrounded on all sides by the frame of the cathode chamber, a phenomenon such as unevenness in the flow of the plating solution in the plating tank cannot be avoided. It is considered that problems such as peeling from the back plate occur when electrolysis is continued because parts having different characteristics are formed.
  • the present invention consists of a flat metal foil or metal plate in which a corrosion-resistant conductive layer such as silver or a platinum group metal is formed on the surface by plating or the like as a problem caused when the conductive layer is directly plated on the back plate.
  • a corrosion-resistant conductive layer such as silver or a platinum group metal
  • the characteristics of the contact portion with the elastic member can be made uniform, thereby preventing phenomena such as peeling of the corrosion-resistant conductive layer that contacts the elastic member. It has been found that.
  • FIG. 1 is a cross-sectional view illustrating an embodiment of an ion exchange membrane electrolytic cell equipped with a gas diffusion electrode according to the present invention.
  • An ion exchange membrane electrolytic cell equipped with a gas diffusion electrode used for electrolysis of a saline solution in which a single anode chamber and a single cathode chamber are laminated via an ion exchange membrane will be described as an example.
  • FIG. 1 is a cross-sectional view of a gas diffusion electrode-mounted ion exchange membrane electrolytic cell cut along a plane perpendicular to the electrode surface.
  • the gas diffusion electrode-equipped ion exchange membrane electrolytic cell 1 is partitioned into an anode chamber 20 and a cathode chamber 30 by an ion exchange membrane 10, and is called a two-chamber method gas diffusion electrode-equipped electrolytic cell.
  • the anode chamber 20 is provided with an anode 211, filled with saline as an anolyte 213, and an anolyte inlet 215 is provided at the bottom of the anode chamber 20.
  • an anolyte and gas outlet 217 whose concentration is reduced by electrolysis is provided in the upper part of the anode chamber, and the anode chamber frame 219 is laminated with the ion exchange membrane 10 via the anode chamber side gasket 221.
  • a cathode chamber 30 is provided on the surface of the ion exchange membrane 10 opposite to the anode chamber 20, and a gas diffusion electrode 313 is provided in the cathode chamber.
  • a liquid holding member 311 is disposed between the cathode chamber interior space 301 including the gas diffusion electrode 313 and the ion exchange membrane 10.
  • the gas diffusion electrode 313 is provided with an elastic member 330 on the opposite side of the side facing the liquid holding member 311, which is provided with a space through which gas passes and is made of a wire rod or the like.
  • the elastic member 330 has a gas diffusion electrode 313 and a liquid holding member 311 in close contact with the ion exchange membrane 10, forms a cathode gas chamber 317 in the cathode chamber, and is bonded to the back plate 327 of the cathode chamber 30.
  • a current-carrying circuit is formed between the gas diffusion electrode 313 and the back plate 327 in contact with the corrosion-resistant conductive layer 341 of the plurality of current-carrying members 340 on which the conductive layer is formed.
  • An alkali metal chloride aqueous solution is supplied to the anode chamber 20 of the ion exchange membrane electrolytic cell 1 equipped with the gas diffusion electrode of the present invention, and the anode 211 is supplied to the cathode gas chamber 317 of the cathode chamber 30 while supplying an oxygen-containing gas from the oxygen inlet 319.
  • the gas diffusion electrode 313 When the gas diffusion electrode 313 is energized, the gas diffusion electrode 313 is supplied with water of the alkali metal hydroxide aqueous solution from the liquid holding member 311 side, and is supplied with oxygen-containing gas from the cathode gas chamber 317 side on the opposite side. Then, the formation reaction of the alkali metal hydroxide aqueous solution proceeds in the gas diffusion electrode 313.
  • the produced aqueous alkali metal hydroxide solution is transferred to the liquid holding member 311 due to the concentration gradient and absorbed and held, and flows down the liquid holding member 311 and the gas chamber side of the gas diffusion electrode 313 to exit the cathode gas chamber 321. Discharged from.
  • the cathode gas chamber 317 there is a mist of high-concentration oxygen, water vapor, and alkali metal hydroxide aqueous solution, and the temperature reaches around 90 ° C. Therefore, nickel, a nickel alloy, or the like is used as a component of the cathode chamber. ing.
  • the elastic member is made of a metal material having excellent corrosion resistance and high conductivity, and nickel and a high nickel alloy are used.
  • a metal having good corrosion resistance such as nickel or nickel alloy used in the cathode gas chamber 317 has a surface in the presence of a high concentration of oxygen. Oxidized to form a passive film to inhibit energization, resulting in an increase in electrolytic cell voltage.
  • the back plate 327 of the cathode chamber 30 has a plurality of plate-like energization members 340 each having a corrosion-resistant conductive layer 341 formed on the surface. Is arranged.
  • the flat current-carrying member 340 is formed with a corrosion-resistant conductive layer 341 having uniform surface characteristics by plating, cladding, or baking coating, so even if the area of the back plate 327 increases, the characteristics do not depend on the location. A uniform surface can be obtained.
  • the contact surface of the elastic member 330 that forms an energization circuit between the gas diffusion electrode 313 and the back plate 327 does not increase in contact resistance even during long-term operation due to the presence of the corrosion-resistant conductive layer 341, It is possible to prevent the cell voltage from rising.
  • the corrosion-resistant conductive layer can be formed of silver or a platinum group metal. Among them, silver having good conductivity is preferable, and can be formed by plating, cladding, baking, or the like.
  • the thickness of the corrosion-resistant conductive layer is preferably 0.5 ⁇ m or more. If the thickness is thinner than 0.5 ⁇ m, sufficient characteristics cannot be obtained. On the other hand, the thicker the thickness, the better the corrosion resistance and the like, but the thickness of about 5 ⁇ m is sufficient.
  • the plate-shaped energizing member has a size of 60 ⁇ 56 mm to 1220 ⁇ 500 mm.
  • the size is smaller than 60 ⁇ 56 mm, the number of installations increases, the number of spot welding points increases, and the uniformity may decrease.
  • it is larger than 1220 ⁇ 500 mm, it is not preferable because unevenness tends to occur when the corrosion-resistant conductive layer is formed by plating or the like.
  • FIG. 2 is a diagram illustrating an embodiment of the ion-exchange membrane electrolytic cell equipped with a gas diffusion electrode according to the present invention, and is an exploded perspective view illustrating an elastic member and a current-carrying member.
  • a plurality of energization members 340 are joined to the back plate 327 of the cathode chamber frame 323. In the example of this figure, twelve energizing members 340 are arranged.
  • An elastic member 330 is disposed so as to face the energizing member 340 and have one surface in contact with the energizing member 340 and the other surface in contact with the opposite side of the electrolysis surface of the gas diffusion electrode.
  • Elastic member 330 in the example shown in Figure 2, the hollow of the coil spring-like consisting member units elastic member 333a that forms a gas passage in the resilient member frame 331, 333b, 333c, 333d, 333e, 333f, 333g, Eight 333h are mounted, and are arranged so as to press the gas diffusion electrode evenly and to allow even current to flow between the gas diffusion electrode and the back plate.
  • the pressure and current distribution applied to the gas diffusion electrode can be made uniform even when the electrolysis area of the gas diffusion electrode is increased.
  • the number of unit elastic bodies 333a to 333h forming the elastic member 330 and the number of energizing members can be appropriately set according to the size of the electrolysis area, energizing current density, and the like.
  • FIG. 3 is a view for explaining an embodiment of the ion-exchange membrane electrolytic cell equipped with a gas diffusion electrode of the present invention, and is a view for explaining a current-carrying member.
  • the energizing member 340 attached to the back plate 327 of the cathode chamber is attached to the back plate by a method such as spot welding at the joint 343, and the energizing member 340 is attached.
  • the corrosion-resistant conductive layer 341 formed in the above is disposed on the gas diffusion electrode side.
  • FIG. 3B shows a structure in which a large number of current-carrying members 340 having a smaller area than those shown in FIG.
  • Example 1 An ion exchange membrane (Asahi Glass Cation Exchange Membrane F-8020) is placed in an electrolytic cell with an effective electrolysis area of 56 mm in height and 60 mm in width in contact with a saline electrolysis anode (JP202R made by Permerek Electrode). On the surface opposite to the anode of the membrane, a carbon fiber cloth (manufactured by Zoltec Co., Ltd.) having a thickness of 0.4 mm that covers the electrolytic surface is laminated as a liquid holding member, and a liquid permeable gas diffusion electrode is further formed on the liquid holding member. (Permelec electrode) was laminated.
  • a nickel wire having a wire diameter of 0.17 mm was coiled with a winding diameter of 6 mm, and one was disposed.
  • a voltage measurement terminal was attached to the gas diffusion electrode, and the operation was carried out for 17 days while maintaining a current density of 3 kA / m 2 , an electrolysis temperature of 87 to 89 ° C., and a sodium hydroxide aqueous solution concentration of 30 to 33 mass%.
  • the potential difference between the gas diffusion electrode and the back plate, that is, the voltage drop was measured, and the result is shown in FIG.
  • the initial voltage was 0.001 V, the voltage did not increase after 17 days, and was stable throughout the operation for 17 days.
  • Example 2 An ion exchange membrane (Asaplex F-4403, cation exchange membrane manufactured by Asahi Kasei Chemicals) is placed in an electrolytic cell with an effective electrolysis area of 620 mm in width and 1220 mm in height in contact with a saline electrolysis anode (JP202R manufactured by Permerek Electrode). On the surface opposite to the anode of the ion exchange membrane, a 0.4 mm thick carbon fiber cloth (manufactured by Zoltech) covering the electrolytic surface is laminated as a liquid holding member, and further, a liquid permeable material is passed over the liquid holding member. A reactive gas diffusion electrode (manufactured by Permelec electrode) was laminated.
  • Example 1 Electrolysis was carried out under the same conditions as in Example 1 using an electrolytic cell produced in the same manner as in Example 1 except that silver plating was not applied as the current-carrying member. The potential difference with the back plate of the cathode chamber was measured. As shown in FIG. 4, the potential difference increased with the progress of operation. Moreover, when the electrolytic cell was disassembled after the operation was stopped, the nickel foil used as the current-carrying member turned black due to the formation of the passive film.
  • Example 2 Electrolysis was carried out in the same manner as in Example 2 except that an electrolytic cell produced by a cathode chamber having a silver plating with a thickness of 10 ⁇ m measured at the center on the back plate of the cathode chamber was used without using a current-carrying member. Then, the change in the electrolytic cell voltage was measured. There was a 200 mV increase in electrolyzer voltage after 300 days of operation. Further, when the electrolytic cell was disassembled after the operation was stopped, the silver plating of almost all the energized portions that contact the elastic member of the silver plating layer of the back plate was peeled off, and the underlying nickel material was exposed and the base The nickel material turned black due to the formation of the passive film.
  • a plurality of current-carrying members having a corrosion-resistant conductive layer formed on the surface thereof are provided on the surface where the elastic member that conducts the gas diffusion electrode and the back plate of the cathode chamber are in contact with each other. Since it is arranged and energized, the characteristics of the contact portion with the elastic member that energizes the gas diffusion electrode are stable, there is no peeling of the corrosion-resistant conductive layer from the surface of the energization member, and the gas diffusion electrode is the Therefore, it is possible to provide an ion exchange membrane electrolytic cell equipped with a gas diffusion electrode that has a small voltage drop between them and can provide stable performance over a long period of time.
  • Cathode chamber side gasket 327 ... Back plate, 330 ... Elastic member, 331 ... Elastic member frame, 333a, 333b, 333c, 333d, 333e, 333f, 333g, 333h ... Unit Elastic body, 340 ... Current-carrying member, 341 ... Corrosion-resistant conductive layer, 343 ... Joint part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 陽極、イオン交換膜、ガス拡散電極を配置した陰極室を有するガス拡散電極装着イオン交換膜電解槽において、前記陰極室の背面板とガス拡散電極の電解面の反対側に形成した陰極ガス室に、前記ガス拡散電極と前記背面板の間に通気性の弾性部材が配置され、前記弾性部材は前記背面板に接合した、表面に耐食性導電層を形成した複数個の通電部材の前記耐食性導電層と接触して前記ガス拡散電極と前記背面板との間の導電接続を形成したことを特徴とするガス拡散電極装着イオン交換膜電解槽。

Description

ガス拡散電極装着イオン交換膜電解槽
 本発明は、食塩水等のアルカリ金属塩化物水溶液の電気分解等に使用されるガス拡散電極装着イオン交換膜電解槽に関するものであり、特に二室法ガス拡散電極装着イオン交換膜電解槽に好適なものである。
 ガス拡散電極を設けたガス拡散電極装着イオン交換膜電解槽は、ガス拡散電極において外部から取り入れた気体と反応させることによって電気分解電圧を減少させる手段として利用されている。
 ガス拡散電極を陰極に使用したアルカリ金属塩化物水溶液のガス拡散電極装着イオン交換膜電解槽では、陽極室には塩化アルカリ水溶液を供給し、陽極において塩素ガスを生成している。一方、陰極室には酸素含有気体を供給し、ガス拡散電極において酸素を還元すると共にアルカリ金属水酸化物水溶液を生成する。
 ガス拡散電極は、イオン交換膜に均一に密着した状態を維持しなければ電解液がガス拡散電極の全面に対して流れるようにすることができず、ガス拡散電極の電解面に対して均一に電流を流すことができなくなる。
 そこで、ガス拡散電極の背面の陰極室との背面板との間に通気性を有する弾性部材を配置し、ガス拡散電極をイオン交換膜に密着させると共に、陰極室の背面板からガス拡散電極への通電を確保したイオン交換膜電解槽が提案されている。
 また、陰極室内には、アルカリ金属水酸化物水溶液と酸素が存在しているので、陰極室の内壁面は、酸化性環境が形成されるので、陰極室内の構成部材には、ニッケル、ニッケル合金等が用いられているが、このような環境下では、ニッケル、ニッケル合金は、表面に酸化によって不動態被膜が形成される。
 ニッケル、ニッケル合金に形成された不動態被膜によって金属の腐食の進行は防止可能であるものの、不動態被膜によって陰極室の背面板から弾性部材との接触によって通電されているガス拡散電極への通電回路には、大きな通電抵抗が生じることとなる。
 そこで、不動態被膜による導電性の低下を防止するために、陰極室の背面板および弾性部材に銀めっきを施して通電抵抗の上昇を防止することが提案されている(例えば、特許文献1参照)。
特開2006-322018号公報
 ガス拡散電極装着イオン交換膜電解槽において、陰極室の背面板、弾性部材等の構成部材の表面に銀めっきを施すことで導電性の低下を防止し、通電抵抗の上昇を防止することは、電解槽電圧の上昇を防止するうえで効果的な手段であるものの、電気分解を長期間継続していると、電解槽電圧の上昇を避けることができなかった。
 本発明は、ガス拡散電極装着イオン交換膜電解槽において、陰極室内でのガス拡散電極から陰極室の背面板への通電回路における通電抵抗の上昇による電解槽電圧の上昇を防止して長期にわたり、ガス拡散電極装着イオン交換膜電解槽の特徴である低い電解槽電圧による運転が可能なガス拡散電極装着イオン交換膜電解槽を提供することを課題とするものである。
 本発明は、陽極、イオン交換膜、ガス拡散電極を配置した陰極室を有するガス拡散電極装着イオン交換膜電解槽において、前記陰極室の背面板とガス拡散電極の電解面の反対側に形成した陰極ガス室に、前記ガス拡散電極と前記背面板の間に通気性の弾性部材が配置され、前記弾性部材は前記背面板に接合した、表面に耐食性導電層を形成した複数個の通電部材の前記耐食性導電層と接触して前記ガス拡散電極と前記背面板との間の導電接続を形成したガス拡散電極装着イオン交換膜電解槽である。
 また、前記通電部材は、ニッケルまたはニッケル合金製の箔または板に、銀または白金族金属を含む耐食性導電層を有する前記のガス拡散電極装着イオン交換膜電解槽である。
 また、前記通電部材は、銀または白金族金属を含む耐食性導電層が、めっき、クラッド,あるいは焼き付け被覆によって一体化されたものである前記ガス拡散電極装着イオン交換膜電解槽である。
 また、前記通電部材は、前記背面板に一部または全部が接合されている前記のガス拡散電極装着イオン交換膜電解槽である。
 前記弾性部材が導電接触面または全面に耐食性導電層を形成したガス拡散電極装着イオン交換膜電解槽である。
 本発明のガス拡散電極装着イオン交換膜電解槽は、ガス拡散電極に通電する弾性部材と陰極室の背面板とが接触する面には、表面に耐食性導電層を形成した複数個の通電部材を配置して通電したので、ガス拡散電極に通電する弾性部材との接触部の特性が安定しており、長期にわたり電解槽電圧が低く安定したガス拡散電極装着イオン交換膜電解槽を提供することができる。
図1は、本発明のガス拡散電極装着イオン交換膜電解槽の実施態様を説明する図であり、断面図である。 図2は、本発明のガス拡散電極装着イオン交換膜電解槽の実施態様を説明する図であり、分解斜視図である。 図3は、本発明のガス拡散電極装着イオン交換膜電解槽の実施態様を説明する図であり、通電部材を説明する図である。図3Aは、比較的面積が大きな通電部材を背面板に装着したものである。図3Bは、図3Aに示したものに比べて面積が小さな通電部材板を背面板に多数装着したものである。 図4は、本発明のガス拡散電極装着イオン交換膜電解槽の実施例、比較例を説明する図である。 図5は、本発明のガス拡散電極装着イオン交換膜電解槽の実施例を説明する図である。
 ガス拡散電極装着イオン交換膜電解槽の陰極室の背面板の導電接触面に形成した導電性に優れた銀等の被覆層の部分的な剥離は、めっき等によって形成された被覆層には膜厚等にむらが生じているために、電気化学的な特性が異なる部位が生じることが原因であることを見出したものである。
 すなわち、陰極室の背面板は、陰極室枠体によって四方を囲まれているためにめっき槽内でめっき液の流れにむらが生じる等の現象が避けられず、その結果、膜厚をはじめとした特性が異なる部位が形成されるために電気分解を続けると背面板からの剥離等の問題が生じるものと考えられる。
 そこで、本発明は、背面板に導電層を直接めっきした際に生じる問題点を、表面に銀、白金族金属等の耐食性導電層をめっき等によって形成した平板状の金属箔、金属板からなる通電部材の複数個を背面板に接合することにより、弾性部材との接触部の特性を均一なものとし、これによって、弾性部材と接触する耐食性導電層の剥離等の現象を防止することが可能であることを見出したものである。
 以下、本発明の実施の形態を図面を参照して説明する。
 図1は、本発明のガス拡散電極装着イオン交換膜電解槽の実施態様を説明する図であり、断面図である。
 単一の陽極室と単一の陰極室をイオン交換膜を介して積層した食塩水の電気分解に使用するガス拡散電極装着イオン交換膜電解槽を例に挙げて説明する。
 図1は、ガス拡散電極装着イオン交換膜電解槽を電極面に垂直な面で切断した断面図である。
 ガス拡散電極装着イオン交換膜電解槽1は、イオン交換膜10により陽極室20と陰極室30に区画されたものであり、二室法ガス拡散電極装着電解槽と称されているものである。
 陽極室20には、陽極211が設けられており、内部には陽極液213として食塩水が充填されており、陽極室20下部には陽極液入口215が設けられている。
 また、陽極室上部には電気分解によって濃度が低下した陽極液及び気体出口217が設けられており、陽極室枠体219は陽極室側ガスケット221を介してイオン交換膜10と積層されている。
 一方、イオン交換膜10の陽極室20とは反対側の面には、陰極室30が設けられており、陰極室内にはガス拡散電極313が設けられている。
 ガス拡散電極313を含む陰極室内部空間301と、イオン交換膜10との間には、液体保持部材311が配置されている。
 また、ガス拡散電極313は、液体保持部材311に面する側の反対面には、線材等で作製した内部に気体が通過する空間を設けた弾性部材330が配置されている。
 弾性部材330は、ガス拡散電極313、液体保持部材311をイオン交換膜10側に密着して、陰極室内に陰極ガス室317を形成し、陰極室30の背面板327に接合した,表面に耐食性導電層を形成した複数個の通電部材340の耐食性導電層341と接触してガス拡散電極313と背面板327との間に通電回路を形成している。
 本発明のガス拡散電極装着イオン交換膜電解槽1の陽極室20にアルカリ金属塩化物水溶液を供給し、陰極室30の陰極ガス室317に、酸素入口319から酸素含有気体を供給しながら陽極211とガス拡散電極313間に通電すると、ガス拡散電極313では液体保持部材311側からアルカリ金属水酸化物水溶液の水分が供給され、また反対面の陰極ガス室317側からは酸素含有気体が供給されてガス拡散電極313内においてアルカリ金属水酸化物水溶液の生成反応が進行する。
 生成したアルカリ金属水酸化物水溶液は濃度勾配によって液体保持部材311へ移行して吸収、保持されるとともに、液体保持部材311内部やガス拡散電極313のガス室側を流下して陰極ガス室出口321から排出される。
 陰極ガス室317には、高濃度酸素、水蒸気、アルカリ金属水酸化物水溶液のミストが存在し、温度は90℃前後に達するので、陰極室の構成部材には、ニッケル、ニッケル合金等が用いられている。また、弾性部材にも耐食性が優れるとともに、導電性が大きな金属材料が用いられており、ニッケル、高ニッケル合金が用いられている。
 従来のガス拡散電極装着イオン交換膜電解槽では、陰極ガス室317に用いられている、ニッケル、またはニッケル合金等の耐食性が良好な金属は、高濃度の酸素の存在のもとでは、表面が酸化されて不動態被膜を形成して通電を阻害することとなり、電解槽電圧の上昇が起こる。
 これに対して、本発明のガス拡散電極装着イオン交換膜電解槽にあっては、陰極室30の背面板327には、表面に耐食性導電層341を形成した複数個の平板状の通電部材340が配置されている。
 平板状の通電部材340は、めっき、クラッド,あるいは焼き付け被覆によって表面の特性が一様な耐食性導電層341が形成されているので、背面板327の面積が大きくなっても、部位に係わらず特性が一様な面が得られる。
 その結果、ガス拡散電極313と背面板327との間の通電回路を形成する弾性部材330の接触面は、耐食性導電層341の存在によって長期間の運転においても接触抵抗の増大が起こらず、電解槽電圧の上昇を防止することが可能となる。
 平板状の通電部材には、厚みが0.1~1.0mmの陰極室の背面板と同一のニッケル材を用いることが好ましい。また、耐食性導電層は、銀、白金族の金属によって形成することができるが、なかでも導電性の良好な銀が好ましく、めっき、クラッド,焼き付け等によって形成することができる。
 耐食性導電層の厚みは、0.5μm以上とすることが好ましく、0.5μmよりも薄い場合には充分な特性を得ることができない。一方、厚みが厚くなるほど耐食性等が優れたものが得られるが、5μm程度の厚みで充分である。
 また、平板状の通電部材は、60×56mm~1220×500mmの大きさのものとすることが好ましい。60×56mmよりも小さな場合には、設置個数が多くなってスポット溶接個所が増加して、均一性が低下する可能性がある。一方、1220×500mmよりも大きくなると、めっき等によって耐食性導電層を形成する際に不均一なものが生じやすくなるので好ましくない。
 図2は、本発明のガス拡散電極装着イオン交換膜電解槽の実施態様を説明する図であり、弾性部材と通電部材を説明する分解斜視図である。
 陰極室枠体323の背面板327には、複数個の通電部材340が接合されている。この図の例では、12個の通電部材340が配置されている。
 通電部材340に対向して通電部材340に一方の面が接触し、他方の面がガス拡散電極の電解面の反対側に接触する弾性部材330が配置されている。
 弾性部材330は、図2で示す例では、弾性部材枠体331に気体の通路を形成する中空のコイルばね状の部材からなる単位弾性部材333a,333b,333c,333d333e,333f,333g,333hの8個が装着されており、ガス拡散電極を均等に押圧し、ガス拡散電極と背面板との間に均等な通電が可能となるように配置されている。
 このように、複数個の単位弾性部材を用いることによって、ガス拡散電極の電解面積が大きくなっても、ガス拡散電極に加わる圧力および電流分布を均等にすることができる。 また、弾性部材330を形成する単位弾性体333a~333h、および通電部材の数は、電解面積,通電電流密度等の大きさに応じて、適宜設定することができる。
 図3は、本発明のガス拡散電極装着イオン交換膜電解槽の実施態様を説明する図であり、通電部材を説明する図である。
 陰極室の背面板327に装着する通電部材340は、図3Aで示すように、比較的面積が大きな通電部材340を、接合部343においてスポット溶接等の方法で背面板に装着し、通電部材340に形成した耐食性導電層341をガス拡散電極側に配置したものである。
 また、図3Bは、図3Aに示したものに比べて、面積が小さな通電部材340を背面板327に多数装着し、それぞれ接合部343によって接合して表面に耐食性導電層341を形成したものである。
 このように、小さな通電部材340を多数装着することによって背面板からガス拡散電極に対して長期間にわたり安定した通電が可能となる。
 以下に、実施例、比較例を示して本発明を説明する。
実施例1
 有効電解面積が高さ56mm、横60mmの電解槽に、食塩水電気分解用陽極(ペルメレック電極製JP202R)に接してイオン交換膜(旭硝子製陽イオン交換膜F-8020)を配置し、イオン交換膜の陽極とは反対面には、液体保持部材として、電解面を覆う厚さ0.4mmの炭素繊維布(ゾルテック社製)を積層し、更に液体保持部材上に、液体透過性ガス拡散電極(ペルメレック電極製)を積層した。
 ガス拡散電極の電解面とは反対面には、線径0.17mmのニッケル線を巻径6mmでコイル状にして1個を配置した。
 陰極室枠体の陰極室の背面板に、縦56mm、横60mm,厚さ0.2mmのニッケル箔(NW2201材)の一方の面に厚さ10μmの銀めっきを施した通電部材1個を、それぞれ6個所をスポット溶接して接合した。
 ガス拡散電極に電圧測定端子を取付けて、電流密度3kA/m2、電解温度を87~89℃、水酸化ナトリウム水溶液濃度30~33質量%に維持して17日間運転を行った。
 ガス拡散電極と背面板との間の電位差、すなわち電圧降下を測定して、その結果を図4に示す。初期電圧0.001Vで、17日後も電圧上昇はなく、17日間の運転を通し安定していた。
実施例2
 有効電解面積が、幅620mm、高さ1220mmの電解槽に、食塩水電気分解用陽極(ペルメレック電極製JP202R)に接してイオン交換膜(旭化成ケミカルズ製陽イオン交換膜 アシプレックスF-4403)を配置し、イオン交換膜の陽極とは反対面には、液体保持部材として、電解面を覆う厚さ0.4mmの炭素繊維布(ゾルテック社製)を積層し、更に液体保持部材上に、液体透過性ガス拡散電極(ペルメレック電極製)を積層した。
 ガス拡散電極の電解面とは反対面には、線径0.17mmのニッケル線を巻径6mmでコイル状にして4個を配置した。
 陰極室枠体の陰極室の背面板に、縦1160mm、横310mm、厚さ0.2mmのニッケル箔(NW2201材)の一方の面に厚さ10μmの銀めっきを施した通電部材2個を、それぞれ144個所をスポット溶接して接合した。
 この電解槽を用いて、電流密度3kA/m2、電解温度75~85℃、水酸化ナトリウム濃度30~34質量%に保持して電気分解を行った。
 電解槽電圧の変化を図5に示すように電圧の上昇は確認されなかった。
 更に、運転を継続して500日間の運転後、電解槽を解体したが銀めっきを施した通電部材に異常は見られなかった。
比較例1
 通電部材として、銀めっきを施さなかった点を除き実施例1と同様にして作製した電解槽を用いて実施例1と同様の条件で電気分解を行い、実施例1と同様にガス拡散電極と陰極室の背面板との間の電位差を測定した。その結果を図4に示すように運転の経過とともに電位差の増大が見られた。
 また、運転停止後、電解槽を解体したところ、通電部材として使用したニッケル箔は不動態被膜の形成によって黒く変色していた。
比較例2
 通電部材を使用せずに、陰極室の背面板に中心で測定した厚み10μmの銀めっきを施した陰極室によって作製した電解槽を用いた点を除き実施例2と同様にして電気分解を行って、電解槽電圧の変化を測定した。
 300日間の運転で、200mVの電解槽電圧の上昇があった。また、運転停止後に電解槽を解体したところ、前記背面板の銀めっき層の弾性部材と接触する通電個所のほぼすべての部分の銀めっきが剥離し、下地のニッケル材が露出すると共に下地であるニッケル材が、不動態被膜の形成によって黒く変色していた。
 本発明のガス拡散電極装着イオン交換膜電解槽は、ガス拡散電極に通電する弾性部材と陰極室の背面板とが接触する面には、表面に耐食性導電層を形成した複数個の通電部材を配置して通電したので、ガス拡散電極に通電する弾性部材との接触部の特性が安定しており、通電部材の表面からの耐食性導電層の剥離がなく、ガス拡散電極とは前記背面板との間の電圧降下が小さく、長期に安定した性能が得られるガス拡散電極装着イオン交換膜電解槽を提供することができる。
 1…ガス拡散電極装着イオン交換膜電解槽、10…イオン交換膜、20…陽極室、30…陰極室、211…陽極、213…陽極液、215…陽極液入口、217…陽極液及び気体出口、219…陽極室枠体、221…陽極室側ガスケット、301…陰極室内部空間、311…液体保持部材、313…ガス拡散電極、317…陰極ガス室、319…酸素入口、321…陰極ガス室出口、323…陰極室枠体、325…陰極室側ガスケット、327…背面板、330…弾性部材、331…弾性部材枠体、333a,333b,333c,333d,333e,333f,333g,333h…単位弾性体、340…通電部材、341…耐食性導電層、343…接合部

Claims (5)

  1.  陽極、イオン交換膜、ガス拡散電極を配置した陰極室を有するガス拡散電極装着イオン交換膜電解槽において、前記陰極室の背面板とガス拡散電極の電解面の反対側に形成した陰極ガス室に、前記ガス拡散電極と前記背面板の間に通気性の弾性部材が配置され、前記弾性部材は前記背面板に接合した、表面に耐食性導電層を形成した複数個の通電部材の前記耐食性導電層と接触して前記ガス拡散電極と前記背面板との間の導電接続を形成したことを特徴とするガス拡散電極装着イオン交換膜電解槽。
  2.  前記通電部材は、ニッケルまたはニッケル合金製の箔または板に、銀または白金族金属を含む耐食性導電層を有することを特徴とする請求項1記載のガス拡散電極装着イオン交換膜電解槽。
  3.  前記通電部材は、銀または白金族金属を含む耐食性導電層が、めっき、クラッド,あるいは焼き付け被覆によって一体化されたものであることを特徴とする請求項1または2記載のガス拡散電極装着イオン交換膜電解槽。
  4.  前記通電部材は、前記背面板に一部または全部が接合されていることを特徴とする請求項1から3のいずれか1項記載のガス拡散電極装着イオン交換膜電解槽。
  5.  前記弾性部材が導電接触面または全面に耐食性導電層を形成したことを特徴とする請求項1から4のいずれか1項に記載のガス拡散電極装着イオン交換膜電解槽。
PCT/JP2010/003470 2009-05-26 2010-05-24 ガス拡散電極装着イオン交換膜電解槽 WO2010137284A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800333300A CN102459708A (zh) 2009-05-26 2010-05-24 安装有气体扩散电极的离子交换膜电解槽
EP10780245.6A EP2436804A4 (en) 2009-05-26 2010-05-24 ELECTROLYSIS CELL EQUIPPED WITH A GAS DIFFUSION ELECTRODE AND AN ION EXCHANGE MEMBRANE
JP2011515878A JP5785492B2 (ja) 2009-05-26 2010-05-24 ガス拡散電極装着イオン交換膜電解槽
US13/322,492 US20120125782A1 (en) 2009-05-26 2010-05-24 Gas diffusion electrode equipped ion exchange membrane electrolyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-126622 2009-05-26
JP2009126622 2009-05-26

Publications (1)

Publication Number Publication Date
WO2010137284A1 true WO2010137284A1 (ja) 2010-12-02

Family

ID=43222412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003470 WO2010137284A1 (ja) 2009-05-26 2010-05-24 ガス拡散電極装着イオン交換膜電解槽

Country Status (5)

Country Link
US (1) US20120125782A1 (ja)
EP (1) EP2436804A4 (ja)
JP (1) JP5785492B2 (ja)
CN (1) CN102459708A (ja)
WO (1) WO2010137284A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505793A (ja) * 2011-01-10 2014-03-06 ティッセンクルップ ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電気分解セルの金属セル要素材料用のコーティング
CN113957466A (zh) * 2021-11-08 2022-01-21 中国石油大学(华东) 光电催化反应用流动式电解池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970250B2 (ja) 2012-06-13 2016-08-17 ティッセンクルップ・ウーデ・クロリンエンジニアズ株式会社 イオン交換膜電解槽用弾性クッション材
US20160254116A1 (en) * 2014-01-29 2016-09-01 Shimadzu Corporation Metal electrode, and electron gun, electron tube, and x-ray tube using metal electrode
EP2957659B1 (de) 2014-06-16 2019-02-20 Siemens Aktiengesellschaft Gasdiffusionsschicht, PEM-Elektrolysezelle mit einer solchen Gasdiffusionsschicht sowie Elektrolyseur
DE102019219027A1 (de) 2019-12-06 2021-06-10 Thyssenkrupp Uhde Chlorine Engineers Gmbh Verwendung eines Textils, zero-gap-Elektrolysezelle und Herstellungsverfahren dafür

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003189A (ja) * 1999-06-18 2001-01-09 Kanegafuchi Chem Ind Co Ltd イオン交換膜型電解槽及び電解方法
JP2006322018A (ja) 2005-05-17 2006-11-30 Chlorine Eng Corp Ltd イオン交換膜型電解槽

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138214A1 (de) * 2001-08-03 2003-02-20 Bayer Ag Elektrolysezelle und Verfahren zur elektrochemischen Herstellung von Chlor
DE10159708A1 (de) * 2001-12-05 2003-06-18 Bayer Ag Alkalichlorid-Elektrolysezelle mit Gasdiffusionselektroden
EP1378589B1 (en) * 2002-04-05 2005-12-07 CHLORINE ENGINEERS CORP., Ltd. Ion exchange membrane electrolyzer
JP3924545B2 (ja) * 2003-03-31 2007-06-06 三井化学株式会社 ガス拡散電極の排電方法
ITMI20060054A1 (it) * 2006-01-16 2007-07-17 Uhdenora Spa Distributore di corrente elastico per celle a percolatore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003189A (ja) * 1999-06-18 2001-01-09 Kanegafuchi Chem Ind Co Ltd イオン交換膜型電解槽及び電解方法
JP2006322018A (ja) 2005-05-17 2006-11-30 Chlorine Eng Corp Ltd イオン交換膜型電解槽

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2436804A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505793A (ja) * 2011-01-10 2014-03-06 ティッセンクルップ ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電気分解セルの金属セル要素材料用のコーティング
CN113957466A (zh) * 2021-11-08 2022-01-21 中国石油大学(华东) 光电催化反应用流动式电解池

Also Published As

Publication number Publication date
EP2436804A4 (en) 2015-05-27
CN102459708A (zh) 2012-05-16
EP2436804A1 (en) 2012-04-04
JP5785492B2 (ja) 2015-09-30
US20120125782A1 (en) 2012-05-24
JPWO2010137284A1 (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5785492B2 (ja) ガス拡散電極装着イオン交換膜電解槽
KR100939448B1 (ko) 가스 확산 전극을 갖는 전해 전지
CN109154090B (zh) 阳极组装件、接触带、电化学电池及其使用和制造方法
AU2009315640B2 (en) Electrochemical reactor
US4923582A (en) Monopolar, bipolar and/or hybrid memberane cell
JP6013448B2 (ja) 電気化学セル、及び電気化学セルの使用
JPWO2003079477A1 (ja) 固体高分子電解質型燃料電池のセルユニット
JPWO2010137283A1 (ja) ガス拡散電極装着イオン交換膜電解槽
JPH06267555A (ja) 電気化学デバイス
US4738763A (en) Monopolar, bipolar and/or hybrid membrane cell
CA2036353C (en) Monopolar ion exchange membrane electrolytic cell assembly
JPH06212469A (ja) ガス拡散電極及び該ガス拡散電極を用いた電気化学反応装置
JP4680901B2 (ja) 電気化学セル
US4749452A (en) Multi-layer electrode membrane-assembly and electrolysis process using same
JP3466535B2 (ja) 電気化学デバイス
JP4925658B2 (ja) 電解槽
JP4124914B2 (ja) 電解槽
JP2007508456A (ja) 複極式電解槽のための構造ユニット
JP3110555B2 (ja) イオン交換膜電解槽
JP3264535B2 (ja) ガス電極構造体及び該ガス電極構造体を使用する電解方法
KR910003644B1 (ko) 필터 프레스 전해조
JPH1171693A (ja) イオン交換膜電解槽における気液分離方法
JPH11269688A (ja) 電解用電極
JP3212318B2 (ja) 単極型イオン交換膜電解槽
JPH06192869A (ja) 電解槽

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033330.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010780245

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011515878

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13322492

Country of ref document: US