WO2010137133A1 - 同期電動機の磁極位置推定装置 - Google Patents

同期電動機の磁極位置推定装置 Download PDF

Info

Publication number
WO2010137133A1
WO2010137133A1 PCT/JP2009/059689 JP2009059689W WO2010137133A1 WO 2010137133 A1 WO2010137133 A1 WO 2010137133A1 JP 2009059689 W JP2009059689 W JP 2009059689W WO 2010137133 A1 WO2010137133 A1 WO 2010137133A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
pole position
current
synchronous motor
value
Prior art date
Application number
PCT/JP2009/059689
Other languages
English (en)
French (fr)
Inventor
俊行 馬場
正徳 安江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/059689 priority Critical patent/WO2010137133A1/ja
Priority to CN200980158978.8A priority patent/CN102414979B/zh
Priority to KR1020117024822A priority patent/KR101249156B1/ko
Priority to JP2011515791A priority patent/JP5335078B2/ja
Priority to EP09845200.6A priority patent/EP2437391B1/en
Publication of WO2010137133A1 publication Critical patent/WO2010137133A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/11Determination or estimation of the rotor position or other motor parameters based on the analysis of high-frequency signals

Definitions

  • This invention relates to a magnetic pole position estimation device for a synchronous motor that estimates the magnetic pole position of the synchronous motor without using a position detector such as an encoder.
  • a magnetic pole position estimation device for a synchronous motor that estimates an initial magnetic pole position of a rotor with an electric angle of 60 degrees depending on a magnitude relationship between current peak values accompanying magnetic saturation when a pulse voltage is applied.
  • the synchronous motor can be started without step-out, and stable operation is possible by performing magnetic pole correction by the induced voltage after the speed is increased.
  • FIG. 3 is a block diagram showing a conventional magnetic pole position estimation device for a synchronous motor.
  • the magnetic pole position estimation device for a synchronous motor includes a synchronous motor 51, circuit means 52 (voltage application means), current detection means 53, and calculation means 54.
  • the rotor (not shown) of the synchronous motor 51 is made of a permanent magnet.
  • the synchronous motor 51 has a plurality of phases. Specifically, the synchronous motor 51 has three phases of U phase, V phase, and W phase. Each of these phases is connected to the circuit means 52.
  • the circuit means 52 applies a pulse voltage to each phase of the synchronous motor 51 based on the voltage command from the calculation means 54. At this time, a current corresponding to the applied voltage flows in each phase of the synchronous motor 51.
  • the current detection means 53 detects the current flowing through each phase of the synchronous motor 51 and outputs it to the calculation means 54.
  • the calculating means 54 calculates the magnetic pole position of the rotor based on the detected current value from the current detecting means 53.
  • the magnetic flux caused by the current generated by the applied voltage and the magnet magnetic flux of the rotor are also opposite to each other.
  • the total value of these magnetic fluxes becomes small, and magnetic saturation does not occur in the motor core.
  • the winding inductance of the phase of the synchronous motor 51 becomes large. Therefore, the amplitude of the current flowing in the phase of the synchronous motor 51 appears small. That is, depending on the relationship between the phase of the magnetic poles of the rotor and the phase of the applied voltage, the degree of magnetic saturation of the motor core is different, and the amplitude of the current flowing through the phase of the synchronous motor 51 is different.
  • the calculation means 54 includes a storage means 61, a voltage control means 62, and an estimation means 63.
  • the storage unit 61 stores a plurality of voltage command vectors having the same amplitude and having a phase difference obtained by equally dividing 360 degrees.
  • the voltage control means 62 sequentially switches a plurality of magnetic pole position estimation pulse voltages to each phase of the synchronous motor 51 based on the voltage command obtained by converting the voltage command vector to the circuit means 52 when the rotor starts rotating. Applied. At this time, the voltage control means 62 outputs a voltage command to the circuit means 52 and outputs a trigger signal synchronized with the voltage command to the current detection means 53. Thereby, the current detection means 53 detects a pulse current flowing in each phase of the synchronous motor 51 in synchronization with the pulse voltage.
  • the estimation means 63 calculates a current vector based on the amplitude of the pulse current. Thereafter, the estimation means 63 estimates the initial magnetic pole position of the rotor based on the phase of an average vector obtained by averaging a plurality of current vectors corresponding to each of the plurality of voltage command vectors.
  • FIG. 4 is an explanatory diagram showing a pulse voltage applied by the circuit means 52 of the conventional magnetic pole position estimation device for a synchronous motor.
  • FIG. 4 shows voltage command vectors V1 to V6.
  • these voltage command vectors have a phase difference obtained by equally dividing 360 degrees into six.
  • the voltage command vectors V1, V3, and V5 are set to match the phases of the U phase, V phase, and W phase of the synchronous motor 51, respectively.
  • the voltage command vectors V2, V4, and V6 are set so as to match the intermediate phase between adjacent phases among these phases.
  • a pulse voltage corresponding to these voltage command vectors is applied to each phase of the synchronous motor 51.
  • FIG. 5 is an explanatory diagram showing a phase current response waveform detected by the current detection means 53 of the conventional magnetic pole position estimation device for a synchronous motor.
  • the horizontal axis indicates time, and the vertical axis indicates the current value.
  • FIG. 5 also shows a current value Iu (see the broken line) flowing in the U phase of the synchronous motor 51 and a current value Iv (see the solid line) flowing in the V phase. Note that the ON time of the pulse voltage is set for each electric motor so that the current can be magnetically saturated.
  • FIG. 5 shows a case where the ON time of the pulse voltage is set to 400 ⁇ sec.
  • the off time between adjacent pulse voltages is arbitrarily set within a range where current waveforms between adjacent pulse voltages do not overlap.
  • the zero voltage at the time of switching the pulse voltage is generated by turning off all the gates of the switching elements of each phase of the synchronous motor 51.
  • FIG. 5 shows a case where the off time between adjacent pulse voltages is set to 2.4 msec.
  • the estimated time of the initial magnetic pole position of the rotor is set so as to satisfy a predetermined requirement.
  • the estimation time is set so that the estimation of the initial magnetic pole position of the rotor is completed before the brake is released.
  • FIG. 5 shows a case where the estimated time of the initial magnetic pole position of the rotor is set to 20 msec.
  • the current corresponding to the voltage command vector V1 appears as a waveform having a predetermined polarity and peak value at a time of about 0.003 sec.
  • the current corresponding to each of the voltage command vectors V2 to V6 also appears as a waveform having a predetermined polarity and peak value at a predetermined time point.
  • FIG. 6 is an explanatory diagram showing an ⁇ -phase current response waveform in a conventional magnetic pole position estimation device for a synchronous motor.
  • FIG. 7 is an explanatory diagram showing a ⁇ -phase current response waveform in the conventional magnetic pole position estimation device for a synchronous motor. 6 and 7, the horizontal axis represents time, and the vertical axis represents the current value.
  • FIG. 6 shows a current value I ⁇ converted from the current value Iu flowing in the U phase and the current value Iv flowing in the V phase of the synchronous motor 51 into the ⁇ - ⁇ coordinate system (fixed coordinate system).
  • FIG. 7 shows the current value I ⁇ converted from the current value Iu flowing in the U phase and the current value Iv flowing in the V phase of the synchronous motor 51 into the ⁇ - ⁇ coordinate system (fixed coordinate system).
  • the current values I ⁇ and I ⁇ are represented as values having a peak value at the same time as the current values Iu and Iv. This peak value is detected as the amplitude of the current when the pulse voltage is applied.
  • FIG. 8 is an explanatory diagram showing the locus of the current vector calculated by the estimating means 63 of the conventional magnetic pole position estimating device for a synchronous motor.
  • the horizontal axis represents the value of the current I alpha
  • the vertical axis represents the current value I beta.
  • the tip of the current vector corresponding to each pulse voltage is indicated by a square.
  • the integrated value of these current vectors that is, the tip of the average vector is indicated by a triangle.
  • the current vector in the d-axis direction of the dq coordinate system expands, and the average vector also indicates the d-axis direction.
  • FIG. 9 is an explanatory diagram for explaining the convergence calculation of the estimated magnetic pole value by the conventional magnetic pole position estimating device for a synchronous motor.
  • the horizontal axis represents time
  • the vertical axis represents the current value Iu and the estimated value of the initial magnetic pole position.
  • FIG. 9 shows the result of convergence calculation of the current value Iu and the average vector phase ⁇ *. As shown in FIG. 9, it can be seen that the phase of the average vector converges at a value of slightly over 60 degrees after 0.022 sec.
  • the convergence calculation time is set to an arbitrary time after confirming the convergence state.
  • FIG. 10 shows a series of operations shown in FIGS.
  • the operating subject in step S71 is the circuit means 52
  • the operating subject in step S72 is the current detecting means 53
  • the operating subject in steps S73 to S77 is the estimating means 63.
  • a pulse voltage for estimating the magnetic pole position is applied to each phase of the synchronous motor 51 (step S71). Subsequently, the current value Iu flowing in the U phase of the synchronous motor 51 and the current value Iv flowing in the V phase are detected (step S72).
  • the current value Iu and the current value Iv are converted into a current value I ⁇ and a current value I ⁇ in the ⁇ - ⁇ coordinate system (step S73). Subsequently, each of the maximum value I N.alpha and the maximum value I N.beta current value I alpha and the current value I beta is detected (step S74).
  • step S75 it is determined whether or not all six pulse voltages have been applied to each phase of the synchronous motor 51 (step S75). If it is determined in step S75 that all six pulse voltages have not been applied to each phase of the synchronous motor 51 (that is, No), the process proceeds to step S71.
  • step S75 the all pulse voltage of 6 pulse is applied to each phase of the synchronous motor 51 (i.e., Yes) and when it is determined, the respective maximum values of the current values I alpha and the current value I beta I N.alpha and maximum value I N.beta the current integrated value I 0 (I 0 ⁇ , I 0 ⁇ ) is calculated (step S76).
  • step S77 an estimated value of the initial magnetic pole position of the rotor is obtained by convergence calculation (step S77), and the processing of FIG.
  • the initial magnetic pole position of the rotor is estimated based on the average vector phase obtained by averaging a plurality of current vectors corresponding to each of a plurality of voltage command vectors. Is done. Therefore, the initial magnetic pole position of the rotor can be estimated with higher accuracy than the electrical angle of 60 degrees.
  • the prior art has the following problems.
  • the on-time of the pulse current is set for each electric motor so that the current can be magnetically saturated, and the estimation result obtained by the estimation means 63 is the initial magnetic pole of the rotor with high accuracy.
  • the position can be estimated.
  • the current is small and the magnetic saturation is not sufficient, the extension of the current vector in the d-axis direction due to the peak value of the pulse current corresponding to each voltage command vector V1 to V6 is not as significant as shown in FIG.
  • the estimation accuracy of the initial magnetic pole position of the rotor is lowered.
  • FIG. 11 shows the locus of the current vector when the on-time of the pulse voltage is changed under the condition that the bus voltage is constant in the conventional magnetic pole position estimation device for a synchronous motor.
  • FIG. 11A shows the locus of the current vector when the ON time of the pulse voltage is the reference time t.
  • FIG. 11B shows the locus of the current vector when the ON time of the pulse voltage is 0.75 t.
  • FIG. 11C shows a current vector locus when the ON time of the pulse voltage is 0.5 t.
  • the power supply voltage is unstable.
  • the DC bus voltage may decrease, and the pulse voltage (amplitude) value itself may be smaller than the normal value. If the pulse voltage value itself becomes small, the ON time of the pulse voltage set for each electric motor is constant, so that a current sufficient for magnetic saturation cannot be obtained, and the estimation accuracy decreases. As a result, the electric motor is not properly started, and there is a possibility that a temporary reverse rotation may occur or a startup failure may occur.
  • the present invention has been made to solve the above-described problems, and is a synchronous motor that can estimate the initial magnetic pole position of a rotor with high accuracy even when the power supply voltage is unstable. It is an object to obtain a magnetic pole position estimation device.
  • a magnetic pole position estimating device for a synchronous motor according to the present invention is based on a voltage command, a voltage applying means for applying a voltage to each phase of the synchronous motor, and a current flowing in each phase of the synchronous motor according to the applied voltage.
  • the current detection unit for detecting, the storage unit for storing a plurality of voltage command vectors having the same amplitude having a phase difference obtained by equally dividing 360 degrees, Voltage control means for sequentially switching and applying a plurality of magnetic pole position estimation pulse voltages to each phase of the motor, and the amplitude of the current flowing in each phase of the synchronous motor in synchronization with the plurality of magnetic pole position estimation pulse voltages Based on the phase of an average vector obtained by averaging a plurality of current vectors corresponding to each of a plurality of voltage command vectors.
  • a magnetic pole position estimation device for a synchronous motor comprising an estimation means for estimating an initial magnetic pole position of a rotor of a machine, and an estimation means based on a detected current value detected by a current detection means and a predetermined current threshold
  • the estimated value correctness determination means for determining whether the initial magnetic pole position estimated in step 1 is correct or incorrect, the current threshold storage means for storing a predetermined current threshold, and the estimated value correctness determination means are the initial values estimated by the estimation means. It further comprises pulse voltage application condition changing means for changing the application condition of the pulse voltage so that desired magnetic saturation occurs when it is determined that the magnetic pole position is incorrect.
  • the estimated value correctness / incorrectness determining means is based on the detected current value detected by the current detecting means and the predetermined current threshold, and the initial magnetic pole estimated by the estimating means. Determine if the position is correct or incorrect.
  • the current threshold storage means stores a predetermined current threshold.
  • the pulse voltage application condition changing unit is configured to apply the pulse voltage application condition so that desired magnetic saturation occurs when the estimated value correctness determination unit determines that the initial magnetic pole position estimated by the estimation unit is incorrect. To change. Therefore, even when the power supply voltage is unstable, the initial magnetic pole position of the rotor can be estimated with high accuracy.
  • Example 1 It is a block block diagram which shows the magnetic pole position estimation apparatus of the synchronous motor which concerns on Embodiment 1 of this invention.
  • Example 1 It is a flowchart which shows operation
  • Example 1 It is a block block diagram which shows the magnetic pole position estimation apparatus of the conventional synchronous motor. It is explanatory drawing which shows the pulse voltage which the circuit means of the magnetic pole position estimation apparatus of the conventional synchronous motor applies. It is explanatory drawing which shows the phase current response waveform detected by the current detection means of the magnetic pole position estimation apparatus of the conventional synchronous motor. It is explanatory drawing which shows the alpha phase current response waveform in the magnetic pole position estimation apparatus of the conventional synchronous motor.
  • FIG. 1 is a block diagram showing a magnetic pole position estimating apparatus for a synchronous motor according to Embodiment 1 of the present invention.
  • the magnetic pole position estimation device for a synchronous motor includes a synchronous motor 1, circuit means 2, current detection means 3, and calculation means 4.
  • the synchronous motor 1, circuit means 2 and current detection means 3 are the same as the synchronous motor 51, circuit means 52 and current detection means 53 shown in FIG.
  • the calculation means 4 includes a storage means 11, a voltage control means 12, an estimation means 13, a current threshold value storage means 14, an estimated value correctness determination means 15, and a pulse voltage application condition change means 16.
  • the storage means 11, voltage control means 12 and estimation means 13 are the same as the storage means 61, voltage control means 62 and estimation means 63 shown in FIG.
  • the estimated value correctness determination means 15 stores in the current threshold storage means 14 whether the error is small and the accuracy is high or the accuracy is large and the accuracy is low with respect to the initial magnetic pole position of the rotor estimated by the estimation means 13. The determination is made based on the magnetic saturation current threshold.
  • the current threshold value storage means 14 stores, as a magnetic saturation current threshold value, a pulse current peak value capable of obtaining sufficient magnetic saturation to ensure the estimation accuracy of the initial magnetic pole position of the rotor.
  • the current threshold storage unit 14 stores the peak values of the ⁇ -phase and ⁇ -phase pulse currents obtained by converting the U-phase and V-phase pulse currents into the ⁇ - ⁇ coordinate system as magnetic saturation current threshold values.
  • the estimated value correctness determination means 15 compares the pulse current amplitude calculated by the estimation means 13 with the magnetic saturation current threshold value stored in the current threshold value storage means 14. In addition, the estimated value correctness / incorrectness determination means 15 determines that the rotation of the estimation means 13 is sufficient if sufficient magnetic saturation is obtained to ensure estimation accuracy when the pulse current amplitude is larger than the magnetic saturation current threshold. It is determined that the estimation result of the initial magnetic pole position of the child is correct. On the other hand, when the pulse current amplitude is a value smaller than the magnetic saturation current threshold value, the estimated value correctness / incorrectness determination means 15 assumes that sufficient magnetic saturation has not been obtained in order to ensure the estimation accuracy. The estimation result of the initial magnetic pole position of the rotor is determined to be an error.
  • the pulse voltage application condition changing unit 16 adjusts the pulse current so that when the estimated value correct / incorrect determination unit 15 determines that the estimation result of the initial magnetic pole position of the rotor is incorrect, a current amount that sufficiently generates magnetic saturation flows.
  • the on-time is set longer than the time set in advance for each electric motor.
  • FIG. 2 shows a series of operations of the synchronous motor magnetic pole position estimation apparatus. 2 are the same as steps S71 to 77 shown in FIG. 10, respectively, and thus description thereof is omitted.
  • the estimated value correct / incorrect determination means 15 determines, based on the detection result in step S24, when it is determined in step S25 that all six pulse voltages have been applied to each phase of the synchronous motor 51 (ie, Yes).
  • the magnetic saturation determination current value is calculated (step S26).
  • the estimated value correctness determination means 15 a total of six pulses of the maximum value I N.beta of 6 pulses and the current value I beta of the maximum value I N.alpha current value I alpha detected in step S24 12
  • the absolute value of 12 pulses is calculated from the pulse, and the pulse current peak value having the maximum amplitude is extracted from the 12 pulses as the magnetic saturation determination current value.
  • the estimated value correctness determination means 15 determines whether or not the magnetic saturation determination current value calculated in step S26 is greater than or equal to the magnetic saturation current threshold stored in the current threshold storage means 14 (step S27). .
  • step S27 when it is determined that the magnetic saturation determination current value is equal to or greater than the magnetic saturation current threshold (that is, Yes), sufficient magnetic saturation is obtained, and a correct estimation result of the initial magnetic pole position of the rotor is obtained. If so, the process proceeds to step S28.
  • step S27 if it is determined in step S27 that the magnetic saturation determination current value is not equal to or greater than the magnetic saturation current threshold (that is, No), sufficient magnetic saturation has not been obtained, and the correct initial magnetic pole position of the rotor has not been obtained. Assuming that no estimation result is obtained, the process proceeds to step S30.
  • the pulse voltage application condition changing means 16 sets the ON time of the pulse current to be longer than the time set in advance for each electric motor so that a current amount that sufficiently generates magnetic saturation flows (step S30). ), The process proceeds to step S21.
  • the pulse voltage application condition changing unit 16 sets the set value for one calculation cycle longer.
  • the estimated value correctness determination means determines whether the initial magnetic pole position estimated by the estimation means is based on the detected current value detected by the current detection means and the predetermined current threshold. Determine whether it is right or wrong. Further, the current threshold storage means stores a predetermined current threshold. In addition, the pulse voltage application condition changing unit is configured to apply the pulse voltage application condition so that desired magnetic saturation occurs when the estimated value correctness determination unit determines that the initial magnetic pole position estimated by the estimation unit is incorrect. To change. Therefore, even if the power supply voltage is unstable, the initial magnetic pole position of the rotor can be estimated with high accuracy.
  • the synchronous motor has three phases, and the estimation means is based on the amplitude of the current flowing in two phases of the amplitude of the current flowing in the three phases of the synchronous motor in synchronization with the pulse voltage for estimating the magnetic pole position.
  • the current vector is calculated and the initial magnetic pole position of the rotor is estimated. Therefore, it is possible to estimate the initial magnetic pole position of the rotor simply and with high accuracy by diverting arithmetic means used for normal motor control.
  • the magnetic pole position estimation device can be reduced in size.
  • the computing means matches the three phases of the voltage command vector with the three phases of the synchronous motor, and sets the other three phases of the voltage command vector to an intermediate phase between adjacent phases of the three phases of the synchronous motor. Is set to match. Therefore, the voltage command to the circuit means can be simplified. Further, the calculation means generates a zero voltage at the time of switching the pulse voltage for initial magnetic pole position estimation by turning off all gates of the switching elements of each phase of the synchronous motor. Therefore, the estimation time of the initial magnetic pole position of the rotor can be shortened.
  • the current threshold value storage unit 14 uses, as the magnetic saturation current threshold value, the pulse current peak value that can obtain sufficient magnetic saturation to ensure the estimation accuracy of the initial magnetic pole position of the rotor.
  • the peak values of the ⁇ -phase and ⁇ -phase pulse currents obtained by converting the U-phase and V-phase pulse currents into the ⁇ - ⁇ coordinate system are stored as magnetic saturation current threshold values.
  • the present invention is not limited to this, and another value may be stored as the magnetic saturation current threshold value.
  • the maximum value I N ⁇ of the current value I ⁇ detected in step S26 when it is determined in step S26 described above that all six pulse voltages are applied to each phase of the synchronous motor 51, the maximum value I N ⁇ of the current value I ⁇ detected in step S26.
  • the average value for 6 pulses and the average value for 6 pulses of the maximum value I N ⁇ of the current value I ⁇ may be calculated, and the absolute value and the threshold value may be compared.
  • the current threshold value storage means 14 obtains an average value for six pulses of the ⁇ - ⁇ axis pulse current peak value that can obtain sufficient magnetic saturation to ensure the estimation accuracy of the initial magnetic pole position of the rotor. , And stored as a magnetic saturation current threshold.
  • a value obtained by projecting the average vector onto the ⁇ axis or ⁇ axis is a value near zero.
  • the value obtained by projecting the average vector onto the ⁇ axis or ⁇ axis is not a value near 0 but the d axis direction. It becomes the value of the direction extended to. From such characteristics, the presence or absence of magnetic saturation can be determined to determine whether the estimated value of the initial magnetic pole position of the rotor is correct or incorrect. It is also possible to determine the presence or absence of magnetic saturation based on the magnitude of the average vector from the zero point, and to determine whether the estimated value of the initial magnetic pole position of the rotor is correct or incorrect.
  • the maximum value I of the current value I alpha detected in step S26 difference value between the maximum value and the minimum value of 6 pulses of n [alpha, or a difference value between the maximum value and the minimum value of 6 pulses of the maximum value I N.beta current value I beta, may be compared with a threshold value .
  • the current threshold value storage means 14 can obtain a magnetic saturation sufficient to ensure the estimation accuracy of the initial magnetic pole position of the rotor, and the maximum value of the pulse current peak value of 6 pulses on the ⁇ - ⁇ axis.
  • a difference value from the minimum value is stored as a magnetic saturation current threshold value.
  • the current threshold storage means 14 stores a current value obtained by converting a three-phase (U, V, W) current into a two-phase ( ⁇ , ⁇ ) current as a magnetic saturation current threshold.
  • the present invention is not limited to this, and the three-phase current may be stored. Specifically, for example, when it is determined in step S26 described above that all six pulse voltages have been applied to the respective phases of the synchronous motor 51, the maximum current value Iu of the three-phase current detected in step S22.
  • steps S21 to S27 in the flowchart of FIG. 2 are repeated a plurality of times, and the average value of the estimated values is determined as the magnetic pole position to start the motor, thereby preventing the motor from being disabled as much as possible. Can be made possible.
  • This can be applied to, for example, rescue operation of an elevator or the like, and passengers can be rescued while minimizing the influence on the ride comfort, so that the reliability of the elevator can be improved. Note that this is limited to a case where it is experimentally known that the difference between the magnetic saturation determination current value and the magnetic saturation current threshold value is not large enough to cause the start failure.
  • the pulse current is turned on.
  • a current suitable for estimating the initial magnetic pole position of the rotor can be obtained, and demagnetization of the permanent magnet of the motor can be prevented.
  • the on-time of the pulse voltage that is optimal for estimating the initial magnetic pole position of the rotor is set. can do. Therefore, optimization to an appropriate current can be automatically performed as a countermeasure when the ease of magnetic saturation varies depending on individual manufacturing differences of electric motors.
  • the ease of magnetic saturation varies depending on the motor.
  • the on-time of the pulse voltage must be set experimentally for each motor, and the designer needs to tune for each motor, but it can be tuned automatically, saving design effort. Can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 電源電圧が不安定な場合であっても、高い精度で回転子の初期磁極位置を推定することができる同期電動機の磁極位置推定装置を得る。 電流検出手段3で検出された検出電流値と所定の電流閾値とに基づいて、推定手段13で推定された初期磁極位置が正しいか誤っているかを判定する推定値正誤判定手段15と、所定の電流閾値を記憶する電流閾値記憶手段14と、推定値正誤判定手段15が、推定手段13で推定された初期磁極位置が誤っていると判定した場合に、所望の磁気飽和が発生するようにパルス電圧の印加条件を変更するパルス電圧印加条件変更手段16とを備える。

Description

同期電動機の磁極位置推定装置
 この発明は、エンコーダ等の位置検出器を用いずに同期電動機の磁極位置を推定する同期電動機の磁極位置推定装置に関する。
 同期電動機において、パルス電圧を印加したときの磁気飽和に伴う電流ピーク値の大小関係によって、電気角60度の幅で回転子の初期磁極位置を推定する同期電動機の磁極位置推定装置が知られている(例えば、特許文献1参照)。
 これにより、同期電動機を脱調なく始動させることができ、速度上昇後に誘起電圧による磁極補正を行うことで、安定した運転が可能となっている。
 しかしながら、特許文献1に記載された同期電動機の磁極位置推定装置では、回転子の初期磁極位置が、電気角60度の幅でしか推定されない。そのため、エレベータ等、同期電動機の始動時から微妙なトルク制御や十分な加速トルクが要求される用途では、回転子の初期磁極位置の推定精度が低いという問題があった。
 そこで、上記の問題を解決するために、以下のような同期電動機の磁極位置推定装置が提案されている。
 図3は、従来の同期電動機の磁極位置推定装置を示すブロック構成図である。
 図3において、この同期電動機の磁極位置推定装置は、同期電動機51と、回路手段52(電圧印加手段)と、電流検出手段53と、演算手段54とを備えている。
 同期電動機51の回転子(図示せず)は、永久磁石からなる。また、同期電動機51は、複数の相を有する。具体的には、同期電動機51は、U相、V相、W相の3相を有する。これらの各相は、回路手段52に接続されている。回路手段52は、演算手段54からの電圧指令に基づいて、同期電動機51の各相にパルス電圧を印加する。このとき、印加された電圧に応じた電流が、同期電動機51の各相に流れる。電流検出手段53は、同期電動機51の各相に流れる電流を検出して演算手段54に出力する。演算手段54は、電流検出手段53からの検出電流値に基づいて、回転子の磁極位置を演算する。
 上記制御により、演算手段54からの電圧指令に基づいてパルス電圧が印加される同期電動機51において、回転子の磁極の位相と印加電圧の位相とが互いに同じ向きの場合、印加電圧によって生じる電流による磁束と回転子の磁石磁束とも互いに同じ向きとなる。この結果、それらの磁束合算値が大きくなり、電動機鉄心に磁気飽和が生じる。そして、磁気飽和時には、同期電動機51の相の巻線インダクタンスが小さくなる。そのため、同期電動機51の相に流れる電流の振幅が大きく現れる。
 一方、回転子の磁極の位相と印加電圧の位相とが互いに逆向きの場合、印加電圧によって生じる電流による磁束と回転子の磁石磁束とも互いに逆向きとなる。この結果、それらの磁束合算値が小さくなり、電動機鉄心に磁気飽和は生じない。そして、非磁気飽和時には、同期電動機51の相の巻線インダクタンスが大きくなる。そのため、同期電動機51の相に流れる電流の振幅が小さく現れる。
 すなわち、回転子の磁極の位相と印加電圧の位相との関係により、電動機鉄心の磁気飽和の度合いが異なり、同期電動機51の相に流れる電流の振幅が異なる。
 従来の同期電動機の磁極位置推定装置は、この現象を利用して回転子の初期磁極位置を推定している。
 また、図3において、演算手段54は、記憶手段61と、電圧制御手段62と、推定手段63とを有している。
 記憶手段61は、360度を均等分割した位相差を有する同振幅の複数の電圧指令ベクトルを記憶する。
 電圧制御手段62は、回転子の回転始動時、回路手段52に、電圧指令ベクトルを変換した電圧指令に基づいて、同期電動機51の各相に複数の磁極位置推定用のパルス電圧を、順次切り換えて印加させる。このとき、電圧制御手段62は、回路手段52に電圧指令を出力するとともに、この電圧指令に同期したトリガ信号を電流検出手段53に出力する。これにより、電流検出手段53は、パルス電圧に同期して同期電動機51の各相に流れるパルス電流を検出する。
 推定手段63は、パルス電流の振幅に基づいて、電流ベクトルを演算する。その後、推定手段63は、複数の電圧指令ベクトルのそれぞれに対応する複数の電流ベクトルを平均した平均ベクトルの位相に基づいて、回転子の初期磁極位置を推定する。
 続いて、図4~9を参照しながら、回転子の初期磁極位置の推定方法を、具体例を挙げて詳細に説明する。
 図4は、従来の同期電動機の磁極位置推定装置の回路手段52が印加するパルス電圧を示す説明図である。図4には、電圧指令ベクトルV1~V6が示されている。
 図4において、これらの電圧指令ベクトルは、360度を均等に6分割した位相差を有している。具体的には、電圧指令ベクトルV1、V3、V5は、それぞれ同期電動機51のU相、V相、W相の位相に合わせるように設定されている。また、電圧指令ベクトルV2、V4、V6は、これらの相のうちの隣接する相間の中間位相に合わせるように設定されている。そして、これらの電圧指令ベクトルに応じたパルス電圧が、同期電動機51の各相に印加される。
 図5は、従来の同期電動機の磁極位置推定装置の電流検出手段53によって検出された相電流応答波形を示す説明図である。
 図5において、横軸は時間を示し、縦軸は電流値を示している。また、図5には、同期電動機51のU相に流れる電流値Iu(破線参照)およびV相に流れる電流値Iv(実線参照)が示されている。なお、パルス電圧のオン時間は、磁気飽和が可能な電流となるように、個々の電動機について設定される。図5では、パルス電圧のオン時間が400μsecに設定された場合を示している。
 また、隣接するパルス電圧間のオフ時間は、隣接パルス電圧間の電流波形が重複しない範囲で任意に設定される。なお、パルス電圧の切り換え時のゼロ電圧は、同期電動機51の各相のスイッチング素子の全ゲートをオフすることにより発生させる。図5では、隣接するパルス電圧間のオフ時間が2.4msecに設定された場合を示している。
 さらに、回転子の初期磁極位置の推定時間は、所定の要件を満たすように設定される。例えば、同期電動機51がエレベータに利用される場合には、回転子の初期磁極位置の推定が、ブレーキ開放前に終了するように推定時間が設定される。具体的には、図5では、回転子の初期磁極位置の推定時間が20msecに設定された場合を示している。
 ここで、電圧指令ベクトルV1に対応する電流は、約0.003secの時点で、所定の極性およびピーク値を持った波形として現れる。同様に、電圧指令ベクトルV2~V6のそれぞれに対応する電流も、所定の時点で、所定の極性およびピーク値を持った波形として現れる。
 図6は、従来の同期電動機の磁極位置推定装置におけるα相電流応答波形を示す説明図である。また、図7は、従来の同期電動機の磁極位置推定装置におけるβ相電流応答波形を示す説明図である。
 図6、7において、横軸は時間を示し、縦軸は電流値を示している。
 また、図6には、同期電動機51のU相に流れる電流値IuおよびV相に流れる電流値Ivから、α-β座標系(固定座標系)に変換された電流値Iαが示されている。また、図7には、同期電動機51のU相に流れる電流値IuおよびV相に流れる電流値Ivから、α-β座標系(固定座標系)に変換された電流値Iβが示されている。
 図6、7に示すように、電流値Iα、Iβは、電流値Iu、Ivと同時点にピーク値を持った値として表される。このピーク値が、パルス電圧を印加したときの電流の振幅として検出される。
 図8は、従来の同期電動機の磁極位置推定装置の推定手段63によって演算された電流ベクトルの軌跡を示す説明図である。
 図8において、横軸は電流値Iαを示し、縦軸は電流値Iβを示している。ここで、各パルス電圧に対応した電流ベクトルの先端は、四角で示される。また、これらの電流ベクトルの積算値、すなわち、平均ベクトルの先端は、三角で示される。図8では、d-q座標系(モータ座標系)のd軸方向にある電流ベクトルが伸長し、平均ベクトルもd軸の方向を示す。
 図9は、従来の同期電動機の磁極位置推定装置による磁極推定値の収束演算を説明するための説明図である。
 図9において、横軸は時間を示し、縦軸は電流値Iuおよび初期磁極位置の推定値を示している。また、図9には、電流値Iuと平均ベクトルの位相θ*の収束演算結果が示されている。
 図9に示すように、0.022sec以降、60度強の値で、平均ベクトルの位相が収束していることがわかる。なお、収束演算時間は、収束の状態を確認した上で任意の時間に設定される。
 次に、図10のフローチャートを参照しながら、従来の同期電動機の磁極位置推定装置の動作について説明する。図10には、図3~9の一連の動作が示されている。なお、ステップS71の動作主体は回路手段52であり、ステップS72の動作主体は電流検出手段53であり、ステップS73~S77の動作主体は推定手段63である。
 まず、磁極位置推定用のパルス電圧が、同期電動機51の各相に印加される(ステップS71)。
 続いて、同期電動機51のU相に流れる電流値IuおよびV相に流れる電流値Ivが検出される(ステップS72)。
 次に、電流値Iuおよび電流値Ivが、α-β座標系の電流値Iαおよび電流値Iβに変換される(ステップS73)。
 続いて、電流値Iαおよび電流値Iβのそれぞれの最大値Iおよび最大値Iが検出される(ステップS74)。
 次に、6パルスのパルス電圧全てが同期電動機51の各相に印加されたか否かが判定される(ステップS75)。
 ステップS75において、6パルスのパルス電圧全てが同期電動機51の各相に印加されていない(すなわち、No)と判定された場合には、ステップS71に移行する。
 一方、ステップS75において、6パルスのパルス電圧全てが同期電動機51の各相に印加された(すなわち、Yes)と判定された場合には、電流値Iαおよび電流値Iβのそれぞれの最大値Iおよび最大値Iの電流積算値I0(I、I)が演算される(ステップS76)。
 続いて、回転子の初期磁極位置の推定値が収束演算により求められ(ステップS77)、図10の処理が終了する。
 このように、従来の同期電動機の磁極位置推定装置によれば、複数の電圧指令ベクトルのそれぞれに対応する複数の電流ベクトルを平均した平均ベクトルの位相に基づいて、回転子の初期磁極位置が推定される。そのため、電気角60度の幅よりも高い精度で回転子の初期磁極位置を推定することができる。
特許第3663937号公報
 しかしながら、従来技術には、以下のような課題がある。
 上述したように、パルス電流のオン時間は、磁気飽和が可能な電流となるように、個々の電動機について設定されており、推定手段63で得られる推定結果は、高い精度で回転子の初期磁極位置を推定することができる。
 一方、電流が小さく磁気飽和が十分でない場合には、各電圧指令ベクトルV1~V6に対応したパルス電流のピーク値によるd軸方向の電流ベクトルの伸長が、図8に示したものほど顕著でなくなり、回転子の初期磁極位置の推定精度が低下するという問題がある。
 ここで、例えば、従来の同期電動機の磁極位置推定装置において、母線電圧が一定の条件で、パルス電圧のオン時間を変化させた場合の電流ベクトルの軌跡を図11に示す。
 図11(a)は、パルス電圧のオン時間が基準時間tである場合の電流ベクトルの軌跡を示している。また、図11(b)は、パルス電圧のオン時間が0.75tである場合の電流ベクトルの軌跡を示している。また、図11(c)は、パルス電圧のオン時間が0.5tである場合の電流ベクトルの軌跡を示している。
 図11(a)および(b)では、d軸方向にある電流ベクトルの伸長が顕著であり、平均ベクトルの絶対値も大きな値なので、高い精度で回転子の初期磁極位置を推定することができる。
 これに対して、図11(c)では、d軸方向にある電流ベクトルの伸長がほとんどなく、6パルスのパルス電圧に対応する電流ベクトルが、ほぼ円形の軌跡となり、平均ベクトルの絶対値も小さな値となる。そのため、回転子の初期磁極位置の検出が困難になり、回転子の初期磁極位置の推定精度が低下する。
 このように、磁気飽和に十分な電流が得られない場合には、回転子の初期磁極位置の推定精度が低下する。
 このような、磁気飽和に十分な電流が得られない場合の条件として、電源電圧が不安定であることが考えられる。電源電圧が不安定な状況では、直流母線電圧が低下し、パルス電圧(振幅)値自身が通常時の値よりも小さくなることが考えられる。パルス電圧値自身が小さくなると、個々の電動機について設定されたパルス電圧のオン時間が一定なので、磁気飽和に十分な電流を得ることができず、推定精度が低下する。
 これにより、電動機の始動が適切になされず、一時的な逆回転が発生する可能性や、起動失敗が発生する可能性がある。
 この発明は、上記のような課題を解決するためになされたものであり、電源電圧が不安定な場合であっても、高い精度で回転子の初期磁極位置を推定することができる同期電動機の磁極位置推定装置を得ることを目的とする。
 この発明に係る同期電動機の磁極位置推定装置は、電圧指令に基づいて、同期電動機の各相に電圧を印加する電圧印加手段と、印加された電圧に応じて同期電動機の各相に流れる電流を検出する電流検出手段と、360度を均等分割した位相差を有する同振幅の複数の電圧指令ベクトルを記憶する記憶手段と、電圧印加手段に、電圧指令ベクトルを変換した電圧指令に基づいて、同期電動機の各相に複数の磁極位置推定用のパルス電圧を、順次切り換えて印加させる電圧制御手段と、複数の磁極位置推定用のパルス電圧に同期して同期電動機の各相に流れる電流の振幅に基づいて複数の電流ベクトルを演算するとともに、複数の電圧指令ベクトルのそれぞれに対応する複数の電流ベクトルを平均した平均ベクトルの位相に基づいて、同期電動機の回転子の初期磁極位置を推定する推定手段とを備えた同期電動機の磁極位置推定装置であって、電流検出手段で検出された検出電流値と所定の電流閾値とに基づいて、推定手段で推定された初期磁極位置が正しいか誤っているかを判定する推定値正誤判定手段と、所定の電流閾値を記憶する電流閾値記憶手段と、推定値正誤判定手段が、推定手段で推定された初期磁極位置が誤っていると判定した場合に、所望の磁気飽和が発生するようにパルス電圧の印加条件を変更するパルス電圧印加条件変更手段とをさらに備えたものである。
 この発明に係る同期電動機の磁極位置推定装置によれば、推定値正誤判定手段は、電流検出手段で検出された検出電流値と所定の電流閾値とに基づいて、推定手段で推定された初期磁極位置が正しいか誤っているかを判定する。また、電流閾値記憶手段は、所定の電流閾値を記憶する。また、パルス電圧印加条件変更手段は、推定値正誤判定手段が、推定手段で推定された初期磁極位置が誤っていると判定した場合に、所望の磁気飽和が発生するようにパルス電圧の印加条件を変更する。
 そのため、電源電圧が不安定な場合であっても、高い精度で回転子の初期磁極位置を推定することができる。
この発明の実施の形態1に係る同期電動機の磁極位置推定装置を示すブロック構成図である。(実施例1) この発明の実施の形態1に係る同期電動機の磁極位置推定装置の動作を示すフローチャートである。(実施例1) 従来の同期電動機の磁極位置推定装置を示すブロック構成図である。 従来の同期電動機の磁極位置推定装置の回路手段が印加するパルス電圧を示す説明図である。 従来の同期電動機の磁極位置推定装置の電流検出手段によって検出された相電流応答波形を示す説明図である。 従来の同期電動機の磁極位置推定装置におけるα相電流応答波形を示す説明図である。 従来の同期電動機の磁極位置推定装置におけるβ相電流応答波形を示す説明図である。 従来の同期電動機の磁極位置推定装置の推定手段によって演算された電流ベクトルの軌跡を示す説明図である。 従来の同期電動機の磁極位置推定装置による磁極推定値の収束演算を示す説明図である。 従来の同期電動機の磁極位置推定装置の動作を示すフローチャートである。 (a)~(c)は、従来の同期電動機の磁極位置推定装置において、母線電圧が一定の条件で、パルス電圧のオン時間を変化させた場合の電流ベクトルの軌跡を示す説明図である。
 以下、この発明の同期電動機の磁極位置推定装置の好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1に係る同期電動機の磁極位置推定装置を示すブロック構成図である。
 図1において、この同期電動機の磁極位置推定装置は、同期電動機1と、回路手段2と、電流検出手段3と、演算手段4とを備えている。なお、同期電動機1、回路手段2および電流検出手段3は、それぞれ図3に示した同期電動機51、回路手段52および電流検出手段53と同一のものである。
 演算手段4は、記憶手段11と、電圧制御手段12と、推定手段13と、電流閾値記憶手段14と、推定値正誤判定手段15と、パルス電圧印加条件変更手段16とを有している。なお、記憶手段11、電圧制御手段12および推定手段13は、それぞれ図3に示した記憶手段61、電圧制御手段62および推定手段63と同一のものである。
 推定値正誤判定手段15は、推定手段13で推定された回転子の初期磁極位置について、誤差が小さく精度が高いか、または誤差が大きく精度が低いかを、電流閾値記憶手段14に記憶された磁気飽和電流閾値に基づいて判定する。
 以下、上記構成の演算手段4の各部位の機能について説明するが、図3に示した従来の演算手段54と同様の機能については、説明を省略する。
 電流閾値記憶手段14は、回転子の初期磁極位置の推定精度を確保するために十分な磁気飽和を得ることができるパルス電流ピーク値を、磁気飽和電流閾値として記憶する。ここでは、電流閾値記憶手段14は、U相、V相のパルス電流をα-β座標系に変換したα相、β相のパルス電流のピーク値を、磁気飽和電流閾値として記憶している。
 推定値正誤判定手段15は、推定手段13で演算されたパルス電流振幅と、電流閾値記憶手段14に記憶された磁気飽和電流閾値とを比較する。また、推定値正誤判定手段15は、パルス電流振幅が磁気飽和電流閾値よりも大きな値である場合に、推定精度を確保するために十分な磁気飽和が得られたとして、推定手段13での回転子の初期磁極位置の推定結果を正しいと判定する。一方、推定値正誤判定手段15は、パルス電流振幅が磁気飽和電流閾値よりも小さな値である場合に、推定精度を確保するために十分な磁気飽和が得られていないとして、推定手段13での回転子の初期磁極位置の推定結果を誤りと判定する。
 パルス電圧印加条件変更手段16は、推定値正誤判定手段15が回転子の初期磁極位置の推定結果を誤りと判断した場合に、磁気飽和を十分に発生させる電流量が流れるように、パルス電流のオン時間を、個々の電動機についてあらかじめ設定された時間よりも長く設定する。
 次に、図2のフローチャートを参照しながら、実施の形態1に係る同期電動機の磁極位置推定装置の動作について説明する。図2には、この同期電動機の磁極位置推定装置の一連の動作が示されている。なお、図2のステップS21~25、ステップS28およびステップS29は、それぞれ図10に示したステップS71~77と同一なので、説明を省略する。
 まず、推定値正誤判定手段15は、ステップS25において、6パルスのパルス電圧全てが同期電動機51の各相に印加された(すなわち、Yes)と判定された場合に、ステップS24における検出結果に基づいて、磁気飽和判定電流値を演算する(ステップS26)。
 具体的には、推定値正誤判定手段15は、ステップS24で検出された電流値Iαの最大値Iの6パルス分と電流値Iβの最大値Iの6パルス分との計12パルスからその絶対値を12パルス分演算し、この12パルスの中から振幅が最大のパルス電流ピーク値を、磁気飽和判定電流値として抽出する。
 続いて、推定値正誤判定手段15は、ステップS26で演算された磁気飽和判定電流値が、電流閾値記憶手段14に記憶された磁気飽和電流閾値以上であるか否かを判定する(ステップS27)。
 ステップS27において、磁気飽和判定電流値が磁気飽和電流閾値以上である(すなわち、Yes)と判定された場合には、十分な磁気飽和が得られ、正しい回転子の初期磁極位置の推定結果が得られるとして、ステップS28に移行する。
 一方、ステップS27において、磁気飽和判定電流値が磁気飽和電流閾値以上でない(すなわち、No)と判定された場合には、十分な磁気飽和が得られておらず、正しい回転子の初期磁極位置の推定結果が得られないとして、ステップS30に移行する。
 このとき、パルス電圧印加条件変更手段16は、磁気飽和を十分に発生させる電流量が流れるように、パルス電流のオン時間を、個々の電動機についてあらかじめ設定された時間よりも長く設定し(ステップS30)、ステップS21に移行する。例えば、パルス電圧印加条件変更手段16は、演算周期の1周期分の設定値を長く設定する。
 以上のように、実施の形態1によれば、推定値正誤判定手段は、電流検出手段で検出された検出電流値と所定の電流閾値とに基づいて、推定手段で推定された初期磁極位置が正しいか誤っているかを判定する。また、電流閾値記憶手段は、所定の電流閾値を記憶する。また、パルス電圧印加条件変更手段は、推定値正誤判定手段が、推定手段で推定された初期磁極位置が誤っていると判定した場合に、所望の磁気飽和が発生するようにパルス電圧の印加条件を変更する。
 そのため、電源電圧が不安定な場合であっても、高い精度で回転子の初期磁極位置を推定することができる。
 また、同期電動機は、3相を有し、推定手段は、磁極位置推定用のパルス電圧に同期して同期電動機の3相に流れる電流の振幅のうちの2相に流れる電流の振幅に基づいて電流ベクトルを演算し、回転子の初期磁極位置を推定する。そのため、通常の電動機制御に用いられる演算手段を流用して、簡便かつ高い精度で回転子の初期磁極位置を推定することができる。また、新たな装置を必要としないので、磁極位置推定装置を小型化することができる。ここで、3相に流れる電流を検出して電流ベクトルを演算することももちろん可能である。
 さらに、演算手段は、電圧指令ベクトルの3つの位相を、同期電動機の3相の位相に合わせ、電圧指令ベクトルの他の3つの位相を、同期電動機の3相のうちの隣接する相間の中間位相に合わせるように設定している。そのため、回路手段への電圧指令を簡素化することができる。
 また、演算手段は、初期磁極位置推定用のパルス電圧の切り換え時のゼロ電圧を、同期電動機の各相のスイッチング素子の全ゲートをオフすることにより発生させる。そのため、回転子の初期磁極位置の推定時間を短縮することができる。
 なお、上記実施の形態1において、電流閾値記憶手段14は、回転子の初期磁極位置の推定精度を確保するために十分な磁気飽和を得ることができるパルス電流ピーク値を、磁気飽和電流閾値として記憶するとしており、U相、V相のパルス電流をα-β座標系に変換したα相、β相のパルス電流のピーク値を、磁気飽和電流閾値として記憶している場合を例としてあげた。しかしながら、これに限定されず、別の値を磁気飽和電流閾値として記憶してもよい。
 具体的には、例えば上述したステップS26において、6パルスのパルス電圧全てが同期電動機51の各相に印加されたと判定された場合に、ステップS26で検出された電流値Iαの最大値Iの6パルス分の平均値と、電流値Iβの最大値Iの6パルス分の平均値とを演算し、それぞれの絶対値と閾値とを比較してもよい。
 このとき、電流閾値記憶手段14は、回転子の初期磁極位置の推定精度を確保するために十分な磁気飽和を得ることができる、α-β軸のパルス電流ピーク値6パルス分の平均値を、磁気飽和電流閾値として記憶している。
 上述した図11(c)のように、磁気飽和が発生していない場合には、平均ベクトルをα軸またはβ軸に投影した値は、0付近の値となる。一方、図11(a)、(b)のように、磁気飽和が発生している場合には、平均ベクトルをα軸またはβ軸に投影した値は、0付近の値ではなく、d軸方向に伸長した方向の値となる。
 このような特徴から、磁気飽和の有無を判定して、回転子の初期磁極位置の推定値の正誤を判定することができる。なお、ゼロ点からの平均ベクトルの大きさに基づいて磁気飽和の有無を判定し、回転子の初期磁極位置の推定値の正誤を判定することもできる。
 また、この他にも、上述したステップS26において、6パルスのパルス電圧全てが同期電動機51の各相に印加されたと判定された場合に、ステップS26で検出された電流値Iαの最大値Iの6パルス分の最大値と最小値との差分値、または電流値Iβの最大値Iの6パルス分の最大値と最小値との差分値と、閾値とを比較してもよい。
 このとき、電流閾値記憶手段14は、回転子の初期磁極位置の推定精度を確保するために十分な磁気飽和を得ることができる、α-β軸のパルス電流ピーク値6パルス分の最大値と最小値との差分値を、磁気飽和電流閾値として記憶している。
 上述した図11(c)のように、磁気飽和が発生していない場合には、電流ベクトルの最大値と最小値との差分値は、電流ベクトルの軌跡がほぼ円形なので、0付近の値となる。一方、図11(a)、(b)のように、磁気飽和が発生している場合には、電流ベクトルの最大値と最小値との差分値は、電流の伸長により大きな値となる。
 このような特徴から、磁気飽和の有無を判定して、回転子の初期磁極位置の推定値の正誤を判定することができる。
 また、上記実施の形態1において、電流閾値記憶手段14は、3相(U、V、W)電流を2相(α、β)電流に変換した電流値を、磁気飽和電流閾値として記憶すると説明したが、これに限定されず、3相電流のまま記憶してもよい。
 具体的には、例えば上述したステップS26において、6パルスのパルス電圧全てが同期電動機51の各相に印加されたと判定された場合に、ステップS22で検出された3相電流の電流値Iuの最大値INuの6パルス分と、電流値Ivの最大値INvの6パルス分と、電流値Iwの最大値INwの6パルス分との計18パルスの中から絶対値振幅が最大のパルス電流値と、閾値とを比較することも可能である。
 さらに、磁気飽和判定電流値がわずかに磁気飽和電流閾値よりも小さく、かつパルス電圧のオン時間をこれ以上長く設定することができない場合において、回転子の初期磁極位置の推定精度が低いと判断されて同期電動機1が始動できないときには、図2のフローチャートのステップS21~27を複数回繰り返し、その推定値の平均値を磁極位置と判定して始動させることにより、電動機の始動不可を極力回避することを可能にできる。
 これは、例えばエレベータ等の救出運転等にも適用でき、乗り心地への影響を最小限に抑制しながら乗客救出が可能となるので、エレベータの信頼性を向上させることができる。なお、磁気飽和判定電流値と磁気飽和電流閾値との差が、始動失敗するほどの大きな値では無いことが実験的にわかっている場合に限られる。
 また、これまで説明したことを応用して、以下のようなことが可能となる。
 直流母線電圧が不安定で電圧が上昇していた場合には、個々の電動機について設定されたパルス電圧のオン時間では、パルス電流が大きくなりすぎるという事象が発生する。パルス電圧が必要以上に上昇すると、永久磁石の減磁が生じる可能性があるので、これを回避する必要がある。
 したがって、電流閾値記憶手段14に記憶される磁気飽和電流閾値について、パルス電流の上限閾値を設定することにより、電流が流れすぎた(パルス電流が大きくなりすぎた)場合には、パルス電圧のオン時間を短くして適切な時間とすることにより、回転子の初期磁極位置の推定に適切な電流とすることができ、電動機の永久磁石の減磁を防止することができる。
 このように、パルス電流の磁気飽和判定用の閾値と、電動機の永久磁石減磁回避判定用の上限閾値を設けることにより、回転子の初期磁極位置の推定に最適なパルス電圧のオン時間を設定することができる。そのため、電動機の製造個体差により磁気飽和の容易性が異なる場合の対応として、適切な電流への最適化を自動的に行うことができる。
 また、一般的に、磁気飽和の容易性は、電動機によって異なる。通常、パルス電圧のオン時間は、電動機毎に実験的に設定する必要があり、設計者が電動機毎にチューニングを行う必要があるが、自動でチューニングを行うことが可能となり、設計の省力化を実現することができる。

Claims (11)

  1.  電圧指令に基づいて、同期電動機の各相に電圧を印加する電圧印加手段と、
     印加された電圧に応じて前記同期電動機の各相に流れる電流を検出する電流検出手段と、
     360度を均等分割した位相差を有する同振幅の複数の電圧指令ベクトルを記憶する記憶手段と、
     前記電圧印加手段に、前記電圧指令ベクトルを変換した電圧指令に基づいて、前記同期電動機の各相に複数の磁極位置推定用のパルス電圧を、順次切り換えて印加させる電圧制御手段と、
     前記複数の磁極位置推定用のパルス電圧に同期して前記同期電動機の各相に流れる電流の振幅に基づいて複数の電流ベクトルを演算するとともに、前記複数の電圧指令ベクトルのそれぞれに対応する前記複数の電流ベクトルを平均した平均ベクトルの位相に基づいて、前記同期電動機の回転子の初期磁極位置を推定する推定手段と、を備えた同期電動機の磁極位置推定装置であって、
     前記電流検出手段で検出された検出電流値と所定の電流閾値とに基づいて、前記推定手段で推定された前記初期磁極位置が正しいか誤っているかを判定する推定値正誤判定手段と、
     前記所定の電流閾値を記憶する電流閾値記憶手段と、
     前記推定値正誤判定手段が、前記推定手段で推定された前記初期磁極位置が誤っていると判定した場合に、所望の磁気飽和が発生するように前記パルス電圧の印加条件を変更するパルス電圧印加条件変更手段と、
     をさらに備えた同期電動機の磁極位置推定装置。
  2.  前記パルス電圧印加条件変更手段は、前記パルス電圧のオン時間を可変設定する請求項1に記載の同期電動機の磁極位置推定装置。
  3.  前記電流閾値記憶手段は、U相、V相のパルス電流をα-β座標系に変換したα相、β相のパルス電流のピーク値を、前記所定の電流閾値として記憶する請求項1または請求項2に記載の同期電動機の磁極位置推定装置。
  4.  前記電流閾値記憶手段は、α-β軸のパルス電流ピーク値6パルス分の平均値を、前記所定の電流閾値として記憶する請求項1または請求項2に記載の同期電動機の磁極位置推定装置。
  5.  前記電流閾値記憶手段は、α-β軸のパルス電流ピーク値6パルス分の最大値と最小値との差分値を、前記所定の電流閾値として記憶する請求項1または請求項2に記載の同期電動機の磁極位置推定装置。
  6.  前記電流閾値記憶手段は、3相電流の電流値のピーク電流値を、前記所定の電流閾値として記憶する請求項1または請求項2に記載の同期電動機の磁極位置推定装置。
  7.  前記推定手段は、前記初期磁極位置の推定を複数回繰り返して実行し、その推定値の平均値を前記初期磁極位置とする請求項1から請求項6までの何れか1項に記載の同期電動機の磁極位置推定装置。
  8.  前記電流閾値記憶手段は、前記所定の電流閾値について、上限閾値および下限閾値を設定する請求項1から請求項7までの何れか1項に記載の同期電動機の磁極位置推定装置。
  9.  前記同期電動機は、3相を有し、
     前記推定手段は、前記磁極位置推定用のパルス電圧に同期して前記3相に流れる電流の振幅のうちの2相に流れる電流の振幅に基づいて、座標変換により前記電流ベクトルを演算する請求項1から請求項8までの何れか1項に記載の同期電動機の磁極推定装置。
  10.  前記記憶手段は、360度を均等に6分割した位相差を有した同振幅の複数の電圧指令ベクトルを記憶し、
     前記電圧制御手段は、前記電圧指令ベクトルの3つの位相を、前記3相の位相に合わせ、前記電圧指令ベクトルの他の3つの位相を、前記3相のうちの隣接する相間の中間位相に合わせる請求項9記載の同期電動機の磁極位置推定装置。
  11.  前記電圧制御手段は、前記磁極位置推定用のパルス電圧の切り換え時に、前記各相のスイッチング素子の全ゲートをオフしてゼロ電圧を発生させる請求項1から請求項10までの何れか1項に記載の同期電動機の磁極位置推定装置。
PCT/JP2009/059689 2009-05-27 2009-05-27 同期電動機の磁極位置推定装置 WO2010137133A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/059689 WO2010137133A1 (ja) 2009-05-27 2009-05-27 同期電動機の磁極位置推定装置
CN200980158978.8A CN102414979B (zh) 2009-05-27 2009-05-27 同步电动机的磁极位置估计装置
KR1020117024822A KR101249156B1 (ko) 2009-05-27 2009-05-27 동기 전동기의 자극 위치 추정 장치
JP2011515791A JP5335078B2 (ja) 2009-05-27 2009-05-27 同期電動機の磁極位置推定装置
EP09845200.6A EP2437391B1 (en) 2009-05-27 2009-05-27 Device for estimating magnetic pole position in synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059689 WO2010137133A1 (ja) 2009-05-27 2009-05-27 同期電動機の磁極位置推定装置

Publications (1)

Publication Number Publication Date
WO2010137133A1 true WO2010137133A1 (ja) 2010-12-02

Family

ID=43222274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059689 WO2010137133A1 (ja) 2009-05-27 2009-05-27 同期電動機の磁極位置推定装置

Country Status (5)

Country Link
EP (1) EP2437391B1 (ja)
JP (1) JP5335078B2 (ja)
KR (1) KR101249156B1 (ja)
CN (1) CN102414979B (ja)
WO (1) WO2010137133A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2725702A4 (en) * 2011-06-27 2016-05-18 Mitsubishi Electric Corp CONTROL DEVICE FOR A ROTARY MACHINE
JP6351913B1 (ja) * 2017-03-21 2018-07-04 三菱電機株式会社 磁極位置検出装置及びモータ制御装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2980059B1 (fr) * 2011-09-12 2013-08-23 Renault Sa Procede et dispositif de commande d'un groupe motopropulseur
US9175984B2 (en) 2012-12-21 2015-11-03 Caterpillar Inc. Mechanism of interior permanent magnet machine initial position detection
DE102013204382A1 (de) * 2013-03-13 2014-09-18 Robert Bosch Gmbh Steuereinrichtung und Verfahren zum Ansteuern einer Drehfeldmaschine
CN103401504B (zh) * 2013-08-06 2016-01-20 中国科学院光电技术研究所 一种永磁同步电机转子初始位置的修正方法
US9829348B2 (en) 2013-09-20 2017-11-28 Marvell World Trade Ltd. Identifying a position of a brushless DC motor
EP2985904B1 (en) 2014-08-11 2018-12-05 Magneti Marelli S.p.A. Method for the diagnosis of the offset of the resolver of an electric machine
JP6580899B2 (ja) * 2015-08-26 2019-09-25 株式会社東芝 ドライブシステムおよびインバータ装置
CN110114293B (zh) * 2017-02-21 2021-07-09 株式会社日立制作所 电梯
DE102017207296A1 (de) 2017-05-02 2018-11-08 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen des Lagewinkels eines Rotors einer elektrischen Synchronmaschine
US11381191B2 (en) 2019-01-22 2022-07-05 Canon Kabushiki Kaisha Motor control apparatus for determining motor type and image forming apparatus
KR102260078B1 (ko) 2019-03-04 2021-06-02 현대위아 주식회사 매입형 영구자석 구동모터의 초기위치 자동 측정방법
US20210367546A1 (en) * 2020-05-20 2021-11-25 Kabushiki Kaisha Yaskawa Denki Polarity detection for power conversion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299382A (ja) * 2002-04-03 2003-10-17 Daikin Ind Ltd インバータ制御方法およびその装置
JP3663937B2 (ja) 1998-09-17 2005-06-22 三菱電機株式会社 同期電動機の磁極位置検出装置
JP2008054430A (ja) * 2006-08-25 2008-03-06 Meidensha Corp Pmモータの磁極位置推定方式

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687603B2 (ja) * 2001-12-10 2005-08-24 株式会社明電舎 Pmモータの磁極位置推定方式
JP4896407B2 (ja) * 2005-01-17 2012-03-14 三菱電機株式会社 磁極位置検出機能付きインバータ装置
JP5311864B2 (ja) * 2007-04-13 2013-10-09 三洋電機株式会社 モータ制御装置
JP4961292B2 (ja) * 2007-07-27 2012-06-27 三洋電機株式会社 モータ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3663937B2 (ja) 1998-09-17 2005-06-22 三菱電機株式会社 同期電動機の磁極位置検出装置
JP2003299382A (ja) * 2002-04-03 2003-10-17 Daikin Ind Ltd インバータ制御方法およびその装置
JP2008054430A (ja) * 2006-08-25 2008-03-06 Meidensha Corp Pmモータの磁極位置推定方式

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2725702A4 (en) * 2011-06-27 2016-05-18 Mitsubishi Electric Corp CONTROL DEVICE FOR A ROTARY MACHINE
JP6351913B1 (ja) * 2017-03-21 2018-07-04 三菱電機株式会社 磁極位置検出装置及びモータ制御装置
WO2018173102A1 (ja) * 2017-03-21 2018-09-27 三菱電機株式会社 磁極位置検出装置及びモータ制御装置
CN109511282A (zh) * 2017-03-21 2019-03-22 三菱电机株式会社 磁极位置检测装置及电动机控制装置
CN109511282B (zh) * 2017-03-21 2019-10-08 三菱电机株式会社 磁极位置检测装置及电动机控制装置
US10491144B2 (en) 2017-03-21 2019-11-26 Mitsubishi Electric Corporation Magnetic pole position detection device and motor control device

Also Published As

Publication number Publication date
EP2437391B1 (en) 2020-11-11
JPWO2010137133A1 (ja) 2012-11-12
CN102414979A (zh) 2012-04-11
KR101249156B1 (ko) 2013-04-01
KR20120024554A (ko) 2012-03-14
EP2437391A1 (en) 2012-04-04
EP2437391A4 (en) 2017-06-14
CN102414979B (zh) 2014-05-07
JP5335078B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5335078B2 (ja) 同期電動機の磁極位置推定装置
TWI587622B (zh) Drive system and inverter device
JP7102407B2 (ja) インバータ装置、及び、電動パワーステアリング装置
JP6433404B2 (ja) モータ制御装置
JP6068554B2 (ja) センサレスで制御停止を行う機能を有するサーボ制御装置
JP2002335699A (ja) 交流モータの制御装置
JP2013201828A (ja) 多重巻線回転機の駆動装置
JP2010029030A (ja) モータ制御装置
JP2017195735A (ja) 同期機制御装置
JP2007174721A (ja) ブラシレスdcモータの初期回転位置検出装置及び初期回転位置検出方法
CN104779872A (zh) 同步电动机的控制装置及控制方法
JP4295059B2 (ja) 直流電圧検出回路の故障診断装置およびモータ制御システム
JP2010041868A (ja) 同期電動機のロータ回転監視装置および制御システム
JP5407213B2 (ja) 同期電動機の磁極位置推定装置
JP5493546B2 (ja) リニア型永久磁石同期モータの制御装置
JP2010029029A (ja) モータ制御装置
JP2007124835A (ja) 突極性を有する同期機の回転角推定方法
JP5423343B2 (ja) 同期電動機の磁極位置推定装置
JP5409422B2 (ja) 同期電動機の磁極位置検出装置
JP5426221B2 (ja) 可変電流路における電流検出装置及び可変磁束モータの制御方法
JP2005045990A (ja) 速度起電力検出装置及び方法、並びにインバータ制御装置等
JP4061446B2 (ja) 同期電動機の抵抗値同定方法とその制御装置
JP2009100544A (ja) モータ制御装置
JP2007082380A (ja) 同期モータ制御装置
US20190181782A1 (en) Magnetic pole position detection device and motor control device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158978.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515791

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009845200

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117024822

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE