WO2010137120A1 - ヒートポンプ式給湯装置 - Google Patents
ヒートポンプ式給湯装置 Download PDFInfo
- Publication number
- WO2010137120A1 WO2010137120A1 PCT/JP2009/059622 JP2009059622W WO2010137120A1 WO 2010137120 A1 WO2010137120 A1 WO 2010137120A1 JP 2009059622 W JP2009059622 W JP 2009059622W WO 2010137120 A1 WO2010137120 A1 WO 2010137120A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- refrigerant
- water
- compressor
- hot water
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B6/00—Compression machines, plants or systems, with several condenser circuits
- F25B6/04—Compression machines, plants or systems, with several condenser circuits arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H4/00—Fluid heaters characterised by the use of heat pumps
- F24H4/02—Water heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/075—Details of compressors or related parts with parallel compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/31—Low ambient temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0043—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
- F28D9/005—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
Definitions
- the present invention relates to a heat pump type hot water supply apparatus, and more particularly to a heat pump type hot water supply apparatus that can obtain a large heating capability even at a low outside air temperature and that can efficiently discharge hot water at a high temperature.
- a method for efficiently discharging hot water a method is known in which a binary compression cycle is configured and water is circulated in series through a low-stage condenser and a high-stage condenser. (For example, refer to Patent Document 2).
- the inlet refrigerant enthalpy of the outdoor heat exchanger serving as an evaporator does not change both when the high-stage compressor is operated and when it is stopped, so heat can be collected from the outside air.
- the amount is determined by the maximum capacity of the low stage compressor. Therefore, the high stage side compressor input is directly transferred to the condensing capacity, and in terms of heating efficiency, heating in the high stage side cycle is equivalent to heating by the electric heater, and it is difficult to say that the efficiency is high.
- An object of the present invention is to solve the above-described problems, and provides a heat pump type hot water supply apparatus that efficiently performs hot hot water discharge while increasing the condensing capacity at a low outside air temperature to the maximum. For the purpose.
- a heat pump type hot water supply apparatus includes a first compressor, a first water-refrigerant heat exchanger, an internal heat exchanger, a first pressure reducing device, and an evaporator connected in order.
- the heat pump hot water supply apparatus is characterized in that a heat dissipating means is provided between the second compressor and the third pressure reducing apparatus.
- the heat pump type hot water supply apparatus is characterized in that the first water-refrigerant heat exchanger is a plate stack type heat exchanger.
- the heat dissipating means is the second water-refrigerant heat exchanger, and the water flows through the first water-refrigerant heat exchanger and then flows through the second water-refrigerant heat exchanger. It was made to do.
- the heat pump type hot water supply apparatus is characterized in that the heat dissipating means is constituted by a pipe disposed near the lower end of the evaporator.
- a heat pump type hot water supply apparatus includes a first compressor, a first water-refrigerant heat exchanger, an internal heat exchanger, a first pressure reducing device, and an evaporator connected in order.
- a heat pump type hot water supply apparatus includes a first compressor, a first water-refrigerant heat exchanger, an internal heat exchanger, a first pressure reducing device, and an evaporator connected in order.
- a refrigeration cycle Branching between the internal heat exchanger and the first pressure reducing device, the second pressure reducing device, the suction pipe penetrating through the inside of the internal heat exchanger, the second compressor, the second water-refrigerant heat exchanger A second refrigeration cycle connected in the order of the third decompressor and rejoining between the first compressor and the first water-refrigerant heat exchanger;
- the heat pump hot water supply apparatus expands the enthalpy difference of the evaporator by the heat recovery operation by the second compressor and the internal heat exchanger without using an expensive injection compressor.
- a heating capacity higher than the electric input of the compressor can be obtained, and a hot water supply operation with a higher COP than the heating capacity increasing action by the electric heater can be performed by increasing the amount of heat collected from the outside air.
- the heating capacity is maximized by performing adjustment to maximize the electric input of the second compressor. Can do.
- the flow rate of the refrigerant flowing through the first water-refrigerant heat exchanger is the sum of the first compressor and the second compressor, and the refrigerant flow rate is increased, the inside of the first water-refrigerant heat exchanger is increased.
- the refrigerant side heat transfer performance is improved. This is particularly effective when the first water-refrigerant heat exchanger is a plate stack type heat exchanger.
- a second water-refrigerant heat exchanger is provided between the second compressor and the third decompression device so as to generate different condensation temperatures in the first refrigeration cycle and the second refrigeration cycle. Since it arrange
- FIG. 5 shows the first embodiment, and is a refrigerant circuit diagram of a heat pump hot water supply apparatus.
- FIG. 3 is a diagram showing the first embodiment, and is a perspective view showing an internal configuration of a first water-refrigerant heat exchanger 2 (plate stacked heat exchanger).
- FIG. 5 is a diagram illustrating the first embodiment and is a Ph diagram illustrating the operation of the refrigeration cycle.
- FIG. 5 shows the first embodiment, and is a refrigerant circuit diagram of a heat pump type hot water supply apparatus when the heat dissipating means is a water-refrigerant heat exchanger.
- FIG. 3 is a diagram showing the first embodiment, and is a perspective view showing an internal configuration of a first water-refrigerant heat exchanger 2 (plate stacked heat exchanger).
- FIG. 5 is a diagram illustrating the first embodiment and is a Ph diagram illustrating the operation of the refrigeration cycle.
- FIG. 5 shows the first embodiment, and is a refrigerant circuit diagram of
- FIG. 5 shows the first embodiment, and is a Ph diagram showing the refrigeration cycle operation when the heat dissipating means is a water-refrigerant heat exchanger.
- FIG. 5 shows the first embodiment, and shows a temperature change process inside the water-refrigerant heat exchanger when the heat radiating means is a water-refrigerant heat exchanger.
- FIG. 5 shows the first embodiment and is a refrigerant circuit configuration diagram in the case where the heat dissipating means is a freeze prevention heater.
- FIG. 5 shows the first embodiment, and is a Ph diagram showing the refrigeration cycle operation when the heat dissipating means is a freeze prevention heater.
- FIG. 1 to 7 are diagrams showing Embodiment 1
- FIG. 1 is a refrigerant circuit diagram of a heat pump type hot water supply apparatus
- FIG. 2 is an internal view of a first water-refrigerant heat exchanger 2 (plate stacked heat exchanger).
- FIG. 3 is a Ph diagram showing the operation of the refrigeration cycle
- FIG. 4 is a refrigerant circuit diagram of a heat pump hot water supply apparatus when the heat radiating means is a water-refrigerant heat exchanger
- FIG. 5 is a heat radiating means.
- Fig. 6 is a Ph diagram showing the refrigeration cycle operation when the water-refrigerant heat exchanger is used
- Fig. 6 is a Ph diagram showing the refrigeration cycle operation when the water-refrigerant heat exchanger is used
- FIG. 6 is a diagram showing the temperature change process inside the water-refrigerant heat exchanger when the heat radiating means is a water-refrigerant heat exchanger.
- 7 is a refrigerant circuit configuration diagram in the case where the heat dissipating means is an anti-freeze heater
- FIG. 8 is a Ph diagram showing the refrigeration cycle operation in the case where the heat dissipating means is an anti-freeze heater.
- the refrigerant circuit of the heat pump hot water supply apparatus shown in FIG. 1 includes a first refrigeration cycle and a second refrigeration cycle.
- the first refrigeration cycle includes a main compressor 1 (first compressor), a first water-refrigerant heat exchanger 2, an internal heat exchanger 3, an electric expansion valve 4 (first decompression device), and outside air. It is formed by sequentially connecting air heat exchangers 5 (evaporators) for collecting heat.
- the second refrigeration cycle branches from between the internal heat exchanger 3 and the electric expansion valve 4 of the first refrigeration cycle, and the main compressor 1 and the first water-refrigerant heat exchanger of the first refrigeration cycle. 2 and join.
- the second refrigeration cycle is branched from between the internal heat exchanger 3 and the electric expansion valve 4 of the first refrigeration cycle, and the branch expansion valve 8 (second decompression device) and the suction pipe of the sub compressor 9 22 (through the internal heat exchanger 3), sub-compressor 9 (second compressor), check valve 10, sub-heat radiating means 11 (heat radiating means), merging expansion valve 12 (third pressure reducing device) And are joined between the main compressor 1 and the first water-refrigerant heat exchanger 2 in the first refrigeration cycle.
- R410A is sealed as a refrigerant in the first refrigeration cycle and the second refrigeration cycle.
- R410A As the refrigerant is that the heat pump type hot water supply apparatus of the present embodiment has a rotation speed of the main compressor 1 so that the feed water temperature detected by the temperature sensor 18 becomes a target value, for example, 45 ° C. The operating capacity is to be adjusted. In the case of a water supply temperature of about 45 ° C., R410A is suitable.
- the main compressor 1 is provided with a pressure sensor 13 for detecting the suction pressure and a pressure sensor 14 for detecting the discharge pressure.
- the sub-compressor 9 is provided with a pressure sensor 15 for detecting the suction pressure and a pressure sensor 16 for detecting the discharge pressure.
- a temperature sensor 17 that detects the discharge temperature of the main compressor 1, a temperature sensor 18 that detects the feed water temperature at the outlet of the first water-refrigerant heat exchanger 2, and a temperature sensor that detects the temperature of the intake refrigerant of the sub compressor 9 19.
- a temperature sensor 20 for detecting the temperature of the refrigerant at the outlet of the internal heat exchanger 3 of the first refrigeration cycle is provided.
- a control unit (not shown) controls the operation of the heat pump hot water supply apparatus based on information from the pressure sensors 13 to 16 and the temperature sensors 17 to 20.
- the control unit is composed of a microcomputer (microcomputer) in which a predetermined program is incorporated.
- microcomputer microcomputer
- the subject in the following various controls is the control unit, but the word “control unit” is not described.
- the air heat exchanger 5 is provided with a blower 6 that adjusts the amount of heat collected from outside air.
- a hot water supply tank 7 serving as a hot water supply load is connected to the first water-refrigerant heat exchanger 2, and water is circulated as a heat medium.
- the arrow of FIG. 1 has shown the flow of the water which is a heat medium.
- the first water-refrigerant heat exchanger 2 As the first water-refrigerant heat exchanger 2, a known plate-stacked heat exchanger is used. The internal configuration of the first water-refrigerant heat exchanger 2 (plate stacked heat exchanger) will be described briefly with reference to FIG. In FIG. 2, the cylindrical body which comprises an outer periphery cover is abbreviate
- a refrigerant pipe connection port 2a is provided in one outermost plate 2d. Further, a water pipe connection port 2b is provided on the other outermost plate 2d.
- a plurality of wave-shaped heat transfer plates 2c are arranged side by side between the pair of outermost plates 2d. Between the heat transfer plates 2c, refrigerant flow paths 2e and water flow paths 2f are alternately formed. And the refrigerant
- FIG. 3 is a Ph diagram (also referred to as a Mollier diagram) showing the operation of the refrigeration cycle during hot water supply operation.
- the horizontal axis represents specific enthalpy [kJ / kg] and the vertical axis represents refrigerant pressure [MPa].
- the first refrigeration cycle operates as indicated by the solid line A ⁇ B ⁇ C ⁇ D ⁇ E ⁇ A.
- the second refrigeration cycle operates as indicated by broken lines G ⁇ H ⁇ I ⁇ C ⁇ D ⁇ F ⁇ G.
- the first water-refrigerant heat exchanger 2 dissipates heat into water and condenses to become a high-pressure liquid refrigerant (state C); (4) The internal heat exchanger 3 exchanges heat with the branched refrigerant of the second refrigeration cycle to become a supercooled liquid (state D); (5) The electric expansion valve 4 is depressurized to the first low pressure and becomes a low-pressure two-phase refrigerant (state E); (6) The air heat exchanger 5 collects heat from the outside air and evaporates to become a low-pressure gas refrigerant (state A) again.
- the opening degree of the electric expansion valve 4 is determined based on the operation characteristics of the main compressor 1 that are known in advance, the suction pressure detected by the pressure sensor 13, and the discharge pressure detected by the pressure sensor 14.
- the target discharge temperature at which the suction refrigerant (state A) sucked into the state is just saturated steam is predicted and adjusted so that it matches the actual discharge temperature detected by the temperature sensor 17.
- the rotation speed (operating capacity) of the main compressor 1 is adjusted so that the feed water temperature detected by the temperature sensor 18 becomes a target value, for example, 45 ° C. By operating in this way, hot water heated to a predetermined temperature is supplied to the hot water supply tank 7 serving as a hot water supply load.
- the target water supply temperature (for example, 45 ° C.) may not be adjusted.
- a scroll compressor of about 5 horsepower is used for the main compressor 1
- a rotary compressor of about 2 horsepower is used for the sub compressor 9.
- the second refrigeration cycle is operated.
- a part of the refrigerant is branched from the outlet of the internal heat exchanger 3 (state D), and the pressure is reduced to the second low pressure (higher than the first low pressure) by the shunt expansion valve 8.
- the second low-pressure refrigerant (state F) is heated by the high-pressure liquid refrigerant (state C) in the internal heat exchanger 3 when the suction pipe 22 passes through the internal heat exchanger 3, and is then gas refrigerant (state G). ) And is sucked into the sub compressor 9.
- the second high-pressure gas refrigerant (state H) boosted by the sub-compressor 9 is decompressed by the merging expansion valve 12 and merges with the discharge refrigerant (state B) of the main compressor 1 to become the state I and become the first It flows into the water-refrigerant heat exchanger 2. Thereafter, the first water-refrigerant heat exchanger 2 dissipates heat into water and condenses to become high-pressure liquid refrigerant (state C), and the internal heat exchanger 3 exchanges heat with the branched refrigerant of the second refrigeration cycle. It becomes a supercooled liquid (state D).
- the opening degree of the diversion expansion valve 8 is adjusted so that the state of the refrigerant (state G) of the sub-compressor 9 detected by the temperature sensor 19 and the pressure sensor 15 is saturated steam or slightly overheated. Is done.
- the sub-compressor 9 may be a constant speed compressor. However, when the sub-compressor 9 is an inverter driven compressor capable of adjusting the rotation speed, the sub-compressor 9 is set so that the suction pressure detected by the pressure sensor 15 becomes a predetermined value. 9 is adjusted.
- the opening of the merging expansion valve 12 can manipulate the discharge pressure of the sub-compressor 9 detected by the pressure sensor 16, the discharge pressure of the sub-compressor 9 satisfies the required heating capacity. adjust.
- the heat pump type hot water supply apparatus dissipates heat to the water by the first water-refrigerant heat exchanger 2 by operating the second refrigeration cycle so that the heating capacity is maximized.
- the condensed high-pressure liquid refrigerant (state C) exchanges heat with the branched refrigerant of the second refrigeration cycle in the internal heat exchanger 3 to become supercooled liquid (state D), and the difference between the state E and the state A increases. As a result, the amount of heat collected from the outside air is increased, and the operating efficiency of the heating operation is improved.
- the input of the sub compressor 9 is also added to the total amount of heat of condensation, increasing the maximum heating capacity.
- the basic refrigeration cycle operation and operation control are the same as when nothing is connected to the sub-heat dissipating means 11 described above, but here the sub-heat dissipating means 11 is connected to the second water-refrigerant heat exchanger 23.
- the circulating water from the hot water supply tank 7 is passed through the first water-refrigerant heat exchanger 2 on the first refrigeration cycle side to the second water-refrigerant heat exchanger 23.
- the high-temperature and high-pressure gas refrigerant discharged from the sub-compressor 9 heats the water again in the second water-refrigerant heat exchanger 23, and the circulating water becomes higher in temperature and returns to the hot water supply tank 7.
- the refrigerant (state J) exiting the second water-refrigerant heat exchanger 23 is decompressed by the merging expansion valve 12 and merged with the refrigerant discharged in the main compressor 1 (state B) (state I), and then the first The water-refrigerant heat exchanger 2 is circulated.
- the main compressor 1 In the situation where this second refrigeration cycle is operated, the main compressor 1 is already operating at maximum capacity. Further, in the merging expansion valve 12, when high temperature water of 50 ° C. or higher is required, a target discharge pressure is set at which the hot water can be discharged at the water temperature so that the discharge pressure of the sub compressor 9 becomes that value. The opening is adjusted. In the sub-compressor 9, the rotation speed is adjusted so as to achieve a heating capacity capable of realizing the target hot water temperature detected by the temperature sensor 18.
- FIG. 6 shows the process of temperature change between water and refrigerant in the first water-refrigerant heat exchanger 2 and the second water-refrigerant heat exchanger 23.
- the circulating water side passes through the first water-refrigerant heat exchanger 2 and the second water-refrigerant heat exchanger 23 in series, and the temperature rises almost linearly from the inlet to the outlet.
- the condensing pressure of the second water-refrigerant heat exchanger 23 is set higher than that of the first water-refrigerant heat exchanger 2, and each has a different condensing temperature.
- the temperature difference with the refrigerant can be made smaller with respect to the rising water temperature than when the temperature is raised at the temperature.
- the temperature can be raised at a lower condensation temperature on the low water temperature side, and the temperature can be raised at a higher condensation temperature on the high water temperature side, so that the temperature difference between water and the refrigerant does not become larger than necessary. Therefore, the temperature can be raised with high efficiency with respect to the same hot water temperature, and the coefficient of performance (COP) of the refrigeration cycle can be improved.
- COP coefficient of performance
- the condensation temperature needs to be set to a level higher than that, but the refrigerant circuit of FIG. 4 in which the sub-heat dissipating means 11 serves as the second water-refrigerant heat exchanger 23.
- the second water-refrigerant heat exchanger 23 side that is, the second refrigeration cycle side needs to have the high condensation temperature, and the entire system can be operated with high efficiency, and the low pressure of the second refrigeration cycle is Since it is not necessary to collect heat from outside air, it can be operated in a relatively high state. Therefore, even when the outside air is extremely low, it is difficult to achieve a high compression ratio, and operation restrictions such as an abnormal increase in discharge temperature are unlikely to occur.
- the refrigerant circulated in the main compressor 1 and the refrigerant circulated in the sub compressor 9 are merged and circulated.
- a plate-stacked heat exchanger used as a water-refrigerant heat exchanger often has an excessively low flow rate on the refrigerant side because the flow paths on the water side and the refrigerant side are the same.
- the flow rate of the refrigerant flowing through the first water-refrigerant heat exchanger 2 is the sum of the main compressor 1 and the sub compressor 9, and the refrigerant flow rate increases. Therefore, the heat transfer performance of the first water-refrigerant heat exchanger 2 is improved.
- frost formation occurs in the air heat exchanger 5, and therefore the defrost operation for melting this is intermittently performed. However, it accumulates in the lower part of the air heat exchanger 5 or in the drain tray 21 and ice grows, and the hot water supply device itself may be damaged.
- a pipe in which a part of the heat transfer tube below the air heat exchanger 5 is diverted or in close contact with the drain tray 21 disposed below the air heat exchanger 5 is installed. The heat dissipation means 11 is used.
- the basic operation of the freeze prevention operation by the second refrigeration cycle in the refrigerant circuit of FIG. 7 is the same as that of the refrigerant circuit of FIG. 4 as shown in the Ph diagram of FIG.
- the sub-compressor 9 When the sub-compressor 9 is operated, heat is recovered by the internal heat exchanger 3, and the high-temperature and high-pressure gas refrigerant discharged from the sub-compressor 9 is circulated through the anti-freezing heater 24, which is the sub-heat dissipating means 11, and the frost that has not melted. Or thaw the frozen ice again.
- This anti-freezing operation is always operated during the hot water supply operation, or is operated for a predetermined time after the defrosting operation is completed.
- heat pump devices that are designed for cold regions are equipped with electric heaters as anti-freezing heaters.
- the difference in evaporator enthalpy difference is increased. Since the amount of heat collected from the outside air also increases, a heat of condensation exceeding the electric input can be obtained, and a highly efficient antifreezing operation can be performed.
- the heat pump type hot water supply apparatus expands the enthalpy difference of the evaporator by the heat recovery action of the sub compressor 9 and the internal heat exchanger 3, and thus exceeds the electric input of the sub compressor 9. A large overheating capability is obtained, and a hot water supply operation with a higher COP than the heating capability increasing action by the electric heater can be performed by increasing the amount of heat collected from the outside air.
- the flow rate of the refrigerant flowing through the first water-refrigerant heat exchanger 2 is the sum of the main compressor 1 and the sub compressor 9, and the refrigerant flow rate is increased, the refrigerant in the first water-refrigerant heat exchanger 2 is increased. Side heat transfer performance is improved. This is particularly effective when the first water-refrigerant heat exchanger 2 is a plate stack type heat exchanger.
- the heat recovery action in the vessel 3 improves the COP of the refrigeration cycle, and can perform a hot water supply operation that is more efficient than that using an electric heater.
- the heat pump hot water supply apparatus includes a second water-refrigerant heat exchanger 23 between the sub-compressor 9 and the merging expansion valve 12, and the first refrigeration cycle and the second refrigeration are provided. Different condensation temperatures are generated in each cycle, and the water is heated in two stages. Therefore, even when high-temperature water is required, a highly efficient and reliable heating operation can be performed.
- the second water-refrigerant heat exchanger 23 or the antifreeze heater 24 is independently connected to the auxiliary heat radiating means 11 provided between the auxiliary compressor 9 and the merging expansion valve 12 of the second refrigeration cycle.
- a plurality of sub-heat dissipating means 11 may be arranged in parallel, and a sub-heat dissipating means switching device (heat dissipating means switching device) for selecting one of the plurality of sub-heat dissipating means 11 may be provided. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
低外気温度での凝縮能力を最大限まで増大しながら、高温出湯を効率的に行うヒートポンプ式給湯装置を提供する。この発明に係るヒートポンプ式給湯装置は、主圧縮機1、第1の水-冷媒熱交換器2、内部熱交換器3、第1の減圧装置4、空気熱交換器5が順次接続されて構成される第1の冷凍サイクルと、内部熱交換器3と第1の減圧装置4との間から分岐し、第2の減圧装置8、内部熱交換器3の内部を貫通する吸入配管22、副圧縮機9、第3の減圧装置12の順に接続され、主圧縮機1と第1の水-冷媒熱交換器2との間に再び合流する第2の冷凍サイクルとを備えたことを特徴とする。
Description
この発明は、ヒートポンプ式給湯装置に関するものであり、特に、低外気温度でも大きな加熱能力が得られるとともに、効率よく高温で出湯できるヒートポンプ式給湯装置に関するものである。
低外気温度でも十分な凝縮熱量を得る方法としては、主となる冷媒回路と、第2の圧縮機で形成される従側冷媒回路で構成され、従回路が主回路から内部熱交換器を介して熱回収することで冷凍能力を増大させる方法が知られている(例えば、特許文献1参照)。
また、効率的に高温出湯する方法として、2元圧縮サイクルを構成し、低段側の凝縮器と、高段側の凝縮器に直列に水を流通させて昇温する方法が知られている(例えば、特許文献2参照)。
しかしながら、上記特許文献1の構成においては、高温出湯が要求されたときに冷凍サイクル全体が高圧縮比となって効率が低下してしまうという課題が生じる。また、従側冷媒回路は、主回路側高圧液冷媒から回収できる熱量が蒸発熱の上限であるため、主回路側に追加できる凝縮熱量(=第2圧縮機入力+上記蒸発熱)にも限界がある。
また、上記特許文献2の構成においては、高段側圧縮機を稼動させた場合も停止させた場合も、蒸発器となる室外熱交換器の入口冷媒エンタルピは変化しないので、外気から採熱できる量は低段側圧縮機の最大容量で決定される。よって、高段側圧縮機入力はそのまま凝縮能力に振替えられることとなり、加熱効率面においては高段側サイクルでの加熱は電気ヒータによる加熱に等しく、高効率とは言いがたい。
この発明の目的は、上記のような課題を解決するためになされたもので、低外気温度での凝縮能力を最大限まで増大しながら、高温出湯を効率的に行うヒートポンプ式給湯装置を提供することを目的とする。
この発明に係るヒートポンプ式給湯装置は、第1の圧縮機、第1の水-冷媒熱交換器、内部熱交換器、第1の減圧装置、蒸発器が順次接続されて構成される第1の冷凍サイクルと、
内部熱交換器と第1の減圧装置との間から分岐し、第2の減圧装置、内部熱交換器の内部を貫通する吸入配管、第2の圧縮機、第3の減圧装置の順に接続され、第1の圧縮機と第1の水-冷媒熱交換器との間に再び合流する第2の冷凍サイクルと、を備えたことを特徴とする。
内部熱交換器と第1の減圧装置との間から分岐し、第2の減圧装置、内部熱交換器の内部を貫通する吸入配管、第2の圧縮機、第3の減圧装置の順に接続され、第1の圧縮機と第1の水-冷媒熱交換器との間に再び合流する第2の冷凍サイクルと、を備えたことを特徴とする。
この発明に係るヒートポンプ式給湯装置は、第2の圧縮機と第3の減圧装置との間に、放熱手段を備えたことを特徴とする。
この発明に係るヒートポンプ式給湯装置は、第1の水-冷媒熱交換器が、プレート積層型熱交換器であることを特徴とする。
この発明に係るヒートポンプ式給湯装置は、放熱手段が第2の水-冷媒熱交換器であって、水が第1水-冷媒熱交換器を流通後に、第2水-冷媒熱交換器を流通するようにしたことを特徴とする。
この発明に係るヒートポンプ式給湯装置は、放熱手段が、蒸発器の下端近傍に配置される配管で構成されることを特徴とする。
この発明に係るヒートポンプ式給湯装置は、第1の圧縮機、第1の水-冷媒熱交換器、内部熱交換器、第1の減圧装置、蒸発器が順次接続されて構成される第1の冷凍サイクルと、
内部熱交換器と第1の減圧装置との間から分岐し、第2の減圧装置、内部熱交換器の内部を貫通する吸入配管、第2の圧縮機、第3の減圧装置の順に接続され、第1圧縮機と第1の水-冷媒熱交換器との間に再び合流する第2の冷凍サイクルと、
第2の圧縮機と第3の減圧装置との間に並列に配置される複数の放熱手段と、
放熱手段のいずれかを選択する放熱手段切替装置と、を備えたことを特徴とする。
内部熱交換器と第1の減圧装置との間から分岐し、第2の減圧装置、内部熱交換器の内部を貫通する吸入配管、第2の圧縮機、第3の減圧装置の順に接続され、第1圧縮機と第1の水-冷媒熱交換器との間に再び合流する第2の冷凍サイクルと、
第2の圧縮機と第3の減圧装置との間に並列に配置される複数の放熱手段と、
放熱手段のいずれかを選択する放熱手段切替装置と、を備えたことを特徴とする。
この発明に係るヒートポンプ式給湯装置は、第1の圧縮機、第1の水-冷媒熱交換器、内部熱交換器、第1の減圧装置、蒸発器が順次接続されて構成される第1の冷凍サイクルと、
内部熱交換器と第1の減圧装置との間から分岐し、第2の減圧装置、内部熱交換器の内部を貫通する吸入配管、第2の圧縮機、第2の水-冷媒熱交換器、第3の減圧装置の順に接続され、第1圧縮機と第1の水-冷媒熱交換器との間に再び合流する第2の冷凍サイクルと、
当該ヒートポンプ式給湯装置の運転の制御を司る制御部と、
を備え、
第1の水-冷媒熱交換器と第2の水-冷媒熱交換器とを、水が第1の水-冷媒熱交換器から第2の水-冷媒熱交換器を直列に流通するように接続し、
制御部は、第2の水-冷媒熱交換器の凝縮圧力が、第1の水-冷媒熱交換器の凝縮圧力よりも高くなるように第3の減圧装置の開度を調整することを特徴とする。
内部熱交換器と第1の減圧装置との間から分岐し、第2の減圧装置、内部熱交換器の内部を貫通する吸入配管、第2の圧縮機、第2の水-冷媒熱交換器、第3の減圧装置の順に接続され、第1圧縮機と第1の水-冷媒熱交換器との間に再び合流する第2の冷凍サイクルと、
当該ヒートポンプ式給湯装置の運転の制御を司る制御部と、
を備え、
第1の水-冷媒熱交換器と第2の水-冷媒熱交換器とを、水が第1の水-冷媒熱交換器から第2の水-冷媒熱交換器を直列に流通するように接続し、
制御部は、第2の水-冷媒熱交換器の凝縮圧力が、第1の水-冷媒熱交換器の凝縮圧力よりも高くなるように第3の減圧装置の開度を調整することを特徴とする。
この発明に係るヒートポンプ式給湯装置は、高コストとなるインジェクション圧縮機を用いなくとも、第2の圧縮機と内部熱交換器による熱回収運転によって蒸発器のエンタルピ差を拡大するので、第2の圧縮機の電気入力以上の大きな加熱能力が得られるとともに、外気からの採熱量が増えることにより電気ヒータによる加熱能力増大作用よりもCOPが高い給湯運転を行うことができる。
また、第3の減圧手段によって、第2の圧縮機の吐出圧力を任意に調整できるので、第2の圧縮機の電気入力を最大化する調整を行うことで、加熱能力を最大限にすることができる。
また、第1の水-冷媒熱交換器に流通する冷媒流量が、第1の圧縮機と第2の圧縮機との合計となり冷媒流速が大きくなるので、第1の水-冷媒熱交換器内部の冷媒側伝熱性能が向上する。これは、第1の水-冷媒熱交換器がプレート積層型熱交換器である場合に特に効果がある。
また、第2の圧縮機と第3の減圧装置との間に第2の水-冷媒熱交換器を備え、第1の冷凍サイクルと第2の冷凍サイクルとで異なる凝縮温度を生成するようにし、2段階で水を加熱するように配置したので、高温水を要求されたときでも高効率となる加熱運転を行うことができる。
実施の形態1.
図1乃至図7は実施の形態1を示す図で、図1はヒートポンプ式給湯装置の冷媒回路図、図2は第1の水-冷媒熱交換器2(プレート積層型熱交換器)の内部構成を示す斜視図、図3は冷凍サイクルの動作を示すP-h線図、図4は放熱手段が水―冷媒熱交換器の場合のヒートポンプ式給湯装置の冷媒回路図、図5は放熱手段が水―冷媒熱交換器の場合の冷凍サイクル動作を示すP-h線図、図6は放熱手段が水―冷媒熱交換器の場合の水-冷媒熱交換器内部の温度変化過程を示す図、図7は放熱手段が凍結防止ヒータの場合の冷媒回路構成図、図8は放熱手段が凍結防止ヒータの場合の冷凍サイクル動作を示すP-h線図である。
図1乃至図7は実施の形態1を示す図で、図1はヒートポンプ式給湯装置の冷媒回路図、図2は第1の水-冷媒熱交換器2(プレート積層型熱交換器)の内部構成を示す斜視図、図3は冷凍サイクルの動作を示すP-h線図、図4は放熱手段が水―冷媒熱交換器の場合のヒートポンプ式給湯装置の冷媒回路図、図5は放熱手段が水―冷媒熱交換器の場合の冷凍サイクル動作を示すP-h線図、図6は放熱手段が水―冷媒熱交換器の場合の水-冷媒熱交換器内部の温度変化過程を示す図、図7は放熱手段が凍結防止ヒータの場合の冷媒回路構成図、図8は放熱手段が凍結防止ヒータの場合の冷凍サイクル動作を示すP-h線図である。
図1により、ヒートポンプ式給湯装置の冷媒回路の一例を説明する。図1に示すヒートポンプ式給湯装置の冷媒回路は、第1の冷凍サイクルと、第2の冷凍サイクルとを備える。
第1の冷凍サイクルは、主圧縮機1(第1の圧縮機)、第1の水-冷媒熱交換器2、内部熱交換器3、電動膨張弁4(第1の減圧装置)、外気から採熱する空気熱交換器5(蒸発器)を順次接続して形成されている。
第2の冷凍サイクルは、第1の冷凍サイクルの内部熱交換器3と電動膨張弁4との間から分岐し、第1の冷凍サイクルの主圧縮機1と第1の水-冷媒熱交換器2との間に合流する。
第2の冷凍サイクルは、第1の冷凍サイクルの内部熱交換器3と電動膨張弁4との間から分岐して、分流膨張弁8(第2の減圧装置)、副圧縮機9の吸入配管22(内部熱交換器3内を貫通する)、副圧縮機9(第2の圧縮機)、逆止弁10、副放熱手段11(放熱手段)、合流膨張弁12(第3の減圧装置)の順に接続されて形成され、第1の冷凍サイクルの主圧縮機1と第1の水-冷媒熱交換器2との間に合流する。
第1の冷凍サイクル、第2の冷凍サイクルには、冷媒として、例えば、R410Aが封入されている。
欧州ではエネルギー政策により、石油から電気への転換が急速に進む見込みである。欧州では古くはラジエータ、新しくは床暖房による輻射熱暖房が主流である。この熱源は石油製品が主流であり、この石油製品を高効率のヒートポンプ式暖房機に置き換える需要が拡大している。ヒートポンプ式暖房機は、冷媒にR410Aを使用するとともに、圧縮機の駆動がインバータ方式なので、ランニングコストが低い。CO2を冷媒として使用することは、欧州のエネルギー政策におけるCO2排出量削減対策のなかで受け入れられにくい。
冷媒としてR410Aを使用する他の理由は、本実施の形態のヒートポンプ式給湯装置が、温度センサ18で検知する給水温度が目標値、例えば45℃となるように、主圧縮機1の回転数(運転容量)が調整されることにある。45℃程度の給水温度の場合は、R410Aが適する。
主圧縮機1には、吸入圧力を検出する圧力センサ13、吐出圧力を検出する圧力センサ14が設けられる。また、副圧縮機9には、吸入圧力を検出する圧力センサ15、吐出圧力を検出する圧力センサ16が設けられる。
主圧縮機1の吐出温度を検出する温度センサ17、第1の水-冷媒熱交換器2の出口の給水温度を検出する温度センサ18、副圧縮機9の吸入冷媒の温度を検出する温度センサ19、第1の冷凍サイクルの内部熱交換器3の出口の冷媒の温度を検出する温度センサ20を備える。
圧力センサ13~16、温度センサ17~20の情報により、図示しない制御部が、ヒートポンプ給湯装置の運転制御を行う。
制御部は、所定のプログラムが組み込まれたマイコン(マイクロコンピュータ)で構成される。以下の各種の制御における主語は制御部であるが、一々「制御部が」という文言は記載しない。
空気熱交換器5には、外気からの採熱量を調整する送風機6が設けられている。
第1の水-冷媒熱交換器2には、給湯負荷となる給湯タンク7が接続され、熱媒体として水が循環している。図1の矢印は、熱媒体である水の流れを示している。
第1の水-冷媒熱交換器2には、公知のプレート積層型熱交換器を使用する。図2により、簡単に第1の水-冷媒熱交換器2(プレート積層型熱交換器)の内部構成を説明する。図2では、外周カバーを構成する筒状体は省略している。第1の水-冷媒熱交換器2(プレート積層型熱交換器)は、一方の最外端のプレート2dに、冷媒配管接続口2aが設けられる。また、他方の最外端のプレート2dに、水配管接続口2bが設けられる。
一対の最外端のプレート2dの間に、複数の波形状の伝熱プレート2cが並べて配置される。伝熱プレート2cの間に、交互に冷媒流路2eと、水流路2fとが形成される。そして、伝熱プレート2cに、各冷媒流路2eと冷媒配管接続口2aとを接続する冷媒連通穴2gが設けられる。また、伝熱プレート2cに、各水流路2fと水配管接続口2bとを接続する水連通穴2hが設けられる。
このように構成された本実施の形態1のヒートポンプ式給湯装置の動作について説明する。
まず、副放熱手段11に何も接続されていない場合における給湯運転の冷凍サイクルの動作について、図1および図3を参照しながら説明する。
図3は給湯運転時の冷凍サイクルの動作を示すP-h線図(モリエル線図ともいう)で、横軸は比エンタルピ[kJ/kg]、縦軸は冷媒圧力[MPa]である。
図3において、第1の冷凍サイクルは、A→B→C→D→E→Aの実線で示すように動作する。また、第2の冷凍サイクルは、G→H→I→C→D→F→Gの破線で示すように動作する。
第1の冷凍サイクルでは、以下に示す動作が行われる。
(1)主圧縮機1に、低圧ガス冷媒(状態A)が吸入される;(2)低圧ガス冷媒(状態A)が主圧縮機1で圧縮されて高温高圧のガス冷媒(状態B)となり吐出される;
(3)第1の水-冷媒熱交換器2で水に放熱して凝縮し、高圧液冷媒(状態C)になる;
(4)内部熱交換器3で、第2の冷凍サイクルの分岐冷媒と熱交換を行い過冷却液(状態D)になる;
(5)電動膨張弁4で第1の低圧まで減圧され、低圧二相冷媒(状態E)になる;
(6)空気熱交換器5で外気から採熱して蒸発し、再び低圧ガス冷媒(状態A)となる。
(1)主圧縮機1に、低圧ガス冷媒(状態A)が吸入される;(2)低圧ガス冷媒(状態A)が主圧縮機1で圧縮されて高温高圧のガス冷媒(状態B)となり吐出される;
(3)第1の水-冷媒熱交換器2で水に放熱して凝縮し、高圧液冷媒(状態C)になる;
(4)内部熱交換器3で、第2の冷凍サイクルの分岐冷媒と熱交換を行い過冷却液(状態D)になる;
(5)電動膨張弁4で第1の低圧まで減圧され、低圧二相冷媒(状態E)になる;
(6)空気熱交換器5で外気から採熱して蒸発し、再び低圧ガス冷媒(状態A)となる。
電動膨張弁4の開度は、あらかじめ把握している主圧縮機1の運転特性と、圧力センサ13で検知する吸入圧力と、圧力センサ14で検知する吐出圧力との情報から、主圧縮機1に吸入される吸入冷媒(状態A)が、ちょうど飽和蒸気となるような目標吐出温度を予測し、温度センサ17で検知する実際の吐出温度とそれが一致するように調整される。
また、主圧縮機1の回転数(運転容量)は、温度センサ18で検知する給水温度が目標値、例えば45℃となるように調整される。このように運転されることで、給湯負荷となる給湯タンク7に所定温度まで昇温した温水を供給する。
しかし、外気温度が極めて低い場合や、要求される加熱能力が大きい場合、主圧縮機1が最大容量で運転しても目標給水温度(例えば45℃)に調整できない場合がある。
一例では、主圧縮機1に5馬力程度のスクロール圧縮機、副圧縮機9に2馬力程度のロータリ圧縮機が使用される。
このようなときは、第2の冷凍サイクルが運転される。第2の冷凍サイクルでは、内部熱交換器3出口(状態D)から一部の冷媒を分岐し、分流膨張弁8で第2の低圧(第1の低圧より高い)まで減圧する。この第2の低圧の冷媒(状態F)は、吸入配管22が内部熱交換器3を貫通することにより、内部熱交換器3において高圧液冷媒(状態C)によって加熱され、ガス冷媒(状態G)となって副圧縮機9に吸入される。副圧縮機9で昇圧された第2高圧ガス冷媒(状態H)は、合流膨張弁12で減圧され、主圧縮機1の吐出冷媒(状態B)と合流し、状態Iとなって第1の水-冷媒熱交換器2に流入する。その後、第1の水-冷媒熱交換器2で水に放熱して凝縮し、高圧液冷媒(状態C)になり、内部熱交換器3で、第2の冷凍サイクルの分岐冷媒と熱交換を行い過冷却液(状態D)になる。
分流膨張弁8の開度は、温度センサ19及び圧力センサ15で検知される副圧縮機9の吸入冷媒(状態G)の状態が、飽和蒸気か、あるいは僅かに過熱する程度になるように調整される。
副圧縮機9は一定速圧縮機でもよいが、インバータで駆動される回転数調整可能な圧縮機である場合は、圧力センサ15で検知される吸入圧力が所定値となるように、副圧縮機9の回転数が調整される。
合流膨張弁12の開度は、圧力センサ16で検知される副圧縮機9の吐出圧力を操作できるので、副圧縮機9の入力が要求される加熱能力を満たすような吐出圧力になるように調整する。
本実施の形態1のヒートポンプ式給湯装置は、このように加熱能力が最大になるよう第2の冷凍サイクルが運転されることで、第1の水-冷媒熱交換器2で水に放熱して凝縮した高圧液冷媒(状態C)が、内部熱交換器3で第2の冷凍サイクルの分岐冷媒と熱交換を行い過冷却液(状態D)になり、状態Eと状態Aとの差が拡大するので、外気からの採熱量が増大し、加熱運転の運転効率が向上する。
また、外気からの採熱量と主圧縮機1の入力に加え、副圧縮機9の入力も全体の凝縮熱量に加わり、最大加熱能力が増大する。
続いて、副放熱手段11が第2の水-冷媒熱交換器23となる場合について、図4乃至図6を参照しながら説明する。
基本的な冷凍サイクルの動作および運転制御は、前述した副放熱手段11に何も接続されていない場合と同様であるが、ここでは、副放熱手段11が第2の水-冷媒熱交換器23であり、給湯タンク7からの循環水は、第1の冷凍サイクル側の第1の水-冷媒熱交換器2を経由して第2の水-冷媒熱交換器23に通水される。
副圧縮機9から吐出された高温高圧のガス冷媒(状態H)は第2の水-冷媒熱交換器23で水を再度加熱し、循環水はより高温となって給湯タンク7に戻る。第2の水-冷媒熱交換器23を出た冷媒(状態J)は合流膨張弁12で減圧され、主圧縮機1の吐出冷媒(状態B)と合流し(状態I)、その後第1の水-冷媒熱交換器2に流通する。
この第2の冷凍サイクルが運転される状況においては、主圧縮機1は既に最大容量運転を行っている。また、合流膨張弁12では、50℃以上の高温水が要求された場合などにおいて、その水温での出湯が可能となる目標吐出圧力を設定し、副圧縮機9の吐出圧力がそれになるように開度調整される。副圧縮機9では、温度センサ18で検知される目標出湯温度が実現できる加熱能力となるように回転数が調整される。
図6は第1の水-冷媒熱交換器2、第2の水-冷媒熱交換器23内部における水と冷媒との温度変化の過程を示している。循環水側は第1の水-冷媒熱交換器2、第2の水-冷媒熱交換器23を直列に流通し、入口から出口までほぼ直線的に温度上昇する。
一方、冷媒側では、第2の水-冷媒熱交換器23の凝縮圧力は第1の水-冷媒熱交換器2のそれより高く設定され、それぞれ異なる凝縮温度となっているので、1つの凝縮温度で昇温する場合よりも、上昇していく水温に対して冷媒との温度差を小さくできる。
つまり、水温が低い側では低めの凝縮温度で昇温し、水温が高い側では高めの凝縮温度で昇温できるので、水と冷媒の温度差が必要以上に大きくなることがない。よって、同一出湯温度に対して高効率で昇温することができ、冷凍サイクルの成績係数(COP)を向上することができる。
特に50℃以上の高温水が要求されたとき、凝縮温度はそれ以上のレベルに設定する必要があるが、副放熱手段11が第2の水-冷媒熱交換器23となる図4の冷媒回路では、第2の水-冷媒熱交換器23側、すなわち第2の冷凍サイクル側だけをその高凝縮温度にすればよく、システム全体として高効率で運転できるとともに、第2の冷凍サイクルの低圧は外気から採熱する必要がないので、比較的高い状態で運転できる。よって、外気が極めて低い場合でも高圧縮比になりにくく、吐出温度異常上昇などの運転制限が発生しにくい。
さらに、第1の水-冷媒熱交換器2では、主圧縮機1で循環される冷媒と副圧縮機9で循環される冷媒が合流して流通する。
一般に水-冷媒熱交換器として使用されるプレート積層型熱交換器(図2)は、水側と冷媒側の流路が等しいので冷媒側の流速が過小となることが多く、それに伴い冷媒側伝熱性能が低下しやすいが、本実施の形態においては、第1の水-冷媒熱交換器2を流通する冷媒流量が、主圧縮機1と副圧縮機9の合計となり冷媒流速が大きくなるので、この第1の水-冷媒熱交換器2の伝熱性能が向上するという効果を有する。
続いて、副放熱手段11を凍結防止ヒータとして用いる場合について、図7、図8を参照しながら説明する。
給湯運転において外気が氷点下になる状況では空気熱交換器5に着霜が生じるため、これを融かすための除霜運転が間欠的に行われるが、除霜時に生じたドレンや融け残った霜が空気熱交換器5の下部や、ドレン受け皿21に蓄積されて氷が成長し、給湯装置自体が破損してしまうことがある。これを回避するため、図7では、空気熱交換器5下部の伝熱管の一部を流用、あるいは空気熱交換器5の下方に配置されるドレン受け皿21に密着させた配管を設置し、副放熱手段11としている。
図7の冷媒回路における第2の冷凍サイクルによる凍結防止運転も、図8のP-h線図に示すように、基本的な動作は前述の図4の冷媒回路と同様である。
副圧縮機9が稼動すると、内部熱交換器3で熱回収され、副放熱手段11である凍結防止ヒータ24に副圧縮機9から吐出された高温高圧のガス冷媒が流通し、融け残った霜や再凍結した氷を融解させる。この凍結防止運転は、給湯運転中に常に運転されるか、あるいは除霜運転終了後、所定時間だけ運転される。
一般的に寒冷地仕様とされるヒートポンプ装置には凍結防止ヒータとして電気ヒータが装備されるが、本実施の形態によれば、副圧縮機9の電気入力に加えて、蒸発器エンタルピ差拡大により外気採熱量も増えるため、電気入力を超える凝縮熱量が得られ、高効率な凍結防止運転を行うことができる。
以上のように、この実施の形態に係るヒートポンプ式給湯装置は、副圧縮機9と内部熱交換器3による熱回収作用によって蒸発器エンタルピ差を拡大するので、副圧縮機9の電気入力以上の大きな過熱能力が得られるとともに、外気からの採熱量が増えることにより電気ヒータによる加熱能力増大作用よりもCOPが高い給湯運転を行うことができる。
また、第1の水-冷媒熱交換器2に流通する冷媒流量が主圧縮機1と副圧縮機9の合計となり冷媒流速が大きくなるので、第1の水-冷媒熱交換器2内部の冷媒側伝熱性能が向上する。これは、第1の水-冷媒熱交換器2がプレート積層型熱交換器である場合に特に効果がある。
また、第2の冷凍サイクル側に電気ヒータ代替となる副放熱手段11である凍結防止ヒータ24を配置し、水加熱や空気熱交換器5の凍結防止に利用するようにしたので、内部熱交換器3での熱回収作用が冷凍サイクルのCOPを向上し、電気ヒータを利用するものよりも高効率となる給湯運転を行うことができる。
また、この実施の形態に係るヒートポンプ式給湯装置は、副圧縮機9と合流膨張弁12との間に第2の水-冷媒熱交換器23を備え、第1の冷凍サイクルと第2の冷凍サイクルとで異なる凝縮温度を生成するようにし、2段階で水を加熱するように配置したので、高温水を要求されたときでも高効率でかつ信頼性の高い加熱運転を行うことができる。
以上の説明では、第2の冷凍サイクルの副圧縮機9と合流膨張弁12との間に設ける副放熱手段11に、第2の水-冷媒熱交換器23又は凍結防止ヒータ24を単独に接続するものであったが、複数の副放熱手段11を並列に配置して、複数の副放熱手段11のいずれかを選択する副放熱手段切替装置(放熱手段切替装置)を設けるようにしてもよい。
1 主圧縮機、2 第1の水-冷媒熱交換器、3 内部熱交換器、4 電動膨張弁、5 空気熱交換器、6 送風機、7 給湯タンク、8 分流膨張弁、9 副圧縮機、10 逆止弁、11 副放熱手段、12 合流膨張弁、13 圧力センサ、14 圧力センサ、15 圧力センサ、16 圧力センサ、17 温度センサ、18 温度センサ、19 温度センサ、20 温度センサ、21 ドレン受け皿、22 吸入配管、23 第2の水-冷媒熱交換器、24 凍結防止ヒータ。
Claims (7)
- 第1の圧縮機、第1の水-冷媒熱交換器、内部熱交換器、第1の減圧装置、蒸発器が順次接続されて構成される第1の冷凍サイクルと、
前記内部熱交換器と前記第1の減圧装置との間から分岐し、第2の減圧装置、前記内部熱交換器の内部を貫通する吸入配管、第2の圧縮機、第3の減圧装置の順に接続され、前記第1の圧縮機と前記第1の水-冷媒熱交換器との間に再び合流する第2の冷凍サイクルと、を備えたことを特徴とするヒートポンプ式給湯装置。 - 前記第2の圧縮機と前記第3の減圧装置との間に、放熱手段を備えたことを特徴とする請求項1に記載のヒートポンプ式給湯装置。
- 前記第1の水-冷媒熱交換器が、プレート積層型熱交換器であることを特徴とする請求項1又は請求項2に記載のヒートポンプ式給湯装置。
- 前記放熱手段が第2の水-冷媒熱交換器であって、水が前記第1水-冷媒熱交換器を流通後に、前記第2水-冷媒熱交換器を流通するようにしたことを特徴とする請求項2又は請求項3に記載のヒートポンプ式給湯装置。
- 前記放熱手段は、前記蒸発器の下端近傍に配置される配管で構成されることを特徴とする請求項2又は請求項3に記載のヒートポンプ式給湯装置。
- 第1の圧縮機、第1の水-冷媒熱交換器、内部熱交換器、第1の減圧装置、蒸発器が順次接続されて構成される第1の冷凍サイクルと、
前記内部熱交換器と前記第1の減圧装置との間から分岐し、第2の減圧装置、前記内部熱交換器の内部を貫通する吸入配管、第2の圧縮機、第3の減圧装置の順に接続され、前記第1圧縮機と前記第1の水-冷媒熱交換器との間に再び合流する第2の冷凍サイクルと、
前記第2の圧縮機と前記第3の減圧装置との間に並列に配置される複数の放熱手段と、
前記放熱手段のいずれかを選択する放熱手段切替装置と、を備えたことを特徴とするヒートポンプ式給湯装置。 - 第1の圧縮機、第1の水-冷媒熱交換器、内部熱交換器、第1の減圧装置、蒸発器が順次接続されて構成される第1の冷凍サイクルと、
前記内部熱交換器と前記第1の減圧装置との間から分岐し、第2の減圧装置、前記内部熱交換器の内部を貫通する吸入配管、第2の圧縮機、第2の水-冷媒熱交換器、第3の減圧装置の順に接続され、前記第1圧縮機と前記第1の水-冷媒熱交換器との間に再び合流する第2の冷凍サイクルと、
当該ヒートポンプ式給湯装置の運転の制御を司る制御部と、
を備え、
前記第1の水-冷媒熱交換器と前記第2の水-冷媒熱交換器とを、水が前記第1の水-冷媒熱交換器から前記第2の水-冷媒熱交換器を直列に流通するように接続し、
前記制御部は、前記第2の水-冷媒熱交換器の凝縮圧力が、前記第1の水-冷媒熱交換器の凝縮圧力よりも高くなるように前記第3の減圧装置の開度を調整することを特徴とするヒートポンプ式給湯装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/059622 WO2010137120A1 (ja) | 2009-05-26 | 2009-05-26 | ヒートポンプ式給湯装置 |
CN201080023258.3A CN102449412B (zh) | 2009-05-26 | 2010-03-30 | 热泵装置 |
PCT/JP2010/055686 WO2010137401A1 (ja) | 2009-05-26 | 2010-03-30 | ヒートポンプ装置 |
US13/320,167 US8973384B2 (en) | 2009-05-26 | 2010-03-30 | Heat pump apparatus |
EP10780358.7A EP2437007B1 (en) | 2009-05-26 | 2010-03-30 | Heat pump device |
JP2011515942A JP5111663B2 (ja) | 2009-05-26 | 2010-03-30 | ヒートポンプ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/059622 WO2010137120A1 (ja) | 2009-05-26 | 2009-05-26 | ヒートポンプ式給湯装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010137120A1 true WO2010137120A1 (ja) | 2010-12-02 |
Family
ID=43222261
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059622 WO2010137120A1 (ja) | 2009-05-26 | 2009-05-26 | ヒートポンプ式給湯装置 |
PCT/JP2010/055686 WO2010137401A1 (ja) | 2009-05-26 | 2010-03-30 | ヒートポンプ装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/055686 WO2010137401A1 (ja) | 2009-05-26 | 2010-03-30 | ヒートポンプ装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8973384B2 (ja) |
EP (1) | EP2437007B1 (ja) |
CN (1) | CN102449412B (ja) |
WO (2) | WO2010137120A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024204077A1 (ja) * | 2023-03-31 | 2024-10-03 | ダイキン工業株式会社 | 冷凍サイクル装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101507454B1 (ko) * | 2011-06-23 | 2015-03-31 | 삼성전자 주식회사 | 히트펌프 및 그 제어 방법 |
JP5447499B2 (ja) * | 2011-12-28 | 2014-03-19 | ダイキン工業株式会社 | 冷凍装置 |
JP5494770B2 (ja) * | 2012-09-25 | 2014-05-21 | 三菱電機株式会社 | ヒートポンプ給湯機 |
JP6073652B2 (ja) * | 2012-11-09 | 2017-02-01 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
US20140209280A1 (en) * | 2013-01-30 | 2014-07-31 | Visteon Global Technologies, Inc. | Thermal-storage evaporator with integrated coolant tank |
US20140260380A1 (en) * | 2013-03-15 | 2014-09-18 | Energy Recovery Systems Inc. | Compressor control for heat transfer system |
KR102240070B1 (ko) * | 2014-03-20 | 2021-04-13 | 엘지전자 주식회사 | 공기조화기 및 그 제어방법 |
WO2016057854A1 (en) * | 2014-10-08 | 2016-04-14 | Inertech Ip Llc | Systems and methods for cooling electrical equipment |
CN106288402B (zh) * | 2015-05-12 | 2019-08-06 | 青岛海尔新能源电器有限公司 | 热泵热水装置及其防冻结方法 |
DE102015214705A1 (de) * | 2015-07-31 | 2017-02-02 | Technische Universität Dresden | Vorrichtung und Verfahren zum Durchführen eines Kaltdampfprozesses |
CN112169364B (zh) * | 2020-09-29 | 2021-12-24 | 江苏博颂化工科技有限公司 | 一种采用外部循环工质的分馏塔热泵系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000329416A (ja) * | 1999-03-15 | 2000-11-30 | Denso Corp | 冷凍サイクル |
JP2005061784A (ja) * | 2003-08-20 | 2005-03-10 | Yanmar Co Ltd | エンジンヒートポンプ |
US20070017240A1 (en) * | 2005-07-19 | 2007-01-25 | Hussmann Corporation | Refrigeration system with mechanical subcooling |
WO2007142619A2 (en) * | 2006-06-01 | 2007-12-13 | Carrier Corporation | Multi-stage compressor unit for a refrigeration system |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4474018A (en) * | 1982-05-06 | 1984-10-02 | Arthur D. Little, Inc. | Heat pump system for production of domestic hot water |
JPS5941746A (ja) | 1982-08-31 | 1984-03-08 | 三菱電機株式会社 | 冷凍装置 |
JPS59170656A (ja) | 1983-03-18 | 1984-09-26 | 株式会社日立製作所 | 冷凍装置 |
US4787211A (en) * | 1984-07-30 | 1988-11-29 | Copeland Corporation | Refrigeration system |
US4947655A (en) * | 1984-01-11 | 1990-08-14 | Copeland Corporation | Refrigeration system |
JPS60226669A (ja) | 1984-04-24 | 1985-11-11 | 三洋電機株式会社 | 冷凍装置 |
JPS62266364A (ja) | 1986-05-12 | 1987-11-19 | シャープ株式会社 | ヒ−トポンプ式融雪冷暖房給湯装置 |
JP2554208B2 (ja) | 1991-02-18 | 1996-11-13 | 関西電力株式会社 | ヒートポンプ式給湯装置 |
JPH0599534A (ja) | 1991-10-07 | 1993-04-20 | Mitsubishi Electric Corp | 給湯用ヒートポンプ装置 |
JPH11270919A (ja) | 1998-03-25 | 1999-10-05 | Mitsubishi Electric Corp | 冷凍サイクル装置 |
US6442951B1 (en) * | 1998-06-30 | 2002-09-03 | Ebara Corporation | Heat exchanger, heat pump, dehumidifier, and dehumidifying method |
US6321564B1 (en) | 1999-03-15 | 2001-11-27 | Denso Corporation | Refrigerant cycle system with expansion energy recovery |
JP3316570B2 (ja) * | 1999-08-31 | 2002-08-19 | 株式会社荏原製作所 | ヒートポンプ及び除湿装置 |
JP3629587B2 (ja) * | 2000-02-14 | 2005-03-16 | 株式会社日立製作所 | 空気調和機及び室外機並びに冷凍装置 |
US6276148B1 (en) * | 2000-02-16 | 2001-08-21 | David N. Shaw | Boosted air source heat pump |
JP3709477B2 (ja) | 2000-05-22 | 2005-10-26 | ダイキン工業株式会社 | 空気調和機の冷媒回路 |
US6601397B2 (en) * | 2001-03-16 | 2003-08-05 | Copeland Corporation | Digital scroll condensing unit controller |
KR100567491B1 (ko) * | 2002-02-12 | 2006-04-03 | 마츠시타 덴끼 산교 가부시키가이샤 | 히트 펌프 급탕 장치 |
US6708511B2 (en) * | 2002-08-13 | 2004-03-23 | Delaware Capital Formation, Inc. | Cooling device with subcooling system |
JP3863480B2 (ja) * | 2002-10-31 | 2006-12-27 | 松下電器産業株式会社 | 冷凍サイクル装置 |
JP2005147456A (ja) | 2003-11-13 | 2005-06-09 | Daikin Ind Ltd | 空気調和装置 |
US7257958B2 (en) * | 2004-03-10 | 2007-08-21 | Carrier Corporation | Multi-temperature cooling system |
US7131285B2 (en) * | 2004-10-12 | 2006-11-07 | Carrier Corporation | Refrigerant cycle with plural condensers receiving refrigerant at different pressure |
US7155920B2 (en) * | 2004-10-18 | 2007-01-02 | Carrier Corporation | Refrigerant cycle with tandem compressors and multiple condensers |
US7631510B2 (en) * | 2005-02-28 | 2009-12-15 | Thermal Analysis Partners, LLC. | Multi-stage refrigeration system including sub-cycle control characteristics |
JP4284290B2 (ja) * | 2005-03-24 | 2009-06-24 | 日立アプライアンス株式会社 | ヒートポンプ給湯機 |
JP2006275339A (ja) * | 2005-03-28 | 2006-10-12 | Hitachi Home & Life Solutions Inc | ヒートポンプ式給湯機 |
JP2006275495A (ja) * | 2005-03-30 | 2006-10-12 | Sanyo Electric Co Ltd | 冷凍装置及び冷蔵庫 |
SE531241C2 (sv) * | 2005-04-13 | 2009-01-27 | Alfa Laval Corp Ab | Plattvärmeväxlare med huvudsakligen jämn cylindrisk inloppskanal |
US7654104B2 (en) * | 2005-05-27 | 2010-02-02 | Purdue Research Foundation | Heat pump system with multi-stage compression |
US7406839B2 (en) * | 2005-10-05 | 2008-08-05 | American Power Conversion Corporation | Sub-cooling unit for cooling system and method |
TWI298365B (en) * | 2005-11-21 | 2008-07-01 | Compressor for refrigerator equipment | |
JP5040104B2 (ja) * | 2005-11-30 | 2012-10-03 | ダイキン工業株式会社 | 冷凍装置 |
US7992395B2 (en) * | 2006-01-17 | 2011-08-09 | Hussmann Corporation | Expansion valve with piezo material |
US20070186581A1 (en) * | 2006-02-14 | 2007-08-16 | Ingersoll-Rand Company | Compressor cooling system |
WO2007111595A1 (en) * | 2006-03-27 | 2007-10-04 | Carrier Corporation | Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor |
KR101282565B1 (ko) * | 2006-07-29 | 2013-07-04 | 엘지전자 주식회사 | 냉난방 동시형 멀티 공기 조화기 |
US8181478B2 (en) * | 2006-10-02 | 2012-05-22 | Emerson Climate Technologies, Inc. | Refrigeration system |
WO2008063256A1 (en) * | 2006-10-26 | 2008-05-29 | Johnson Controls Technology Company | Economized refrigeration system |
CN101809378B (zh) * | 2007-09-24 | 2014-06-25 | 开利公司 | 具有旁路管线和专用节省流压缩室的制冷剂系统 |
GB2454344A (en) * | 2007-11-02 | 2009-05-06 | Shell Int Research | Method and apparatus for controlling a refrigerant compressor, and a method for cooling a hydrocarbon stream. |
US20100326100A1 (en) * | 2008-02-19 | 2010-12-30 | Carrier Corporation | Refrigerant vapor compression system |
-
2009
- 2009-05-26 WO PCT/JP2009/059622 patent/WO2010137120A1/ja active Application Filing
-
2010
- 2010-03-30 WO PCT/JP2010/055686 patent/WO2010137401A1/ja active Application Filing
- 2010-03-30 CN CN201080023258.3A patent/CN102449412B/zh active Active
- 2010-03-30 US US13/320,167 patent/US8973384B2/en not_active Expired - Fee Related
- 2010-03-30 EP EP10780358.7A patent/EP2437007B1/en not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000329416A (ja) * | 1999-03-15 | 2000-11-30 | Denso Corp | 冷凍サイクル |
JP2005061784A (ja) * | 2003-08-20 | 2005-03-10 | Yanmar Co Ltd | エンジンヒートポンプ |
US20070017240A1 (en) * | 2005-07-19 | 2007-01-25 | Hussmann Corporation | Refrigeration system with mechanical subcooling |
WO2007142619A2 (en) * | 2006-06-01 | 2007-12-13 | Carrier Corporation | Multi-stage compressor unit for a refrigeration system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024204077A1 (ja) * | 2023-03-31 | 2024-10-03 | ダイキン工業株式会社 | 冷凍サイクル装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2437007B1 (en) | 2014-05-14 |
WO2010137401A1 (ja) | 2010-12-02 |
US8973384B2 (en) | 2015-03-10 |
CN102449412A (zh) | 2012-05-09 |
US20120060538A1 (en) | 2012-03-15 |
CN102449412B (zh) | 2014-08-06 |
EP2437007A1 (en) | 2012-04-04 |
EP2437007A4 (en) | 2013-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010137120A1 (ja) | ヒートポンプ式給湯装置 | |
JP5868498B2 (ja) | ヒートポンプ装置 | |
JP5327308B2 (ja) | 給湯空調システム | |
CN103250012B (zh) | 二元制冷循环装置 | |
EP2924375B1 (en) | Refrigeration cycle device and hot water generation device provided therewith | |
CN102466374B (zh) | 热泵式热水供给装置 | |
JP5595140B2 (ja) | ヒートポンプ式給湯・空調装置 | |
JP5427428B2 (ja) | ヒートポンプ式給湯・空調装置 | |
KR101270616B1 (ko) | 코제너레이션 | |
JP5094942B2 (ja) | ヒートポンプ装置 | |
JPWO2011092802A1 (ja) | ヒートポンプ装置及び冷媒バイパス方法 | |
EP2765370A1 (en) | Refrigeration cycle apparatus and hot water generator provided with the same | |
CN102326039A (zh) | 热泵系统 | |
WO2010143373A1 (ja) | ヒートポンプシステム | |
EP2918921B1 (en) | Hot water generator | |
JP2013083439A (ja) | 給湯空調システム | |
JP6065213B2 (ja) | 給水加温システム | |
JP5677472B2 (ja) | 冷凍装置 | |
KR101383244B1 (ko) | 핫가스 제상식 히트펌프장치 | |
CN105318599B (zh) | 冷热多功能热泵设备 | |
JP5111663B2 (ja) | ヒートポンプ装置 | |
JP2014031930A (ja) | 冷凍サイクル装置 | |
KR20140097858A (ko) | 히트펌프 | |
KR100389269B1 (ko) | 히트 펌프 시스템 | |
KR101627659B1 (ko) | 하이브리드 히트펌프 보일러 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09845187 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09845187 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |