WO2010137122A1 - コラーゲン産生促進剤 - Google Patents

コラーゲン産生促進剤 Download PDF

Info

Publication number
WO2010137122A1
WO2010137122A1 PCT/JP2009/059631 JP2009059631W WO2010137122A1 WO 2010137122 A1 WO2010137122 A1 WO 2010137122A1 JP 2009059631 W JP2009059631 W JP 2009059631W WO 2010137122 A1 WO2010137122 A1 WO 2010137122A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium phosphate
particles
fine particles
calcium
collagen production
Prior art date
Application number
PCT/JP2009/059631
Other languages
English (en)
French (fr)
Inventor
康充 小粥
カーロ 和重 河邉
Original Assignee
株式会社ソフセラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソフセラ filed Critical 株式会社ソフセラ
Priority to US13/321,964 priority Critical patent/US20120128788A1/en
Priority to JP2011515781A priority patent/JP5411932B2/ja
Priority to CN200980160540.3A priority patent/CN102458423B/zh
Priority to PCT/JP2009/059631 priority patent/WO2010137122A1/ja
Priority to KR1020117030709A priority patent/KR101408479B1/ko
Priority to EP09845189.1A priority patent/EP2438922B1/en
Publication of WO2010137122A1 publication Critical patent/WO2010137122A1/ja
Priority to US14/537,083 priority patent/US20150064260A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/24Phosphorous; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/42Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0245Specific shapes or structures not provided for by any of the groups of A61K8/0241
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/025Explicitly spheroidal or spherical shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/65Characterized by the composition of the particulate/core
    • A61K2800/651The particulate/core comprising inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a collagen production promoter and relates to a collagen production promoter that stimulates fibroblasts present in the dermis layer of the skin.
  • Collagen is present in all organs throughout the body, and especially in the skin, it is known that about 70% of the dry weight of the dermis is collagen, which maintains functions such as skin contractility, flexibility, and moisture retention. It is known not only to be useful, but also to maintain normal cell morphology and affect metabolism and adhesion.
  • Patent Document 1 it is known that fibroblasts present in the dermis produce collagen, and the promoter is said to act on fibroblasts to promote collagen production.
  • An object of the present invention is to provide a novel collagen production promoter that increases the amount of collagen contained in skin tissue.
  • This invention is a collagen production promoter characterized by using calcium phosphate fine particles as an active ingredient.
  • the present invention (2) is the collagen production promoter of the invention (1), wherein the calcium phosphate fine particles are hydroxyapatite fine particles.
  • the present invention (3) is the collagen production promoter of the invention (1) or (2), wherein the calcium phosphate fine particles have an average particle size of 10 to 1,000 nm.
  • the present invention (4) is the collagen production promoter according to any one of the inventions (1) to (3), wherein the calcium phosphate fine particles are a sintered body.
  • the sintered body is: Mixing the primary particles containing calcium phosphate and the anti-fusing agent; and Exposing the mixed particles obtained by the mixing step to a sintering temperature; and a sintering step; It is a collagen production promoter of the said invention (4) manufactured by the method containing this.
  • the present invention (6) includes at least one substance selected from the group consisting of alcohols, saccharides, proteins, amino acids, water-soluble vitamins, fat-soluble vitamins, lipids, mucopolysaccharides, and surfactants.
  • the collagen production promoter according to any one of the inventions (1) to (5).
  • the present invention (1) exerts an effect of promoting collagen production by acting on fibroblasts. Furthermore, it has the effect of improving the aging phenomenon such as wrinkles and tarmi, and reconstructing collagen fibers damaged in the tissue to improve the normal tissue.
  • the average particle diameter of the calcium phosphate fine particles is very small, there is an effect of improving the texture state by applying to the skin surface.
  • the calcium phosphate fine particles are not easily fused to each other even when sintered, and the primary particles are maintained, a sintered body can be obtained with a small particle size. There is an effect that a higher collagen production promoting action can be exhibited.
  • FIG. 1 is a view showing a state of the surface of the skin of the subject 1.
  • FIG. 2 is a diagram illustrating a state of the surface of the skin of the subject 2.
  • the collagen production promoter according to the best mode includes calcium phosphate fine particles.
  • it is preferable that alcohols, saccharides, proteins, amino acids, water-soluble vitamins, fat-soluble vitamins, lipids, mucopolysaccharides, and surfactants are included as optional constituents.
  • examples of the calcium phosphate fine particles according to the best mode include hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ), fluoroapatite (Ca 10 (PO 4 ) 6 F 2 ), and Ca 10 (PO 4 ) 6 Cl. 2 etc. are mentioned.
  • the calcium phosphate includes calcium ions and / or hydroxide ions and / or phosphate ions, such as strontium ions, barium ions, sodium ions, bicarbonate ions, carbonate ions, fluoride ions, chloride ions, etc.
  • a substituted compound, tricalcium phosphate (Ca 3 (PO 4 ) 2 ), calcium metaphosphate (Ca (PO 3 ) 2 ), or calcium octaphosphate (OCP) may be contained.
  • hydroxyapatite is preferred.
  • the surface of the calcium phosphate particles according to the best mode particles of calcium phosphate
  • it is preferable that Ca 10 (PO 4) 6 ( OH) 2 is present.
  • This Ca 10 (PO 4 ) 6 (OH) 2 is suitable if it is present on the surface of calcium phosphate, and may be contained in an amount of about 0.1% by weight based on the total amount of calcium phosphate, but 50% by weight. It is more preferable that it is contained above. Further, the calcium phosphate fine particles may contain tricalcium phosphate or the like that is produced when amorphous hydroxyapatite is sintered as described later.
  • the calcium phosphate according to the present embodiment is excellent in affinity with living tissue and stability in the living environment.
  • the average particle diameter of the calcium phosphate fine particles according to the best mode is preferably 10 to 1,000 nm, more preferably 20 to 300 nm, and still more preferably 20 to 250 nm.
  • the particle diameter in such a range, fine particles permeate from the surface of the skin into the dermis layer. Therefore, even for external preparations such as skin cosmetics, the fibroblasts containing the calcium phosphate fine particles are contained in the dermal phase. It becomes possible to exert a collagen promoting action.
  • the thickness By setting the thickness to 20 to 250 nm, since the gap between the epidermal cells is about 250 nm, the effect of facilitating penetration into the dermis layer particularly from the surface of the skin is achieved.
  • the variation coefficient is preferably 20% or less, more preferably 18% or less, and even more preferably 15% or less.
  • the average particle size and coefficient of variation may be calculated by measuring the particle size of at least 100 primary particles using an electron microscope.
  • the “variation coefficient” is a value indicating the variation in particle diameter between particles that can be calculated by standard deviation ⁇ average particle diameter ⁇ 100 (%).
  • the shape of the calcium phosphate fine particles is not particularly limited, and may be, for example, a particle shape or a rod shape. In the case of a rod shape, the average particle diameter is measured by the major axis of the particle.
  • the calcium phosphate fine particles according to the best mode are preferably a calcium phosphate sintered body (also called calcium phosphate ceramics) obtained by sintering (calcining) calcium phosphate.
  • a calcium phosphate sintered body also called calcium phosphate ceramics obtained by sintering (calcining) calcium phosphate.
  • the calcium phosphate fine particle sintered body By using the calcium phosphate fine particle sintered body, the effect of promoting collagen production is significantly improved as compared with the unsintered one.
  • the calcium phosphate fine particle sintered body has higher crystallinity and lower solubility in a living body than amorphous calcium phosphate. Therefore, since the biological activity can be maintained for a long time in the living body, the collagen production promoting effect is easily exhibited for a long time.
  • the calcium phosphate fine particle sintered body is obtained by sintering amorphous calcium phosphate.
  • a calcium phosphate fine particle sintered body can be obtained by sintering by a method described later. It is also preferable to use highly crystalline calcium phosphate with high crystallinity of the calcium phosphate fine particles.
  • the degree of crystallinity of this calcium phosphate can be measured by X-ray diffraction (XRD). Specifically, the narrower the half-value width of the peak indicating each crystal plane, the higher the crystallinity.
  • the collagen production promoter preferably contains alcohols, saccharides, proteins, amino acids, water-soluble vitamins, fat-soluble vitamins, lipids, mucopolysaccharides, and surfactants. It is.
  • Examples of alcohols include ethanol and glycerin. By containing alcohols, the dispersion stability of the calcium phosphate fine particles is improved and prompt penetration into the dermis layer is promoted. In addition, it has skin cleaning, astringency, and moisturizing effects.
  • Examples of the saccharide include hydrolyzed hydrogenated starch. By containing saccharides, the moisturizing effect and anti-inflammatory effect are improved.
  • Examples of proteins include collagen. By including proteins, it becomes a carrier of calcium phosphate and can be promoted to the dermis layer. Examples of amino acids include glutamic acid, arginic acid, or sodium salts thereof. Collagen production can be promoted by including amino acids. Examples of water-soluble vitamins include ascorbyl magnesium phosphate.
  • the fat-soluble vitamins include vitamin A.
  • the fat-soluble vitamins By containing fat-soluble vitamins, production of mucopolysaccharides can be promoted and the skin can be moisturized.
  • lipids include ceramides and phospholipids.
  • Moisturizing effect is achieved by including lipids.
  • mucopolysaccharides include hyaluronic acid and the like.
  • a moisturizing effect is achieved by including mucopolysaccharides.
  • the surfactant include polyethylene glycol and stearic acid derivatives. By including a surfactant, the dispersibility of fine particles and fat-soluble components such as vitamin A is improved.
  • the calcium phosphate fine particles according to the best mode are not particularly limited, but are suitable for blending into cosmetics, orthopedic preparations, and dental preparations.
  • the type of cosmetic is not particularly limited, and specific examples thereof include face wash, lotion, cosmetic liquid, ointment, cream, milky lotion, lotion, pack, lipstick, bathing agent and the like.
  • the blending amount of the calcium phosphate fine particles in the cosmetic according to the best mode can be appropriately adjusted depending on the type of cosmetic, the physiological activity of the extract, etc., but is preferably 0.01 to 30% by mass, Is more preferably 15 to 15% by mass, and further preferably 0.1 to 10% by mass.
  • the alcohol compounding agent is not particularly limited, but is preferably 0.01 to 70% by mass, more preferably 0.01 to 50% by mass, and still more preferably 0.01 to 30% by mass.
  • the sugar compounding agent is not particularly limited, but is preferably 0.01 to 70% by mass, more preferably 0.01 to 50% by mass, and still more preferably 0.01 to 30% by mass.
  • the compounding material for proteins is not particularly limited, but is preferably 0.01 to 30% by mass, more preferably 0.01 to 20% by mass, and still more preferably 0.01 to 10% by mass.
  • the compounding material for amino acids is not particularly limited, but is preferably 0.01 to 30% by mass, more preferably 0.01 to 20% by mass, and still more preferably 0.01 to 10% by mass.
  • the compounding agent for water-soluble vitamins is not particularly limited, but is preferably 0.001 to 30% by mass, more preferably 0.001 to 20% by mass, and further preferably 0.001 to 10% by mass. is there.
  • the fat-soluble vitamin compounding agent is not particularly limited, but is preferably 0.001 to 30% by mass, more preferably 0.001 to 20% by mass, and further preferably 0.001 to 10% by mass. is there.
  • the lipid compounding material is not particularly limited, but is preferably 0.001 to 30% by mass, more preferably 0.001 to 20% by mass, and further preferably 0.001 to 10% by mass.
  • the compounding agent for the mucopolysaccharide is not particularly limited, but is preferably 0.01 to 70% by mass, more preferably 0.01 to 50% by mass, and still more preferably 0.01 to 30% by mass.
  • the compounding amount of the surfactant is not particularly limited, but is preferably 0.001 to 30% by mass, more preferably 0.001 to 20% by mass, and further preferably 0.001 to 10% by mass. .
  • various main agents and auxiliaries usually used in the production of cosmetics and other optional auxiliaries can be used as long as they do not interfere with the collagen production promoting action of the calcium phosphate fine particles.
  • additives that can be used as a cosmetic constituent together with calcium phosphate fine particles known additives used in cosmetics can be used.
  • astringents, bactericides / antibacterial agents, whitening Agents, ultraviolet absorbers, humectants, cell activators, anti-inflammatory / anti-allergic agents, antioxidant / active oxygen scavengers, and the like can be used as additives that can be used as a cosmetic constituent together with calcium phosphate fine particles.
  • astringents for example, astringents, bactericides / antibacterial agents, whitening Agents, ultraviolet absorbers, humectants, cell activators, anti-inflammatory / anti-allergic agents, antioxidant / active oxygen scavengers, and the like.
  • examples of the orthopedic preparation include soft tissue filler that regenerates a defect site due to self-tissue by injecting into a portion where the skin has been dented due to injury or the like.
  • examples of the dental preparation include a gingival fixing agent that is applied to a site where a gap has been formed after implant treatment and the like, and makes it easy to fix a base material, teeth, and the like.
  • the calcium phosphate fine particles may be artificially produced by a known production method such as a wet method, a dry method, a hydrolysis method, or a hydrothermal method, and may be naturally derived from bone, teeth, etc. It may be. Alternatively, calcium phosphate particles having a large particle diameter may be produced and pulverized by a known method.
  • Calcium phosphate fine particles are preferably obtained by sintering amorphous calcium phosphate.
  • a lower limit of sintering temperature 500 degreeC or more is more preferable. If the sintering temperature is lower than 500 ° C., the sintering may not be sufficient.
  • the upper limit of the sintering temperature is more preferably 1800 ° C. or less, further preferably 1250 ° C. or less, and particularly preferably 1200 ° C. or less. When the sintering temperature is higher than 1800 ° C., calcium phosphate may be decomposed. Therefore, by setting the sintering temperature within the above range, calcium phosphate that is difficult to dissolve in vivo (high crystallinity) can be produced.
  • the sintering time is not particularly limited, and may be set as appropriate. In some cases, the particles may be fused together by sintering. In such a case, the sintered particles can be used after being pulverized.
  • the calcium phosphate fine particles according to the best mode are produced by the method described later. That is, it is preferable that the method for producing calcium phosphate fine particles according to the best mode includes a dispersion firing (sintering) method including at least a mixing step and a sintering step.
  • a dispersion firing method including at least a mixing step and a sintering step.
  • the manufacturing method according to the best mode may include a primary particle generation step and a removal step. These processes are performed in the order of, for example, a primary particle generation process, a mixing process, a sintering process, and a removing process.
  • the primary particle generation step is not particularly limited as long as it is a step capable of generating calcium phosphate fine particles, and may be appropriately selected depending on the raw material of the highly crystalline calcium phosphate fine particles to be manufactured. For example, if phosphoric acid is dropped into a calcium hydroxide slurry at room temperature, calcium phosphate (CaP) particles are precipitated.
  • CaP calcium phosphate
  • the method for generating primary particle groups that are fine (nanometer size) and uniform in particle size (narrow particle size distribution), such as the calcium phosphate fine particles according to the best mode can be used.
  • calcium phosphate (phosphoric apatite) fine particles (primary particles) are obtained by solubilizing and mixing a calcium solution and a phosphoric acid solution in a surfactant / water / oil emulsion phase and reacting at a cloud point or higher of the surfactant. It can be synthesized.
  • the size of the calcium phosphate fine particles can be controlled by changing the functional group of the surfactant and the ratio of the hydrophilic / hydrophobic ratio.
  • the principle for producing the calcium phosphate fine particles will be briefly described as follows.
  • the core of calcium phosphate grows in the micelle of surfactant
  • the particles grow.
  • the thermodynamic stability of the micelle is controlled by changing the reaction temperature (in the case where the surfactant is a nonionic surfactant, the clouding point of the surfactant should be set).
  • raising the reaction temperature means lowering the ability to form surfactant micelles.
  • the driving force for the growth of calcium phosphate particles which has been limited in the frame of micelles, is larger than the driving force for maintaining the frame of micelles. Therefore, the shape of the particles can be controlled using the mechanism.
  • the functional group (hydrophilic site) of the surfactant and the hydrophilic / hydrophobic ratio in the molecule are important.
  • the stability and cloud point of the micelle also differ depending on this difference.
  • the cloud point of the surfactant varies depending on the type. Therefore, by appropriately changing the type of the surfactant, the functional group of the surfactant and the ratio of the hydrophilic / hydrophobic ratio can be changed, and the size of the calcium phosphate fine particles can be controlled.
  • the type of surfactant used in the above method is not particularly limited, and other types of known anions, cations, amphoteric ions, nonionic surfactants disclosed in the above-mentioned JP-A-5-17111. It can be used by appropriately selecting from agents.
  • these surfactants in the case of a nonionic surfactant, since it has a cloud point of the surfactant, it becomes easy to control the shape of the crystal using the above-mentioned mechanism.
  • polyoxyethylene alkyl ether polyoxyethylene allyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene derivative, oxyethylene / oxypropylene block copolymer, sorbitan fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene allyl ether, polyoxyethylene alkyl allyl ether Oxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkylamine and the like can be used.
  • quaternary ammonium salts such as stearylamine hydrochloride, lauryltrimethylammonium chloride, and alkylbenzenedimethylammonium chloride can be used.
  • anionic surfactant sodium lauryl alcohol sulfate is used. Higher alcohol sulfates such as sodium oleyl alcohol sulfate, alkyl sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate, and alkylaryl sulfonates such as sodium dodecylbenzenesulfonate and sodium dodecylnaphthalenesulfonate are available.
  • amphoteric surfactant an alkyl betaine type, an alkylamide betaine type, an amine oxide type, or the like can be used.
  • Said surfactant is used by 1 type or in combination of 2 or more types.
  • pentaethylene glycol dodecyl ether particularly from the viewpoint of cloud point and solubility.
  • oil phase usable in the above method examples include hydrocarbons such as toluene, xylene, hexane, dodecane, and cyclohexane, halogenated hydrocarbons such as chlorobenzene and chloroform, ethers such as diethyl ether, and alcohols such as butanol. , Ketones such as methyl isobutyl ketone, cyclohexanone, etc., and these solvents have low water solubility depending on the surfactant used, and one or two of the above-mentioned surfactants are dissolved so as to dissolve any of the above surfactants. Select a species.
  • hydrocarbons such as toluene, xylene, hexane, dodecane, and cyclohexane
  • halogenated hydrocarbons such as chlorobenzene and chloroform
  • ethers such as diethyl ether
  • alcohols such as butanol.
  • the reaction temperature, reaction time, addition amount of the raw material, and the like may be adopted after selecting optimal conditions according to the composition of the primary particles.
  • the upper limit of the reaction temperature is an aqueous solution reaction, it is preferably a temperature at which the solution does not boil, and preferably 90 ° C. or less.
  • this step may include a step of washing the generated primary particles with water or the like, and a step of collecting the primary particles by centrifugation, filtration, or the like.
  • the mixing step is a step of mixing the primary particles and the anti-fusing agent. By interposing an anti-fusing agent between the particles of the primary particle group obtained by the primary particle generation step, it is possible to prevent the fusion of primary particles in the subsequent sintering step. It is.
  • the mixture of primary particles and anti-fusing agent obtained by the mixing step is called “mixed particles”.
  • the “fusion preventive agent” is not particularly limited as long as it can prevent fusion between primary particles, but may be non-volatile at a sintering temperature in a subsequent sintering step. preferable. Because it is non-volatile under the sintering temperature condition, it does not disappear from the primary particles during the sintering process, and the fusion of the primary particles can be reliably prevented. However, it is not necessary to have 100% non-volatility at the sintering temperature, as long as it is non-volatile so that 10% or more remains between the primary particles after the sintering process is completed.
  • the anti-fusing agent may be chemically decomposed by heat after completion of the sintering process. That is, if it remains after the end of the sintering process, it is not necessary to be the same substance (compound) before and after the start of the sintering process.
  • the anti-fusing agent is a substance that is soluble in a solvent, particularly an aqueous solvent.
  • a solvent particularly an aqueous solvent.
  • an anti-fusing agent that dissolves in a solvent such as pure water.
  • Agents such as calcium carbonate
  • the anti-fusing agent is soluble in an aqueous solvent, it is not necessary to use an organic solvent to remove the anti-fusing agent. It becomes. Therefore, it can be said that the anti-fusing agent can be removed from the calcium phosphate fine particles more easily.
  • a solvent for example, water, ethanol, methanol etc. are mentioned as an aqueous solvent, Acetone, toluene etc. are mentioned as an organic solvent.
  • the aqueous solvent may contain a chelate compound such as oxalate, ethylenediamine, bipyridine, and ethylenediaminetetraacetate in order to increase the solubility of the anti-fusing agent in water. Further, the aqueous solvent may contain electrolyte ions such as sodium chloride, ammonium nitrate and potassium carbonate in order to increase the solubility of the anti-fusing agent in water.
  • a chelate compound such as oxalate, ethylenediamine, bipyridine, and ethylenediaminetetraacetate in order to increase the solubility of the anti-fusing agent in water.
  • electrolyte ions such as sodium chloride, ammonium nitrate and potassium carbonate in order to increase the solubility of the anti-fusing agent in water.
  • the preferable solubility is preferably 0.01 g or more, more preferably 1 g or more, and most preferably 10 g or more, when the amount of solute (g) with respect to 100 g of solvent is the solubility.
  • the anti-fusing agent examples include calcium chloride, calcium oxide, calcium sulfate, calcium nitrate, calcium carbonate, calcium hydroxide, calcium acetate, calcium citrate, and other calcium salts (or complexes), potassium chloride, and potassium oxide.
  • Potassium salts such as potassium sulfate, potassium nitrate, potassium carbonate, potassium hydroxide, potassium phosphate, sodium salts such as sodium chloride, sodium oxide, sodium sulfate, sodium nitrate, sodium carbonate, sodium hydroxide, sodium phosphate, etc. It is done.
  • the method of mixing the primary particles and the anti-fusing agent in the mixing step is not particularly limited, and after mixing the solid anti-fusing agent with the solid primary particles, the mixture is mixed using a blender. Or a method of dispersing primary particles in a solution of an anti-fusing agent.
  • the latter is a preferable method for interposing the anti-fusing agent uniformly and reliably between the primary particles.
  • the hydroxyapatite (HAp) primary particle 0.5g is disperse
  • the mixing step includes a solution containing a polymer compound having any of a carboxyl group, a sulfuric acid group, a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, an amino group, or a salt thereof in the side chain, and the primary particles described above. May be added, and a metal salt (alkali metal salt and / or alkaline earth metal salt and / or transition metal salt) may be further added.
  • the polymer compound is adsorbed on the surface of calcium phosphate ⁇ hydroxyapatite (HAp) ⁇ to reliably prevent calcium phosphate ⁇ hydroxyapatite (HAp) ⁇ from contacting each other in the anti-fusing agent mixing process.
  • a polymer compound having a carboxyl group, a sulfate group, a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, an amino group or a salt thereof in the side chain is simply referred to as “polymer”. Referred to as "compound”.
  • the polymer compound is not particularly limited as long as it is a compound having any of a carboxyl group, a sulfate group, a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, an amino group or a salt thereof in the side chain.
  • Examples of the polymer compound having a carboxyl group in the side chain include polyacrylic acid, polymethacrylic acid, sodium polyacrylate, sodium polymethacrylate, carboxymethylcellulose, styrene-maleic anhydride copolymer, and the like.
  • polymer compound having a sulfate group in the chain examples include polyacrylic acid alkyl sulfate ester, polymethacrylic acid alkyl sulfate ester, polystyrene sulfate, etc.
  • polymer compound having a sulfonic acid group in the side chain includes polyacrylic acid.
  • examples thereof include alkyl sulfonic acid esters, polymethacrylic acid alkyl sulfonic acid esters, polystyrene sulfonic acid, etc.
  • polymer compounds having a phosphate group in the side chain include polyacrylic acid alkyl phosphoric acid esters and polymethacrylic acid alkyl phosphoric acid esters.
  • Examples of the polymer compound having a phosphonic acid group in the side chain include polyacrylic acid alkylphosphonic acid ester, polymethacrylic acid alkylphosphonic acid ester, polystyrene phosphonic acid, polyacryloylamino. Examples thereof include methylphosphonic acid and polyvinylalkylphosphonic acid. Examples of the polymer compound having an amino group in the side chain include polyacrylamide, polyvinylamine, polymethacrylic acid aminoalkyl ester, polyaminostyrene, polypeptide, protein and the like. In the mixing step, any one of the above polymer compounds may be used, but a plurality of types of polymer compounds may be mixed and used.
  • the molecular weight of the polymer compound is not particularly limited, but is preferably 100 g / mol or more and 1,000,000 g / mol or less, more preferably 500 g / mol or more and 500,000 g / mol or less, and 1,000 g / Mol to 300,000 g / mol is most preferred. If the ratio is less than the above preferable range, the ratio of entering between the primary particles decreases, and the ratio of preventing contact between the primary particles decreases. On the other hand, when the above preferred range is exceeded, the solubility of the polymer compound becomes low, and the operability such as increase in the viscosity of the solution containing the polymer compound becomes unfavorable.
  • the solution containing the polymer compound is preferably an aqueous solution. This is because the calcium phosphate ⁇ hydroxyapatite (HAp) ⁇ sintered body particles are dissolved under strong acidic conditions.
  • the pH of the aqueous solution containing the polymer compound is not particularly limited as long as the pH is 5 or more and 14 or less and the HAp particles are insoluble.
  • the aqueous solution containing the polymer compound may be prepared by dissolving the polymer compound in distilled water, ion-exchanged water or the like, and adjusting the pH with an aqueous solution of ammonia aqueous solution, sodium hydroxide, potassium hydroxide or the like.
  • the concentration of the polymer compound contained in the aqueous solution is preferably 0.001% w / v or more and 50% w / v or less, more preferably 0.005% w / v or more and 30% w / v or less. Most preferred is 01% w / v or more and 10% w / v or less.
  • the amount is less than the above preferable range, the amount of entering between the primary particles is small, and the ratio of preventing contact between the primary particles is low.
  • the above preferred range is exceeded, it is not preferable because dissolution of the polymer compound becomes difficult and operability such as increase in the viscosity of the solution containing the polymer compound becomes worse.
  • the solution containing the polymer compound and primary particles are mixed.
  • Such mixing may be performed by, for example, adding primary particles into the solution and dispersing the primary particles by a stirring operation or the like.
  • the polymer compound is adsorbed on the surface of the primary particles, and the carboxyl group, sulfate group, sulfonate group, phosphate group, phosphonate group, amino group, or these Can be added to the surface of the primary particles.
  • the carboxyl group, sulfuric acid group, sulfonic acid group, phosphoric acid group, phosphonic acid group or amino group is present in an ionic state in the solution.
  • a metal salt an alkali metal salt and / or an alkaline earth metal salt and / or a transition metal salt
  • a metal salt an alkali metal salt and / or an alkaline earth metal salt and / or a transition metal salt
  • carboxylate, sulfate, sulfonate, phosphate, phosphonate, and amino acid salt are formed on the surface of the primary particles.
  • Carboxylic acid salts, sulfates, sulfonates, phosphates, phosphonates, and amino acid salts of such metals function as the anti-fusing agent. . Therefore, primary particles with metal (alkali metal and / or alkaline earth metal and / or transition metal) carboxylate, sulfate, sulfonate, phosphate, phosphonate, amino acid salt formed on the surface are These are so-called “mixed particles”.
  • the precipitate After being recovered, it may be dried and subjected to a sintering step described later.
  • the drying is, for example, under reduced pressure (1 ⁇ 10 5 Pa or more and 1 ⁇ 10 ⁇ 5 Pa or less, preferably 1 ⁇ 10 3 Pa or more and 1 ⁇ 10 ⁇ 3 Pa or less, more preferably 1 ⁇ 10 2 Pa or more and 1 ⁇ 10 ⁇ 2 Pa or less is most preferable) and heating (preferably 0 ° C. or more and 200 ° C.
  • the drying is preferably performed under reduced pressure because the drying temperature can be lowered, but may be performed under atmospheric pressure.
  • the alkali metal salt is not particularly limited.
  • alkaline earth metal salt examples include magnesium chloride, magnesium hypochlorite, magnesium chlorite, magnesium bromide, magnesium iodide, magnesium iodide, magnesium oxide, magnesium peroxide, magnesium sulfate, and magnesium thiosulfate.
  • transition metal salt examples include zinc chloride, zinc hypochlorite, zinc chlorite, zinc bromide, zinc iodide, zinc iodide, zinc oxide, zinc peroxide, zinc sulfate, zinc thiosulfate, and selenium.
  • metal salt alkali metal salt, alkaline earth metal salt, transition metal salt
  • the metal salt alkali metal salt, alkaline earth metal salt, transition metal
  • the metal salt may be in a solid state, but can be added uniformly and the concentration can be controlled. It is preferable to add as an aqueous solution.
  • the amount (concentration) of the metal salt (alkali metal salt and / or alkaline earth metal salt and / or transition metal salt) to be added depends on the carboxylate ion, sulfate ion, sulfonate ion, phosphoric acid present on the primary particle surface. Bonded with ions, phosphonate ions, amino ions, carboxylate, sulfate, sulfonate, phosphate, phosphonate of metal (alkali metal and / or alkaline earth metal and / or transition metal), The conditions are not particularly limited as long as the amino acid salt is generated, and may be determined after appropriate examination.
  • the salt undergoes thermal decomposition in a sintering process described later, and becomes an oxide of a metal (an alkali metal and / or an alkaline earth metal and / or a transition metal).
  • a metal an alkali metal and / or an alkaline earth metal and / or a transition metal
  • the metal oxide alkali metal oxide and / or alkaline earth metal oxide (for example, calcium oxide) and / or transition metal oxide) is water-soluble, it can be easily removed by a removal step described later. Is possible.
  • sodium polyacrylate Since sodium polyacrylate is soluble in water, it can be used as an anti-fusing agent in this mixing step. However, since calcium polyacrylate is insoluble in water, only polyacrylic acid is temporarily removed from the primary particle surface. It is preferable that calcium acrylate is precipitated on the primary particle surface by adding a calcium salt or the like after adsorbing to the primary particle surface.
  • the polymer compound decomposes when the primary particles are calcined at a high temperature (about 300 ° C. or higher), the metal salt of the polymer compound is added to the primary particles so that it functions as an anti-fusing agent even after calcining. It can be said that it is preferable to deposit on the surface. However, when the primary particles are calcined (heat treatment) at a temperature at which the polymer compound is not decomposed (not softened), it is not particularly necessary to deposit the metal salt of the polymer compound on the surface of the primary particles.
  • the sintering step is a step in which the mixed particles obtained in the mixing step are exposed to a sintering temperature to make primary particles contained in the mixed particles into highly crystalline calcium phosphate fine particles (sintered particles). Since the anti-fusing agent is interposed between the primary particles, it is possible to prevent the primary particles from fusing even when exposed to high temperature conditions in the sintering process.
  • the sintering temperature in the sintering step may be appropriately set so that the hardness of the highly crystalline calcium phosphate fine particles becomes a desired hardness. For example, it is more preferably in the range of 100 ° C. to 1800 ° C., and 150 ° C. to 1500 ° C. Is more preferable, and 200 ° C. to 1200 ° C. is most preferable.
  • the sintering time may be appropriately set based on the desired hardness of the highly crystalline calcium phosphate fine particles. In the examples described later, sintering is performed at 800 ° C. for 1 hour.
  • the apparatus etc. which are used for the said sintering process are not specifically limited, What is necessary is just to employ
  • the said removal process is a process of removing the anti-fusing agent mixed between the particles of the highly crystalline calcium phosphate fine particles obtained by the sintering process.
  • the removal means and method may be appropriately employed according to the anti-fusing agent employed in the mixing step.
  • anti-fusing agent having solvent solubility
  • anti-fusing can be prevented by using a solvent that does not dissolve the calcium phosphate fine particles (non-soluble) and a solvent that dissolves the anti-fusing agent (soluble). Only the agent can be dissolved and removed.
  • the solvent to be used is not particularly limited as long as it satisfies the above requirements, and may be an aqueous solvent or an organic solvent.
  • water, ethanol, methanol, etc. are mentioned as an aqueous solvent
  • acetone, toluene, etc. are mentioned as an organic solvent.
  • the aqueous solvent may contain a chelate compound such as oxalate, ethylenediamine, bipyridine, and ethylenediaminetetraacetate in order to increase the solubility of the anti-fusing agent in water. Further, the aqueous solvent may contain electrolyte ions such as sodium chloride, ammonium nitrate and potassium carbonate in order to increase the solubility of the anti-fusing agent in water.
  • a chelate compound such as oxalate, ethylenediamine, bipyridine, and ethylenediaminetetraacetate in order to increase the solubility of the anti-fusing agent in water.
  • electrolyte ions such as sodium chloride, ammonium nitrate and potassium carbonate in order to increase the solubility of the anti-fusing agent in water.
  • the solvent used is preferably an aqueous solvent.
  • the removal step is preferably performed at 0 to pH 12.0.
  • the above operation is not limited to once, and may be performed twice or more. It can be said that the removal rate of the calcium phosphate anti-fusing agent is further improved by performing the above operation a plurality of times. However, it is not preferable to perform the above operation more than necessary because the manufacturing process becomes complicated, the manufacturing cost increases, and the recovery rate of calcium phosphate decreases. Therefore, the number of operations may be appropriately determined based on the target anti-fusing agent removal rate.
  • this step may include a step of classifying in order to make the particle diameter uniform.
  • the anti-fusing agent can be removed using a magnet by using a magnetic substance as the anti-fusing agent. More specifically, after the calcium phosphate particles (crude calcium phosphate particles) containing the anti-fusing agent obtained by the sintering step are suspended and dispersed in an appropriate solvent (water or the like), the magnetic force is applied to the suspension. , Only the anti-fusing agent is adsorbed to the magnet, and only the calcium phosphate particles that have not been adsorbed are recovered. In addition, without suspending in a solvent, a method may be used in which the crude calcium phosphate particles are ground into powder and then the anti-melting agent is separated by a magnet.
  • the calcium phosphate particles to which this method can be applied are preferably non-magnetic or weakly magnetic.
  • the calcium phosphate particles according to the best mode are primary particles whose majority is a single crystal, or a particle lump (single crystal primary particles) in which the primary particles composed of the single crystals are assembled by ionic interaction, And dispersibility is good, and since the secondary particles are not formed, the surface area is also high.
  • the result of measuring the particle size by observation with an electron microscope and the particle size in a state suspended in a solvent by a dynamic light scattering method By comparing the results with the measurement results, it can be determined that most of the calcium phosphate particles according to the present best form are in the state of primary particles if the results are almost the same. If the particle diameter measurement result by the dynamic light scattering method is larger than the particle diameter measurement result obtained by the above, it can be determined that the primary particles are fused to form secondary particles.
  • the solvent for dispersing the calcium phosphate particles according to the best mode is not particularly limited as long as it does not dissolve the calcium phosphate particles.
  • water alcohols such as methanol and ethanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, amides such as N, N-dimethylformamide, sulfoxides such as dimethyl sulfoxide, toluene, xylene, hexane , Hydrocarbons such as dodecane and cyclohexane, halogenated hydrocarbons such as chlorobenzene and chloroform, ethers such as diethyl ether and dioxane, etc., and these solvents are selected according to the purpose of use. Can be used.
  • At least 50% or more is a single crystal primary. It exists as particles, and in a more preferable case, 60% or more exists as single crystal primary particles, and under the most preferable conditions, 70% or more can exist as single crystal primary particles.
  • Examples of the means for delivering the collagen production promoter according to the best mode to the application site include direct application to the application site, percutaneous absorption, subcutaneous injection, and a surgical procedure.
  • the collagen production promoter according to the best mode of the present invention exerts its efficacy by using it as a cosmetic material, 150 mg (including 1.5 mg of calcium phosphate) once a day twice.
  • Production Example 1 (Production of calcium phosphate fine particles) (Primary particle generation process) Dodecane [CH 3 (CH 2 ) 10 CH 3 ] as a continuous oil phase and pentaethylene glycol dodecyl ether [CH 3 (CH 2 ) 10 CH 2 O (CH 2 CH 2 ) having a cloud point of 31 ° C. as a nonionic surfactant O) 4 CH 2 CH 2 OH]. At room temperature, 40 ml of a continuous oil phase containing 0.5 g of the nonionic surfactant was prepared.
  • a 2.5 mol / l calcium hydroxide [Ca (OH) 2 ] dispersed aqueous solution was added to the continuous oil phase prepared above to prepare a water-in-oil solution (W / O solution). While stirring the W / O solution, 10 ml of a 1.5 mol / l potassium dihydrogen phosphate [(KH 2 PO 4 )] solution was added thereto. And it was made to react, stirring for 24 hours at room temperature. Next, hydroxyapatite (HAp) primary particle groups were obtained by separating and washing the obtained reaction product by centrifugation.
  • HAp hydroxyapatite
  • Production Example 2 (Unfired) Except that the reaction temperature in the primary particle generation step is 30 ° C., only the primary particle generation step is performed under the same conditions as in Production Example 1, and the subsequent steps such as the subsequent mixing step and the sintering step are not performed. Two unfired hydroxyapatite fine particles were obtained. Hereinafter, detailed information on the hydroxyapatite fine particles will be described.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Birds (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cosmetics (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】 皮膚組織に含まれるコラーゲン量を増加させる新規コラーゲン産生促進剤の提供。 【解決手段】 リン酸カルシウム微粒子を有効成分とすることを特徴とする、コラーゲン産生促進剤。

Description

コラーゲン産生促進剤
 本発明は、コラーゲン産生促進剤に関し、皮膚の真皮層に存在する線維芽細胞を刺激するコラーゲン産生促進剤に関する。
 コラーゲンは全身のあらゆる臓器に存在しており、特に皮膚においては、真皮乾燥重量の約70%がコラーゲンであることが知られており、皮膚の収縮性、柔軟性、保湿性等の機能保持に役立つだけではなく、各種細胞の形態を正常に維持し、代謝及び接着などに対しても影響を及ぼすことが知られている。
 また、皮膚は常に外界にさらされており、加齢ともに弾力や張りを失い、シワ、タルミ等の老化現象が生じる。これらの現象は、皮膚中に存在するコラーゲンの量が老化にともない減少していくことから、発生すると考えられている。このようなシワやタルミをなくすために、コラーゲン産生促進作用を有する物質を用いたコラーゲン産生促進剤が多数報告されている(特許文献1)。従来、真皮中に存在する線維芽細胞がコラーゲンを産生することが知られており、当該促進剤は線維芽細胞に対してコラーゲン産生を促進するように作用するとされている。
特開2008-260747号公報
 本発明は、皮膚組織に含まれるコラーゲン量を増加させる新規コラーゲン産生促進剤を提供することを目的とする。
 本発明(1)は、リン酸カルシウム微粒子を有効成分とすることを特徴とする、コラーゲン産生促進剤である。
 本発明(2)は、前記リン酸カルシウム微粒子がハイドロキシアパタイト微粒子である、前記発明(1)のコラーゲン産生促進剤である。
 本発明(3)は、前記リン酸カルシウム微粒子の平均粒子径が、10~1,000nmである、前記発明(1)又は(2)のコラーゲン産生促進剤である。
 本発明(4)は、前記リン酸カルシウム微粒子が、焼結体である、前記発明(1)~(3)のいずれか一つのコラーゲン産生促進剤である。
 本発明(5)は、前記焼結体が、
 リン酸カルシウムを含有する一次粒子と融着防止剤とを混合する、混合工程と、
 上記混合工程によって得られた混合粒子を焼結温度に曝す、焼結工程と、
を含む方法により製造された、前記発明(4)のコラーゲン産生促進剤である。
 本発明(6)は、アルコール類、糖類、タンパク質類、アミノ酸類、水溶性ビタミン類、脂溶性ビタミン類、脂質、ムコ多糖類、界面活性剤からなる群から選ばれる少なくとも1種の物質を含む、前記発明(1)~(5)のいずれか一つのコラーゲン産生促進剤である。
 本発明(1)は、線維芽細胞に作用して、コラーゲン産生を促進するという効果を奏する。更に、シワやタルミなどの老化現象を改善することや、組織中により損なわれたコラーゲン線維を再構築し、正常な組織へ改善するという効果を奏する。
 本発明(2)によれば、繊維芽細胞に作用して、コラーゲン産生を促進するという効果を奏する。
 本発明(3)によれば、リン酸カルシウム微粒子の平均粒子径が、非常に小さいため、肌の表面に塗布することにより、キメの状態を良くするという効果を奏する。
 本発明(4)によれば、焼結体とすることにより、顕著なコラーゲン産生量の増加作用が認められるという効果を奏する。
 本発明(5)によれば、リン酸カルシウム微粒子が焼結によっても粒子同士が融着しにくく一次粒子の状態を保っているため、粒径が小さいままで、焼結体を得ることができるため、より高いコラーゲン産生促進作用を発揮できるという効果を奏する。
 本発明(6)によれば、これらの物質を含むことにより、真皮への速やかな浸透の促進、収れん、保湿、抗炎症等の効果を奏する。
図1は、被験者1の肌の表面の様子を示した図である。 図2は、被験者2の肌の表面の様子を示した図である。
 本最良形態に係るコラーゲン産生促進剤は、リン酸カルシウム微粒子を含む。その他、任意の構成要件として、アルコール類、糖類、タンパク質類、アミノ酸類、水溶性ビタミン類、脂溶性ビタミン類、脂質、ムコ多糖類、界面活性剤が含まれていることが好適である。本最良形態に係るリン酸カルシウム微粒子としては、例えば、ハイドロキシアパタイト(Ca10(PO(OH))、フルオロアパタイト(Ca10(POF)、Ca10(POCl等が挙げられる。また、当該リン酸カルシウムには、カルシウムイオン及び/又は水酸イオン及び/又はリン酸イオンの一部がストロンチウムイオン、バリウムイオン、ナトリウムイオン、重炭酸イオン、炭酸イオン、フッ化物イオン、塩化物イオン等で置換された化合物やリン酸トリカルシウム(Ca(PO))、メタリン酸カルシウム(Ca(PO)、オクタリン酸カルシウム(OCP)が含まれていてもよい。上記例示のうち、ハイドロキシアパタイトが好適である。そして、本最良形態に係るリン酸カルシウム粒子(リン酸カルシウムの粒子)の表面には、Ca10(PO(OH)が存在していることが好適である。このCa10(PO(OH)は、リン酸カルシウムの表面に存在していれば好適であり、リン酸カルシウム全量に対して、0.1重量%程度含まれていればよいが、50重量%以上含まれていることがより好ましい。また、上記リン酸カルシウム微粒子には、非晶質のハイドロキシアパタイトを後述するように焼結する際に生じる、リン酸トリカルシウム等が含まれていてもよい。本実施の形態に係るリン酸カルシウムは、生体組織との親和性及び生体環境における安定性が優れている。
 本最良形態に係るリン酸カルシウム微粒子の平均粒子径は、10~1,000nmが好適であり、20~300nmがより好適であり、20~250nmが更に好適である。このような粒子径の範囲とすることにより、皮膚の表面から真皮層に微粒子が浸透するため、皮膚化粧料等の外用剤であっても、当該リン酸カルシウム微粒子が真皮相中に含まれる線維芽細胞に作用して、コラーゲン促進作用を発揮することが可能となる。20~250nmとすることにより、表皮細胞の隙間が250nm程度であるため、特に皮膚の表面から真皮層に浸透しやすくなるという効果を奏する。変動係数は、20%以下が好適であり、18%以下がより好適であり、15%以下が更に好適である。尚、平均粒子径及び変動係数は、電子顕微鏡を用い、少なくとも100個以上の一次粒子について粒子径を測定して計算すればよい。尚、「変動係数」は、標準偏差÷平均粒子径×100(%)で計算することができる粒子間の粒子径のバラツキを示す値である。リン酸カルシウム微粒子の形状としては、特に限定されるものではなく、例えば、粒子状であっても、ロッド状であってもよい。尚、ロッド状である場合には、前記平均粒径は、当該粒子の長径により測定されるものとする。
 本最良形態に係るリン酸カルシウム微粒子はリン酸カルシウムを焼結(焼成)させたリン酸カルシウム焼結体(リン酸カルシウムセラミックスとも呼ばれる)であることが好適である。特に、後述する分散焼成法により焼結することが好適である。リン酸カルシウム微粒子焼結体を使用することにより、未焼結のものと比較して、コラーゲン産生促進作用が顕著に向上するという効果を奏する。更に、リン酸カルシウム微粒子焼結体は、非晶質のリン酸カルシウムと比べて、結晶性が高く、生体において溶解性が低い。従って生体内で長期間、生体活性を維持することができるため、コラーゲン産生促進効果が長期間発揮され易くなる。リン酸カルシウム微粒子焼結体は、非晶質のリン酸カルシウムを焼結させることにより得られる。具体的には、例えば、後述の方法で焼結させることにより、リン酸カルシウム微粒子焼結体を得ることができる。また、リン酸カルシウム微粒子の結晶性の高い、高結晶性リン酸カルシウムを用いることが好適である。このリン酸カルシウムの結晶性の度合いは、X線回折法(XRD)により、測定することができる。具体的には、各結晶面を示すピークの半値幅が狭ければ狭いほど結晶性が高い。ここで、本発明の高結晶性リン酸カルシウムに係る「高結晶性」とは、d=2.814での半値幅が0.8以下(好適には、0.5以下)である。
 本最良形態に係るコラーゲン産生促進剤には、アルコール類、糖類、タンパク質類、アミノ酸類、水溶性ビタミン類、脂溶性ビタミン類、脂質、ムコ多糖類、界面活性剤が含まれていることが好適である。
 アルコール類としては、例えば、エタノール、グリセリン等が挙げられる。アルコール類を含むことにより、リン酸カルシウム微粒子の分散安定性を向上させ、真皮層への速やかな浸透を促す。また、皮膚の洗浄、収れん、保湿効果も奏する。糖類としては、例えば、加水分解水添デンプン等が挙げられる。糖類を含むことにより、保湿効果、抗炎症効果が向上する。タンパク質類としては、例えば、コラーゲンが挙げられる。タンパク質類を含むことにより、リン酸カルシウムの担体となり真皮層への送達を促すことができる。アミノ酸類としては、例えば、グルタミン酸、アルギニン酸、又はこれらのナトリウム塩等が挙げられる。アミノ酸類を含むことにより、コラーゲン産生を促すことができる。水溶性ビタミン類としては、例えば、リン酸アスコルビルマグネシウム等が挙げられる。水溶性ビタミン類を含むことにより、コラーゲン産生を促し、リン酸カルシウムとの相乗効果が期待できる。脂溶性ビタミン類としては、例えば、ビタミンAが挙げられる。脂溶性ビタミン類を含むことにより、ムコ多糖類の産生を促し、肌に潤いを与えることができる。脂質としては、例えば、セラミドやリン脂質類が挙げられる。脂質を含むことにより、保湿効果を奏する。ムコ多糖類としては、例えば、ヒアルロン酸等が挙げられる。ムコ多糖類を含むことにより、保湿効果を奏する。界面活性剤としては、例えば、ポリエチレングリコール、ステアリン酸誘導体が挙げられる。界面活性剤を含むことにより、微粒子やビタミンAなど脂溶性成分の分散性が向上する。
 本最良形態に係るリン酸カルシウム微粒子は、特に限定されないが、化粧料、整形外科用製剤、歯科用製剤に配合するのに好適である。化粧料の種類は特に限定されず、その具体例としては、洗顔料、化粧水、美容液、軟膏、クリーム、乳液、ローション、パック、口紅、入浴剤等が挙げられる。本最良形態に係る化粧料におけるリン酸カルシウム微粒子の配合量は、化粧料の種類や抽出物の生理活性等によって適宜調整することができるが、0.01~30質量%が好適であり、0.1~15質量%がより好適であり、0.1~10質量%が更に好適である。アルコール類の配合料は、特に限定されないが、0.01~70質量%が好適であり、0.01~50質量%がより好適であり、0.01~30質量%が更に好適である。糖類の配合料は、特に限定されないが、0.01~70質量%が好適であり、0.01~50質量%がより好適であり、0.01~30質量%が更に好適である。タンパク質類の配合料は、特に限定されないが、0.01~30質量%が好適であり、0.01~20質量%がより好適であり、0.01~10質量%が更に好適である。アミノ酸類の配合料は、特に限定されないが、0.01~30質量%が好適であり、0.01~20質量%がより好適であり、0.01~10質量%が更に好適である。水溶性ビタミン類の配合料は、特に限定されないが、0.001~30質量%が好適であり、0.001~20質量%がより好適であり、0.001~10質量%が更に好適である。脂溶性ビタミン類の配合料は、特に限定されないが、0.001~30質量%が好適であり、0.001~20質量%がより好適であり、0.001~10質量%が更に好適である。脂質の配合料は、特に限定されないが、0.001~30質量%が好適であり、0.001~20質量%がより好適であり、0.001~10質量%が更に好適である。ムコ多糖類の配合料は、特に限定されないが、0.01~70質量%が好適であり、0.01~50質量%がより好適であり、0.01~30質量%が更に好適である。界面活性剤の配合料は、特に限定されないが、0.001~30質量%が好適であり、0.001~20質量%がより好適であり、0.001~10質量%が更に好適である。
 本最良形態に係る化粧料には、リン酸カルシウム微粒子のコラーゲン産生促進作用の妨げにならない限り、化粧料の製造に通常使用される各種主剤及び助剤、その他任意の助剤を使用することができる。本最良形態に係る化粧料において、リン酸カルシウム微粒子と共に化粧料構成成分として利用可能なものとしては、化粧料に使用される公知の添加剤を使用できるが、例えば、収斂剤、殺菌・抗菌剤、美白剤、紫外線吸収剤、保湿剤、細胞賦活剤、消炎・抗アレルギー剤、抗酸化・活性酸素消去剤等が挙げられる。尚、化粧料を製造する場合、他の製造原料の選択が制限されることはほとんどなく、油脂類、ロウ類、炭化水素類、脂肪酸類、アルコール類、エステル類、界面活性剤、香料等の一般的な基材や助剤はいずれも使用可能である。
 その他、整形外科用製剤としては、怪我などにより皮膚に窪みができた部分に注入することにより自己組織による欠損部位を再生させる軟組織充填剤等が挙げられる。歯科用製剤としては、インプラント治療などを行った後、隙間ができてしまった部位に適用し、基材や歯などを固定しやすくする歯肉固定剤等が挙げられる。
《製造方法》
 次に、本最良形態に係るリン酸カルシウム微粒子の製造方法について説明する。リン酸カルシウム微粒子は、湿式法や、乾式法、加水分解法、水熱法等の公知の製造方法によって、人工的に製造されたものであってもよく、また、骨、歯等から得られる天然由来のものであってもよい。また、粒径の大きなリン酸カルシウム粒子を製造して、周知の方法により粉砕したものであってもよい。
 リン酸カルシウム微粒子は、アモルファスのリン酸カルシウムを焼結させることにより得ることが好適である。また、焼結温度の下限値としては、500℃以上がより好ましい。焼結温度が500℃よりも低いと、焼結が十分でない場合がある。一方、焼結温度の上限値としては、1800℃以下がより好ましく、1250℃以下がさらに好ましく、1200℃以下が特に好ましい。焼結温度が1800℃よりも高いと、リン酸カルシウムが分解する場合がある。従って、焼結温度を、上記範囲内とすることにより、生体内で溶解し難い(結晶性が高い)リン酸カルシウムを製造することができる。また、焼結時間としては、特に限定されるものではなく、適宜設定すればよい。尚、焼結により、粒子同士が融着してしまう場合もあるが、このような場合には、焼結後の粒子を粉砕して使用することが可能である。
 本最良形態に係るリン酸カルシウム微粒子は、後述する方法により製造されることが特に好適である。即ち、本最良形態に係るリン酸カルシウム微粒子の製造方法は、混合工程と、焼結工程とから少なくともなる分散焼成(焼結)法を含む方法であることが好適である。当該分散焼成法によって、得られる微粒子が一次粒子の粒径がそのまま反映されるため、先述した範囲の平均粒子径に調製しやすい。また、本最良形態に係る製造方法は、一次粒子生成工程、除去工程を含んでいてもよい。これらの工程は、例えば、一次粒子生成工程、混合工程、焼結工程、除去工程の順で行われる。
(一次粒子生成工程)
 当該一次粒子生成工程は、リン酸カルシウム微粒子を生成することができる工程であれば特に限定されるものではなく、製造する高結晶性リン酸カルシウム微粒子の原料により適宜選択の上、採用すればよい。例えば、常温下において水酸化カルシウムスラリーにリン酸を滴下すれば、リン酸カルシウム(CaP)の粒子が沈殿する。
 本最良形態に係るリン酸カルシウム微粒子のように、微細(ナノメートルサイズ)でかつ粒子径が均一な(粒度分布が狭い)一次粒子群を生成する方法については、特に限定されるものではないが、例えば、特開2002-137910号公報記載の方法が利用可能である。つまり、界面活性剤/水/オイル系エマルジョン相にカルシウム溶液及びリン酸溶液を可溶化して混合させ、界面活性剤の曇点以上で反応させることでリン酸カルシウム(ハイドロキシアパタイト)微粒子(一次粒子)を合成することができるというものである。また、このとき上記界面活性剤の官能基及び親水性/疎水性比の割合を変えることによりリン酸カルシウム微粒子の大きさを制御することができる。
 上記リン酸カルシウム微粒子を製造する原理を簡単に説明すれば、以下の通りである。界面活性剤/水/オイル系エマルジョン相にカルシウム溶液及びリン酸溶液を可溶化して混合させ、反応させてリン酸カルシウム微粒子を合成する方法においては、界面活性剤のミセルの中でリン酸カルシウムの核が成長し、粒子が成長する。このとき反応温度を変化させること(前記界面活性剤が非イオン系の界面活性剤である場合には、界面活性剤の曇点以上とすること)により、ミセルの熱力学的安定性を制御することができる。すなわち反応温度を上げるということは、界面活性剤のミセルを形成する力を下げるということである。そうすると、ミセルという枠の中で制限を受けていたリン酸カルシウムの粒子成長の駆動力がミセルの枠を維持しようとする駆動力より大きくなると考えられる。よって、そのメカニズムを利用して粒子の形を制御できる。
 界面活性剤のミセルを作る場合に、界面活性剤の官能基(親水性部位)及び分子内の親水性/疎水性比が重要であり、この違いによってミセルの安定性、曇点も異なってくる。また界面活性剤の曇点は、種類によって異なる。したがって、界面活性剤の種類を適宜変更することにより、上記界面活性剤の官能基及び親水性/疎水性比の割合を変えることができリン酸カルシウム微粒子の大きさを制御することができる。
 尚、上記方法において用いる界面活性剤の種類は、特に限定されず、上記の特開平5-17111号公報に開示された他種類の公知の陰イオン、陽イオン、両性イオン、非イオン性界面活性剤から適宜選択して用いることができる。これらの界面活性剤の中でも、非イオン系の界面活性剤である場合には、界面活性剤の曇点を有するため、前述のメカニズムを利用した結晶の形状制御がし易くなる。より具体的には、非イオン性界面活性剤としてポリオキシエチレンアルキルエーテル、ポリオキシエチレンアリルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン誘導体、オキシエチレン・オキシプロピレンブロックコポリマー、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン等が利用可能である。また陽イオン界面活性剤としては、ステアリルアミン塩酸塩、ラウリルトリメチルアンモニウムクロライド、アルキルベンゼンジメチルアンモニウムクロライド等の第4級アンモニウム塩等が利用可能であり、陰イオン界面活性剤としては、ラウリルアルコール硫酸エステルナトリウム、オレイルアルコール硫酸エステルナトリウム等の高級アルコール硫酸エステル塩類、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸塩類、ドデシルベンゼンスルホン酸ナトリウム、ドデシルナフタレンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩類等が利用可能であり、両性界面活性剤としては、アルキルベタイン型、アルキルアミドベタイン型、アミンオキサイド型等が利用可能である。上記の界面活性剤は1種類又は2種類以上の組み合わせで使用する。このなかで、曇点、溶解性の点から、特にペンタエチレングリコールドデシルエーテルを使用することが望ましい。
 また上記方法において利用可能なオイル相としては、例えばトルエン、キシレン、ヘキサン、ドデカン、シクロヘキサン等の炭化水素類、クロロベンゼン、クロロホルム等のハロゲン化炭化水素類、ジエチルエーテル等のエーテル類、ブタノール等のアルコール類、メチルイソブチルケトン、シクロヘキサノン等のケトン類等挙げられ、これら溶媒は、使用する界面活性剤に応じて、水の溶解度が小さく、上記界面活性剤のいずれかを溶解するように1種もしくは2種を選択する。この中で、水の溶解度、界面活性剤の溶解性の点から、特にドデカンを使用することが望ましい。この他反応温度、反応時間、原料の添加量等は、一次粒子の組成に応じて適宜最適な条件を選択の上、採用すればよい。ただし反応温度の上限は、水溶液の反応であるから溶液が沸騰しない温度であれることが好ましく、90℃以下が好ましい。
 また、本工程には生成した一次粒子を水等で洗浄する工程、遠心分離、ろ過等で一次粒子を回収する工程が含まれていてもよい。
 (混合工程)
 当該混合工程は、一次粒子と融着防止剤とを混合する工程である。上記一次粒子生成工程によって得られた一次粒子群の粒子間に、あらかじめ融着防止剤を介在させておくことで、その後の焼結工程における一次粒子同士の融着を防止することができるというものである。尚、当該混合工程によって得られた一次粒子と融着防止剤との混合物を「混合粒子」と呼ぶ。
 ここで「融着防止剤」としては、一次粒子間の融着を防止できるものであれば特に限定されるものではないが、後の焼結工程の焼結温度において、不揮発性であることが好ましい。焼結温度条件下で不揮発性であるために、焼結工程中に一次粒子間から消失することは無く、一次粒子同士の融着を確実に防止することができるからである。ただし焼結温度において100%の不揮発性を有する必要は無く、焼結工程終了後に一次粒子間に10%以上残存する程度の不揮発性であればよい。また融着防止剤は焼結工程終了後に熱により化学的に分解するものであってもよい。すなわち焼結工程終了後に残存していれば、焼結工程の開始前後で、同一の物質(化合物)である必要は無い。
 また融着防止剤が、溶媒、特に水系溶媒に溶解する物質であることが好ましい。上記のごとく融着防止剤として、溶媒に溶解する融着防止剤を用いることによれば、融着防止剤が混在するリン酸カルシウム微粒子を純水等の水系溶媒に懸濁するだけで、融着防止剤(例えば炭酸カルシウム等)を除去することができる。特に水系溶媒に溶解する融着防止剤であれば、融着防止剤を除去する際に有機溶媒を用いる必要が無いため、除去工程に有機溶媒の使用に対応する設備、有機溶媒廃液処理が不要となる。それゆえ、より簡便にリン酸カルシウム微粒子から融着防止剤を除去することができるといえる。上記溶媒としては、特に限定されるものではないが、例えば、水系溶媒としては、水、エタノール、メタノール等が挙げられ、有機溶媒としては、アセトン、トルエン等が挙げられる。
 また上記水系溶媒は、融着防止剤の水への溶解性を上げるために、シュウ酸塩、エチレンジアミン、ビピリジン、エチレンジアミン四酢酸塩等のキレート化合物を含んでいてもよい。さらに上記水系溶媒は、融着防止剤の水への溶解性を上げるために、塩化ナトリウム、硝酸アンモニウム、炭酸カリウム等の電解質イオンを含んでいてもよい。
 ここで、融着防止剤の溶媒に対する溶解度は、高ければ高いほど除去効率が高くなるために好ましいといえる。係る好ましい溶解度は、溶媒100gに対する溶質の量(g)を溶解度とすると、0.01g以上が好ましく、1g以上がさらに好ましく、10g以上が最も好ましい。
 上記融着防止剤の具体例としては、塩化カルシウム、酸化カルシウム、硫酸カルシウム、硝酸カルシウム、炭酸カルシウム、水酸化カルシウム、酢酸カルシウム、クエン酸カルシウム等のカルシウム塩(又は錯体)、塩化カリウム、酸化カリウム、硫酸カリウム、硝酸カリウム、炭酸カリウム、水酸化カリウム、リン酸カリウム等のカリウム塩、塩化ナトリウム、酸化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、水酸化ナトリウム、リン酸ナトリウム等のナトリウム塩等が挙げられる。
 尚、当該混合工程において一次粒子と融着防止剤とを混合させる方法については、特に限定されるものではなく、固体の一次粒子に固体の融着防止剤を混合後、ブレンダーを用いて混合する方法であってもよいし、融着防止剤の溶液中に一次粒子を分散させる方法を行なってもよい。ただし、固体と固体を均一に混合することは困難であるため、一次粒子間に均一かつ確実に融着防止剤を介在させるためには、後者が好ましい方法であるといえる。後者の方法を採用した場合は、一次粒子を分散させた融着防止剤溶液を乾燥させておくことが好ましい。一次粒子と融着防止剤が均一に混合された状態を長期にわたってキープすることができるからである。後述する実施例においても、炭酸カルシウム飽和水溶液にハイドロキシアパタイト(HAp)一次粒子0.5gを分散させ、80℃にて乾燥させて混合粒子を取得している。
 また当該混合工程は、側鎖にカルボキシル基、硫酸基、スルホン酸基、リン酸基、ホスホン酸基、アミノ基又はこれらの塩のいずれかを有する高分子化合物を含む溶液と、上記一次粒子とを混合し、金属塩(アルカリ金属塩及び/又はアルカリ土類金属塩及び/又は遷移金属塩)をさらに添加する工程であってもよい。上記の工程を採用することによって、高分子化合物がリン酸カルシウム{ハイドロキシアパタイト(HAp)}表面に吸着することで融着防止剤混合過程におけるリン酸カルシウム{ハイドロキシアパタイト(HAp)}同士の接触を確実に防ぐことができ、その後にカルシウム塩を添加することでリン酸カルシウム{ハイドロキシアパタイト(HAp)}表面に確実に融着防止剤を析出させることが可能となる。尚、以下の説明において、側鎖にカルボキシル基、硫酸基、スルホン酸基、リン酸基、ホスホン酸基、アミノ基又はこれらの塩のいずれかを有する高分子化合物のことを、単に「高分子化合物」と称する。
 上記高分子化合物は、側鎖にカルボキシル基、硫酸基、スルホン酸基、リン酸基、ホスホン酸基、アミノ基又はこれらの塩のいずれかを有する化合物であれば特に限定されるものではない。例えば、側鎖にカルボキシル基を有する高分子化合物としては、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸ナトリウム、ポリメタクリル酸ナトリウム、カルボキシメチルセルロース、スチレン-無水マレイン酸共重合体等が挙げられ、側鎖に硫酸基を有する高分子化合物としては、ポリアクリル酸アルキル硫酸エステル、ポリメタクリル酸アルキル硫酸エステル、ポリスチレン硫酸等が挙げられ、側鎖にスルホン酸基を有する高分子化合物としては、ポリアクリル酸アルキルスルホン酸エステル、ポリメタクリル酸アルキルスルホン酸エステル、ポリスチレンスルホン酸等が挙げられ、側鎖にリン酸基を有する高分子化合物としては、ポリアクリル酸アルキルリン酸エステル、ポリメタクリル酸アルキルリン酸エステル、ポリスチレンリン酸、ポリアクリロイルアミノメチルホスホン酸等が挙げられ、側鎖にホスホン酸基を有する高分子化合物としては、ポリアクリル酸アルキルホスホン酸エステル、ポリメタクリル酸アルキルホスホン酸エステル、ポリスチレンホスホン酸、ポリアクリロイルアミノメチルホスホン酸、ポリビニルアルキルホスホン酸等が挙げられ、側鎖にアミノ基を有する高分子化合物としては、ポリアクリルアミド、ポリビニルアミン、ポリメタクリル酸アミノアルキルエステル、ポリアミノスチレン、ポリペプチド、タンパク質等が挙げられる。尚、当該混合工程においては、上記高分子化合物のいずれか1種類を用いればよいが、複数種類の高分子化合物を混合して用いてもよい。
 尚、上記高分子化合物の分子量は特に限定されるものではないが、100g/mol以上1,000,000g/mol以下が好ましく、500g/mol以上500,000g/mol以下がさらに好ましく、1,000g/mol以上300,000g/mol以下が最も好ましい。上記好ましい範囲未満であると一次粒子間に入り込む割合が減少し、一次粒子同士の接触を阻止する割合が低くなる。また上記好ましい範囲を超えると、高分子化合物の溶解度が低くなること、当該高分子化合物を含む溶液の粘度が高くなること等の操作性が悪くなるために好ましくない。
 尚、高分子化合物を含む溶液は、水溶液であることが好ましい。リン酸カルシウム{ハイドロキシアパタイト(HAp)}焼結体粒子は強い酸性条件下で溶解してしまうからである。尚、高分子化合物が含まれる水溶液のpHは、5以上14以下でHAp粒子が不溶な条件あれば特に限定されるものではない。当該高分子化合物を含む水溶液は、高分子化合物を蒸留水、イオン交換水等に溶解し、アンモニア水溶液、水酸化ナトリウム、水酸化カリウム等の水溶液でpHを調整すればよい。
 また上記水溶液に含まれる高分子化合物の濃度は、0.001%w/v以上50%w/v以下が好ましく、0.005%w/v以上30%w/v以下がさらに好ましく、0.01%w/v以上10%w/v以下が最も好ましい。上記好ましい範囲未満であると一次粒子間に入り込む量が少なく、一次粒子同士の接触を阻止する割合が低くなる。また上記好ましい範囲を超えると、高分子化合物の溶解が困難となること、当該高分子化合物を含む溶液の粘度が高くなる等の操作性が悪くなるために好ましくない。
 本発明における混合工程では、上記高分子化合物を含む溶液と、一次粒子とを混合する。かかる混合は、例えば、当該溶液中に一次粒子を投入し、撹拌操作等によって、当該一次粒子を分散させればよい。かかる操作によって、上記本発明に係るリン酸カルシウムの製造方法では、一次粒子の表面に上記高分子化合物が吸着し、カルボキシル基、硫酸基、スルホン酸基、リン酸基、ホスホン酸基、アミノ基又はこれらの塩のいずれかを当該一次粒子の表面に付加することができる。このとき当該カルボキシル基、硫酸基、スルホン酸基、リン酸基、ホスホン酸基又はアミノ基は、溶液中でイオンの状態で存在している。
 次に高分子化合物を含む溶液と一次粒子とを混合した溶液に、金属塩(アルカリ金属塩及び/又はアルカリ土類金属塩及び/又は遷移金属塩)をさらに添加すれば、上記一次粒子の表面に存在するカルボン酸イオン、硫酸イオン、スルホン酸イオン、リン酸イオン、ホスホン酸イオン、アミノイオンと、金属イオン(アルカリ金属イオン及び/又はアルカリ土類金属イオン及び/又は遷移金属イオン)とが結合し、一次粒子の表面にカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩が生じる。かかる金属(アルカリ金属及び/又はアルカリ土類金属及び/又は遷移金属)のカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩が、上記融着防止剤として機能する。従って、金属(アルカリ金属及び/又はアルカリ土類金属及び/又は遷移金属)のカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩がその表面に生じた一次粒子は、いわゆる「混合粒子」である。尚、かかる金属(アルカリ金属及び/又はアルカリ土類金属及び/又は遷移金属)のカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩は沈殿するため、当該沈殿物を回収後、乾燥させて後述する焼結工程に供すればよい。前記乾燥は、例えば減圧条件下(1×10Pa以上1×10-5Pa以下が好ましく、1×10Pa以上1×10-3Pa以下がさらに好ましく、1×10Pa以上1×10-2Pa以下が最も好ましい。)で、加熱(0℃以上200℃以下が好ましく、20℃以上150℃以下がさらに好ましく、40℃以上120℃以下が最も好ましい。)して行なう方法が挙げられる。尚、上記乾燥においては、乾燥温度を下げることができることから減圧条件下が好ましいが、大気圧条件下で行なってもよい。
 上記アルカリ金属塩としては、特に限定されるものではないが、例えば塩化ナトリウム、次亜塩素酸ナトリウム、亜塩素酸ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、ヨウ酸ナトリウム、酸化ナトリウム、過酸化ナトリウム、硫酸ナトリウム、チオ硫酸ナトリウム、セレン酸ナトリウム、亜硝酸ナトリウム、硝酸ナトリウム、リン化ナトリウム、炭酸ナトリウム、水酸化ナトリウム、塩化カリウム、次亜塩素酸カリウム、亜塩素酸カリウム、臭化カリウム、ヨウ化カリウム、ヨウ酸カリウム、酸化カリウム、過酸化カリウム、硫酸カリウム、チオ硫酸カリウム、セレン酸カリウム、亜硝酸カリウム、硝酸カリウム、リン化カリウム、炭酸カリウム、水酸化カリウム等が利用可能である。
 また上記アルカリ土類金属塩としては、例えば塩化マグネシウム、次亜塩素酸マグネシウム、亜塩素酸マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、ヨウ酸マグネシウム、酸化マグネシウム、過酸化マグネシウム、硫酸マグネシウム、チオ硫酸マグネシウム、セレン酸マグネシウム、亜硝酸マグネシウム、硝酸マグネシウム、リン化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、塩化カルシウム、次亜塩素酸カルシウム、亜塩素酸カルシウム、臭化カルシウム、ヨウ化カルシウム、ヨウ酸カルシウム、酸化カルシウム、過酸化カルシウム、硫酸カルシウム、チオ硫酸カルシウム、セレン酸カルシウム、亜硝酸カルシウム、硝酸カルシウム、リン化カルシウム、炭酸カルシウム、水酸化カルシウム等が利用可能である。
 また上記遷移金属塩としては、例えば塩化亜鉛、次亜塩素酸亜鉛、亜塩素酸亜鉛、臭化亜鉛、ヨウ化亜鉛、ヨウ酸亜鉛、酸化亜鉛、過酸化亜鉛、硫酸亜鉛、チオ硫酸亜鉛、セレン酸亜鉛、亜硝酸亜鉛、硝酸亜鉛、リン化亜鉛、炭酸亜鉛、水酸化亜鉛、塩化鉄、次亜塩素酸鉄、亜塩素酸鉄、臭化鉄、ヨウ化鉄、ヨウ酸鉄、酸化鉄、過酸化鉄、硫酸鉄、チオ硫酸鉄、セレン酸鉄、亜硝酸鉄、硝酸鉄、リン化鉄、炭酸鉄、水酸化鉄等が利用可能である。またニッケル化合物であってもよい。
 尚、高分子化合物を含む溶液と一次粒子とを混合した溶液に添加する金属塩(アルカリ金属塩、アルカリ土類金属塩、遷移金属塩)は、1種類であっても、2種類以上の混合物であってもよい。また金属塩(アルカリ金属塩、アルカリ土類金属塩、遷移金属)は、固体の状態としてもよいが、均一に添加することができること、及び添加する濃度を制御することが可能である等の理由から水溶液として添加することが好ましい。また添加する金属塩(アルカリ金属塩及び/又はアルカリ土類金属塩及び/又は遷移金属塩)の量(濃度)は、一次粒子表面に存在するカルボン酸イオン、硫酸イオン、スルホン酸イオン、リン酸イオン、ホスホン酸イオン、アミノイオンと結合して、金属(アルカリ金属及び/又はアルカリ土類金属及び/又は遷移金属)のカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩が生じる条件であれば特に限定されるものではなく、適宜検討の上、決定すればよい。
 尚、上記工程によって一次粒子の表面に生じた金属(アルカリ金属及び/又はアルカリ土類金属及び/又は遷移金属)のカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩は、後述する焼結工程において熱分解を受け、金属(アルカリ金属及び/又はアルカリ土類金属及び/又は遷移金属)の酸化物になる。例えば、一次粒子の表面にポリアクリル酸カルシウムが生じている場合は、焼結工程によって酸化カルシウムとなる。尚、当該金属酸化物(アルカリ金属酸化物及び/又はアルカリ土類金属酸化物(例えば酸化カルシウム)及び/又は遷移金属酸化物)は水溶性であるため、後述する除去工程によって簡単に除去することが可能である。
 尚、ポリアクリル酸ナトリウムは水に可溶なため、本混合工程において融着防止剤としてそのまま利用可能であるが、ポリアクリル酸カルシウムは水に不溶なため、一旦ポリアクリル酸のみを一次粒子表面に吸着させた後に、カルシウム塩等を添加することで、ポリアクリル酸カルシウムを一次粒子表面に析出させるようにすることが好ましい。また、高温(約300℃以上)で一次粒子を仮焼する際に高分子化合物は分解するため、仮焼後も融着防止剤として機能するように、高分子化合物の金属塩を一次粒子の表面に析出させておくことが好ましいといえる。ただし高分子化合物が分解しない(軟化しない)温度において一次粒子を仮焼(熱処理)する場合は、高分子化合物の金属塩を一次粒子の表面に析出させておく必要は特にない。
 (焼結工程)
 当該焼結工程は、上記混合工程によって得られた混合粒子を焼結温度に曝して、当該混合粒子に含まれる一次粒子を高結晶性リン酸カルシウム微粒子(焼結体粒子)にする工程である。一次粒子の粒子間に融着防止剤が介在しているために、焼結工程における高温条件に曝された場合であっても一次粒子同士の融着を防止することができるというものである。
 当該焼結工程における焼結温度は、高結晶性リン酸カルシウム微粒子の硬度が所望の硬度となるように適宜設定すればよく、例えば、100℃~1800℃の範囲内がより好ましく、150℃~1500℃がさらに好ましく、200℃~1200℃が最も好ましい。尚、焼結時間については所望する高結晶性リン酸カルシウム微粒子の硬度等を基準に適宜設定すればよい。後述する実施例においては、800℃で1時間焼結を行なっている。
 尚、当該焼結工程に用いる装置等は特に限定されるものではなく、製造規模、製造条件等に応じて市販の焼成炉を適宜選択の上、採用すればよい。
 (除去工程)
 当該除去工程は、焼結工程によって得られた高結晶性リン酸カルシウム微粒子の粒子間に混在する融着防止剤を取り除く工程である。
 除去の手段及び手法については、上記混合工程において採用した融着防止剤に応じて適宜採用すればよい。例えば、溶媒溶解性を有する融着防止剤を用いた場合は、リン酸カルシウム微粒子を溶解しない溶媒(非溶解性)でかつ融着防止剤を溶解する(溶解性)溶媒を用いることによって、融着防止剤のみを溶解して除去することができる。用いる溶媒としては、上記要件を満たす溶媒であれば特に限定されるものではなく、水系溶媒であっても、有機溶媒であってもよい。例えば、水系溶媒としては、水、エタノール、メタノール等が挙げられ、有機溶媒としては、アセトン、トルエン等が挙げられる。
 また上記水系溶媒は、融着防止剤の水への溶解性を上げるために、シュウ酸塩、エチレンジアミン、ビピリジン、エチレンジアミン四酢酸塩等のキレート化合物が含んでいてもよい。さらに上記水系溶媒は、融着防止剤の水への溶解性を上げるために、塩化ナトリウム、硝酸アンモニウム、炭酸カリウム等の電解質イオンを含んでいてもよい。
 ただし、当該除去工程において有機溶媒の使用に対応する設備が不要となること、有機溶媒廃液処理が不要となること、製造作業の安全性が高いこと、環境に対するリスクが低いこと等の理由から、使用する溶媒は水系溶媒が好ましい。
 尚、高結晶性リン酸カルシウム{ハイドロキシアパタイト(HAp)}焼結体粒子の場合は、pH4.0以下の条件において高結晶性リン酸カルシウム{ハイドロキシアパタイト(HAp)}焼結体粒子が溶解するため、pH4.0~pH12.0で除去工程を行なうことが好ましい。
 ところで、溶媒を用いて融着防止剤を除去する場合は、焼結工程によって得られた融着防止剤を含むリン酸カルシウムを溶媒に懸濁させた後、ろ過又は遠心分離によってリン酸カルシウム粒子のみを回収すればよい。最良形態に係るリン酸カルシウムの製造方法において上記操作は、1回に限られるものではなく2回以上行なってもよい。上記操作を複数回行なうことで、リン酸カルシウムの融着防止剤の除去率がさらに向上するものといえる。ただし、製造工程が複雑になること、製造コストが高くなること、リン酸カルシウムの回収率が低下すること等の理由により、必要以上に上記操作を行なうことは好ましくない。よって上記操作の回数は、目標とする融着防止剤の除去率を基準に適宜決定すればよい。
 尚、本工程には、さらに粒子径を均一にするために分級する工程が含まれていてもよい。
 上記溶媒を用いて融着防止剤を除去する方法の他、融着防止剤に磁性体を用いることによって、マグネットを用いて融着防止剤を除去することができる。より具体的には、焼結工程によって得られた融着防止剤を含むリン酸カルシウム粒子(粗リン酸カルシウム粒子)群を適当な溶媒(水等)に懸濁して分散させた後、当該懸濁液に磁力をかけ、融着防止剤のみをマグネットに吸着させ、吸着しなかったリン酸カルシウム粒子のみを回収する。また特に溶媒に懸濁することなく、粗リン酸カルシウム粒子をすりつぶして粉体にした後、マグネットによって融防止剤を分離する方法を行なってもよい。ただし、懸濁液にした方がリン酸カルシウム粒子と融着防止剤が剥離しやすく、融着防止剤の除去率は高いといえる。尚、この手法を適用することができるリン酸カルシウム粒子は、非磁性体又は、弱磁性体であることが好ましい。
《性質》
 上記、本最良形態に係るリン酸カルシウム粒子の製造方法によって製造されたリン酸カルシウム粒子は、融着防止剤の作用によって一次粒子同士の融着が防止されているために、その過半数が一次粒子の状態をキープしている。よって、当該高結晶性リン酸カルシウム粒子を溶媒中に懸濁した際には、高結晶性リン酸カルシウム粒子の過半数が単結晶からなる一次粒子又は前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊(単結晶一次粒子)で分散することができる。
 本最良形態に係るリン酸カルシウム粒子は、その過半数が単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊(単結晶一次粒子)であり、溶媒中で分散性が良く、二次粒子を形成していないためにその表面積も高い。
 ここでリン酸カルシウム微粒子が一次粒子で存在しているか否かを評価する方法としては、例えば、電子顕微鏡観察によって粒子径を測定した結果と、動的光散乱法により溶媒に懸濁した状態で粒子径を測定した場合の結果とを対比することにより、両者の結果がほぼ一致すれば、その本最良形態に係るリン酸カルシウム粒子のほとんどが一次粒子の状態であると判断することができ、また電子顕微鏡観察による粒子径の測定結果より、動的光散乱法による粒子径測定の結果が大きくなれば、一次粒子同士の融着が起こり二次粒子を形成しているものと判断することができる。
 尚、本最良形態に係るリン酸カルシウム粒子を分散させる溶媒としては、リン酸カルシウム粒子を溶解しないものであれば特に限定されるものではない。例えば、水や、メタノール、エタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、N,N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、トルエン、キシレン、ヘキサン、ドデカン、シクロヘキサン等の炭化水素類、クロロベンゼン、クロロホルム等のハロゲン化炭化水素類、ジエチルエーテル、ジオキサン等のエーテル類等挙げられ、これら溶媒は、使用目的に応じて1種もしくは2種を選択して使用すればよい。
 動的光散乱法から求めた粒子径分布図をもとに、電子顕微鏡から求めた一次粒子の粒子径とほぼ一致する粒子径である粒子の割合を求めることで、単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊(単結晶一次粒子)の割合が算出可能である。
 尚、リン酸カルシウム原料、融着防止剤の種類、焼結の条件等によって異なる場合があるが、上記本最良形態に係る高結晶性リン酸カルシウム粒子の製造方法によれば、少なくとも50%以上が単結晶一次粒子として存在し、より好適な場合には60%以上が単結晶一次粒子として存在し、最も好適な条件下においては70%以上が単結晶一次粒子として存在させることができる。
(用法用量)
 本最良形態に係るコラーゲン産生促進剤の適用部位への送達手段は、例えば、適応箇所への直接塗布、経皮吸収、皮下注射、外科的手技が挙げられる。
 本最良形態に係るコラーゲン産生促進剤は、一日2回、一回150mg(但し、この中にリン酸カルシウムが1.5mg含まれる)、化粧料として使用することにより効能を発揮する。
 製造例1(リン酸カルシウム微粒子の製造)
 (一次粒子生成工程)
 連続オイル相としてドデカン〔CH(CH10CH〕、非イオン性界面活性剤として曇点31℃のペンタエチレングリコールドデシルエーテル〔CH(CH10CHO(CHCHO)CHCHOH〕を用いた。室温において、上記非イオン性界面活性剤0.5gを含有している連続オイル相40mlを調製した。次に、上記で調製した連続オイル相に2.5mol/l水酸化カルシウム〔Ca(OH)〕分散水溶液10mlを添加し、油中水滴型溶液(W/O溶液)を調製した。上記W/O溶液を攪拌しながら、そこに1.5mol/lリン酸二水素カリウム〔(KHPO)〕溶液を10ml添加した。そして、24時間、室温で撹拌しながら反応させた。次に、得られた反応物を遠心分離により分離洗浄することにより、ハイドロキシアパタイト(HAp)一次粒子群を取得した。
 (混合工程)
 1.0gのポリアクリル酸ナトリウム(ALDRICH社製、重量平均分子量15,000g/mol)を含むpH12.0の水溶液100mlに、1.0gのハイドロキシアパタイト(HAp)一次粒子群を分散させることで、同粒子表面にポリアクリル酸ナトリウムを吸着させた。この水溶液のpHは株式会社 堀場製作所製pHメータD-24SEを用いて測定した。
 次に、上記で調製した分散液に、0.12mol/lの硝酸カルシウム〔Ca(NO〕水溶液100mlを添加することで、同一次粒子表面にポリアクリル酸カルシウムを析出させた。かかるポリアクリル酸カルシウムは、融着防止剤である。その結果として生じた沈殿物を回収し、減圧下(約0.1Pa)80℃にて乾燥させることで、混合粒子を取得した。
 (焼結工程)
 上記混合粒子をルツボに入れ、焼結温度800℃にて1時間焼結を行なった。この際、ポリアクリル酸カルシウムは熱分解し、酸化カルシウム〔CaO〕となった。焼結工程終了後の酸化カルシウム〔CaO〕の残存率は25%以上であった。
 (除去工程)
 融着防止剤の水への溶解性を上げるために、50mmol/l硝酸アンモニウム〔NHNO〕水溶液を調製した。次に、上記で調製した水溶液500mlに、上記工程にて得られた焼結体を懸濁し、遠心分離により分離洗浄し、さらに蒸留水に懸濁し、同様に遠心分離により分離洗浄を行なうことによって、融着防止剤および硝酸アンモニウムを除去し、高結晶性ハイドロキシアパタイト(HAp)微粒子を回収した。これらの工程により得られたハイドロキシアパタイト微粒子の詳細な情報については、以下にまとめた。
XRDの半値幅:0.2(d=2.814)
形状:球状
平均粒径(電子顕微鏡より):28nm
変動係数:14%
 製造例2(未焼成)
 一次粒子生成工程における反応温度を30℃としたこと以外では製造例1と同条件で一次粒子生成工程をのみ行い、その後の混合工程や焼結工程等のその後の工程を行わないで、製造例2の未焼成のハイドロキシアパタイト微粒子を得た。以下、当該ハイドロキシアパタイト微粒子の詳細な情報について記載する。
XRDの半値幅:0.8(d=2.814)
形状:粒子形状
平均粒径(電子顕微鏡より):42nm
変動係数:17%
 <線維芽細胞のI型コラーゲン産生促進作用試験>
 正常ヒト線維芽細胞を試料含有0.5%FBS-DMEM培地にて24時間培養後、培地中のコラーゲン量をELISAにて定量した。当該実験はそれぞれの条件において6回反復して行なった(n=6)。陽性コントロール(P.C.)には、アルコルビン酸リン酸マグネシウム(VCPMg)を用いた。尚、用いた試料は、製造例1において製造した焼成のハイドロキシアパタイトと、製造例2において使用した未焼成したハイドロキシアパタイトである。結果を表1に示した。ここで、表1中の「mean」は、測定で得られたコラーゲン量の実測値(平均値)を示しており、「SD」とは、標準偏差を示しており、「p(t-test)」とは、「t-test」により得られたp値{一般的に0.05(厳密に議論する場合は、0.01)以下であれば、差がある値であることを示し、逆に、0.05より大きな値である場合、差がほとんどないことを示す。}を示している。
Figure JPOXMLDOC01-appb-T000001
 製造例1のハイドロキシアパタイト(焼成)において、顕著なコラーゲン産生量の増加作用が認められた。製造例2のハイドロキシアパタイト(未焼成)においても、6.30~25.00μg/mLの濃度域で有意なコラーゲン産生量の増加が認められたが、ハイドロキシアパタイト(焼成)に比べ作用は弱かった。
<ヒト表皮塗布試験>
試験条件:被験者二名に試験内容、趣旨を説明したのち、前腕部にてパッチテストを行い異常が認められないことを確認した上で、手の甲、頸部側面、上腕の三カ所を外観観察ならびに顕微鏡を使った拡大(倍率200倍)撮影を行った。さらに、製造例1のハイドロキシアパタイト(焼成)を1%含有させた化粧料を朝晩の一日二回、150mgずつ、合計3日間継続して塗布開始前に撮影を行った部位に対して化粧料を塗布した。3日目の塗布終了後、塗布部位の外観観察ならびに顕微鏡による拡大(倍率200倍)撮影し、さらに塗布開始から7日目に同様の部位の撮影を行った。
 塗布開始以前には、皮丘のふくらみがなく、平らであったが、塗布3日目には、徐々に皮丘が盛り上がっている様子が確認でき、さらに、皮溝が明瞭に観察できるようになった。更に、塗布開始から7日目は、4日間塗布を呈しているにも関わらず、より皮溝が明瞭に観察できるようになり、塗布以前と比較しキメ細かな肌に変化した。従って、コラーゲン産生が促進されていることがわかった。これらの肌の表面の様子を図1及び2に示した。

Claims (6)

  1.  リン酸カルシウム微粒子を有効成分とすることを特徴とする、コラーゲン産生促進剤。
  2.  前記リン酸カルシウム微粒子がハイドロキシアパタイト微粒子である、請求項1記載のコラーゲン産生促進剤。
  3.  前記リン酸カルシウム微粒子の平均粒子径が、10~1,000nmである、請求項1又は2記載のコラーゲン産生促進剤。
  4.  前記リン酸カルシウム微粒子が、焼結体である、請求項1~3のいずれか一項記載のコラーゲン産生促進剤。
  5.  前記焼結体が、
     リン酸カルシウムを含有する一次粒子と融着防止剤とを混合する、混合工程と、
     上記混合工程によって得られた混合粒子を焼結温度に曝す、焼結工程と、
    を含む方法により製造された、請求項4記載のコラーゲン産生促進剤。
  6.  アルコール類、糖類、タンパク質類、アミノ酸類、水溶性ビタミン類、脂溶性ビタミン類、脂質、ムコ多糖類、界面活性剤からなる群から選ばれる少なくとも1種の物質を含む、請求項1~5のいずれか一項記載のコラーゲン産生促進剤。
PCT/JP2009/059631 2009-05-26 2009-05-26 コラーゲン産生促進剤 WO2010137122A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/321,964 US20120128788A1 (en) 2009-05-26 2009-05-26 Collagen production enhancer
JP2011515781A JP5411932B2 (ja) 2009-05-26 2009-05-26 コラーゲン産生促進剤
CN200980160540.3A CN102458423B (zh) 2009-05-26 2009-05-26 胶原产生促进剂
PCT/JP2009/059631 WO2010137122A1 (ja) 2009-05-26 2009-05-26 コラーゲン産生促進剤
KR1020117030709A KR101408479B1 (ko) 2009-05-26 2009-05-26 콜라겐 생산 촉진제
EP09845189.1A EP2438922B1 (en) 2009-05-26 2009-05-26 Collagen production enhancer
US14/537,083 US20150064260A1 (en) 2009-05-26 2014-11-10 Collagen production enhancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059631 WO2010137122A1 (ja) 2009-05-26 2009-05-26 コラーゲン産生促進剤

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/321,964 A-371-Of-International US20120128788A1 (en) 2009-05-26 2009-05-26 Collagen production enhancer
US14/537,083 Division US20150064260A1 (en) 2009-05-26 2014-11-10 Collagen production enhancer

Publications (1)

Publication Number Publication Date
WO2010137122A1 true WO2010137122A1 (ja) 2010-12-02

Family

ID=43222263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059631 WO2010137122A1 (ja) 2009-05-26 2009-05-26 コラーゲン産生促進剤

Country Status (6)

Country Link
US (2) US20120128788A1 (ja)
EP (1) EP2438922B1 (ja)
JP (1) JP5411932B2 (ja)
KR (1) KR101408479B1 (ja)
CN (1) CN102458423B (ja)
WO (1) WO2010137122A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074037A1 (ja) * 2010-12-01 2012-06-07 株式会社ソフセラ 豊胸促進剤
JP5797864B1 (ja) * 2015-06-26 2015-10-21 ジーンメディカル株式会社 皮下注射用剤
WO2016092928A1 (ja) * 2014-12-12 2016-06-16 ジーンメディカル株式会社 皮下注射用剤
WO2016092929A1 (ja) * 2014-12-12 2016-06-16 ジーンメディカル株式会社 皮下注射用剤及び皮下注射用剤を含有する注射器の製造方法
JP2018033639A (ja) * 2016-08-30 2018-03-08 株式会社ソフセラ コラーゲン産生促進剤
US10030177B2 (en) 2011-05-27 2018-07-24 Cargill, Incorporated Bio-based binder systems
US10144902B2 (en) 2010-05-21 2018-12-04 Cargill, Incorporated Blown and stripped blend of soybean oil and corn stillage oil
JP2020063188A (ja) * 2019-12-17 2020-04-23 株式会社ソフセラ リン酸カルシウム焼結体粒子の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517111A (ja) 1991-02-21 1993-01-26 Ricoh Co Ltd 水酸アパタイト超微粒子
JPH1129486A (ja) * 1997-07-11 1999-02-02 Advance Co Ltd 皮膚改善剤
JP2001302454A (ja) * 2000-04-26 2001-10-31 Sangi Co Ltd 化粧料
JP2002137910A (ja) 2000-10-31 2002-05-14 Japan Science & Technology Corp ハイドロキシアパタイトナノ粒子およびその製造方法
WO2006030782A1 (ja) * 2004-09-14 2006-03-23 Japan Science And Technology Agency セラミック粒子群およびその製造方法並びにその利用
WO2006050368A2 (en) * 2004-11-01 2006-05-11 Biosante Pharmaceuticals, Inc. Therapeutic calcium phosphate particles iin use for aesthetic or cosmetic medicine, and methods of manufacture and use
JP2007282515A (ja) * 2006-04-12 2007-11-01 Applied Cell Biotechnologies Inc コラーゲン類生産方法及びコラーゲン類
JP2008260747A (ja) 2007-03-19 2008-10-30 Kinjirushi Kk コラーゲン産生促進剤、促進方法、香粧品、飲食品および医薬品
JP2009101147A (ja) * 2007-10-02 2009-05-14 Hana.Com:Kk 皮膚再生能を有する創傷ドレッシング材およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4120325A1 (de) * 1991-06-20 1992-12-24 Merck Patent Gmbh Implantatwerkstoff
US5204382A (en) * 1992-02-28 1993-04-20 Collagen Corporation Injectable ceramic compositions and methods for their preparation and use
JP4888930B2 (ja) * 2004-07-13 2012-02-29 Hoya株式会社 リン酸カルシウム系骨補填材の製造方法
FR2898807B1 (fr) * 2006-03-23 2008-12-05 Oreal Composition comprenant de l'hydroxyapatite et un sel de calcium pour renforcer la fonction barriere de la peau et/ou des semi-muqueuses
WO2010050980A1 (en) * 2008-10-31 2010-05-06 Laboratory Skin Care, Inc. Topical formulations comprising hydroxyapatite particles for stimulation and maintenance of collagen fibers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517111A (ja) 1991-02-21 1993-01-26 Ricoh Co Ltd 水酸アパタイト超微粒子
JPH1129486A (ja) * 1997-07-11 1999-02-02 Advance Co Ltd 皮膚改善剤
JP2001302454A (ja) * 2000-04-26 2001-10-31 Sangi Co Ltd 化粧料
JP2002137910A (ja) 2000-10-31 2002-05-14 Japan Science & Technology Corp ハイドロキシアパタイトナノ粒子およびその製造方法
WO2006030782A1 (ja) * 2004-09-14 2006-03-23 Japan Science And Technology Agency セラミック粒子群およびその製造方法並びにその利用
WO2006050368A2 (en) * 2004-11-01 2006-05-11 Biosante Pharmaceuticals, Inc. Therapeutic calcium phosphate particles iin use for aesthetic or cosmetic medicine, and methods of manufacture and use
JP2007282515A (ja) * 2006-04-12 2007-11-01 Applied Cell Biotechnologies Inc コラーゲン類生産方法及びコラーゲン類
JP2008260747A (ja) 2007-03-19 2008-10-30 Kinjirushi Kk コラーゲン産生促進剤、促進方法、香粧品、飲食品および医薬品
JP2009101147A (ja) * 2007-10-02 2009-05-14 Hana.Com:Kk 皮膚再生能を有する創傷ドレッシング材およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIGI A ET AL.: "Human osteoblast responce to pulsed laser deposited calcium phosphate coatings", BIOMATERIALS, vol. 26, 2005, pages 2381 - 2389, XP027768120 *
YU HYE-SUN ET AL.: "Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, vol. 88, no. 3, 20 March 2009 (2009-03-20), pages 747 - 754, XP008148654 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144902B2 (en) 2010-05-21 2018-12-04 Cargill, Incorporated Blown and stripped blend of soybean oil and corn stillage oil
US11884894B2 (en) 2010-05-21 2024-01-30 Cargill, Incorporated Blown and stripped blend of soybean oil and corn stillage oil
US11339347B2 (en) 2010-05-21 2022-05-24 Cargill, Incorporated Blown and stripped blend of soybean oil and corn stillage oil
US10851326B2 (en) 2010-05-21 2020-12-01 Cargill, Incorporated Blown and stripped blend of soybean oil and corn stillage oil
WO2012074037A1 (ja) * 2010-12-01 2012-06-07 株式会社ソフセラ 豊胸促進剤
US10550294B2 (en) 2011-05-27 2020-02-04 Cargill, Incorporated Bio-based binder systems
US10030177B2 (en) 2011-05-27 2018-07-24 Cargill, Incorporated Bio-based binder systems
US11814549B2 (en) 2011-05-27 2023-11-14 Cargill, Incorporated Bio-based binder systems
KR20170093828A (ko) * 2014-12-12 2017-08-16 주식회사 모테조 피하 주사용제
WO2016092929A1 (ja) * 2014-12-12 2016-06-16 ジーンメディカル株式会社 皮下注射用剤及び皮下注射用剤を含有する注射器の製造方法
US10918766B2 (en) 2014-12-12 2021-02-16 Motejo Ltd. Agent for hypodermic injection
WO2016092928A1 (ja) * 2014-12-12 2016-06-16 ジーンメディカル株式会社 皮下注射用剤
KR102496871B1 (ko) 2014-12-12 2023-02-07 주식회사 모테조 피하 주사용제
JP5797864B1 (ja) * 2015-06-26 2015-10-21 ジーンメディカル株式会社 皮下注射用剤
JP2018033639A (ja) * 2016-08-30 2018-03-08 株式会社ソフセラ コラーゲン産生促進剤
JP2020063188A (ja) * 2019-12-17 2020-04-23 株式会社ソフセラ リン酸カルシウム焼結体粒子の製造方法

Also Published As

Publication number Publication date
CN102458423A (zh) 2012-05-16
KR101408479B1 (ko) 2014-06-17
US20120128788A1 (en) 2012-05-24
US20150064260A1 (en) 2015-03-05
EP2438922A4 (en) 2014-12-10
EP2438922B1 (en) 2020-08-26
EP2438922A1 (en) 2012-04-11
KR20120024825A (ko) 2012-03-14
CN102458423B (zh) 2014-04-02
JP5411932B2 (ja) 2014-02-12
JPWO2010137122A1 (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5411932B2 (ja) コラーゲン産生促進剤
JP5506782B2 (ja) 歯面修復材
KR20160133507A (ko) 치아의 재광화 및 미백을 위한 표면 반응된 탄산칼슘
EP2143415A1 (en) Recalcification promoter and composition for oral cavity
TW201536336A (zh) 用於牙齒去敏感之經表面反應碳酸鈣
WO2006030782A1 (ja) セラミック粒子群およびその製造方法並びにその利用
JP6348570B2 (ja) 中空リン酸カルシウム粒子
JP5859458B2 (ja) 豊胸促進剤
JP6072968B1 (ja) リン酸カルシウム焼結体粒子の製造方法
WO2018003130A1 (ja) リン酸カルシウム焼結体粒子及びその製造方法
CA3154892A1 (en) Stabilized amorphous calcium magnesium phosphate particle compositions
RU2426690C2 (ru) Биологически активные наночастицы замещенного карбонатом гидроксиапатита, способ их получения и включающие их композиции
JP6548617B2 (ja) コラーゲン産生促進剤
WO2018043621A1 (ja) リン酸カルシウム焼結体粒子及びその製造方法
EP2588555B1 (en) Method for forming fluorapatite-forming calcium phosphate cements
JP2021519310A (ja) リン酸架橋デンプンナノ粒子及び歯科処置
JP6555722B2 (ja) 歯面修復材
CN112891234B (zh) 一种双相钙磷材料及含有双相钙磷材料的牙膏
US20170087060A1 (en) Tooth surface repairing material
JP2024074879A (ja) 口腔用組成物
KR20200091632A (ko) 히드록시아파타이트의 결정화 방법 및 이러한 방법으로 제조된 히드록시아파타이트 결정을 포함하는 구취제거용 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160540.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011515781

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009845189

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117030709

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13321964

Country of ref document: US