WO2010134566A1 - 銀系無機抗菌剤およびその製造方法、ならびに抗菌加工製品 - Google Patents

銀系無機抗菌剤およびその製造方法、ならびに抗菌加工製品 Download PDF

Info

Publication number
WO2010134566A1
WO2010134566A1 PCT/JP2010/058502 JP2010058502W WO2010134566A1 WO 2010134566 A1 WO2010134566 A1 WO 2010134566A1 JP 2010058502 W JP2010058502 W JP 2010058502W WO 2010134566 A1 WO2010134566 A1 WO 2010134566A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
antibacterial agent
based inorganic
zirconium phosphate
inorganic antibacterial
Prior art date
Application number
PCT/JP2010/058502
Other languages
English (en)
French (fr)
Inventor
晃治 杉浦
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to KR1020117029565A priority Critical patent/KR101665743B1/ko
Priority to CN201080021352.5A priority patent/CN102427732B/zh
Priority to JP2011514443A priority patent/JP5354012B2/ja
Priority to US13/321,322 priority patent/US8313780B2/en
Publication of WO2010134566A1 publication Critical patent/WO2010134566A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/42Pyrophosphates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/26Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium

Definitions

  • the present invention relates to a silver-based antibacterial agent mainly composed of zirconium phosphate supporting silver, a method for producing the same, and an antibacterial processed product containing the antibacterial agent by kneading or coating.
  • the antibacterial agent of the present invention is superior in water resistance compared to conventional antibacterial agents, has excellent heat resistance, chemical resistance and processability, and has excellent sustained release of silver ions, so that the water resistance and durability of the antibacterial effect are improved. It is a silver-based inorganic antibacterial agent.
  • zirconium phosphate-based inorganic ion exchangers have been used for various purposes taking advantage of their characteristics.
  • the zirconium phosphate-based inorganic ion exchanger includes an amorphous one, a crystalline one having a two-dimensional layer structure, and a crystalline one having a three-dimensional network structure.
  • hexagonal zirconium phosphate which has a three-dimensional network structure, is excellent in heat resistance, chemical resistance, radiation resistance and low thermal expansibility, etc., fixing radioactive waste, solid electrolyte, gas adsorption and It is applied to separation agents, catalysts, and antibacterial raw materials.
  • Non-Patent Document 1 A X NH 4 (1-X) Zr 2 (PO 4 ) 3 .nH 2 O is disclosed in Patent Document 1, and AZr 2 (PO 4 ) 3 .nH 2 O is disclosed in Patent Document 2.
  • H n R 1-n Zr 2 (PO 4 ) 3 .mH 2 O is disclosed in Patent Document 3.
  • zirconium phosphates with different ratios of Zr and P For example, Na 1 + 4x Zr 2-x (PO 4 ) 3 is disclosed in Non-Patent Document 1, and Na 1 + 2x Mg x Zr 2-x (PO 4 ) 3 is disclosed in Non-Patent Documents 1 and 2. Is disclosed.
  • Non-patent documents 2 and 3 disclose Na 1 + x Zr 2 Si x P 3-x O 12 .
  • hexagonal zirconium phosphates are synthesized mainly by a high-temperature heat synthesis method in which a solid powder raw material is mixed and then heat-treated at a temperature of 1000 ° C. or higher using a high-temperature heat treatment furnace or the like.
  • Hydrothermal method to synthesize by heating under pressure in a state containing water by mixing raw materials dissolved in water or mixing raw materials in water, and wet method to synthesize by heating under normal pressure in a state containing water It has been known.
  • the high-temperature heating synthesis method can synthesize zirconium phosphate with an appropriately adjusted P / Zr ratio by simply preparing raw materials and heating them at a high temperature.
  • uniform mixing of raw materials is not easy, and it is difficult to form zirconium phosphate having a uniform composition.
  • pulverization and classification have to be performed, and there has been a problem in terms of quality and productivity.
  • crystalline zirconium phosphate containing ammonia cannot be synthesized by the high temperature heating synthesis method.
  • the hydrothermal method and the wet method can obtain homogeneous fine particulate zirconium phosphate.
  • Ions such as silver, copper, zinc, tin, mercury, lead, iron, cobalt, nickel, manganese, arsenic, antimony, bismuth, barium, cadmium, and chromium are metal ions that exhibit antifungal, antibacterial and antialgal properties ( Hereinafter, it is known as an antibacterial metal ion for a long time.
  • silver ions are widely used as an aqueous silver nitrate solution having a disinfecting action and a bactericidal action.
  • the above-mentioned metal ions exhibiting antifungal, antibacterial or anti-algal properties are often toxic to the human body, and there are various restrictions in usage, storage, disposal, etc., and their use is also limited. .
  • an antibacterial, antibacterial or algaeic antibacterial agent an organic supported antibacterial agent in which an antibacterial metal ion is supported on an ion exchange resin or a chelate resin, and the antibacterial metal ion in a clay mineral Inorganic antibacterial agents supported on inorganic ion exchangers or porous bodies have been proposed.
  • silver-based inorganic antibacterial agents that carry silver ions on inorganic compounds have improved safety compared to silver nitrate aqueous solution, long-lasting antibacterial effect, and excellent heat resistance. Therefore, there are few restrictions on the method of use, storage, disposal, and application, and now it is applied to various products.
  • silver ions are unstable with respect to exposure to heat and light, and are immediately reduced to metallic silver, causing problems such as long-term stability such as coloring.
  • the performance of the obtained silver-based inorganic antibacterial agent is different, and it is often the case that it is subject to some restrictions.
  • antibacterial agents obtained by ion exchange of alkali metal ions such as sodium ions and silver ions in clay minerals such as montmorillonite and zeolite are known. This is because the skeletal structure of the clay mineral itself is inferior in acid resistance. For example, silver ions are easily eluted in an acidic solution and the antibacterial effect is not sustained.
  • M 1 is a kind of metal ion selected from silver, copper, zinc, tin, mercury, lead, iron, cobalt, nickel, manganese, arsenic, antimony, bismuth, barium, cadmium or chromium.
  • A is at least one ion selected from alkali metal ions, alkaline earth metal ions, ammonium ions or hydrogen ions
  • M 2 is a tetravalent metal
  • n is a number satisfying 0 ⁇ n ⁇ 6
  • a and b are positive numbers
  • This antibacterial agent is known as a material that is chemically and physically stable and exhibits antifungal and antibacterial properties for a long period of time.
  • the elution rate of silver ions is high, so that long-term effects cannot be obtained as a product.
  • JP-A-6-48713 Japanese Patent Laid-Open No. 5-17112 JP 60-239313 A JP 04-275370 A
  • the present invention is to provide a silver-based inorganic antibacterial agent and antibacterial processed product that are excellent in heat resistance, chemical resistance, processability, and water resistance.
  • the present inventors have solved the problem with a zirconium phosphate-based silver-based inorganic antibacterial agent represented by the following formula [1] containing zirconium pyrophosphate (ZrP 2 0 7 ).
  • the present invention has been completed by finding out what can be done.
  • the present invention is an antibacterial processed product containing the silver inorganic antibacterial agent described above.
  • the silver-based inorganic antibacterial agent of the present invention is superior in water resistance durability of the antibacterial effect as compared with the existing silver zirconium phosphate-based antibacterial agent.
  • the X-ray-diffraction figure which measured the inorganic antibacterial agent obtained in Example 1 with the powder X-ray-diffraction apparatus The X-ray-diffraction figure which measured the inorganic antibacterial agent obtained by the comparative example 4 with the powder X-ray-diffraction apparatus.
  • a is 0 ⁇ a, preferably 0.01 or more, more preferably 0.03 or more, and a is preferably 1 or less, more preferably 0.6 or less. If a is less than 0.01, antibacterial properties may not be sufficiently exhibited.
  • b has an optimum value for M depending on the type of alkali metal ion, ammonium ion, hydrogen ion, or oxonium ion. 0 ⁇ b, preferably 0.01 or more. Further, b is less than 1.5, preferably less than 1.0, and more preferably 0.9 or less. When the value of b is large, the antibacterial agent of the present invention tends to cause discoloration when blended with the resin, and when b is 0.6 or more, discoloration is particularly likely.
  • c and d are 1.75 ⁇ (c + d) ⁇ 2.2, c is preferably less than 2.15, more preferably less than 2.10, and more preferably 1.80 or more, 1.85 or more is more preferable, and 1.90 or more is still more preferable. Moreover, d is preferably 0.2 or less, more preferably 0.001 or more and 0.15 or less, and more preferably 0.005 or more and 0.10 or less. When c + d is 1.75 or less or 2.2 or more, it may be difficult to obtain homogeneous zirconium phosphate represented by the formula [1], which is not preferable.
  • n is preferably 1 or less, more preferably 0.01 to 0.5, and particularly preferably 0.03 to 0.3.
  • n is more than 2
  • the absolute amount of water contained in the silver-based inorganic antibacterial agent of the present invention is large, and foaming or hydrolysis may occur during processing, which is not preferable.
  • the following can be illustrated as a silver type inorganic antibacterial agent shown by Formula [1].
  • the silver-based inorganic antibacterial agent of the present invention is a silver-based inorganic antibacterial agent described in the above formula [1] containing zirconium pyrophosphate (ZrP2O7).
  • Zirconium pyrophosphate is present in an integral manner with the silver-based inorganic antibacterial agent particles of the above formula [1] and cannot be separated, and is not a mixture of different compounds.
  • Zirconium pyrophosphate cannot be separated from the silver-based inorganic antibacterial agent, but the content can be confirmed by a powder X-ray diffraction diagram.
  • the powder X-ray diffraction pattern of zirconium pyrophosphate is shown in ASTM File No.
  • the powder X-ray diffraction pattern of AgZr 2 (PO 4) 3 which is a similar compound to the silver-based inorganic antibacterial agent of the above formula [1] is ASTM File No. 34-1245, and the d value is 2.87 (100), 4.38 (50), 3.80 (50), 2.67 (50), 2.54 (30), 1.90 (30). 4.55 (20), 2.28 (20).
  • the X-ray diffraction peak intensity of 2 ⁇ 20.0 ° to 20.2 ° (corresponding to d value of 4.4) indicating the crystal structure of the silver-based inorganic antibacterial agent of the above formula [1]
  • the relative strength is preferably 5 to 50, more preferably 10 to 40, and particularly preferably 15 to 35.
  • the relative intensity of the X-ray diffraction peak of 2 ⁇ 21.3 ° to 21.5 ° (corresponding to d value of 4.1) indicating the presence of zirconium pyrophosphate crystals relative to the case.
  • the silver-based inorganic antibacterial agent represented by the formula [1] of the present invention has a coefficient b1 of the formula [3] of 0.6 to 0 per mole of the zirconium phosphate compound represented by the following formula [3]. It is a silver-based inorganic antibacterial agent that can be obtained by ion-exchange using an aqueous solution containing an amount of silver nitrate multiplied by .99, followed by thermal decomposition treatment.
  • the method for synthesizing the zirconium phosphate represented by the formula [3] is preferably a wet method or a hydrothermal method in which various raw materials are reacted in an aqueous solution.
  • a specific method for synthesizing zirconium phosphate in which A in Formula [3] is an ammonium ion contains a predetermined amount of a zirconium compound, ammonia or a salt thereof, oxalic acid or a salt thereof, phosphoric acid or a salt thereof, and the like.
  • the aqueous solution is adjusted to pH 4 or less with caustic soda or ammonia water, and then heated at a temperature of 70 ° C. or higher for synthesis.
  • a specific method for synthesizing zirconium phosphate in which A in formula [3] is a hydrogen ion includes an aqueous solution containing a predetermined amount of a zirconium compound, oxalic acid or a salt thereof, and phosphoric acid or a salt thereof. Then, after adjusting the pH to 4 or less, the zirconium phosphate obtained by heating at a temperature of 70 ° C. or higher is further agitated in an aqueous solution of hydrochloric acid, nitric acid, sulfuric acid or the like to carry hydrogen ions to synthesize.
  • the hydrogen ions can be supported simultaneously with the silver ions supported by silver nitrate or after the silver ions are supported.
  • the synthesized zirconium phosphate is further filtered, washed with water to a predetermined electrical conductivity, dried and lightly pulverized to obtain white particulate zirconium phosphate. Moreover, if it is the hydrothermal method synthesize
  • zirconium compound that can be used as a raw material for the synthesis of zirconium phosphate represented by the formula [3]
  • a water-soluble or acid-soluble zirconium salt can be used.
  • zirconium nitrate, zirconium acetate, zirconium sulfate, basic zirconium sulfate, zirconium oxysulfate, and zirconium oxychloride are exemplified, and zirconium oxychloride is preferable in consideration of reactivity and economy.
  • Hafnium compounds that can be used as a raw material for the synthesis of zirconium phosphate represented by the formula [3] are water-soluble or acid-soluble hafnium salts such as hafnium chloride, hafnium oxychloride, and hafnium ethoxide. Also, zirconium compounds containing hafnium can be used. The hafnium content contained in the zirconium compound is preferably 0.1% to 5%, more preferably 0.3% to 4%. In the present invention, it is preferable to use zirconium oxychloride containing such a small amount of hafnium in view of reactivity, economy, and the like.
  • oxalic acid or a salt thereof that can be used as a raw material for the synthesis of zirconium phosphate represented by the formula [3] include oxalic acid dihydrate, sodium oxalate, ammonium oxalate, sodium hydrogen oxalate, and ammonium hydrogen oxalate. Etc., and preferably oxalic acid dihydrate.
  • ammonia or a salt thereof that can be used as a raw material for the synthesis of zirconium phosphate represented by the formula [3] include ammonium chloride, ammonium nitrate, ammonium sulfate, aqueous ammonia, ammonium oxalate, and ammonium phosphate. Ammonium or aqueous ammonia.
  • phosphoric acid or a salt thereof that can be used as a raw material for the synthesis of zirconium phosphate represented by the formula [3] a soluble or acid-soluble salt is preferable.
  • phosphoric acid, sodium phosphate, sodium hydrogen phosphate examples include ammonium hydrogen phosphate and ammonium phosphate, and phosphoric acid is more preferable.
  • the concentration of the phosphoric acid is preferably about 60% to 85%.
  • the molar ratio of phosphoric acid or a salt thereof to the zirconium compound is more than 1.5 to less than 2, more preferably 1 0.51 to less than 1.71, more preferably 1.52 to 1.67, and particularly preferably 1.52 to 1.65. That is, the zirconium phosphate represented by the formula [3] is preferably synthesized by a wet method or a hydrothermal method in which the mole of phosphoric acid or a salt thereof is in the range of more than 1.5 to less than 2 per mole of the zirconium compound. Can do.
  • the molar ratio of phosphoric acid or a salt thereof to ammonia or a salt thereof when synthesizing the zirconium phosphate represented by the formula [3] (ammonia or a salt thereof is 1) is preferably 0.3 to 10. Further, 1 to 10 is preferable, and 2 to 5 is particularly preferable.
  • the molar ratio of phosphoric acid or a salt thereof to oxalic acid or a salt thereof (where oxalic acid or a salt thereof is 1) when synthesizing the zirconium phosphate represented by the formula [3] is preferably 1 to 6, more preferably It is preferably 1.5 to 5, more preferably 1.51 to 4, and particularly preferably 1.52 to 3.5. That is, the method for synthesizing zirconium phosphate represented by the formula [3] can be preferably synthesized by a wet method or hydrothermal method containing oxalic acid or a salt thereof. However, in the case of the hydrothermal method, it is not necessary to contain oxalic acid or a salt thereof.
  • the solid content concentration in the reaction slurry when synthesizing the zirconium phosphate represented by the formula [3] is preferably 3% by mass or more, and more preferably between 7% and 20% in view of efficiency such as economy.
  • the pH when synthesizing the zirconium phosphate represented by the formula [3] is preferably 1 or more and 4 or less, more preferably 1.3 to 3.5, still more preferably 1.8 to 3.0, Particularly preferred is 2.0 to 3.0. If the pH is more than 4, it is not preferable because zirconium phosphate represented by the formula [3] may not be synthesized. If the pH is less than 1, it may not be possible to synthesize the zirconium phosphate represented by the formula [3]. For adjusting the pH, it is preferable to use sodium hydroxide, potassium hydroxide, or aqueous ammonia, and more preferably sodium hydroxide.
  • the synthesis temperature when synthesizing the zirconium phosphate represented by the formula [3] is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 90 ° C. or higher, particularly preferably 95 ° C. or higher. .
  • a synthesis temperature 150 degrees C or less is preferable and 120 degrees C or less is more preferable. If the temperature is less than 70 ° C., the zirconium phosphate of the present invention may not be synthesized, which is not preferable. Further, if the temperature is higher than 150 ° C., it is not preferable because it is disadvantageous in terms of energy.
  • the synthesis time of the zirconium phosphate represented by the formula [3] varies depending on the synthesis temperature.
  • the synthesis time of the zirconium phosphate of the present invention is preferably 4 hours or longer, more preferably 8 hours to 72 hours, further preferably 10 hours to 48 hours.
  • the median diameter of zirconium phosphate represented by the formula [3] can be synthesized between 0.1 and 5 ⁇ m.
  • the median diameter of the zirconium phosphate represented by the formula [3] is preferably 0.1 to 4 ⁇ m, more preferably 0.2 to 3 ⁇ m, still more preferably 0.3 to 2 ⁇ m.
  • the maximum particle size of the zirconium phosphate represented by the formula [3] is preferably 10 ⁇ m or less, more preferably 6 ⁇ m or less, and particularly preferably 4 ⁇ m or less.
  • zirconium phosphate represented by the formula [3] that can be used as a raw material for the silver-based inorganic antibacterial agent of the present invention include the following. Na 0.07 (NH 4 ) 0.85 Zr 2.0 Hf 0.02 (PO 4 ) 3 ⁇ 0.65H 2 O Na 0.12 (NH 4 ) 0.65 Zr 2.01 Hf 0.03 (PO 4 ) 3 ⁇ 0.85H 2 O Na 0.19 (NH 4 ) 0.65 Zr 2.03 Hf 0.01 (PO 4 ) 3 ⁇ 0.75H 2 O Na 0.21 (NH 4 ) 0.75 Zr 1.99 Hf 0.02 (PO 4 ) 3 ⁇ 0.6H 2 O Na 0.27 (NH 4 ) 0.75 Zr 1.92 Hf 0.15 (PO 4 ) 3 ⁇ 0.75H 2 O Na 0.29 (NH 4 ) 0.55 Zr 1.92 Hf 0.05 (PO 4 ) 3 ⁇ 0.5H 2 O Na 0.57 (NH 4 ) 0.55 Zr 1.95 Hf 0.02 (PO 4 ) 3
  • the silver-based inorganic antibacterial agent of the formula [1] it is obtained by subjecting these zirconium phosphates to silver ion exchange, followed by thermal decomposition treatment.
  • the method of exchanging silver ions is to immerse zirconium phosphate in an aqueous solution containing silver nitrate.
  • the silver nitrate content of the aqueous solution increasing the amount of the silver-based inorganic antibacterial agent in the resin When blended and used, it is preferable because it is difficult to change the color.
  • too much is not economically preferable because excessive silver ions remain in the aqueous solution.
  • an aqueous solution containing silver nitrate in an amount obtained by multiplying the coefficient b1 of the formula [3] by 0.6 to 0.99 per mole of the zirconium phosphate compound represented by the formula [3]. More preferably, an aqueous solution containing silver nitrate in an amount obtained by multiplying the coefficient b1 of the formula [3] by 0.7 to 0.98 per mole of zirconium phosphate is used.
  • the amount of the zirconium phosphate immersed in the aqueous solution may be a concentration that can be uniformly mixed with the aqueous solution. Specifically, the zirconium phosphate represented by the formula [3] is 20% of the total amount with the aqueous solution. % Or less is preferable.
  • the aqueous solution containing silver ions it is preferable to use an aqueous solution in which silver nitrate is dissolved in deionized water.
  • the temperature of the aqueous solution at the time of ion exchange can be 0 to 100 ° C., preferably 20 to 80 ° C. Since this ion exchange is carried out quickly, the immersion time can be within 5 minutes, but 30 minutes to 5 hours are preferable in order to obtain a uniform and high silver ion exchange rate. Even if immersion is performed for 5 hours or more, the exchange of silver ions does not proceed further.
  • the silver-based inorganic antibacterial agent represented by the formula [1] containing zirconium pyrophosphate at a certain concentration can be obtained by subjecting it to filtration and drying in a state adjusted to an appropriate bulk specific gravity. Washing with water is preferably carried out until an appropriate degree of cleaning is achieved.
  • the appropriate degree of cleaning is that the electrical conductivity when particles are suspended in deionized water is 15 ⁇ S or more and 570 ⁇ S or less, and more preferably. Is 20 ⁇ S or more and 470 ⁇ S or less.
  • the unit S of electrical conductivity is defined as the reciprocal of the unit ohm of electrical resistance, and is an SI unit called Siemens.
  • the silver-based inorganic antibacterial agent After washing with water, the silver-based inorganic antibacterial agent is separated into only solids by filtration and dried once.
  • the dried solid content after filtration is present in the form of agglomerated large lump, but if this is baked as it is, the internal calcination is insufficient due to poor heat conduction, and the quality tends to be non-uniform. Therefore, it is preferable to once crush the solid content after drying into a lump of an appropriate size. In some cases, crushing can be done by hand, but if it is hard, it can be broken by hitting large chunks or hitting with a hammer.
  • These pulverizations can also be performed using a pulverizer such as a ball mill, a hammer mill, a pin mill, or a raking machine.
  • the solid content that has been filtered and dried is agglomerated and has a high bulk specific gravity. However, as it is crushed and becomes a fine powder, the bulk specific gravity decreases, so an appropriate degree of pulverization is specified. Bulk specific gravity can be used as an index.
  • the bulk specific gravity in the present invention is essentially the same idea as the apparent density (bulk specific gravity) defined by JIS K5101-1991, for example, and the powder is gently put into a beaker-like receiver or beaker with a capacity of 1 L. It can be determined by weighing the whole weight after filling in and scraping off the mountain with a spatula.
  • the preferred bulk specific gravity of the solid before pyrolysis is 0.80 to 2.00 (g / ml), and the more preferred bulk specific gravity is 0.90 to 1.45 ( g / ml), more preferably 1.00 to 1.35 (g / ml).
  • Thermal decomposition can be performed at 800 ° C. or higher and 1100 ° C. or lower, preferably 820 ° C. or higher and 1050 ° C. or lower, more preferably 850 ° C. or higher and 950 ° C. or lower.
  • 800 ° C. or higher is preferable, and in order to avoid aggregation due to melting of particles, 1000 ° C. or lower is preferable.
  • Pyrolysis can be performed by a heating device such as an electric furnace or gas furnace, and the particles can be placed in a refractory box or placed directly in the furnace, and stirred while heating. Also good.
  • the pyrolysis temperature means the surface temperature of the particles, it can be measured by a method such as a thermometer protruding into the furnace to the vicinity of the particle surface or a radiation thermometer.
  • a gas furnace is often used.
  • a method in which particles are placed in a refractory box is stacked with gaps, and hot air heated with combustion gas is circulated in the furnace.
  • the elution amount of silver from the silver-based inorganic antibacterial agent of the present invention is controlled by thermal decomposition. That is, the antibacterial agent before pyrolysis has too much elution of silver, and the elution amount decreases rapidly with time. The decrease in density is reduced. It is preferable that the elution amount of silver after pyrolysis is 10% or more and 70% or less with respect to the elution amount of silver before pyrolysis.
  • the longer the time for the thermal decomposition treatment the better the discoloration resistance and the uniform properties can be obtained.
  • the longer time is not economical because it is not economical, and it is preferably 1 hour or more, and 2 hours or more for improving the discoloration resistance. 60 hours or less, more preferably 4 hours or more and 36 hours or less.
  • the relationship between the temperature and the thermal decomposition time is also important. If it is 850 ° C., it is 6 hours or more and 60 hours or less, if it is 900 ° C., it is 2 hours or more and 48 hours or less, and if it is 950 ° C. Can be disassembled. After pyrolysis, since the particles of the silver-based inorganic antibacterial agent of the present invention may be solidified, it is better to crush the solidified material using a pulverizer.
  • the usage form of the silver-based inorganic antibacterial agent of the present invention is not particularly limited, and can be appropriately mixed with other components or combined with other materials depending on the application.
  • it can be used in various forms such as powder, powder-containing dispersion, powder-containing particles, powder-containing paint, powder-containing fiber, powder-containing paper, powder-containing plastic, powder-containing film, powder-containing aerosol, etc.
  • various additives or materials such as other antibacterial agents, deodorants, antiviral agents, antiallergen agents, photocatalysts, flameproofing agents, anticorrosives, fertilizers and building materials.
  • various additives may be mixed as necessary in order to improve kneading into a resin and other physical properties.
  • pigments such as zinc oxide and titanium oxide
  • inorganic ion exchangers such as zirconium phosphate and zeolite
  • dyes antioxidants, light-resistant stabilizers, flame retardants, antistatic agents, foaming agents, impact-strengthening agents
  • Lubricants such as glass fibers, metal soaps, moisture-proofing agents and extenders, coupling agents, nucleating agents, fluidity improvers, deodorants, wood powder, antifungal agents, antifouling agents, rust preventives, metal powders, UV rays
  • UV rays There are absorbers, UV shielding agents and the like.
  • An antibacterial resin composition can be easily obtained by blending the silver-based inorganic antibacterial agent of the present invention with a resin.
  • the type of resin that can be used is not particularly limited, and may be any of a natural resin, a synthetic resin, and a semi-synthetic resin, and may be any of a thermoplastic resin and a thermosetting resin.
  • Specific resins may be molding resins, fiber resins, and rubber-like resins. For example, polyethylene, polypropylene, vinyl chloride, ABS resin, AS resin, MBS resin, nylon resin, polyester, polychlorinated resin.
  • the silver-based inorganic antibacterial agent of the present invention can be combined with natural fiber to produce an antibacterial fiber.
  • the blending ratio of the silver-based inorganic antibacterial agent of the present invention in the antibacterial resin composition is preferably 0.1 to 50 parts by weight, more preferably 0.3 to 20 parts by weight with respect to 100 parts by weight of the antibacterial resin composition. . If the amount is less than 0.1 parts by weight, the antibacterial durability of the antibacterial resin composition may not be sufficiently improved. On the other hand, even if it is added more than 50 parts by weight, the antibacterial effect is hardly improved and is not economical. In addition, the physical properties of the resin may be significantly reduced.
  • Any known method can be adopted as a processing method for blending the silver-based inorganic antibacterial agent of the present invention into a resin to obtain a resin molded product.
  • a processing method for blending the silver-based inorganic antibacterial agent of the present invention into a resin to obtain a resin molded product For example, (1) using an additive for facilitating adhesion between silver-based inorganic antibacterial powder and resin, or a dispersant for improving the dispersibility of the antibacterial powder, and mixing the pellet resin or powder resin with a mixer (2) Mixing as described above, forming into pellets with an extrusion molding machine, and then blending the molded product into pellet resin, (3) Silver-based inorganic antibacterial agent After molding into a high-concentration pellet using wax, and then blending the pellet-shaped molding into a pellet-shaped resin. (4) Dispersing and mixing the silver-based inorganic antibacterial agent in a high-viscosity liquid such as polyol. There is a method of blending this paste into a pellet-shaped resin
  • any known processing technique and machine can be used in accordance with the characteristics of various resins, and mixing, mixing or mixing with heating and pressurizing or depressurizing at an appropriate temperature or pressure. They can be easily prepared by a kneading method, and their specific operation may be performed by a conventional method. Various operations such as a lump, sponge, film, sheet, thread or pipe, or a composite thereof may be used. Can be molded into form. These molded products are called antibacterial processed products because antibacterial performance is imparted by using the silver-based inorganic antibacterial agent of the present invention in combination.
  • the usage form of the silver-based inorganic antibacterial agent of the present invention is not particularly limited, and is not limited to being blended with a resin molded product or a polymer compound. Depending on the application requiring antifungal, antialgal and antibacterial properties, it can be appropriately mixed with other components or combined with other materials. For example, it can be used in various forms such as powder, powder-dispersed liquid, granular, aerosol, or liquid. These are all in the category of antimicrobial processed products.
  • the silver-based inorganic antibacterial agent of the present invention is characterized by excellent water resistance, it can be effectively used in applications where water comes into contact. For example, textile products to be washed, pipes and tanks for passing water and soaking, kitchen utensils always in contact with water, toiletry products, sponges and the like. These products are also in the category of antibacterial processed products. ⁇ Use of antibacterial processed product
  • the silver-based inorganic antibacterial agent of the present invention is used in various fields where antifungal, antialgal and antibacterial properties are required, that is, electrical appliances, kitchen products, textile products, residential building materials products, toiletry products, It can be used as paper products, toys, leather products, stationery and other products.
  • electrical appliances include dishwashers, dish dryers, refrigerators, washing machines, pots, TVs, personal computers, radio cassettes, cameras, video cameras, water purifiers, rice cookers, vegetable cutters, and registers.
  • Kitchen products include tableware, chopping board, push-cut, tray, chopsticks, tea dispenser, thermos, kitchen knife, ladle handle, frying, lunch box, There are rice paddies, bowls, draining bowls, triangular corners, scrubbers, garbage bowls, draining bags, etc.
  • Textile products include shower curtains, futon cotton, air conditioner filters, pantyhose, socks, towels, sheets, duvet covers, pillows, gloves, apron, curtains, diapers, bandages, masks, sportswear House and building material products include decorative panels, wallpaper, floor boards, window films, handles, carpets, mats, artificial marble, handrails, joints, tiles, and waxes.
  • toiletries include toilet seats, bathtubs, tiles, pots, filth, toilet brushes, bath lids, pumice stones, soap containers, bath chairs, clothing baskets, showers, and washstands.
  • Paper products include wrapping paper , Wrapping paper, medicine box, sketch book, chart, notebook, origami, and toys include dolls, stuffed animals, paper clay, blocks, puzzles, etc.
  • leather products include shoes, bags, belts, watch bands, interior items, chairs, gloves, hanging leather, and stationery items include ball pens, sharp pens, pencils, erasers, crayons, paper, There are notebooks, flexible disks, rulers, post-it (product name) sticky notes, staplers, etc.
  • Other products include insoles, cosmetic containers, scrubbers, makeup puffs, hearing aids, musical instruments, cigarette filters, cleaning adhesive paper sheets, hanging leather grips, sponges, kitchen towels, cards, microphones, barber supplies , Vending machines, razors, telephones, thermometers, stethoscopes, slippers, clothes cases, toothbrushes, sandbox sand, food packaging films, antibacterial sprays, paints, etc.
  • the amount of ammonia was calculated by dissolving the sample using a strong acid and measuring this solution by the indophenol method.
  • the amount of oxonium ions was calculated by measuring the weight loss of 160 to 190 ° C. by thermal analysis.
  • the powder X-ray diffraction intensity is a measured value (unit cps) of the X-ray diffraction intensity at a specific reflection angle when measured with a CuK ⁇ ray under a measurement condition of 50 kv / 120 mA with a powder X-ray diffractometer.
  • the amount of silver elution is 0.1% concentration of sodium nitrate aqueous solution so that the inorganic antibacterial agent is 0.1% of the total, and the silver elution concentration in the filtrate of the aqueous solution after shaking for 1 hour at 25 ° C. Measurement was performed using an ICP emission spectrophotometer.
  • Example 1 In 300 ml of deionized water, 0.1 mol of oxalic acid dihydrate, 0.2 mol of zirconium oxychloride octahydrate containing 0.17% hafnium and 0.05 mol of ammonium chloride were dissolved, and phosphoric acid 0 was added with stirring. .3 moles were added. The solution was adjusted to pH 2.6 using 20% aqueous sodium hydroxide solution and stirred at 98 ° C. for 14 hours. Thereafter, the resulting precipitate was washed thoroughly and dried at 120 ° C. to synthesize a zirconium phosphate compound.
  • the composition formula was Na 0.6 (NH 4 ) 0.4 Zr 1.98 Hf 0.02 (PO 4 ) 3 ⁇ 0.09H 2 O Met.
  • 450 ml of deionized water aqueous solution in which 0.05 mol of silver nitrate was dissolved was added to 0.09 mol of the obtained zirconium phosphate, and silver was supported by stirring at 60 ° C. for 2 hours.
  • the slurry after the silver supporting treatment was filtered and washed with water, and the electrical conductivity of the filtrate was washed to 220 ⁇ S, and the solid content dried at 120 ° C. was adjusted to a bulk specific gravity of 1.21.
  • the silver-based inorganic antibacterial agent of the present invention was obtained.
  • the median diameter ( ⁇ m), maximum particle size ( ⁇ m), minimum growth inhibitory concentration (MIC, ⁇ g / ml), and silver elution concentration (ppm) of this silver-based inorganic antibacterial agent were measured. It was shown to.
  • Example 2 Using the zirconium phosphate having the following compositional formula obtained in Example 1, the steps after the silver supporting treatment were changed as follows. Na 0.6 (NH 4 ) 0.4 Zr 1.98 Hf 0.02 (PO 4 ) 3 ⁇ 0.09H 2 O 450 ml of deionized water solution in which 0.05 mol of silver nitrate was dissolved in 0.09 mol of zirconium phosphate was added and stirred at 60 ° C. for 2 hours to carry silver. The slurry after supporting the silver was filtered and washed with water, the electrical conductivity of the filtrate was washed to 380 ⁇ S, and the solid content dried at 120 ° C. was adjusted to a bulk specific gravity of 1.00. The composition formula obtained by measuring the amount of each component of the dry solid composed of zirconium phosphate supporting silver was as follows. Ag 0.55 Na 0.05 H 0.55 Zr 1.98 Hf 0.02 (PO 4 ) 3 ⁇ 0.14H 2 O
  • this dried product was pyrolyzed by treating it at 900 ° C. for 9 hours using a gas furnace.
  • the relative intensity of the peak of was 18.
  • Example 3 Using the zirconium phosphate having the following compositional formula obtained in Example 1, the steps after the silver supporting treatment were changed as follows. Na 0.6 (NH 4 ) 0.4 Zr 1.98 Hf 0.02 (PO 4 ) 3 ⁇ 0.09H 2 O 450 ml of deionized water solution in which 0.05 mol of silver nitrate was dissolved in 0.09 mol of zirconium phosphate was added and stirred at 60 ° C. for 2 hours to carry silver. The slurry after supporting the silver was filtered and washed with water, and the electrical conductivity of the filtrate was washed to 240 ⁇ S, and the solid content dried at 120 ° C. was adjusted to a bulk specific gravity of 1.25.
  • Example 4 After dissolving 0.1 mol of oxalic acid dihydrate and 0.2 mol of zirconium oxychloride octahydrate containing 0.17% hafnium in 300 ml of deionized water, 0.3 mol of phosphoric acid was added with stirring. The solution was adjusted to pH 2.6 using 20% aqueous sodium hydroxide solution and stirred at 98 ° C. for 8 hours. Thereafter, the resulting precipitate was washed thoroughly and dried at 120 ° C. to synthesize a zirconium phosphate compound. When the amount of each component of this zirconium phosphate was measured, the composition formula was Na 1.0 Zr 1.98 Hf 0.02 (PO 4 ) 3 ⁇ 0.09H 2 O Met.
  • Example 5 Dissolve 0.1 mol of oxalic acid dihydrate, 0.2 mol of zirconium oxychloride octahydrate containing 0.15% hafnium and 0.02 mol of potassium chloride in 300 ml of deionized water, and then add 0 phosphoric acid with stirring. .3 moles were added. The solution was adjusted to pH 2.6 using 20% aqueous sodium hydroxide solution and stirred at 98 ° C. for 6 hours. Thereafter, the resulting precipitate was washed thoroughly and dried at 120 ° C. to synthesize a zirconium phosphate compound. When the amount of each component of this zirconium phosphate was measured, the composition formula was Na 0.80 K 0.20 Zr 1.98 Hf 0.02 (PO 4 ) 3 ⁇ 0.11H 2 O Met.
  • Example 6 Dissolve 0.1 mol of oxalic acid dihydrate, 0.2 mol of zirconium oxychloride octahydrate containing 0.15% hafnium and 0.03 mol of ammonium chloride in 300 ml of deionized water, and then add 0 phosphoric acid with stirring. .3 moles were added. The solution was adjusted to pH 2.2 with 20% aqueous ammonia solution and stirred at 98 ° C. for 6 hours. Thereafter, the resulting precipitate was washed thoroughly and dried at 120 ° C. to synthesize a zirconium phosphate compound. When the amount of each component of this zirconium phosphate was measured, the composition formula was Na 0.64 (NH 4 ) 0.22 H 0.10 Zr 1.99 Hf 0.02 (PO 4 ) 3 ⁇ 0.11H 2 O Met.
  • Example 7 After dissolving 0.1 mol of oxalic acid dihydrate and 0.2 mol of zirconium oxychloride octahydrate containing 0.15% hafnium in 300 ml of deionized water, 0.3 mol of phosphoric acid was added with stirring. The solution was adjusted to pH 2.2 using 20% aqueous sodium hydroxide solution and stirred at 98 ° C. for 6 hours. Thereafter, the resulting precipitate was washed thoroughly and dried at 120 ° C. to synthesize a zirconium phosphate compound. When the amount of each component of this zirconium phosphate was measured, the composition formula was Na 0.96 Zr 1.99 Hf 0.02 (PO 4 ) 3 ⁇ 0.10H 2 O Met.
  • Example 8 Evaluation with a photocurable resin> 3% of the silver-based inorganic antibacterial agent obtained in Examples 1 to 7 and Comparative Examples 1 to 6 is blended in a polyfunctional photocurable resin, and coated on a PET film at a thickness of about 2 microns, and then cured. Thus, an antibacterial hard coat film was prepared. For comparison, a blank hard coat film containing no antibacterial agent was also prepared. Table 2 shows the results of confirming the smoothness of the coating film portion on the obtained hard coat film by palpation and SEM observation. In addition, an antibacterial test using Escherichia coli was performed on the coated surface after the hard coat film was immersed in deionized water at 25 ° C.
  • an antibacterial activity value is a value which shows the difference of the logarithmic value of the viable count of the bacteria after a test in an antibacterial processed product and an unprocessed product, and there is no unit. Usually, when the antibacterial activity value is 2.0 or more, it is determined that the effect of antibacterial processing is recognized.
  • Example 9 Evaluation with nylon thread>
  • the silver-based inorganic antibacterial agents obtained in Examples 1 and 7 and Comparative Examples 1, 2 and 6 were blended at 1% with respect to the nylon resin, and about 3 denier nylon multifilament was spun.
  • Table 3 shows the yarn breakage during spinning and the color tone of the yarn after spinning.
  • the yarn breakage test was evaluated by whether or not the yarn breakage occurred before obtaining one undrawn yarn package of 6 kg.
  • the color tone of the yarn after spinning is measured with a colorimetric color difference meter Sigma 80 type manufactured by JEOL Ltd., and is displayed in the Hunter Lab color system specified in JIS Z8730-1980, and compared with the blank yarn.
  • the antibacterial properties of the obtained antibacterial nylon multifilaments were evaluated for the antibacterial activity of JIS L1902 fiber products for the untreated one and after 10 washings. This is shown in FIG.
  • Example 10 Evaluation with urethane foam> 0.7 parts of the silver-based inorganic antibacterial agent prepared in Example 1 with respect to 100 parts of a blend of polyether polyol, triethylenediamine, water, methylene chloride, foam stabilizer, catalyst, tolylene diisocyanate, and zinc oxide
  • an antibacterial urethane foam A was prepared.
  • antibacterial urethane foams B and C and comparative antibacterial urethane foams d to f were prepared using the comparative silver-based inorganic antibacterial agents prepared in Examples 2 and 3 and Comparative Examples 1 to 3.
  • the antibacterial urethane foam and the antibacterial urethane foam obtained by immersing the antibacterial urethane foam in deionized water at 50 ° C. for 16 hours and then drying the antibacterial product.
  • the antibacterial activity value was measured by an antibacterial test by the shake method of Table 5 and the results are shown in Table 5.
  • the silver-based inorganic antibacterial agent of the present invention was excellent in antibacterial property after a water resistance test and excellent in workability and discoloration resistance when blended in a plastic product.
  • the novel silver-based inorganic antibacterial agent of the present invention is excellent in processability because it is uniform and fine particles, and also has excellent antibacterial durability such as after a water resistance test after processing into a plastic product. Therefore, it can be used as a silver-based inorganic antibacterial agent having high applicability even for products having a lot of contact with water.
  • 1 and 2 represents the X-ray intensity (unit: cps) in powder X-ray diffraction measurement. 1 and 2 represents the X-ray diffraction angle 2 ⁇ (unit: °).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

 本発明は、耐熱性、耐薬品性、加工性に優れ、且つ耐水持続性にも優れる銀系無機抗菌剤を提供することである。 ピロリン酸ジルコニウム(ZrP27)を含有する下記式〔1〕で示される銀系無機抗菌剤により課題を解決できることを見出し、本発明を完成させた。 AgabZrcHfd(PO43・nH2O 〔1〕 (式〔1〕において、Mはアルカリ金属イオン、アンモニウムイオン、水素イオン、オキソニウムイオンから選ばれる少なくとも1種のイオンであり、a、b、cおよびdは正数であり、1.75<(c+d)<2.2、a+b+4(c+d)=9を満たす数であり、nは2以下である。)

Description

銀系無機抗菌剤およびその製造方法、ならびに抗菌加工製品
 本発明は、銀を担持したリン酸ジルコニウムを主成分とする銀系抗菌剤およびその製造方法、ならびにこの抗菌剤を練り込み加工や塗布加工等により含有させた抗菌加工製品に関するものである。本発明の抗菌剤は、従来の抗菌剤に比べ、耐水性に優れるほか、耐熱性、耐薬品性および加工性に優れ、且つ銀イオンの徐放性に優れることから抗菌効果の耐水持続性を備える銀系無機抗菌剤である。
 近年、リン酸ジルコニウム系無機イオン交換体は、その特徴を活かし様々な用途に利用されている。リン酸ジルコニウム系無機イオン交換体には、非晶質のものと、2次元層状構造をとる結晶質のものおよび3次元網目状構造をとる結晶質のものがある。このなかでも3次元網目状構造をとる六方晶リン酸ジルコニウムは、耐熱性、耐薬品性、耐放射線性および低熱膨張性などに優れており、放射性廃棄物の固定化、固体電解質、ガス吸着・分離剤、触媒および抗菌剤原料などに応用されている。
 これまでに様々な六方晶リン酸ジルコニウムが知られている。例えば、AXNH4(1-X)Zr2(PO43・nH2Oが特許文献1に開示されており、AZr2(PO43・nH2Oが特許文献2に開示されており、Hn1-nZr2(PO43・mH2Oが特許文献3に開示されている。
 また、ZrとPとの比が異なるリン酸ジルコニウムも知られている。例えば、Na1+4xZr2-x(PO43が、非特許文献1に開示されており、Na1+2xMgxZr2-x(PO43は、非特許文献1、2に開示されている。Na1+xZr2Six3-x12は、非特許文献2、3に開示されている。
 これら六方晶リン酸ジルコニウムの合成法には、主に固体状の粉末原料を混合後、高温加熱処理炉などを用いて1000℃以上で高温加熱処理することにより合成する高温加熱合成法、一旦水に溶解した原料を混合するか水中で原料を混合することで水を含有した状態で加圧加熱して合成する水熱法、および水を含有した状態で常圧下の加熱により合成する湿式法などが知られている。
 これらのなかでも高温加熱合成法は、原料を調合し高温で加温するのみで、P/Zr比を適宜調整したリン酸ジルコニウムを合成することが可能である。しかし、高温加熱合成法では、原料の均一な混合が容易ではなく、均質な組成のリン酸ジルコニウムができにくい。更に、高温加熱処理で得られた塊状のリン酸ジルコニウムを粒子状にするには、粉砕および分級をしなければならないため、品質上および生産性の点で問題があった。また、当然のことながら、高温加熱合成法ではアンモニアを含有する結晶質リン酸ジルコニウムを合成することができない。一方、水熱法や湿式法は、均質な微粒子状リン酸ジルコニウムを得ることが可能である。
 銀、銅、亜鉛、錫、水銀、鉛、鉄、コバルト、ニッケル、マンガン、砒素、アンチモン、ビスマス、バリウム、カドミウムおよびクロム等のイオンは、防かび、抗菌性および防藻性を示す金属イオン(以下、抗菌性金属イオンと略称する)として古くから知られている。特に、銀イオンは消毒作用及び殺菌作用を有する硝酸銀水溶液として広く利用されている。しかしながら、上記の防かび、抗菌性又は防藻性を示す金属イオンは、人体に有毒である場合が多く、使用方法、保存方法及び廃棄方法等において種々の制限があり、用途も限定されていた。
 しかし、防かび、抗菌性または防藻性を発揮させるには、適用対象に対して微量の抗菌性金属を作用させれば充分である。このことから、防かび、抗菌性または防藻性を具備する抗菌剤として、抗菌性金属イオンをイオン交換樹脂またはキレート樹脂などに担持させた有機系担持抗菌剤、および抗菌性金属イオンを粘土鉱物、無機イオン交換体または多孔質体に担持させた無機系抗菌剤が提案されている。
 なかでも、銀イオンを無機化合物に担持した銀系無機抗菌剤は、硝酸銀水溶液と比較し安全性が向上しているうえ、抗菌効果の持続性が長く、しかも耐熱性に優れる特長を有していることから、使用方法、保存方法、廃棄方法および用途の制限が少なく、今では様々な製品に応用されている。しかし、銀イオンは、熱および光の暴露に対して不安定であり、すぐ金属銀に還元されてしまい、着色を起こすなど、長期間の安定性に問題がある。銀イオンを担持する無機化合物の種類によっては、得られる銀系無機抗菌剤の性能が異なり、やはり何らかの制限を受ける場合も少なくない。
 銀系無機抗菌剤の一つとして、モンモリロナイトおよびゼオライトなどの粘土鉱物中のナトリウムイオンなどのアルカリ金属イオンと銀イオンとをイオン交換させた抗菌剤が知られている。これは粘土鉱物自体の骨格構造が耐酸性に劣るため、例えば酸性溶液中では容易に銀イオンが溶出し、抗菌効果の持続性がない。
 また、銀イオンの安定性をあげるため、ゼオライトに銀イオンとアンモニウムイオンをイオン交換により共存させて担持したものがある。しかし、このものでも着色の防止は、実用レベルに至らず、根本的な解決には至っていない。
 吸着性を有する活性炭に抗菌性金属を担持させた抗菌剤がある。しかし、これらは溶解性の抗菌性金属塩を物理的に吸着または付着させているため、水分と接触させると抗菌性金属イオンが急速に溶出してしまい、抗菌効果の持続性がない。
 最近、特殊なリン酸ジルコニウム塩に抗菌性金属イオンを担持させた抗菌剤が提案されている。例えば、下記の式〔2〕のものが、特許文献4に開示されている。

    M1 ab2 c(PO4d・nH2O   〔2〕

(式〔2〕において、M1は銀、銅、亜鉛、錫、水銀、鉛、鉄、コバルト、ニッケル、マンガン、砒素、アンチモン、ビスマス、バリウム、カドミウム又はクロムより選ばれる一種の金属イオンであり、Aはアルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオンまたは水素イオンから選ばれる少なくとも一種のイオンであり、M2は4価金属であり、nは0≦n≦6を満たす数であり、aおよびbは正数であり、cおよびdは、la+mb=1の時、c=2、d=3、la+mb=2の時、c=1、d=2である。但し、lはM1の価数であり、mはAの価数である。)
 この抗菌剤は化学的および物理的に安定であり、長期間、防かびおよび抗菌性を発揮する材料として知られている。しかし、特定の環境条件、たとえば水中に長時間曝される用途では銀イオンの溶出速度が早いため、製品として長期間の効果の持続性が得られないことがあった。
特開平6-48713号公報 特開平5-17112号公報 特開昭60-239313号公報 特開平04-275370号公報
C.JAGER、他3名、「31P and  29Si NMR  Investigatios of the  Structure of NASICON-Strukturtyps」、Expermentelle  Technik der  Physik、1988年、36巻、4/5号、p339-348 C.JAGER、他2名、「31P MAS  NMR STUDY  OF  THE NASICON  SYSTEM  Na1+4yZr2-y(PO4)3」、Chemical Physics  Letters、1988年、150巻、6号,p503-505 H.Y-P.HONG,「CRYSTAL  STRUCTURE AND  CRYSTAL CHEMISTRY  IN  THE SISTEM Na1+xZr2SixP3-xO12」,Mat.Res.Bull.,11巻,p.173-182
 本発明は、耐熱性、耐薬品性、加工性に優れ、且つ耐水持続性にも優れる銀系無機抗菌剤および抗菌加工製品を提供することである。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、ピロリン酸ジルコニウム(ZrP27)を含有した下記式〔1〕で示されるリン酸ジルコニウム系銀系無機抗菌剤により課題が解決できることを見出し、本発明を完成させた。

  AgabZrcHfd(PO43・nH2O   〔1〕

(式〔1〕において、Mはアルカリ金属イオン、アンモニウムイオン、水素イオン、オキソニウムイオンから選ばれる少なくとも1種のイオンであり、a、b、cおよびdは正数であり、1.75<(c+d)<2.2、a+b+4(c+d)=9を満たす数であり、nは2以下である。)
さらに、本発明は、上記記載の銀系無機抗菌剤を含有する抗菌加工製品である。
 本発明の銀系無機抗菌剤は、既存の銀リン酸ジルコニウム系抗菌剤に比較し抗菌効果の耐水持続性に優れるものである。
実施例1で得られた無機抗菌剤を粉末X線回折装置で測定したX線回折図。 比較例4で得られた無機抗菌剤を粉末X線回折装置で測定したX線回折図。
 以下本発明について説明する。特に記載のない場合、%は質量%である。
本発明の銀系無機抗菌剤は、ピロリン酸ジルコニウム(ZrP27)を含有する下記一般式〔1〕で示されるものである。

  AgabZrcHfd(PO43・nH2O   〔1〕

(式〔1〕において、Mはアルカリ金属イオン、アンモニウムイオン、水素イオン、オキソニウムイオンから選ばれる少なくとも1種のイオンであり、a、b、cおよびdは正数であり、1.75<(c+d)<2.2、a+b+4(c+d)=9を満たす数であり、nは2以下である。)
 式〔1〕においてaは、0<aであり、好ましくは0.01以上であり、より好ましくは0.03以上であり、そしてaは、1以下が好ましく、0.6以下がより好ましい。aが0.01未満では抗菌性が十分発現しないおそれがある。
 式〔1〕において、bはMがアルカリ金属イオン、アンモニウムイオン、水素イオン、オキソニウムイオンの種類により最適な数値が異なる。0<bであり、好ましくは0.01以上である。またbは、1.5未満であり、好ましくは1.0未満であり、より好ましくは0.9以下である。bの値が大きいと本発明の抗菌剤を樹脂に配合時に変色を生じやすい傾向があり、bが0.6以上では特に変色しやすい。
 式〔1〕においてcおよびdは、1.75<(c+d)<2.2であり、cは2.15未満が好ましく、2.10未満がより好ましく、1.80以上が好ましく、1.85以上がより好ましく、1.90以上が更に好ましい。また、dは、0.2以下が好ましく、0.001以上0.15以下がさらに好ましく、0.005以上0.10以下がより好ましい。
 c+dが1.75以下または2.2以上の場合は、式〔1〕で表される均質なリン酸ジルコニウムが得られ難いことがあるため好ましくない。
 式〔1〕においてnは、1以下が好ましく、より好ましくは0.01~0.5であり、0.03~0.3の範囲が特に好ましい。nが2超では、本発明の銀系無機抗菌剤に含まれる水分の絶対量が多く、加工時等に発泡や加水分解などを生じる恐れがあり好ましくない。
 式〔1〕で示される銀系無機抗菌剤として下記のものが例示できる。
  Ag0.05Na0.020.3(H3O)0.55Zr2.0Hf0.02(PO43・0.15H2
  Ag0.10Na0.020.32(H3O)0.40Zr2.01Hf0.03(PO43・0.10H2
  Ag0.17Na0.020.65Zr2.03Hf0.01(PO43・0.05H2
  Ag0.17Na0.040.2(H3O)0.55Zr1.99Hf0.02(PO43・0.25H2
  Ag0.17Na0.10(H3O)0.45Zr1.92Hf0.15(PO43・0.15H2
  Ag0.17Na0.120.100.2(H3O)0.25Zr1.92Hf0.05(PO43・0.15H2
  Ag0.45Na0.120.55Zr1.95Hf0.02(PO43・0.05H2
  Ag0.550.10.2(H3O)0.47Zr1.99Hf0.01(PO43・0.15H2
  Ag0.17Na0.200.3(H3O)0.45Zr1.92Hf0.05(PO43・0.15H2
  Ag0.45Na0.120.2(H3O)0.35Zr1.95Hf0.02(PO43・0.05H2
  Ag0.55Na0.10.35Zr1.99Hf0.01(PO43・0.15H2
 本発明の銀系無機抗菌剤は、ピロリン酸ジルコニウム(ZrP2O7)を含有する上記式〔1〕に記載の銀系無機抗菌剤である。
 ピロリン酸ジルコニウムは上記式〔1〕の銀系無機抗菌剤粒子と一体となって存在し分離はできない状態であり、別々の化合物を混合したものではない。ピロリン酸ジルコニウムは銀系無機抗菌剤と分離することができないが、含有量は粉末X線回折図で確認することができる。ピロリン酸ジルコニウムの粉末X線回折図は、ASTM File No.29-1399であり、d値で4.12(100)、3.69(40)、4.76(30)、3.37(30)、2.92(30)、1.84(20)、1.59(20)、1.68(10)である。一方、上記式〔1〕の銀系無機抗菌剤の類似化合物であるAgZr2(PO4)3の粉末X線回折図は、ASTM File No.34-1245であり、d値で2.87(100)、4.38(50)、3.80(50)、2.67(50)、2.54(30)、1.90(30)、4.55(20)、2.28(20)である。
 粉末X線回折図において、上記式〔1〕の銀系無機抗菌剤の結晶構造を示す2θ=20.0°~20.2°(d値で4.4に相当)のX線回折ピーク強度を100とした場合に対するピロリン酸ジルコニウム結晶の存在を示す2θ=21.3°~21.5°(d値で4.1に相当)のX線回折ピークの相対強度はピロリン酸ジルコニウム結晶の含有量を示すものであり、小さすぎては銀溶出量の抑制効果が現れ難いことは当然であるが、大きければ大きいほど良いわけではなく、最適値が存在する。好ましい相対強度は5~50であり、より好ましくは10~40であり、特に好ましくは15~35である。以下、本発明においてX線回折強度の相対強度とは、上記のとおり、2θ=20.0°~20.2°(d値で4.4に相当)のX線回折ピーク強度を100とした場合に対する、ピロリン酸ジルコニウム結晶の存在を示す2θ=21.3°~21.5°(d値で4.1に相当)のX線回折ピークの相対強度を意味する。
 上記式〔1〕の銀系無機抗菌剤の結晶構造を示す2θ=20.0°~20.2°のX線50kv/120mAの条件で測定した場合の粉末X線回折強度の絶対値は、大きいほうが結晶性が高いことを示し、銀系無機抗菌剤の耐変色性や耐久性などが高くなるためには絶対値が4000cps以上であることが好ましく、より好ましくは5000cps以上である。
 また、本発明の式〔1〕で示される銀系無機抗菌剤は、下記式〔3〕で示されるリン酸ジルコニウム化合物の1モル当たりとして、式〔3〕の係数b1に0.6~0.99をかけた量の硝酸銀を含有する水溶液を用いてイオン交換した後、熱分解処理することで得ることのできる銀系無機抗菌剤である。
  Nab1c1ZreHff(PO43・nH2O    〔3〕

(式〔3〕において、Aはアンモニウムイオンおよび/または水素イオンであり、b1、c1、eおよびfは正数であり、1.75<(e+f)<2.25、b1+c1+4(e+f)=9を満たす数である。)
 式〔3〕で表されるリン酸ジルコニウムの合成方法は、各種原料を水溶液中で反応させる湿式法または水熱法が好ましい。式〔3〕におけるAがアンモニウムイオンで表されるリン酸ジルコニウムの具体的合成方法には、ジルコニウム化合物、アンモニアまたはその塩、シュウ酸またはその塩、およびリン酸またはその塩などを所定量含有する水溶液を苛性ソーダまたアンモニア水でpH4以下に調整後、70℃以上の温度で加熱することで合成ができる。
 また、式〔3〕におけるAが水素イオンで表されるリン酸ジルコニウムの具体的合成方法には、ジルコニウム化合物、シュウ酸またはその塩、およびリン酸またはその塩など、所定量含有する水溶液を苛性ソーダでpH4以下に調整後、70℃以上の温度で加熱することで得られたリン酸ジルコニウムをさらに塩酸、硝酸または硫酸などの水溶液中で攪拌することで水素イオンを担持することで合成ができる。なお、水素イオンの担持は、硝酸銀による銀イオンの担持と同時に実施するか、銀イオンの担持後に実施することも可能である。合成後のリン酸ジルコニウムは、さらに濾別し、所定の電気伝導度にまで水洗後に乾燥、軽く粉砕することで白色の微粒子リン酸ジルコニウムが得られる。また、100℃超の加圧下で合成する水熱法であれば、シュウ酸またはその塩を用いずに式〔3〕で表されるリン酸ジルコニウムが合成可能である。
 式〔3〕で表されるリン酸ジルコニウムの合成原料として使用することができるジルコニウム化合物には、水溶性または酸可溶性のジルコニウム塩が使用可能である。例えば、硝酸ジルコニウム、酢酸ジルコニウム、硫酸ジルコニウム、塩基性硫酸ジルコニウム、オキシ硫酸ジルコニウム、およびオキシ塩化ジルコニウムなどが例示され、反応性や経済性などを考慮するとオキシ塩化ジルコニウムが好ましい。
 式〔3〕で表されるリン酸ジルコニウムの合成原料として使用することができるハフニウム化合物には、水溶性または酸可溶性のハフニウム塩であり、塩化ハフニウム、オキシ塩化ハフニウムおよびハフニウムエトキシドなどが例示され、ハフニウムを含有するジルコニウム化合物も使用できる。ジルコニウム化合物に対して含有されるハフニウム含有率は、0.1%以上~5%以下が好ましく、0.3%以上~4%以下がより好ましい。本発明においては、このようなハフニウムを微量含有したオキシ塩化ジルコニウムを使用することが、反応性や経済性などを考慮すると好ましい。
 式〔3〕で表されるリン酸ジルコニウムの合成原料として使用できるシュウ酸またはその塩としては、シュウ酸2水和物、シュウ酸ナトリウム、シュウ酸アンモニウム、シュウ酸水素ナトリウム、およびシュウ酸水素アンモニウムなどが例示され、好ましくはシュウ酸2水和物である。
 式〔3〕で表されるリン酸ジルコニウムの合成原料として使用できるアンモニアまたはその塩としては、塩化アンモニウム、硝酸アンモニウム、硫酸アンモニウム、アンモニア水、シュウ酸アンモニウム、およびリン酸アンモニウムなどが例示でき、好ましくは塩化アンモニウムまたはアンモニア水である。
 式〔3〕で表されるリン酸ジルコニウムの合成原料として使用できるリン酸またはその塩としては、可溶性または酸可溶性の塩が好ましく、具体的にはリン酸、リン酸ナトリウム、リン酸水素ナトリウム、リン酸水素アンモニウムおよびリン酸アンモニウムなどが例示され、より好ましくはリン酸である。なお、当該リン酸の濃度としては、60%~85%程度の濃度のものが好ましい。
 式〔3〕で表されるリン酸ジルコニウムを合成するときのリン酸またはその塩とジルコニウム化合物とのモル比率(ジルコニウム化合物を1として)は、1.5超~2未満であり、より好ましく1.51~1.71未満であり、さらに好ましくは1.52~1.67であり、特に好ましくは1.52~1.65である。
 即ち、式〔3〕で表されるリン酸ジルコニウムは、ジルコニウム化合物1モル当たりリン酸またはその塩のモルが1.5超~2未満の範囲にある湿式法または水熱法で好ましく合成することができる。
 また、式〔3〕で表されるリン酸ジルコニウムを合成するときのリン酸またはその塩とアンモニアまたはその塩とのモル比率(アンモニアまたはその塩を1として)は、0.3~10が好ましく、更には1~10が好ましく、特に好ましくは2~5である。
 式〔3〕で表されるリン酸ジルコニウムを合成するときのリン酸またはその塩とシュウ酸またはその塩とのモル比率(シュウ酸またはその塩を1として)は、1~6が好ましく、より好ましくは1.5~5であり、更に好ましくは1.51~4であり、特に好ましくは1.52~3.5である。
 即ち、式〔3〕で表されるリン酸ジルコニウムの合成方法は、シュウ酸またはその塩を含有する湿式法または水熱法で好ましく合成することができる。ただし、水熱法の場合はシュウ酸またはその塩を含有する必要がない。
 式〔3〕で表されるリン酸ジルコニウムを合成するときの反応スラリー中の固形分濃度は、3質量%以上が好ましく、経済性など効率を考慮すると7%~20%の間がより好ましい。
 式〔3〕で表されるリン酸ジルコニウムを合成するときのpHは、1以上4以下が好ましく、より好ましくは1.3~3.5、更に好ましくは1.8~3.0であり、特に好ましくは2.0~3.0である。当該pHが4超であると、式〔3〕で表されるリン酸ジルコニウムが合成できないことがあるので好ましくない。当該pHが1未満であると式〔3〕で表されるリン酸ジルコニウムが合成できないことがあるので好ましくない。このpHの調整には水酸化ナトリウム、水酸化カリウムまたはアンモニア水などを用いることが好ましく、より好ましくは水酸化ナトリウムである。
 また、式〔3〕で表されるリン酸ジルコニウムを合成するときの合成温度は、70℃以上が好ましく、80℃以上がより好ましく、90℃以上が更に好ましく、特に好ましくは95℃以上である。また、合成温度としては、150℃以下が好ましく、120℃以下がより好ましい。当該温度が70℃未満であると、本発明のリン酸ジルコニウムが合成できないことがあるので好ましくない。また当該温度が150℃超であるとエネルギー的に不利であることから好ましくない。
 式〔3〕で表されるリン酸ジルコニウムの合成時には原料が均質に混合され、反応が均一に進むように攪拌することが望ましい。
 式〔3〕で表されるリン酸ジルコニウムの合成時間は、合成温度により異なる。例えば、本発明のリン酸ジルコニウムの合成時間として4時間以上が好ましく、8時間~72時間がより好ましく、10時間~48時間が更に好ましい。
 式〔3〕で表されるリン酸ジルコニウムのメジアン径は、0.1~5μmの間のものを合成することが可能である。式〔3〕で表されるリン酸ジルコニウムのメジアン径は、0.1~4μmが好ましく、0.2~3μmがより好ましく、0.3~2μmが更に好ましい。なお、各種製品への加工性を考慮すればメジアン径のみでなく、最大粒径も重要である。このことから、式〔3〕で表されるリン酸ジルコニウムの最大粒径は10μm以下にすることが好ましく、6μm以下にすることが更に好ましく、4μm以下にすることが特に好ましい。
 本発明の銀系無機抗菌剤の原料として用いることができる式〔3〕で表されるリン酸ジルコニウムとして、具体的には下記のものが例示できる。
  Na0.07(NH40.85Zr2.0Hf0.02(PO43・0.65H2
  Na0.12(NH40.65Zr2.01Hf0.03(PO43・0.85H2
  Na0.19(NH40.65Zr2.03Hf0.01(PO43・0.75H2
  Na0.21(NH40.75Zr1.99Hf0.02(PO43・0.6H2
  Na0.27(NH40.75Zr1.92Hf0.15(PO43・0.75H2
  Na0.29(NH40.55Zr1.92Hf0.05(PO43・0.5H2
  Na0.57(NH40.55Zr1.95Hf0.02(PO43・0.35H2
  Na0.70(NH40.85Zr1.99Hf0.01(PO43・0.4H2
  Na0.070.85Zr2.0Hf0.02(PO43・0.65H2
  Na0.120.65Zr2.01Hf0.03(PO43・0.85H2
  Na0.190.65Zr2.03Hf0.01(PO43・0.75H2
  Na0.210.75Zr1.99Hf0.02(PO43・0.6H2
  Na0.270.75Zr1.92Hf0.15(PO43・0.75H2
  Na0.290.55Zr1.92Hf0.05(PO43・0.5H2
  Na0.570.55Zr1.95Hf0.02(PO43・0.35H2
  Na0.700.85Zr1.99Hf0.01(PO43・0.4H2
 式〔1〕の銀系無機抗菌剤を得るには、これらのリン酸ジルコニウムに対し銀イオン交換した後、熱分解処理することで得られる。銀イオン交換する方法は、硝酸銀を含有する水溶液にリン酸ジルコニウムを浸漬することであるが、上記の水溶液の硝酸銀含有
量としては、多くした方が、得られた銀系無機抗菌剤を樹脂に配合して用いる時に変色し難くなるために好ましく、一方、あまり多すぎても過剰の銀イオンが水溶液に残留してしまうので経済的に好ましくない。好ましいのは、式〔3〕で示されるリン酸ジルコニウム化合物の1モル当たりとして、式〔3〕の係数b1に0.6~0.99をかけた量の硝酸銀を含有する水溶液を用いることであり、さらに好ましくはリン酸ジルコニウム1モル当たりとして、式〔3〕の係数b1に0.7~0.98をかけた量の硝酸銀を含有する水溶液を用いることである。リン酸ジルコニウムを水溶液に浸漬する量は、水溶液に対し均一に混合できる濃度であればよく、具体的には式〔3〕で表されるリン酸ジルコニウムが水溶液との合計量の内の20重量%以下となることが好ましい。
 銀イオンを含有する水溶液の調整には、脱イオン水に硝酸銀を溶解した水溶液を使用することが好ましい。イオン交換時の水溶液の温度は、0~100℃で可能であり、好ましくは20~80℃である。このイオン交換は速やかに行われるので、浸漬時間は5分以内でも可能であるが、均一で高い銀イオン交換率を得るためには30分~5時間が好ましい。浸漬を5時間以上行っても、銀イオンの交換がそれ以上進まない。
 銀イオン交換終了後には、これを脱イオン水などで洗浄することが好ましい。洗浄後はろ過乾燥し、さらに適正なかさ比重に調整した状態で熱分解処理することにより、一定の濃度でピロリン酸ジルコニウムを含む式〔1〕で示される銀系無機抗菌剤を得ることができる。
 水洗は適正な洗浄度になるまで実施することが好ましく、適正な洗浄度とは、粒子を脱イオン水に懸濁させた際の電気伝導度が15μS以上570μS以下であることであり、より好ましくは20μS以上470μS以下である。なお電気伝導度の単位Sは電気抵抗の単位オームの逆数として定義され、ジーメンスと呼ばれるSI単位である。
 水洗後の、銀系無機抗菌剤は、ろ別することで固形分のみに分離し、一旦乾燥される。ろ別した固形分を乾燥したものは、凝集した大きな塊状となって存在するが、これをこのまま焼成すると、熱伝導が悪いためか内部の焼成が不十分となり品質が不均一となりやすい。そこで、乾燥後の固形分を、いったん適正な大きさの塊に解砕することが好ましい。解砕は手で割ることができる場合もあるが、硬い場合は大きな塊どうしをぶつけて割るか、ハンマーなどを用いて叩き割ることでも可能である。これらの解砕を、ボールミル、ハンマーミル、ピンミル、らいかい機などの粉砕装置を用いて行うこともできる。ピロリン酸ジルコニウムとリン酸ジルコニウムを一体となって存在させ、しかも抗菌性、溶出性などを発現させる銀系無機抗菌剤を得るためには、解砕されながらも粉体がある程度凝集した状態で熱分解処理することが必要である。解砕しすぎた場合、強い焼結が起きてしまって熱分解後に解砕困難となる恐れがある。
 ろ別され、乾燥された固形分は、凝集してかさ比重の高い状態であるが、解砕すると共に、微粉末となってかさ比重が減少して行くので、適切な解砕度合いを規定する指標として、かさ比重を用いることができる。本発明におけるかさ比重とは、例えばJIS K5101-1991に規定された静置法による見かけ密度(かさ比重)と本質的には同じ考え方で、容量1Lのビーカー状の受器またはビーカーに粉を静かに充填し、へらを使って山の部分を削り取った後に全体の重量を秤量することによって決定できる。本発明の無機抗菌剤の製造において、熱分解前の固形分の好ましいかさ比重は0.80~2.00(g/ml)であり、より好ましいかさ比重は、0.90~1.45(g/ml)、さらに好ましくは1.00~1.35(g/ml)である。
 熱分解は800℃以上1100℃以下で実施可能であり、好ましくは820℃以上1050℃以下、より好ましくは850℃以上950℃以下である。十分な銀溶出の抑制効果を得るためには800℃以上が好ましく、粒子の溶融による凝集を避けるためには1000℃以下が好ましい。熱分解は、電気炉、ガス炉等の加熱装置によって行うことができ、粒子は耐火性の箱に入れたり、炉内に直接置いたりすることができ、また、加熱しながら攪拌したりしてもよい。熱分解温度は、正確には粒子の表面温度を意味するので、粒子表面付近まで炉内に突きだした温度計や、放射温度計等の方法で測定することができる。工業的な方法としてはガス炉が用いられることが多く、一般的には粒子を耐火性の箱に入れたものを隙間を開けて積み上げ、燃焼ガスで加熱した熱風を炉内に循環させる方式が採られる。
 熱分解によって、本発明の銀系無機抗菌剤からの銀の溶出量が制御される。すなわち、熱分解前の抗菌剤は銀の溶出量が高すぎて、経時的に急速に溶出量が減少して行くが、熱分解後の抗菌剤では初期の銀溶出量が抑制され、経時的な濃度低下が少なくなる。熱分解前の銀の溶出量に対して熱分解後の銀の溶出量が10%以上70%以下となることが好ましい。
 熱分解処理を行なう時間は、長いほうが耐変色性が向上し、均一な性質が得られるが、あまり長いのは経済的でないため1時間以上が好ましく、耐変色性向上のためには2時間以上、60時間以下が好ましく、更に好ましくは4時間以上、36時間以下である。また、温度と熱分解時間との関係も重要であり、850℃であれば6時間以上60時間以下、900℃であれば2時間以上48時間以下、950℃であれば1時間以上36時間以下で分解可能である。
 熱分解後は、本発明の銀系無機抗菌剤の粒子同士が凝固していることがあるので、粉砕機を用いて凝固したものを解砕したほうが良い。
 本発明の銀系無機抗菌剤の使用形態には、特に制限がなく、用途に応じて適宜他の成分と混合させたり、他の材料と複合させることができる。例えば、粉末、粉末含有分散液、粉末含有粒子、粉末含有塗料、粉末含有繊維、粉末含有紙、粉末含有プラスチック、粉末含有フィルム、粉末含有エアーゾル等の種々の形態で用いることができ、更に必要に応じて、他の抗菌剤、消臭剤、抗ウイルス剤、抗アレルゲン剤、光触媒、防炎剤、防食、肥料及び建材等の各種の添加剤あるいは材料と併用することもできる。
 本発明の銀系無機抗菌剤には、樹脂への練り込み加工性やその他の物性を改善するため、必要に応じて種々の添加剤を混合することもできる。具体例としては酸化亜鉛や酸化チタンなどの顔料、リン酸ジルコニウムやゼオライトなどの無機イオン交換体、染料、酸化防止剤、耐光安定剤、難燃剤、帯電防止剤、発泡剤、耐衝撃強化剤、ガラス繊維、金属石鹸などの滑剤、防湿剤および増量剤、カップリング剤、核剤、流動性改良剤、消臭剤、木粉、防黴剤、防汚剤、防錆剤、金属粉、紫外線吸収剤、紫外線遮蔽剤などがある。
 本発明の銀系無機抗菌剤を樹脂と配合することにより抗菌性樹脂組成物を容易に得ることができる。用いることができる樹脂の種類は特に制限はなく、天然樹脂、合成樹脂、半合成樹脂のいずれであってもよく、また熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。具体的な樹脂としては成形用樹脂、繊維用樹脂、ゴム状樹脂のいずれであってもよく、例えば、ポリエチレン、ポリプロピレン、塩化ビニル、ABS樹脂、AS樹脂、MBS樹脂、ナイロン樹脂、ポリエステル、ポリ塩化ビニリデン、ポリスチレン、ポリアセタ-ル、ポリカ-ボネイト、PBT、アクリル樹脂、フッ素樹脂、ポリウレタンエラストマ-、ポリエステルエラストマ-、メラミン、ユリア樹脂、四フッ化エチレン樹脂、不飽和ポリエステル樹脂、レ-ヨン、アセテ-ト、アクリル、ポリビニルアルコ-ル、キュプラ、トリアセテ-ト、ビニリデンなどの成形用または繊維用樹脂、天然ゴム、シリコ-ンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム、フッ素ゴム、ニトリルゴム、クロルスルホン化ポリエチレンゴム、ブタジエンゴム、合成天然ゴム、ブチルゴム、ウレタンゴムおよびアクリルゴムなどのゴム状樹脂がある。また、本発明の銀系無機抗菌剤を天然繊維の繊維と複合化させて、抗菌繊維を作製することもできる。
 本発明の銀系無機抗菌剤の抗菌性樹脂組成物における配合割合は、抗菌性樹脂組成物100重量部に対して0.1~50重量部が好ましく、0.3~20重量部がより好ましい。0.1重量部未満であると抗菌性樹脂組成物の抗菌性の持続性向上が不十分である場合があり、一方、50重量部より多く配合しても抗菌効果の向上がほとんどなく非経済的な上、樹脂物性の低下が著しくなる場合がある。
 本発明の銀系無機抗菌剤を樹脂へ配合し樹脂成形品とする加工方法は、公知の方法がどれも採用できる。例えば、(1)銀系無機抗菌剤粉末と樹脂とが付着しやすくするための添着剤や抗菌剤粉末の分散性を向上させるための分散剤を使用し、ペレット状樹脂またはパウダー状樹脂をミキサーで直接混合する方法、(2)前記のようにして混合して、押し出し成形機にてペレット状に成形した後、その成形物をペレット状樹脂に配合する方法、(3)銀系無機抗菌剤をワックスを用いて高濃度のペレット状に成形後、そのペレット状成形物をペレット状樹脂に配合する方法、(4)銀系無機抗菌剤をポリオ-ルなどの高粘度の液状物に分散混合したペ-スト状組成物を調製後、このペーストをペレット状樹脂に配合する方法などがある。
 上記の抗菌性樹脂組成物の成形には、各種樹脂の特性に合わせてあらゆる公知の加工技術と機械が使用可能であり、適当な温度または圧力で加熱および加圧または減圧しながら混合、混入または混練りの方法によって容易に調製することができ、それらの具体的操作は常法により行えば良く、塊状、スポンジ状、フィルム状、シート状、糸状またはパイプ状或いはこれらの複合体など、種々の形態に成形加工できる。これらの成型品は本発明の銀系無機抗菌剤を併用することによって抗菌性能が付与されるため、抗菌加工製品と呼ばれる。
 本発明の銀系無機抗菌剤の使用形態には特に制限はなく、樹脂成形品や高分子化合物に配合することに限定されることはない。防黴性、防藻性および抗菌性が必要とされる用途に応じて適宜他の成分と混合したり、他の材料と複合させることができる。例えば、粉末状、粉末分散液状、粒状、エアゾ-ル状、または液状などの種々の形態で用いることができる。これらはすべて、抗菌加工製品の範疇である。
 本発明の銀系無機抗菌剤は耐水持続性に優れることが特徴であるため、水が接触する用途において有効に使用が可能となる。たとえば、洗濯が行われる繊維製品、通水・浸漬するパイプ類やタンク類、水と常時接触する台所用品、トイレタリィ製品、スポンジなどがあげられる。これらの製品も抗菌加工製品の範疇である。
○抗菌加工製品の用途
 本発明の銀系無機抗菌剤は、防カビ、防藻および抗菌性を必要とされる種々の分野、即ち電化製品、台所製品、繊維製品、住宅建材製品、トイレタリー製品、紙製品、玩具、皮革製品、文具およびその他の製品などとして利用することができる。
 さらに具体的用途を例示すると、電化製品としては食器洗浄機、食器乾燥機、冷蔵庫、洗濯機、ポット、テレビ、パソコン、ラジカセ、カメラ、ビデオカメラ、浄水器、炊飯器、野菜カッタ-、レジスタ-、布団乾燥器、FAX、換気扇、エア-コンデショナ-などがあり、台所製品としては、食器、まな板、押し切り、トレ-、箸、給茶器、魔法瓶、包丁、おたまの柄、フライ返し、弁当箱、しゃもじ、ボ-ル、水切り篭、三角コ-ナ-、タワシいれ、ゴミ篭、水切り袋などがある。
 繊維製品としては、シャワ-カ-テン、布団綿、エアコンフィルタ-、パンスト、靴下、おしぼり、シ-ツ、布団カバー、枕、手袋、エプロン、カ-テン、オムツ、包帯、マスク、スポ-ツウェアなどがあり、住宅・建材製品としては、化粧板、壁紙、床板、窓用フィルム、取っ手、カ-ペット、マット、人工大理石、手摺、目地、タイル、ワックスなどがある。またトイレタリー製品としては、便座、浴槽、タイル、おまる、汚物いれ、トイレブラシ、風呂蓋、軽石、石鹸容器、風呂椅子、衣類篭、シャワ-、洗面台などがあり、紙製品としては、包装紙、薬包紙、薬箱、スケッチブック、カルテ、ノート、折り紙などがあり、玩具としては、人形、ぬいぐるみ、紙粘土、ブロック、パズルなどがある。
 さらに皮革製品としては、靴、鞄、ベルト、時計バンドなど、内装品、椅子、グロ-ブ、吊革などがあり、文具としては、ボ-ルペン、シャ-プペン、鉛筆、消しゴム、クレヨン、用紙、手帳、フレキシブルディスク、定規、ポストイット(商品名)などの付箋、ステープラーなどがある。
 その他の製品としてはインソ-ル、化粧容器、タワシ、化粧用パフ、補聴器、楽器、タバコフィルタ-、掃除用粘着紙シ-ト、吊革握り、スポンジ、キッチンタオル、カ-ド、マイク、理容用品、自販機、カミソリ、電話機、体温計、聴診器、スリッパ、衣装ケ-ス、歯ブラシ、砂場の砂、食品包装フィルム、抗菌スプレ-、塗料などがある。
 以下、本発明を実施例により説明するが、本発明はこれに限定されるものではない。
 ことわりのない%は質量%であり、ppmは質量ppmである。メジアン径および最大粒径は、レーザー回折式粒度分布を用いて体積基準により測定した。
 ジルコニウムの量は、強酸を用いて検体を溶解後、この液をICP発光分光光度計にて測定し算出した。リンの量は、強酸を用いて検体を溶解後、この液をICP発光分光光度計にて測定し算出した。ナトリウムの量は、強酸を用いて検体を溶解後、この液を原子吸光光度計にて測定し算出した。アンモニアの量は、強酸を用いて検体を溶解後、この液をインドフェノール法にて測定し算出した。オキソニウムイオンの量は、熱分析により160~190℃の重量減少量を測定し算出した。粉末X線回折強度は粉末X線回折装置により測定条件50kv/120mAでCuKα線によって測定した場合の特定反射角でのX線回折強度の測定値(単位cps)である。大腸菌に対する最小発育阻止濃度(MIC、μg/ml)は、加熱溶解した普通寒天培地に1000、500、250、125、62.5μg/mlで混釈した後、固化した平板上に大腸菌を接種し増殖を示さなかった最小濃度を測定した。銀溶出量は0.1%濃度の硝酸ナトリウム水溶液に無機抗菌剤を全体の0.1%となるように添加し、25℃で1時間振とう後の水溶液のろ液中の銀溶出濃度をICP発光分光光度計を用いて測定した。
<実施例1>
 脱イオン水300mlにシュウ酸2水和物0.1モル、ハフニウム0.17%含有オキシ塩化ジルコニウム8水和物0.2モルおよび塩化アンモニウム0.05モルを溶解後、攪拌しながらリン酸0.3モルを加えた。この溶液に20%水酸化ナトリウム水溶液を用いてpHを2.6に調整後、98℃で14時間攪拌した。その後、得られた沈殿物をよく洗浄し、120℃で乾燥することによりリン酸ジルコニウム化合物を合成した。
このリン酸ジルコニウムの各成分量を測定したところ、組成式は、
 Na0.6(NH40.4Zr1.98Hf0.02(PO43・0.09H2
であった。
得られたリン酸ジルコニウム0.09モルに硝酸銀0.05モルを溶解した脱イオン水の水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が220μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重1.21に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.55Na0.050.55Zr1.98Hf0.02(PO43・0.13H2
 さらに、この乾燥品をガス炉を用いて900℃で12時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は22であった。この粉末を解砕することで本発明の銀系無機抗菌剤を得た。
 この銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、銀溶出濃度(ppm)を測定し、これらの結果を表1に示した。
<実施例2>
実施例1で得られた以下の組成式からなるリン酸ジルコニウムを用いて銀の担持処理工程以降を次のように変更した。
 Na0.6(NH40.4Zr1.98Hf0.02(PO43・0.09H2
リン酸ジルコニウム0.09モルに硝酸銀0.05モルを溶解した脱イオン水の水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が380μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重1.00に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.55Na0.050.55Zr1.98Hf0.02(PO43・0.14H2
 さらに、この乾燥品をガス炉を用いて900℃で9時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は18であった。この粉末を解砕することで本発明の銀系無機抗菌剤を得た。
この銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、銀溶出濃度(ppm)を測定し、これらの結果を表1に示した。
<実施例3>
 実施例1で得られた以下の組成式からなるリン酸ジルコニウムを用いて銀の担持処理工程以降を次のように変更した。
 Na0.6(NH40.4Zr1.98Hf0.02(PO43・0.09H2
 リン酸ジルコニウム0.09モルに硝酸銀0.05モルを溶解した脱イオン水の水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が240μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重1.25に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.55Na0.350.25Zr1.98Hf0.02(PO43・0.11H2
 さらに、この乾燥品をガス炉を用いて800℃で24時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの回折を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は8であった。この粉末を解砕することで本発明の銀系無機抗菌剤を得た。
この銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、を測定し、これらの結果を表1に示した。
<実施例4>
 脱イオン水300mlにシュウ酸2水和物0.1モル、ハフニウム0.17%含有オキシ塩化ジルコニウム8水和物0.2モルを溶解後、攪拌しながらリン酸0.3モルを加えた。この溶液に20%水酸化ナトリウム水溶液を用いてpHを2.6に調整後、98℃で8時間攪拌した。その後、得られた沈殿物をよく洗浄し、120℃で乾燥することによりリン酸ジルコニウム化合物を合成した。
 このリン酸ジルコニウムの各成分量を測定したところ、組成式は、
 Na1.0Zr1.98Hf0.02(PO43・0.09H2
であった。
 得られたリン酸ジルコニウム0.09モルに硝酸銀0.05モルを溶解した1N硝酸水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が220μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重1.21に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.55Na0.250.35Zr1.98Hf0.02(PO43・0.11H2
 さらに、この乾燥品をガス炉を用いて900℃で12時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は22であった。この粉末を解砕することで本発明の銀系無機抗菌剤を得た。
 この銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、を測定し、これらの結果を表1に示した。
<実施例5>
 脱イオン水300mlにシュウ酸2水和物0.1モル、ハフニウム0.15%含有オキシ塩化ジルコニウム8水和物0.2モルおよび塩化カリウム0.02モルを溶解後、攪拌しながらリン酸0.3モルを加えた。この溶液に20%水酸化ナトリウム水溶液を用いてpHを2.6に調整後、98℃で6時間攪拌した。その後、得られた沈殿物をよく洗浄し、120℃で乾燥することによりリン酸ジルコニウム化合物を合成した。
 このリン酸ジルコニウムの各成分量を測定したところ、組成式は、
 Na0.800.20Zr1.98Hf0.02(PO43・0.11H2
であった。
 得られたリン酸ジルコニウム0.09モルに硝酸銀0.05モルを溶解した脱イオン水の水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が210μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重1.16に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.55Na0.150.190.11Zr1.98Hf0.02(PO43
 さらに、この乾燥品をガス炉を用いて850℃で24時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は22であった。この粉末を解砕することで本発明の銀系無機抗菌剤を得た。
この銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、を測定し、これらの結果を表1に示した。
<実施例6>
 脱イオン水300mlにシュウ酸2水和物0.1モル、ハフニウム0.15%含有オキシ塩化ジルコニウム8水和物0.2モルおよび塩化アンモニウム0.03モルを溶解後、攪拌しながらリン酸0.3モルを加えた。この溶液に20%アンモニア水溶液を用いてpHを2.2に調整後、98℃で6時間攪拌した。その後、得られた沈殿物をよく洗浄し、120℃で乾燥することによりリン酸ジルコニウム化合物を合成した。
 このリン酸ジルコニウムの各成分量を測定したところ、組成式は、
 Na0.64(NH40.220.10Zr1.99Hf0.02(PO43・0.11H2
であった。
 得られたリン酸ジルコニウム0.09モルに硝酸銀0.05モルを溶解した1N硝酸水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が120μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重1.20に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.55Na0.15(NH40.200.06Zr1.99Hf0.02(PO43・0.20H2
 さらに、この乾燥品をガス炉を用いて850℃で24時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は22であった。この粉末を解砕することで本発明の銀系無機抗菌剤を得た。
この銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、を測定し、これらの結果を表1に示した。
<実施例7>
 脱イオン水300mlにシュウ酸2水和物0.1モル、ハフニウム0.15%含有オキシ塩化ジルコニウム8水和物0.2モルを溶解後、攪拌しながらリン酸0.3モルを加えた。この溶液に20%水酸化ナトリウム水溶液を用いてpHを2.2に調整後、98℃で6時間攪拌した。その後、得られた沈殿物をよく洗浄し、120℃で乾燥することによりリン酸ジルコニウム化合物を合成した。
 このリン酸ジルコニウムの各成分量を測定したところ、組成式は、
 Na0.96Zr1.99Hf0.02(PO43・0.10H2
であった。
 得られたリン酸ジルコニウム0.09モルに硝酸銀0.02モルを溶解した1N硝酸水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が90μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重1.15に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.21Na0.380.37Zr1.99Hf0.02(PO43・0.11H2
 さらに、この乾燥品をガス炉を用いて850℃で12時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は15であった。この粉末を解砕することで本発明の銀系無機抗菌剤を得た。
 この銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、を測定し、これらの結果を表1に示した。
<比較例1>
 脱イオン水300mlにシュウ酸2水和物0.1モル、ハフニウム0.17%含有オキシ塩化ジルコニウム8水和物0.2モルおよび塩化アンモニウム0.1モルを溶解後、攪拌しながらリン酸0.3モルを加えた。この溶液に20%水酸化ナトリウム水溶液を用いてpHを2.6に調整後、98℃で14時間攪拌した。その後、得られた沈殿物をよく洗浄し、120℃で乾燥することによりリン酸ジルコニウム化合物を合成した。
 このリン酸ジルコニウムの各成分量を測定したところ、組成式は、
 Na0.6(NH40.4Zr1.98Hf0.02(PO43・0.09H2
であった。
 得られたリン酸ジルコニウム0.09モルに硝酸銀0.05モルを溶解した脱イオン水の水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が190μSまで洗浄し、固形分を120℃で乾燥した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.55Na0.05(NH40.4Zr1.98Hf0.02(PO43・0.10H2
 この銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、ピロリン酸ジルコニウムを示す2θ=21.4のピークはなく相対強度は0であった。この粉末を解砕することで得られた比較例1の銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、を測定し、これらの結果を表1に示した。
<比較例2>
 脱イオン水300mlにシュウ酸2水和物0.1モル、ハフニウム0.17%含有オキシ塩化ジルコニウム8水和物0.2モルおよび塩化アンモニウム0.1モルを溶解後、攪拌しながらリン酸0.3モルを加えた。この溶液に20%水酸化ナトリウム水溶液を用いてpHを2.6に調整後、98℃で14時間攪拌した。その後、得られた沈殿物をよく洗浄し、120℃で乾燥することによりリン酸ジルコニウム化合物を合成した。
 このリン酸ジルコニウムの各成分量を測定したところ、組成式は、
 Na0.6(NH40.4Zr1.98Hf0.02(PO43・0.09H2
であった。
 得られたリン酸ジルコニウム0.09モルに硝酸銀0.05モルを溶解した脱イオン水の水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が340μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重1.03に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.55Na0.05(NH40.40Zr1.98Hf0.02(PO43・0.09H2
さらに、この乾燥品をガス炉を用いて1100℃で12時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は55であった。この粉末を解砕することで得られた比較例2の銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、を測定し、これらの結果を表1に示した。
<比較例3>
 脱イオン水300mlにシュウ酸2水和物0.1モル、ハフニウム0.17%含有オキシ塩化ジルコニウム8水和物0.2モルおよび塩化アンモニウム0.1モルを溶解後、攪拌しながらリン酸0.3モルを加えた。この溶液に20%水酸化ナトリウム水溶液を用いてpHを2.6に調整後、98℃で14時間攪拌した。その後、得られた沈殿物をよく洗浄し、120℃で乾燥することによりリン酸ジルコニウム化合物を合成した。
このリン酸ジルコニウムの各成分量を測定したところ、組成式は、
 Na0.6(NH40.4Zr1.98Hf0.02(PO43・0.09H2
であった。
得られたリン酸ジルコニウム0.09モルに硝酸銀0.05モルを溶解した脱イオン水の水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が770μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重1.16に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.55Na0.05(NH40.40Zr1.98Hf0.02(PO43・0.19H2
さらに、この乾燥品をガス炉を用いて1150℃で4時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は55であった。この粉末を解砕することで得られた比較例2の銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、を測定し、これらの結果を表1に示した。
<比較例4>
 脱イオン水300mlにシュウ酸2水和物0.1モル、ハフニウム0.17%含有オキシ塩化ジルコニウム8水和物0.2モルを溶解後、攪拌しながらリン酸0.3モルを加えた。この溶液に20%水酸化ナトリウム水溶液を用いてpHを2.6に調整後、98℃で8時間攪拌した。その後、得られた沈殿物をよく洗浄し、120℃で乾燥することによりリン酸ジルコニウム化合物を合成した。
 このリン酸ジルコニウムの各成分量を測定したところ、組成式は、
 Na1.0Zr1.98Hf0.02(PO43・0.09H2
であった。
得られたリン酸ジルコニウム0.09モルに硝酸銀0.05モルを溶解した脱イオン水の水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が190μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重0.82に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.55Na0.050.40Zr1.98Hf0.02(PO43・0.17H2
さらに、この乾燥品をガス炉を用いて800℃で2時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は3であった。この粉末を解砕することで得られた比較例4の銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、を測定し、これらの結果を表1に示した。
<比較例5>
 脱イオン水300mlにシュウ酸2水和物0.1モル、ハフニウム0.17%含有オキシ塩化ジルコニウム8水和物0.2モルを溶解後、攪拌しながらリン酸0.3モルを加えた。この溶液に20%水酸化ナトリウム水溶液を用いてpHを2.6に調整後、98℃で8時間攪拌した。その後、得られた沈殿物をよく洗浄し、120℃で乾燥することによりリン酸ジルコニウム化合物を合成した。
このリン酸ジルコニウムの各成分量を測定したところ、組成式は、
 Na1.0Zr1.98Hf0.02(PO43・0.09H2
であった。
 得られたリン酸ジルコニウム0.09モルに硝酸銀0.05モルを溶解した脱イオン水の水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が175μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重0.44に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.55Na0.050.55Zr1.98Hf0.02(PO43・0.21H2
さらに、この乾燥品をガス炉を用いて900℃で2時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は52であった。この粉末を解砕することで得られた比較例5の銀系無機抗菌剤のメジアン径(μm)、最大粒径(μm)および大腸菌に対する最小発育阻止濃度(MIC、μg/ml)、を測定し、これらの結果を表1に示した。
<比較例6>
 脱イオン水300mlにシュウ酸2水和物0.1モル、ハフニウム0.15%含有オキシ塩化ジルコニウム8水和物0.2モルを溶解後、攪拌しながらリン酸0.3モルを加えた。この溶液に20%水酸化ナトリウム水溶液を用いてpHを2.2に調整後、98℃で6時間攪拌した。その後、得られた沈殿物をよく洗浄し、120℃で乾燥することによりリン酸ジルコニウム化合物を合成した。
このリン酸ジルコニウムの各成分量を測定したところ、組成式は、
 Na0.96Zr1.99Hf0.02(PO43・0.10H2
であった。
 得られたリン酸ジルコニウム0.09モルに硝酸銀0.02モルを溶解した1N硝酸水溶液450mlを加え、60℃で2時間攪拌することで銀を担持させた。銀を担持処理後のスラリーを濾過・水洗し、濾液の電気伝導度が660μSまで洗浄し、固形分を120℃で乾燥したものをかさ比重0.51に調整した。
 この銀を担持したリン酸ジルコニウムからなる乾燥固形分の各成分量を測定することにより得られた組成式は以下のとおりであった。
 Ag0.21Na0.380.37Zr1.99Hf0.02(PO43・0.10H2
さらに、この乾燥品をガス炉を用いて750℃で48時間処理することで熱分解した。熱分解処理後の銀を担持したリン酸ジルコニウムの粉末X線回折図を測定した結果、リン酸ジルコニウム化合物を示す2θ=20.1のX線強度に対する、ピロリン酸ジルコニウムを示す2θ=21.4のピークの相対強度は4であった。この粉末を解砕することで得られた比較例6の銀系無機抗菌剤のメジアン径(単位μm)、最大粒径(単位μm)および大腸菌に対する最小発育阻止濃度(MIC、単位μg/ml)、を測定し、これらの結果を表2に示した。なお、表1は各々の具体例の製造条件等をまとめたものである。
Figure JPOXMLDOC01-appb-T000001
表中の(-)は測定していないことを示す。
Figure JPOXMLDOC01-appb-T000002
表2の結果から実施例1~7の銀系無機抗菌剤は、比較例と同程度の粒度と高い抗菌性(MIC)を維持したまま、銀溶出量を低減できていることが明白である。
<実施例8:光硬化性樹脂での評価>
 実施例1~7および比較例1~6で得られた銀系無機抗菌剤を多官能光硬化性樹脂に3%配合し、PETフィルム上に約2ミクロンの厚さで塗工後、硬化することで抗菌性ハードコートフィルムを作成した。また比較のため、抗菌剤を配合しないブランクハードコートフィルムも同様に作成した。得られたハードコートフィルム上の塗膜部分の平滑性を触診とSEM観察にて確認した結果を表2に示した。また、ハードコートフィルムをそのまま、または25℃の脱イオン水に16時間浸漬後の塗膜面をJIS Z2801 5.2プラスチック製品などの試験方法による大腸菌を用いた抗菌性試験を実施した。得られた抗菌活性値の結果も表3に示した。なお、抗菌活性値は、抗菌加工製品と無加工製品における試験後の細菌の生菌数の対数値の差を示す値であり、単位はない。通常は、抗菌活性値が2.0以上の場合に、抗菌加工の効果が認められる判定とされる。
Figure JPOXMLDOC01-appb-T000003
<実施例9:ナイロン糸での評価>
 実施例1、7および比較例1、2、6で得られた銀系無機抗菌剤をナイロン樹脂に対して1%配合し、約3デニールのナイロンマルチフィラメントを紡糸した。紡糸時の糸切れ状況、紡糸後の糸の色調を表3に示した。なお、糸切れ試験は6kg巻きの未延伸糸パッケージ1個を得るまでに、糸切れが発生したかどうかで評価した。色調は紡糸後の糸の色彩値を、日本電子工業(株)製測色色差計シグマ80型によって測定し、JIS Z8730-1980に規定するハンターLab表色系により表示し、ブランク糸との比較によって色差ΔE(デルタE)を算出した。得られた抗菌ナイロンマルチフィラメントの抗菌性を未処理のものと洗濯10回後のものに関し、JIS L1902繊維製品の抗菌性試験方法により抗菌性を評価し、得られた抗菌活性値の結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
<実施例10:ウレタン発泡体での評価>
 ポリエーテルポリオール、トリエチレンジアミン、水、メチレンクロライド、整泡剤、触媒、トルレンジイソシアネート、酸化亜鉛の配合物100部に対し、実施例1で作製した銀系無機抗菌剤を0.7部になるように配合し、抗菌性ウレタン発泡体Aを作製した。
同様に、実施例2、3および比較例1~3で作製した比較銀系無機抗菌剤を用いて、抗菌性ウレタン発泡体B、Cおよび比較抗菌性ウレタン発泡体d~fを作製した。得られた抗菌性ウレタン発泡体および同抗菌性ウレタン発泡体を50℃の脱イオン水に16時間浸漬処理後乾燥した耐水処理後のものについて、黄色ブドウ球菌および大腸菌を用いた抗菌製品技術協議会のシェーク法による抗菌性試験により抗菌活性値を測定し、その結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 これらの結果から、本発明の銀系無機抗菌剤は、耐水試験後の抗菌性に優れるとともにプラスチック製品に配合した際の加工性や耐変色性にも優れていることが認められた。
 本発明の新規の銀系無機抗菌剤は、均一かつ微粒子であるため加工性に優れており、しかもプラスチック製品などに加工した後の耐水性試験後など抗菌性の持続性にも優れている。従って、水の接触する機会の多い製品などにも適用性の高い銀系無機抗菌剤として使用できる。
図1および図2の縦軸は粉末X線回折測定におけるX線強度(単位:cps)を表す。
図1および図2の横軸はX線の回折角度2θ(単位:°)を表す。

Claims (5)

  1. ピロリン酸ジルコニウム(ZrP27)を含有する下記式〔1〕で示される銀系無機抗菌剤。
     AgabZrcHfd(PO43・nH2O   〔1〕

    (式〔1〕において、Mはアルカリ金属イオン、アンモニウムイオン、水素イオン、オキソニウムイオンから選ばれる少なくとも1種のイオンであり、a、b、cおよびdは正数であり、1.75<(c+d)<2.2、a+b+4(c+d)=9を満たす数であり、nは2以下である。)
  2. 粉末X線回折図において、2θが20.0°~20.2°のX線回折ピークの強度を100とした場合に、2θ=21.3°~21.5°のX線回折ピークの相対強度が5~50である請求項1に記載の銀系無機抗菌剤。
  3. 湿式合成または水熱合成により得られた、水に懸濁させた際の電気伝導度が15μS以上570μS以下の、式〔1〕で示される銀系無機抗菌剤を、800℃以上1100℃以下で熱分解することを特徴とする請求項1または2の銀系無機抗菌剤の製造方法。
  4. 熱分解前のかさ比重を0.80~2.00(g/ml)とする、請求項3の銀系無機抗菌剤の製造方法。
  5.  請求項1または2に記載の銀系無機抗菌剤を含有する耐水性抗菌加工製品。
PCT/JP2010/058502 2009-05-21 2010-05-20 銀系無機抗菌剤およびその製造方法、ならびに抗菌加工製品 WO2010134566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117029565A KR101665743B1 (ko) 2009-05-21 2010-05-20 은계 무기 항균제 및 그 제조 방법, 및 항균 가공제품
CN201080021352.5A CN102427732B (zh) 2009-05-21 2010-05-20 银系无机抗菌剂及其制造方法、以及抗菌加工制品
JP2011514443A JP5354012B2 (ja) 2009-05-21 2010-05-20 銀系無機抗菌剤およびその製造方法、ならびに抗菌加工製品
US13/321,322 US8313780B2 (en) 2009-05-21 2010-05-20 Silver-based inorganic antimicrobial agent, method for preparing the same and antimicrobial product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-122625 2009-05-21
JP2009122625 2009-05-21

Publications (1)

Publication Number Publication Date
WO2010134566A1 true WO2010134566A1 (ja) 2010-11-25

Family

ID=43126242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058502 WO2010134566A1 (ja) 2009-05-21 2010-05-20 銀系無機抗菌剤およびその製造方法、ならびに抗菌加工製品

Country Status (5)

Country Link
US (1) US8313780B2 (ja)
JP (1) JP5354012B2 (ja)
KR (1) KR101665743B1 (ja)
CN (1) CN102427732B (ja)
WO (1) WO2010134566A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173499A (ja) * 2015-03-17 2016-09-29 富士フイルム株式会社 断熱フィルム、断熱ガラスおよび窓
JP2017025170A (ja) * 2015-07-17 2017-02-02 大建工業株式会社 抗ウイルス用塗料組成物
CN115820117A (zh) * 2023-01-10 2023-03-21 福州大学 一种抗菌超疏水复合涂层及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807816B (zh) * 2012-06-08 2016-02-24 上海可孚化工有限公司 一种用于手推车涂层的抗菌尼龙粉末的制备方法
KR101405092B1 (ko) * 2012-09-21 2014-06-10 (주)에이씨티 항균성분이 코팅된 인산지르코늄 분말의 제조방법 및 항균성분을 담지한 인산지르코늄 분말
CN108697094A (zh) * 2016-03-01 2018-10-23 东亚合成株式会社 抗病毒剂、涂料组合物、树脂组合物及抗病毒制品
CN106220806A (zh) * 2016-07-26 2016-12-14 福建师范大学泉港石化研究院 一种抗菌热塑性聚氨酯及其制备方法
CN106729902B (zh) * 2017-03-17 2019-06-18 闽南师范大学 一种抗菌防霉去甲醛的活性材料及其制备方法
CN106943616B (zh) * 2017-03-17 2019-10-15 闽南师范大学 一种能光热催化产生负氧离子的活性材料及其制备方法
US10967082B2 (en) 2017-11-08 2021-04-06 Parasol Medical, Llc Method of limiting the spread of norovirus within a cruise ship
US10864058B2 (en) 2018-03-28 2020-12-15 Parasol Medical, Llc Antimicrobial treatment for a surgical headlamp system
US20200097936A1 (en) * 2018-09-25 2020-03-26 Parasol Medical LLC Antimicrobial treatment for vending machines and gambling gaming machines
CN111011397B (zh) * 2019-11-26 2021-07-27 安徽正合雅聚新材料科技有限公司 一种含银无机抗菌剂
DE202020102560U1 (de) * 2020-05-06 2021-08-09 Amc Ag Advanced Methods Of Coating Bakterizides Haftklebepapier
KR102429239B1 (ko) * 2020-12-01 2022-08-05 엘지전자 주식회사 냉장고
CN114277614A (zh) * 2022-01-04 2022-04-05 吉林大学 一种具有等离激元共振性能的氧化物材料及抗菌包装应用
KR102579935B1 (ko) * 2022-01-06 2023-09-15 장선경 다층 구조를 가지는 고성능 패드

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517112A (ja) * 1991-07-12 1993-01-26 Toagosei Chem Ind Co Ltd 結晶質リン酸ジルコニウム化合物の製造方法
JPH0648713A (ja) * 1992-07-29 1994-02-22 Toagosei Chem Ind Co Ltd 結晶質リン酸ジルコニウムの製造方法
JP2008074781A (ja) * 2006-09-22 2008-04-03 Toagosei Co Ltd 銀系無機抗菌剤
JP2008074778A (ja) * 2006-09-22 2008-04-03 Toagosei Co Ltd 銀系無機抗菌剤
WO2009044478A1 (ja) * 2007-10-05 2009-04-09 Toagosei Co., Ltd. 銀系無機抗菌剤
WO2009044477A1 (ja) * 2007-10-05 2009-04-09 Toagosei Co., Ltd. 銀系無機抗菌剤

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653566B2 (ja) 1984-05-11 1994-07-20 第一稀元素化学工業株式会社 結晶質リン酸ジルコニウムの製造方法
JP2773286B2 (ja) * 1989-08-29 1998-07-09 東亞合成株式会社 抗菌剤
JP2890871B2 (ja) 1991-02-28 1999-05-17 東亞合成株式会社 抗菌性樹脂組成物
JP3448896B2 (ja) * 1992-05-21 2003-09-22 東亞合成株式会社 抗菌剤の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517112A (ja) * 1991-07-12 1993-01-26 Toagosei Chem Ind Co Ltd 結晶質リン酸ジルコニウム化合物の製造方法
JPH0648713A (ja) * 1992-07-29 1994-02-22 Toagosei Chem Ind Co Ltd 結晶質リン酸ジルコニウムの製造方法
JP2008074781A (ja) * 2006-09-22 2008-04-03 Toagosei Co Ltd 銀系無機抗菌剤
JP2008074778A (ja) * 2006-09-22 2008-04-03 Toagosei Co Ltd 銀系無機抗菌剤
WO2009044478A1 (ja) * 2007-10-05 2009-04-09 Toagosei Co., Ltd. 銀系無機抗菌剤
WO2009044477A1 (ja) * 2007-10-05 2009-04-09 Toagosei Co., Ltd. 銀系無機抗菌剤

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173499A (ja) * 2015-03-17 2016-09-29 富士フイルム株式会社 断熱フィルム、断熱ガラスおよび窓
JP2017025170A (ja) * 2015-07-17 2017-02-02 大建工業株式会社 抗ウイルス用塗料組成物
CN115820117A (zh) * 2023-01-10 2023-03-21 福州大学 一种抗菌超疏水复合涂层及其制备方法
CN115820117B (zh) * 2023-01-10 2023-08-01 福州大学 一种抗菌超疏水复合涂层及其制备方法

Also Published As

Publication number Publication date
JP5354012B2 (ja) 2013-11-27
JPWO2010134566A1 (ja) 2012-11-12
KR20120028913A (ko) 2012-03-23
US20120070509A1 (en) 2012-03-22
KR101665743B1 (ko) 2016-10-12
US8313780B2 (en) 2012-11-20
CN102427732B (zh) 2014-09-17
CN102427732A (zh) 2012-04-25

Similar Documents

Publication Publication Date Title
JP5354012B2 (ja) 銀系無機抗菌剤およびその製造方法、ならびに抗菌加工製品
JP4775376B2 (ja) 銀系無機抗菌剤及び抗菌製品
KR101380905B1 (ko) 은계 무기 항균제
JP5327318B2 (ja) 銀系無機抗菌剤およびその製造方法
US8110205B2 (en) Silver-containing inorganic antibacterial
JP5092327B2 (ja) 銀系無機抗菌剤
JP4893184B2 (ja) 銀系無機抗菌剤
JP2000143420A (ja) 抗菌剤及び抗菌性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080021352.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514443

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13321322

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117029565

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10777798

Country of ref document: EP

Kind code of ref document: A1