WO2010134606A1 - 胚性幹細胞或いは人工多能性幹細胞の分化誘導方法 - Google Patents

胚性幹細胞或いは人工多能性幹細胞の分化誘導方法 Download PDF

Info

Publication number
WO2010134606A1
WO2010134606A1 PCT/JP2010/058661 JP2010058661W WO2010134606A1 WO 2010134606 A1 WO2010134606 A1 WO 2010134606A1 JP 2010058661 W JP2010058661 W JP 2010058661W WO 2010134606 A1 WO2010134606 A1 WO 2010134606A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
differentiation
region
inducing
Prior art date
Application number
PCT/JP2010/058661
Other languages
English (en)
French (fr)
Inventor
佐々木 大輔
清水 達也
岡野 光夫
Original Assignee
学校法人 東京女子医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 東京女子医科大学 filed Critical 学校法人 東京女子医科大学
Priority to EP10777837.5A priority Critical patent/EP2434007A4/en
Priority to JP2011514465A priority patent/JPWO2010134606A1/ja
Priority to US13/320,777 priority patent/US20120107930A1/en
Publication of WO2010134606A1 publication Critical patent/WO2010134606A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/20Materials or treatment for tissue regeneration for reconstruction of the heart, e.g. heart valves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography
    • C12N2535/10Patterned coating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2539/00Supports and/or coatings for cell culture characterised by properties
    • C12N2539/10Coating allowing for selective detachment of cells, e.g. thermoreactive coating

Definitions

  • the present invention relates to a method for inducing differentiation of embryonic stem cells or induced pluripotent stem cells useful in the fields of drug discovery, pharmacy, medicine, biology and the like.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • ES cell aggregates are generally prepared as spherical aggregates in a floating state called embryoid bodies. Since differentiation of ES cells depends on the size of the embryoid body, it is necessary to control the size of the embryoid body in order to efficiently induce differentiation into specific cells.
  • Non-Patent Document 1 discloses a hanging drop method as an existing method for controlling the size of an embryoid body. Specifically, a droplet containing hundreds to thousands of ES cells in the medium is suspended from the lid of the cell culture dish and cultured for 2 days to form a cell mass called an embryoid body (EB). It is something to be made. This is cultured in suspension in a non-cell-adhesive culture dish for several days, then seeded on the cell-adhesive culture dish and further cultured for several days. The expanded cell group of EB adhered to the sputum culture dish is called EB outgrowth.
  • EB outgrowth The expanded cell group of EB adhered to the sputum culture dish.
  • Non-Patent Documents 2, 4, and 5 By inducing differentiation culture of mouse ES cells by the hanging drop method, pulsating cardiomyocytes are observed in 5 to 50% of EB outgrowth (Non-Patent Documents 2, 4, and 5). At this time, the ratio of the number of differentiated cardiomyocytes to the total number of cells is generally 1 to 3% (Non-patent Document 6).
  • the hanging drop method since the hanging drop method requires a complicated operation, it has a drawback that it is difficult to prepare a large amount of embryoid bodies. In many cases, in order to promote further differentiation of ES cells in the embryoid body, it is necessary to adhere the embryoid body in a floating state onto a culture substrate and subsequently culture it.
  • Non-patent document 2 exemplifies retinoic acid as a typical differentiation inducer currently disclosed
  • Patent Document 1 and Non-patent Document 3 ascorbic acid, Non-patent Document 4 nitric oxide, Non-patent Document 5 Nogin and the like can be mentioned, and by adding these substances to the medium at an appropriate concentration and timing, it is possible to increase the rate of induction of differentiation into cardiomyocytes.
  • Patent Document 2 includes a method of culturing in a serum-free medium
  • Patent Document 3 includes a method of co-culturing with cells that discharge cardiomyocyte differentiation-inducing factors, and the like, and a method for increasing the differentiation induction rate into cardiomyocytes
  • Various studies have been made. However, there is still a risk that cells that have not been induced to differentiate into the target cells may cause problems after transplantation, and further, a culture technique for easily preparing large numbers of cells sufficient for transplantation. Is needed.
  • the present invention has been made with the intention of solving the problems associated with the method of inducing differentiation of embryonic stem cells or induced pluripotent stem cells as described above. That is, the present invention provides a novel method for inducing differentiation of embryonic stem cells and the like from a completely different idea from the prior art.
  • the present inventors have conducted research and development by adding studies from various angles. As a result, it was found that embryonic stem cells or induced pluripotent stem cells can be induced to differentiate by attaching the cells to a culture substrate and taking a specific three-dimensional structure. Furthermore, it discovered that a cardiomyocyte was obtained by the differentiation induction. The present invention has been completed based on such findings.
  • the present invention provides a method for inducing differentiation of embryonic stem cells or induced pluripotent stem cells by attaching embryonic stem cells or induced pluripotent stem cells to a culture substrate and taking a specific three-dimensional structure. To do.
  • the present invention also provides a method for inducing differentiation of embryonic stem cells or induced pluripotent stem cells into cardiomyocytes.
  • the present invention provides a differentiation-inducing stem cell obtained by such a differentiation-inducing method.
  • the present invention also provides a transplantation treatment method using them.
  • embryonic stem cells or induced pluripotent stem cells can be induced into target cells by a simple technique. Conventionally, such work has required labor and operator's skill, but according to the present invention, this need is eliminated and a large amount of cells can be processed.
  • the upper image shows a tomogram on a plane parallel to the culture substrate
  • the lower image shows a tomogram on a plane perpendicular to the culture substrate.
  • the outline of the cell aggregate is indicated by a dotted line.
  • the white saturated part shows the fluorescence of EGFP.
  • the scale bar indicates 100 ⁇ m. It is a figure which shows the result of the differentiation induction efficiency to the myocardial cell of Example 2.
  • the typical cell distribution figure which shows the differentiation induction efficiency to the myocardial cell of the mouse
  • the mouse ES cell line EB5 that had been induced to undergo differentiation induction under the same conditions was used as an EGFP negative control. It is a figure which shows the result of formation of an ES cell aggregate on the cell pattern culture base material of Example 3, and a cardiomyocyte differentiation induction.
  • the white saturated part shows the fluorescence of EGFP.
  • the scale bar indicates 500 ⁇ m.
  • the present invention relates to a method for inducing differentiation of embryonic stem cells or induced pluripotent stem cells using a substrate surface having a cell non-adhesive region around the cell adhesive region.
  • the material of the cell culture substrate to be coated is not only a substance usually used for cell culture, modified glass, polystyrene, polymethyl methacrylate, etc., but also a substance that can be given a form in general, for example, All other polymer compounds, ceramics, metals and the like other than those described above can be used.
  • the shape is not limited to a cell culture dish such as a Petri dish, but may be a plate, fiber, or (porous) particle. Moreover, even if it has the shape (flask etc.) of the container generally used for cell culture etc., it does not interfere.
  • the cell adhesion region and the cell non-adhesion region shown in the present invention are those formed on the surface of the cell culture substrate.
  • the cell adhesion region is not particularly limited as long as it is a substrate surface to which cells adhere, and is not limited to glass, modified glass, polystyrene, polycrystal used for general culture substrates as described above.
  • substances such as methyl methacrylate but also substances that can be given form in general, for example, polymer compounds other than those mentioned above, ceramics, metals may be used, and those subjected to surface treatment with glow discharge, corona discharge, etc.
  • the non-cell-adhesive region used in the present invention is a region where cells are not attached, and is obtained by coating a substance that prevents cell attachment on the culture substrate.
  • a material suitable for at least one of polyacrylamide, polyethylene glycol, and starch may be used, but the type is not limited.
  • a pattern composed of lines and spaces, (2) a polka dot pattern, and (3) a lattice-like pattern are observed from above.
  • a pattern, a specially shaped pattern, or a pattern in which these patterns are mixed can be used, but the present invention is not limited thereto.
  • the size of the covering region is not limited at all, in the present invention, as described later, embryonic stem cells or induced pluripotent stem cells that have adhered to the base material and proliferated become confluent in the cell-adhering region. When the culture is continued as it is, it becomes an overconfluent state, and the cells begin to stratify near the boundary between the cell adhesion region and the cell non-adhesion region.
  • the mechanism is that even after the cells become confluent within the cell adhesion region, contact inhibition does not occur in the cells at the boundary between the cell adhesion region and the cell non-adhesion region, and cell proliferation is not suppressed. I come back to it.
  • the present invention in order to obtain a high differentiation efficiency into a target cell, it is essential that a plurality of stratified portions formed in the cell adhesion region are quickly bonded. Therefore, it is essential that the cell-adherent region, as well as the surrounding non-cell-adherent region, form its binding at least in part within the cell-adherent region.
  • the distance until the at least two layered portions formed from the boundary with the non-cell-adherent region are preferably 300 ⁇ m or less, more preferably 250 ⁇ m, and most preferably 200 ⁇ m or less.
  • the combination of the stratified portions does not occur within a predetermined culture time.
  • the overlap of the stratified portion is not particularly limited, but the stratified portion formed adjacently in the cell adhesion region may be overlapped, or the shape of the cell adhesion region is a diametrical direction.
  • the layered portions formed at both ends overlap, and when the cell adhesion region is in the form of a line, the layered portions formed at both ends in the line width direction may overlap.
  • the method for producing the cell adhesion region of the present invention and the surrounding cell non-adhesion region is not limited as long as it finally has the above structure.
  • (1) cells A method of coating the above-described polymer only on a portion that becomes a non-cell-adhesive region by masking the cell-adhesive region on the surface of the adherent substrate; (2) a non-cell-adhesive polymer on the surface of the cell-adhesive substrate A method of offset printing, (3) a method in which two layers of a cell adhesion polymer and a cell non-adhesion polymer are coated in advance, and either layer is scraped off by ultrasonic or scanning type equipment (in this case, a culture substrate) (4) on the surface of the substrate, or (4) on the surface of the substrate.
  • ultrasonic or scanning type equipment in this case, a culture substrate
  • Cell culture substrates can be coated with various polymers by (1) combining the substrate and the coating substance by chemical reaction, or (2) using physical interaction, either alone or in combination. Can be done. That is, (1) When bonding by a chemical reaction, electron beam irradiation (EB), ⁇ -ray irradiation, ultraviolet irradiation, plasma treatment, corona treatment, or the like can be used. Further, when the support and the coating material have appropriate reactive functional groups, generally used organic reactions such as radical reaction, anion reaction, and cation reaction can be used. (2) As a method based on physical interaction, a coating material alone or a matrix compatible with the support is used as a medium (for example, a monomer forming the support or a monomer compatible with the support and the coating material). And the like using a physical adsorption such as coating and kneading.
  • EB electron beam irradiation
  • ⁇ -ray irradiation ultraviolet irradiation
  • plasma treatment corona treatment
  • corona treatment
  • the cell-responsive region of the cell culture substrate may be coated with a temperature-responsive polymer.
  • the temperature-responsive polymer has an upper critical solution temperature or a lower critical solution temperature of 0 ° C. to 80 ° C., more preferably 20 ° C. to 50 ° C. in an aqueous solution. If the upper critical lysis temperature or the lower critical lysis temperature exceeds 80 ° C., the cells may die, which is not preferable. Further, if the upper critical lysis temperature or the lower critical lysis temperature is lower than 0 ° C., the cell growth rate is generally extremely reduced or cells are killed, which is also not preferable.
  • the temperature-responsive polymer used in the present invention may be either a homopolymer or a copolymer.
  • a polymer examples include polymers described in JP-A-2-21865. Specifically, for example, it can be obtained by homopolymerization or copolymerization of the following monomers.
  • the monomer that can be used include a (meth) acrylamide compound, an N- (or N, N-di) alkyl-substituted (meth) acrylamide derivative, or a vinyl ether derivative. Two or more of these can be used.
  • copolymerization with monomers other than the above monomers, grafting or copolymerization of polymers, or a mixture of polymers and copolymers may be used.
  • poly-Nn-propylacrylamide (a homopolymer) Lower critical solution temperature 21 ° C), poly-Nn-propylmethacrylamide (27 ° C), poly-N-isopropylacrylamide (32 ° C), poly-N-isopropylmethacrylamide (43 ° C), poly- N-cyclopropylacrylamide (at 45 ° C), poly-N-ethoxyethylacrylamide (at about 35 ° C), poly-N-ethoxyethylmethacrylamide (at about 45 ° C), poly-N-tetrahydrofurfurylacrylamide (at the same) About 28 ° C.), poly-N-tetrahydrofurfuryl meth
  • Monomers for copolymerization used in the present invention include polyacrylamide, poly-N, N-diethylacrylamide, poly-N, N-dimethylacrylamide, polyethylene oxide, polyacrylic acid and salts thereof, polyhydroxyethyl methacrylate, Examples thereof include water-containing polymers such as polyhydroxyethyl acrylate, polyvinyl alcohol, polyvinyl pyrrolidone, cellulose, carboxymethyl cellulose, and the like, but are not particularly limited.
  • the coverage of the cell-responsive region with the temperature-responsive polymer is preferably in the range of 1.1 to 2.3 ⁇ g / cm 2 , preferably 1.4 to 1.9 ⁇ g / cm 2 , and more preferably 1. 5 to 1.8 ⁇ g / cm 2 .
  • the coating amount is less than 1.1 ⁇ g / cm 2 , the cells on the polymer are difficult to peel off even when a stimulus is applied, and the working efficiency is remarkably deteriorated.
  • it is 2.3 ⁇ g / cm 2 or more, it is difficult for cells to adhere to the region, and it becomes difficult to sufficiently attach the cells.
  • the present invention is a method for inducing differentiation by attaching embryonic stem cells or induced pluripotent stem cells to the surface of a substrate as described above.
  • the cell used should just be an embryonic stem cell or an induced pluripotent stem cell, and the acquisition place and preparation method are not specifically limited.
  • Examples of the cell of the present invention include cells such as animals, insects and plants, and bacteria.
  • examples of the origin of animal cells include humans, monkeys, dogs, cats, rabbits, rats, nude mice, mice, guinea pigs, pigs, sheep, Chinese hamsters, cattle, marmoset, African green monkeys, etc. is not.
  • the method for inducing differentiation of embryonic stem cells or induced pluripotent stem cells in the present invention is as follows. First, it is assumed that embryonic stem cells or induced pluripotent stem cells before seeding are maintained undifferentiated using a non-differentiation-inducing medium. Before and after seeding on the surface of the substrate, the medium is switched to the differentiation-inducing medium, seeded on the surface of the substrate of the present invention, and the cells are allowed to grow until they become confluent in the cell adhesion region. After confluence, the culture is continued in the state of a differentiation-inducing medium, and the cells are layered three-dimensionally from the boundary with the non-cell-adhering region around the cell-adhering region. Finally, the plurality of layered portions formed in the cell adhesion region are combined, and the whole cell adhesion region is cultured until it becomes a thick cell aggregate. By subjecting the obtained cell aggregate to enzyme treatment, the desired differentiation-inducing cell can be obtained.
  • the non-differentiation-inducing medium used in the present invention is not particularly limited as long as it does not induce differentiation of embryonic stem cells or induced pluripotent stem cells.
  • mouse embryonic stem cells and undifferentiated mouse induced pluripotent stem cells are used. It has the property of maintaining the undifferentiated nature of a medium containing leukemia inhibitory factor, human embryonic stem cells, and human induced pluripotent stem cells, which are known to have the property of maintaining sex And a medium containing basic FGF, which is known.
  • the differentiation-inducing medium is not particularly limited as long as it is a medium that induces differentiation of embryonic stem cells or induced pluripotent stem cells.
  • a serum-containing medium or a known medium having a property of substituting for serum is known.
  • examples include serum-free media containing components.
  • a differentiation inducer such as retinoic acid and ascorbic acid as described above may be further added to the differentiation induction medium.
  • the seeding density on the substrate surface is not particularly limited as long as it follows a conventional method.
  • the number of days until the seeded cells become confluent in the cell adhesion region is preferably within 8 days, preferably within 7 days, and most preferably within 6 days. If the number of days until confluence is 9 days or more, the subsequent stratification cannot be performed sufficiently, which is not preferable as the technique shown in the present invention. Therefore, in the present invention, the number of days until the cells become seeded by adjusting the area of the cell adhesion region where cells are seeded and the cell seeding amount may be within 8 days.
  • the present invention is characterized in that the culture is continued even after embryonic stem cells or induced pluripotent stem cells become confluent in the cell adhesion region. That is, even after the cells become confluent in the cell adhesion region, contact inhibition is not applied to the cells at the boundary between the cell adhesion region and the cell non-adhesion region, and cell proliferation is not suppressed. It tries to grow to the non-cell-adherent region around the cell-adherent region, but the cells cannot sufficiently adhere to the non-cell-adherent region, so that it binds to the cells on the cell-adherent region but does not bind to the substrate surface.
  • the cultured cells that are unstablely attached to the substrate surface can be folded from the vicinity of the boundary between the cell adhesion region and the cell non-adhesion region to the cell adhesion region side, or the sheet Can be folded from the vicinity of the boundary between the cell adhesion region and the cell non-adhesion region to the cell adhesion region side, and further, the cell can be folded from near the boundary between the cell adhesion region and the cell non-adhesion region. It will rise to the adhesive region side. At the same time, cells that have lost their destination overlap each other near the boundary.
  • a series of such cells is folded to place embryonic stem cells or induced pluripotent stem cells in a specific environment. As a result, it is considered that these stem cells are induced to differentiate. .
  • the way the cells are folded is not particularly limited. However, when the sheet-like cells are folded, a space is formed in that portion, and subsequent differentiation induction is efficiently promoted. And in this invention, it turned out that the folded part has differentiated into the cardiac muscle cell.
  • the cross section of the obtained cell aggregate was seen, it was found that cells existed in the outermost layer with high density, and the density of cells inside the aggregate was low. Many cardiomyocytes of the present invention were present inside. It was also suggested that the direction of cell differentiation was different between the outer and inner layers of the aggregate.
  • the temperature of the culture substrate is set to be equal to or higher than the upper critical solution temperature or lower than the lower critical solution temperature of the coated polymer on the culture substrate.
  • Differentiated cells can be detached without enzymatic treatment. In that case, it can be performed in a culture solution or in another isotonic solution, and can be selected according to the purpose.
  • the differentiation induction method described in the present invention can induce embryonic stem cells or induced pluripotent stem cells to target cells by a simple technique. Conventionally, such work has required labor and operator's skill, but according to the present invention, this need is eliminated and a large amount of cells can be processed. Furthermore, in the present invention, high differentiation induction efficiency of embryonic stem cells or induced pluripotent stem cells to specific cells is achieved by designing a pattern of cell adhesive regions and non-cell adhesive regions on the culture substrate surface. However, differentiation of a large amount of embryonic stem cells or induced pluripotent stem cells can be easily performed.
  • Example 1 The reagents used in Example 1 are listed below. 3-methacryloxypropyltrimethylsilane (MPTMS) was purchased from Shin-Etsu Chemical Co., Ltd. A g-line positive photoresist (OFPR-800LB, 34 cP) and a developer (NMD-3) were purchased from Tokyo Ohka Kogyo Co., Ltd.
  • MPTMS 3-methacryloxypropyltrimethylsilane
  • a g-line positive photoresist (OFPR-800LB, 34 cP) and a developer (NMD-3) were purchased from Tokyo Ohka Kogyo Co., Ltd.
  • Acrylamide, N, N'-methylenebisacrylamide, ammonium persulfate, sodium bicarbonate, sodium chloride, potassium chloride, magnesium sulfate, sodium pyruvate, taurine, sodium hydroxide, calcium chloride, dipotassium hydrogen phosphate, creatine, hydroxylated Potassium and paraformaldehyde were purchased from Wako Pure Chemical Industries.
  • N, N, N ′, N′-tetramethylethylenediamine (TEMED) and glucose were purchased from Kanto Chemical Co., Inc.
  • D-PBS, Minimum Essential Medium Alpha Modification ( ⁇ -MEM, product number M0644), HEPES, and Na2ATP were purchased from Sigma-Aldrich Japan. Fibronectin is available from Biomedical Technologies Inc.
  • Fetal bovine serum was purchased from Nichirei Science Co., Ltd. 2-mercaptoethanol, penicillin-streptomycin, TrypLE TM Express, CellTracker TM Orange CMTMR, and SlowFade Gold antifade reagent were purchased from Invitrogen Corporation.
  • EDTA and EGTA were purchased from Dojin Chemical Laboratory.
  • Collagenase / dispase was purchased from Roche Diagnostics Inc.
  • a substrate in which circular photoresist patterns having a diameter of 100, 200, 300, or 400 ⁇ m were squarely arranged on the surface at intervals of 300 ⁇ m was produced by photolithography using a maskless exposure apparatus. This was post-baked at 80 ° C. for 1 hour. Nitrogen gas was bubbled into an aqueous solution composed of 0.7 mM acrylamide and 65 ⁇ M N, N′-methylenebisacrylamide at room temperature for 20 minutes to remove dissolved oxygen, cooled to 4 ° C., and ammonium persulfate and TEMED. Were added to 2.2 mM and 11 mM, respectively, and the photoresist pattern substrate was immediately immersed in this aqueous solution.
  • the aqueous solution was allowed to stand at 4 ° C. for 3 hours with gentle stirring to fix polyacrylamide on the silanized glass surface that was not coated with photoresist on the substrate.
  • the substrate was thoroughly washed with warm water of about 40 ° C. to remove polyacrylamide not fixed on the silanized glass surface, and then washed with acetone to remove the circular photoresist pattern on the substrate surface.
  • the surface of the base material thus prepared is composed of a cell-adhesive circular region composed of a silanized glass surface and a cell non-adhesive region composed of a polyacrylamide surface.
  • the substrate was thoroughly washed with deionized water, dried, cut into a size of 24 mm ⁇ 20 mm, put into a Petri dish with a diameter of 35 mm, and sterilized with ethylene oxide gas. To improve cell adhesion to the circular area, the substrate surface was coated with fibronectin at 37 ° C. overnight in 2 mL D-PBS containing 30 ⁇ g / mL fibronectin before seeding the cells. .
  • a differentiation induction medium in which 5% fetal bovine serum, 50 ⁇ M 2-mercaptoethanol, 5 units / mL penicillin, and 5 ⁇ g / mL streptomycin were added to ⁇ -MEM was used.
  • Undifferentiated ES cells recovered by TrypLE TM Express treatment (37 ° C., 5 minutes) and suspended in a differentiation-inducing medium are seeded at 2 ⁇ 10 4 cells / cm 2 on the culture substrate prepared by the above method. And cultured at 37 ° C. under 5% carbon dioxide and saturated water vapor pressure. Three hours after seeding the cells, the medium was changed once to remove ES cells falling in the non-cell-adherent region.
  • FIG. 1 shows the microscope image. ES cells seeded on the substrate proliferated in a circular cell adhesion region, and reached confluence on the third day of culture to form a circular cell colony (FIG. 1b, e). As shown in the enlarged microscopic image (FIG. 1e), the edge of the circular cell colony was very clear, confirming that the cell patterning was finely realized.
  • ES cells at the boundary between the cell-adherent and non-cell-adherent regions continue to proliferate, and these proliferating cells are layered on the cell-adherent region to gradually increase steric ES cell aggregation. Aggregates were formed (FIGS. 1c, d). Many of the finally formed ES cell aggregates had a three-dimensional structure composed of an outermost layer portion having a high cell density and an interior having a low cell density. Around 7 days of culture, clear EGFP fluorescence indicating differentiation into cardiomyocytes began to be observed, and some of the cell aggregates exhibiting EGFP fluorescence began to show pulsation. FIG.
  • FIG. 2 shows a microscopic image of ES cells cultured on differentiation induction on a substrate having a cell adhesion region having a diameter of 100, 200, 300, or 400 ⁇ m on the 10th day of culture.
  • ES cell aggregates were formed on the circular cell adhesion region, and EGFP fluorescence and pulsation indicating differentiation into cardiomyocytes were confirmed.
  • the diameter of the cell adhesion region was 100 ⁇ m, more than half of the formed cell aggregates were dissociated from the substrate and lost during the medium exchange (FIG. 2a).
  • Flow cytometry To perform flow cytometry of differentiated ES cells, the literature (Wobus AM, Guan K, Yang HT, Bocheler KR. 185: 127-56), a single cell suspension was prepared from differentiated ES cell aggregates by a method with some modifications. ES cells cultured to induce differentiation on a substrate were treated with a low calcium ion medium (120 mM sodium chloride, 5.4 mM potassium chloride, 5 mM magnesium sulfate, 10 mM HEPES, 5 mM sodium pyruvate, 20 mM glucose, 20 mM).
  • a low calcium ion medium 120 mM sodium chloride, 5.4 mM potassium chloride, 5 mM magnesium sulfate, 10 mM HEPES, 5 mM sodium pyruvate, 20 mM glucose, 20 mM.
  • Cells were precipitated by centrifugation (300 ⁇ g, 5 minutes), and the supernatant was carefully removed. Subsequently, the cells were treated with KB medium (85 mM potassium chloride, 30 mM dipotassium hydrogen phosphate, 5 mM magnesium sulfate, 1 mM EGTA, 5 mM Na 2 ATP, 5 mM sodium pyruvate, 5 mM creatine, 20 mM glucose, 20 mM. The solution is suspended in a solution of taurine and adjusted to pH 7.2 using potassium hydroxide, and the cell suspension is repeatedly aspirated and pumped to repeatedly apply shear stress to the cell mass. Separated into cells. Further, the cell suspension was passed through a 35 ⁇ m nylon mesh to remove the remaining cell mass, and flow cytometry was performed using a flow cytometer EPICS XL (Beckman Coulter, Inc.).
  • KB medium 85 mM potassium chloride, 30 mM dipotassium hydrogen phosphate,
  • ES cell aggregates formed by differentiation-inducing culture on cell-adhesive regions of 200 ⁇ m and 400 ⁇ m in diameter, and on silanized cover glass surfaces on which polyacrylamide was not fixed in control experiments Morphological analysis of ES cells cultured for differentiation induction was performed (FIG. 6). ES cells cultured for differentiation induction on a cell-adhesive region having a diameter of 200 ⁇ m already formed a three-dimensional aggregate on the seventh day of culture, and EGFP fluorescence began to appear (FIG. 6a).
  • the cell aggregate formed a three-dimensional structure consisting of the outermost layer portion having a high cell density and the inside having a low cell density, and the EGFP expression region was enlarged inside the cell density being low (FIG. 6b). ).
  • ES cells cultured for differentiation induction on a cell-adhesive region having a diameter of 400 ⁇ m have begun to form cell aggregates only near the boundary between the cell-adherent region and the non-cell-adherent region on the seventh day of culture ( EGFP fluorescence began to appear inside the formed aggregates (on the region up to about 150 ⁇ m inward from the edge of the cell adhesion region) (FIG. 6c).
  • a three-dimensional cell aggregate was formed on the entire cell adhesion region having a diameter of 400 ⁇ m, but the EGFP expression region was on the region up to about 120 ⁇ m inward from the edge of the cell adhesion region.
  • ES cells cultured for differentiation induction in the control experiment exhibited a monolayer structure without forming a three-dimensional aggregate on the substrate on the 7th day of culture (FIG. 6e), and on the 10th day of culture. Although it exhibited a layer structure having a slight thickness (about 20 ⁇ m) (FIG. 6f), no EGFP fluorescence was observed in any case.
  • Example 2 The reagents used in Example 2 are listed below. 3-methacryloxypropyltrimethylsilane (MPTMS) was purchased from Shin-Etsu Chemical Co., Ltd. A g-line positive photoresist (OFPR-800LB, 34 cP) and a developer (NMD-3) were purchased from Tokyo Ohka Kogyo Co., Ltd.
  • MPTMS 3-methacryloxypropyltrimethylsilane
  • a g-line positive photoresist (OFPR-800LB, 34 cP) and a developer (NMD-3) were purchased from Tokyo Ohka Kogyo Co., Ltd.
  • Acrylamide, N, N'-methylenebisacrylamide, ammonium persulfate, sodium bicarbonate, sodium chloride, potassium chloride, magnesium sulfate, sodium pyruvate, taurine, sodium hydroxide, calcium chloride, dipotassium hydrogen phosphate, creatine, hydroxylated Potassium and L-ascorbic acid 2-phosphate trisodium salt were purchased from Wako Pure Chemical Industries, Ltd.
  • N, N, N ′, N′-tetramethylethylenediamine (TEMED) and glucose were purchased from Kanto Chemical Co., Inc.
  • D-PBS, Minimum Essential Medium Alpha Modification ( ⁇ -MEM, product number M0644), HEPES, and Na 2 ATP were purchased from Sigma-Aldrich Japan.
  • Fibronectin was purchased from BD. Fetal bovine serum was purchased from Nichirei Science Co., Ltd. 2-mercaptoethanol, penicillin-streptomycin, TrypLE TM Express and Trypsin-EDTA were purchased from Invitrogen Corporation. EDTA and EGTA were purchased from Dojin Chemical Laboratory. Collagenase / dispase was purchased from Roche Diagnostics Inc. DNase was purchased from Worthington Biochemical Corporation.
  • a substrate in which a circular photoresist pattern having a diameter of 200 ⁇ m was arranged on the surface at regular intervals of 50 ⁇ m was produced by photolithography. This was post-baked at 80 ° C. for 1 hour. Nitrogen gas was bubbled into an aqueous solution composed of 0.7 mM acrylamide and 65 ⁇ M N, N′-methylenebisacrylamide at room temperature for 20 minutes to remove dissolved oxygen, cooled to 4 ° C., and ammonium persulfate and TEMED. Were added to 2.2 mM and 11 mM, respectively, and the photoresist pattern substrate was immediately immersed in this aqueous solution. The aqueous solution was allowed to stand at 4 ° C.
  • the surface of the base material thus prepared is composed of a cell-adhesive circular region composed of a silanized glass surface and a cell non-adhesive region composed of a polyacrylamide surface.
  • the substrate was thoroughly washed with deionized water, dried, cut into a size of 24 mm ⁇ 20 mm, placed in a Petri dish with a diameter of 35 mm, and sterilized with ethylene oxide gas.
  • the substrate was immersed in 2 mL of D-PBS containing 1 ⁇ g / mL fibronectin at room temperature for 2 hours or more before seeding the cells, and the substrate surface was coated with fibronectin. .
  • mice ES cell line EB5 Hirai H, Ogawa M, Suzuki N, Yamamoto M, Breier G, Mazda O, et al. promoter / enhancer-during-mouse-embryogenesis. Blood 2003; 101 (3): 886-93
  • mouse ES cell line EMG7 transfected into EB5 to express EGFP under the control of a myocardial ⁇ -myosin heavy chain promoter
  • Yamashita JK, Takano M, Hiraoka-Kanie M, S hizuma C, Peishi Y, Yanagi K, et al. Prospective identifier of ofcardi progenitors by a novel single cell-based cardiocyte int.
  • Undifferentiated ES cells were subcultured on gelatin-coated culture dishes according to the culture method described in the literature. When inducing differentiation, 20% fetal bovine serum in ⁇ -MEM, 0.5 mM L-ascorbic acid 2-phosphate trisodium, 50 ⁇ M 2-mercaptoethanol, 5 units / mL penicillin, 5 ⁇ g / mL A differentiation-inducing medium supplemented with streptomycin was used. Undifferentiated ES cells recovered by Trypsin-EDTA treatment (0.5%, 37 ° C., 5 minutes) and suspended in a differentiation-inducing medium were placed on 3 ⁇ 10 4 cells on the culture substrate prepared by the above method.
  • ES cells seeded on the substrate grew in a circular cell-adherent region, reached confluence on the third day of culture, and formed a circular cell colony. Even after reaching confluence, ES cells at the boundary between the cell-adherent and non-cell-adherent regions continue to proliferate, and these proliferating cells are layered on the cell-adherent region to gradually increase steric ES cell aggregation. Aggregates were formed. Around 10 days after the culture, clear EGFP fluorescence indicating differentiation into cardiomyocytes began to be observed, and some of the cell aggregates exhibiting EGFP fluorescence began to pulsate.
  • Flow cytometry To perform flow cytometry of differentiated ES cells, the literature (Wobus AM, Guan K, Yang HT, Bocheler KR. 185: 127-56), a single cell suspension was prepared from differentiated ES cell aggregates by a method with some modifications. ES cells cultured to induce differentiation on a substrate were treated with a low calcium ion medium (120 mM sodium chloride, 5.4 mM potassium chloride, 5 mM magnesium sulfate, 10 mM HEPES, 5 mM sodium pyruvate, 20 mM glucose, 20 mM).
  • a low calcium ion medium 120 mM sodium chloride, 5.4 mM potassium chloride, 5 mM magnesium sulfate, 10 mM HEPES, 5 mM sodium pyruvate, 20 mM glucose, 20 mM.
  • the cells were treated with KB medium (85 mM potassium chloride, 30 mM dipotassium hydrogen phosphate, 5 mM magnesium sulfate, 1 mM EGTA, 5 mM Na 2 ATP, 5 mM sodium pyruvate with 600 U / mL DNase added.
  • KB medium 85 mM potassium chloride, 30 mM dipotassium hydrogen phosphate, 5 mM magnesium sulfate, 1 mM EGTA, 5 mM Na 2 ATP, 5 mM sodium pyruvate with 600 U / mL DNase added.
  • the cell mass was subjected to shear stress and separated into single cells. Further, the cell suspension was passed through a 35 ⁇ m nylon mesh to remove the remaining cell mass, and flow cyto
  • reagent The reagents used in Example 3 are listed below.
  • 3-methacryloxypropyltrimethylsilane (MPTMS) was purchased from Shin-Etsu Chemical Co., Ltd.
  • a g-line positive photoresist (OFPR-800LB, 34 cP) and a developer (NMD-3) were purchased from Tokyo Ohka Kogyo Co., Ltd.
  • Acrylamide, N, N′-methylenebisacrylamide, ammonium persulfate, sodium hydrogen carbonate, L-ascorbic acid 2-phosphate trisodium salt were purchased from Wako Pure Chemical Industries, Ltd.
  • N, N, N ′, N′-tetramethylethylenediamine (TEMED) and glucose were purchased from Kanto Chemical Co., Inc.
  • D-PBS and Minimum Essential Medium Alpha Modification ( ⁇ -MEM, product number M0644) were purchased from Sigma Aldrich Japan Co., Ltd.
  • Fibronectin was purchased from BD.
  • Fetal bovine serum was purchased from Nichirei Science Co., Ltd.
  • 2-mercaptoethanol, penicillin-streptomycin and TrypLE TM Express were purchased from Invitrogen Corporation.
  • a g-line positive photoresist was spin-coated on a silane-treated cover glass (3000 rpm, 30 seconds) and prebaked at 80 ° C. for 1 hour.
  • Nitrogen gas was bubbled into an aqueous solution composed of 0.7 mM acrylamide and 65 ⁇ M N, N′-methylenebisacrylamide at room temperature for 20 minutes to remove dissolved oxygen, cooled to 4 ° C., and ammonium persulfate and TEMED.
  • the surface of the base material thus prepared is composed of a cell-adhesive circular region composed of a silanized glass surface and a cell non-adhesive region composed of a polyacrylamide surface.
  • the substrate was thoroughly washed with deionized water, dried, cut into a size of 24 mm ⁇ 24 mm, placed in a Petri dish with a diameter of 35 mm, and sterilized with ethylene oxide gas.
  • the substrate surface was immersed in 2 mL of D-PBS containing 5 ⁇ g / mL fibronectin at room temperature for 1 hour or more before seeding the cells, and the substrate surface was coated with fibronectin. .
  • ES cell culture a mouse ES cell line EMG7 (Yamashita JK, Takano M, Hiraoka-Kanie M, Shimazu C, Peishi Y, Yanagi K, transgenic for expressing EGFP under the control of a cardiac ⁇ -myosin heavy chain promoter, et al., prospective identification of cardiac producers by a novel single cell-based cardiomyocyte induction. FASEB J 2005; 19 (11): 1534-6). ES cells in an undifferentiated state on a gelatin-coated culture dish (Hirai H, Ogawa M, Suzuki N, Yamamoto M, Breier G, Mazda O, et al.
  • the undifferentiated ES cells recovered by TrypLE TM Express treatment (37 ° C., 7 minutes) and suspended in the differentiation-inducing medium are 3 ⁇ 10 3 to the cell adhesion region on the culture substrate prepared by the above method. It seed
  • the cultured cells were observed with an inverted microscope (Eclipse TE2000-U, Nikon Corporation) equipped with a HiSCA CCD camera (model C6790, Hamamatsu Photonics Corporation), and the microscope image was image analysis software AQUACOSMOS (Hamamatsu Photonics Corporation). ).
  • a dedicated optical filter XF116-2, Omega Optical, Inc
  • ES cells seeded on the substrate grew in a circular cell-adherent region, reached confluence on the third day of culture, and formed a circular cell colony. Even after reaching confluence, ES cells at the boundary between the cell-adherent and non-cell-adherent regions continue to proliferate, and these proliferating cells are layered on the cell-adherent region to gradually increase steric ES cell aggregation. Aggregates were formed.
  • FIG. 8 shows a microscopic image of the cell aggregate formed on the substrate on the 12th day of differentiation induction culture. The proportion of cell aggregates exhibiting EGFP fluorescence was about 60%.
  • reagent The reagents used in Example 4 are listed below.
  • 3-methacryloxypropyltrimethylsilane (MPTMS) was purchased from Shin-Etsu Chemical Co., Ltd.
  • a g-line positive photoresist (OFPR-800LB, 34 cP) and a developer (NMD-3) were purchased from Tokyo Ohka Kogyo Co., Ltd.
  • Acrylamide, N, N′-methylenebisacrylamide, ammonium persulfate, and sodium bicarbonate were purchased from Wako Pure Chemical Industries, Ltd.
  • N, N, N ′, N′-tetramethylethylenediamine (TEMED) and glucose were purchased from Kanto Chemical Co., Inc.
  • D-PBS and Minimum Essential Medium Alpha Modification ( ⁇ -MEM, product number M0644) were purchased from Sigma Aldrich Japan Co., Ltd. Fibronectin is available from Biomedical Technologies Inc. We purchased more. Fetal bovine serum was purchased from Nichirei Science Co., Ltd. 2-mercaptoethanol, penicillin-streptomycin and TrypLE TM Express were purchased from Invitrogen Corporation.
  • a substrate in which a linear photoresist pattern having a width of 100 ⁇ m was arranged on the surface at intervals of 300 ⁇ m was produced by photolithography using a maskless exposure apparatus. This was post-baked at 80 ° C. for 1 hour. Nitrogen gas was bubbled into an aqueous solution composed of 0.7 mM acrylamide and 65 ⁇ M N, N′-methylenebisacrylamide at room temperature for 20 minutes to remove dissolved oxygen, cooled to 4 ° C., and ammonium persulfate and TEMED. Were added to 2.2 mM and 11 mM, respectively, and the photoresist pattern substrate was immediately immersed in this aqueous solution. The aqueous solution was allowed to stand at 4 ° C.
  • the surface of the base material thus prepared is composed of a cell-adhesive circular region composed of a silanized glass surface and a cell non-adhesive region composed of a polyacrylamide surface.
  • the substrate was thoroughly washed with deionized water, dried, cut into a size of 24 mm ⁇ 20 mm, put into a Petri dish with a diameter of 35 mm, and sterilized with ethylene oxide gas. To improve cell adhesion, the substrate surface was coated with fibronectin overnight at 37 ° C. in 2 mL D-PBS containing 30 ⁇ g / mL fibronectin before seeding the cells.
  • a differentiation induction medium in which 5% fetal bovine serum, 50 ⁇ M 2-mercaptoethanol, 5 units / mL penicillin, and 5 ⁇ g / mL streptomycin were added to ⁇ -MEM was used.
  • Undifferentiated ES cells recovered by TrypLE TM Express treatment (37 ° C., 5 minutes) and suspended in a differentiation-inducing medium are seeded at 2 ⁇ 10 4 cells / cm 2 on the culture substrate prepared by the above method. And cultured at 37 ° C. under 5% carbon dioxide and saturated water vapor pressure. Three hours after seeding the cells, the medium was changed once to remove ES cells falling in the non-cell-adherent region.
  • the medium was changed once a day.
  • the cultured cells were observed with an inverted microscope (Eclipse TE2000-U, Nikon Corporation) equipped with a HiSCA CCD camera (model C6790, Hamamatsu Photonics Corporation), and the microscope image was image analysis software AQUACOSMOS (Hamamatsu Photonics Corporation). ).
  • a dedicated optical filter XF116-2, Omega Optical, Inc
  • FIG. 9 shows a microscopic image of the cell aggregate formed on the substrate on the 10th day of differentiation induction culture.
  • embryonic stem cells or induced pluripotent stem cells can be attached to the surface of a base material, and can be induced into target cells by growing the cells under specific conditions. It becomes like this. It is possible to perform simple mass processing of embryonic stem cells or induced pluripotent stem cells without requiring conventional complicated operations. Therefore, the present invention is extremely useful in the fields of drug discovery, pharmacy, medicine, biology and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Rheumatology (AREA)
  • Cardiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 次の方法により、大量の胚性幹細胞或いは人工多能性幹細胞を簡便に分化誘導することができる。細胞付着性領域の周囲に細胞非付着性領域を有する基材表面を利用し、 (1)当該細胞を分化誘導化培地下で基材表面の細胞付着性領域に付着させ、 (2)その後、当該細胞を細胞付着性表面上でコンフルエントになるまで増殖させ、 (3)培養をさらに継続し、当該細胞を細胞付着性領域周囲の細胞非付着性領域との境界部から3次元に重層化させ、及び、 (4)最終的にその細胞付着性領域内に形成された複数の重層化部分を結合させ、細胞付着性領域全体を厚みのある細胞集合体を作製する。

Description

胚性幹細胞或いは人工多能性幹細胞の分化誘導方法
 本発明は、創薬、薬学、医学、生物学等の分野において有用な胚性幹細胞或いは人工多能性幹細胞の分化誘導方法に関するものである。
 近年、細胞移植に基づく再生医療が臓器移植に代替する治療法として注目を集めつつある。胚性幹細胞(ES細胞)は多能性、及び無限増殖性を有しているため、再生医療に必要とされる細胞を調製するための細胞ソースとして期待されている。また近年ES細胞に相応する性質を備えた人工多能性幹細胞(iPS細胞)が成人の体細胞から調製可能であることが示され、これらの細胞の臨床応用への期待はますます高まってきている。
 ES細胞の臨床応用を実現するためには、ES細胞の分化を再現性良く制御することが不可欠である。ES細胞の凝集体を形成させると、凝集体中において多細胞間相互作用が生じることにより、心筋細胞、肝細胞、神経細胞などの三胚葉由来の様々な細胞への分化が促進されることが明らかとなっている。ES細胞凝集体は一般的に胚様体と呼ばれる浮遊状態で球形の凝集体として調製される。ES細胞の分化は胚様体の大きさに依存するため、特定の細胞へ効率良く分化を誘導するためには、胚様体の大きさを制御する必要性がある。
 そのような中、非特許文献1には胚様体の大きさを制御する既存の方法としてハンギングドロップ法が示されている。具体的には、培地中に数百~数千個のES細胞を含む液滴を細胞培養皿の蓋からぶら下げて2日間培養し、胚様体(embryoid body; EB)と呼ばれる細胞塊を形成させるものである。これを細胞非接着性培養皿で数日間浮遊培養した後、細胞接着性培養皿に播種してさらに数日間培養する. 培養皿に接着したEBの展開細胞群をEB outgrowthと呼ぶ。マウスES細胞をハンギングドロップ法により分化誘導培養することにより、5~50%のEB outgrowth中に、拍動する心筋細胞が観察されるようになる(非特許文献2、4、5)。またこのとき、全ての細胞数に対する分化した心筋細胞数の割合は、一般的に1~3%である(非特許文献6)。しかしながらハンギングドロップ法は煩雑な作業を要するため、胚様体の大量調製が困難であるという欠点を有している。また多くの場合、胚様体中におけるES細胞のさらなる分化を促進するためには、浮遊状態にある胚様体を培養基材上に接着させて引き続き培養する必要がある。
 また、心筋細胞への分化誘導を促進する化学物質の探求が精力的に行われている。現在明らかにされている代表的な分化誘導物質として、非特許文献2ではレチノイン酸が例示され、特許文献1及び非特許文献3ではアスコルビン酸、非特許文献4では一酸化窒素、非特許文献5ではnogin等が挙げられ、これらの物質を適正な濃度とタイミングで培地に加えることにより、心筋細胞への分化誘導率を高めることが可能である。さらに、特許文献2では無血清培地下で培養する方法、並びに特許文献3では心筋細胞分化誘導因子を排出する細胞との共培養する方法等が挙げられ、心筋細胞への分化誘導率を高める方法が種々検討されている。しかしながら、目的の細胞に分化誘導されなかった細胞が移植後に問題を引き起こす危険性は依然として残されており、さらには、移植に必要なだけの十分な細胞数を簡便に大量調製するための培養技術が必要とされている。
特表2008-523823号公報 特表2008-500821号公報 特表2006-523091号公報
Circ Res.2002;91(3):189-201 J Mol Cell Cardiol.1997;29(6):1525-39 Circulation2003;107(14):1912-6 Proc Natl Acad Sci U S A. 2004;101(33):12277-81 Nat Biotechnol.2005;23(5):607-11 Cell.2008;132(4):661-80
 本発明は、上述したような胚性幹細胞或いは人工多能性幹細胞の分化誘導方法に関する問題点を解決することを意図してなされたものである。すなわち、本発明は、従来技術と全く異なった発想からの新規な胚性幹細胞等の分化誘導方法を提供するものである。
 本発明者らは、上記課題を解決するために、種々の角度から検討を加えて研究開発を行ってきた。その結果、当該細胞を培養基材に付着させ、三次元の特定の構造をとらせることで胚性幹細胞或いは人工多能性幹細胞を分化誘導することができることを見出した。さらにその分化誘導により心筋細胞が得られることを見出した。本発明はかかる知見に基づいて完成されたものである。
 すなわち、本発明は、胚性幹細胞或いは人工多能性幹細胞を培養基材に付着させ、三次元の特定の構造をとらせることで胚性幹細胞或いは人工多能性幹細胞を分化誘導させる方法を提供する。また、本発明は胚性幹細胞或いは人工多能性幹細胞を心筋細胞へ分化誘導する方法を提供する。加えて、本発明は、かかる分化誘導方法によって得られる分化誘導幹細胞を提供する。さらに、本発明ではそれらを利用した移植治療方法についても提供する。
 本発明による分化誘導方法であれば、胚性幹細胞或いは人工多能性幹細胞を簡便な手法で目的の細胞へ誘導することができるようになる。従来、こうした作業には手間と作業者の技術を必要としていたが、本発明であればその必要がなくなり、細胞の大量処理ができるようになる。
実施例1の細胞パターン化培養基材上におけるES細胞凝集体の形成と心筋細胞分化誘導の結果を示す図である。直径200μmの円形細胞付着性領域を有する基材上にて分化誘導培養されたES細胞の、播種3時間後(a)、培養3日目(b,e)、培養6日目(c)、及び培養9日目(d)における顕微鏡画像。白くサチュレーションしている部分がEGFPの蛍光を示す。スケールバーは200μmを示す。 実施例1の細胞パターン化培養基材上におけるES細胞凝集体の形成と心筋細胞分化誘導の結果を示す図である。直径100μm(a)、200μm(b)、300μm(c)、及び400μm(d)の円形細胞付着性領域を有する基材上、及びポリアクリルアミドの固定されていないシラン化カバーガラス表面上(e)にて分化誘導培養されたES細胞の培養10日目における顕微鏡画像。白くサチュレーションしている部分がEGFPの蛍光を示す。スケールバーは500μmを示す。 実施例1の細胞パターン化培養基材上におけるES細胞凝集体の形成と心筋細胞分化誘導の結果を示す図である。分化誘導培養10日目において、EGFP蛍光を呈する細胞凝集体の割合(丸プロット)、及び拍動を呈する細胞凝集体(三角形プロット)の割合と、円形細胞付着性領域の直径との関係。一回の実験につき100個の細胞凝集体を解析した。エラーバーは5回の独立な実験における標準偏差を示す。 実施例1の心筋細胞への分化誘導効率の結果を示す図である。ポリアクリルアミドの固定されていないシラン化カバーガラス表面上(a)、及び直径100μm(b)、200μm(c)、300μm(d)、400μm(e)の円形細胞付着性領域を有する基材上にて10日間分化誘導培養されたES細胞の、フローサイトメトリーにおける代表的な細胞分布図。一回の実験につき50000個の細胞を解析した。 実施例1の心筋細胞への分化誘導効率の結果を示す図である。フローサイトメトリーにより解析された、直径100μm(丸プロット)、200μm(三角形プロット)、300μm(正方形プロット)、及び400μm(ひし形プロット)の円形細胞付着性領域を有する基材上にて分化誘導培養されたES細胞中におけるEGFP陽性細胞率の時系列。一回の実験につき50000個の細胞を解析した。エラーバーは5回の独立な実験における標準偏差を示す。 実施例1の分化したES細胞凝集体の形態解析を行った結果を示す図である。直径200μmの円形細胞付着性領域上にて分化誘導培養され形成された、培養7日目(a)及び培養10日目(b)におけるES細胞凝集体、直径400μmの円形細胞付着性領域上にて分化誘導培養され形成された、培養7日目(c)及び培養10日目(d)におけるES細胞凝集体、及びポリアクリルアミドの固定されていないシラン化カバーガラス表面上にて分化誘導培養された、培養7日目(e)及び培養10日目(f)におけるES細胞の、コンフォーカル顕微鏡画像。上方の画像は培養基材と並行な面における断層像を示し、下方の画像は培養基材と垂直な面における断層像を示す。培養基材と垂直な面における断層像において、細胞集合体の輪郭を点線で示している。白くサチュレーションしている部分がEGFPの蛍光を示す。スケールバーは100μmを示す。 実施例2の心筋細胞への分化誘導効率の結果を示す図である。フローサイトメトリーにおける、12日間分化誘導培養したマウスES細胞株EMG7の心筋細胞への分化誘導効率を示す代表的な細胞分布図。同様の条件で分化誘導培養したマウスES細胞株EB5をEGFP陰性対照として用いた。 実施例3の細胞パターン化培養基材上におけるES細胞凝集体の形成と心筋細胞分化誘導の結果を示す図である。直径200μmの円形細胞付着性領域を有する基材上にて分化誘導培養されたES細胞の培養12日目における顕微鏡画像。白くサチュレーションしている部分がEGFPの蛍光を示す。スケールバーは1mmを示す。 実施例4の細胞パターン化培養基材上におけるES細胞凝集体の形成と心筋細胞分化誘導の結果を示す図である。幅100μmのライン状細胞付着性領域を有する基材上にて分化誘導培養されたES細胞の培養10日目における顕微鏡画像。白くサチュレーションしている部分がEGFPの蛍光を示す。スケールバーは500μmを示す。
 本発明は、細胞付着性領域の周囲に細胞非付着性領域を有する基材表面を利用した胚性幹細胞或いは人工多能性幹細胞の分化誘導方法に関するものである。その際、被覆を施される細胞培養基材の材質は、通常細胞培養に用いられるガラス、改質ガラス、ポリスチレン、ポリメチルメタクリレート等の物質のみならず、一般に形態付与が可能である物質、例えば、上記以外の高分子化合物、セラミックス、金属類など全て用いることができる。その形状は、ペトリ皿等の細胞培養皿に限定されることはなく、プレート、ファイバー、(多孔質)粒子であってもよい。また、一般に細胞培養等に用いられる容器の形状(フラスコ等)を有したものであっても差し支えない。
 本発明で示すところの細胞付着性領域、並びに細胞非付着性領域とはこの細胞培養基材表面に形成されたものである。その際、細胞付着性領域とは、細胞が付着する基材表面であれば特に限定されるものでなく、上述したような一般的な培養基材に使われるガラス、改質ガラス、ポリスチレン、ポリメチルメタクリレート等の物質のみならず、一般に形態付与が可能である物質、例えば、上記以外の高分子化合物、セラミックス、金属類でも良く、それらにグロー放電、コロナ放電などで表面処理を施したものでも良く、さらにこれらの表面へフィブロネクチン、ラミニン、コラーゲン等の細胞接着性蛋白質の1種、あるいはこれらの2種以上の混合物を被覆したものでも良い。一方、本発明に使用される細胞非付着性領域とは細胞を付着させない領域であり、上記培養基材上に細胞の付着を妨げる物質を被覆することによって得られる。この目的を達成するために好適な物質としてポリアクリルアミド、ポリエチレングリコール、澱粉のいずれか1種、もしくは2種以上が混合されたものが挙げられるが、その種類は、何ら制約されるものではない。
 細胞付着性領域、並びにその周囲の細胞非付着性領域の形態は、上部から観察して、例えば、(1)ラインとスペースからなるパターン、(2)水玉模様のパターン、(3)格子状のパターン、その他特殊な形のパターン、或いはこれらが混ざっている状態のパターンが挙げられるが、何ら限定されるものではない。また、被覆領域の大きさについても何ら限定されるものではないが、本発明では後述するように基材に付着し増殖した胚性幹細胞或いは人工多能性幹細胞が細胞付着性領域内でコンフルエントとなり、そのまま培養を継続することでオーバーコンフルエントの状態となり、細胞付着性領域と細胞非付着性領域の境界部付近から細胞が重層化し始めるものである。そのメカニズムは、細胞付着性領域内で細胞がコンフルエントになった後も、細胞付着性領域と細胞非付着性領域の境界部における細胞においてはコンタクトインヒビションがかからず、細胞増殖が抑制されないことに帰する。本発明では、目的とする細胞への高い分化効率を得るために、細胞付着性領域内で形成された複数の重層化した部分が速やかに結合することが必須である。従って細胞付着性領域、並びにその周囲の細胞非付着性領域の形態は、細胞付着性領域内の少なくとも一部でその結合が実現されることが必須であり、従って、細胞付着性領域において、周囲の細胞非付着性領域との境界部から形成した少なくとも2つの重層化部分が結合するまでの距離が300μm以下であることが好ましく、さらに好ましくは250μmであり、もっとも好ましくは200μm以下である。ここで2つの重層化部分が結合するまでの距離が300μmより長いと所定の培養時間内に重層化部分の結合が起こらず好ましくない。その際、重層化部分の重なりとは特に限定されないが、細胞付着性領域内で隣接して形成された重層化部分が重なったものでも良く、或いは細胞付着性領域の形態が円形の場合直径方向の両端に形成された重層化部分が重なったもの、さらには細胞付着性領域の形態がライン状の場合、ラインの幅方向の両端に形成された重層化部分が重なったものでも良い。
 本発明の細胞付着性領域、並びにその周囲の細胞非付着性領域の製造法としては、最終的に上記の構造を有するものであれば何ら制約されるものではないが、例えば、(1)細胞付着性基材表面上に細胞付着性領域をマスクして細胞非付着性領域になる部分だけに上述したポリマーを被覆する方法、(2)細胞付着性基材表面上に細胞非付着性ポリマーをオフセット印刷する方法、(3)あらかじめ細胞付着性ポリマー、並びに細胞非付着性ポリマーの2層を被覆しておき、超音波或いは走査型機器によりどちらかの層を削り取る方法(この場合、培養基材上に細胞付着性ポリマー及び細胞非付着性ポリマーの順に被覆しても、培養基材上に細胞非付着性ポリマー及び細胞付着性ポリマーの順に被覆してもよい)、(4)基材表面上全体にまず細胞非付着性領域を作製し、その後、最終的に細胞付着性領域を構成するものを噴霧して上乗せする方法、或いはそれを逆にした方法、等を単独または併用する方法が挙げられる。
 細胞培養基材への各種ポリマーの被覆方法は、基材と被覆物質を、(1)化学的な反応によって結合させる方法、(2)物理的な相互作用を利用する方法、を単独でまたは併用して行うことができる。すなわち、(1)化学的な反応によって結合させる場合は、電子線照射(electron beam;EB)、γ線照射、紫外線照射、プラズマ処理、コロナ処理等を用いることができる。さらに、支持体と被覆材料が適当な反応性官能基を有する場合は、ラジカル反応、アニオン反応、カチオン反応等の一般に用いられる有機反応を利用することができる。(2)物理的な相互作用による方法としては、被覆材料単独または支持体との相溶性のよいマトリックスを媒体とし(例えば、支持体を形成するモノマーまたは支持体と相溶性のよいモノマーと被覆材料とのグラフトポリマー、ブロックポリマー等)、塗布、混練等の物理的吸着を用いる方法等がある。
 本発明では細胞培養基材の細胞付着性領域に温度応答性ポリマーを被覆しても良い。その際、温度応答性ポリマーは、水溶液中で0℃~80℃、より好ましくは20℃~50℃の上限臨界溶解温度または下限臨界溶解温度を有する。上限臨界溶解温度または下限臨界溶解温度が80℃を越えると細胞が死滅する可能性があるので好ましくない。また、上限臨界溶解温度または下限臨界溶解温度が0℃より低いと一般に細胞増殖速度が極度に低下するか、または細胞が死滅してしまうため、やはり好ましくない。本発明に用いる温度応答性ポリマーはホモポリマー、コポリマーのいずれであってもよい。このようなポリマーとしては、例えば、特開平2-211865号公報に記載されているポリマーが挙げられる。具体的には、例えば、以下のモノマーの単独重合または共重合によって得られる。使用し得るモノマーとしては、例えば、(メタ)アクリルアミド化合物、N-(若しくはN,N-ジ)アルキル置換(メタ)アクリルアミド誘導体、またはビニルエーテル誘導体が挙げられ、コポリマーの場合は、これらの中で任意の2種以上を使用することができる。更には、上記モノマー以外のモノマー類との共重合、ポリマー同士のグラフトまたは共重合、あるいはポリマー、コポリマーの混合物を用いてもよい。また、ポリマー本来の性質を損なわない範囲で架橋することも可能である。その際、培養、剥離されるものが細胞であることから、分離が5℃~50℃の範囲で行われるため、温度応答性ポリマーとしては、ポリ-N-n-プロピルアクリルアミド(単独重合体の下限臨界溶解温度21℃)、ポリ-N-n-プロピルメタクリルアミド(同27℃)、ポリ-N-イソプロピルアクリルアミド(同32℃)、ポリ-N-イソプロピルメタクリルアミド(同43℃)、ポリ-N-シクロプロピルアクリルアミド(同45℃)、ポリ-N-エトキシエチルアクリルアミド(同約35℃)、ポリ-N-エトキシエチルメタクリルアミド(同約45℃)、ポリ-N-テトラヒドロフルフリルアクリルアミド(同約28℃)、ポリ-N-テトラヒドロフルフリルメタクリルアミド(同約35℃)、ポリ-N,N-エチルメチルアクリルアミド(同56℃)、ポリ-N,N-ジエチルアクリルアミド(同32℃)などが挙げられる。本発明に用いられる共重合のためのモノマーとしては、ポリアクリルアミド、ポリ-N、N-ジエチルアクリルアミド、ポリ-N、N-ジメチルアクリルアミド、ポリエチレンオキシド、ポリアクリル酸及びその塩、ポリヒドロキシエチルメタクリレート、ポリヒドロキシエチルアクリレート、ポリビニルアルコール、ポリビニルピロリドン、セルロース、カルボキシメチルセルロースなどの含水ポリマーなどが挙げられるが、特に制約されるものではない。
 細胞付着性領域への温度応答性ポリマーの被覆量は、1.1~2.3μg/cmの範囲が良く、好ましくは1.4~1.9μg/cmであり、さらに好ましくは1.5~1.8μg/cmである。1.1μg/cmより少ない被覆量のとき、刺激を与えても当該ポリマー上の細胞は剥離し難く、作業効率が著しく悪くなり好ましくない。逆に2.3μg/cm以上であると、その領域に細胞が付着し難く、細胞を十分に付着させることが困難となる。
 本発明は、上述のような基材表面へ胚性幹細胞或いは人工多能性幹細胞を付着させることで分化誘導する方法である。その際、使用される細胞は胚性幹細胞或いは人工多能性幹細胞であれば良く、その入手先、作製方法は特に限定されるものではない。本発明の細胞は、例えば、動物、昆虫、植物等の細胞、細菌類が挙げられる。特に、動物細胞の由来として、ヒト、サル、イヌ、ネコ、ウサギ、ラット、ヌードマウス、マウス、モルモット、ブタ、ヒツジ、チャイニーズハムスター、ウシ、マーモセット、アフリカミドリザル等が挙げられるが特に限定されるものではない。
 本発明における胚性幹細胞或いは人工多能性幹細胞の分化誘導方法とは以下の通りである。まず、播種前の胚性幹細胞或いは人工多能性幹細胞は非分化誘導化培地を用いて未分化性を維持したものとする。上述の基材表面へ播種する前後において分化誘導化培地に切り換え、本発明の基材表面へ播種させ、そのまま細胞を細胞付着性領域内でコンフルエントになるまで増殖させる。コンフルエントになった後も分化誘導化培地の状態で培養を継続し、細胞を細胞付着性領域周囲の細胞非付着性領域との境界部から3次元に重層化させる。そして、最終的にその細胞付着性領域内に形成された複数の重層化部分が結合し、細胞付着性領域全体を厚みのある細胞集合体となるまで培養を行うものである。得られた細胞集合体に対し酵素処理を行うことで目的とする分化誘導細胞を得ることができる。
 本発明で用いる非分化誘導化培地は、胚性幹細胞或いは人工多能性幹細胞を分化誘導させない培地であれば特に限定されないが、例えば、マウス胚性幹細胞、及びマウス人工多能性幹細胞の未分化性を維持する性質を有していることが知られているleukemia inhibitory factorを含む培地や、ヒト胚性幹細胞、及びヒト人工多能性幹細胞の未分化性を維持する性質を有していることが知られているbasic FGFを含む培地等が挙げられる。逆に、分化誘導化培地は、胚性幹細胞或いは人工多能性幹細胞を分化誘導させる培地であれば特に限定されるものではないが、例えば、血清含有培地や、血清に代替する性質を有する既知成分を含有した無血清培地等が挙げられる。分化誘導培地には、さらに上述したようなレチノイン酸、アスコルビン酸等の分化誘導物質を添加しても良い。基材表面への播種密度は常法に従えば良く特に限定されるものではない。しかしながら、本発明では播種された細胞が細胞付着性領域内をコンフルエントになるまでの日数は、8日以内が良く、好ましくは7日以内、もっとも好ましくは6日以内が良い。コンフルエントになるまでの日数が9日以上となるとその後の重層化が十分に行えず、本発明に示される技術として好ましくないものとなる。従って、本発明においては、細胞を播種する細胞付着性領域の面積、並びに細胞播種量を調整してコンフルエントになるまでの日数を8日以内とすれば良いこととなる。
 本発明は、胚性幹細胞或いは人工多能性幹細胞が細胞付着性領域においてコンフルエントになった後も培養を継続するところに特徴がある。すなわち、細胞付着性領域内で細胞がコンフルエントになった後も、細胞付着性領域と細胞非付着性領域の境界部における細胞においてはコンタクトインヒビションがかからず、細胞増殖が抑制されないため、細胞付着性領域周囲の細胞非付着性領域まで増殖しようとするが、細胞非付着性領域に細胞が十分に付着できず、従って細胞付着性領域上の細胞とは結合するものの基材表面との接着が十分でなく中途半端な状態で細胞が増殖し培養面積を広げていくこととなる。そして最終的には、その基材表面と不安定な接着をしている培養細胞が細胞付着性領域と細胞非付着性領域との境界部付近から細胞付着性領域側に折れ畳んできたり、シート状になって細胞付着性領域と細胞非付着性領域との境界部付近から細胞付着性領域側に折れ畳んできたり、さらには細胞付着性領域と細胞非付着性領域との境界部付近から細胞付着性領域側へ盛り上がってくることとなる。同時にその境界部付近には行き場を失った細胞が重なり合う状態にもなっている。本発明ではこうした細胞が連なったものが折れ畳んでくることにより胚性幹細胞或いは人工多能性幹細胞が特定の環境に置かれることとなり、その結果、これらの幹細胞が分化誘導化するものと考えられる。その際、細胞の折れ畳まれ方は特に限定されるものでないが、シート状になった細胞が折れ畳まれるとその部分に空間ができその後の分化誘導化を効率良く進められ好都合である。そして、本発明ではその折れ畳まれた部分が心筋細胞に分化していることが判明した。また得られた細胞集合体の断面を見ると最外層に細胞が密度高く存在し、集合体の内部の細胞の密度は低いことも分かった。本発明の心筋細胞は内部に多く存在していた。集合体の外層と内部とでは細胞の分化の方向が違うことも示唆された。
 また、本発明の細胞付着性領域に温度応答性ポリマーが被覆されていれば、培養基材の温度を培養基材上の被覆ポリマーの上限臨界溶解温度以上若しくは下限臨界溶解温度以下にすることによって分化させた細胞を酵素処理なく剥離させることができる。その際、培養液中において行うことも、その他の等張液中において行うことも可能であり、目的に合わせて選択することができる。細胞をより早く、より高効率に剥離、回収する目的で、基材を軽くたたいたり、ゆらしたりする方法、更にはピペットを用いて培地を撹拌する方法等を単独で、あるいは併用して用いても良い。
 本発明に記載される分化誘導方法であれば、胚性幹細胞或いは人工多能性幹細胞を簡便な手法で目的の細胞へ誘導することができるようになる。従来、こうした作業には手間と作業者の技術を必要としていたが、本発明であればその必要がなくなり、細胞の大量処理ができるようになる。さらに本発明では、培養基材表面上における細胞接着性領域と細胞非接着性領域のパターンを設計することにより、胚性幹細胞或いは人工多能性幹細胞の特定の細胞への高い分化誘導効率を実現しつつ、簡便に大量の胚性幹細胞或いは人工多能性幹細胞を分化誘導できるようになる。
 以下に、本発明を実施例に基づいて更に詳しく説明するが、これらは本発明を何ら限定するものではない。
(試薬)
 実施例1に使用した試薬を以下に列記する。3-methacryloxypropyltrimethoxysilane(MPTMS)は信越化学工業株式会社より購入した。g線ポジ型フォトレジスト(OFPR-800LB、34cP)、現像液(NMD-3)は東京応化工業株式会社より購入した。アクリルアミド、N,N’-メチレンビスアクリルアミド、過硫酸アンモニウム、炭酸水素ナトリウム、塩化ナトリウム、塩化カリウム、硫酸マグネシウム、ピルビン酸ナトリウム、タウリン、水酸化ナトリウム、塩化カルシウム、リン酸水素二カリウム、クレアチン、水酸化カリウム、パラホルムアルデヒドは和光純薬工業株式会社より購入した。N,N,N’,N’-tetramethylethylenediamine(TEMED)、グルコースは関東化学株式会社より購入した。D-PBS、Minimum Essential Medium Eagle Alpha Modification(α-MEM、製品番号M0644)、HEPES、Na2ATPはシグマアルドリッチジャパン株式会社より購入した。フィブロネクチンはBiomedical Technologies Inc.より購入した。ウシ胎児血清は株式会社ニチレイサイエンスより購入した。2-mercaptoethanol、ペニシリン-ストレプトマイシン、TrypLETM Express、CellTrackerTM Orange CMTMR、SlowFade Gold antifade reagentはインビトロジェン株式会社より購入した。EDTA、EGTAは同仁化学研究所より購入した。コラゲナーゼ/ディスパーゼはロシュ・ダイアグノスティックス株式会社より購入した。
(細胞パターン化培養基材の作製)
 文献(Itoga K,Kobayashi J,Yamato M,Kikuchi A,Okano T.Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns.Biomaterials 2006;27(15):3005-9)に基づき、細胞培養面に細胞付着性領域と細胞非付着性領域のパターンを有する培養基材の作製をおこなった。カバーガラス(24mm×50mm、厚さ0.12~0.17mm、松浪硝子工業株式会社)にMPTMSを用いて蒸発法によりシラン処理を施した。シラン処理カバーガラス上にg線ポジ型フォトレジストをスピンコート(5000rpm、30秒)し、80℃で1時間プレベイクした。マスクレス露光装置を用いたフォトリソグラフィーにより、直径が100、200、300、または400μmの円形フォトレジストパターンが表面に300μmの間隔で正方配列した基材を作製した。これを80℃で1時間ポストベイクした。0.7mMのアクリルアミド、65μMのN,N‘-メチレンビスアクリルアミドにより構成される水溶液に窒素ガスを室温にて20分間バブリングして溶存酸素を取り除き、これを4℃に冷却し、過硫酸アンモニウムとTEMEDをそれぞれ2.2mM、11mMとなるように加え、その後すぐさまフォトレジストパターン基材をこの水溶液中に浸した。水溶液を静かに攪拌しつつ4℃で3時間静置し、基材上にてフォトレジストにコートされていないシラン化ガラス表面上にポリアクリルアミドを固定した。基材を約40℃の温水を用いて十分に洗浄してシラン化ガラス表面上に固定されていないポリアクリルアミドを除去し、引き続きアセトンで洗浄して基材表面の円形フォトレジストパターンを除去した。このようにして作製された基材表面は、シラン化ガラス表面からなる細胞付着性の円形領域と、ポリアクリルアミド表面からなる細胞非付着性領域により構成される。基材を脱イオン水で十分に洗浄して乾燥させ、24mm×20mmの大きさに切断し、これを直径35mmのペトリディッシュに入れ、エチレンオキサイドガスにより滅菌した。円形領域への細胞付着性を向上させるため、細胞を播種する前に30μg/mLのフィブロネクチンを含む2mLのD-PBS中に37℃で一晩基材を浸し、基材表面にフィブロネクチンをコートした。
(細胞培養)
 実験には心筋型α―ミオシン重鎖プロモーター制御下にEGFPが発現するように遺伝子導入されたマウスES細胞株EMG7(Yamashita JK,Takano M,Hiraoka-Kanie M,Shimazu C,Peishi Y,Yanagi K,et al.Prospective identification ofcardiac progenitors by a novel single cell-based cardiomyocyte induction.FASEB J 2005;19(11):1534-6)を用いた。未分化状態のES細胞をゼラチンコートされた培養皿上にて文献に記載された培養法に従い継代培養した。分化を誘導する際には、α―MEMに5%のウシ胎児血清、50μMの2-mercaptoethanol、5unit/mLのペニシリン、5μg/mLのストレプトマイシンが加えられた分化誘導培地を用いた。TrypLETM Express処理(37℃、5分)により回収され分化誘導培地に懸濁された未分化ES細胞を、上記の方法により作製された培養基材上に2×10cells/cmで播種し、37℃、5%の二酸化炭素、飽和水蒸気圧下において培養した。細胞を播種してから3時間後に1度培地交換をおこない、細胞非付着性領域に落ちているES細胞を取り除いた。その後は1日に1回培地交換をおこなった。対照実験として、ポリアクリルアミドの固定されていないシラン化カバーガラス表面上にて、同様の条件でES細胞の分化誘導培養をおこなった。培養された細胞は、HiSCA CCDカメラ(モデルC6790、浜松ホトニクス株式会社)が装備された倒立顕微鏡(Eclipse TE2000-U、株式会社ニコン)により観察し、顕微鏡画像は画像解析ソフトウェアAQUACOSMOS(浜松ホトニクス株式会社)により取得した。EGFP蛍光を観察する際には専用の光学フィルター(XF116-2、Omega Optical,Inc)を用いた。
(細胞パターン化培養基材上におけるES細胞凝集体の形成と心筋細胞分化誘導)
 直径200μmの細胞付着性領域を有する基材上にて分化誘導培養したES細胞の時系列顕微鏡観察を行った。図1にその顕微鏡画像を示す。基材上に播種されたES細胞は円形の細胞付着性領域中にて増殖し、培養3日目にはコンフルエントに達して円形の細胞コロニーを形成した(図1b、e)。拡大された顕微鏡画像(図1e)に示されるように、円形の細胞コロニーの縁は非常にくっきりとしており、細胞のパターニングが精細に実現されていることが確認された。コンフルエントに達した後も細胞付着性領域と細胞非付着性領域の境界におけるES細胞はさらに増殖し続け、これらの増殖細胞が細胞付着性領域上に重層化することにより次第に立体的なES細胞凝集体が形成された(図1c、d)。また最終的に形成されたES細胞凝集体の多くは細胞密度の高い最外層部分と細胞密度の低い内部からなる立体構造を有するものであった。培養7日目前後において心筋細胞への分化を示す明確なEGFP蛍光が観察され始め、EGFP蛍光を呈する細胞凝集体の内のいくつかは拍動を呈し始めた。図2に直径100、200、300、または400μmの細胞付着性領域を有する基材上にて分化誘導培養したES細胞の培養10日目における顕微鏡画像を示す。すべての基材において円形の細胞付着性領域上にてES細胞凝集体が形成され、心筋細胞への分化を示すEGFP蛍光と拍動が確認された。しかしながら細胞付着性領域の直径が100μmの場合においては、形成された細胞凝集体の半数以上は培地交換の際に基材上から解離して失われてしまった(図2a)。また対照実験としてポリアクリルアミドの固定されていないシラン化カバーガラス表面上にて同様の条件で分化誘導培養したES細胞は、基材上にて立体的な凝集体を形成せず(図2e)、EGFP蛍光と拍動はほとんど観察されなかった。顕微鏡観察により、分化誘導培養10日目において基材上にて形成されたすべての細胞凝集体のうち、EGFP蛍光を呈する細胞凝集体の割合、及び拍動を呈する細胞凝集体の割合を解析した(図3)。いずれの割合も細胞付着性領域の直径が大きくなるにつれて高くなり、直径300μmと直径400μmで最大に達した。EGFP蛍光を呈する細胞凝集体の割合は最大約70%に達し、拍動を呈する細胞凝集体の割合は最大約45%に達した。
(フローサイトメトリー)
 分化したES細胞のフローサイトメトリーをおこなうため、文献(Wobus AM,Guan K,Yang HT,Boheler KR.Embryonic stem cells as a model to study cardiac, skeletal muscle,and vascular smooth muscle cell differentiation.Methods Mol Biol 2002;185:127-56)に記載された方法にいくらかの改変を加えた方法により、分化したES細胞凝集体からの単一細胞懸濁液の調製をおこなった。基材上にて分化誘導培養されたES細胞を低カルシウムイオン培地(120mMの塩化ナトリウム、5.4mMの塩化カリウム、5mMの硫酸マグネシウム、10mMのHEPES、5mMのピルビン酸ナトリウム、20mMのグルコース、20mMのタウリンにより構成され、水酸化ナトリウムを用いてpH6.9に調整された溶液)で洗い、1mg/mLのコラゲナーゼ/ディスパーゼと30μMの塩化カルシウムを加えた低カルシウムイオン培地に37℃で40分浸した。細胞を遠沈管に回収して遠心操作(100×g、5分)により細胞を沈殿させ上澄み液を取り除いた。引き続き、10%のTrypLETM Express、1mMのEDTA、20mMのタウリンを加えたD-PBS中に細胞を懸濁し、37℃で30分静置した。遠心操作(300×g、5分)により細胞を沈殿させ、上澄み液を注意深く取り除いた。続いて細胞をKB培地(85mMの塩化カリウム、30mMのリン酸水素二カリウム、5mMの硫酸マグネシウム、1mMのEGTA、5mMのNaATP、5mMのピルビン酸ナトリウム、5mMのクレアチン、20mMのグルコース、20mMのタウリンにより構成され、水酸化カリウムを用いてpH7.2に調整された溶液)中に懸濁し、ピペットによる細胞懸濁液の吸引拍出を繰り返すことにより細胞塊にせん断応力を加えて単一細胞に分離した。さらにこの細胞懸濁液を35μmのナイロンメッシュに通して残存する細胞塊を取り除き、フローサイトメーターEPICS XL(Beckman Coulter,Inc.)を用いてフローサイトメトリーを行った。
(心筋細胞への分化誘導効率)
 分化誘導培養したES細胞凝集体から単一細胞懸濁液を調製し、フローサイトメトリーにより全細胞中におけるEGFP陽性細胞の割合を解析した(図4)。対照実験においてポリアクリルアミドの固定されていないシラン化カバーガラス表面上にて分化誘導培養されたES細胞においてはEGFP蛍光がほとんど観察されなかったため、これをEGFP陰性対照として用いた(図4a)。EGFP陽性細胞、すなわちES細胞から分化した心筋細胞の割合は、分化誘導培養10日目において細胞付着性領域の直径が100μm、及び200μmのときに最大となり、その値は1.5±0.5%(平均±標準偏差、サンプル数5)であった(図5)。EGFP陽性細胞の割合は分化誘導培養10日目から12日目にかけてはむしろ減少したが、これは心筋細胞以外の細胞が増殖したことによるものと推測される。
(コンフォーカル顕微鏡観察)
 基材上にて分化誘導培養されたES細胞の細胞質を蛍光染色するため、37℃、5%の二酸化炭素、飽和水蒸気圧下において、10μMのCellTrackerTM Orange CMTMRを加えたα-MEM中で1時間培養し、引き続き分化誘導培地中で1時間培養した。この細胞を2%のホルマリンを含むD-PBSを用いて固定し(室温、15分)、D-PBSを用いて穏やかに洗った。封入剤(SlowFade Gold antifade reagent)で細胞をコートし、基材の縁に沿って厚み1.5mmのシリコンスペーサーを挟んでスライドガラス(76×26mm、松浪硝子工業株式会社)を被せて封入し、コンフォーカル顕微鏡LSM510(カールツァイス株式会社)を用いて観察をおこなった。
(分化したES細胞凝集体の形態解析)
 コンフォーカル顕微鏡観察により、直径200μm、及び400μmの細胞付着性領域上にて分化誘導培養され形成されたES細胞凝集体、及び対照実験においてポリアクリルアミドの固定されていないシラン化カバーガラス表面上にて分化誘導培養されたES細胞の形態解析をおこなった(図6)。直径200μmの細胞付着性領域上にて分化誘導培養されたES細胞は、培養7日目においてすでに立体的な凝集体を形成し、EGFP蛍光が現れ始めていた(図6a)。また培養10日目において細胞凝集体は細胞密度の高い最外層部分と細胞密度の低い内部からなる立体構造を形成しており、細胞密度の低い内部においてEGFP発現領域が拡大していた(図6b)。一方、直径400μmの細胞付着性領域上にて分化誘導培養されたES細胞は、培養7日目において細胞付着性領域と細胞非付着性領域の境界付近のみにおいて細胞凝集体が形成され始めており(細胞付着性領域の縁から内側に向って約150μmまでの領域上)、形成された凝集体の内部においてEGFP蛍光が現れ始めていた(図6c)。培養10日目においては直径400μmの細胞付着性領域上全体において立体的な細胞凝集体が形成されていたが、EGFP発現領域は細胞付着性領域の縁から内側に向って約120μmまでの領域上に限られていた(図6d)。また一方、対照実験において分化誘導培養されたES細胞は、培養7日目において基材上にて立体的な凝集体は形成せずに単層構造を呈し(図6e)、培養10日目において若干の厚み(約20μm)を有した層構造を呈したが(図6f)、いずれの場合においてもEGFP蛍光は観察されなかった。
(試薬)
 実施例2に使用した試薬を以下に列記する。3-methacryloxypropyltrimethoxysilane(MPTMS)は信越化学工業株式会社より購入した。g線ポジ型フォトレジスト(OFPR-800LB、34cP)、現像液(NMD-3)は東京応化工業株式会社より購入した。アクリルアミド、N,N‘-メチレンビスアクリルアミド、過硫酸アンモニウム、炭酸水素ナトリウム、塩化ナトリウム、塩化カリウム、硫酸マグネシウム、ピルビン酸ナトリウム、タウリン、水酸化ナトリウム、塩化カルシウム、リン酸水素二カリウム、クレアチン、水酸化カリウム、L-アスコルビン酸2-リン酸エステル三ナトリウムは和光純薬工業株式会社より購入した。N,N,N’,N’-tetramethylethylenediamine(TEMED)、グルコースは関東化学株式会社より購入した。D-PBS、Minimum Essential Medium Eagle Alpha Modification(α-MEM、製品番号M0644)、HEPES、NaATPはシグマアルドリッチジャパン株式会社より購入した。フィブロネクチンはBDより購入した。ウシ胎児血清は株式会社ニチレイサイエンスより購入した。2-mercaptoethanol、ペニシリン-ストレプトマイシン、TrypLETM Express、Trypsin-EDTAはインビトロジェン株式会社より購入した。EDTA、EGTAは同仁化学研究所より購入した。コラゲナーゼ/ディスパーゼはロシュ・ダイアグノスティックス株式会社より購入した。DNaseはWorthington Biochemical Corporationより購入した。
(細胞パターン化培養基材の作製)
 文献(Itoga K,Kobayashi J,Yamato M,Kikuchi A,Okano T.Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns.Biomaterials 2006;27(15):3005-9)に基づき、細胞培養面に細胞付着性領域と細胞非付着性領域のパターンを有する培養基材の作製をおこなった。カバーガラス(24mm×50mm、厚さ0.12~0.17mm、松浪硝子工業株式会社)にMPTMSを用いて蒸発法によりシラン処理を施した。シラン処理カバーガラス上にg線ポジ型フォトレジストをスピンコート(3000rpm、30秒)し、80℃で1時間プレベイクした。フォトリソグラフィーにより、直径が200μmの円形フォトレジストパターンが表面に50μmの間隔で正三角形配列した基材を作製した。これを80℃で1時間ポストベイクした。0.7mMのアクリルアミド、65μMのN,N’-メチレンビスアクリルアミドにより構成される水溶液に窒素ガスを室温にて20分間バブリングして溶存酸素を取り除き、これを4℃に冷却し、過硫酸アンモニウムとTEMEDをそれぞれ2.2mM、11mMとなるように加え、その後すぐさまフォトレジストパターン基材をこの水溶液中に浸した。水溶液を静かに攪拌しつつ4℃で3時間静置し、基材上にてフォトレジストにコートされていないシラン化ガラス表面上にポリアクリルアミドを固定した。基材を約40℃の温水を用いて十分に洗浄してシラン化ガラス表面上に固定されていないポリアクリルアミドを除去し、引き続きアセトンで洗浄して基材表面の円形フォトレジストパターンを除去した。このようにして作製された基材表面は、シラン化ガラス表面からなる細胞付着性の円形領域と、ポリアクリルアミド表面からなる細胞非付着性領域により構成される。基材を脱イオン水で十分に洗浄して乾燥させ、24mm×20mmの大きさに切断し、これを直径35mmのペトリディッシュに入れ、エチレンオキサイドガスにより滅菌した。円形領域への細胞付着性を向上させるため、細胞を播種する前に1μg/mLのフィブロネクチンを含む2mLのD-PBS中に室温で2時間以上基材を浸し、基材表面にフィブロネクチンをコートした。
(細胞培養)
 実験には、マウスES細胞株EB5(Hirai H,Ogawa M,Suzuki N,Yamamoto M,Breier G,Mazda O,et al.Hemogenic and nonhemogenic endothelium can be distinguished by the activity of fetal liver kinase (Flk)-1 promoter/enhancer during mouse embryogenesis.Blood 2003;101(3):886-93)、および心筋型α―ミオシン重鎖プロモーター制御下にEGFPが発現するようにEB5に遺伝子導入されたマウスES細胞株EMG7(Yamashita JK,Takano M,Hiraoka-Kanie M,Shimazu C,Peishi Y,Yanagi K,et al.Prospective identification ofcardiac progenitors by a novel single cell-based cardiomyocyte induction.FASEB J 2005;19(11):1534-6)を用いた。未分化状態のES細胞をゼラチンコートされた培養皿上にて文献に記載された培養法に従い継代培養した。分化を誘導する際には、α―MEMに20%のウシ胎児血清、0.5mMのL-アスコルビン酸2-リン酸エステル三ナトリウム、50μMの2-mercaptoethanol、5unit/mLのペニシリン、5μg/mLのストレプトマイシンが加えられた分化誘導培地を用いた。Trypsin-EDTA処理(0.5%、37℃、5分)により回収され分化誘導培地に懸濁された未分化ES細胞を、上記の方法により作製された培養基材上に3×10cells/cmで播種し、37℃、5%の二酸化炭素、飽和水蒸気圧下において培養した。細胞を播種してから3時間後に1度培地交換をおこない、細胞非付着性領域に落ちているES細胞を取り除いた。その後4日目までは1日に1回培地交換をおこない、4日目以降は2日に1回培地交換をおこなった。
(細胞パターン化培養基材上におけるES細胞凝集体の形成と心筋細胞分化誘導)
 基材上に播種されたES細胞は円形の細胞付着性領域中にて増殖し、培養3日目にはコンフルエントに達して円形の細胞コロニーを形成した。コンフルエントに達した後も細胞付着性領域と細胞非付着性領域の境界におけるES細胞はさらに増殖し続け、これらの増殖細胞が細胞付着性領域上に重層化することにより次第に立体的なES細胞凝集体が形成された。培養10日目前後において心筋細胞への分化を示す明確なEGFP蛍光が観察され始め、EGFP蛍光を呈する細胞凝集体の内のいくつかは拍動を呈し始めた。
(フローサイトメトリー)
 分化したES細胞のフローサイトメトリーをおこなうため、文献(Wobus AM,Guan K,Yang HT,Boheler KR.Embryonic stem cells as a model to study cardiac, skeletal muscle,and vascular smooth muscle cell differentiation.Methods Mol Biol 2002;185:127-56)に記載された方法にいくらかの改変を加えた方法により、分化したES細胞凝集体からの単一細胞懸濁液の調製をおこなった。基材上にて分化誘導培養されたES細胞を低カルシウムイオン培地(120mMの塩化ナトリウム、5.4mMの塩化カリウム、5mMの硫酸マグネシウム、10mMのHEPES、5mMのピルビン酸ナトリウム、20mMのグルコース、20mMのタウリンにより構成され、水酸化ナトリウムを用いてpH6.9に調整された溶液)で洗い、1mg/mLのコラゲナーゼ/ディスパーゼと30μMの塩化カルシウムを加えた低カルシウムイオン培地に37℃で40分浸した。細胞を遠沈管に回収して遠心操作(200×g、3分)により細胞を沈殿させ上澄み液を取り除いた。引き続き、TrypLETM Express中に細胞を懸濁し、37℃で20分静置した。遠心操作(200×g、5分)により細胞を沈殿させ、上澄み液を注意深く取り除いた。続いて細胞を、600U/mLのDNaseが加えられたKB培地(85mMの塩化カリウム、30mMのリン酸水素二カリウム、5mMの硫酸マグネシウム、1mMのEGTA、5mMのNaATP、5mMのピルビン酸ナトリウム、5mMのクレアチン、20mMのグルコース、20mMのタウリンにより構成され、水酸化カリウムを用いてpH7.2に調整された溶液)中に懸濁し、ピペットによる細胞懸濁液の吸引拍出を繰り返すことにより細胞塊にせん断応力を加えて単一細胞に分離した。さらにこの細胞懸濁液を35μmのナイロンメッシュに通して残存する細胞塊を取り除き、フローサイトメーターEPICS XL(Beckman Coulter,Inc.)を用いてフローサイトメトリーを行った。
(心筋細胞への分化誘導効率)
 12日間分化誘導培養したマウスES細胞株EMG7の凝集体から単一細胞懸濁液を調製し、フローサイトメトリーにより全細胞中におけるEGFP陽性細胞の割合を解析した(図7)。同様の条件で分化誘導培養したマウスES細胞株EB5をEGFP陰性対照として用いた。EGFP陽性細胞、すなわちES細胞から分化した心筋細胞の割合は8.9±1.5%(平均±標準偏差、サンプル数3)であった。
(試薬)
 実施例3に使用した試薬を以下に列記する。3-methacryloxypropyltrimethoxysilane(MPTMS)は信越化学工業株式会社より購入した。g線ポジ型フォトレジスト(OFPR-800LB、34cP)、現像液(NMD-3)は東京応化工業株式会社より購入した。アクリルアミド、N,N’-メチレンビスアクリルアミド、過硫酸アンモニウム、炭酸水素ナトリウム、L-アスコルビン酸2-リン酸エステル三ナトリウムは和光純薬工業株式会社より購入した。N,N,N‘,N‘-tetramethylethylenediamine(TEMED)、グルコースは関東化学株式会社より購入した。D-PBS、Minimum Essential Medium Eagle Alpha Modification(α-MEM、製品番号M0644)はシグマアルドリッチジャパン株式会社より購入した。フィブロネクチンはBDより購入した。ウシ胎児血清は株式会社ニチレイサイエンスより購入した。2-mercaptoethanol、ペニシリン-ストレプトマイシン、TrypLETM Expressはインビトロジェン株式会社より購入した。
(細胞パターン化培養基材の作製)
 文献(Itoga K,Kobayashi J,Yamato M,Kikuchi A,Okano T.Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns.Biomaterials 2006;27(15):3005-3009)に基づき、細胞培養面に細胞付着性領域と細胞非付着性領域のパターンを有する培養基材の作製をおこなった。カバーガラス(24mm×50mm、厚さ0.12~0.17mm、松浪硝子工業株式会社)にMPTMSを用いて蒸発法によりシラン処理を施した。シラン処理カバーガラス上にg線ポジ型フォトレジストをスピンコート(3000rpm、30秒)し、80℃で1時間プレベイクした。フォトリソグラフィーにより、直径が200μmの円形フォトレジストパターンが表面に100μmの間隔で正三角形配列した基材を作製した。これを80℃で1時間ポストベイクした。0.7mMのアクリルアミド、65μMのN,N’-メチレンビスアクリルアミドにより構成される水溶液に窒素ガスを室温にて20分間バブリングして溶存酸素を取り除き、これを4℃に冷却し、過硫酸アンモニウムとTEMEDをそれぞれ2.2mM、11mMとなるように加え、その後すぐさまフォトレジストパターン基材をこの水溶液中に浸した。水溶液を静かに攪拌しつつ4℃で3時間静置し、基材上にてフォトレジストにコートされていないシラン化ガラス表面上にポリアクリルアミドを固定した。基材を約40℃の温水を用いて十分に洗浄してシラン化ガラス表面上に固定されていないポリアクリルアミドを除去し、引き続きアセトンで洗浄して基材表面の円形フォトレジストパターンを除去した。このようにして作製された基材表面は、シラン化ガラス表面からなる細胞付着性の円形領域と、ポリアクリルアミド表面からなる細胞非付着性領域により構成される。基材を脱イオン水で十分に洗浄して乾燥させ、24mm×24mmの大きさに切断し、これを直径35mmのペトリディッシュに入れ、エチレンオキサイドガスにより滅菌した。円形領域への細胞付着性を向上させるため、細胞を播種する前に5μg/mLのフィブロネクチンを含む2mLのD-PBS中に室温で1時間以上基材を浸し、基材表面にフィブロネクチンをコートした。
(細胞培養)
 実験には心筋型α―ミオシン重鎖プロモーター制御下にEGFPが発現するように遺伝子導入されたマウスES細胞株EMG7(Yamashita JK,Takano M,Hiraoka-Kanie M,Shimazu C,Peishi Y,Yanagi K,et al.Prospective identification ofcardiac progenitors by a novel single cell-based cardiomyocyte induction.FASEB J 2005;19(11):1534-6)を用いた。未分化状態のES細胞をゼラチンコートされた培養皿上にて文献(Hirai H,Ogawa M,Suzuki N,Yamamoto M,Breier G,Mazda O,et al.Hemogenic and nonhemogenic endothelium can be distinguished by the activity of fetal liver kinase (Flk)-1 promoter/enhancer during mouse embryogenesis.Blood 2003;101(3):886-93)に記載された培養法に従い継代培養した。分化を誘導する際には、α―MEMに20%、または10%のウシ胎児血清、0.5mMのL-アスコルビン酸2-リン酸エステル三ナトリウム、50μMの2-mercaptoethanol、5unit/mLのペニシリン、5μg/mLのストレプトマイシンが加えられた分化誘導培地を用いた。TrypLETM Express処理(37℃、7分)により回収され分化誘導培地に懸濁された未分化ES細胞を、上記の方法により作製された培養基材上の細胞付着性領域に対して3×10cells/cmとなるように播種し、37℃、5%の二酸化炭素、飽和水蒸気圧下において培養した。培養4日目までは1日に1回培地交換をおこない、4日目以降は2日に1回培地交換をおこなった。また、培養6日目までは20%のウシ胎児血清を含む分化誘導培地を用い、6日目以降は10%のウシ胎児血清を含む分化誘導培地を用いた。培養された細胞は、HiSCA CCDカメラ(モデルC6790、浜松ホトニクス株式会社)が装備された倒立顕微鏡(Eclipse TE2000-U、株式会社ニコン)により観察し、顕微鏡画像は画像解析ソフトウェアAQUACOSMOS(浜松ホトニクス株式会社)により取得した。EGFP蛍光を観察する際には専用の光学フィルター(XF116-2、Omega Optical,Inc)を用いた。
(細胞パターン化培養基材上におけるES細胞凝集体の形成と心筋細胞分化誘導)
 基材上に播種されたES細胞は円形の細胞付着性領域中にて増殖し、培養3日目にはコンフルエントに達して円形の細胞コロニーを形成した。コンフルエントに達した後も細胞付着性領域と細胞非付着性領域の境界におけるES細胞はさらに増殖し続け、これらの増殖細胞が細胞付着性領域上に重層化することにより次第に立体的なES細胞凝集体が形成された。培養10日目前後において心筋細胞への分化を示す明確なEGFP蛍光が観察され始め、EGFP蛍光を呈する細胞凝集体の内のいくつかは拍動を呈し始めた。図8に、分化誘導培養12日目において基材上に形成された細胞凝集体の顕微鏡像を示す。EGFP蛍光を呈する細胞凝集体の割合は約60%であった。
(試薬)
 実施例4に使用した試薬を以下に列記する。3-methacryloxypropyltrimethoxysilane(MPTMS)は信越化学工業株式会社より購入した。g線ポジ型フォトレジスト(OFPR-800LB、34cP)、現像液(NMD-3)は東京応化工業株式会社より購入した。アクリルアミド、N,N’-メチレンビスアクリルアミド、過硫酸アンモニウム、炭酸水素ナトリウムは和光純薬工業株式会社より購入した。N,N,N’,N’-tetramethylethylenediamine(TEMED)、グルコースは関東化学株式会社より購入した。D-PBS、Minimum Essential Medium Eagle Alpha Modification(α-MEM、製品番号M0644)はシグマアルドリッチジャパン株式会社より購入した。フィブロネクチンはBiomedical Technologies Inc.より購入した。ウシ胎児血清は株式会社ニチレイサイエンスより購入した。2-mercaptoethanol、ペニシリン-ストレプトマイシン、TrypLETM Expressはインビトロジェン株式会社より購入した。
(細胞パターン化培養基材の作製)
 文献(Itoga K,Kobayashi J,Yamato M,Kikuchi A,Okano T.Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns.Biomaterials 2006;27(15):3005-9)に基づき、細胞培養面に細胞付着性領域と細胞非付着性領域のパターンを有する培養基材の作製をおこなった。カバーガラス(24mm×50mm、厚さ0.12~0.17mm、松浪硝子工業株式会社)にMPTMSを用いて蒸発法によりシラン処理を施した。シラン処理カバーガラス上にg線ポジ型フォトレジストをスピンコート(5000rpm、30秒)し、80℃で1時間プレベイクした。マスクレス露光装置を用いたフォトリソグラフィーにより、幅が100μmのライン状フォトレジストパターンが表面に300μmの間隔で配列した基材を作製した。これを80℃で1時間ポストベイクした。0.7mMのアクリルアミド、65μMのN,N’-メチレンビスアクリルアミドにより構成される水溶液に窒素ガスを室温にて20分間バブリングして溶存酸素を取り除き、これを4℃に冷却し、過硫酸アンモニウムとTEMEDをそれぞれ2.2mM、11mMとなるように加え、その後すぐさまフォトレジストパターン基材をこの水溶液中に浸した。水溶液を静かに攪拌しつつ4℃で3時間静置し、基材上にてフォトレジストにコートされていないシラン化ガラス表面上にポリアクリルアミドを固定した。基材を約40℃の温水を用いて十分に洗浄してシラン化ガラス表面上に固定されていないポリアクリルアミドを除去し、引き続きアセトンで洗浄して基材表面の円形フォトレジストパターンを除去した。このようにして作製された基材表面は、シラン化ガラス表面からなる細胞付着性の円形領域と、ポリアクリルアミド表面からなる細胞非付着性領域により構成される。基材を脱イオン水で十分に洗浄して乾燥させ、24mm×20mmの大きさに切断し、これを直径35mmのペトリディッシュに入れ、エチレンオキサイドガスにより滅菌した。細胞付着性を向上させるため、細胞を播種する前に30μg/mLのフィブロネクチンを含む2mLのD-PBS中に37℃で一晩基材を浸し、基材表面にフィブロネクチンをコートした。
(細胞培養)
 実験には心筋型α―ミオシン重鎖プロモーター制御下にEGFPが発現するように遺伝子導入されたマウスES細胞株EMG7(Yamashita JK,Takano M,Hiraoka-Kanie M,Shimazu C,Peishi Y,Yanagi K,et al.Prospective identification ofcardiac progenitors by a novel single cell-based cardiomyocyte induction.FASEB J 2005;19(11):1534-6)を用いた。未分化状態のES細胞をゼラチンコートされた培養皿上にて文献に記載された培養法に従い継代培養した。分化を誘導する際には、α―MEMに5%のウシ胎児血清、50μMの2-mercaptoethanol、5unit/mLのペニシリン、5μg/mLのストレプトマイシンが加えられた分化誘導培地を用いた。TrypLETM Express処理(37℃、5分)により回収され分化誘導培地に懸濁された未分化ES細胞を、上記の方法により作製された培養基材上に2×10cells/cmで播種し、37℃、5%の二酸化炭素、飽和水蒸気圧下において培養した。細胞を播種してから3時間後に1度培地交換をおこない、細胞非付着性領域に落ちているES細胞を取り除いた。その後は1日に1回培地交換をおこなった。培養された細胞は、HiSCA CCDカメラ(モデルC6790、浜松ホトニクス株式会社)が装備された倒立顕微鏡(Eclipse TE2000-U、株式会社ニコン)により観察し、顕微鏡画像は画像解析ソフトウェアAQUACOSMOS(浜松ホトニクス株式会社)により取得した。EGFP蛍光を観察する際には専用の光学フィルター(XF116-2、Omega Optical,Inc)を用いた。
(細胞パターン化培養基材上におけるES細胞凝集体の形成と心筋細胞分化誘導)
 基材上に播種されたES細胞はライン状の細胞付着性領域中にて増殖し、培養3日目にはコンフルエントに達した。コンフルエントに達した後も細胞付着性領域と細胞非付着性領域の境界におけるES細胞はさらに増殖し続け、これらの増殖細胞が細胞付着性領域上に反り返ってくることにより次第に立体的なES細胞凝集体が形成された。培養7日目前後において心筋細胞への分化を示す明確なEGFP蛍光が観察され始め、EGFP蛍光を呈する細胞凝集体の内のいくつかは拍動を呈し始めた。図9に、分化誘導培養10日目において基材上に形成された細胞凝集体の顕微鏡像を示す。
 本発明に記載される分化誘導方法であれば、胚性幹細胞或いは人工多能性幹細胞を基材表面に付着させ特定の条件下で当該細胞を増殖させることで目的の細胞へ誘導することができるようになる。従来のような煩雑な操作を必要とせず、胚性幹細胞或いは人工多能性幹細胞の簡便な大量処理ができるようになる。したがって、本発明は創薬、薬学、医学、生物学等の分野における極めて有用な発明である。

Claims (13)

  1.  細胞付着性領域の周囲に細胞非付着性領域を有する基材表面を利用した胚性幹細胞或いは人工多能性幹細胞の分化誘導方法であり、その方法が、
    (1)当該細胞を分化誘導化培地下で基材表面の細胞付着性領域に付着させ、
    (2)その後、当該細胞を細胞付着性表面上でコンフルエントになるまで増殖させ、
    (3)培養をさらに継続し、当該細胞を細胞付着性領域周囲の細胞非付着性領域との境界部から3次元に重層化させ、及び、
    (4)最終的にその細胞付着性領域内に形成された複数の重層化部分を結合させ、細胞付着性領域全体を厚みのある細胞集合体を作製することを含む、胚性幹細胞或いは人工多能性幹細胞の分化誘導方法。
  2.  重層化が、細胞付着性領域内で増殖した細胞が細胞非付着性領域上へ侵入した後もそのまま増殖を続け、最終的に細胞非付着性領域上の細胞が膜状で細胞付着性領域内の細胞の上へ反り返えることによるものである、請求項1記載の胚性幹細胞或いは人工多能性幹細胞の分化誘導方法。
  3.  細胞付着性領域において、周囲の細胞非付着性領域との境界部から形成した少なくとも2つの重層化部分が結合するまでの距離が300μm以下である、請求項1、2のいずれか1項記載の胚性幹細胞或いは人工多能性幹細胞の分化誘導方法。
  4.  細胞付着性領域の基材表面に、接着性蛋白質及び/又は温度応答性ポリマーが被覆されている、請求項1~3のいずれか1項記載の胚性幹細胞或いは人工多能性幹細胞の分化誘導方法。
  5.  温度応答性ポリマーが、ポリ(N-イソプロピルアクリルアミド)である、請求項4記載の胚性幹細胞或いは人工多能性幹細胞の分化誘導方法。
  6.  温度応答性ポリマーを含むものが被覆された細胞付着性領域の基材表面上で得られた細胞集合体を酵素処理を行わず、基材表面の温度を変えることだけで剥がすことを特徴とする請求項4、5のいずれか1項記載の胚性幹細胞或いは人工多能性幹細胞の分化誘導方法。
  7.  細胞付着性領域へ細胞を播種後、細胞がコンフルエントになるまでの時間が8日以内である、請求項1~6のいずれか1項記載の胚性幹細胞或いは人工多能性幹細胞の分化誘導方法。
  8.  請求項1~7のいずれかの方法で得られる、分化誘導幹細胞。
  9.  分化誘導が心筋細胞への分化誘導である、請求項8記載の分化誘導幹細胞。
  10.  分化誘導幹細胞を含む細胞集合体が、細胞密度の高い最外層部分と細胞密度の低い内部からなるものである、請求項8、9のいずれか1項記載の分化誘導幹細胞。
  11.  細胞の由来がヒト、イヌ、ブタ、ウサギ、マウス、及びラットのいずれかである、請求項8~10のいずれか1項記載の分化誘導幹細胞。
  12.  得られた分化誘導幹細胞を移植治療に利用する、請求項8~11のいずれか1項記載の分化誘導幹細胞。
  13.  得られた分化誘導幹細胞を細胞評価に利用する、請求項8~11のいずれか1項記載の分化誘導幹細胞。
PCT/JP2010/058661 2009-05-22 2010-05-21 胚性幹細胞或いは人工多能性幹細胞の分化誘導方法 WO2010134606A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10777837.5A EP2434007A4 (en) 2009-05-22 2010-05-21 METHOD FOR CREATING THE DIFFERENTIATION OF EMBRYONIC STEM CELLS OR ARTIFICIAL PLURIPOTENTER STEM CELLS
JP2011514465A JPWO2010134606A1 (ja) 2009-05-22 2010-05-21 胚性幹細胞或いは人工多能性幹細胞の分化誘導方法
US13/320,777 US20120107930A1 (en) 2009-05-22 2010-05-21 Method for inducing differentiation of embryonic stem cells or artificial pluripotent stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-141645 2009-05-22
JP2009141645 2009-05-22

Publications (1)

Publication Number Publication Date
WO2010134606A1 true WO2010134606A1 (ja) 2010-11-25

Family

ID=43126283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058661 WO2010134606A1 (ja) 2009-05-22 2010-05-21 胚性幹細胞或いは人工多能性幹細胞の分化誘導方法

Country Status (4)

Country Link
US (1) US20120107930A1 (ja)
EP (1) EP2434007A4 (ja)
JP (2) JPWO2010134606A1 (ja)
WO (1) WO2010134606A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067243A (ja) * 2014-09-29 2016-05-09 国立大学法人鳥取大学 多能性幹細胞由来心筋細胞の取得方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003207288A1 (en) * 2003-02-06 2004-08-30 Cellseed Inc. Anterior ocular-associated cell sheet, three-dimensional construct and process for producing the same
EP1600177B1 (en) * 2003-02-20 2016-05-25 Cellseed Inc. Endothelial cell sheet for cornea regeneration, method of producing the same and method of using the same
US9114192B2 (en) * 2004-04-25 2015-08-25 Cellseed Inc. Cultured periodontal ligament cell sheet, process for producing the same and method of use thereof
WO2006093153A1 (ja) 2005-02-28 2006-09-08 Cellseed Inc. 培養細胞シート、製造方法及びその利用した組織修復方法
US10533158B2 (en) * 2005-02-28 2020-01-14 Tokai University Educational System Cultured cell sheet, production method thereof, and application method thereof
US9598668B2 (en) * 2008-10-14 2017-03-21 Cellseed Inc. Temperature-responsive cell culture substrate and method for producing the same
KR20180021003A (ko) * 2015-06-26 2018-02-28 고쿠리츠켄큐카이하츠호진 고쿠리츠쥰칸키뵤 겐큐센터 세포배양기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211865A (ja) 1989-02-10 1990-08-23 Kao Corp 細胞培養支持体材料
JP2003033177A (ja) * 2001-07-24 2003-02-04 Mitsuo Okano 高密度細胞アレイ用基板、製造法、及びその利用方法
JP2006523091A (ja) 2003-03-11 2006-10-12 イーエス・セル・インターナショナル・プライヴェート・リミテッド ヒト胚性幹細胞の心筋細胞への分化
JP2008500821A (ja) 2004-06-01 2008-01-17 イーエス・セル・インターナショナル・プライヴェート・リミテッド 心筋細胞への分化の改善
JP2008523823A (ja) 2004-12-22 2008-07-10 イーエス・セル・インターナショナル・プライヴェート・リミテッド ヒト胚性幹細胞の分化ならびにそれに由来する心筋細胞および心筋前駆細胞

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211865A (ja) 1989-02-10 1990-08-23 Kao Corp 細胞培養支持体材料
JP2003033177A (ja) * 2001-07-24 2003-02-04 Mitsuo Okano 高密度細胞アレイ用基板、製造法、及びその利用方法
JP2006523091A (ja) 2003-03-11 2006-10-12 イーエス・セル・インターナショナル・プライヴェート・リミテッド ヒト胚性幹細胞の心筋細胞への分化
JP2008500821A (ja) 2004-06-01 2008-01-17 イーエス・セル・インターナショナル・プライヴェート・リミテッド 心筋細胞への分化の改善
JP2008523823A (ja) 2004-12-22 2008-07-10 イーエス・セル・インターナショナル・プライヴェート・リミテッド ヒト胚性幹細胞の分化ならびにそれに由来する心筋細胞および心筋前駆細胞

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
CELL, vol. 132, no. 4, 2008, pages 661 - 80
CIRC. RES., vol. 91, no. 3, 2002, pages 189 - 201
CIRCULATION, vol. 107, no. 14, 2003, pages 1912 - 6
DAISUKE SASAKI ET AL.: "1V18 Saibo Pattern-ka Baiyo Kizai o Mochiita Mouse ES Saibo no Bunka Yudo", POLYMER PREPRINTS, JAPAN (CD-ROM), HEISEI 20 NEN 9 GATSU 9 NICHI HAKKO, vol. 57, no. 2, pages 5156 - 5157, XP008151271 *
DAISUKE SASAKI ET AL.: "P-009 Pattern-ka Baiyo ni yoru Mouse ES Saibo no Shinkin Saibo eno Bunka Yudo", REGENERATIVE MEDICINE, vol. 7, 2008, pages 241, XP008165476 *
HIRAI H; OGAWA M; SUZUKI N; YAMAMOTO M; BREIER G; MAZDA 0 ET AL.: "Hemogenic and nonhemogenic endothelium can be distinguished by the activity of fetal liver kinase (Flk)-l promoter/enhancer during mouse embryogenesis", BLOOD, vol. 101, no. 3, 2003, pages 886 - 93
HIRAI H; OGAWA M; SUZUKI N; YAMAMOTO M; BREIER G; MAZDA O ET AL.: "Hemogenic and nonhemogenic endothelium can be distinguished by the activity of fetal liver kinase (Flk)- promoter/enhancer during mouse embryogenesis", BLOOD, vol. 101, no. 3, 2003, pages 886 - 93
ITOGA K; KOBAYASHI J; YAMATO M; KIKUCHI A; OKANO T.: "Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropattems", BIOMATERIALS, vol. 27, no. 1.5, 2006, pages 3005 - 9
ITOGA K; KOBAYASHI J; YAMATO M; KIKUCHI A; OKANO T.: "Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropattems", BIOMATERIALS, vol. 27, no. 15, 2006, pages 3005 - 9
ITOGA K; KOBAYASHI J; YAMATO M; KIKUCHI A; OKANO T.: "Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns", BIOMATERIALS, vol. 27, no. 15, 2006, pages 3005 - 9
J. MOL. CELL CARDIOL., vol. 29, no. 6, 1997, pages 1525 - 39
K.K. DNASE, WORTHINGTON BIOCHEMICAL CORPORATION
KAZUYOSHI ITOGA ET AL.: "Maskless liquid- crystal-display projection photolithography for improved design flexibility of cellular micropatterns.", BIOMATERIALS, vol. 27, no. 15, 2006, pages 3005 - 3009, XP027951033 *
NAT. BIOTECHNOL., vol. 23, no. 5, 2005, pages 607 - 11
PROC. NATL. ACAD. SCI. USA., vol. 101, no. 33, 2004, pages 12277 - 81
SASAKI D ET AL.: "Mass preparation of size- controlled mouse embryonic stem cell aggregates and induction of cardiac differentiation by cell patterning method.", BIOMATERIALS, vol. 30, no. 26, September 2009 (2009-09-01), pages 4384 - 4389, XP026337764 *
See also references of EP2434007A4
WOBUS AM; GUAN K; YANG HT; BOHELER KR: "Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation", METHODS MOL. BIOL., vol. 185, 2002, pages 127 - 56
YAMASHITA JK; TAKANO M; HIRAOKA-KANIE M; SHIMAZU C; PEISHI Y; YANAGI K ET AL.: "Prospective identification of cardiac progenitors by a novel single cell-based cardiomyocyte induction", FASEB J., vol. 19, no. 11, 2005, pages 1534 - 6

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067243A (ja) * 2014-09-29 2016-05-09 国立大学法人鳥取大学 多能性幹細胞由来心筋細胞の取得方法

Also Published As

Publication number Publication date
JP2015211688A (ja) 2015-11-26
US20120107930A1 (en) 2012-05-03
EP2434007A1 (en) 2012-03-28
EP2434007A4 (en) 2013-07-31
JPWO2010134606A1 (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
JP2015211688A (ja) 胚性幹細胞或いは人工多能性幹細胞の分化誘導方法
JP4567936B2 (ja) 細胞培養用支持体材料、細胞の共培養方法およびそれより得られる共培養細胞シート
JP4148897B2 (ja) 胚性幹細胞培養用基材および培養方法
US9206391B2 (en) Method for preparing biological tissue
JP5407345B2 (ja) 生体組織の作製方法
JP5725560B2 (ja) 細胞シートを利用した細胞評価システム及びその利用方法
US9440004B2 (en) Method for preparing biological tissue
JP2016171808A (ja) 幹細胞由来心筋細胞を培養するための合成表面
Sasaki et al. Mass preparation of size-controlled mouse embryonic stem cell aggregates and induction of cardiac differentiation by cell patterning method
JP2011172533A (ja) マイクロ空間構造体を用いた高密度三次元細胞培養法
JP2016039806A (ja) サイトカイン産生細胞シートとその利用方法
JP5252411B2 (ja) 細胞培養担体および細胞の培養方法
TW201014914A (en) Materials and methods for cell growth
JP5907661B2 (ja) 直鎖型温度応答性高分子が固定化された温度応答性細胞培養基材、及びその製造方法
JP4936937B2 (ja) マウスes細胞培養用未分化細胞培養担体
Bhatia et al. Introduction to animal tissue culture science
JP2010220581A (ja) 造血幹細胞の培養方法
JP5522340B2 (ja) 胎生肝細胞のスフェロイドを含む培養細胞構築物
JP5777299B2 (ja) 組織幹細胞の増殖方法、およびそれより得られる組織幹細胞
Thiel et al. Efficient transfection of primary cells relevant for cardiovascular research by nucleofection®
JP2013000121A (ja) 上皮細胞培養用培地、それを用いた上皮細胞培養方法及びそれより得られた上皮細胞
JP2014023540A (ja) 生体組織の作製方法
TW202200782A (zh) 細胞培養物、細胞培養物之評價方法、細胞培養物之製造方法以及軟骨狀組織形成特性評價用標記
JP6248617B2 (ja) 細胞シートの製造方法
JP6326915B2 (ja) 細胞培養基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011514465

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010777837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13320777

Country of ref document: US