WO2010137244A1 - 固体撮像装置及びカメラ - Google Patents

固体撮像装置及びカメラ Download PDF

Info

Publication number
WO2010137244A1
WO2010137244A1 PCT/JP2010/003160 JP2010003160W WO2010137244A1 WO 2010137244 A1 WO2010137244 A1 WO 2010137244A1 JP 2010003160 W JP2010003160 W JP 2010003160W WO 2010137244 A1 WO2010137244 A1 WO 2010137244A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
reference signal
solid
state imaging
imaging device
Prior art date
Application number
PCT/JP2010/003160
Other languages
English (en)
French (fr)
Inventor
藤中洋
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010137244A1 publication Critical patent/WO2010137244A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling

Definitions

  • the present invention relates to a solid-state imaging device having an AD conversion circuit for each column, and more particularly to a solid-state imaging device and a camera having a function of performing AD conversion in a short time.
  • Solid-state imaging devices that convert light into electrical signals are used in various devices such as digital video cameras, digital still cameras, and facsimiles.
  • solid-state imaging devices a CCD (Charge-Coupled Device) image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) image sensor are known.
  • CMOS image sensor In a CMOS image sensor, a method may be employed in which an analog signal obtained by photoelectric conversion of light received by a plurality of pixels arranged in a matrix is AD converted and a digital signal obtained by the conversion is output. is there.
  • a conventional CMOS image sensor there is known a solid-state imaging device that includes an AD conversion circuit for each pixel column and AD-converts signal voltages of pixels for one row in parallel.
  • the solid-state imaging device generates a gradually changing analog value reference voltage, and time information until the magnitude relationship between the reference voltage and the signal voltage changes.
  • a so-called single slope type AD converter circuit that obtains a digital signal value from is often used.
  • FIG. 24 is a block diagram illustrating a configuration of a conventional solid-state imaging device 1001 disclosed in Patent Document 1.
  • FIG. 24 is a block diagram illustrating a configuration of a conventional solid-state imaging device 1001 disclosed in Patent Document 1.
  • the solid-state imaging device 1001 is a pixel in which a plurality of unit pixels 1003 including a light receiving element (an example of a charge generation unit) that outputs a signal corresponding to the amount of incident light is arranged in a matrix (that is, arranged in a two-dimensional matrix). An array 1010 is provided, and a signal voltage is output from each unit pixel 1003.
  • a CDS (Correlated Double Sampling) processing function unit, an analog digital conversion unit (ADC), and the like are provided for each column of the unit pixels 1003.
  • the solid-state imaging device 1001 includes a drive control unit 1007 provided outside the pixel array 1010, a read current source unit 1024 that supplies an operation current (read current) for reading pixel signals to the unit pixels 1003 of the pixel array 1010, A column processing unit 1026 having a column AD circuit 1025 arranged for each column, a reference signal generation unit 1027 for supplying a reference signal voltage Vslop for AD conversion to the column processing unit 1026, and an output unit 1028 are provided. Each of these functional units is provided on the same semiconductor substrate.
  • the column AD circuit 1025 includes an AD conversion unit that independently converts the reset level Srst and the signal level Ssig, which are reference levels of the pixel signal So, into digital data, an AD conversion result of the reset level Srst, and an AD conversion result of the signal level Ssig. By executing the difference processing between the signal level and the signal level Ssig, a difference processing unit that acquires digital data of the signal component indicated by the difference between the reset level Srst and the signal level Ssig is provided.
  • the column AD circuit 1025 includes a voltage comparison unit 1252, a counter unit 1254, a switch 1258, and a data storage unit 1256.
  • the drive control unit 1007 has a control circuit function for sequentially reading out signals from the pixel array 1010. For example, the drive control unit 1007 generates a horizontal scanning circuit (column scanning circuit) 1012 that controls column addresses and column scanning, a vertical scanning circuit (row scanning circuit) 1014 that controls row addresses and row scanning, and an internal clock. And a communication / timing control unit 1020 having functions such as
  • the unit pixel 1003 is connected to a vertical scanning circuit 1014 via a row control line 1015 for row selection and to a column processing unit 1026 via a vertical signal line 1019.
  • the row control line 1015 indicates all the wiring that enters the unit pixel 1003 from the vertical scanning circuit 1014.
  • the horizontal scanning circuit 1012 has a function of a reading scanning unit that reads a count value from the column processing unit 1026 to the horizontal signal line 1018.
  • Each element of the drive control unit 1007 such as the horizontal scanning circuit 1012 and the vertical scanning circuit 1014 is integrally formed with a pixel array 1010 in a semiconductor region such as single crystal silicon using a technique similar to the semiconductor integrated circuit manufacturing technique.
  • the solid-state imaging device is an example of a semiconductor system. That is, each of these functional units is a so-called one chip (provided on the same semiconductor substrate) integrally formed in a semiconductor region such as single crystal silicon using a technique similar to the semiconductor integrated circuit manufacturing technique.
  • CMOS image sensor which is an example of a semiconductor system, the solid-state imaging device 1001 according to the present embodiment is configured to form a part.
  • the horizontal scanning circuit 1012 and the vertical scanning circuit 1014 include, for example, a decoder, and start a shift operation (scanning) in response to control signals CN1 and CN2 given from the communication / timing control unit 1020. . Therefore, for example, various pulse signals (for example, a pixel reset pulse RST, a transfer pulse TRG, and a DRN control pulse DRN) for driving the unit pixel 1003 are supplied to the row control line 1015.
  • various pulse signals for example, a pixel reset pulse RST, a transfer pulse TRG, and a DRN control pulse DRN
  • a clock CLK1 having the same frequency as the input clock (master clock) CLK0 input through the terminal 1005a, a clock obtained by dividing the clock CLK1, or a low-speed clock obtained by further dividing the clock CLK1 are included in the device.
  • the data is supplied to each unit, for example, the horizontal scanning circuit 1012, the vertical scanning circuit 1014, the column processing unit 1026, and the like.
  • the clocks divided by two and the clocks having a frequency lower than that are collectively referred to as a low-speed clock CLK2.
  • the vertical scanning circuit 1014 selects a row of the pixel array 1010 and supplies a necessary pulse to the row.
  • the vertical scanning circuit 1014 defines a vertical readout row (selects a row of the pixel array 1010), and a unit pixel 1003 on a readout address (readout row) defined by the vertical decoder 1014a.
  • a vertical driving circuit 1014b for driving the unit pixel 1003 by supplying a pulse to the row control line 1015 connected to the pixel.
  • the vertical decoder 1014a selects a row for electronic shutter in addition to a row from which a signal is read.
  • the horizontal scanning circuit 1012 sequentially selects the column AD circuit 1025 of the column processing unit 1026 in synchronization with the low-speed clock CLK2, and guides the signal to a horizontal signal line (horizontal output line) 1018.
  • the horizontal scanning circuit 1012 defines, for example, a horizontal read column (selects each column AD circuit 1025 in the column processing unit 1026), and a read address (read) defined by the horizontal decoder 1012a.
  • the pixel signal output from the unit pixel 1003 is supplied to the column AD circuit 1025 of the column processing unit 1026 via the vertical signal line 1019 for each column.
  • Each column AD circuit 1025 of the column processing unit 1026 receives the analog signal So of the unit pixel 1003 for one column and processes the analog signal So.
  • Each column AD circuit 1025 converts an analog signal into, for example, a 10-bit digital signal using, for example, the low-speed clock CLK2.
  • AD conversion processing in the column processing unit 1026 analog signals held in parallel in units of rows are subjected to AD conversion in parallel for each row using the column AD circuit 1025 provided for each column. Is taken. In this case, a single slope integration type (or ramp signal comparison type) AD conversion technique is used.
  • the analog processing target signal is converted into a digital signal based on the time from the start of conversion until the reference signal voltage Vslop and the processing target signal voltage match.
  • a ramp-like reference signal voltage Vslop is supplied to a comparator (voltage comparator), and counting (counting) with a clock signal is started and input via a vertical signal line 1019.
  • a / D conversion is performed by counting the number of clocks until a pulse signal indicating the comparison result is obtained by comparing the analog pixel signal thus obtained with the reference signal voltage Vslop.
  • the signal level (noise) immediately after pixel reset is applied to the voltage mode pixel signal input via the vertical signal line 1019.
  • a process for obtaining a difference between the true signal level Vsig (according to the amount of received light) and a so-called CDS process is performed.
  • the slope of the reference signal voltage Vslop and the count speed of the count unit are changed during AD conversion.
  • the reference signal voltage Vslop has a propagation delay until it reaches the column AD circuit of each column from the reference signal generator that is a supply source. This propagation delay is due to the parasitic capacitance and parasitic resistance of the signal wiring, and since the distance from the reference signal generation unit differs for each column, the delay amount also varies for each column.
  • the signal for controlling the count speed change also has a delay, the timing at which the count speed changes varies from column to column.
  • a first object of the present invention is to provide a solid-state imaging device and a camera that satisfy the demand for high speed AD conversion.
  • a solid-state imaging device of the present invention is arranged in a matrix, provided with a plurality of pixels for converting light into a signal voltage, and corresponding to a column of the pixels, and the column of the corresponding column
  • a conversion unit, and the column AD conversion unit compares a gradually changing reference signal voltage with a signal voltage converted into a digital signal, and compares the comparison unit after the comparison unit starts comparison.
  • the reference signal changing unit is provided for each column, and the change of the slope of the reference signal voltage is performed for each column. Accordingly, it is possible to avoid degradation of the linearity of AD conversion based on the propagation delay of the reference signal voltage and image quality deterioration due to generation of shading and column fixed pattern noise in the image. As a result, it is possible to achieve both avoidance of image quality deterioration and high speed AD conversion.
  • the solid-state imaging device further changes the slope of the reference signal voltage to K (a positive real number other than 0) times for each of the count results sequentially output from the plurality of column AD conversion units.
  • the correction processing unit may be provided on a semiconductor integrated circuit different from the semiconductor integrated circuit on which the plurality of pixels are mounted.
  • the column AD conversion unit sets a count amount during a period in which the slope of the reference signal voltage is changed to K (a positive real number other than 0) times the count result of the count unit to J (other than 0). You may have a correction
  • the J may be different from the K.
  • the counting unit counts the time until the comparison result changes by counting the input clock, and changes the dividing frequency of the clock at the same time when the slope of the reference signal voltage is changed. May be.
  • the counting unit counts the time until the comparison result changes by counting the input clock, and changes the frequency of the clock at the same time the slope of the reference signal voltage is changed. Good.
  • the counting unit may continue counting after the slope of the reference signal voltage is changed and at the same time the count amount up to the time of change is multiplied by 1 / L (a real number greater than 1).
  • the J may be equal to the K.
  • the reference signal changing unit may be configured by a gain variable circuit that changes the slope of the reference signal voltage.
  • variable gain circuit may be switched to either a capacitive coupling circuit or a capacitive dividing circuit.
  • the gain variable circuit may be a capacitance division circuit in which a capacitance division ratio can be switched.
  • the comparison unit may cancel the offset of the comparison unit by using a capacitive element of the capacitance dividing circuit.
  • the solid-state imaging device further includes a reference signal generation unit that generates a plurality of reference signal voltages having different inclinations, and the reference signal change unit includes a plurality of reference signal voltages generated by the reference signal generation unit.
  • the selected reference signal voltage is supplied to the comparison unit, and the reference signal change unit is different from the reference signal voltage selected so far when the comparison result of the threshold value determination unit changes.
  • a reference signal voltage may be selected.
  • the reference signal changing unit is supplied with a second reference signal voltage of the plurality of reference signal voltages generated by the reference signal generation unit at one end and a clamp connected at the other end to the comparison unit.
  • a capacitor, and a switch unit having one end supplied with a first reference signal voltage of the plurality of reference signal voltages generated by the reference signal generation unit and the other end connected to the other end of the clamp capacitor. You may have.
  • the reference signal changing unit may maintain the continuity of the reference signal voltage at a change point of the slope of the reference signal voltage.
  • the reference signal changing unit may change the slope of the reference signal voltage to 2 to the n (natural number) power.
  • the threshold determination unit may compare the count result of the counting unit with a predetermined threshold.
  • the threshold determination unit may be configured by a storage unit that stores that the nth (natural number) bit of the counter of the counting unit has changed for the first time after the counting unit starts counting.
  • the count unit may be composed of an up / down counter.
  • the count unit may be composed of a plurality of counters and a difference unit for differentiating the count results of the plurality of counters.
  • FIG. 1 is a diagram showing a configuration of a solid-state imaging device according to the first embodiment of the present invention.
  • 2 is a diagram illustrating a configuration example of a unit pixel used in the solid-state imaging device illustrated in FIG. 3A is a diagram illustrating a configuration example of a reference signal changing unit used in the solid-state imaging device illustrated in FIG. 3B is a diagram illustrating an operation of a reference signal changing unit used in the solid-state imaging device illustrated in FIG. 4A is a diagram illustrating a configuration example of a voltage comparison unit of the solid-state imaging device illustrated in FIG. 1.
  • 4B is a diagram illustrating another configuration example of the voltage comparison unit of the solid-state imaging device illustrated in FIG. 1.
  • FIG. 5A is a diagram illustrating a configuration example of a count unit and a threshold determination unit used in the solid-state imaging device illustrated in FIG.
  • FIG. 5B is a diagram illustrating operations of a count unit and a threshold determination unit used in the solid-state imaging device illustrated in FIG.
  • FIG. 6A is a diagram illustrating the linearity of AD conversion when the reference signal voltage is changed in the solid-state imaging device according to the embodiment.
  • FIG. 6B is a diagram showing the linearity of AD conversion when the reference signal voltage is changed in the solid-state imaging device according to the embodiment.
  • FIG. 7 is a timing chart showing the operation of the solid-state imaging device according to the embodiment.
  • FIG. 8 is a diagram illustrating a configuration of a first modification of the solid-state imaging device according to the embodiment.
  • FIG. 9 is a diagram illustrating a configuration of a second modification of the solid-state imaging device according to the embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a solid-state imaging device according to the second embodiment of the present invention.
  • 11A is a diagram illustrating a configuration example of a reference signal changing unit used in the solid-state imaging device illustrated in FIG.
  • FIG. 11B is a diagram illustrating an operation of the reference signal changing unit used in the solid-state imaging device illustrated in FIG. 10.
  • FIG. 12 is a diagram showing a configuration of a solid-state imaging device according to the third embodiment of the present invention.
  • FIG. 13 is a diagram showing a configuration of a solid-state imaging apparatus according to the fourth embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a configuration example of a count unit used in the solid-state imaging device illustrated in FIG.
  • FIG. 15 is a diagram illustrating a configuration example of a counting unit of Modification Example 1 of the solid-state imaging device according to the embodiment.
  • FIG. 16 is a diagram showing a configuration of a solid-state imaging device according to the fifth embodiment of the present invention.
  • FIG. 17A is a diagram illustrating a state where signal voltages of different colors are output to the column AD conversion circuit.
  • FIG. 17B is a diagram illustrating a temporal change in the threshold value of the threshold value determination unit in the column AD conversion circuit.
  • FIG. 17C is a diagram illustrating how signal voltages of different colors are output to the column AD conversion circuit.
  • FIG. 17A is a diagram illustrating a state where signal voltages of different colors are output to the column AD conversion circuit.
  • FIG. 17B is a diagram illustrating a temporal change in the threshold value of the threshold value determination unit in the column AD conversion
  • FIG. 17D is a diagram illustrating a temporal change in the threshold value of the threshold value determination unit in the column AD conversion circuit.
  • FIG. 18A is a diagram illustrating AD conversion gain switching points.
  • FIG. 18B is a diagram illustrating AD conversion gain switching points.
  • FIG. 19 is a diagram showing a configuration of a modified example of the solid-state imaging device according to the fifth embodiment of the present invention.
  • FIG. 20 is a diagram illustrating a configuration of a solid-state imaging device according to a comparative example.
  • FIG. 21 is a timing chart showing the operation of the solid-state imaging device according to the comparative example.
  • FIG. 22 is a timing chart showing the operation of the solid-state imaging device according to the comparative example.
  • FIG. 23 is a diagram showing a schematic configuration of a camera according to the sixth embodiment of the present invention.
  • FIG. 24 is a block diagram showing a configuration of a conventional solid-state imaging device.
  • the slope of the reference signal voltage is set for each column AD conversion circuit using a known threshold value commonly set for the column AD conversion circuit provided corresponding to each column of unit pixels.
  • FIG. 1 is a diagram illustrating a configuration of a solid-state imaging device 1 according to the present embodiment.
  • the solid-state imaging device 1 includes a pixel array 3, a vertical scanning circuit (row scanning circuit) 4, a row control line 5, a plurality of vertical signal lines 6, a read current source 7, an AD conversion unit 8, a horizontal A signal line 9, a horizontal scanning circuit (column scanning circuit) 10, a horizontal control line 11, an output circuit 12, a timing control unit 13, and a correction processing unit 21 are provided.
  • Each functional block shown in FIG. 1 is arranged on only one side as viewed from the pixel array 3, but may be arranged on both sides of the pixel array 3.
  • the pixel array 3 includes a plurality of unit pixels 2 arranged in a matrix, and the unit pixel 2 photoelectrically converts the received light into a signal voltage.
  • the plurality of vertical signal lines 6 are provided corresponding to the columns of the unit pixels 2 and transmit the signal voltages output from the unit pixels 2 of the corresponding columns.
  • the AD conversion unit 8 includes a reference signal generation unit 14 and a column AD conversion circuit 80 that is provided corresponding to the vertical signal line 6 and converts a signal voltage transmitted through the corresponding vertical signal line 6 into a digital signal.
  • the column AD conversion circuit 80 is an example of a column AD conversion unit of the present invention.
  • the vertical scanning circuit 4 sequentially activates the row control lines 5 to sequentially select the rows of the unit pixels 2 to perform vertical scanning, and the signal voltage of the selected row is a vertical signal provided for each column.
  • the signal is transmitted to the AD converter 8 by the line 6 and the read current source 7.
  • the output circuit 12 outputs the transmitted digital signal value to the outside.
  • a high-speed transmission circuit such as LVDS is preferably used as the output circuit 12, but the output method, circuit, and configuration of the output circuit 12 are not particularly limited as long as the output means can output a digital signal value.
  • the type of serial output / parallel output and the number of output ports are not particularly limited.
  • FIG. 2 is a diagram showing a configuration example of the unit pixel 2 used in the solid-state imaging device 1 shown in FIG.
  • the unit pixel 2 is a so-called four-transistor type unit pixel, and includes a photodiode 30, a transfer transistor 31, a readout transistor 32, a selection transistor 33, and a reset transistor 34.
  • the reset signal line RST_m, the pixel selection signal line SEL_m, and the charge transfer signal line TRG_m are supplied from the vertical scanning circuit 4 to the m-th unit pixel 2 as the m-th row control line 5. Outputs from the plurality of unit pixels 2 arranged in the same column are connected in common by the vertical signal line 6 provided for each column, and the read current source 7 provided for each vertical signal line 6 and the selection transistor 33 are connected to each other.
  • a source follower is constituted by the read transistor 32 in the conductive row.
  • the illustrated configuration of the unit pixel 2 is an example, and the unit pixel 2 may be a so-called three-transistor type unit pixel without the selection transistor 33.
  • Each transistor constituting the unit pixel 2 is an NMOS transistor. Either a PMOS transistor or a PMOS transistor may be used.
  • a plurality of vertical signal lines 6 may exist for one column.
  • the unit pixel 2 is not limited to the configuration shown in FIG. 2 as long as the signal voltage from the photodiode 30 can be output to the vertical signal line 6.
  • the read current source 7 is also preferably a current source, but is not limited to the configuration, and the read current source 7 is used as a resistive load means (resistive element or transistor on-resistance). May be substituted.
  • the reset transistor 34 is turned on by the reset signal line RST_m, whereby the gate voltage of the read transistor 32, that is, the voltage of the so-called floating diffusion portion is reset.
  • the selection transistor 33 is turned on by the pixel selection signal line SEL_m, and the voltage after resetting the floating diffusion portion is the vertical signal line via the readout transistor 32 as the reset level voltage Vrst of the unit pixel 2 in the m-th row. 6 is supplied to the AD conversion unit 8 at the subsequent stage and AD converted.
  • the photodiode 30 accumulates charges obtained by photoelectrically converting light received during the exposure time.
  • the transfer transistor 31 is turned on in the unit pixel 2 in the m-th row by the charge transfer signal line TRG_m, and the charge accumulated in the photodiode 30 is transferred to the floating diffusion portion.
  • the transferred charge is vertically transmitted through the read transistor 32 as a voltage (Vrst + Vsig) obtained by superimposing the mth row signal level voltage Vsig in accordance with the amount of received light on the reset level voltage Vrst of the m-th unit pixel 2.
  • the signal is output to the signal line 6 and supplied to the AD conversion unit 8 at the subsequent stage for AD conversion.
  • the signal level of the unit pixel 2 in the m-th row according to the amount of received light can be obtained by a so-called double sampling operation that extracts a difference between signals generated as a result of two AD conversions.
  • the driving method of the unit pixel 2 described above is an example. AD conversion of the reset level voltage Vrst of the m-th unit pixel 2 and the voltage (Vrst + Vsig) in which the m-th row reset level voltage Vrst is superimposed on the m-th row signal level voltage Vsig according to the amount of received light Any driving method that can be supplied to the unit 8 is not limited to this driving method.
  • the solid-state imaging device 1 in the solid-state imaging device 1 according to the present embodiment shown in FIG. 1, no signal amplification means is provided for the output of the unit pixel 2, but the signal path from the output of the unit pixel 2 to the input of the AD conversion unit 8.
  • signal amplification means such as AGC (Auto-Gain Control), so-called column amplifiers may be provided.
  • sample hold means for sample holding the signal input to the AD conversion unit 8 may be provided. In the case where sample hold means for the signal input to the AD conversion unit 8 is provided, a so-called pipeline in which the conversion operation of the AD conversion unit 8 and the signal reading from the unit pixel 2 to the vertical signal line 6 are operated in parallel.
  • the frame rate of the solid-state imaging device 1 can be improved.
  • the solid-state imaging device 1 may include a column amplifier.
  • the signal level of the signal input to the AD conversion unit 8 can be increased.
  • the input conversion S / N in the AD conversion is improved and the image quality of the solid-state imaging device 1 is improved.
  • the column amplifier a so-called single-ended inverter amplifier that drives a constant-current load with a source-grounded amplifier circuit is preferably used.
  • Amplifying means such as an amplifier circuit may be used.
  • the AD conversion unit 8 is a single slope AD conversion circuit, and includes a reference signal generation unit 14 and a plurality of column AD conversion circuits 80 provided for each column, and is output to the vertical signal line 6 of each column. A plurality of signal voltages are simultaneously converted into digital signals.
  • the column AD conversion circuit 80 includes a voltage comparison unit 15, a reference signal change unit 19, a count unit (counter) 16, a threshold determination unit 20, and a memory unit 18.
  • the threshold value determination unit 20 compares the count value (count result) of the count unit 16 with a predetermined threshold value Dth.
  • the reference signal changing unit 19 changes the slope of the reference signal voltage Vslope 'supplied to the voltage comparing unit 15 with reference to the comparison result of the threshold determining unit 20.
  • the reference signal changing unit 19 maintains the continuity of the reference signal voltage Vslope 'at the change point of the slope of the reference signal voltage Vslope'.
  • the reference signal generator 14 generates a reference signal voltage (ramp waveform signal voltage) Vslope that gradually changes over time.
  • the reference signal voltage Vslope may be a smooth slope waveform or a stepped waveform, and the waveform is not particularly limited as long as the waveform changes with a certain slope.
  • the slope of the reference signal voltage Vslope may be either positive or negative.
  • the reference signal generation unit 14 can be configured by giving a code value to be increased or decreased to a DAC (digital analog converter) and filtering the DAC output, or by performing an integration operation using a capacitive element, but with a certain slope.
  • the configuration is not particularly limited as long as the reference signal generation unit 14 can generate a transition waveform.
  • the voltage comparison unit 15 compares the signal voltage output to the vertical signal line 6 and converted into a digital signal with the reference signal voltage Vslope 'that is input to the voltage comparison unit 15 and gradually changes.
  • the voltage comparison unit 15 is preferably composed of a differential comparator having a well-known offset cancellation function, but may be composed of a so-called chopper comparator or the like, and the signal voltage of the vertical signal line 6 and the reference.
  • the configuration is not particularly limited as long as the voltage comparison unit 15 can compare the signal voltage Vslope '.
  • the count unit 16 has a magnitude relationship between the time from when the voltage comparison unit 15 starts comparison until the comparison result of the voltage comparison unit 15 changes, that is, the signal voltage of the vertical signal line 6 and the reference signal voltage Vslope '.
  • the AD conversion is performed by counting the time until the change (until the output of the voltage comparison unit 15 is inverted). In other words, the count unit 16 performs AD conversion by counting the clock CK that is input after the comparison is started until the magnitude relationship between the signal voltage and the reference signal voltage Vslope 'changes. After the AD conversion is completed, the count unit 16 transmits a digital signal value (count value) to the memory unit 18, and the memory unit 18 stores the transmitted digital signal value.
  • This AD conversion is performed twice for the reset level voltage Vrst and the voltage (Vrst + Vsig) obtained by superimposing the signal level voltage Vsig corresponding to the received light amount on the reset level Vrst, and the signal of the unit pixel 2 based on the difference information. A level is obtained.
  • the correction processing unit 21 counts the period during which the slope of the reference signal voltage is changed to K (a positive real number other than 0) times each of the count values sequentially output from the plurality of column AD conversion circuits 80. Are sequentially executed.
  • a feature of the solid-state imaging device 1 of the present embodiment is that the AD conversion unit 8 changes the slope of the reference signal voltage Vslope ′ and supplies the changed reference signal voltage Vslope ′ to the voltage comparison unit 15. And a threshold value determination unit 20 for comparing and determining the count value of the count unit 16 and the threshold value Dth.
  • 3A and 3B are diagrams respectively illustrating a configuration example and an operation of the reference signal changing unit 19 used in the solid-state imaging device 1 illustrated in FIG. 1. Specifically, the reference signal changing unit 19 and the counting unit 16 are illustrated. 2 is a diagram illustrating a configuration example and an operation of a threshold determination unit 20.
  • the reference signal changing unit 19 includes a gain variable circuit that changes the slope of the reference signal voltage Vslope '.
  • the gain variable circuit is a circuit that can be switched to either a capacitive coupling circuit or a capacitive dividing circuit, and is a capacitive dividing circuit that can switch the division ratio of the capacitance.
  • the reference signal changing unit 19 is output from the first capacitor 41 connected to the supply signal line of the reference signal voltage Vslope input to the reference signal changing unit 19, the second capacitor 42, and the threshold determining unit 20. ON / OFF is controlled by the reference signal change signal 40, and a switch means 43 that switches between conduction and interruption (non-conduction) of the first capacitor 41 and the second capacitor 42 is provided.
  • the reference signal changing unit 19 In the reference signal changing unit 19, the reference signal voltage Vslope ′, which is the output of the reference signal changing unit 19 when the switch unit 43 is turned on, becomes a capacitance division value of the first capacitor 41 and the second capacitor 42. Accordingly, the reference signal changing unit 19 converts the reference signal voltage Vslope ′, which is the output of the reference signal changing unit 19, into a capacitively coupled output of the reference signal voltage Vslope by the first capacitor 41 by switching between the cutoff and conduction of the switch unit 43. Alternatively, it is possible to switch to the capacity division output of the reference signal voltage Vslope by the first capacitor 41 and the second capacitor 42.
  • the capacitance value C1 of the first capacitor 41 and the capacitance value C2 of the second capacitor 42 are equal, and the parasitic capacitance Cp at the connection point between the first capacitor 41 and the second capacitor 42 is the capacitance value.
  • the operation of the reference signal changing unit 19 will be described assuming that it is small enough to be ignored with respect to C1.
  • the slope of the reference signal voltage Vslope generated by the reference signal generator 14 is [2 ⁇ ⁇ ]. Until the threshold value determination unit 20 determines that the count value of the counting unit 16 has reached the threshold value Dth, the switch unit 43 is in a conductive state, and the gain of the capacity division output by the first capacitor 41 and the second capacitor 42 is determined. (1/2 here), the slope of the reference signal voltage Vslope 'supplied to the voltage comparator 15 becomes [ ⁇ ] which is a half of the slope of the reference signal voltage Vslope.
  • the switch unit 43 is cut off, and the reference signal voltage Vslope 'becomes a capacitively coupled output of the reference signal voltage Vslope.
  • the slope of the reference signal voltage Vslope ′ supplied to the unit 15 is [2 ⁇ ⁇ ], similar to the reference signal voltage Vslope.
  • the slope of the reference signal voltage Vslope 'can be changed by the control of the switch unit 43 based on the determination result of the threshold value determination unit 20.
  • the slope of the reference signal voltage Vslope ' is changed to twice the reference signal voltage Vslope here, it may be changed to an arbitrary K times.
  • the inclination of the reference signal voltage Vslope ′ is switched between two types.
  • the reference signal changing unit 19 is provided with more capacity and switching means, and the threshold determining unit 20 is provided with a plurality of thresholds Dth used for determination.
  • the inclination of the reference signal voltage Vslope ′ may be switched between three or more types.
  • the configuration of the reference signal changing unit 19 also includes the reference signal.
  • the slope value of the voltage Vslope ′ and the number of switching slopes of the reference signal voltage Vslope ′ are not particularly limited.
  • the voltage comparison unit 15 includes a comparator having a DC cut capacitance for offset cancellation in the input unit
  • the DC cut capacitance of the voltage comparison unit 15 is used. Can be used for the offset canceling purpose of the voltage comparison unit 15 as well, which is more preferable.
  • 4A and 4B are diagrams respectively showing configuration examples of the voltage comparison unit 15 of the solid-state imaging device 1 shown in FIG.
  • the voltage comparison unit 15 in FIG. 4A is a comparator having a DC cut capacity for offset cancellation at the input unit.
  • the voltage comparison unit 15 includes a differential amplifier circuit 45 having an offset cancel function, a first DC cut capacitor 46 for offset cancellation, and a second DC cut capacitor 47 for offset cancellation.
  • the voltage comparison unit 15 accumulates the offset of the differential amplifier circuit 45 in the first DC cut capacitor 46 and the second DC cut capacitor 47 by the offset cancel control signal Zero, and performs an offset cancel operation.
  • the voltage comparison unit 15 includes a differential amplifier circuit 45, a first DC cut capacitor 46, and a first capacitor 41 for offset cancellation. This voltage comparison unit 15 accumulates the offset of the differential amplifier circuit 45 in the first DC cut capacitor 46 and the first capacitor 41 in accordance with the offset cancel control signal Zero, and performs an offset cancel operation. In this way, the circuit size of the voltage comparison unit 15 can be reduced by using the reference signal changing capacitor for the offset cancellation application of the voltage comparison unit 15.
  • FIG. 5A and FIG. 5B are diagrams respectively illustrating a configuration example and an operation of the count unit 16 and the threshold determination unit 20 of the solid-state imaging device 1 illustrated in FIG.
  • the count unit 16 is composed of an up / down counter.
  • the voltage comparison unit 15 compares the signal voltage output to the vertical signal line 6 with the reference signal voltage Vslope 'output from the reference signal change unit 19 and input to the voltage comparison unit 15 until the magnitude relationship changes. Meanwhile, AD conversion is performed by counting the clock CK supplied to the count unit 16.
  • the clock CK may be a clock input from the outside of the solid-state imaging device 1 or a clock generated by a clock generation circuit such as a PLL or DLL.
  • the count unit 16 down-counts the clock CK with respect to the reset level voltage Vrst and performs AD conversion, and then the voltage (Vrst + Vsig) is obtained by superimposing the signal level voltage Vsig corresponding to the amount of received light on the reset level voltage Vrst.
  • the clock CK is counted up to perform AD conversion.
  • the digital signal value Dsig corresponding to the signal level voltage Vsig which is difference information, can be obtained by the up-count following the down-count.
  • the digital signal value Dsig is transmitted to the memory unit 18 and stored in the memory unit 18.
  • the up-counting and down-counting in the counting unit 16 may be performed in the reverse order to obtain difference information.
  • the counting unit 16 is preferably configured by an up / down counter, but the configuration is not limited to this as long as the counting unit can obtain difference information. That is, the count unit 16 may be configured with a plurality of counters and a difference unit that performs a difference between the count results of the plurality of counters.
  • the count unit 16 is composed of two up counters or down counters, and the clock CK is counted by one counter with respect to the reset level voltage Vrst, and the reset level voltage Vrst has a signal level corresponding to the amount of received light. After the clock CK is counted by the other counter with respect to the voltage (Vrst + Vsig) on which the voltage Vsig is superimposed, the difference between the count values of the two counters is calculated to obtain the same result as the up / down counter. .
  • the threshold value determination unit 20 is configured by a latch circuit 50 that stores that the n (natural number) bit among the m (natural number) bits of the counter of the counting unit 16 has changed after the start of counting. As a result, it is determined that the count value is equal to or greater than the threshold value Dth in the up-count, and that the count value is less than the threshold value Dth in the down-count, with the (n ⁇ 1) th power of 2 being the threshold value Dth. Then, the reference signal change signal 40 is output to the reference signal change unit 19 in order to switch the slope of the reference signal voltage Vslope ′.
  • the threshold determination unit 20 is preferably configured by a storage unit (for example, a latch circuit) that stores the first change of the n (natural number) bit of the counter of the counting unit 16 after the counting unit 16 starts counting.
  • a storage unit for example, a latch circuit
  • the configuration is not limited to this as long as the determination unit can determine the magnitude of the count value of the count unit 16 and the threshold value Dth. That is, the threshold determination unit 20 may be configured by an arithmetic circuit that determines the magnitude relationship between the count value of the count unit 16 and the threshold Dth.
  • FIGS. 6A and 6B are diagrams illustrating the linearity of AD conversion when the slope of the reference signal voltage Vslope 'is changed in the solid-state imaging device 1 according to the present embodiment.
  • the linearity of AD conversion when the slope of the reference signal voltage Vslope 'is changed and a correction method thereof will be described.
  • the slope of the reference signal voltage before the count unit 16 counts the threshold value Dth is [ ⁇ ]
  • the slope of the reference signal voltage after the count unit 16 counts the threshold value Dth is [ ⁇ ⁇ K].
  • FIG. 6B is a diagram illustrating the linearity of AD conversion when the correction processing is performed by the correction processing unit 21.
  • the correction processing unit 21 is configured to be capable of performing addition / subtraction operation on the threshold value Dth and multiplication operation by K times, so that this correction processing can be performed.
  • the minimum resolution that was 1 [LSB] before the calculation becomes the minimum resolution of K [LSB] in the count value after counting the threshold value Dth, and the resolution as AD conversion deteriorates due to the K-fold calculation operation.
  • K-fold correction process is performed in the change in the slope of the K-fold reference signal voltage Vslope ', when it is desired to intentionally provide a slope in the linearity of AD conversion with respect to the count value after counting the threshold value Dth.
  • an arbitrary J positive real number other than 0
  • the relationship between K and J may be different from K, or J may be equal to K.
  • the AD conversion linearity correction required in accordance with the change in the slope of the reference signal voltage Vslope ′ can be achieved by changing the frequency dividing speed of the counter without increasing the frequency of the count CLK. It has been realized. For this reason, it is difficult to set the slope change of the reference signal voltage Vslope 'to a value other than 2 to the nth power.
  • the correction is realized by the calculation of the output digital signal value, so that it is possible to adopt an arbitrary inclination value and facilitate the correction.
  • the correction processing unit 21 is arranged in the previous stage of the output circuit 12 and sequentially applies to the digital signal values after AD conversion output from the memory units 18 of at least two columns or more. Correction processing is performed, and the corrected digital signal values are sequentially output to the output circuit 12. In order to reduce the circuit area most, it is preferable that the single correction processing unit 21 sequentially performs correction processing on the digital signal values after AD conversion of all the columns. However, when the pixel rate as the solid-state imaging device is restricted by the operation speed of the correction processing unit 21 or the output circuit 12 in an application that places importance on the output throughput, the correction processing unit 21 is provided before the output circuit 12. Plurality may be arranged to increase the degree of parallelism.
  • FIG. 7 is a timing chart showing the operation of the solid-state imaging device 1 according to this embodiment.
  • Vslope'_N indicates the reference signal voltage Vslope 'output from the Nth column reference signal changing unit 19
  • Vslope'_M is the reference signal voltage Vslope output by the Mth column reference signal changing unit 19.
  • Vx_N represents a signal voltage from the unit pixel 2 output to the vertical signal line 6 in the Nth column
  • Vx_M represents a signal voltage from the unit pixel 2 output to the vertical signal line 6 in the Mth column.
  • the count value_N indicates the count value counted by the Nth column count unit 16
  • the count value_M indicates the count value counted by the Mth column count unit 16
  • the reference signal change signal_N indicates the Nth column
  • the reference signal change signal 40 output by the threshold determination unit 20 is shown, and the reference signal change signal_M indicates the reference signal change signal 40 output by the threshold determination unit 20 in the Mth column.
  • the unit pixel 2 outputs the signal level immediately after the pixel reset, that is, the reset level voltage Vrst to the vertical signal line 6.
  • the signal potential of the vertical signal line 6 after stabilization is Vrst_N in the Nth column and Vrst_M in the Mth column, which are not necessarily the same.
  • the difference in the reset level is caused by various factors such as so-called KTC noise at the time of resetting and delay of the reference signal.
  • the reference signal changing unit 19 of each column starts outputting the reference signal voltage Vslope ', and at the same time, the counting unit 16 of each column starts counting down from the counter initial value Dinit.
  • the N-th column counting unit 16 finishes the down-count, and the count value Drst_N at that time is the N-th column.
  • the M-th column counting unit 16 finishes the down-counting, and the count value Drst_M at that time becomes the M-th column count.
  • the digital signal value corresponds to the reset level. Due to the difference between the reset levels described above, the count value Drst_N and the count value Drst_M are not necessarily the same.
  • the unit pixel 2 outputs a voltage (Vrst + Vsig) in which the signal level Vsig corresponding to the received light amount is superimposed on the reset level Vrst to the vertical signal line 6.
  • the signal voltage of the stabilized vertical signal line 6 is (Vrst_N + Vsig_N) in the N-th column and (Vrst_M + Vsig_M) in the M-th column. Even so, due to the difference between the reset level voltages Vrst_N and Vrst_M, the signal voltages of the vertical signal lines 6 in the Nth column and the Mth column are not necessarily the same.
  • the reference signal changing unit 19 in each column starts outputting the reference signal voltage Vslope '.
  • the N-th column counting unit 16 starts counting up from the count value Drst_N
  • the M-th column counting unit 16 starts counting up from the count value Drst_M.
  • the N-th column threshold determining unit 20 determines that the count value of the N-th column counting unit 16 is equal to or greater than the threshold Dth, and outputs a reference signal change signal_N.
  • the reference signal changing unit 19 in the Nth column changes the slope of the reference signal voltage Vslope'_N to a double slope.
  • the threshold determination unit 20 in the M column determines that the count value of the counting unit 16 in the M column is equal to or greater than the threshold Dth, and outputs the reference signal change signal _M.
  • the reference signal changing unit 19 in the Mth column changes the slope of the reference signal voltage Vslope'_M to a double slope.
  • the slope of the reference signal voltage Vslope ' is changed with the common threshold value Dth as a boundary.
  • the count value is determined for each column, and the slope of the reference signal voltage Vslope 'can be independently changed for each column with the same received light signal amount, in other words, the same threshold value Dth as a known boundary.
  • the N-th column counting unit 16 finishes the up-count, and the count value Dsig_N at that time is the N-th column.
  • the digital signal value corresponds to the signal level corresponding to the amount of light received by the unit pixel 2.
  • the horizontal scanning circuit 10 sequentially activates the horizontal control lines 11 to sequentially select the columns of the unit pixels 2 and perform horizontal scanning.
  • the digital signal value stored in 18 is transmitted to the horizontal signal line 9.
  • the digital signal value transmitted to the horizontal signal line 9 is input to the correction processing unit 21, subjected to correction processing described later, and then transmitted to the output circuit 12.
  • the output circuit 12 outputs the transmitted digital signal value to the outside.
  • a high-speed transmission circuit such as LVDS is preferably used as the output circuit 12, but the output method, circuit, and configuration of the output circuit 12 are not particularly limited as long as the output means can output a digital signal value.
  • the type of serial output / parallel output and the number of output ports are not particularly limited.
  • the operation control of the vertical scanning circuit 4, the horizontal scanning circuit 10, and the AD conversion unit 8 described above is performed by the timing control unit 13.
  • the count unit 16 performs up-counting after down-counting, whereby the digital signal value Drst corresponding to the reset level is removed, and the counter initial value Dinit of the count unit 16 is set.
  • the digital signal value Dsig corresponding to the signal level corresponding to the amount of received light can be obtained.
  • the AD conversion end time when the slope of the reference signal voltage Vslope ′ is not changed is the times t7n and t7m
  • the AD conversion end time in the solid-state imaging device 1 of the present embodiment is the times t6n and t6m. . Therefore, in the solid-state imaging device 1 according to this embodiment, the AD conversion can be speeded up by changing the reference signal voltage Vslope 'to have a steep slope.
  • the weight of the count value is set with the threshold value Dth as a boundary.
  • the AD conversion gain that is, the linearity of AD conversion is different with the threshold value Dth as a boundary.
  • the threshold value Dth is known and is common to all columns. Therefore, in the solid-state imaging device 1 of the present embodiment, the AD conversion linearity can be easily corrected by calculation.
  • the threshold value Dth is set so that the amount equivalent to 1 [LSB] of the AD conversion after the reduction in resolution is sufficiently small with respect to the magnitude of shot noise estimated as a half power of the amount of received light corresponding to the threshold value Dth. It can be solved by doing.
  • the threshold value Dth is set to the short side of the count time (generally, a low value) in shooting modes and shooting scenes in which AD conversion speed, that is, high frame rate is important, such as moving image shooting and high-speed shooting. Illuminance value side), and in shooting modes and shooting scenes where importance is placed on the resolution of AD conversion, that is, image quality, such as low-speed still image shooting, the threshold value Dth is set to the longer count time side (generally, the higher illuminance value side).
  • the count value of the count unit 16 is determined independently for each column with the same received light signal amount, that is, the same threshold value Dth as a known boundary, for each column. It is possible to independently change the slope of the reference signal voltage Vslope ′ within the column.
  • the threshold determination unit 20 determines the count value of the count unit 16 and outputs the reference signal change signal 40, and then the reference signal change signal 40 is sent to the reference signal change unit 19. Is input, and the slope of the reference signal voltage Vslope ′ changes accordingly, but the reference signal change signal 40 is propagated only in the same column, so the delay is very small and the characteristic It doesn't matter. For this reason, in the solid-state imaging device 1 of the present embodiment, it is possible to maintain the simultaneity of the change in the slope of the reference signal voltage Vslope ′ and the change in the weight of the count value of the count unit 16, which is a problem in the conventional solid-state imaging device. Thus, it is possible to satisfy both the degradation of the linearity of AD conversion, the avoidance of image quality deterioration due to the occurrence of shading and column fixed pattern noise in the image, and the speeding up of the AD conversion.
  • the slope change of the reference signal voltage Vslope ′ is executed regardless of the difference in the reset level of each column and the propagation delay of the reference signal voltage Vslope ′, the actual change is different in each column.
  • the slope of the reference signal voltage Vslope ′ changes with the amount of received light signal as a boundary, which is difficult in terms of image homogenization.
  • the gradient of the reference signal voltage Vslope ′ is changed with the same received light signal amount, that is, the same threshold value Dth as a known boundary in all columns. The image can be homogenized regardless of the difference in the reset level and the propagation delay of the reference signal voltage Vslope '.
  • the solid-state imaging device 1 changes the slope of the reference signal voltage Vslope ′ independently for each column with the threshold value Dth set to be common to all columns, thereby allowing linearity and image quality of AD conversion.
  • the speed of AD conversion processing can be realized while maintaining the above. That is, according to the solid-state imaging device 1 according to the present embodiment, in the solid-state imaging device using the single slope type AD converter circuit, the slope of the reference signal voltage Vslope ′ is changed during the counting, so that a large signal level can be counted. The time required can be shortened and the AD conversion process can be speeded up.
  • the solid-state imaging device 1 determines a count value for each column with respect to a known threshold value Dth set in common for all columns, and independently changes the slope of the reference signal voltage Vslope ′ for each column. By doing so, it is possible to maintain matching between the weight of the count value and the slope of the reference signal voltage Vslope ′ for each column. For this reason, it is possible to avoid the degradation of the linearity of AD conversion and the deterioration of image quality due to the occurrence of shading and column fixed pattern noise, which are problems in the conventional solid-state imaging device, while speeding up the AD conversion processing.
  • the solid-state imaging device 1 when changing the slope of the reference signal voltage Vslope ′, before and after changing the slope of the reference signal voltage Vslope ′, increases the AD conversion gain (that is, the weight of the count value). )
  • AD conversion gain that is, the weight of the count value.
  • correction processing is required for the count value after AD conversion.
  • Modification 1 of the first embodiment Modification 1 in the present embodiment will be described.
  • the illustration and description are made with the configuration and operation of horizontal scanning using the horizontal signal line 9.
  • the configuration and operation of horizontal scanning is not limited to this, and as shown in FIG. 8 described later, even if horizontal scanning is performed by a shift operation of a plurality of memory units 18 electrically connected to each other. good.
  • FIG. 8 is a diagram showing a configuration of the solid-state imaging device 1 according to this modification.
  • the horizontal signal line 9 and the horizontal control line 11 in the solid-state imaging device 1 in FIG. 1 do not exist, and instead the horizontal transfer CLK 60 is supplied from the horizontal scanning circuit 10 to the memory unit 18.
  • the memory unit 18 in each column performs a shift operation by horizontal transfer CLK60.
  • the memory unit 18 in each column selects, for example, a signal from the corresponding count unit 16 and a signal from the memory unit 18 in the adjacent column with respect to the memory unit 18 configured by a storage unit such as a flip-flop.
  • the input can be switched according to the above.
  • the memory unit 18 in each column is configured to output a signal from one of the memory units 18 to the correction processing unit 21, and the AD conversion from the memory unit 18 is performed by the memory unit 18 in each column sequentially performing a shift operation.
  • the subsequent digital signal values are sequentially transmitted to the correction processing unit 21.
  • the correction processing unit 21 is present on the same semiconductor integrated circuit as the semiconductor integrated circuit on which the plurality of unit pixels 2 and the AD conversion unit 8 are mounted. Thus, they may exist on different semiconductor integrated circuits.
  • FIG. 9 is a diagram showing a configuration of the configuration of the solid-state imaging device 1 according to this modification.
  • the correction processing unit 21 exists on a DSP (Digital Signal Processor) 70 that executes image processing and the like.
  • DSP Digital Signal Processor
  • a finer process is applied in the semiconductor integrated circuit constituting the DSP 70 than in the semiconductor integrated circuit on which the unit pixel 2 is mounted.
  • the correction processing unit 21 of the present embodiment can perform correction processing at a higher speed and in a smaller area even if the configuration and function thereof are the same as those of the correction processing unit 21 shown in FIG.
  • the solid-state imaging device differs from the solid-state imaging device according to the first embodiment in that a reference signal generation unit generates a plurality of reference signal voltages.
  • switching of the slope of the reference signal voltage which is the output of the reference signal changing unit, is performed not by switching the gain by the reference signal changing unit but by selection from a plurality of reference signal voltages having different slopes by the reference signal changing unit. But it is different.
  • FIG. 10 is a diagram illustrating a configuration of the solid-state imaging device 101 according to the present embodiment. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted here.
  • the solid-state imaging device 101 has the same configuration as the solid-state imaging device 1 according to the first embodiment except for the reference signal generation unit 114 and the reference signal change unit 119.
  • the AD conversion unit 108 includes a plurality of column AD conversion circuits 180 that are provided corresponding to the vertical signal lines 6 and convert the signal voltage transmitted through the corresponding vertical signal lines 6 into digital signals.
  • the column AD conversion circuit 180 is an example of the column AD conversion unit of the present invention.
  • the plurality of column AD conversion circuits 180 includes a voltage comparison unit 15, a reference signal change unit 119 that changes the slope of the reference signal voltage supplied to the voltage comparison unit 15 with reference to the comparison result of the threshold determination unit 20, and a count unit 16, a threshold determination unit 20, and a memory unit 18.
  • the reference signal generator 114 generates a plurality of reference signal voltages Vslope_1 to Vslope_n having different slopes.
  • the reference signal voltages Vslope_1 to Vslope_n generated by the reference signal generation unit 14 at least two signals are input to the reference signal changing unit 119.
  • the reference signal generation unit 114 generates two signals, a first reference signal voltage Vslope_1 and a second reference signal voltage Vslope_2, and inputs both reference signal voltages to the reference signal change unit 119.
  • the waveform of the reference signal voltage is not particularly limited as long as it changes at a predetermined slope, and any reference signal generator 114 capable of generating a reference signal voltage that changes at a predetermined slope can be used.
  • the configuration is not particularly limited.
  • the reference signal changing unit 119 selects one of a plurality of input reference signal voltages generated by the reference signal generating unit 114 and supplies the selected reference signal voltage to the voltage comparing unit 15, thereby changing the reference signal.
  • the slope of the reference signal voltage Vslope ′ that is the output of the unit 119 is switched.
  • the reference signal changing unit 119 selects a reference signal voltage different from the reference signal voltage selected so far when the comparison result of the threshold value determining unit 20 changes. In switching the slope of the reference signal voltage Vslope ', the continuity of the reference signal voltage Vslope' is maintained at the slope switching point.
  • 11A and 11B are diagrams showing a configuration example and operation of the reference signal changing unit 119, respectively.
  • the reference signal changing unit 119 is supplied with the second reference signal voltage Vslope_2 generated by the reference signal generating unit 114 at one end and the clamp capacitor 86 connected at the other end to the voltage comparing unit 15, and generates a reference signal at one end.
  • the first reference signal voltage Vslope_1 generated by the unit 114 is supplied, the other end is connected to the other end of the clamp capacitor 86, and the reference signal voltage Vslope ', which is the output of the reference signal changing unit 119, is turned on when the first reference signal voltage Vslope' And switch means 85 for setting the reference signal voltage Vslope_1.
  • the reference signal change unit 119 receives the reference signal change signal 40 that is output from the threshold determination unit 20 and controls the switch unit 43.
  • the reference signal changing unit 119 can switch the reference signal voltage Vslope ′, which is the output of the reference signal changing unit 119, to the first reference signal voltage Vslope_1 or the second reference signal Vslope_2 by cutting off / conducting the switch unit 85. .
  • the reference signal changing unit 119 will be described, assuming that the slope of the first reference signal voltage Vslope_1 is ⁇ and the slope of the second reference signal voltage Vslope_2 is ⁇ ⁇ 2.
  • the threshold value determination unit 20 keeps the switch means 85 until it determines that the count value of the count unit 16 has reached the threshold value Dth.
  • the reference signal voltage Vslope ′ supplied to the voltage comparison unit 15 is 1 reference signal voltage Vslope_1, and its slope is ⁇ .
  • the clamp capacitor 86 stores the difference voltage between the first reference signal voltage Vslope_1 and the second reference signal voltage Vslope_2, and outputs the reference signal voltage Vslope 'of the clamp capacitor 86.
  • the terminal on the side (the terminal connected to the voltage comparison unit 15) is clamped to the first reference signal voltage Vslope_1.
  • the threshold determination unit 20 blocks the switch unit 85 when it is determined that the count value of the count unit 16 has reached the threshold.
  • the reference signal voltage Vslope ′ becomes a capacitively coupled output of the second reference signal voltage Vslope_2 by the clamp capacitor 86, and the slope of the reference signal voltage Vslope ′ supplied to the voltage comparison unit 15 is the second reference signal voltage Vslope_2.
  • ⁇ ⁇ 2 which is the slope of
  • the slope of the reference signal voltage Vslope ′ can be changed by the control of the switch means 85, and the continuity of the reference signal voltage Vslope ′ at the change point of the slope of the reference signal voltage Vslope ′ by the action of the clamp capacitor 86. Can keep.
  • the slope of the reference signal voltage Vslope ' is changed to 2 times, but may be changed to an arbitrary K time.
  • the reference signal changing unit 119 has the configuration of FIG. 11A, by selecting a reference signal voltage having a different slope from a plurality of reference signal voltages based on the determination result of the threshold determination unit 20 for each column, If the reference signal changing unit 119 can change the slope of the reference signal voltage Vslope ′ independently for each column and maintain the continuity of the reference signal voltage Vslope ′ at the switching point of the slope, the configuration of the reference signal changing unit 119 is as shown in FIG. It is not limited to 11A. Further, the slope value of the reference signal voltage Vslope 'and the number of switching slopes of the reference signal voltage Vslope' are not limited to those shown in FIG. 11B.
  • the solid-state imaging device 101 according to the present embodiment like the solid-state imaging device 1 according to the first embodiment, has the reference signal voltage Vslope ′ independently for each column with the threshold Dth set to be common to all columns. Since the inclination is changed, it is possible to increase the speed of AD conversion processing, maintain AD conversion linearity, and maintain image quality.
  • the gain means (reference signal changing unit 19) in the column AD conversion circuit 180 determines the value of the slope of the reference signal voltage Vslope '.
  • the value of the slope of the reference signal voltage Vslope ′ can be determined by the slope of the reference signal voltage Vslope output from the reference signal generator 114. .
  • the reference signal generation unit 114 outside the column AD conversion circuit 180 is more constrained as a circuit area. Therefore, there is an advantage that it is easy to increase the accuracy of the slope of the reference signal voltage.
  • the reference signal changing unit 119 changes the slope of the reference signal voltage Vslope ′ to 2 n times, a multiplication operation of K times is performed in the subsequent correction process. Without correction, it is possible to perform correction by an n-bit bit shift operation, and there is an advantage of reducing the circuit area (multiplication circuit).
  • the solid-state imaging device does not have a correction processing unit subsequent to the column AD conversion circuit, and the column AD conversion circuit has the correction processing unit itself as compared with the solid-state imaging device according to the first embodiment. It is different in point.
  • FIG. 12 is a diagram illustrating a configuration of the solid-state imaging device 201 according to the present embodiment. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted here.
  • This solid-state imaging device 201 has the same configuration as the solid-state imaging device 1 according to the first embodiment, except that the correction processing unit 21 is included in the column AD conversion circuit 280.
  • the linearity of AD conversion when the slope of the reference signal voltage Vslope 'is changed and the correction method thereof are the same as those of the solid-state imaging device 1 according to the first embodiment.
  • correction for performing a K-fold arithmetic operation is performed only on the count value after counting the threshold value Dth, which is performed by changing the slope of the reference signal voltage Vslope 'to K times.
  • the correction processing formula is [count value ⁇ threshold value Dth] ⁇ K + threshold value Dth.
  • the AD conversion unit 208 includes a plurality of column AD conversion circuits 280 that are provided corresponding to the vertical signal lines 6 and convert the signal voltage transmitted through the corresponding vertical signal lines 6 into digital signals.
  • the column AD conversion circuit 280 is an example of the column AD conversion unit of the present invention.
  • the plurality of column AD conversion circuits 280 each include a voltage comparison unit 15, a reference signal change unit 19, a count unit 16, a threshold determination unit 20, a correction processing unit 21, and a memory unit 18.
  • the correction processing unit 21 is included in each of the column AD conversion circuits 280. After performing the above correction processing for each column on the count value of the count unit 16 of each column, the AD conversion after correction is performed on the memory unit 18. Transmit value (digital signal value).
  • the memory unit 18 stores the transmitted corrected AD conversion value. 12 illustrates an example in which the correction processing unit 21 is arranged in the previous stage of the memory unit 18, the correction processing unit 21 may be arranged in the subsequent stage of the memory unit 18.
  • the solid-state imaging device 201 according to the present embodiment like the solid-state imaging device 1 according to the first embodiment, independently uses the reference signal voltage Vslope ′ for each column with the threshold value Dth set to be common to all columns. Therefore, the AD conversion processing can be speeded up, the linearity of AD conversion can be maintained, and the image quality can be maintained.
  • the solid-state imaging device 201 can perform correction processing for each column with respect to the count value of the counting unit 16, and can perform correction processing for each column, for example, by finely adjusting the correction processing formula for each column.
  • the accuracy can be improved. For example, there is an advantage that is effective when an error occurs in the slope of the reference signal voltage Vslope 'for each column.
  • the K-fold correction process is performed in the change in the slope of the K-fold reference signal voltage Vslope ′.
  • the linearity of AD conversion with respect to the count value after the threshold value Dth is counted
  • correction of an arbitrary J (a positive real number other than 0) times may be performed instead of correction of K times the count amount.
  • the relationship between K and J may be different from K, or J may be equal to K.
  • the solid-state imaging device is different from the solid-state imaging device according to the first embodiment in that the correction processing unit does not exist in the subsequent stage of the column AD conversion circuit, and the count unit of the column AD conversion circuit performs correction processing. It differs in that it includes the corresponding functions.
  • FIG. 13 is a diagram illustrating a configuration of the solid-state imaging device 301 according to the present embodiment. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted here.
  • the solid-state imaging device 301 has the same configuration as the solid-state imaging device 1 according to the first embodiment except that the correction processing unit does not exist and the count unit 316 includes a function corresponding to the correction processing. Yes.
  • the speed of the clock CK is changed for each column in accordance with the change in the slope of the reference signal voltage Vslope '. Specifically, at the timing when the slope of the reference signal voltage Vslope ′ changes K times, the clock CK counted by the counting unit 316 is set to a frequency K times for each column. Since the slope of the reference signal voltage Vslope 'is K times steep, the time of one count is set to 1 / K, so that the AD conversion gain before and after the slope change of the reference signal voltage Vslope' is made the same. be able to.
  • the AD conversion unit 308 includes a plurality of column AD conversion circuits 380 that are provided corresponding to the vertical signal lines 6 and convert the signal voltages transmitted through the corresponding vertical signal lines 6 into digital signals.
  • the column AD conversion circuit 380 is an example of the column AD conversion unit of the present invention.
  • the plurality of column AD conversion circuits 380 include a voltage comparison unit 15, a reference signal change unit 19, a count unit 316 that counts a time from when the voltage comparison unit 15 starts comparison until the comparison result changes, and a threshold value Each of the determination unit 20 and the memory unit 18 is provided.
  • the count unit 316 counts the time until the comparison result of the voltage comparison unit 15 changes by counting the input clock, and the frequency of the clock input at the same time when the slope of the reference signal voltage Vslope ′ is changed. To change.
  • FIG. 14 is a diagram illustrating a configuration example of the count unit 316.
  • the counting unit 316 receives a plurality of clocks CK_1 and CK_2 having different frequencies, selects one of the clocks CK_1 and CK_2, and outputs the clock CK, and counts the clock CK output by the clock selector 90 Counter 91.
  • the clock selector 90 receives the reference signal change signal 40 output from the threshold determination unit 20, and switches the clock to be selected at the timing when the slope of the reference signal voltage Vslope 'indicated by the threshold determination unit 20 changes K times. Thus, the clock CK is changed to K times the frequency.
  • the configuration for changing the frequency of the clock CK to be counted in the counting unit 316 is preferably a configuration in which a clock is selected for each column (each column AD conversion circuit 380) from clocks having different frequencies as illustrated in FIG. As long as the clock frequency can be changed for each column, the configuration is not limited to the configuration shown in FIG.
  • the solid-state imaging device 301 according to the present embodiment independently uses the reference signal voltage Vslope ′ for each column with the threshold value Dth set to be common to all columns. Therefore, it is possible to increase the speed of AD conversion processing, maintain the linearity of AD conversion, and maintain image quality.
  • the correction processing unit can be deleted.
  • the count unit 316 is preferably configured by an up / down counter, but the configuration is not limited to this as long as it is a counting unit capable of obtaining difference information.
  • the count unit 316 may be composed of a plurality of counters and a difference unit that compares the count results of the plurality of counters.
  • the frequency dividing speed of the counting unit 316 is changed for each column in accordance with the change of the slope of the reference signal voltage Vslope ′. Specifically, at the timing at which the slope of the reference signal voltage Vslope 'changes to n (natural number) multiplied by 2, the (n + 1) -bit clock of the count unit 316 is counted from the n-th divided clock. The first bit of 316 is changed to the clock CK counted.
  • the equivalent count speed of the count unit 316 is increased to the nth power of 2 because the slope of the reference signal voltage Vslope 'has become steep to the nth power of 2 As a result, the AD conversion gain before and after the slope change of the reference signal voltage Vslope ′ can be made the same.
  • the count unit 316 counts the time until the comparison result of the voltage comparison unit 15 changes by counting the input clock, and at the same time the slope of the reference signal voltage Vslope 'is changed, Change the peripheral speed.
  • FIG. 15 is a diagram illustrating a configuration example of the count unit 316.
  • the count unit 316 counts the n-bit counter 95 that counts the clock CK, the clock selector 96 that receives the divided output Div and the clock CK of the n-bit counter 95, and the output clock CK_n of the clock selector 96 (m -N) bit counter 97 (natural number satisfying m> n).
  • the reference signal change signal 40 output from the threshold determination unit 20 is input to the clock selector 96, and at the timing when the slope of the reference signal voltage Vslope ′ indicated by the threshold determination unit 20 changes to the nth power of 2 (m ⁇ n) By switching the clocks counted by the bit counter 97, the equivalent count speed of the counting unit 316 is set to 2 to the nth power.
  • the configuration as illustrated in FIG. 15 is preferable as the configuration for changing the count speed of the counting unit 316, but the configuration is limited to that in FIG. 15 as long as the count speed can be changed for each column. is not.
  • the correction unit can be deleted because the count unit 316 includes a function corresponding to the correction process.
  • the count unit 316 is configured by a bit-shiftable counter, and at the same time the slope of the reference signal voltage Vslope ′ is changed, the count value of the count unit 316 is bit-shifted and changed. Counting is continued after multiplying the count amount up to the time by 1 / L (a real number greater than 1). Specifically, the count is continued after the count value of the count unit 316 is shifted down by n bits at the timing when the slope of the reference signal voltage Vslope ′ changes to a power of 2 times n.
  • the weight of the count before and after the bit shift operation is changed by the bit shift of the count value of the count unit 316, and the slope of the reference signal voltage Vslope 'is increased by the steepness of the slope of the reference signal voltage Vslope' to 2 n times.
  • the AD conversion gain before and after the change of the slope of the reference signal voltage Vslope ′ can be made the same.
  • the configuration described above is suitable for changing the count weight of the count unit 316, but the configuration is not particularly limited as long as the count speed weight can be changed for each column.
  • the correction processing unit can be deleted because the count unit 316 includes a function corresponding to the correction processing.
  • the solid-state imaging device further includes color filters provided on the corresponding pixels corresponding to each of the plurality of pixels with respect to the solid-state imaging device according to the first embodiment. Different color filters are arranged above the threshold value determination unit, and the threshold value determination unit uses a different threshold value Dth when converting the signal voltage output from the pixel in which the color filter of the different color is converted into a digital signal.
  • FIG. 16 is a diagram illustrating a configuration of the solid-state imaging device 701 according to the present embodiment. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted here.
  • This solid-state imaging device 701 has the same configuration as the solid-state imaging device 1 according to the first embodiment except for the configuration of the threshold determination unit 720 and the pixel array 703.
  • a color filter is arranged on the unit pixel 2, and the color of the color filter arranged on the first unit pixel 2 and the color filter arranged on the second unit pixel 2 are arranged. Different from color. That is, the pixel array 703 is provided with a Bayer color filter.
  • the threshold determination unit 720 holds two of the three thresholds Dth1, Dth2, and Dth3, and based on the signal from the timing control unit 13, which pixel has output the signal voltage to be converted to a digital signal It is determined (selected) which of a plurality of different threshold values Dth1, Dth2, and Dth3 is used.
  • the threshold value Dth1 is used when the signal voltage output from the unit pixel (R unit pixel) in which the R (red) color filter is arranged is converted into a digital signal
  • the threshold value Dth2 is G (green).
  • the threshold voltage Dth3 is used when converting the signal voltage output from the unit pixel (G unit pixel) in which the color filter is arranged into a digital signal, and the threshold value Dth3 is the unit pixel (B in B) in which the B (blue) color filter is arranged. This is used when the signal voltage output from the unit pixel) is converted into a digital signal.
  • the threshold values Dth1, Dth2, and Dth3 have a relationship of Dth2> Dth1, Dth2> Dth3.
  • the threshold value determination unit 720 of two column AD conversion circuits 80 adjacent in the horizontal direction uses different threshold values at the same timing in comparison with the threshold value.
  • the signal voltage of the G unit pixel 2 is output to the column AD conversion circuit 80 of the predetermined column, while the signal of the R unit pixel 2 is output to the column AD conversion circuit 80 adjacent to the predetermined column.
  • a voltage is output. Therefore, the threshold value determination units of the two column AD conversion circuits 80 adjacent in the horizontal direction use different threshold values Dth2 and Dth1 at the same timing in comparison with the threshold value.
  • the threshold value determination unit 720 of two column AD conversion circuits 80 adjacent in the horizontal direction uses different threshold values Dth3 and Dth2 at the same timing in comparison with the threshold value.
  • the combination of the threshold values Dth2 and Dth1 and the combination of the threshold values Dth3 and Dth2 are repeated along with the row selection of the unit pixel 2 in the column direction.
  • the time change of the threshold value of the threshold value determination unit 720 in two different column AD conversion circuits 80 is as shown in FIG. 17B.
  • the threshold determination unit 720 of two column AD conversion circuits 80 adjacent in the horizontal direction uses different thresholds Dth2 and Dth1 at the same timing in comparison with the threshold.
  • the threshold value determination unit 720 of two column AD conversion circuits 80 adjacent in the horizontal direction uses different threshold values Dth2 and Dth3 at the same timing in comparison with the threshold value.
  • the combination of the threshold values Dth2 and Dth1 and the combination of the threshold values Dth2 and Dth3 are repeated along with the row selection of the unit pixel 2 in the column direction.
  • the time change of the threshold value of the threshold value determination unit 720 in two different column AD conversion circuits 80 is as shown in FIG. 17D.
  • Such a threshold change of the threshold determination unit 720 is performed by the timing control unit 13 transmitting a signal corresponding to the predetermined row to each of the threshold determination units 720 in response to the selection of the predetermined row.
  • Different column AD conversion circuits 80 receive the same signal at the same timing, but adjacent threshold value determination units 720 have different configurations (threshold values), and all threshold value determination units 720 have the same configuration every other row direction. Therefore, different threshold values are used at the same timing.
  • the solid-state imaging device 701 changes the slope of the reference signal voltage Vslope ′ independently for each column, similarly to the solid-state imaging device 1 according to the first embodiment. Processing speed can be increased, AD conversion linearity can be maintained, and image quality can be maintained.
  • the solid-state imaging device 701 changes the threshold value of the threshold value determination unit 720 for each color so that the AD conversion gain change timing is switched for each color, and the voltage output gain (count value) corresponding to each color.
  • the slope of the reference signal voltage Vslope ′ is switched.
  • the voltage output gain for incident light is different for each color, when the AD conversion gain is switched with the same threshold, the incident light intensity for switching for each color is different as shown in FIG. 18A. As a result, image quality deterioration that causes the AD resolution to be rough for a specific color with respect to the same incident light intensity occurs.
  • the incident light intensity for switching can be made the same for each color as shown in FIG. 18B.
  • the AD resolution is rough by a specific color for the same incident light intensity.
  • the timing control unit 13 holds three threshold values Dth1, Dth2, and Dth3, and which of the three threshold values Dth1, Dth2, and Dth3 depends on which unit pixel 2 outputs a signal voltage to be converted into a digital signal.
  • the determined threshold value may be transmitted to the threshold value determination unit 720, and the threshold value determination unit 720 may use the threshold value transmitted from the timing control unit 13 for comparison.
  • the threshold value determination unit 720 only needs to perform a determination operation according to the transmitted threshold value, and it is not necessary to store the threshold value internally.
  • the wiring for transmitting the three threshold values Dth1, Dth2, and Dth3 from the timing control unit 13 to the threshold determination unit 720 is as shown in FIG.
  • the threshold value determination unit 720 and the timing control unit 13 in each column are connected not by a common single line but by two common lines.
  • One common wiring commonly connects the threshold determination units 720 every other column, and the other common wiring shares a threshold determination unit 720 other than the threshold determination unit 720 that is already commonly connected every other column. Connecting.
  • the threshold value change of the threshold value determination unit 720 is performed when the timing control unit 13 transmits a threshold value corresponding to the predetermined row to each of the threshold value determination units 720 in response to the selection of the predetermined row.
  • the threshold determination unit 720 changes the threshold for each color, but the threshold may be changed for each unit pixel 2 and each row. For example, in a configuration in which a set of unit pixels 2 share a floating diffusion portion, the threshold determination unit 720 changes the threshold according to which signal voltage of the set of unit pixels 2 is converted into a digital signal. May be.
  • the solid-state imaging device 701 according to the present embodiment is combined with the solid-state imaging devices of the first to fourth embodiments, and the threshold determination unit 720 and the pixel array 703 of the solid-state imaging device of the first to fourth embodiments are combined. It may be replaced with that in this embodiment.
  • FIG. 20 is a diagram illustrating a configuration of a solid-state imaging device 401 according to this comparative example.
  • the solid-state imaging device 401 includes a pixel array 3, a vertical scanning circuit 4, a row control line 5, a vertical signal line 6, a read current source 7, an AD conversion unit 408, a horizontal signal line 9, and a horizontal scanning.
  • a circuit 10, a horizontal control line 11, an output circuit 12, and a timing control unit 13 are provided.
  • the pixel array 3 includes a plurality of unit pixels 2 arranged in a matrix, and the unit pixel 2 photoelectrically converts the received light into a signal voltage.
  • the vertical scanning circuit 4 sequentially activates the row control lines 5 to sequentially select the rows of the unit pixels 2 to perform vertical scanning, and the signal voltage of the selected row is a vertical signal provided for each column.
  • the signal is transmitted to the AD converter 408 by the line 6 and the read current source 7.
  • the AD conversion unit 408 is a single slope type AD conversion circuit, and is provided with a reference signal generation unit 414, an AD conversion speed change unit 17, and a signal voltage transmitted through the corresponding vertical signal line 6 provided for each column.
  • a plurality of column AD conversion circuits 480 for converting into digital signals are provided, and the signal voltage output to the vertical signal line 6 in each column is simultaneously converted into a digital signal in each column.
  • the column AD conversion circuit 480 includes a voltage comparison unit 15, a count unit 16 that is an up / down counter, and a memory unit 18.
  • the reference signal generator 414 generates a reference signal voltage Vslope that gradually changes over time.
  • the voltage comparison unit 15 compares the signal voltage output to the vertical signal line 6 with the reference signal voltage Vslope.
  • the count unit 16 performs AD conversion by counting the time until the comparison result of the voltage comparison unit 15 changes. After the AD conversion is completed, the count unit 16 transmits the digital signal value to the memory unit 18, and the memory unit 18 stores the transmitted digital signal value.
  • the horizontal scanning circuit 10 sequentially activates the horizontal control line 11 to sequentially select the columns of the unit pixels 2 to perform horizontal scanning, and transmits the digital signal value stored in the memory unit 18 to the horizontal signal line 9. .
  • the output circuit 12 outputs the digital signal value transmitted to the horizontal signal line 9 to the outside.
  • the timing control unit 13 controls the operation timing of the vertical scanning circuit 4, the horizontal scanning circuit 10, and the AD conversion unit 408.
  • the solid-state imaging device 401 can AD-convert the signal voltage output from the unit pixel 2 in units of rows.
  • the number of AD bits increases exponentially. It is known that there is a problem that the conversion time increases. Therefore, the solid-state imaging device 401 is provided with an AD conversion speed changing unit 17 for changing the count speed of the counting unit 16 to K times, and a reference signal generating unit 414 capable of changing the slope of the reference signal voltage Vslope. It has been.
  • FIG. 21 is a timing chart showing a driving method of the solid-state imaging device 401 according to this comparative example, specifically, a timing chart showing an operation of the solid-state imaging device 401 including a single slope AD conversion circuit.
  • Vslope indicates the reference signal voltage output from the reference signal generator 414
  • Vx_N indicates the signal voltage from the unit pixel 2 output to the vertical signal line 6 in the Nth column
  • the count value_N is The count time counted by the N-th column counting unit 16, that is, the digital signal value after AD conversion is shown.
  • the unit pixel 2 outputs the signal level immediately after the pixel reset, that is, the reset level voltage Vrst to the vertical signal line 6.
  • the reference signal generation unit 414 starts outputting the reference signal voltage Vslope, and at the same time, the count unit 16 of each column starts down-counting from the counter initial value Dinit.
  • the N-th column counting unit 16 finishes the down-count, and the count value Drst at that time is the N-th column count value Drst. It becomes a digital signal value corresponding to the reset level.
  • the unit pixel 2 outputs a voltage (Vrst + Vsig) in which the signal level Vsig corresponding to the received light amount is superimposed on the reset level Vrst to the vertical signal line 6.
  • the reference signal generation unit 414 starts outputting the reference signal voltage Vslope.
  • the counting unit 16 in the Nth column starts up-counting from the count value Drst.
  • the reference signal generator 414 changes the slope of the reference signal voltage Vslope to a double slope under the control of the timing controller 13, and at the same time, the AD conversion speed changer 17 sets the count speed of the counter 16 to 2 Change it to double.
  • this change in the count speed is realized by changing the frequency division speed of the counter without increasing the frequency of the count CLK, and the power consumption is increased by increasing the count CLK frequency.
  • the resolution of the count value that is, the resolution as AD conversion is lowered.
  • the degree of change of the inclination / counting speed of the reference signal voltage Vslope and the timing of the change are determined within a range in which a decrease in resolution of AD conversion is allowed with respect to the magnitude of shot noise of the amount of received light.
  • the N-th column counting unit 16 finishes the up-count, and the count signal value Dsig at that time is N columns. It becomes a digital signal value corresponding to the signal level corresponding to the amount of light received by the unit pixel 2 of the eye.
  • the digital signal value Drst corresponding to the reset level is removed when the counting unit 16 performs up-counting after down-counting, and the counter initial value Dinit of the counting unit 16 is used as a reference.
  • the digital signal value Dsig corresponding to the signal level corresponding to the amount of received light can be obtained. That is, a so-called double sampling operation is performed in the digital domain by the down-counting and up-counting operations of the counting unit 16.
  • the AD conversion time at this time is the conversion time T from time t0 to time t6, and the AD conversion time when the slope of the reference signal voltage Vslope and the count speed of the counting unit 16 are not changed at time t5 is from time t0. Since the conversion time T ′ is up to time t7, AD conversion can be speeded up by changing the slope of the reference signal voltage Vslope and changing the count speed.
  • the reference signal voltage Vslope has a propagation delay until it reaches the voltage comparison unit 15 of each column from the reference signal generation unit 414 that is a supply source.
  • This propagation delay is due to the parasitic capacitance and parasitic resistance of the signal wiring, and since the distance from the reference signal generation unit 414 is different for each column, the delay amount is also different for each column. Therefore, after the reference signal generation unit 414 changes the slope of the reference signal voltage Vslope by the control from the timing control unit 13, the voltage comparison unit 15 of each column does not actually change the slope of the reference signal voltage Vslope. There is a delay, and as a result, the timing at which the slope of the reference signal voltage Vslope changes varies from column to column.
  • the signal (count speed change signal TH in FIG. 20) output from the AD conversion speed change section 17 is also delayed. Have. Therefore, there is a delay even after the count speed change signal TH is output to the count section 16 of each column and the count speed actually changes after the count speed change signal TH is output by the control from the timing control section 13. As a result, the timing at which the count speed changes varies from column to column.
  • the timing at which the slope of the reference signal voltage Vslope changes and the timing at which the count speed of the counting unit 16 changes are illustrated as the same time t5 in the column AD conversion circuit 480.
  • the delay of the reference signal voltage Vslope and the delay of the count speed change signal TH are the same delay amount in all columns, the slope of the reference signal voltage Vslope is present even if there is a delay.
  • the timing at which the count speed of the counting unit 16 changes can be kept synchronized.
  • the reference signal voltage Vslope is an analog signal and the count speed change signal TH is a digital signal
  • drivers for driving each signal are different.
  • a repeater buffer is generally inserted into a digital signal, but cannot generally be inserted into an analog signal.
  • the reference signal voltage Vslope is output to the voltage comparison unit 15 and the count speed change signal TH is output to the count unit 16, the load of each signal is different. In view of these, it is difficult to make the delays the same for all the columns. As a result, even if the timing control unit 13 commands the same time, the inclination change of the reference signal voltage Vslope and the change of the count speed Cannot be executed at the same time for each column AD conversion circuit 480.
  • the column AD conversion circuit 480 farther from each signal source has a larger delay of each signal, so the column AD conversion circuit 480 farther from each signal source has a greater shift in simultaneity.
  • FIG. 22 is a timing chart showing a driving method of the solid-state imaging device 401 according to this comparative example.
  • the operation up to time t5 is the same as the operation in FIG. 21, and a description thereof will be omitted.
  • the reference signal voltage Vslope is not a reference signal voltage at the output point of the reference signal generation unit 414 but a delayed reference signal voltage, that is, a reference signal voltage in the column AD conversion circuit 480 in the Nth column.
  • the count speed change signal TH is described as having a smaller delay amount than the reference signal voltage Vslope, but the reverse case may occur.
  • the count speed change signal TH from the AD conversion speed change unit 17 reaches the column AD conversion circuit 480 of the Nth column, and the count unit 16 changes the count speed to double.
  • the slope of the reference signal voltage Vslope changes to a double slope at the input portion of the Nth column AD conversion circuit 480.
  • the N-th column counting unit 16 finishes the up-counting, and the count value Dsig at that time is a digital signal corresponding to the signal level corresponding to the amount of light received by the unit pixel 2 in the N-th column. Obtained as a value.
  • the N-th column counting unit 16 finishes the up-counting, and the count value Dsig ′ at that time is the N-th column. Is obtained as a digital signal value corresponding to a signal level corresponding to the amount of light received by the unit pixel 2, and a value different from the count value Dsig (true value) is obtained. This is because between the time t5 and the time t5 ′, the count speed of the count unit 16 and the slope of the reference signal voltage Vslope are not matched, and AD conversion is performed with an inaccurate conversion gain. This is a result of breaking linearity as AD conversion.
  • FIG. 23 is a diagram showing a schematic configuration of the camera of the present embodiment.
  • This camera includes a solid-state imaging device 1, a lens 610, a DSP (digital signal processing circuit) 620, an image display device 630, and an image memory 640.
  • a solid-state imaging device 1 of 1st Embodiment was illustrated as a solid-state imaging device with which a camera is provided, any of the solid-state imaging devices 101, 201, 301, 401, and 701 of other embodiment may be sufficient.
  • the solid-state imaging device 1 In this camera, light is incident from the outside through the lens 610, and the incident light is converted into a digital signal by the solid-state imaging device 1 and output.
  • the output digital signal is processed by the DSP 620 and output and recorded as a video signal in the image memory 640, and is output to the image display device 630 and displayed as an image.
  • the DSP 620 performs processing such as noise removal on the output signal of the solid-state imaging device 1 to generate a video signal, and camera system control that controls pixel scanning timing and gain in the solid-state imaging device 1. Part 622. For example, the DSP 620 corrects a characteristic difference between pixels shared in the unit cell of the solid-state imaging device 1.
  • the solid-state imaging device 1 is formed of one chip, and the chip on which the solid-state imaging device 1 is formed and the chip on which the DSP 620 is formed are different chips. Therefore, since the manufacturing process of the imaging unit and the processing unit can be separated by separating the forming process of the solid-state imaging device 1 and the forming process of the DSP 620, the manufacturing process can be reduced and the cost can be reduced. In addition, timing control, gain control, and image processing can be set for each user for a reason, so that the degree of freedom in use can be increased.
  • the present invention is not limited to this embodiment.
  • the present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention.
  • the desired embodiments may be formed by appropriately combining the embodiments.
  • the present invention is useful for a solid-state imaging device and a camera, and particularly useful as a digital still camera, a digital video camera, and the like that require high speed and high image quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 本発明は、AD変換の高速化の要望を満たす固体撮像装置及びカメラを提供することを目的とするものであって、本発明に係る固体撮像装置は、複数の単位画素(2)と、複数の垂直信号線(6)と、垂直信号線(6)に対応して設けられ、対応する垂直信号線(6)により伝達された信号電圧をデジタル信号に変換する複数の列AD変換回路(80)とを備え、列AD変換回路(80)は、漸次変化する参照信号電圧とデジタル信号に変換される信号電圧との大小を比較する電圧比較部(15)と、電圧比較部(15)が比較を開始してから比較結果が変化するまでの時間をカウントするカウント部(16)と、カウント部(16)のカウント結果と所定の閾値とを比較する閾値判定部(20)と、閾値判定部(20)の比較結果を参照して、電圧比較部(15)へ供給する参照信号電圧の傾きを変更する参照信号変更部(19)とを有する。

Description

固体撮像装置及びカメラ
 本発明は、列毎にAD変換回路を備えた固体撮像装置に関し、特に、AD変換を短時間で実施する機能を備えた固体撮像装置及びカメラに関する。
 光を電気信号に変換する固体撮像装置は、デジタルビデオカメラ、デジタルスチルカメラ及びファクシミリ等の種々の機器に使用されている。固体撮像装置として、CCD(Charge Coupled Device)イメージセンサ、及びCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサが知られている。
 CMOSイメージセンサでは、行列状に配置された複数の画素において受光した光を光電変換して得られたアナログ信号をAD変換し、変換して得られたデジタル信号を出力する方式が採られることがある。従来のCMOSイメージセンサとして、AD変換回路を画素の列毎に備え、1行分の画素の信号電圧を並列にAD変換する固体撮像装置が知られている。
 また、AD変換には、様々な方式が存在するが、固体撮像装置には、徐々に変化するアナログ値の基準電圧を発生し、基準電圧と信号電圧との大小関係が変化するまでの時間情報からデジタル信号値を得る、いわゆるシングルスロープ型AD変換回路が、よく用いられる。
 以下、列毎にシングルスロープ型AD変換回路を備える特許文献1に記載された従来の固体撮像装置の構成について、図24を参照して説明する。図24は、特許文献1に示された従来の固体撮像装置1001の構成を示すブロック図である。
 固体撮像装置1001は、入射光量に応じた信号を出力する受光素子(電荷生成部の一例)を含む単位画素1003が行列状に複数個配列された(すなわち2次元マトリクス状に配置された)画素アレイ1010を有し、各単位画素1003からは信号電圧が出力される。固体撮像装置1001では、CDS(Correlated Double Sampling:相関2重サンプリング)処理機能部やアナログデジタル変換部(ADC:Analog Digital Converter)などが単位画素1003の列毎に設けられている。
 固体撮像装置1001は、画素アレイ1010の外側に設けられた駆動制御部1007と、画素アレイ1010の単位画素1003に画素信号読出用の動作電流(読出電流)を供給する読出電流源部1024と、列毎に配されたカラムAD回路1025を有するカラム処理部1026と、カラム処理部1026にAD変換用の参照信号電圧Vslopを供給する参照信号生成部1027と、出力部1028とを備えている。これらの各機能部は、同一の半導体基板上に設けられている。
 カラムAD回路1025は、画素信号Soの基準レベルであるリセットレベルSrstと信号レベルSsigとを独立にデジタルデータに変換するAD変換部と、リセットレベルSrstのAD変換結果と信号レベルSsigのAD変換結果との間で差分処理を実行することで、リセットレベルSrstと信号レベルSsigとの差で示される信号成分のデジタルデータを取得する差分処理部の機能を備えている。例えば、カラムAD回路1025は、電圧比較部1252、カウンタ部1254、スイッチ1258及びデータ記憶部1256を備えている。
 駆動制御部1007は、画素アレイ1010の信号を順次読み出すための制御回路機能を備えている。例えば、駆動制御部1007は、列アドレスや列走査を制御する水平走査回路(列走査回路)1012と、行アドレスや行走査を制御する垂直走査回路(行走査回路)1014と、内部クロックを生成するなどの機能を持つ通信・タイミング制御部1020とを備えている。
 単位画素1003は、行選択のための行制御線1015を介して垂直走査回路1014と、垂直信号線1019を介してカラム処理部1026と接続されている。ここで、行制御線1015は垂直走査回路1014から単位画素1003に入る配線全般を示す。
 水平走査回路1012は、カラム処理部1026からカウント値を水平信号線1018へ読み出す読出走査部の機能を持つ。
 水平走査回路1012や垂直走査回路1014などの駆動制御部1007の各要素は、画素アレイ1010とともに、半導体集積回路製造技術と同様の技術を用いて単結晶シリコンなどの半導体領域に一体的に形成され、半導体システムの一例である固体撮像装置として構成される。つまり、これらの各機能部は、半導体集積回路製造技術と同様の技術を用いて単結晶シリコンなどの半導体領域に一体的に形成されたいわゆる1チップもの(同一の半導体基板上に設けられているもの)として、半導体システムの一例であるCMOSイメージセンサとして、本実施形態の固体撮像装置1001の一部をなすように構成される。
 水平走査回路1012や垂直走査回路1014は、例えばデコーダを含んで構成され、通信・タイミング制御部1020から与えられる制御信号CN1及びCN2に応答してシフト動作(走査)を開始するようになっている。このため、例えば、行制御線1015には、単位画素1003を駆動するための種々のパルス信号(例えば、画素リセットパルスRST、転送パルスTRG、及びDRN制御パルスDRNなど)が供給される。
 通信・タイミング制御部1020では、端子1005aを介して入力される入力クロック(マスタークロック)CLK0と同じ周波数のクロックCLK1や、それを2分周したクロックやより分周した低速のクロックをデバイス内の各部、例えば水平走査回路1012、垂直走査回路1014、及びカラム処理部1026などに供給する。以下、2分周したクロックやそれ以下の周波数のクロック全般を纏めて、低速クロックCLK2とも言う。
 垂直走査回路1014は、画素アレイ1010の行を選択し、その行に必要なパルスを供給するものである。垂直走査回路1014は、例えば、垂直方向の読出行を規定する(画素アレイ1010の行を選択する)垂直デコーダ1014aと、垂直デコーダ1014aにて規定された読出アドレス上(読出行)の単位画素1003に接続された行制御線1015にパルスを供給して該単位画素1003を駆動する垂直駆動回路1014bとを有する。なお、垂直デコーダ1014aは、信号を読み出す行の他に、電子シャッタ用の行なども選択する。
 水平走査回路1012は、低速クロックCLK2に同期してカラム処理部1026のカラムAD回路1025を順番に選択し、その信号を水平信号線(水平出力線)1018に導くものである。水平走査回路1012は、例えば、水平方向の読出列を規定する(カラム処理部1026内の個々のカラムAD回路1025を選択する)水平デコーダ1012aと、水平デコーダ1012aにて規定された読出アドレス(読出列)に従って、カラム処理部1026の各信号を水平信号線1018に導く水平駆動回路1012bとを有する。なお、水平信号線1018は、例えばカラムAD回路1025が取り扱うビット数n(自然数)分、例えば10(=n)ビットならば、そのビット数分に対応して10本配置される。
 上記構成の固体撮像装置1001において、単位画素1003から出力された画素信号は、列毎に、垂直信号線1019を介して、カラム処理部1026のカラムAD回路1025に供給される。カラム処理部1026の各カラムAD回路1025は、1列分の単位画素1003のアナログ信号Soを受けて、そのアナログ信号Soを処理する。各カラムAD回路1025は、アナログ信号を、例えば低速クロックCLK2を用いて、例えば10ビットのデジタル信号に変換する。
 ここで、カラム処理部1026におけるAD変換処理としては、行単位で並列に保持されたアナログ信号を、列毎に設けられたカラムAD回路1025を使用して、行毎に並列にAD変換する方法が採られる。この際には、シングルスロープ積分型(あるいはランプ信号比較型)のAD変換の手法が使用される。
 シングルスロープ積分型のAD変換に当たっては、変換開始から参照信号電圧Vslopと処理対象信号電圧とが一致するまでの時間に基づいて、アナログの処理対象信号がデジタル信号に変換される。このための仕組みとしては、原理的には、コンパレータ(電圧比較器)にランプ状の参照信号電圧Vslopを供給するとともにクロック信号でのカウント(計数)を開始し、垂直信号線1019を介して入力されたアナログの画素信号を参照信号電圧Vslopと比較することによって比較結果を示すパルス信号が得られるまでのクロック数をカウントすることでAD変換を行なうものである。
 AD変換処理の際、カラム処理部1026の回路構成を工夫することで、AD変換とともに、垂直信号線1019を介して入力された電圧モードの画素信号に対して、画素リセット直後の信号レベル(ノイズレベルもしくはリセットレベルと称する)と真の(受光光量に応じた)信号レベルVsigとの差分をとる処理(いわゆるCDS処理と等価な処理)が行なわれる。
特開2008-136043号公報
 ところで、特許文献1に示された従来技術の固体撮像装置では、AD変換の高速化を実現するために、AD変換の途中で参照信号電圧Vslopの傾きとカウント部のカウント速度とが変更される。しかしながら、参照信号電圧Vslopは供給源である参照信号生成部から各列のカラムAD回路へ到達するまでに伝播遅延を有する。この伝播遅延は信号配線の寄生容量及び寄生抵抗によるものであり、参照信号生成部からの距離が列毎に異なるため、その遅延量も列毎に異なる。同様に、カウント速度変更を制御する信号も同じく遅延を有するため、カウント速度が変化するタイミングも列毎に異なる。従って、同時に変更することを意図した参照信号電圧Vslopの傾き変更とカウンタ部のカウント速度変更とが、実際には同時性を保てない。その結果、従来技術の固体撮像装置では、この事実に起因したAD変換のリニアリティの崩れと、画像におけるシェーディングや列固定パターンノイズの発生による画質劣化という新たな課題が生じる。
 前記課題に鑑み、本発明は、AD変換の高速化の要望を満たす固体撮像装置及びカメラを提供することを第1の目的とする。
 また、AD変換のリニアリティの維持、及び画質の維持の要望を満たす固体撮像装置及びカメラを提供することを第2の目的とする。
 上記目的を達成するために、本発明の固体撮像装置は、行列状に配置され、光を信号電圧に変換する複数の画素と、前記画素の列に対応して設けられ、対応する列の前記画素より出力された信号電圧を伝達する複数の垂直信号線と、前記垂直信号線に対応して設けられ、対応する前記垂直信号線により伝達された信号電圧をデジタル信号に変換する複数の列AD変換部とを備え、前記列AD変換部は、漸次変化する参照信号電圧とデジタル信号に変換される前記信号電圧との大小を比較する比較部と、前記比較部が比較を開始してから比較結果が変化するまでの時間をカウントするカウント部と、前記カウント部のカウント結果と所定の閾値とを比較する閾値判定部と、前記閾値判定部の比較結果を参照して、前記比較部へ供給する前記参照信号電圧の傾きを変更する参照信号変更部とを有することを特徴とする。
 これにより、参照信号電圧の傾きをカウント途中で大きくして大きな信号レベルのカウントに要する時間を短縮し、AD変換の高速化を実現することができる。また、参照信号変更部は列毎に設けられ、参照信号電圧の傾きの変更は列毎に行われる。従って、参照信号電圧の伝播遅延に基づくAD変換のリニアリティの崩れと、画像におけるシェーディングや列固定パターンノイズの発生による画質劣化を回避することができる。その結果、画質劣化の回避と、AD変換の高速化とを両立することが可能となる。
 ここで、前記固体撮像装置は、さらに、複数の前記列AD変換部から順次出力されるカウント結果のそれぞれに対して、前記参照信号電圧の傾きがK(0以外の正の実数)倍に変更された期間のカウント量をJ(0以外の正の実数)倍に補正する処理を順次実行する補正処理部を備えてもよい。
 また、前記補正処理部は、前記複数の画素が搭載された半導体集積回路とは異なる半導体集積回路上に設けられてもよい。
 また、前記列AD変換部は、前記カウント部のカウント結果に対して、前記参照信号電圧の傾きがK(0以外の正の実数)倍に変更された期間のカウント量をJ(0以外の正の実数)倍に補正する補正処理部を有してもよい。
 また、前記Jは前記Kと異なってもよい。
 また、前記カウント部は、入力されるクロックをカウントすることにより前記比較結果が変化するまでの時間をカウントし、前記参照信号電圧の傾きが変更されると同時に前記クロックの分周速度を変更してもよい。
 また、前記カウント部は、入力されるクロックをカウントすることにより前記比較結果が変化するまでの時間をカウントし、前記参照信号電圧の傾きが変更されると同時に前記クロックの周波数を変更してもよい。
 また、前記カウント部は、前記参照信号電圧の傾きが変更されると同時に変更時点までのカウント量をL(1より大きい実数)分の1倍した後、カウントを継続してもよい。
 また、前記Jが前記Kと等しくてもよい。
 また、前記参照信号変更部は、前記参照信号電圧の傾きを変化させるゲイン可変回路で構成されてもよい。
 また、前記ゲイン可変回路は、容量結合回路と容量分割回路とのいずれかに切り替えられてもよい。
 また、前記ゲイン可変回路は、容量の分割比が切り替え可能な容量分割回路であってもよい。
 また、前記比較部は、前記容量分割回路の容量素子を用いて該比較部のオフセットをキャンセルしてもよい。
 また、前記固体撮像装置は、さらに、傾きの異なる複数の参照信号電圧を生成する参照信号生成部を備え、前記参照信号変更部は、前記参照信号生成部により生成された複数の参照信号電圧のいずれかを選択し、選択した参照信号電圧を前記比較部へ供給し、前記参照信号変更部は、前記閾値判定部の比較結果が変わったときに、これまで選択していた参照信号電圧と異なる参照信号電圧を選択してもよい。
 また、前記参照信号変更部は、一端に前記参照信号生成部により生成された前記複数の参照信号電圧のうちの第2の参照信号電圧が供給され、他端が前記比較部に接続されたクランプ容量と、一端に前記参照信号生成部により生成された前記複数の参照信号電圧のうちの第1の参照信号電圧が供給され、他端が前記クランプ容量の他端に接続されたスイッチ手段とを有してもよい。
 また、前記参照信号変更部は、前記参照信号電圧の傾きの変化点において前記参照信号電圧の連続性を維持してもよい。
 また、前記参照信号変更部は、前記参照信号電圧の傾きを2のn(自然数)乗に変更してもよい。
 また、前記閾値判定部は、前記カウント部のカウント結果と所定の閾値との大小を比較してもよい。
 また、前記閾値判定部は、前記カウント部のカウント開始後に、前記カウント部のカウンタのn(自然数)ビット目が初めて変化したことを記憶する記憶部で構成されてもよい。
 また、前記カウント部は、アップダウンカウンタで構成されてもよい。
 また、前記カウント部は、複数のカウンタと、前記複数のカウンタのカウント結果を差分する差分部とで構成されてもよい。
 本発明により、AD変換のリニアリティと画質とを維持した上で、AD変換の高速化を実現することが可能である。
図1は本発明の第1の実施形態に係る固体撮像装置の構成を示す図である。 図2は図1に示す固体撮像装置に使用される単位画素の構成例を示す図である。 図3Aは図1に示す固体撮像装置に使用される参照信号変更部の構成例を示す図である。 図3Bは図1に示す固体撮像装置に使用される参照信号変更部の動作を示す図である。 図4Aは図1に示す固体撮像装置の電圧比較部の構成例を示す図である。 図4Bは図1に示す固体撮像装置の電圧比較部の別の構成例を示す図である。 図5Aは図1に示す固体撮像装置に使用されるカウント部及び閾値判定部の構成例を示す図である。 図5Bは図1に示す固体撮像装置に使用されるカウント部及び閾値判定部の動作を示す図である。 図6Aは同実施形態に係る固体撮像装置において、参照信号電圧を変更した際のAD変換のリニアリティを示す図である。 図6Bは同実施形態に係る固体撮像装置において、参照信号電圧を変更した際のAD変換のリニアリティを示す図である。 図7は同実施形態に係る固体撮像装置の動作を示すタイミングチャートである。 図8は同実施形態に係る固体撮像装置の変形例1の構成を示す図である。 図9は同実施形態に係る固体撮像装置の変形例2の構成を示す図である。 図10は、本発明の第2の実施形態に係る固体撮像装置の構成を示す図である。 図11Aは図10に示す固体撮像装置に使用される参照信号変更部の構成例を示す図である。 図11Bは図10に示す固体撮像装置に使用される参照信号変更部の動作を示す図である。 図12は本発明の第3の実施形態に係る固体撮像装置の構成を示す図である。 図13は本発明の第4の実施形態に係る固体撮像装置の構成を示す図である。 図14は図13に示す固体撮像装置に使用されるカウント部の構成例を示す図である。 図15は同実施形態に係る固体撮像装置の変形例1のカウント部の構成例を示す図である。 図16は本発明の第5の実施形態に係る固体撮像装置の構成を示す図である。 図17Aは異なる色の信号電圧が列AD変換回路に出力される様子を示す図である。 図17Bは列AD変換回路における閾値判定部の閾値の時間変化を示す図である。 図17Cは異なる色の信号電圧が列AD変換回路に出力される様子を示す図である。 図17Dは列AD変換回路における閾値判定部の閾値の時間変化を示す図である。 図18AはAD変換ゲインの切り替え点を示す図である。 図18BはAD変換ゲインの切り替え点を示す図である。 図19は本発明の第5の実施形態に係る固体撮像装置の変形例の構成を示す図である。 図20は比較例に係る固体撮像装置の構成を示す図である。 図21は比較例に係る固体撮像装置の動作を示すタイミングチャートである。 図22は比較例に係る固体撮像装置の動作を示すタイミングチャートである。 図23は本発明の第6の実施形態に係るカメラの概略構成を示す図である。 図24は従来技術の固体撮像装置の構成を示すブロック図である。
 (第1の実施形態)
 以下、図面を参照しながら、本発明の第1の実施形態に係る固体撮像装置の構成及び動作について説明する。
 本実施形態に係る固体撮像装置は、単位画素の各列に対応して設けられた列AD変換回路について共通に設定した既知の閾値を用いて、列AD変換回路毎に参照信号電圧の傾きを独立に変更することで、AD変換処理の高速化と画質劣化の回避とを両立する。
 図1は、本実施形態に係る固体撮像装置1の構成を示す図である。
 この固体撮像装置1は、画素アレイ3と、垂直走査回路(行走査回路)4と、行制御線5と、複数の垂直信号線6と、読み出し電流源7と、AD変換部8と、水平信号線9と、水平走査回路(列走査回路)10と、水平制御線11と、出力回路12と、タイミング制御部13と、補正処理部21とを備える。
 なお、図1に示す各機能ブロックは、画素アレイ3から見て、片側のみに配置されているが、画素アレイ3の両側に配置される構成であっても良い。
 画素アレイ3は、行列状に配置された複数の単位画素2を備え、単位画素2は、受光した光を光電変換して信号電圧に変換する。
 複数の垂直信号線6は、単位画素2の列に対応して設けられ、対応する列の単位画素2より出力された信号電圧を伝達する。
 AD変換部8は、参照信号生成部14と、垂直信号線6に対応して設けられ、対応する垂直信号線6により伝達された信号電圧をデジタル信号に変換する列AD変換回路80とを有する。列AD変換回路80は、本発明の列AD変換部の一例である。
 垂直走査回路4は、行制御線5を順次アクティブにすることで、単位画素2の行を順次選択して垂直走査を行い、選択された行の信号電圧は、列毎に設けられた垂直信号線6と読み出し電流源7によりAD変換部8へ伝送される。
 出力回路12は、伝送されたデジタル信号値を外部に出力する。出力回路12として好適にはLVDS等の高速伝送回路が用いられるが、デジタル信号値を出力可能な出力手段であれば出力回路12の出力方式・回路・構成は特に制限されるものではなく、またシリアル出力・パラレル出力の種別や、その出力ポート数なども特に制限されるものではない。
 図2は、図1に示す固体撮像装置1に使用される単位画素2の構成例を示す図である。
 単位画素2は、いわゆる4トランジスタ型の単位画素であり、フォトダイオード30と、転送トランジスタ31と、読み出しトランジスタ32と、選択トランジスタ33と、リセットトランジスタ34とを備える。
 m行目の行制御線5としてリセット信号線RST_mと、画素選択信号線SEL_mと、電荷転送信号線TRG_mとが垂直走査回路4からm行目の単位画素2へ供給される。同列に配された複数の単位画素2からの出力は、列毎に設けられた垂直信号線6にて共通接続され、垂直信号線6毎に設けられた読み出し電流源7と、選択トランジスタ33が導通した行の読み出しトランジスタ32とによってソースフォロアが構成される。
 なお、図示した単位画素2の構成は一例であり、単位画素2は、選択トランジスタ33が無い、いわゆる3トランジスタ型の単位画素であっても良く、単位画素2を構成する各トランジスタは、NMOSトランジスタ及びPMOSトランジスタのいずれであっても良い。また、垂直信号線6が、一つの列に対して複数本存在しても良い。
 また、フォトダイオード30からの信号電圧を垂直信号線6へ出力できる構成であれば、単位画素2は、図2の構成に制限されるものではない。また、読み出し電流源7についても、電流源であることが好適ではあるが、その構成に制限されるものではなく、読み出し電流源7は抵抗性の負荷手段(抵抗素子やトランジスタのオン抵抗)にて代用されても良い。
 m行目の単位画素2においては、まず、リセット信号線RST_mによってリセットトランジスタ34が導通することで、読み出しトランジスタ32のゲート部電圧、いわゆるフローティングディフュージョン部の電圧がリセットされる。
 続いて、画素選択信号線SEL_mによって選択トランジスタ33は導通し、フローティングディフュージョン部のリセット後の電圧は、m行目の単位画素2のリセットレベルの電圧Vrstとして、読み出しトランジスタ32を介して垂直信号線6へ出力され、後段のAD変換部8へ供給されてAD変換される。
 続いて、フォトダイオード30は、露光時間中に受光した光を光電変換して得られる電荷を蓄積する。所定の露光時間終了後に、電荷転送信号線TRG_mによってm行目の単位画素2において、転送トランジスタ31が導通し、フォトダイオード30の蓄積電荷がフローティングディフュージョン部へ転送される。転送された電荷は、m行目の単位画素2のリセットレベルの電圧Vrstに受光光量に応じたm行目の信号レベルの電圧Vsigを重畳した電圧(Vrst+Vsig)として、読み出しトランジスタ32を介して垂直信号線6へ出力され、後段のAD変換部8へ供給されてAD変換される。このように2度のAD変換の結果により生じる信号の差分を抽出する、いわゆる2重サンプリング動作によって、受光光量に応じたm行目の単位画素2の信号レベルを得ることができる。
 なお、以上説明した単位画素2の駆動方法は、一例である。m行目の単位画素2のリセットレベルの電圧Vrstと、m行目のリセットレベルの電圧Vrstに受光光量に応じたm行目の信号レベルの電圧Vsigを重畳した電圧(Vrst+Vsig)とをAD変換部8へ供給できる駆動方法であれば、この駆動方法に制限されるものではない。
 また、図1に示す本実施形態に係る固体撮像装置1においては、単位画素2の出力に対する信号増幅手段が設けられていないが、単位画素2の出力からAD変換部8の入力へ至る信号経路に、AGC(Auto Gain Control)等の信号増幅手段、いわゆるカラムアンプが設けられても良い。また同様に、AD変換部8へ入力される信号をサンプルホールドするためのサンプルホールド手段が設けられても良い。AD変換部8へ入力される信号のサンプルホールド手段が備えられる場合には、AD変換部8の変換動作と、単位画素2から垂直信号線6への信号読み出しとを並列動作させる、いわゆるパイプライン化が可能となり、固体撮像装置1としてフレームレートを向上させることができる。
 また、図1に示す本実施形態に係る固体撮像装置1は、カラムアンプを備えてもよい。この場合には、AD変換部8へ入力される信号の信号レベルを大きくすることが可能となり、その結果、AD変換における入力換算S/Nを良化させ、固体撮像装置1として画質を向上させることができる。カラムアンプとしては、定電流性の負荷をソース接地増幅回路で駆動する、いわゆるシングルエンドのインバータアンプが好適に用いられるが、信号増幅手段であればこの構成に制限されるものではなく、差動増幅回路等の増幅手段が用いられても良い。
 次に、図1及び図2を用いてAD変換部8の構成とAD変換動作について説明する。
 AD変換部8は、シングルスロープ型AD変換回路であって、参照信号生成部14と、列毎に設けられた複数の列AD変換回路80とを備え、各列の垂直信号線6に出力された複数の信号電圧を同時にデジタル信号に変換する。
 列AD変換回路80は、電圧比較部15と、参照信号変更部19と、カウント部(カウンタ)16と、閾値判定部20と、メモリ部18とを備える。
 閾値判定部20は、カウント部16のカウント値(カウント結果)と所定の閾値Dthとの大小を比較判断する。
 参照信号変更部19は、閾値判定部20の比較結果を参照して電圧比較部15へ供給する参照信号電圧Vslope’の傾きを変更する。参照信号変更部19は、参照信号電圧Vslope’の傾きの変化点において参照信号電圧Vslope’の連続性を維持する。
 参照信号生成部14は、時間経過と共に徐々に変化する参照信号電圧(ランプ波形信号電圧)Vslopeを生成する。参照信号電圧Vslopeは、滑らかなスロープ状の波形であっても階段状の波形であっても良く、ある傾きで推移する波形であればその波形は特に制限されるものではない。参照信号電圧Vslopeの傾きも、同様に正負のいずれであっても良い。参照信号生成部14は、DAC(デジタルアナルグコンバータ)に増加もしくは減少するコード値を与えDAC出力をフィルタリングすることでも、容量素子を用いて積分動作を成さしめることでも構成できるが、ある傾きで推移する波形を生成できる参照信号生成部14であればその構成は特に制限されるものではない。
 電圧比較部15は、垂直信号線6に出力されデジタル信号に変換される信号電圧と、電圧比較部15へ入力され漸次変化する参照信号電圧Vslope’との大小を比較する。電圧比較部15は、好適には、よく知られるオフセットキャンセル機能を備えた差動比較器で構成されるが、いわゆるチョッパコンパレータ等で構成されても良く、垂直信号線6の信号電圧と、参照信号電圧Vslope’とを比較できる電圧比較部15であればその構成は特に制限されるものではない。
 カウント部16は、電圧比較部15が比較を開始してから電圧比較部15の比較結果が変化するまでの時間、つまり垂直信号線6の信号電圧と、参照信号電圧Vslope’との大小関係が変化するまで(電圧比較部15の出力が反転するまで)の時間をカウントすることでAD変換を行う。つまり、カウント部16は、比較を開始してから信号電圧と参照信号電圧Vslope’との大小関係が変化するまで入力されるクロックCKをカウントすることによりAD変換を行う。AD変換終了後、カウント部16は、デジタル信号値(カウント値)をメモリ部18に伝送し、メモリ部18は、伝送されたデジタル信号値を記憶する。このAD変換は、リセットレベルの電圧Vrstと、リセットレベルVrstに受光光量に応じた信号レベル電圧Vsigを重畳した電圧(Vrst+Vsig)とに対して2度行われ、その差分情報より単位画素2の信号レベルが得られる。
 補正処理部21は、複数の列AD変換回路80から順次出力されるカウント値のそれぞれに対して、参照信号電圧の傾きがK(0以外の正の実数)倍に変更された期間のカウント量をK倍に補正する処理を順次実行する。
 本実施形態の固体撮像装置1の特徴は、AD変換部8が、参照信号電圧Vslope’の傾きを変化させて変化後の参照信号電圧Vslope’を電圧比較部15へ供給する参照信号変更部19と、カウント部16のカウント値と閾値Dthとを比較判断する閾値判定部20とを備える点にある。
 図3A及び図3Bは、図1に示す固体撮像装置1に使用される参照信号変更部19の構成例と動作をそれぞれ示す図であり、具体的には、参照信号変更部19、カウント部16及び閾値判定部20の構成例と動作をそれぞれ示す図である。
 参照信号変更部19は、参照信号電圧Vslope’の傾きを変化させるゲイン可変回路で構成される。このとき、ゲイン可変回路は、容量結合回路と容量分割回路とのいずれかに切り替えられる回路であり、また容量の分割比が切り替え可能な容量分割回路である。
 参照信号変更部19は、参照信号変更部19へ入力される参照信号電圧Vslopeの供給信号線に接続された第1の容量41と、第2の容量42と、閾値判定部20から出力された参照信号変更信号40によりオン・オフが制御され、第1の容量41及び第2の容量42の導通・遮断(非導通)を切り替えるスイッチ手段43とを備える。
 参照信号変更部19では、スイッチ手段43が導通時に参照信号変更部19の出力である参照信号電圧Vslope’は第1の容量41と第2の容量42との容量分割値となる。従って、参照信号変更部19は、スイッチ手段43の遮断・導通の切り替えによって、参照信号変更部19の出力である参照信号電圧Vslope’を、第1の容量41による参照信号電圧Vslopeの容量結合出力、もしくは第1の容量41と第2の容量42とによる参照信号電圧Vslopeの容量分割出力とに切り替えることができる。
 なお、以下では、第1の容量41の容量値C1と第2の容量42の容量値C2とが等しく、第1の容量41と第2の容量42との接続点における寄生容量Cpが容量値C1に対して無視できる程度に小さいとして、参照信号変更部19の動作を説明する。
 参照信号生成部14が生成する参照信号電圧Vslopeの傾きを[2×α]とする。閾値判定部20がカウント部16のカウント値が閾値Dthに到達したと判断するまでは、スイッチ手段43は導通しており、第1の容量41と第2の容量42とによる容量分割出力のゲイン(ここでは2分の1)によって、電圧比較部15へ供給される参照信号電圧Vslope’の傾きは参照信号電圧Vslopeの傾きの2分の1である[α]となる。
 その後、閾値判定部20がカウント部16のカウント値が閾値Dthに到達したと判断した時点でスイッチ手段43は遮断され、参照信号電圧Vslope’は単なる参照信号電圧Vslopeの容量結合出力となり、電圧比較部15へ供給される参照信号電圧Vslope’の傾きは参照信号電圧Vslopeと同じく[2×α]となる。
 以上のように閾値判定部20の判断結果に基づくスイッチ手段43の制御によって、参照信号電圧Vslope’の傾きを変更することができる。
 なお、ここでは参照信号電圧Vslope’の傾きが参照信号電圧Vslopeの2倍に変更されるとしたが、任意のK倍に変更されてもよい。また同様に、参照信号電圧Vslope’の傾きが2種類で切り替えられるとしたが、参照信号変更部19により多くの容量とスイッチ手段とを設け、閾値判定部20が判断に用いる閾値Dthを複数設けることで、参照信号電圧Vslope’の傾きが3種類以上で切り替えられてもよい。
 また、閾値判定部20による列毎の判定結果に基づいて、列毎に参照信号電圧の傾きを独立に変更可能な参照信号変更部19であれば、参照信号変更部19の構成も、参照信号電圧Vslope’の傾き値も、参照信号電圧Vslope’の傾きの切り替え数も特に制限されるものではない。
 また、後述する図4A及び図4Bのように、電圧比較部15がオフセットキャンセル用のDCカット容量を入力部に有する形式の比較器より構成される場合には、電圧比較部15のDCカット容量を参照信号変更部19の第1の容量41と兼用する、すなわち参照信号変更用の容量を電圧比較部15のオフセットキャンセル用途に用いることが可能であり、より好適である。
 図4A及び図4Bは、図1に示す固体撮像装置1の電圧比較部15の構成例をそれぞれ示す図である。
 図4Aの電圧比較部15は、オフセットキャンセル用のDCカット容量を入力部に有する形式の比較器である。この電圧比較部15は、オフセットキャンセル機能を有する差動増幅回路45と、オフセットキャンセル用の第1のDCカット容量46と、オフセットキャンセル用の第2のDCカット容量47とを備える。電圧比較部15は、オフセットキャンセル制御信号Zeroによって、差動増幅回路45のオフセットを第1のDCカット容量46と第2のDCカット容量47とに蓄積して、オフセットキャンセル動作を行う。
 図4Bの電圧比較部15は、参照信号変更部19の第1の容量41をDCカット容量と兼用した構成の比較器であり、参照信号変更部19を構成する容量分割回路の容量素子を用いて該比較器のオフセットをキャンセルする。この電圧比較部15は、差動増幅回路45と、第1のDCカット容量46と、オフセットキャンセル用の第1の容量41とを備える。この電圧比較部15は、オフセットキャンセル制御信号Zeroによって、差動増幅回路45のオフセットを第1のDCカット容量46と第1の容量41とに蓄積して、オフセットキャンセル動作を行う。このように、参照信号変更用の容量を、電圧比較部15のオフセットキャンセル用途に用いることによって、電圧比較部15の回路規模を抑えることができる。
 図5A及び図5Bは、図1に示す固体撮像装置1のカウント部16及び閾値判定部20の構成例と動作をそれぞれ示す図である。
 カウント部16は、アップダウンカウンタにて構成される。垂直信号線6に出力された信号電圧と参照信号変更部19から出力され電圧比較部15へ入力される参照信号電圧Vslope’とを電圧比較部15が比較し、その大小関係が変化するまでの間、カウント部16が供給されるクロックCKをカウントすることでAD変換が行われる。
 なお、クロックCKは固体撮像装置1の外部から入力されたクロックであっても、PLLやDLLといったクロック生成回路にて生成されたクロックであっても良い。
 カウント部16は、リセットレベルの電圧Vrstに対してクロックCKをダウンカウントしてAD変換を行い、次いでリセットレベルの電圧Vrstに受光光量に応じた信号レベルの電圧Vsigを重畳した電圧(Vrst+Vsig)に対してクロックCKをアップカウントしてAD変換を行う。このダウンカウントに続くアップカウントによって、差分情報である信号レベルの電圧Vsigに相当するデジタル信号値Dsigを得ることができる。AD変換が終了した後、デジタル信号値Dsigはメモリ部18に伝送され、メモリ部18にて記憶される。
 なお、カウント部16におけるアップカウントとダウンカウントは、逆の順番で行われて、差分情報が得られても良い。また、カウント部16は、アップダウンカウンタで構成されることが好適ではあるが、差分情報を得ることができるカウント手段であればその構成はこれに制限されるものではない。すなわち、カウント部16は、複数のカウンタと、この複数のカウンタのカウント結果を差分する差分部とで構成されてもよい。
 例えば、カウント部16は2個のアップカウンタもしくはダウンカウンタから構成され、リセットレベルの電圧Vrstに対して片方のカウンタでクロックCKがカウントされ、リセットレベルの電圧Vrstに受光光量に応じた信号レベルの電圧Vsigを重畳した電圧(Vrst+Vsig)に対して他方のカウンタでクロックCKがカウントされた後に、2個のカウンタのカウント値の差分が演算されることで、アップダウンカウンタと同様の結果が得られる。
 閾値判定部20は、カウント部16のカウンタのm(自然数)ビットのうち、n(自然数)ビット目が、カウント開始後に初めて変化した事を記憶するラッチ回路50にて構成される。これによって、2の(n-1)乗を閾値Dthとして、アップカウントにおいては閾値Dth以上のカウント値となったことが判定され、ダウンカウントにおいては閾値Dth未満のカウント値となったことが判定され、参照信号変更信号40が参照信号電圧Vslope’の傾きを切り替えるため参照信号変更部19へ出力される。
 なお、閾値判定部20は、カウント部16のカウント開始後にカウント部16のカウンタのn(自然数)ビット目が初めて変化した事を記憶する記憶部(例えばラッチ回路)から構成されることが好適ではあるが、カウント部16のカウント値と閾値Dthとの大小が判定できる判定手段であればこの構成に制限されるものではない。すなわち、閾値判定部20は、カウント部16のカウント値と閾値Dthとの大小関係を判定する演算回路から構成されても良い。
 次に、補正処理部21の構成と動作について説明する。
 図6A及び図6Bは、本実施形態に係る固体撮像装置1において、参照信号電圧Vslope’の傾きを変更した際のAD変換のリニアリティを示す図である。図6A及び図6Bを参照して、参照信号電圧Vslope’の傾きを変更した際のAD変換のリニアリティ及びその補正方法について説明する。
 図6Aは、カウント部16が閾値Dthをカウントする以前の参照信号電圧の傾きが[α]であって、カウント部16が閾値Dthをカウントした後に参照信号電圧の傾きが[α×K]となる場合の図である。
 図6Aの場合、閾値Dthをカウントした後のカウントにおいては、参照信号電圧Vslope’の傾きが急峻となり、1カウントあたりつまり1[LSB]あたりの参照信号電圧Vslope’の変化が大きくなるため、アナログ信号からデジタル信号への変換ゲインX[LSB/V]は小さくなる。例えば、参照信号電圧Vslope’の傾きがK倍となっている場合には、AD変換のリニアリティ(変換ゲイン)は、閾値Dthを境界としてK分の1倍となる。このようにAD変換のリニアリティに変化点を有した特性のままデジタル信号を用いることも可能であり、カウント時間が長い側(一般には、高照度値側)のリニアリティが重視されない場合には、補正処理部21による補正処理を行わないことも可能である。
 図6Bは、補正処理部21によって補正処理を行った場合のAD変換のリニアリティを示す図である。
 図6Bの場合、閾値Dthをカウントした以後のカウント値のみAD変換のリニアリティ(AD変換のゲイン)が変化しているため、閾値Dthをカウントした以後のカウント値すなわち[カウント値-閾値Dth]のみが補正処理の対象となる。閾値Dthをカウントした以後のカウント値におけるAD変換のリニアリティ(AD変換のゲイン)は、K分の1倍であるため、補正にはK倍の演算操作が必要となる。従って、補正処理式は、[カウント値-閾値Dth]×K+閾値Dthとなる。補正処理部21を、閾値Dthに対する加減算演算と、K倍の乗算演算とが行える構成にすることで、本補正処理が可能となる。
 ただし、K倍の演算操作により、演算前に1[LSB]であった最小分解能は閾値Dthをカウントした以後のカウント値においてK[LSB]の最小分解能となり、AD変換としての分解能は劣化する。具体的には、K=2の場合、1ビット分、K=4の場合、2ビット分、AD変換としての実効ビット数が低下する。このため、後述するように、ショットノイズ等のノイズ要因と比してAD変換としての分解能低下の影響が許容できる範囲で閾値Dthが設定されることが好ましい。
 なお、K倍の参照信号電圧Vslope’の傾き変更においてK倍の補正処理を行うとしたが、閾値Dthをカウントした以後のカウント値に対するAD変換のリニアリティに意図的に傾斜を設けたい場合には、カウント量のK倍の補正ではなく任意のJ(0以外の正の実数)倍の補正を行っても良い。このときのK及びJの関係は、JはKと異なっていてもよいし、JはKと等しくてもよい。
 従来の固体撮像装置においては、参照信号電圧Vslope’の傾き変更に伴って必要となるAD変換のリニアリティの補正は、カウントCLKの周波数を高速化することなく、カウンタの分周速度の変更にて実現されている。このため、参照信号電圧Vslope’の傾き変化を2のn乗倍以外に設定することは困難である。しかしながら、本実施形態の固体撮像装置1においては、補正を出力されたデジタル信号値の演算によって実現するため、任意の傾き値の採用と補正の容易化を実現することができる。
 以上のように本実施形態の固体撮像装置1において、参照信号変更部19が参照信号電圧Vslope’の傾きを2のn(自然数)乗倍に変更する場合には、後段の補正処理において、K倍の乗算演算を行うことなく、nビットのビットシフト操作で補正を行うことが可能であり、回路面積(乗算回路)削減という利点が存在する。
 また、本実施形態の固体撮像装置1において、補正処理部21は、出力回路12の前段に配され、少なくとも2列以上のメモリ部18から出力されるAD変換後のデジタル信号値に対して順次補正処理を行い、補正後のデジタル信号値を順次出力回路12へ出力する。最も回路面積を削減するためには、単一の補正処理部21によって全列のAD変換後のデジタル信号値に対して順次補正処理を行うことが好適である。しかし、出力スループットを重視するアプリケーションにおいて補正処理部21や出力回路12の動作速度によって固体撮像装置としてのピクセルレートが制約されているような場合には、出力回路12の前段に補正処理部21を複数個配して並列度が上げられても良い。
 以下、本実施形態に係る固体撮像装置1の動作について、図7を参照して説明する。図7は、本実施形態に係る固体撮像装置1の動作を示すタイミングチャートである。
 なお、図7において、Vslope’_NはN列目の参照信号変更部19が出力する参照信号電圧Vslope’を示し、Vslope’_MはM列目の参照信号変更部19が出力する参照信号電圧Vslope’を示し、Vx_NはN列目の垂直信号線6に出力される単位画素2からの信号電圧を示し、Vx_MはM列目の垂直信号線6に出力される単位画素2からの信号電圧を示し、カウント値_NはN列目のカウント部16がカウントするカウント値を示し、カウント値_MはM列目のカウント部16がカウントするカウント値を示し、参照信号変更信号_NはN列目の閾値判定部20が出力する参照信号変更信号40を示し、参照信号変更信号_MはM列目の閾値判定部20が出力する参照信号変更信号40を示す。
 まず、時刻t0において、単位画素2が画素リセット直後の信号レベルつまりリセットレベルの電圧Vrstを垂直信号線6へ出力する。このとき、安定後の垂直信号線6の信号電位は、N列目においてVrst_N、M列目においてVrst_Mであり、必ずしも同一ではない。このリセットレベルの差異は、リセット時のいわゆるKTCノイズや、参照信号の遅延等、様々な要因に起因する。
 次に、時刻t1において、各列の参照信号変更部19は、参照信号電圧Vslope’の出力を開始し、同時に各列のカウント部16は、カウンタ初期値Dinitからダウンカウントを開始する。
 次に、時刻t2nにおいて、N列目の電圧比較部15の大小判定結果が反転した時点で、N列目のカウント部16がダウンカウントを終了し、その時点でのカウント値Drst_NがN列目のリセットレベルに対応するデジタル信号値となる。
 また、時刻t2mにおいて、M列目の電圧比較部15の大小判定結果が反転した時点で、M列目のカウント部16がダウンカウントを終了し、その時点でのカウント値Drst_MがM列目のリセットレベルに対応するデジタル信号値となる。前述したリセットレベルの差異により、カウント値Drst_Nとカウント値Drst_Mとは、必ずしも同一とはならない。
 次に、参照信号電圧Vslope’を初期化した後の時刻t3において、単位画素2がリセットレベルVrstに受光光量に応じた信号レベルVsigを重畳した電圧(Vrst+Vsig)を垂直信号線6へ出力する。このとき、安定後の垂直信号線6の信号電圧は、N列目において(Vrst_N+Vsig_N)、M列目において(Vrst_M+Vsig_M)であり、仮に受光光量に応じた信号レベルの電圧Vsig_N及びVsig_Mが同一であったとしても、前述したリセットレベルの電圧Vrst_N及びVrst_Mの差異により、N列目とM列目との垂直信号線6の信号電圧は必ずしも同一ではない。
 次に、時刻t4において、各列の参照信号変更部19は、参照信号電圧Vslope’の出力を開始する。これと同時に、N列目のカウント部16はカウント値Drst_Nを起点としてアップカウントを開始し、M列目のカウント部16はカウント値Drst_Mを起点としてアップカウントを開始する。
 次に、時刻t5nにおいて、N列目のカウント部16のカウント値が閾値Dth以上となったことをN列目の閾値判定部20が判定し、参照信号変更信号_Nを出力する。これを受けて、N列目の参照信号変更部19は、参照信号電圧Vslope’_Nの傾きを2倍の傾きへと変化させる。
 また、時刻t5mにおいて、M列目のカウント部16のカウント値が閾値Dth以上となったことをM列目の閾値判定部20が判定し、参照信号変更信号_Mを出力する。これを受けて、M列目の参照信号変更部19は、参照信号電圧Vslope’_Mの傾きを2倍の傾きへと変化させる。
 従って、N列目では時刻t5n、M列目では時刻t5mにおいて、共通の閾値Dthを境界として参照信号電圧Vslope’の傾きが変更される。これにより、列毎にカウント値の判定を行い、同一の受光信号量、言い換えると、同一の閾値Dthを既知の境界として列毎に独立に参照信号電圧Vslope’の傾きを変えることができる。
 次に、時刻t6nにおいて、N列目の電圧比較部15の大小判定結果が反転した時点で、N列目のカウント部16がアップカウントを終了し、その時点でのカウント値Dsig_NがN列目の単位画素2での受光光量に応じた信号レベルに対応するデジタル信号値となる。
 また、時刻t6mにおいて、M列目の電圧比較部15の大小判定結果が反転した時点で、M列目のカウント部16がアップカウントを終了し、その時点でのカウント値Dsig_MがM列目の単位画素2での受光光量に応じた信号レベルに対応するデジタル信号値となる。
 次に、AD変換部8のAD変換動作が終了した後、水平走査回路10は、水平制御線11を順次アクティブにすることで単位画素2の列を順次選択して水平走査を行い、メモリ部18に記憶されたデジタル信号値を水平信号線9へ伝送する。水平信号線9へ伝送されたデジタル信号値は、補正処理部21へ入力され、後述する補正処理をなされた上で、出力回路12へ伝送される。
 最後に、出力回路12は、伝送されたデジタル信号値を外部に出力する。出力回路12として好適にはLVDS等の高速伝送回路が用いられるが、デジタル信号値を出力可能な出力手段であれば出力回路12の出力方式・回路・構成は特に制限されるものではなく、またシリアル出力・パラレル出力の種別やその出力ポート数なども特に制限されるものではない。
 なお、上述した垂直走査回路4、水平走査回路10及びAD変換部8の動作制御は、タイミング制御部13によりなされる。
 以上のように本実施形態に係る固体撮像装置1では、カウント部16がダウンカウント後にアップカウントすることで、リセットレベルに対応するデジタル信号値Drstは除去され、カウント部16のカウンタ初期値Dinitを基準として受光光量に応じた信号レベルに対応するデジタル信号値Dsigのみを得ることが出来る。
 また、参照信号電圧Vslope’の傾きを変更しない場合のAD変換終了時間は時刻t7n及びt7mであるのに対し、本実施形態の固体撮像装置1におけるAD変換終了時間は、時刻t6n及びt6mである。従って、本実施形態に係る固体撮像装置1では、参照信号電圧Vslope’の傾きを急峻とする変更によって、AD変換の高速化を実現することが出来る。
 なお、本実施形態の固体撮像装置1では、参照信号電圧Vslope’の傾きを変更後も、カウントCLK及びカウント部16のカウンタの分周速度共に変更されないため、閾値Dthを境界としてカウント値の重みが異なり、閾値Dthを境界としてAD変換のゲインすなわちAD変換のリニアリティが異なる。しかしながら、閾値Dthは既知であり、かつ、全列で共通である。従って、本実施形態の固体撮像装置1では、AD変換のリニアリティは、容易に演算で補正することができる。
 また、本実施形態の固体撮像装置1では、カウント値が閾値Dth以上となった以降は参照信号電圧Vslope’の傾きが大きくなるため、従来の固体撮像装置と同様に、カウント値が閾値Dth以上となった以降はAD変換としての分解能は低下する場合がある。これに対しては、受光光量のショットノイズの大きさに対してAD変換の分解能低下が許容できる範囲内で閾値Dthを決定すると良い。詳細には、閾値Dthに対応する受光光量の2分の1乗として見積もられるショットノイズの大きさに対して、分解能低下後のAD変換の1[LSB]相当量が十分小さくなるべく閾値Dthを設定することで解決出来る。
 また、本実施形態の固体撮像装置1は、動画撮影や高速撮影等、AD変換速度すなわち高フレームレートが重視される撮影モードや撮影シーンでは、閾値Dthをカウント時間が短い側(一般には、低照度値側)に設定し、低速の静止画撮影等、AD変換の分解能すなわち画質が重視される撮影モードや撮影シーンでは、閾値Dthをカウント時間が長い側(一般には、高照度値側)に設定する、あるいは参照信号電圧Vslope’の傾き変更を行わない等の使い分けにより、動画と静止画の画像特性を高い次元で両立させることが出来る。
 また、本実施形態の固体撮像装置1においては、同一の受光信号量、すなわち同一の閾値Dthを既知の境界として列毎に独立に列内でカウント部16のカウント値判定を行い、列毎に独立に列内で参照信号電圧Vslope’の傾きを変えることが可能である。
 また、本実施形態の固体撮像装置1においては、閾値判定部20がカウント部16のカウント値の判定を行い、参照信号変更信号40を出力した後に、参照信号変更部19に参照信号変更信号40が入力され、これに応じて参照信号電圧Vslope’の傾きが変わるという順序関係は存在するが、参照信号変更信号40は同一列内のみの伝播であるため、その遅延は微少なものであり特性には問題とはならない。このため、本実施形態の固体撮像装置1においては、参照信号電圧Vslope’の傾き変更と、カウント部16のカウント値の重み変化との同時性を保つことができ、従来の固体撮像装置において課題であったAD変換のリニアリティの崩れと、画像におけるシェーディングや列固定パターンノイズの発生による画質劣化の回避と、AD変換の高速化とを両立することが可能となる。
 また、従来の固体撮像装置においては、各列のリセットレベルの差異や参照信号電圧Vslope’の伝播遅延に関わり無く参照信号電圧Vslope’の傾き変更を実行するため、実際には、各列で異なる受光信号量を境界として参照信号電圧Vslope’の傾きが変化することとなり、画像の均質化の点でも難がある。しかし、本実施形態の固体撮像装置1においては、前述の通り、全列で同一の受光信号量すなわち同一の閾値Dthを既知の境界として参照信号電圧Vslope’の傾きを変化させるため、各列のリセットレベルの差異や参照信号電圧Vslope’の伝播遅延に関わらず、像の均質化を図ることができる。
 以上述べたように、本実施形態に係る固体撮像装置1は、全列共通に設定した閾値Dthで列毎に独立に参照信号電圧Vslope’の傾きを変更することで、AD変換のリニアリティ及び画質を維持しつつAD変換処理の高速化を実現することができる。すなわち、本実施形態に係る固体撮像装置1によれば、シングルスロープ型AD変換回路を用いる固体撮像装置において、参照信号電圧Vslope’の傾きをカウント途中で変更することにより、大きな信号レベルのカウントに要する時間を短縮し、AD変換処理を高速化できる。
 また、本実施形態に係る固体撮像装置1は、全列共通に設定した既知の閾値Dthに対して列毎にカウント値の判定を行い、列毎に参照信号電圧Vslope’の傾きを独立に変更することにより、カウント値の重みと参照信号電圧Vslope’の傾きとの整合を、列毎に維持することが出来る。このため、AD変換処理を高速化しつつ、従来の固体撮像装置における課題であったAD変換のリニアリティの崩れと、シェーディングや列固定パターンノイズの発生による画質劣化を回避することが出来る。
 加えて、本実施形態に係る固体撮像装置1は、参照信号電圧Vslope’の傾きを変更する場合には、参照信号電圧Vslope’の傾き変更前後で、AD変換のゲイン(すなわち、カウント値の重み)が異なるため、AD変換後のカウント値に対して補正処理が必要となる。しかし、全列共通に設定した既知の閾値Dthに対して列毎にカウント値の判定を行い、列毎に参照信号電圧Vslope’の傾きを独立に変更することにより、全列で共通の補正処理を用いることが出来るため、補正処理を簡素化することができる。
 (第1の実施形態の変形例1)
 ここで、本実施形態における変形例1について説明する。上記実施形態では、水平信号線9を用いた水平走査の構成と動作にて図示および説明を行った。しかし、水平走査の構成と動作はこれに制限されるものではなく、後述する図8に示すように、互いに電気的に接続された複数のメモリ部18のシフト動作によって水平走査が行われても良い。
 図8は、本変形例に係る固体撮像装置1の構成を示す図である。
 図8に示す固体撮像装置1では、図1の固体撮像装置1における水平信号線9と水平制御線11が存在せず、代わりに水平転送CLK60が水平走査回路10からメモリ部18へ供給され、各列のメモリ部18は水平転送CLK60によってシフト動作を行う。各列のメモリ部18は、例えば、フリップフロップ等の記憶手段で構成されるメモリ部18に対して、対応するカウント部16からの信号と、隣接する列のメモリ部18からの信号とをセレクタ等によって切り替えて入力可能な構成とされる。当該構成において、カウント部16のカウント値が記憶される際にはカウント部16からの信号が対応するメモリ部18に入力され、水平転送CLK60によってシフト動作を行う際には隣接する列のメモリ部18からの信号がメモリ部18に入力される。各列のメモリ部18は補正処理部21に対してメモリ部18のいずれかから信号が出力される構成とされ、各列のメモリ部18がシフト動作を順次行うことでメモリ部18からAD変換後のデジタル信号値が順次補正処理部21へと伝送される。
 (第1の実施形態の変形例2)
 また、本実施形態における変形例2について説明する。本実施形態の固体撮像装置においては、補正処理部21が複数の単位画素2及びAD変換部8が搭載された半導体集積回路と同一の半導体集積回路上に存在するとしたが、本変形例に示すように異なる半導体集積回路上に存在しても良い。
 図9は、本変形例に係る固体撮像装置1の構成の構成を示す図である。
 図9に示す固体撮像装置1では、補正処理部21は、画像処理等を実行するDSP(Digital Signal Processor)70上に存在する。一般的には、単位画素2が搭載される半導体集積回路よりも、DSP70を構成する半導体集積回路においてより微細なプロセスが適用される。このため、本実施形態の補正処理部21は、その構成と機能が図1に示す補正処理部21と同様であっても、より高速に、より小面積に補正処理を行い得る。
 (第2の実施形態)
 以下、図面を参照しながら、本発明の第2の実施形態に係る固体撮像装置の構成及び動作について説明する。なお、以下では第1の実施形態の固体撮像装置との相違点についてのみ説明する。
 本実施形態に係る固体撮像装置は、第1の実施形態に係る固体撮像装置に対して、参照信号生成部が複数の参照信号電圧を生成するという点で異なる。また、参照信号変更部の出力である参照信号電圧の傾きの切り替えを、参照信号変更部によるゲインの切り替えではなく、参照信号変更部による複数の傾きの異なる参照信号電圧からの選択によって行うという点でも異なる。
 図10は、本実施形態に係る固体撮像装置101の構成を示す図である。なお、図1と同様の要素については同一の符号が付されており、それらに関する詳しい説明はここでは省略する。
 この固体撮像装置101は、参照信号生成部114と参照信号変更部119とを除いて、第1の実施形態に係る固体撮像装置1と同じ構成を有している。
 AD変換部108は、垂直信号線6に対応して設けられ、対応する垂直信号線6により伝達された信号電圧をデジタル信号に変換する複数の列AD変換回路180を有する。列AD変換回路180は、本発明の列AD変換部の一例である。複数の列AD変換回路180は、電圧比較部15と、閾値判定部20の比較結果を参照して電圧比較部15へ供給する参照信号電圧の傾きを変更する参照信号変更部119と、カウント部16と、閾値判定部20と、メモリ部18とをそれぞれ備える。
 参照信号生成部114は、傾きの異なる複数の参照信号電圧Vslope_1~Vslope_nを生成する。参照信号生成部14にて生成された参照信号電圧Vslope_1~Vslope_nのうち、少なくとも2信号以上が参照信号変更部119へ入力される。具体的には、参照信号生成部114は、第1の参照信号電圧Vslope_1と、第2の参照信号電圧Vslope_2との2信号を生成し、両参照信号電圧を参照信号変更部119へ入力する。なお、参照信号電圧の波形は所定の傾きで推移するものであれば特に制限されず、また所定の傾きで推移する参照信号電圧を生成できる参照信号生成部114であれば参照信号生成部114の構成は特に制限されるものではない。
 参照信号変更部119は、参照信号生成部114により生成され、入力された複数の参照信号電圧のいずれかを選択し、選択した参照信号電圧を電圧比較部15へ供給することで、参照信号変更部119の出力である参照信号電圧Vslope’の傾きの切り替えを行う。参照信号変更部119は、閾値判定部20の比較結果が変わったときに、これまで選択していた参照信号電圧と異なる参照信号電圧を選択する。参照信号電圧Vslope’の傾きの切り替えにおいては、傾きの切り替え点で参照信号電圧Vslope’の連続性が保たれる。
 次に、図11A及び図11Bを用いて、本実施形態に係る固体撮像装置101の構成例と動作、具体的には参照信号変更部119の構成例と動作について説明する。
 図11A及び図11Bは参照信号変更部119の構成例と動作をそれぞれ示す図である。
 参照信号変更部119は、一端に参照信号生成部114により生成された第2の参照信号電圧Vslope_2が供給され、他端が電圧比較部15に接続されたクランプ容量86と、一端に参照信号生成部114により生成された第1の参照信号電圧Vslope_1が供給され、他端がクランプ容量86の他端に接続され、導通時に参照信号変更部119の出力である参照信号電圧Vslope’を第1の参照信号電圧Vslope_1とするスイッチ手段85とを備えている。参照信号変更部119には、閾値判定部20から出力され、スイッチ手段43を制御する参照信号変更信号40が入力される。
 参照信号変更部119は、スイッチ手段85の遮断・導通によって、参照信号変更部119の出力である参照信号電圧Vslope’を第1の参照信号電圧Vslope_1もしくは第2の参照信号Vslope_2に切り替えることができる。
 以下では、第1の参照信号電圧Vslope_1の傾きをα、第2の参照信号電圧Vslope_2の傾きをα×2として、参照信号変更部119の動作の詳細を説明する。
 閾値判定部20は、カウント部16のカウント値が閾値Dthに到達したと判断するまではスイッチ手段85を導通させており、このとき電圧比較部15へ供給される参照信号電圧Vslope’は、第1の参照信号電圧Vslope_1であり、その傾きはαとなる。スイッチ手段85が導通している間、クランプ容量86には第1の参照信号電圧Vslope_1と第2の参照信号電圧Vslope_2との差電圧が蓄積され、クランプ容量86の参照信号電圧Vslope’を出力する側の端子(電圧比較部15と接続されている側の端子)は第1の参照信号電圧Vslope_1にクランプされる。
 一方、閾値判定部20は、カウント部16のカウント値が閾値に到達したと判断した時点でスイッチ手段85を遮断させる。これにより、参照信号電圧Vslope’は、クランプ容量86による第2の参照信号電圧Vslope_2の容量結合出力となり、電圧比較部15へ供給される参照信号電圧Vslope’の傾きは第2の参照信号電圧Vslope_2の傾きであるα×2となる。
 このように、スイッチ手段85の制御によって参照信号電圧Vslope’の傾きを変更することができ、クランプ容量86の作用によって参照信号電圧Vslope’の傾きの変更点での参照信号電圧Vslope’の連続性を保つことができる。
 なお、参照信号電圧Vslope’の傾きは2倍に変更されるとしたが、任意のK倍に変更されてもよい。
 また、参照信号変更部119は図11Aの構成を有するとしたが、列毎の閾値判定部20の判定結果に基づいて、複数の参照信号電圧から傾きの異なる参照信号電圧を選択することで、列毎に参照信号電圧Vslope’の傾きを独立に変更し、傾きの切り替え点で参照信号電圧Vslope’の連続性を維持できる参照信号変更部119であれば、参照信号変更部119の構成は図11Aに制限されるものではない。また、参照信号電圧Vslope’の傾き値、及び参照信号電圧Vslope’の傾きの切り替え数についても、図11Bに制限されるものではない。
 以上のように本実施形態に係る固体撮像装置101は、第1の実施形態に係る固体撮像装置1と同様に、全列共通に設定した閾値Dthで列毎に独立に参照信号電圧Vslope’の傾きを変更するため、AD変換処理の高速化、AD変換のリニアリティの維持、及び画質の維持を実現することができる。
 また、第1の実施形態の固体撮像装置1において、参照信号電圧Vslope’の傾きの値をいずれにするかは列AD変換回路180内のゲイン手段(参照信号変更部19)に委ねられているが、第2の実施形態の固体撮像装置101では、参照信号電圧Vslope’の傾きの値をいずれにするかを、参照信号生成部114から出力される参照信号電圧Vslopeの傾きによって定めることができる。一般的には、列AD変換回路180内のゲイン手段と列AD変換回路180外の参照信号生成部114とでは、列AD変換回路180外の参照信号生成部114の方が回路面積としての制約が緩く、そのため参照信号電圧の傾きの精度を上げやすいという利点が存在する。
 また、本実施形態の固体撮像装置101において、参照信号変更部119が参照信号電圧Vslope’の傾きを2のn乗倍に変更する場合には、後段の補正処理において、K倍の乗算演算を行うことなく、nビットのビットシフト操作で補正を行うことが可能であり、回路面積(乗算回路)削減という利点が存在する。
 (第3の実施形態)
 以下、図面を参照しながら、本発明の第3の実施形態に係る固体撮像装置の構成及び動作について説明する。なお、以下では第1の実施形態の固体撮像装置との相違点についてのみ説明する。
 本実施形態に係る固体撮像装置は、第1の実施形態に係る固体撮像装置に対して、列AD変換回路の後段に補正処理部が存在せず、列AD変換回路が補正処理部そのものを有する点で異なる。
 図12は、本実施形態に係る固体撮像装置201の構成を示す図である。なお、図1と同様の要素については同一の符号が付されており、それらに関する詳しい説明はここでは省略する。
 この固体撮像装置201は、補正処理部21が列AD変換回路280に含まれる点を除いて、第1の実施形態に係る固体撮像装置1と同じ構成を有している。また、固体撮像装置201において、参照信号電圧Vslope’の傾きを変更した際のAD変換のリニアリティと、その補正方法とは第1の実施形態に係る固体撮像装置1と同様である。すなわち、固体撮像装置201では、参照信号電圧Vslope’の傾きをK倍に変更して行う、閾値Dthをカウントした以後のカウント値に対してのみ、K倍の演算操作を行う補正が行われる。その補正処理式は、[カウント値-閾値Dth]×K+閾値Dthとなる。
 AD変換部208は、垂直信号線6に対応して設けられ、対応する垂直信号線6により伝達された信号電圧をデジタル信号に変換する複数の列AD変換回路280を有する。列AD変換回路280は、本発明の列AD変換部の一例である。複数の列AD変換回路280は、電圧比較部15と、参照信号変更部19と、カウント部16と、閾値判定部20と、補正処理部21と、メモリ部18とをそれぞれ備える。
 補正処理部21は、列AD変換回路280のそれぞれに含まれ、各列のカウント部16のカウント値に対して列毎に上記の補正処理を行った後、メモリ部18へ補正後のAD変換値(デジタル信号値)を伝送する。メモリ部18は、伝送された補正後のAD変換値を記憶する。なお、図12では、メモリ部18の前段に補正処理部21を配した例を例示したが、メモリ部18の後段に補正処理部21が配されても良い。
 以上のように、本実施形態に係る固体撮像装置201は、第1の実施形態に係る固体撮像装置1と同様に、全列共通に設定した閾値Dthで列毎に独立に参照信号電圧Vslope’の傾きを変更するため、AD変換処理の高速化、AD変換のリニアリティの維持、及び画質の維持を実現することができる。
 また、本実施形態に係る固体撮像装置201は、カウント部16のカウント値に対して列毎に補正処理を行うことができ、補正処理式を列毎に微調整する等、列毎に補正の精度の向上を図ることができる。例えば、列毎に参照信号電圧Vslope’の傾きに誤差が生じる場合などにおいて、有効となる利点が存在する。
 なお、本実施形態に係る固体撮像装置201において、K倍の参照信号電圧Vslope’の傾き変更においてK倍の補正処理を行うとしたが、閾値Dthをカウントした以後のカウント値に対するAD変換のリニアリティに意図的に傾斜を設けたい場合には、カウント量のK倍の補正ではなく任意のJ(0以外の正の実数)倍の補正を行っても良い。このときのK及びJの関係は、JはKと異なっていてもよいし、JはKと等しくてもよい。
 (第4の実施形態)
 以下、図面を参照しながら、本発明の第4の実施形態に係る固体撮像装置の構成及び動作について説明する。なお、以下では第1の実施形態の固体撮像装置との相違点についてのみ説明する。
 本実施形態に係る固体撮像装置は、第1の実施形態に係る固体撮像装置に対して、列AD変換回路の後段に補正処理部が存在せず、列AD変換回路のカウント部が補正処理に相当する機能を含む点で異なる。
 図13は、本実施形態に係る固体撮像装置301の構成を示す図である。なお、図1と同様の要素については同一の符号が付されており、それらに関する詳しい説明はここでは省略する。
 この固体撮像装置301は、補正処理部が存在せず、補正処理に相当する機能をカウント部316が含む点を除いて、第1の実施形態に係る固体撮像装置1と同じ構成を有している。この固体撮像装置301においては、参照信号電圧Vslope’の傾き変更に合わせて、クロックCKの速度を列毎に変更する。具体的には、参照信号電圧Vslope'の傾きがK倍に変化するタイミングにおいて、カウント部316がカウントするクロックCKを列毎にK倍の周波数とする。参照信号電圧Vslope’の傾きがK倍に急峻となった分、1カウントの時間をK分の1とすることで、参照信号電圧Vslope’の傾き変更前後でのAD変換のゲインを同一とすることができる。
 AD変換部308は、垂直信号線6に対応して設けられ、対応する垂直信号線6により伝達された信号電圧をデジタル信号に変換する複数の列AD変換回路380を有する。列AD変換回路380は、本発明の列AD変換部の一例である。複数の列AD変換回路380は、電圧比較部15と、参照信号変更部19と、電圧比較部15が比較を開始してから比較結果が変化するまでの時間をカウントするカウント部316と、閾値判定部20と、メモリ部18とをそれぞれ備える。
 カウント部316は、入力されるクロックをカウントすることにより電圧比較部15の比較結果が変化するまでの時間をカウントし、参照信号電圧Vslope'の傾きが変更されると同時に入力されるクロックの周波数を変更する。
 図14は、カウント部316の構成例を示す図である。
 カウント部316は、異なる周波数の複数のクロックCK_1及びCK_2が入力され、クロックCK_1及びCK_2のいずれかを選択してクロックCKとして出力するクロックセレクタ90と、クロックセレクタ90により出力されたクロックCKをカウントするカウンタ91とを含む。クロックセレクタ90は、閾値判定部20から出力される参照信号変更信号40の入力を受け、閾値判定部20が示す参照信号電圧Vslope'の傾きがK倍に変化するタイミングにおいて、選択するクロックを切り替えることで、クロックCKをK倍の周波数に変更する。
 なお、カウント部316におけるカウントするクロックCKの周波数を変更する構成は図14に例示するように異なる周波数のクロックから列毎(列AD変換回路380毎)にクロックを選択する構成が好適であるが、列毎にクロック周波数を変更できる構成であれば、その構成は図14の構成に制限されるものではない。
 以上のように、本実施形態に係る固体撮像装置301は、第1の実施形態に係る固体撮像装置1と同様に、全列共通に設定した閾値Dthで列毎に独立に参照信号電圧Vslope’の傾きを変更するため、AD変換処理の高速化、AD変換のリニアリティの維持、及び画質の維持を実現することができる。
 また、本実施形態に係る固体撮像装置301では、カウント部316に補正処理に相当する機能が含まれるため、補正処理部を削除することが出来る。
 なお、カウント部316は、アップダウンカウンタで構成されることが好適ではあるが、差分情報を得ることができるカウント手段であればその構成はこれに制限されるものではない。例えばカウント部316は、複数のカウンタと、この複数のカウンタのカウント結果を差分する差分部とで構成されてもよい。
 (第4の実施形態の変形例1)
 ここで、本実施形態における変形例1について説明する。
 本変形例の固体撮像装置301において、参照信号電圧Vslope'の傾き変更に合わせてカウント部316の分周速度が列毎に変更される。具体的には、参照信号電圧Vslope'の傾きが2のn(自然数)乗倍に変化するタイミングにおいて、カウント部316の(n+1)ビット目のクロックが、nビット目の分周クロックからカウント部316の1ビット目がカウントしていたクロックCKに変更される。カウント部316の(n+1)ビット目のクロックの切り替えにより、参照信号電圧Vslope’の傾きが2のn乗倍に急峻となった分、カウント部316の等価的なカウント速度を2のn乗倍とすることで、参照信号電圧Vslope’の傾き変更前後でのAD変換のゲインを同一とすることができる。
 カウント部316は、入力されるクロックをカウントすることにより電圧比較部15の比較結果が変化するまでの時間をカウントし、参照信号電圧Vslope'の傾きが変更されると同時に入力されるクロックの分周速度を変更する。
 図15は、カウント部316の構成例を示す図である。
 カウント部316は、クロックCKをカウントするnビットカウンタ95と、nビットカウンタ95の分周出力DivとクロックCKとが入力されるクロックセレクタ96と、クロックセレクタ96の出力クロックCK_nをカウントする(m-n)ビットカウンタ97(m>nを満たす自然数)とを含む。
 クロックセレクタ96には閾値判定部20から出力される参照信号変更信号40が入力され、閾値判定部20が示す参照信号電圧Vslope'の傾きが2のn乗倍に変化するタイミングにおいて、(m-n)ビットカウンタ97がカウントするクロックを切り替えることで、カウント部316の等価的なカウント速度を2のn乗倍とする。
 なお、カウント部316のカウント速度を変更する構成は図15に例示するような構成が好適であるが、列毎にカウント速度を変更できる構成であれば、その構成は図15に制限されるものではない。
 以上のように、本変形例に係る固体撮像装置301では、カウント部316に補正処理に相当する機能が含まれるため、補正処理部を削除することが出来る。
 (第4の実施形態の変形例2)
 また、本実施形態における変形例2について説明する。
 本変形例の固体撮像装置301では、カウント部316がビットシフト可能なカウンタにて構成され、参照信号電圧Vslope'の傾きが変更されると同時に、カウント部316のカウント値がビットシフトし、変更時点までのカウント量をL(1より大きい実数)分の1倍した後カウントを継続する。具体的には、参照信号電圧Vslope'の傾きが2のn乗倍に変化するタイミングにおいて、カウント部316のカウント値がnビットシフトダウンされた後カウントが継続される。カウント部316のカウント値のビットシフトによりビットシフト操作前後でのカウントの重みを異ならせ、参照信号電圧Vslope’の傾きが2のn乗倍に急峻となった分、参照信号電圧Vslope’の傾き変更後のカウントの重みを2のn乗倍とすることで、参照信号電圧Vslope’の傾き変更前後でのAD変換のゲインを同一とすることができる。
 なお、カウント部316のカウントの重みを変更する構成は上述した構成が好適であるが、列毎にカウント速度の重みを変更できる構成であれば、その構成は特に制限されるものではない。
 以上のように、本変形例に係る固体撮像装置では、カウント部316に補正処理に相当する機能が含まれるため、補正処理部を削除することが出来る。
 (第5の実施形態)
 以下、図面を参照しながら、本発明の第5の実施形態に係る固体撮像装置の構成及び動作について説明する。なお、以下では第1の実施形態の固体撮像装置との相違点についてのみ説明する。
 本実施形態に係る固体撮像装置は、第1の実施形態に係る固体撮像装置に対して、複数の画素のそれぞれに対応して対応する画素の上に設けられたカラーフィルタをさらに備え、異なる画素の上に異なる色のカラーフィルタが配置され、閾値判定部は、異なる色のカラーフィルタが配置された画素から出力された信号電圧をデジタル信号に変換するときに異なる閾値Dthを用いる点で異なる。
 図16は、本実施形態に係る固体撮像装置701の構成を示す図である。なお、図1と同様の要素については同一の符号が付されており、それらに関する詳しい説明はここでは省略する。
 この固体撮像装置701は、閾値判定部720及び画素アレイ703の構成を除いて、第1の実施形態に係る固体撮像装置1と同じ構成を有している。
 画素アレイ703では、単位画素2の上にカラーフィルタが配置され、第1の単位画素2の上に配置されたカラーフィルタの色と、第2の単位画素2の上に配置されたカラーフィルタの色とは異なる。つまり、画素アレイ703では、ベイヤー配列のカラーフィルタが設けられている。
 閾値判定部720は、3つの閾値Dth1、Dth2及びDth3のうちの2つを保持し、タイミング制御部13からの信号に基づいて、デジタル信号に変換すべき信号電圧がいずれの画素により出力されたかに応じて複数の異なる閾値Dth1、Dth2及びDth3のいずれを用いるかを決定(選択)している。ここで、閾値Dth1はR(赤)のカラーフィルタが配置された単位画素(Rの単位画素)から出力された信号電圧をデジタル信号に変換するときに用いられ、閾値Dth2はG(緑)のカラーフィルタが配置された単位画素(Gの単位画素)から出力された信号電圧をデジタル信号に変換するときに用いられ、閾値Dth3はB(青)のカラーフィルタが配置された単位画素(Bの単位画素)から出力された信号電圧をデジタル信号に変換するときに用いられる。ここで、閾値Dth1、Dth2及びDth3は、Dth2>Dth1、Dth2>Dth3の関係を有する。
 単位画素2は行単位で選択されるため、水平方向に隣接する2つの列AD変換回路80には同じタイミングで異なる色の信号電圧が出力される。従って、水平方向に隣接する2つの列AD変換回路80の閾値判定部720は、閾値との比較において同じタイミングで異なる閾値を用いる。
 単位画素2と垂直信号線とが図17Aのように接続されている構成(異なる列の単位画素2が異なる垂直信号線が接続されている構成)においては、例えば、所定の行の単位画素2が選択されたとき、所定の列の列AD変換回路80にGの単位画素2の信号電圧が出力される一方、その所定の列に隣接する列AD変換回路80にRの単位画素2の信号電圧が出力される。従って、水平方向に隣接する2つの列AD変換回路80の閾値判定部は、閾値との比較において同じタイミングで異なる閾値Dth2及びDth1を用いる。そして、所定の行の次の行の単位画素2が選択されたとき、所定の列の列AD変換回路80にBの単位画素2の信号電圧が出力される一方、その所定の列に隣接する列AD変換回路80にGの単位画素2の信号電圧が出力される。従って、水平方向に隣接する2つの列AD変換回路80の閾値判定部720は、閾値との比較において同じタイミングで異なる閾値Dth3及びDth2を用いる。そして、この閾値Dth2及びDth1の組み合わせと、閾値Dth3及びDth2の組み合わせとが、列方向への単位画素2の行選択に伴って繰り返される。その結果、異なる2つの列AD変換回路80における閾値判定部720の閾値の時間変化は、図17Bのようになる。
 また、単位画素2と垂直信号線とが図17Cのように接続されている構成(斜め方向に並ぶ単位画素2でフローティングディフュージョン部が共有されている構成)においては、例えば、所定の行の単位画素2が選択されたとき、所定の列の列AD変換回路80にGの単位画素2の信号電圧が出力される一方、その所定の列に隣接する列AD変換回路80にRの単位画素2の信号電圧が出力される。従って、水平方向に隣接する2つの列AD変換回路80の閾値判定部720は、閾値との比較において同じタイミングで異なる閾値Dth2及びDth1を用いる。そして、所定の行の次の行の単位画素2が選択されたとき、所定の列の列AD変換回路80にGの単位画素2の信号電圧が出力される一方、その所定の列に隣接する列AD変換回路80にBの単位画素2の信号電圧が出力される。従って、水平方向に隣接する2つの列AD変換回路80の閾値判定部720は、閾値との比較において同じタイミングで異なる閾値Dth2及びDth3を用いる。そして、この閾値Dth2及びDth1の組み合わせと、閾値Dth2及びDth3の組み合わせとが、列方向への単位画素2の行選択に伴って繰り返される。その結果、異なる2つの列AD変換回路80における閾値判定部720の閾値の時間変化は、図17Dのようになる。
 このような閾値判定部720の閾値変更は、タイミング制御部13が所定の行が選択されたことを受けてその所定の行に対応する信号を閾値判定部720のそれぞれに送信することにより行われる。異なる列AD変換回路80はそれぞれ同じタイミングで同じ信号を受けるが、隣接する閾値判定部720が異なる構成(閾値)を持ち、全ての閾値判定部720が行方向に一つおきに同じ構成を持つため、同じタイミングで異なる閾値が用いられる。
 以上のように、本実施形態に係る固体撮像装置701は、第1の実施形態に係る固体撮像装置1と同様に、列毎に独立に参照信号電圧Vslope’の傾きを変更するため、AD変換処理の高速化、AD変換のリニアリティの維持、及び画質の維持を実現することができる。
 また、本実施形態に係る固体撮像装置701は、色毎に閾値判定部720の閾値を変更させてAD変換ゲインの変化タイミングが色毎に切り替えられ、各色に対応した電圧出力ゲイン(カウント値)で参照信号電圧Vslope’の傾きが切り替えられる。通常、色毎に入射光に対する電圧出力ゲインは異なるため、同じ閾値でAD変換ゲインを切り替えた場合には、図18Aに示されるように色毎に切り替わりの入射光強度は異なる。その結果、同じ入射光強度に対して特定の色だけAD分解能が荒くなる画質劣化が発生する。これに対し、色毎に異なる閾値でAD変換ゲインを切り替えることで、図18Bに示されるように色毎でも切り替わりの入射光強度は同じにすることができる。その結果、同じ入射光強度に対して特定の色だけAD分解能が荒くなる画質劣化を回避することができる。
 なお、タイミング制御部13が3つの閾値Dth1、Dth2及びDth3を保持し、デジタル信号に変換すべき信号電圧がいずれの単位画素2により出力されたかに応じて3つの閾値Dth1、Dth2及びDth3のいずれを用いるかを決定し、決定された閾値を閾値判定部720に送信し、閾値判定部720は、タイミング制御部13より送信された閾値を比較に用いてもよい。この場合、閾値判定部720は、送信された閾値に応じて判定動作すればよく、閾値を内部にメモリする必要がなくなる。
 この場合、タイミング制御部13から閾値判定部720に3つの閾値Dth1、Dth2及びDth3を送信するための配線は、図19に示されるようにされる。つまり、各列の閾値判定部720とタイミング制御部13とは、共通の1つの配線で接続されるのではなく、2つの共通配線で接続される。そして、1つの共通配線は閾値判定部720を1列おきに共通に接続し、もう一つの共通配線は既に共通に接続された閾値判定部720以外の閾値判定部720を1列おきに共通に接続する。閾値判定部720の閾値変更は、タイミング制御部13が所定の行が選択されたことを受けてその所定の行に対応する閾値を閾値判定部720のそれぞれに送信することにより行われる。
 また、本実施形態に係る固体撮像装置701では、閾値判定部720は色毎に閾値を変更するとしたが、単位画素2及び行毎に閾値を変更してもよい。例えば、一組の単位画素2でフローティングディフュージョン部を共有している構成において、閾値判定部720は一組の単位画素2のいずれの信号電圧をデジタル信号に変換するかに応じて閾値を変更してもよい。
 また、本実施形態に係る固体撮像装置701は第1~第4の実施形態の固体撮像装置と組み合わされ、第1~第4の実施形態の固体撮像装置の閾値判定部720及び画素アレイ703が本実施の形態におけるものと入れ替えられてもよい。
 (比較例)
 以下、本発明の第1~第4の実施形態に係る固体撮像装置と比較される固体撮像装置について比較例を用いて説明する。
 図20は、本比較例に係る固体撮像装置401の構成を示す図である。
 この固体撮像装置401は、画素アレイ3と、垂直走査回路4と、行制御線5と、垂直信号線6と、読み出し電流源7と、AD変換部408と、水平信号線9と、水平走査回路10と、水平制御線11と、出力回路12と、タイミング制御部13とを備える。
 画素アレイ3は、行列状に配置された複数の単位画素2を備え、単位画素2は、受光した光を光電変換して信号電圧に変換する。
 垂直走査回路4は、行制御線5を順次アクティブにすることで、単位画素2の行を順次選択して垂直走査を行い、選択された行の信号電圧は、列毎に設けられた垂直信号線6と読み出し電流源7によりAD変換部408へ伝送される。
 AD変換部408は、シングルスロープ型AD変換回路であって、参照信号生成部414と、AD変換速度変更部17と、列毎に設けられ、対応する垂直信号線6により伝達された信号電圧をデジタル信号に変換する複数の列AD変換回路480とを備え、各列の垂直信号線6に出力された信号電圧を各列で同時にデジタル信号に変換する。
 列AD変換回路480は、電圧比較部15と、アップダウンカウンタであるカウント部16と、メモリ部18とを備える。
 参照信号生成部414は、時間経過と共に徐々に変化する参照信号電圧Vslopeを生成する。
 電圧比較部15は、垂直信号線6に出力された信号電圧と、参照信号電圧Vslopeとの大小を比較する。
 カウント部16は、電圧比較部15の比較結果が変化するまでの時間をカウントすることでAD変換を行う。AD変換終了後、カウント部16はデジタル信号値をメモリ部18に伝送し、メモリ部18は伝送されたデジタル信号値を記憶する。
 水平走査回路10は、水平制御線11を順次アクティブにすることで単位画素2の列を順次選択して水平走査を行い、メモリ部18に記憶されたデジタル信号値を水平信号線9へ伝送する。
 出力回路12は、水平信号線9へ伝送されたデジタル信号値を外部に出力する。
 タイミング制御部13は、垂直走査回路4と、水平走査回路10と、AD変換部408との動作タイミングを制御する。
 以上の構成により、固体撮像装置401は単位画素2により出力される信号電圧を行単位でAD変換できるが、一般にシングルスロープ型AD変換回路には、ADのビット数が増加するほど、指数的に変換時間が増大する課題が存在することが知られている。このため、固体撮像装置401には、カウント部16のカウント速度をK倍に変更するためのAD変換速度変更部17と、参照信号電圧Vslopeの傾きを変更可能な参照信号生成部414とが設けられている。
 図21は、本比較例に係る固体撮像装置401の駆動方法を示したタイミングチャート、具体的には、シングルスロープ型AD変換回路を備える固体撮像装置401の動作を示すタイミングチャートである。
 なお、図21において、Vslopeは参照信号生成部414が出力する参照信号電圧を示し、Vx_NはN列目の垂直信号線6に出力される単位画素2からの信号電圧を示し、カウント値_NはN列目のカウント部16がカウントするカウント時間すなわちAD変換後のデジタル信号値を示す。
 まず、時刻t0において、単位画素2は画素リセット直後の信号レベルつまりリセットレベルの電圧Vrstを垂直信号線6へ出力する。
 次に、時刻t1において、参照信号生成部414は参照信号電圧Vslopeの出力を開始し、同時に各列のカウント部16はカウンタ初期値Dinitからダウンカウントを開始する。
 次に、時刻t2において、N列目の電圧比較部15の大小判定結果が反転した時点で、N列目のカウント部16がダウンカウントを終了し、その時点のカウント値DrstがN列目のリセットレベルに対応するデジタル信号値となる。
 次に、参照信号電圧Vslopeを初期化した後の時刻t3において、単位画素2がリセットレベルVrstに受光光量に応じた信号レベルVsigを重畳した電圧(Vrst+Vsig)を垂直信号線6へ出力する。
 次に、時刻t4において、参照信号生成部414は、参照信号電圧Vslopeの出力を開始する。これと同時に、N列目のカウント部16はカウント値Drstを起点としてアップカウントを開始する。
 時刻t5において、参照信号生成部414はタイミング制御部13からの制御によって参照信号電圧Vslopeの傾きを2倍の傾きへと変化させ、同時にAD変換速度変更部17はカウント部16のカウント速度を2倍に変更させる。
 なお、このカウント速度の変更は、特許文献1においては、カウントCLKの周波数を高速化することなく、カウンタの分周速度の変更にて実現されており、カウントCLK周波数の高速化による消費電力増加を生じない反面、カウント値の分解能、すなわちAD変換としての分解能は低下することとなる。参照信号電圧Vslopeの傾き・カウント速度の変更の度合いと、変更のタイミングとは、受光光量のショットノイズの大きさに対して、AD変換の分解能低下が許容される範囲内で決定される。
 次に、時刻t6において、N列目の電圧比較部15の大小判定結果が反転した時点で、N列目のカウント部16がアップカウントを終了し、その時点でのカウント信号値DsigがN列目の単位画素2での受光光量に応じた信号レベルに対応するデジタル信号値となる。
 以上のように本比較例に係る固体撮像装置401では、リセットレベルに対応するデジタル信号値Drstはカウント部16がダウンカウント後にアップカウントすることで除去され、カウント部16のカウンタ初期値Dinitを基準として、受光光量に応じた信号レベルに対応するデジタル信号値Dsigのみを得ることが出来る。すなわち、カウント部16のダウンカウント及びアップカウント動作によって、いわゆる2重サンプリング動作がデジタル領域で行われる。このときのAD変換時間は時刻t0から時刻t6までの変換時間Tであり、参照信号電圧Vslopeの傾きとカウント部16のカウント速度とを時刻t5にて変更しない場合のAD変換時間は時刻t0から時刻t7までの変換時間T’であることから、参照信号電圧Vslopeの傾きの変更及びカウント速度の変更によりAD変換の高速化を行うことができる。
 ここで、参照信号電圧Vslopeは、供給源である参照信号生成部414から各列の電圧比較部15へ到達するまでに伝播遅延を有する。この伝播遅延は、信号配線の寄生容量及び寄生抵抗によるものであり、参照信号生成部414からの距離が列毎に異なるため、その遅延量も列毎に異なる。従って、参照信号生成部414がタイミング制御部13からの制御によって参照信号電圧Vslopeの傾きを変化させた後、各列の電圧比較部15で参照信号電圧Vslopeの傾きが実際に変化するまでには遅延が存在し、その結果、参照信号電圧Vslopeの傾きが変化するタイミングは列毎に異なる。
 同様に、AD変換速度変更部17によるカウント部16のカウント速度変更において、AD変換速度変更部17から出力されるカウント速度変更を制御する信号(図20のカウント速度変更信号TH)も同じく遅延を有する。従って、タイミング制御部13からの制御によって、カウント速度変更信号THが出力された後、各列のカウント部16へカウント速度変更信号THが入力されカウント速度が実際に変化するまでにも遅延が存在し、その結果、カウント速度が変化するタイミングは列毎に異なる。
 図21では、参照信号電圧Vslopeの傾きが変化するタイミングと、カウント部16のカウント速度が変化するタイミングとは、列AD変換回路480において同時刻t5であるとして図示している。無論、列AD変換回路480において、参照信号電圧Vslopeの遅延とカウント速度変更信号THの遅延とが全列にて同一の遅延量であれば、遅延が存在しても、参照信号電圧Vslopeの傾きが変化するタイミングと、カウント部16のカウント速度が変化するタイミングとの同時性を保てる。
 しかしながら、参照信号電圧Vslopeはアナログ信号であり、カウント速度変更信号THはデジタル信号であるため、各々の信号を駆動するドライバが異なる。また、デジタル信号には一般にリピーターバッファが挿入されるがアナログ信号には一般に挿入できない。さらに、参照信号電圧Vslopeは電圧比較部15へ出力され、カウント速度変更信号THはカウント部16へ出力されるため、各々の信号の負荷が異なる。これらを鑑みると、遅延を全列にて同一化することは困難であり、その結果、タイミング制御部13から同時刻に指令されたとしても、参照信号電圧Vslopeの傾き変化とカウント速度の変更とは、各列AD変換回路480にとって同時刻に実行され得ない。一般的には、各々の信号源から遠い列AD変換回路480ほど各信号の遅延も大きくなるため、各々の信号源から遠い列AD変換回路480ほどその同時性のずれも大きくなる。
 次に、図22を用いて、参照信号電圧Vslopeの傾き変更とカウント速度の変更とが同時に実行されない場合の固体撮像装置の動作について説明する。図22は、本比較例に係る固体撮像装置401の駆動方法を示したタイミングチャートである。
 なお、図22において、時刻t5までの動作は図21における動作と同一であり、その説明を省略する。ただし、参照信号電圧Vslopeは、参照信号生成部414の出力点における参照信号電圧ではなく、遅延後の参照信号電圧つまりN列目の列AD変換回路480における参照信号電圧として示す。また、カウント速度変更信号THのほうが、参照信号電圧Vslopeより遅延量が小さいとして説明するが、逆の場合も起こりうる。
 時刻t5において、AD変換速度変更部17からのカウント速度変更信号THがN列目の列AD変換回路480に到達し、カウント部16はカウント速度を2倍に変更する。
 時刻t5’において、N列目の列AD変換回路480の入力部で、参照信号電圧Vslopeの傾きが2倍の傾きへ変化する。
 図21では時刻t6において、N列目のカウント部16がアップカウントを終了し、その時点でのカウント値DsigがN列目の単位画素2での受光光量に応じた信号レベルに対応するデジタル信号値として得られる。
 しかし、図22では時刻t6'において、電圧比較部15の大小判定結果が反転した時点で、N列目のカウント部16がアップカウントを終了し、その時点でのカウント値Dsig'がN列目の単位画素2での受光光量に応じた信号レベルに対応するデジタル信号値として得られ、カウント値Dsig(真値)とは異なる値が得られる。これは、時刻t5から時刻t5'の間で、カウント部16のカウント速度と参照信号電圧Vslopeの傾きとの整合が取れておらず、不正確な変換ゲインでAD変換が行われたことにより、AD変換としてのリニアリティが崩れた結果である。カウント部16のカウント速度と参照信号電圧Vslopeの傾きとの整合が取れていない時間が長いほど、すなわち参照信号電圧Vslopeとカウント速度変更信号THとの遅延差が大きいほど、AD変換としてのリニアリティの崩れは大きくなる。このため、参照信号生成部414やAD変換速度変更部17からの距離が離れた列ほど遅延差が大きくなる場合には画像にシェーディングが発生し、特定の列で遅延差が大きくなる場合には画像に列固定パターンノイズが発生する。
 以上、図20~図22を用いて説明したように、本比較例に係る固体撮像装置401ではAD変換の高速化は一定の特性を得るが、AD変換のリニアリティの崩れと、シェーディングや列固定パターンノイズの発生による画質劣化という課題が発生する。
 (第6の実施形態)
 以下、図面を参照しながら、本発明の第6の実施形態に係るカメラの構成及び動作について説明する。
 図23は、本実施の形態のカメラの概略構成を示す図である。
 このカメラは、固体撮像装置1、レンズ610、DSP(デジタル信号処理回路)620、画像表示デバイス630および画像メモリ640から構成される。なお、カメラが備える固体撮像装置として第1の実施形態の固体撮像装置1を例示したが、他の実施形態の固体撮像装置101、201、301、401及び701のいずれかであってもよい。
 このカメラでは、レンズ610を介して外部から光が入射し、入射した光は固体撮像装置1によりデジタル信号に変換されて出力される。そして、出力されたデジタル信号はDSP620により処理されて映像信号として画像メモリ640に出力されて記録され、また画像表示デバイス630に出力されて画像表示される。
 DSP620は、固体撮像装置1の出力信号に対してノイズ除去等の処理を行って映像信号を生成する画像処理回路621と、固体撮像装置1における画素の走査タイミングおよびゲインの制御を行うカメラシステム制御部622とから構成される。DSP620は、例えば固体撮像装置1の単位セル内で共有される画素間での特性差に関する補正を行う。
 固体撮像装置1は1チップで形成され、固体撮像装置1が形成されたチップとDSP620が形成されたチップとは別チップとされる。これにより、固体撮像装置1の形成工程とDSP620の形成工程とを分離することで撮像部および処理部の製造工程を分離できるので、製造工程を削減して低コスト化を実現できる。また、タイミング制御、ゲイン制御および画像処理をユーザー毎に事由に設定することが可能となるため、使用の自由度を高くすることができる。
 以上、本発明の固体撮像装置及びカメラについて、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。例えば、各実施の形態は適宜組み合わされて所望の固体撮像装置が形成されてもよい。
 本発明は、固体撮像装置及びカメラに有用であり、特に高速及び高画質が求められるデジタルスチルカメラ及びデジタルビデオカメラ等として有用である。
  1、101、201、301、401、701、1001  固体撮像装置
  2、1003  単位画素
  3、703、1010  画素アレイ
  4、1014  垂直走査回路
  5、1015  行制御線
  6、1019  垂直信号線
  7  読み出し電流源
  8、108、208、308、408  AD変換部
  9、1018  水平信号線
  10、1012  水平走査回路
  11  水平制御線
  12  出力回路
  13  タイミング制御部
  14、114、414、1027  参照信号生成部
  15、1252  電圧比較部
  16、316  カウント部
  17  AD変換速度変更部
  18  メモリ部
  19、119  参照信号変更部
  20、720  閾値判定部
  21  補正処理部
  30  フォトダイオード
  31  転送トランジスタ
  32  読み出しトランジスタ
  33  選択トランジスタ
  34  リセットトランジスタ
  40  参照信号変更信号
  41  第1の容量
  42  第2の容量
  43  スイッチ手段
  45  差動増幅回路
  46  第1のDCカット容量
  47  第2のDCカット容量
  50  ラッチ回路
  60  水平転送CLK
  70、620  DSP
  80、180、280、380、480  列AD変換回路
  85  スイッチ手段
  86  クランプ容量
  90  クロックセレクタ
  91  カウンタ
  95  nビットカウンタ
  96  クロックセレクタ
  97  (m-n)ビットカウンタ
  610  レンズ
  621  画像処理回路
  622  カメラシステム制御部
  630  画像表示デバイス
  640  画像メモリ
  1005a  端子
  1007  駆動制御部
  1012a  水平デコーダ
  1012b  水平駆動回路
  1014a  垂直デコーダ
  1014b  垂直駆動回路
  1020  通信・タイミング制御部
  1024  読出電流源部
  1025  カラムAD回路
  1026  カラム処理部
  1028  出力部
  1254  カウンタ部
  1256  データ記憶部
  1258  スイッチ
 

Claims (17)

  1.  行列状に配置され、光を信号電圧に変換する複数の画素と、
     前記画素の列に対応して設けられ、対応する列の前記画素より出力された信号電圧を伝達する複数の垂直信号線と、
     前記垂直信号線に対応して設けられ、対応する前記垂直信号線により伝達された信号電圧をデジタル信号に変換する複数の列AD変換部とを備え、
     前記列AD変換部は、
     漸次変化する参照信号電圧とデジタル信号に変換される前記信号電圧との大小を比較する比較部と、
     前記比較部が比較を開始してから比較結果が変化するまでの時間をカウントするカウント部と、
     前記カウント部のカウント結果と所定の閾値とを比較する閾値判定部と、
     前記閾値判定部の比較結果を参照して、前記比較部へ供給する前記参照信号電圧の傾きを変更する参照信号変更部とを有する
     固体撮像装置。
  2.  前記固体撮像装置は、さらに、
     複数の前記列AD変換部から順次出力されるカウント結果のそれぞれに対して、前記参照信号電圧の傾きがK(0以外の正の実数)倍に変更された期間のカウント量をJ(0以外の正の実数)倍に補正する処理を順次実行する補正処理部を備える
     請求項1記載の固体撮像装置。
  3.  前記列AD変換部は、前記カウント部のカウント結果に対して、前記参照信号電圧の傾きがK(0以外の正の実数)倍に変更された期間のカウント量をJ(0以外の正の実数)倍に補正する補正処理部を有する
     請求項1記載の固体撮像装置。
  4.  前記カウント部は、入力されるクロックをカウントすることにより前記比較結果が変化するまでの時間をカウントし、前記参照信号電圧の傾きが変更されると同時に前記クロックの分周速度を変更する
     請求項1記載の固体撮像装置。
  5.  前記カウント部は、入力されるクロックをカウントすることにより前記比較結果が変化するまでの時間をカウントし、前記参照信号電圧の傾きが変更されると同時に前記クロックの周波数を変更する
     請求項1記載の固体撮像装置。
  6.  前記カウント部は、前記参照信号電圧の傾きが変更されると同時に変更時点までのカウント量をL(1より大きい実数)分の1倍した後、カウントを継続する
     請求項1記載の固体撮像装置。
  7.  前記参照信号変更部は、前記参照信号電圧の傾きを変化させるゲイン可変回路で構成される
     請求項1記載の固体撮像装置。
  8.  前記ゲイン可変回路は、容量結合回路と容量分割回路とのいずれかに切り替えられる
     請求項7記載の固体撮像装置。
  9.  前記ゲイン可変回路は、容量の分割比が切り替え可能な容量分割回路である
     請求項7記載の固体撮像装置。
  10.  前記比較部は、前記容量分割回路の容量素子を用いて該比較部のオフセットをキャンセルする
     請求項8又は9記載の固体撮像装置。
  11.  前記固体撮像装置は、さらに、
     傾きの異なる複数の参照信号電圧を生成する参照信号生成部を備え、
     前記参照信号変更部は、前記参照信号生成部により生成された複数の参照信号電圧のいずれかを選択し、選択した参照信号電圧を前記比較部へ供給し、
     前記参照信号変更部は、前記閾値判定部の比較結果が変わったときに、これまで選択していた参照信号電圧と異なる参照信号電圧を選択する
     請求項1記載の固体撮像装置。
  12.  前記参照信号変更部は、
     一端に前記参照信号生成部により生成された前記複数の参照信号電圧のうちの第2の参照信号電圧が供給され、他端が前記比較部に接続されたクランプ容量と、
     一端に前記参照信号生成部により生成された前記複数の参照信号電圧のうちの第1の参照信号電圧が供給され、他端が前記クランプ容量の他端に接続されたスイッチ手段とを有する
     請求項11記載の固体撮像装置。
  13.  前記閾値判定部は、前記カウント部のカウント開始後に、前記カウント部のカウンタのn(自然数)ビット目が初めて変化したことを記憶する記憶部で構成される
     請求項1記載の固体撮像装置。
  14.  前記固体撮像装置は、さらに、
     複数の前記画素のそれぞれに対応して、対応する前記画素の上に設けられたカラーフィルタを備え、
     前記複数の画素のうちの第1の画素の上に配置されたカラーフィルタの色と、前記複数の画素のうちの第2の画素の上に配置されたカラーフィルタの色とは異なり、
     前記第1の画素から出力された信号電圧をデジタル信号に変換するときに用いられる前記所定の閾値と、前記第2の画素から出力された信号電圧をデジタル信号に変換するときに用いられる前記所定の閾値とは異なる
     請求項1記載の固体撮像装置。
  15.  前記閾値判定部は、前記所定の閾値を複数保持し、デジタル信号に変換すべき信号電圧がいずれの画素により出力されたかに応じて前記複数の所定の閾値のいずれを用いるかを決定する
     請求項14記載の固体撮像装置。
  16.  前記固体撮像装置は、さらに、
     前記所定の閾値を複数保持し、デジタル信号に変換すべき信号電圧がいずれの画素により出力されたかに応じて前記複数の所定の閾値のいずれを用いるかを決定し、決定された前記所定の閾値を前記閾値判定部に送信する制御部を備え、
     前記閾値判定部は、前記制御部より送信された前記所定の閾値を前記比較に用いる
     請求項14記載の固体撮像装置。
  17.  請求項1記載の固体撮像装置を備える
     カメラ。
PCT/JP2010/003160 2009-05-29 2010-05-10 固体撮像装置及びカメラ WO2010137244A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-131304 2009-05-29
JP2009131304 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137244A1 true WO2010137244A1 (ja) 2010-12-02

Family

ID=43222376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003160 WO2010137244A1 (ja) 2009-05-29 2010-05-10 固体撮像装置及びカメラ

Country Status (1)

Country Link
WO (1) WO2010137244A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058930A (ja) * 2011-09-08 2013-03-28 Canon Inc 撮像装置
WO2013058213A1 (ja) * 2011-10-20 2013-04-25 ソニー株式会社 撮像素子およびカメラシステム
JP2013187744A (ja) * 2012-03-08 2013-09-19 Olympus Corp 撮像装置
WO2014038140A1 (ja) * 2012-09-10 2014-03-13 パナソニック株式会社 固体撮像装置及び撮像装置
CN103875236A (zh) * 2011-10-18 2014-06-18 索尼公司 图像拾取设备以及摄像机系统
JP2015119385A (ja) * 2013-12-19 2015-06-25 キヤノン株式会社 撮像装置および撮像システム
JP2016015758A (ja) * 2015-09-08 2016-01-28 キヤノン株式会社 撮像素子及び撮像装置
JP2016105622A (ja) * 2016-01-13 2016-06-09 キヤノン株式会社 撮像装置および撮像システム
US9485445B2 (en) 2011-06-23 2016-11-01 Canon Kabushiki Kaisha Imaging apparatus and method of driving the same
JP2017063505A (ja) * 2017-01-10 2017-03-30 キヤノン株式会社 撮像装置、撮像システム及び撮像装置の駆動方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185328A (ja) * 2000-12-18 2002-06-28 Canon Inc A/d変換器及びそれを用いた固体撮像装置
JP2003087664A (ja) * 2001-09-11 2003-03-20 Seiko Epson Corp 半導体装置
JP2007088971A (ja) * 2005-09-26 2007-04-05 Sony Corp Da変換装置、ad変換装置、半導体装置
JP2008136043A (ja) * 2006-11-29 2008-06-12 Sony Corp 固体撮像装置、撮像装置
JP2008199581A (ja) * 2007-01-17 2008-08-28 Sony Corp 固体撮像装置、撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185328A (ja) * 2000-12-18 2002-06-28 Canon Inc A/d変換器及びそれを用いた固体撮像装置
JP2003087664A (ja) * 2001-09-11 2003-03-20 Seiko Epson Corp 半導体装置
JP2007088971A (ja) * 2005-09-26 2007-04-05 Sony Corp Da変換装置、ad変換装置、半導体装置
JP2008136043A (ja) * 2006-11-29 2008-06-12 Sony Corp 固体撮像装置、撮像装置
JP2008199581A (ja) * 2007-01-17 2008-08-28 Sony Corp 固体撮像装置、撮像装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9485445B2 (en) 2011-06-23 2016-11-01 Canon Kabushiki Kaisha Imaging apparatus and method of driving the same
US9912894B2 (en) 2011-06-23 2018-03-06 Canon Kabushiki Kaisha Imaging apparatus and method of driving the same
US9615044B2 (en) 2011-06-23 2017-04-04 Canon Kabushiki Kaisha Imaging apparatus and method of driving the same
US9800809B2 (en) 2011-09-08 2017-10-24 Canon Kabushiki Kaisha Imaging apparatus, imaging system, and method for reducing a difference in resolutions
JP2013058930A (ja) * 2011-09-08 2013-03-28 Canon Inc 撮像装置
CN103875236A (zh) * 2011-10-18 2014-06-18 索尼公司 图像拾取设备以及摄像机系统
CN103875237A (zh) * 2011-10-20 2014-06-18 索尼公司 图像拾取器件和相机系统
WO2013058213A1 (ja) * 2011-10-20 2013-04-25 ソニー株式会社 撮像素子およびカメラシステム
JP2013187744A (ja) * 2012-03-08 2013-09-19 Olympus Corp 撮像装置
JPWO2014038140A1 (ja) * 2012-09-10 2016-08-08 パナソニックIpマネジメント株式会社 固体撮像装置及び撮像装置
WO2014038140A1 (ja) * 2012-09-10 2014-03-13 パナソニック株式会社 固体撮像装置及び撮像装置
US9635299B2 (en) 2012-09-10 2017-04-25 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device and imaging apparatus including an adjusting circuit that reduces an amplitude of a control signal from a control unit
JP2015119385A (ja) * 2013-12-19 2015-06-25 キヤノン株式会社 撮像装置および撮像システム
JP2016015758A (ja) * 2015-09-08 2016-01-28 キヤノン株式会社 撮像素子及び撮像装置
JP2016105622A (ja) * 2016-01-13 2016-06-09 キヤノン株式会社 撮像装置および撮像システム
JP2017063505A (ja) * 2017-01-10 2017-03-30 キヤノン株式会社 撮像装置、撮像システム及び撮像装置の駆動方法

Similar Documents

Publication Publication Date Title
WO2010137244A1 (ja) 固体撮像装置及びカメラ
US10070103B2 (en) Solid-state imaging device, driving method, and electronic device
US9800809B2 (en) Imaging apparatus, imaging system, and method for reducing a difference in resolutions
JP4238900B2 (ja) 固体撮像装置、撮像装置
EP2555509B1 (en) Image pickup apparatus comprising a ramp-compare AD converter.
US8466995B2 (en) Solid-state imaging device and camera system
KR101614162B1 (ko) 고체 촬상 센서 및 카메라 시스템
US8072522B2 (en) Solid-state imaging device, imaging apparatus, and electronic apparatus
JP6304572B2 (ja) 固体撮像装置及びそれを備える撮像装置
JP4929075B2 (ja) 固体撮像装置およびその駆動方法、撮像装置
JP5374110B2 (ja) 撮像センサ及び撮像装置
JP4952498B2 (ja) データ処理装置、固体撮像装置、撮像装置、電子機器
KR20110006602A (ko) 고체 촬상 소자 및 그 제어 방법, 및 카메라 시스템
JP5149687B2 (ja) 撮像センサ、撮像システム、及び撮像センサの制御方法
US9344652B2 (en) Photoelectric conversion apparatus and image pickup system including an ad conversion unit to convert a signal into a digital signal
US20120104233A1 (en) Solid-state imaging device and method of driving the same
US8848079B2 (en) Solid-state imaging device and imaging system using buffered counter value of a counter
JP4683112B2 (ja) 固体撮像装置、撮像装置
US9819888B2 (en) Image pickup device, image pickup system, driving method for image pickup device, and driving method for image pickup system
US20150172581A1 (en) Driving method for photoelectric conversion apparatus, photoelectric conversion apparatus, and image pickup system
JP2013051575A (ja) 固体撮像装置、撮像装置および撮像方法
JP2022184314A (ja) 撮像素子、及び、撮像装置
JP2019186953A (ja) 光電変換素子、画像読取装置及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP