WO2010134356A1 - 水素生成システムおよび温水生成システム - Google Patents

水素生成システムおよび温水生成システム Download PDF

Info

Publication number
WO2010134356A1
WO2010134356A1 PCT/JP2010/003451 JP2010003451W WO2010134356A1 WO 2010134356 A1 WO2010134356 A1 WO 2010134356A1 JP 2010003451 W JP2010003451 W JP 2010003451W WO 2010134356 A1 WO2010134356 A1 WO 2010134356A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
hot water
water
hydrogen
hydrogen generation
Prior art date
Application number
PCT/JP2010/003451
Other languages
English (en)
French (fr)
Inventor
徳弘憲一
羽藤一仁
野村幸生
黒羽智宏
谷口昇
鈴木孝浩
田村聡
岡市敦雄
宮村憲浩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080018615.7A priority Critical patent/CN102414118B/zh
Priority to US13/320,626 priority patent/US20120063967A1/en
Priority to JP2010546993A priority patent/JP4759655B2/ja
Priority to EP10777592.6A priority patent/EP2433903B1/en
Publication of WO2010134356A1 publication Critical patent/WO2010134356A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a hydrogen generation system and a hot water generation system including a device that generates hydrogen by light irradiation.
  • Patent Document 1 an n-type semiconductor is used as a semiconductor electrode, and the semiconductor electrode is irradiated with light in a state where the semiconductor electrode and the counter electrode are electrically connected to decompose water to generate hydrogen and oxygen.
  • An apparatus capable of performing is disclosed.
  • Patent Documents 1 and 2 are systems that recover only hydrogen generated by the decomposition of water at the semiconductor electrode as an energy source, and are accumulated in the warm water generated by being warmed by sunlight. The use of heat energy is not considered. That is, in the configurations described in Patent Documents 1 and 2, the utilization efficiency of solar energy is insufficient.
  • the system described in Patent Document 3 uses water used for decomposition in a semiconductor electrode directly for hot water.
  • the decomposition phenomenon of water in the semiconductor electrode is governed by an electrochemical mechanism, and the decomposition efficiency is greatly influenced by the conductivity and pH of water.
  • water to be decomposed at the semiconductor electrode is directly used for the application of warm water, and it is not possible to mix an electrolyte and a buffer for adjusting pH, and hydrogen is generated at the semiconductor electrode. The problem was that the efficiency of the system would be very low.
  • Patent Document 3 since the system described in Patent Document 3 is generated in a state where hydrogen and oxygen are mixed, there is a problem that separation of hydrogen and oxygen is difficult and there is a risk of hydrogen explosion. It was.
  • the present invention solves the above-described conventional problems, and provides a hydrogen generation system that can achieve high hydrogen generation efficiency and at the same time effectively use the thermal energy of water heated by sunlight. Objective. Furthermore, this invention also aims at providing the warm water production
  • the hydrogen generation system of the present invention comprises: By holding the first liquid containing water and being irradiated with sunlight, a part of the water contained in the first liquid is decomposed into hydrogen and oxygen, and at least the first liquid A hydrogen generator that is partially heated, A first heat exchanger that cools the first liquid and heats the second liquid by heat exchange between the first liquid and the second liquid heated in the hydrogen generator.
  • a mechanism for introducing the first liquid cooled in the first heat exchanger into the hydrogen generator It has.
  • the hot water generation system of the present invention is A solar water heater that holds the first liquid and heats at least a part of the first liquid by being irradiated with sunlight; and A fuel cell; A mechanism for supplying hot water using heat recovered from the first liquid heated in the solar water heater and heat generated in the fuel cell; It is a system equipped with.
  • the second liquid is obtained by exchanging heat between the first liquid containing water to be decomposed in the hydrogen generation unit and the second liquid that is another liquid.
  • the second liquid is heated and used for various applications for extracting heat. That is, the first liquid used for water decomposition in the hydrogen generator can be mixed with an electrolyte and a pH adjusting liquid for increasing the hydrogen generation efficiency.
  • the temperature of the first liquid supplied to the hydrogen generator does not rise too much, the energy of the band gap of the optical semiconductor used in the hydrogen generator does not fluctuate and exhibits high quantum efficiency as designed. Is possible.
  • even heat energy obtained from sunlight can be used effectively.
  • the thermal energy generated from the fuel cell is also used, so that it is possible to provide an energy efficient hot water generation system.
  • System configuration diagram showing an example of a hydrogen generation system according to Embodiment 2 of the present invention The system block diagram which shows another example of the hydrogen generation system in Embodiment 2 of this invention
  • the system block diagram which shows another example of the hydrogen generation system in Embodiment 2 of this invention The system block diagram which shows another example of the hydrogen generation system in Embodiment 2 of this invention
  • System configuration diagram showing an example of a hydrogen generation system according to Embodiment 3 of the present invention System configuration diagram showing another example of the hydrogen generation system according to Embodiment 3 of the present invention
  • the system block diagram which shows another example of the hydrogen generation system in Embodiment 3 of this invention The system block diagram which shows another example of the hydrogen generation system in Embodiment 3 of this invention
  • System configuration diagram showing an example of a hydrogen generation system according to Embodiment 4 of the present invention System configuration diagram showing another example of the hydrogen generation system according to Embodiment 4 of the present invention
  • System configuration diagram showing an example of a hydrogen generation system according to Embodiment 5 of the present invention System configuration diagram showing another example of the hydrogen generation system according to Embodiment 5 of the present invention
  • the system block diagram which shows another example of the hydrogen production system in Embodiment 5 of this invention System configuration diagram showing an example of a hydrogen generation system according to Embodiment 6 of the present invention
  • System configuration diagram showing another example of the hydrogen generation system according to Embodiment 7 of the present invention System configuration diagram showing still another example of the hydrogen generation system according to Embodiment 7 of the present invention
  • System configuration diagram showing an example of a hydrogen generation system according to Embodiment 8 of the present invention System configuration diagram showing another example of a hydrogen generation system according to Embodiment 8
  • the hydrogen generation part constituting the hydrogen generation system in the present invention
  • a device having a semiconductor electrode containing a semiconductor material capable of decomposing water into hydrogen and oxygen and a counter electrode made of a conductive material.
  • the semiconductor material that decomposes water into hydrogen and oxygen when irradiated with light is also called “photocatalyst”.
  • FIG. 1 is an energy band diagram of the photocatalyst 101.
  • the generated holes 106 decompose water on the surface of the photocatalyst 101 according to the following reaction formula (1) to generate oxygen.
  • the hydrogen generation unit constituting the hydrogen generation system in the present invention has a structure including a semiconductor electrode and a counter electrode.
  • the semiconductor electrode and the counter electrode are preferably electrically connected by an external circuit.
  • the semiconductor material constituting the semiconductor electrode is an n-type semiconductor
  • the electrons 105 excited by the irradiation light move in the semiconductor electrode and move to the counter electrode through an external circuit.
  • the reaction of the reaction formula (2) occurs on the surface of the counter electrode to generate hydrogen.
  • the holes 106 generated by the excitation of the electrons 105 cause the reaction of the reaction formula (1) on the surface of the semiconductor electrode to generate oxygen.
  • the semiconductor material constituting the semiconductor electrode is a p-type semiconductor
  • the flow of electrons flowing through the circuit is reversed from that in the case of using an n-type semiconductor, and the reaction of the reaction formula (2) occurs on the surface of the semiconductor electrode.
  • Hydrogen reacts with the reaction electrode (1) on the surface of the counter electrode to generate oxygen.
  • the level of the band edge of the conduction band in FIG. 1 is reduced to the reduction level of hydrogen ions (0 V ( It is preferable that the level of the band edge of the valence band is equal to or higher than the oxidation potential of water (1.23 V (hydrogen standard potential)). That is, in FIG. 1, the band gap 102 is preferably 1.23 eV or more, and in order to excite the electron 105 by jumping over the band gap 102, the wavelength of the irradiation light needs to be about 1010 nm or less. Therefore, it is desirable to recover a wavelength region of 1010 nm or more (light having a band gap or less) among the light energy contained in sunlight as thermal energy.
  • the electrons 105 acquire energy corresponding to the wavelength of the absorbed light, and immediately relax to the bottom of the conduction band 104 when excited.
  • Embodiment 1 shows configuration examples of the hydrogen generation system according to Embodiment 1 of the present invention.
  • a hydrogen generation system 2A of the present embodiment shown in FIG. 2A is introduced in a hydrogen generation unit 201, water heated by the hydrogen generation unit 201 (first liquid), and a water flow line 206 which is another path.
  • Heat exchanger 207 that exchanges heat with water (second liquid), cools the former water (water as the first liquid), and heats the latter water (water as the second liquid);
  • This mechanism includes a water path for reintroducing water cooled by the heat exchanger 207 into the hydrogen generator 201 and a pump 205 for circulating water in the water path.
  • This water path forms part of the circulation line 204 that connects the hydrogen generator 201 and the heat exchanger 207, and the pump 205 is provided on the circulation line 204.
  • the circulating water (first liquid) flowing through the circulation line 204 and the water (second liquid) flowing through the heated water flow line 206 do not cross each other, and heat exchange is performed. Only.
  • water is used as the first liquid flowing in the circulation line 204, but the first liquid is not limited to normal water, and a mixture and an aqueous solution of water and other than water are used. Including.
  • the hydrogen generation unit 201 when sunlight is irradiated, water is decomposed by a photocatalytic reaction to generate hydrogen and oxygen, and the water is heated by sunlight.
  • the hydrogen generator 201 is provided with a hydrogen outlet pipe 202 and an oxygen outlet pipe 203 for leading hydrogen gas and oxygen gas generated by water splitting inside the hydrogen generator 201 to the outside of the hydrogen generator 201. .
  • the hydrogen generator 201 is composed of at least a semiconductor electrode and a counter electrode, and the water supplied to the hydrogen generator 201 is separated into the semiconductor electrode side and the counter electrode side.
  • the hydrogen generation unit 201 of this embodiment includes a semiconductor electrode including a semiconductor material that can decompose water into hydrogen and oxygen.
  • a counter electrode made of a conductive material electrically connected to the semiconductor electrode, a first liquid in contact with the semiconductor electrode and the counter electrode (here, circulating water in the circulation line 204), the semiconductor electrode, And a housing portion that holds the first liquid therein, and a portion of the water contained in the first liquid is hydrogenated by irradiating the semiconductor electrode with sunlight. It has a structure in which hydrogen is generated by being decomposed into oxygen.
  • the oxygen outlet tube 203 is provided on the semiconductor electrode side of the hydrogen generator 201 and the hydrogen outlet tube 202 is provided on the counter electrode side. It is not limited to.
  • the installation positions of the hydrogen outlet tube 201 and the oxygen outlet tube 202 may be determined in accordance with the direction of electrons flowing between the semiconductor electrode and the counter electrode constituting the hydrogen generator 201. Therefore, depending on the direction of the electrons flowing between the semiconductor electrode and the counter electrode constituting the hydrogen generator 201, the hydrogen lead-out tube 202 may be provided on the semiconductor electrode side, and the oxygen lead-out tube 203 may be provided on the counter electrode side.
  • the circulating water flowing through the circulation line 204 by the power of the pump 205 is branched into a water flow flowing on the semiconductor electrode side and a water flow flowing on the counter electrode side inside the hydrogen generation unit 201.
  • Hydrogen gas and oxygen gas generated by sunlight irradiation are led out of the hydrogen generator 201 from the hydrogen lead-out pipe 202 and the oxygen lead-out pipe 203.
  • the circulating water is heated by sunlight, and then heat exchanged with the water flowing through the water flow line 206 by the heat exchanger 207. Thereafter, the circulating water is conducted through the circulation line 204 and supplied to the hydrogen generator 201 again.
  • water may be appropriately supplied from the outside.
  • the water flowing through the water flow line 206 receives heat from the circulating water flowing through the circulation line 204 in the heat exchanger 207 and becomes hot water.
  • a valve 210 may be provided on the water flow line 206, and the valve may be opened and closed so that hot water can be taken out when necessary.
  • the hydrogen generator 201 and the heat exchanger 207 are preferably provided adjacent to each other.
  • the water pipe between the hydrogen generator 201 and the heat exchanger 207 is preferably insulated from the outside air so that the water temperature does not decrease.
  • the branch of the circulation line 204 for flowing water by separating the semiconductor electrode side and the counter electrode side is not necessarily performed inside the hydrogen generation unit 201.
  • a structure that branches off before being introduced into the hydrogen generation unit 201 may be employed as in a hydrogen generation system 2B that is another example of the present embodiment illustrated in FIG. 2B.
  • hydrogen gas and oxygen gas generated in the hydrogen generator 201 it is not necessary for the hydrogen gas and oxygen gas generated in the hydrogen generator 201 to be derived from the hydrogen generator 201 in a state where they are separated.
  • hydrogen gas and oxygen gas generated by solar irradiation are transported to the outside of the hydrogen generation unit 201 together with circulating water. It may be a configuration. Circulating water containing hydrogen led out from the electrode side (counter electrode side) that is not irradiated with sunlight, which constitutes the hydrogen generation unit 201, is introduced into the gas-liquid separator 208a and separated into liquid and gas. The gas separated from the liquid is led out from the circulation line 204 by the hydrogen lead-out pipe 202.
  • the circulating water containing oxygen led out from the electrode side (semiconductor electrode side) irradiated with sunlight constituting the hydrogen generator 201 is introduced into the heat exchanger 207 and flows through the water flow line 206. And heat exchange.
  • the circulating water that has exited the heat exchanger 207 joins with the circulating water that has flowed through the other electrode, is introduced into the gas-liquid separator 208b, and is separated into liquid and gas.
  • the separated gas is led out from the circulating water by the oxygen lead-out pipe 203. Thereafter, the circulating water is conducted through the circulation line 204 and supplied to the hydrogen generator 201 again.
  • hydrogen is contained in the circulating water led out from the counter electrode side and oxygen is contained in the circulating water led out from the semiconductor electrode side.
  • hydrogen may be generated from the semiconductor electrode side and oxygen may be generated from the counter electrode side. It is not limited to the configuration in which hydrogen is contained in the circulating water and oxygen is contained in the circulating water led out from the semiconductor electrode side.
  • the circulating water on the semiconductor electrode side may contain hydrogen, and the circulating water on the counter electrode side may contain oxygen.
  • the gas separated by the gas-liquid separation device 208a becomes oxygen
  • the gas separated by the gas-liquid separation device 208b becomes hydrogen. Therefore, the installation positions of the hydrogen lead-out pipe 202 and the oxygen lead-out pipe 203 are reversed. Become.
  • the water flow that flows on the semiconductor electrode side and the counter electrode side is such that the water on the semiconductor electrode side passes through the gas-liquid separator 208b and the water on the counter electrode side passes as in the hydrogen generation system 2D shown in FIG. 2D. It may be after passing through the gas-liquid separator 208a.
  • the hydrogen generation system of the present embodiment may have a configuration in which a storage facility 209 for storing hydrogen gas is further provided on the hydrogen outlet pipe 202 as in the hydrogen generation system 2E shown in FIG. 2E.
  • a storage facility 209 for storing hydrogen gas is further provided on the hydrogen outlet pipe 202 as in the hydrogen generation system 2E shown in FIG. 2E.
  • the storage facility 209 can be provided in any of the configurations shown in FIGS. 2A to 2D.
  • the storage facility 209 is accompanied by a gas compression mechanism.
  • the storage facility 209 can be a tank-like container, but when storing hydrogen, a storage facility made of a hydrogen storage alloy may be used. If necessary, before introducing hydrogen into the storage facility 209, a facility (dehumidifier) for drying the hydrogen may be provided.
  • circulation line 204 may be provided with a water inlet for adjusting the amount of water inside.
  • the hydrogen generation system in the present invention is not limited to each configuration example of the hydrogen generation unit 201 described below.
  • FIG. 3A shows a hydrogen generation unit 201 ⁇ / b> A that is a configuration example of the hydrogen generation unit 201.
  • the hydrogen generation unit 201A has a configuration suitably used for the hydrogen generation system 2A shown in FIG. 2A.
  • the hydrogen generation unit 201A includes a semiconductor electrode 301 in which a semiconductor material that is a photocatalyst is disposed on a conductive substrate, and a counter electrode made of a conductive material (a counter electrode made of a conductive material such as metal and carbon, or a metal on a conductive base material).
  • a counter electrode having a supported structure) 302 and an external circuit 303 linking the semiconductor electrode 301 and the counter electrode 302.
  • the semiconductor constituting the semiconductor electrode 301 is not necessarily a single-phase semiconductor, and may be a composite made up of a plurality of types of semiconductors.
  • the semiconductor electrode 301 and the counter electrode 302 are in contact with the circulating water 305 as the first liquid, and the semiconductor electrode 301, the counter electrode 302 and the circulating water 305 are held inside the housing unit 304.
  • a mechanism (not shown) that can apply a bias between the semiconductor electrode 301 and the counter electrode 302 may be provided.
  • Circulating water 305 used for decomposition in the hydrogen generation unit 201A circulates inside the housing unit 304.
  • the circulating water 305 flows through the circulation line 204 outside the hydrogen generator 201A.
  • the circulating water 305 may contain a supporting electrolyte, a redox material, a sacrificial reagent, and the like.
  • a part of the surface of the housing 304 on the semiconductor electrode 301 side is formed of a member that transmits sunlight.
  • the semiconductor electrode 301 and the counter electrode 302 are separated by a separator 306.
  • the separator 306 is preferably made of a material that allows liquid and ions contained therein to pass through but blocks gas. By separating the interior of the hydrogen generator 201A by the separator 306 into a region on the semiconductor electrode 301 side and a region on the counter electrode 302 side, the generated hydrogen gas and oxygen gas can be prevented from being mixed.
  • the separator 306 does not completely separate the semiconductor electrode 301 side and the counter electrode 302 side, and the water flow path is provided at a low position. Since the gas floats to a high place, the gas mixing can be prevented by providing the flow path at a low position.
  • the circulating water 305 for lubrication from one water inlet 307 to both the semiconductor electrode 301 side and the counter electrode 302 side.
  • the water inlet 307 may be provided on either the semiconductor electrode side or the counter electrode side.
  • Circulating water 305 is introduced from the water inlet 307 into the hydrogen generator 201A.
  • the semiconductor constituting the semiconductor electrode 301 is an n-type semiconductor
  • the circulating water 305 that has flowed toward the semiconductor electrode 301 generates oxygen by the reaction of the above reaction formula (1) on the electrode irradiated with sunlight.
  • the excited electrons are conducted through the external circuit 303 to generate hydrogen on the counter electrode 302 by the reaction of the above reaction formula (2).
  • light that is not absorbed by the semiconductor electrode 301 particularly infrared light, or light that is absorbed by the semiconductor electrode 301 but is not used in the chemical reaction of the reaction formulas (1) and (2) is emitted.
  • the circulating water 305 is heated by the thermal energy.
  • the circulating water 305 that flows on the semiconductor electrode 301 side is discharged from the water discharge port 308 on the semiconductor electrode 301 side to the outside of the hydrogen generator 201.
  • the gas flowing on the counter electrode 302 side is discharged from the water discharge port 309 on the counter electrode 302 side.
  • Oxygen and hydrogen generated on the semiconductor electrode 301 and the counter electrode 302 by the reaction of the reaction formulas (1) and (2) are discharged to the outside of the hydrogen generator 201 from the oxygen gas outlet 310 and the hydrogen gas outlet 311 respectively. Is done.
  • the circulating water 305 heated by sunlight discharged from the water discharge port 308 on the semiconductor electrode 301 side is introduced into the heat exchanger 207 shown in FIG. 2A through the circulation line 204.
  • heat is exchanged between the circulating water 305 used for water splitting and the second liquid (here, water) used for storing heat quantity flowing through the water flow line 206. Therefore, chemical substances such as a supporting electrolyte, a redox material, and a sacrificial reagent are not mixed in the liquid used for the purpose of accumulating heat. Therefore, the circulating water 305 as the first liquid can be adjusted to a liquid property most suitable for water splitting, and the second liquid in which the amount of heat is accumulated can be used as it is in daily life.
  • the water flow discharged from the water discharge port 308 on the semiconductor electrode 301 side and the water discharge port 309 on the counter electrode 302 side may be merged on either the upstream side or the downstream side of the heat exchanger 207. As shown, it is preferable that the water flow discharged from the water discharge port 308 on the semiconductor electrode 301 side merges with the water flow discharged from the water discharge port 309 on the counter electrode 302 side after passing through the heat exchanger 207. When both water streams are merged on the upstream side of the heat exchanger 207, part of the thermal energy of sunlight stored in the water stream discharged from the water discharge port 308 on the semiconductor electrode 301 side is damaged. is there.
  • FIG. 3B shows a hydrogen generation unit 201 ⁇ / b> B that is another configuration example of the hydrogen generation unit 201.
  • the hydrogen generation unit 201B has a configuration suitably used for the hydrogen generation system 2B shown in FIG. 2B.
  • FIG. 3B the same components as those in FIG.
  • the region on the semiconductor electrode 301 side and the region on the counter electrode 302 side are completely separated by the separator 306.
  • Water inlets 307 and 312 are provided on the semiconductor electrode 301 side and the counter electrode 302 side, respectively.
  • a mechanism (not shown) that can apply a bias between the semiconductor electrode 301 and the counter electrode 302 may be provided.
  • the hydrogen generator 201B it is necessary to branch the circulation line 204 as shown in FIG. 2B in order to provide water channels to both the semiconductor electrode 301 side and the counter electrode 302 side.
  • a structure such as the hydrogen generator 201B, it is possible to more reliably prevent the generated oxygen and hydrogen from being mixed, prevent the reverse reaction of the above reaction formula (3), and more reliably prevent hydrogen explosion. It becomes possible.
  • the circulating water 305 introduced from the water inlets 307 and 312 generates oxygen and hydrogen by the reaction of the above reaction formulas (1) and (2) on the semiconductor electrode 301 and the counter electrode 302, respectively, and then the water outlet Discharged from 308 and 309.
  • FIG. 3C shows a hydrogen generation unit 201 ⁇ / b> C that is still another configuration example of the hydrogen generation unit 201.
  • the hydrogen generation unit 201C has a configuration suitably used for the hydrogen generation systems 2C to 2E shown in FIGS. 2C to 2E.
  • the same reference numerals are used for the same components as in FIGS.
  • the hydrogen generator 201C has a configuration in which an oxygen outlet pipe and a hydrogen outlet pipe are not provided. Oxygen and hydrogen generated on the semiconductor electrode 301 and the counter electrode 302 are discharged together with the circulating water 305 from the water discharge port 308 on the semiconductor electrode 301 side and the water discharge port 309 on the counter electrode 302 side, respectively.
  • the discharged circulating water 305 and gas mixture are introduced into gas-liquid separators 208a and 208b, respectively, and separated into gas and liquid, as shown in FIGS. 2C to 2E.
  • the separated gases are led out from the hydrogen lead-out pipe 202 and the oxygen lead-out pipe 203, respectively.
  • the separation method may be any method such as heating, vibration, ultrasonic wave, stirring, and centrifugal separation, and a plurality of gas-liquid separation devices may be arranged in series for reliable separation.
  • Separation of water and hydrogen discharged from the water discharge port 309 on the counter electrode 302 side is performed before joining the water flow discharged from the water discharge port 308 on the semiconductor electrode 301 side as in the configuration shown in FIGS. 2C and 2E. It is desirable to be performed.
  • the gas-liquid separation device 208b may be installed before heat exchange in the heat exchanger 207, but heat loss In order to make the temperature as small as possible, it is preferable after heat exchange as in the hydrogen generation systems 2C to 2E. In particular, in order to completely remove excess residual gas from the water circulation line 204, the gas-liquid separation device 208b after joining with the water discharged from the water discharge port 309 on the counter electrode 302 side as in the hydrogen generation systems 2C and 2E. It is desirable to be provided.
  • gas-liquid separation devices may be provided both before and after the merge.
  • FIGS. 2A to 2E show configuration examples of the hydrogen generation system according to Embodiment 2 of the present invention.
  • the same components as those in FIGS. 2A to 2E are denoted by the same reference numerals, and description thereof is omitted.
  • the configuration of the hydrogen generation unit 201 is not limited to the configuration shown in the first embodiment.
  • the fuel cell 401 is further incorporated in the hydrogen generation systems 2A to 2E of the first embodiment, and the hydrogen lead-out pipe 202 that leads out the hydrogen generated in the hydrogen generation unit 201 to the outside And the heat exchanger 207 exchanges heat with the circulation line 204 so that the heated water flow line 206 is electrically connected to the fuel cell 401.
  • a mechanism for supplying the hydrogen generated in the hydrogen generator 201 to the fuel cell 401 is realized by the hydrogen lead-out pipe 202 connected to the fuel cell 401.
  • the fuel cell 401 may use any power generation type such as a solid polymer type, a solid oxide type, or a phosphoric acid type fuel cell.
  • a storage facility may be provided on the hydrogen outlet pipe 202 and the oxygen outlet pipe 203 as necessary.
  • the storage facility is preferably accompanied by a gas compression mechanism.
  • the storage facility may be a tank-like container, but when storing hydrogen, a storage facility made of a hydrogen storage alloy may be used.
  • the circulation line 204 may be provided with a water inlet for adjusting the amount of water inside.
  • a valve 405 may be installed in a portion after being heated by the fuel cell 401. By opening and closing the valve 405, hot water can be obtained when necessary.
  • the water flowing through the water flow line 206 before being subjected to heat exchange by the heat exchanger 207 is converted into a heat exchanger. It is good also as a structure which provided the bypass line 403 which joins again between the water flow line 206 and the heat exchanger 207, and the fuel cell 401, without letting 207 pass. Since the bypass line 403 is used as necessary, a valve 404 is provided.
  • the performance of the fuel cell when the temperature of the stack part constituting the fuel cell becomes unstable, the performance of the fuel cell also becomes unstable. Also in the present invention, there is a problem that the performance of the fuel cell 401 becomes unstable because the temperature of the liquid flowing in the water flow line 206 heated by the heat exchanger 207 varies. On the other hand, according to the configuration of the hydrogen generation system 4B, when the temperature of the water exchanged in the heat exchanger 207 is too high, the water introduced into the fuel cell 401 by cold water is opened by opening the valve 404. The temperature can be adjusted.
  • the hydrogen generation unit 201 does not separate the hydrogen and oxygen from the water, and is provided separately with the water flow.
  • the gas-liquid separators 208a and 208b can be separated.
  • bypass line 403 and the valve 404 may or may not be installed.
  • a storage facility 209 may be provided on the hydrogen outlet pipe 202 as in a hydrogen generation system 4D that is another example of the present embodiment shown in FIG. 4D.
  • the storage facility 209 is preferably accompanied by a gas compression mechanism.
  • the storage facility 209 can be a tank-like container, but when storing hydrogen, a storage facility made of a hydrogen storage alloy may be used. If necessary, before introducing hydrogen into the storage facility 209, a facility (dehumidifier) for drying the hydrogen may be provided.
  • hydrogen generation system 4D hydrogen could not be generated in the time zone when the solar light was not irradiated on the hydrogen generation unit 201, but hydrogen was not generated in the time zone when the solar light was irradiated.
  • By storing in the storage facility 209 it becomes possible to supply hydrogen to the fuel cell 401 even in a non-irradiated time zone.
  • a bypass line 403 and a valve 404 are installed, but these are not necessarily installed.
  • hydrogen and oxygen are separated by gas-liquid separators 208a and 208b provided outside the hydrogen generation unit 201.
  • gas-liquid separators 208a and 208b provided outside the hydrogen generation unit 201.
  • hydrogen generation is performed. It may be performed inside the unit 201.
  • FIGS. 2A to 2E and FIGS. 4A to 4D show configuration examples of the hydrogen generation system according to Embodiment 3 of the present invention.
  • 5A to 5D the same components as those in FIGS. 2A to 2E and FIGS. 4A to 4D are denoted by the same reference numerals, and description thereof is omitted.
  • the configuration of the hydrogen generation unit 201 is not limited to the configuration shown in the first embodiment.
  • the hydrogen generation system 5A shown in FIG. 5A is obtained by collecting the heat generated in the fuel cell 401 and the heat generated in the hydrogen generation unit 201 in the configuration of the hydrogen generation system according to the first and second embodiments.
  • a hot water storage tank 501 for storing hot water is further provided.
  • the hydrogen generation system 5A uses the heat quantity obtained in the heat exchanger (first heat exchanger) 207 and the heat exchanger (second heat exchanger) 402 provided in the fuel cell 401 as the hot water storage tank 501.
  • the heat exchanger (third heat exchanger) 502 provided in FIG. 4 the liquid exchanged with the liquid (third liquid) flowing through the water flow line 503 is accumulated.
  • the water flow line 206 constitutes a circulation line that circulates to the heat exchanger 207 again after heat exchange with the water flow line 503 in the heat exchanger 502 provided in the hot water storage tank 501.
  • the water flow line 206 further includes a pump 504 for circulating water.
  • the liquid flowing through the water flow line 206 is preferably pure water in order to prevent the fuel cell 401 from corrosion, but may be liquid such as antifreeze.
  • the hot water stored in the hot water storage tank 501 is distributed through the water flow line 503 by providing, for example, a valve 505 on the water flow line 503 and opening and closing the valve 505 as necessary.
  • the hydrogen generation unit 201 can solve the conventional problem that hot water cannot be stably supplied in a time zone with a short solar irradiation time, that is, at night, in bad weather, and in winter. Can do.
  • the hot water storage tank 501 by providing the hot water storage tank 501, the heat generated in the hydrogen generator 201 and the fuel cell 401 during the time zone irradiated with sunlight can be once stored in the hot water storage tank 501. It is possible to supply hot water stably even during bad weather and in the winter, when the solar irradiation time is short.
  • the hot water tank 501 is preferably covered with a heat insulating material or the like.
  • a storage facility may be provided on the hydrogen outlet pipe 202 and the oxygen outlet pipe 203 as necessary.
  • the storage facility is preferably accompanied by a gas compression mechanism.
  • the storage facility may be a tank-like container, but when storing hydrogen, a storage facility made of a hydrogen storage alloy may be used. If necessary, a facility (dehumidifier) for drying hydrogen or oxygen may be provided before introducing hydrogen or oxygen into the storage facility.
  • circulation line 204 may be provided with a water inlet for adjusting the amount of water inside.
  • the configuration of the hydrogen generation system 5A is similar to the hydrogen generation system 4B of the second embodiment, as in the hydrogen generation system 5B that is another example of the present embodiment shown in FIG. 5B. It can also be set as the structure which installed the bypass line 403 and the valve 404. FIG.
  • the cold water used for adjusting the temperature of the water introduced into the fuel cell 401 is not necessarily performed by the bypass line 403 provided in the water flow line 206. For example, it is performed by providing a mechanism for introducing city water. Also good.
  • a hydrogen generation system 5C which is another example of the present embodiment shown in FIG. 5C, does not separate hydrogen, oxygen, and water in the hydrogen generation system 5B, and does not perform hydrogen separation with the water flow. At the same time, it is led out and separated by the gas-liquid separators 208a and 208b.
  • the hydrogen generation system 5C is also provided with a bypass line 403 and a valve 404, but these are not necessarily installed.
  • a hydrogen generation system 5D which is another example of the present embodiment shown in FIG. 5D, has a configuration in which a storage facility 209 is further provided on the hydrogen outlet pipe 202 in the hydrogen generation system 5C.
  • the storage facility 209 is preferably accompanied by a gas compression mechanism.
  • the storage facility 209 can be a tank-like container, but when storing hydrogen, a storage facility made of a hydrogen storage alloy may be used. If necessary, before introducing hydrogen into the storage facility 209, a facility (dehumidifier) for drying the hydrogen may be provided.
  • hydrogen generation system 5D hydrogen was not able to be generated in the time zone when the solar light was not radiated to the hydrogen generation unit 201, but the hydrogen storage facility was installed during the time zone when the sunlight was radiated. By storing in 209, hydrogen can be supplied to the fuel cell 401 even in a non-irradiated time zone.
  • bypass line 403 and the valve 404 are provided also in the hydrogen generation system 5D, these are not necessarily installed.
  • FIGS. 2A to 2E, 4A to 4D, and 5A to 5D show configuration examples of the hydrogen generation system according to Embodiment 4 of the present invention.
  • 6A to 6C the same components as those in FIGS. 2A to 2E, 4A to 4D, and 5A to 5D are denoted by the same reference numerals, and the description thereof is omitted.
  • a hydrogen generation system 6A shown in FIG. 6A has a configuration in which a fuel cell 401 and a hot water tank 501 are further provided in the hydrogen generation system of the first embodiment, similar to the hydrogen generation system of the third embodiment.
  • the relationship between the fuel cell 401 and the hot water tank 501 is different from that of the hydrogen generation system of the third embodiment.
  • the water flow line 206 that exchanges heat with the circulation line 204 in the heat exchanger 207 is supplied from a portion in the temperature range where the temperature of water inside the hot water tank 501 is low, and heat exchange is performed. Heat is exchanged with the circulation line 204 in the vessel 207 and is supplied to the intermediate temperature region inside the hot water storage tank 501. Water flowing through the water flow line 206 is circulated by the power of the pump 504 provided on the water flow line 206. In addition, city water is preferably introduced through a line 601 into the low temperature portion inside the hot water tank 501.
  • heat exchange in the fuel cell 401 is performed by water flowing through the water flow line 602.
  • the water flowing through the water flow line 602 is supplied from the low temperature region inside the hot water storage tank 501, exchanges heat with the fuel cell 401 via the heat exchanger (second heat exchanger) 402, and is stored in the hot water storage tank 501. Water is supplied to the hot part. Water flowing through the water flow line 602 is driven by the power of a pump 603 provided on the water flow line 602.
  • the hydrogen generation system 6A has a configuration in which the recovery of the heat generated in the hydrogen generation unit 201 and the recovery of the heat generated in the fuel cell 401 are performed in parallel via the water flow line 206 and the water flow line 602. .
  • the hot water accumulated in the hot water tank 501 is taken out through the water flow line 604.
  • the extracted hot water is mixed with the low-temperature water supplied by the bypass line 605 and adjusted to a temperature suitable for the purpose of use.
  • the supplied low-temperature water does not necessarily have to be branched from the water flow line 206. Even if it is branched from the water flow line 601, another water flow line through which low-temperature water flows is provided. You may do it.
  • Extraction of hot water in a high temperature range from the hot water storage tank 501 and circulation of water flowing through the bypass line 605 are performed by the power of the pump 609 and the pump 610, respectively.
  • the water flow line 601, the water flow line 604, and the bypass line 605 are each provided with a valve 606, a valve 607, and a valve 608, and it is preferable to open and close the valve so that water flows only when necessary. .
  • a hydrogen generation system 6B which is another example of the present embodiment shown in FIG. 6B, has a configuration in which a radiator 611 is further installed on the circulation line 204 in the hydrogen generation system 6A.
  • the heat exchanger 207 heat exchange is not performed between the circulation line 204 and the water flow line 206, so that the temperature of the hydrogen generation unit 201 rises.
  • the band structure of the semiconductor used for the semiconductor electrode fluctuates and the physical properties of the semiconductor do not exhibit the designed characteristics.
  • the radiator 611 on the circulation line 204 as in the hydrogen generation system 6B, the temperature rise of the circulation line 204 can be suppressed, and the above-described problems can be solved.
  • the installation location of the radiator 611 is not particularly limited as long as it is on the circulation line 204, but in order to introduce water having a temperature as low as possible into the hydrogen generation unit 201, the installation place of the radiator 611 is on the circulation line 204. It is desirable to have just before circulating water is introduced.
  • the water flow line 206 performs heat exchange with the heat exchanger 207 and then returns to the hot water tank 501. Without being mixed with the hot water in the high temperature range taken out from the hot water storage tank 501.
  • the extracted hot water is mixed with the low-temperature water supplied by the bypass line 605 and adjusted to a temperature suitable for the purpose of use. At this time, as shown in FIG. 6C, the supplied low-temperature water does not necessarily have to be branched from the water flow line 206.
  • the temperature distribution in the hot water storage tank 501 is only the low temperature part and the high temperature part, and the formation and maintenance of the temperature boundary layer is facilitated.
  • the gas-liquid separation devices 208a and 208b for separating hydrogen and oxygen from water are installed, and the storage equipment 209 for storing hydrogen. Can be applied to the hydrogen lead-out line 202. Since the method of installation is as described above, it is omitted here.
  • the hydrogen generation system includes the hydrogen generation unit (here, the hydrogen generation unit 201) and the first heat exchanger (here, the heat exchanger) that are essential components of the hydrogen generation system of the present invention. 207), with respect to a mechanism (here, circulation line 204 and pump 205) that introduces the first liquid cooled in the first heat exchanger (here, circulation water in circulation line 204) into the hydrogen generator. Furthermore, a fuel cell (here, fuel cell 401), a hot water tank (here, hot water tank 501), and a second liquid (here, water in the water flow line 206) heated by the first heat exchanger are used.
  • a fuel cell here, fuel cell 401
  • a hot water tank here, hot water tank 501
  • a second liquid here, water in the water flow line 206 heated by the first heat exchanger are used.
  • water as a third liquid is exchanged by heat exchange between the fuel cell and a mechanism (here, the water flow line 206 and the pump 504) that joins the hot water in the hot water tank or supplies it as hot water.
  • a second heat exchanger here, heat exchanger 402 that heats the water in the water flow line 602 and a mechanism (here, the water line) that joins the heated third liquid with the hot water in the hot water tank. 602 and pump 603).
  • FIGS. 2A to 2E, 4A to 4D, 5A to 5D, and 6A to 6C show configuration examples of the hydrogen generation system according to Embodiment 5 of the present invention.
  • 7A to 7C the same components as those in FIGS. 2A to 2E, 4A to 4D, 5A to 5D, and 6A to 6C are denoted by the same reference numerals, and the description thereof is omitted.
  • a hydrogen generation system 7A shown in FIG. 7A has a configuration in which a fuel cell 401 and a hot water tank 501 are further provided in the hydrogen generation system of the first embodiment, similar to the hydrogen generation system of the fourth embodiment.
  • the relationship between the fuel cell 401 and the hot water storage tank 501 is different from that of the hydrogen generation system of the fourth embodiment.
  • the water flow line 206 is supplied with water from a low-temperature portion inside the hot water tank 501 by the power of the pump 504 installed on the water flow line 206, and in the heat exchanger 207, the circulation line After heat is exchanged with 204, heat is exchanged with the fuel cell 401 in the heat exchanger 402, and the water in the hot water storage tank 501 flows into the high temperature portion.
  • the hydrogen generation system 7 ⁇ / b> A has a configuration in which the recovery of heat generated in the hydrogen generation unit 201 and the recovery of heat generated in the fuel cell 401 are performed in series via the water flow line 206.
  • Cold water (preferably city water) is introduced into the low temperature portion of the hot water tank through the water flow line 601.
  • Hot water accumulated in the hot water tank 501 is taken out through the water flow line 604 by the power of the pump 609.
  • the extracted hot water is mixed with the low-temperature water supplied by the bypass line 605 and adjusted to a temperature suitable for the purpose of use.
  • the supplied low-temperature water does not necessarily have to be branched from the water flow line 206 as shown in FIG. 6A, and even if branched from the water flow line 601, another water flow line through which low-temperature water flows is provided. May be.
  • the water flow line 601, the water flow line 604, and the water flow line 605 are provided with a valve 606, a valve 607, and a valve 608, respectively, and the valve is opened and closed as necessary so that water can be conducted.
  • a hydrogen generation system 7B which is another example of the present embodiment shown in FIG. 7B, uses water flowing through the water flow line 206 in the hydrogen generation system 7A before being subjected to heat exchange by the heat exchanger 207.
  • the water flow line 206 and the bypass line 403 that joins the heat exchanger 207 and the fuel cell 401 again are provided without passing through the heat exchanger 207. Since the bypass line 403 is used as necessary, a valve 404 is provided.
  • the temperature of the water introduced into the fuel cell 401 by cold water can be adjusted by opening the valve 404. .
  • the water used for adjusting the temperature of the water does not necessarily have to be supplied by the bypass line 403, and may be supplied by being branched from the water flow line 601, or a water flow line through which low-temperature water flows is provided. It is good also as a structure supplied.
  • FIG. 7C which is another example of the present embodiment, has a configuration in which a heat radiator 611 is further provided on the circulation line 204 in the hydrogen generation system 7B.
  • a heat radiator 611 is further provided on the circulation line 204 in the hydrogen generation system 7B.
  • the hydrogen generation system includes the hydrogen generation unit (here, the hydrogen generation unit 201) and the first heat exchanger (here, the heat exchanger) that are essential components of the hydrogen generation system of the present invention. 207), with respect to a mechanism (here, circulation line 204 and pump 205) that introduces the first liquid cooled in the first heat exchanger (here, circulation water in circulation line 204) into the hydrogen generator.
  • a fuel cell here, fuel cell 401
  • a hot water tank here, hot water tank 501
  • a second liquid here, water in the water flow line 206 heated in the first heat exchanger.
  • a second heat exchanger (here, heat exchanger 402) that is heated by heat exchange with the fuel cell, and the second liquid heated in the second heat exchanger is used as hot water in the hot water storage tank.
  • Machine to join It said configured to include a (water flow line 206 and pump 504 in this case).
  • FIGS. 2A to 2E, 4A to 4D, 5A to 5D, 6A to 6C, and 7A to 7C are denoted by the same reference numerals, Omitted.
  • a hydrogen generation system 8A shown in FIG. 8A has a configuration in which a fuel cell 401 and a hot water tank 501 are further provided in the hydrogen generation system of the first embodiment, similarly to the hydrogen generation system of the fourth embodiment. And the method of using the water in the water storage tank 501 are different from those of the hydrogen generation system of the fourth embodiment.
  • a water flow line 601 through which city water preferably flows is branched into a water flow through the water flow line 206 and the water flow line 604 before entering the hot water tank 501.
  • the water flow flowing through the water flow line 206 is heat-exchanged with the circulation line 204 in the heat exchanger 207, and then the water temperature of the hot water storage tank 501 is supplied to the middle temperature region.
  • the water flow flowing through the water flow line 604 is heated inside the hot water tank 501 in a heat exchanger (third heat exchanger) 801 installed therein.
  • the heated water passes through the water flow line 604 as it is and is led out to the outside and used for daily life.
  • the water flow line 206 and the water flow line 604 are provided with a valve 802 and a valve 607, respectively, and it is desirable that they can be circulated as needed by opening and closing these valves.
  • heat exchange with the fuel cell 401 is performed by water flowing through the water flow line 602.
  • the water flowing through the water flow line 602 is supplied by branching from the middle temperature region inside the hot water storage tank 501 or directly from the water flow line 601, and is connected to the fuel cell 401 via the heat exchanger (second heat exchanger) 402. Heat exchange is performed, and the water in the hot water tank 501 is supplied to the high-temperature part.
  • the water flowing through the water flow line 602 is circulated by the power of the pump 603.
  • the water flow line 601 is branched and supplied into the hot water storage tank 501, so that a low temperature layer is provided inside the hot water storage tank 501, and water is supplied to the water flow line 602 from this low temperature portion. Also good.
  • Hot water in the hot water tank 501 is discharged outside the hot water tank 501 through the water flow line 804 using the power of the pump 803.
  • the discharged hot water is preferably used mainly for heating applications. It is desirable that the water flow line 804 is provided with a valve 805 so that it can be taken out as necessary.
  • the water flowing through the water flow line 604 used for daily use is not stored in the hot water storage tank for a long period of time, so that the risk of contamination with germs and the like is reduced.
  • the water flow line 604 and the water flow line 804 have a structure in which a bypass line 605 is connected to the water flow line 206 or the water flow line 601, and water is used by mixing the obtained hot water and low-temperature water. It can be adjusted to a temperature suitable for the purpose.
  • valve 806 and a valve 807 are installed on the bypass line 605 so that the amount of low-temperature water mixed with the water flow line 604 and the water flow line 804 can be adjusted.
  • a hydrogen generation system 8B which is another example of the present embodiment shown in FIG. 8B, has a configuration in which a radiator 611 is further provided on the circulation line 204 in the hydrogen generation system 8A.
  • a radiator 611 is further provided on the circulation line 204 in the hydrogen generation system 8A.
  • the water flow line 206 performs heat exchange with the heat exchanger 207, and then returns to the hot water tank 501. Without being mixed with the hot water in the high temperature range taken out from the hot water storage tank 501.
  • the extracted hot water is mixed with the low-temperature water supplied by the bypass line 605 and adjusted to a temperature suitable for the purpose of use.
  • the low-temperature water to be supplied does not necessarily have to be branched and supplied from the water flow line 206 as shown in FIG. 8A, and a water flow line through which low-temperature water flows is provided separately from the water flow line 601. May be supplied.
  • valve 806 and the valve 807 are installed on the bypass line 605 so that the amount of low-temperature water mixed with the water flow line 601 and the water flow line 804 can be adjusted. .
  • the water flowing through the water flow line 602 that exchanges heat with the fuel cell 401 may be branched from the water flow line 601 as shown in FIG. 8C, or a water flow line once branched from the water flow line 601 is provided to provide the hot water storage tank 501. It is also possible to form a layer in the low temperature region and supply from there.
  • the water flow line 602 is preferably provided with a valve 808.
  • the temperature distribution in the hot water storage tank 501 is only the high temperature part, or only the low temperature part and the high temperature part, and the formation and maintenance of the temperature boundary layer is facilitated.
  • the gas-liquid separation devices 208a and 208b for separating hydrogen and oxygen from water are installed, and the storage facility 209 for storing hydrogen. Can be applied to the hydrogen lead-out line 202. Since the installation method is as described above, it is omitted here.
  • the hydrogen generation system includes the hydrogen generation unit (here, the hydrogen generation unit 201) and the first heat exchanger (here, the heat exchanger) that are essential components of the hydrogen generation system of the present invention. 207), with respect to a mechanism (here, circulation line 204 and pump 205) that introduces the first liquid cooled in the first heat exchanger (here, circulation water in circulation line 204) into the hydrogen generator. Furthermore, a fuel cell (here, fuel cell 401), a hot water tank (here, hot water tank 501), and a second liquid (here, water in the water flow line 206) heated by the first heat exchanger are used.
  • a fuel cell here, fuel cell 401
  • a hot water tank here, hot water tank 501
  • a second liquid here, water in the water flow line 206 heated by the first heat exchanger are used.
  • Water as a third liquid (here, by a heat exchange between the fuel cell and a mechanism (here, the water flow line 206 and the pump 802) that joins the hot water in the hot water tank or supplies it as hot water.
  • a second heat exchanger (here, heat exchanger 402) that heats the water in the water flow line 602, and a mechanism that combines the heated third liquid with the hot water in the hot water tank (here, the water flow line). 602 and pump 603) and the hot water tank, and the fourth liquid is obtained by heat exchange between the hot water in the hot water tank and water as the fourth liquid (here, water in the water flow line 601). It can be said that it is the structure provided with the 3rd heat exchanger (here heat exchanger 801) to heat.
  • FIGS. 2A to 2E, 4A to 4D, 5A to 5D, 6A to 6C, 7A to 7C, and 8A to 8C are the same. Reference numerals are used and description thereof is omitted.
  • a hydrogen generation system 9A shown in FIG. 9A has a configuration in which a fuel cell 401 and a hot water tank 501 are further provided in the hydrogen generation system of the first embodiment, as in the hydrogen generation system of the fifth embodiment. And the method of using the water in the water storage tank 501 are different from the hydrogen generation system of the fifth embodiment.
  • a water flow line 601 through which city water preferably flows is branched into a water flow line 206 and a water flow through the water flow line 604 before entering the hot water tank 501.
  • the water flow line 206 branches from the water flow line 601 and then performs heat exchange with the circulation line 204 in the heat exchanger 207. After being heated in the heat exchanger 207, heat exchange is performed via the fuel cell 401 and the heat exchanger 402, and after further heating, the heat flows into the high temperature region of the hot water tank 501.
  • the water flow line 604 is heated through the heat exchanger 801 inside the hot water tank 501.
  • the hot water accumulated in the hot water storage tank 501 is used for heating by the water flow line 804 using the power of the pump 803, and the hot water heated in the hot water storage tank 501 is used for the hot water supply application. It is desirable.
  • the water flow line 604 and the water flow line 804 are provided with a valve 607 and a valve 805, respectively, so that they can be taken out as necessary.
  • the water flow line 604 and the water flow line 804 are connected to a bypass line 605 branched at a front portion (a portion upstream from the heat exchanger 207) heated in the heat exchanger 207 of the water flow line 206, respectively.
  • the water temperature can be adjusted to a temperature suitable for the purpose of use.
  • valve 806 and a valve 807 are installed on the bypass line 605 so that the amount of low-temperature water mixed with the water flow line 604 and the water flow line 804 can be adjusted.
  • the hydrogen generation system 9B is water flowing through the water flow line 206 in the hydrogen generation system 9A before being heat-exchanged by the heat exchanger 207.
  • a structure in which a water flow line 206 and a bypass line 403 that joins the water (water upstream of the heat exchanger 207) between the heat exchanger 207 and the fuel cell 401 again without passing through the heat exchanger 207 are provided. It has become. Since the bypass line 403 is used as necessary, a valve 404 is provided.
  • the temperature of the water exchanged in the heat exchanger 207 is too high, the temperature of the water introduced into the fuel cell 401 by cold water can be adjusted by opening the valve 404. it can.
  • the water used for adjusting the temperature of the water does not necessarily have to be supplied by the bypass line 403, and may be supplied by being branched from the water flow line 601, or a water flow line through which low-temperature water flows is provided. It is good also as a structure supplied.
  • FIG. 9C which is another example of the present embodiment, has a configuration in which a heat radiator 611 is further provided on the circulation line 204 in the hydrogen generation system 9B.
  • a heat radiator 611 is further provided on the circulation line 204 in the hydrogen generation system 9B.
  • the hydrogen generation system includes the hydrogen generation unit (here, the hydrogen generation unit 201) and the first heat exchanger (here, the heat exchanger) that are essential components of the hydrogen generation system of the present invention. 207), with respect to a mechanism (here, circulation line 204 and pump 205) that introduces the first liquid cooled in the first heat exchanger (here, circulation water in circulation line 204) into the hydrogen generator.
  • a fuel cell here, fuel cell 401
  • a hot water tank here, hot water tank 501
  • a second liquid here, water in the water flow line 206 heated in the first heat exchanger.
  • a second heat exchanger (here, heat exchanger 402) that is heated by heat exchange with the fuel cell, and the second liquid heated in the second heat exchanger is used as hot water in the hot water storage tank.
  • Machine to join (Here, the water flow line 206 and the pump 802) are provided inside the hot water storage tank, and the heat exchange between the hot water in the hot water storage tank and the water as the third liquid (here, water in the water flow line 601). It can be said that it is the structure provided with the 3rd heat exchanger (here heat exchanger 801) which heats the 3rd liquid.
  • FIGS. 2A to 2E show each configuration example of the hydrogen generation system according to Embodiment 8 of the present invention.
  • 10A and 10B are the same as FIGS. 2A to 2E, 4A to 4D, 5A to 5D, 6A to 6C, 7A to 7C, 8A to 8C, and 9A to 9C.
  • symbol is used and description is abbreviate
  • heat is exchanged among the circulation line 204, the water flow line 1001, and the water flow line 1002 in the heat exchanger (first heat exchanger) 207.
  • the water flow line 1001 is a water flow line mainly used for heating applications
  • the water flow line 1002 is a water flow line that flows from a high temperature region of the hot water tank 501 to a low temperature region or a middle temperature region.
  • the water flow line 1001 and the water flow line 1002 each include a pump 1003 and a pump 1004 as power sources.
  • the water flow line 601 is connected to the low temperature region of the hot water tank 501. It is desirable that the water flow line 601 is provided with a valve 606 so that it can flow as required.
  • the heat exchange with the fuel cell 401 is performed in the heat exchanger (second heat exchanger) 402 with the water flowing through the water flow line 602.
  • the water flow line 602 is provided with a pump 603 as a power source.
  • the water flow line 602 is configured to flow low temperature water by branching the low temperature region of the hot water tank 501 or the water flow line 601.
  • the water flow line 602 is configured to flow to the high temperature region of the hot water tank 501 after exchanging heat with the fuel cell 401.
  • Hot water in the high temperature region of the hot water storage tank 501 is used for hot water supply through the water flow line 604 by the power of the pump 803. It is desirable that the water flow line 604 is provided with a valve 607 so that it can be taken out as necessary.
  • the water flow line 604 and the water flow line 1001 are provided with a bypass line 605 and a bypass line 1005, respectively.
  • the water temperature is adjusted to a temperature suitable for the purpose of use. It is configured to be able to.
  • the bypass line 605 is a line formed by branching a line from a low-temperature portion after heat is applied by the heat exchanger 207 in the water flow line 1002, a line from a low-temperature region of the hot water tank, or a water flow line 601.
  • the bypass line 1005 is a similar line or a line formed by branching the bypass line 605.
  • bypass line 605 and the bypass line 1005 are provided with a valve 806 and a valve 807 so that they can flow as needed.
  • a valve 1006 is also installed on the water flow line 1001 so that it can flow as necessary.
  • a hydrogen generation system 10B which is another example of the present embodiment, has a configuration in which a radiator 611 is further provided on the circulation line 204 in the hydrogen generation system 10A. With this configuration, even when heat exchange cannot be performed in the heat exchanger 207 for some reason, the temperature of the water flowing through the circulation line 204 can be lowered by the radiator 611. Since the installation method of the radiator 611 is as described above, it is omitted here.
  • symbol is used and description is abbreviate
  • the hydrogen generation system 11A shown in FIG. 11A has the same configuration as the hydrogen generation system 5A of Embodiment 3, but the operation method is different. Note that the configuration of the hydrogen generation unit 201 is not limited to the configuration shown in the first embodiment.
  • Hydrogen generation system contains liquid inside. Therefore, when the temperature of the liquid decreases and freezes, the hydrogen generation system may be damaged. In addition, if the hydrogen generation unit is covered with snow due to snow accumulation, the hydrogen generation unit is not irradiated with sunlight, and a water splitting reaction cannot be caused.
  • the temperature of the circulating water (first liquid) in the circulation line 204 is such that the liquid (second liquid) in the water flow line 206 and the water in the water flow line 503 are used.
  • the circulation line 204 is circulated by heat exchange between the circulation water in the circulation line 204 and the liquid in the water flow line 206 or the water in the water flow line 503. It has a mechanism that can heat water. Specifically, the amount of heat flowing from the circulation line 204 toward the hot water storage tank 501 during normal operation is returned to the circulation line 204 to prevent freezing and snow melting.
  • the water flowing through the water flow line 206 can be made to flow backward so that the liquid flowing through the circulation line 206 becomes heat exchanger 502 ⁇ heat exchanger 402 ⁇ heat exchanger 207. That's fine.
  • the amount of heat accumulated in the hot water storage tank 501 in the heat exchanger 502 is given to the liquid flowing in the water flow line 206, and further in the heat exchanger 207 from the liquid flowing in the circulation line 206. Given to the liquid flowing through.
  • the configuration of the hydrogen generation system 11A can be used together with the hydrogen generation systems of the first to eighth embodiments.
  • a hydrogen generation system 11B which is another example of the present embodiment shown in FIG. 11B, has a configuration in which a bypass line 1101 is provided that enables hot water to be distributed from the hot water storage tank 501 to the circulation line 204. Yes.
  • the hydrogen generation unit 201 when the hydrogen generation unit 201 is covered with snow and is not irradiated with sunlight, or when water inside the hydrogen generation system 11B may freeze, it is provided on the bypass line 1101.
  • the valve 1102 By operating the valve 1102 and introducing hot water into the circulation line 204, freezing can be prevented or snow can be melted.
  • the bypass line 1101 has a configuration in which a pump 1103 is installed as a power source.
  • the configuration of the hydrogen generation system 11B can be used together with the systems of the first to eighth embodiments.
  • a hydrogen generation system 11C as another example of the present embodiment shown in FIG. 11C is further provided with a valve 1104 and a lead-out line 1105 on the circulation line 204 in the hydrogen generation system 11B, and the liquid inside the circulation line 204 is externally supplied. It has a structure that can be discharged.
  • the valve 1104 is operated to remove the liquid inside the circulation line 204 from the outlet line 1105 to the outside. It is possible to prevent the hydrogen generation system 11C from being damaged.
  • the hydrogen generation system 11C can be easily restored by preparing a refill liquid and refilling it.
  • the configuration of the hydrogen generation system 11C can be used together with the hydrogen generation systems of the first to eighth embodiments and the hydrogen generation systems 11A and 11B of the present embodiment.
  • gas-liquid separation devices 208a and 208b for separating hydrogen and oxygen from water are provided (see FIG. 11D), and hydrogen is stored.
  • a configuration (see FIG. 11E) in which the storage facility 209 is installed on the hydrogen lead-out line 202 is applicable. Since the method of installation is as described above, it is omitted here.
  • the hydrogen generation systems of Embodiments 1 to 9 described above are systems that generate hot water as well as systems that generate hydrogen. Therefore, the configuration of the hydrogen generation system of Embodiments 1 to 9 and the description thereof can be applied to the configuration of the embodiment of the hot water generation system of the present invention and the description thereof at the same time.
  • the hot water generation system of the present invention is a solar water heater that holds the first liquid and heats at least a part of the first liquid when irradiated with sunlight, a fuel cell, It is a system comprising a mechanism for supplying hot water using heat recovered from the first liquid heated in a solar water heater and heat generated in the fuel cell.
  • the hot water system of the present invention cools the first liquid heated in the solar water heater, the fuel cell, and the solar water heater by heat exchange with a second liquid, and the second A first heat exchanger that heats the second liquid, and a second heat that further heats the second liquid by heat exchange between the fuel cell and the second liquid heated in the first heat exchanger. 2 heat exchangers, and a system for supplying hot water using the second liquid heated in the second heat exchanger may be used.
  • the hydrogen generation unit is used in the hot water generation system according to the present invention.
  • the hydrogen generation unit Corresponds to a solar water heater.
  • the hydrogen generation system according to the present invention can recover not only hydrogen energy obtained by decomposing water by irradiation with sunlight, but also heat energy from circulating water heated by sunlight to obtain hot water. Therefore, it is possible to use solar energy with high efficiency, and it is useful as a power generation system for home use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

 水素生成システム(2A)は、水を含む第1の液体を保持し、太陽光が照射されることによって、前記第1の液体に含まれる水の一部が水素と酸素とに分解され、かつ、前記第1の液体の少なくとも一部が加熱される水素生成部(201)と、水素生成部(201)において加熱された前記第1の液体と第2の液体との熱交換によって、前記第1の液体を冷却し、かつ、前記第2の液体を加熱する第1の熱交換器(207)と、第1の熱交換器(207)において冷却された前記第1の液体を水素生成部(201)に導入する機構(例えば、循環ライン(204)およびポンプ(205))と、を備えている。

Description

水素生成システムおよび温水生成システム
 本発明は、光の照射により水素を生成するデバイスを備えた水素生成システムおよび温水生成システムに関する。
 従来、半導体電極および対極を電解液と接触させ、かつ、半導体電極と対極とを電気的に接続した状態において、半導体電極に光を照射することにより、電解液中の水が分解されて水素と酸素とが発生することが知られている。(例えば、特許文献1参照)。
 特許文献1には、半導体電極としてn型半導体を用い、半導体電極と対極とを電気的に接続した状態で半導体電極に光を照射することにより、水を分解して水素および酸素を生成することが可能な装置が開示されている。
 また、従来、太陽光および光触媒として機能する半導体によって水を分解して水素を生成させる水素生成装置と、水素生成装置において発生した水素を貯蔵する水素貯蔵部と、水素貯蔵部に貯蔵された水素を電力に変換する燃料電池と、を備えたエネルギーシステムが提案されている。(例えば、特許文献2参照)。
 さらに、従来、太陽光および光触媒として機能する半導体によって水を分解して水素と酸素を生成させる水素生成装置を備えたエネルギーシステムにおいて、太陽光の照射により温暖となった水の熱量を、水循環経路中に設けられた蓄熱器に蓄積し、その熱量を温水の用途に供するシステムが開示されている。(例えば、特許文献3参照)。
特開昭50-124584号公報 特開2000-333481号公報 特開昭57-191202号公報
 しかしながら、特許文献1および2に記載の構成は、水が半導体電極で分解されることによって発生した水素のみをエネルギー源として回収するシステムであり、太陽光により温められることで生成する温水に蓄積された熱エネルギーの利用までは考慮されていない。すなわち、特許文献1および2に記載の構成では、太陽光エネルギーの利用効率が不十分である。
 また、特許文献1および2に記載の構成は、太陽光照射により半導体電極での分解に供する水に熱が蓄積されて水温が上昇していくと、温度上昇により半導体を構成する原子間距離が増大することで半導体材料のエネルギーバンドギャップが変化し、半導体電極が設計どおりの性能を示さなくなる、という課題も有していた。
 また、特許文献3に記載のシステムは、半導体電極において分解に供する水を、直接温水の用途に利用するものである。半導体電極における水の分解現象は電気化学的なメカニズムに支配されており、分解効率は水の導電率やpHの影響を大きく受ける。特許文献3に記載のシステムでは、半導体電極において分解に供する水を直接温水の用途に利用するものであり、電解質およびpH調整用のバッファー等を混入させることができず、半導体電極での水素発生の効率が非常に低くなるという課題を有していた。
 また、特許文献3に記載のシステムは、水素および酸素が混合した状態で生成されるため、水素と酸素との分離が困難である、また水素爆発の危険性が伴う、という課題も有していた。
 本発明は、前記従来の課題を解決するもので、高い水素発生効率を実現すると同時に、太陽光により温められた水の熱エネルギーを有効利用することを可能とした水素生成システムを提供することを目的とする。さらに、本発明は、太陽光エネルギーを利用した温水生成システムを提供することも目的とする。
 本発明の水素生成システムは、
 水を含む第1の液体を保持し、太陽光が照射されることによって、前記第1の液体に含まれる水の一部が水素と酸素とに分解され、かつ、前記第1の液体の少なくとも一部が加熱される、水素生成部と、
 前記水素生成部において加熱された前記第1の液体と第2の液体との熱交換によって、前記第1の液体を冷却し、かつ、前記第2の液体を加熱する、第1の熱交換器と、
 前記第1の熱交換器において冷却された前記第1の液体を、前記水素生成部に導入する機構と、
を備えている。
 また、本発明の温水生成システムは、
 第1の液体を保持し、太陽光が照射されることによって、前記第1の液体の少なくとも一部を加熱する太陽熱温水器と、
 燃料電池と、
 前記太陽熱温水器において加熱された前記第1の液体から回収された熱と、前記燃料電池で発生した熱とを利用して、湯を供給する機構と、
を備えた、システムである。
 本発明の水素生成システムによれば、水素生成部において分解に供する水を含む第1の液体を、別の液体である第2の液体との間で熱交換させることによって当該第2の液体を加熱し、当該第2の液体を、熱を取り出す種々の用途に利用する。すなわち、水素生成部において水の分解に利用される第1の液体には、水素生成効率を高めるための電解質およびpH調整液を混入させることが可能となる。それと同時に、水素生成部に供給される第1の液体の温度が上がりすぎないため、水素生成部に用いられる光半導体のバンドギャップのエネルギーが変動せず、設計どおりの高い量子効率を発揮することが可能となる。さらに、本発明の水素生成システムによれば、太陽光から得られた熱エネルギーまでも有効に利用することができる。一方、本発明の温水生成システムによれば、太陽光エネルギーに加えて、燃料電池から発せられる熱エネルギーも利用されるので、エネルギー効率の良い温水生成システムを提供できる。
光触媒の水分解メカニズムを示す図 本発明の実施の形態1における水素生成システムの一例を示すシステム構成図 本発明の実施の形態1における水素生成システムの別の例を示すシステム構成図 本発明の実施の形態1における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態1における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態1における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態1における水素生成システムの水素生成部の一構成例を示す図 本発明の実施の形態1における水素生成システムの水素生成部の別の構成例を示す図 本発明の実施の形態1における水素生成システムの水素生成部のさらに別の一構成例を示す図 本発明の実施の形態2における水素生成システムの一例を示すシステム構成図 本発明の実施の形態2における水素生成システムの別の例を示すシステム構成図 本発明の実施の形態2における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態2における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態3における水素生成システムの一例を示すシステム構成図 本発明の実施の形態3における水素生成システムの別の例を示すシステム構成図 本発明の実施の形態3における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態3における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態4における水素生成システムの一例を示すシステム構成図 本発明の実施の形態4における水素生成システムの別の例を示すシステム構成図 本発明の実施の形態4における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態5における水素生成システムの一例を示すシステム構成図 本発明の実施の形態5における水素生成システムの別の例を示すシステム構成図 本発明の実施の形態5における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態6における水素生成システムの一例を示すシステム構成図 本発明の実施の形態6における水素生成システムの別の例を示すシステム構成図 本発明の実施の形態6における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態7における水素生成システムの一例を示すシステム構成図 本発明の実施の形態7における水素生成システムの別の例を示すシステム構成図 本発明の実施の形態7における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態8における水素生成システムの一例を示すシステム構成図 本発明の実施の形態8における水素生成システムの別の例を示すシステム構成図 本発明の実施の形態9における水素生成システムの一例を示すシステム構成図 本発明の実施の形態9における水素生成システムの別の例を示すシステム構成図 本発明の実施の形態9における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態9における水素生成システムのさらに別の例を示すシステム構成図 本発明の実施の形態9における水素生成システムのさらに別の例を示すシステム構成図
 本発明における水素生成システムを構成する水素生成部の一例として、水を水素と酸素とに分解し得る半導体材料を含む半導体電極と、導電性の材料からなる対極とを有するデバイスが挙げられる。
 光を照射することで、水を水素と酸素に分解する半導体材料は、別名「光触媒」とよばれる。
 以下、光触媒による水分解のメカニズムを説明する。図1は、光触媒101のエネルギーバンド図である。
 光触媒101にバンドギャップ102以上のエネルギーを持った光が照射されると、価電子帯103から伝導帯104へ電子105が励起し、価電子帯103に正孔106が生成する。
 生成した正孔106は、光触媒101表面で下記反応式(1)により、水を分解し、酸素を生成する。
(化1)
  4h+2HO → O↑+4H   (1)
 一方、伝導帯104に励起した電子105は、光触媒101表面で下記反応式(2)により、水を分解し、水素を生成する。
(化2)
  4e+4H → 2H↑   (2)
 この時、水素と酸素の発生場所が非常に近接しているため、下記反応式(3)に示される逆反応が課題となる。
(化3)
  2H+O → 2HO   (3)
 この課題を解決するために、本発明における水素生成システムを構成する水素生成部は、半導体電極と対極とを備えた構造を有することが好ましい。また、半導体電極と対極は外部回路によって電気的に連結されていることが好ましい。本構成において、一般に、半導体電極を構成する半導体材料がn型半導体である場合、照射光により励起された電子105は、半導体電極中を移動し、外部回路を経て、対極へ移動する。その後、対極の表面で反応式(2)の反応を起こし、水素を生成する。一方、電子105の励起により生成した正孔106は、半導体電極の表面で反応式(1)の反応を起こし、酸素を生成する。
 半導体電極を構成する半導体材料がp型半導体の場合は、一般に、n型半導体を用いた場合と回路を流れる電子の流れが逆になり、半導体電極の表面で反応式(2)の反応を起こし水素を、対極表面で反応式(1)の反応を起こし酸素を、それぞれ生成する。
 このような構成の場合、水素が発生する部分と、酸素が発生する部分とが分離しているため、反応式(3)に示される逆反応は起こらない。
 また、このような水の分解において、上記反応式(1)、(2)の反応を起こすためには、図1における伝導帯のバンドエッジの準位が、水素イオンの還元準位(0V(水素標準電位))以下であって、かつ、価電子帯のバンドエッジの準位が、水の酸化電位(1.23V(水素標準電位))以上であることが好ましい。すなわち、図1において、バンドギャップ102は1.23eV以上が好ましく、そのバンドギャップ102を飛び越えて電子105を励起させるためには、照射光の波長はおよそ1010nm以下であることが必要である。したがって、太陽光に含まれる光エネルギーのうち1010nm以上の波長域(バンドギャップ以下のエネルギーの光)は、熱エネルギーとして回収することが望ましい。
 さらに、電子105は、吸収した光の波長に応じたエネルギーを獲得し、励起されると、すぐに伝導帯104の底まで緩和する。
 また、励起された電子105のうち、光触媒101表面で水と反応できなかったものは、正孔106と再結合する。
 これらの緩和過程および再結合過程においても、熱が発生する。この熱についても回収することが望ましい。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態は一例であり、本発明は以下の実施の形態に限定されない。また、以下の実施の形態では、同一部材に同一の符号を付して、重複する説明を省略する場合がある。
 (実施の形態1)
 図2A~図2Eは、本発明の実施の形態1における水素生成システムの各構成例を示す。
 図2Aに示す本実施の形態の水素生成システム2Aは、水素生成部201と、水素生成部201で加熱された水(第1の液体)と、別の経路である水流ライン206で導入された水(第2の液体)とで熱交換し、前者の水(第1の液体としての水)を冷却し、後者の水(第2の液体としての水)を加熱する熱交換器207と、熱交換器207で冷却された水を再度水素生成部201に導入する機構とを有する。この機構は、熱交換器207で冷却された水を再度水素生成部201に導入するための水経路と、当該水経路において水を循環させるためのポンプ205とを含んでいる。この水経路は、水素生成部201と熱交換器207を繋ぐ循環ライン204の一部を形成しており、ポンプ205は循環ライン204上に設けられている。なお、熱交換器207において、循環ライン204を流れる循環水(第1の液体)と加熱される水流ライン206を流れる水(第2の液体)とは交じり合うことは無く、熱交換が行われるだけである。なお、本実施の形態では、循環ライン204を流れる第1の液体として水を用いているが、第1の液体は通常の水に限定されず、水と水以外のものとの混合物および水溶液を含む。
 水素生成部201では、太陽光が照射されることにより、光触媒反応により水が分解されて水素および酸素が発生するとともに、水が太陽光により加熱される。水素生成部201には、水素生成部201内部での水分解により生成した水素ガスおよび酸素ガスを水素生成部201の外部に導出するための水素導出管202および酸素導出管203が設けられている。
 水素生成部201は、少なくとも半導体電極および対極から構成されており、水素生成部201に供給される水は、半導体電極側ならびに対極側に分離された構造となっている。水素生成部201の具体例は後で図3A~図3Cを用いて説明するが、本実施の形態の水素生成部201は、水を水素と酸素とに分解し得る半導体材料を含む半導体電極と、前記半導体電極と電気的に接続された、導電性材料からなる対極と、前記半導体電極および前記対極と接する第1の液体(ここでは、循環ライン204の循環水)と、前記半導体電極、前記対極および前記第1の液体を内部に保持する筐体部と、を備えており、前記半導体電極に太陽光が照射されることによって、前記第1の液体に含まれる水の一部が水素と酸素とに分解されて水素が生成される構成を有している。
 なお、本実施の形態では、水素生成部201を構成する半導体電極側に酸素導出管203が設けられ、対極側に水素導出管202が設けられる構成を例に挙げて説明しているが、これに限定されない。水素生成部201を構成する半導体電極および対極間を流れる電子の方向に応じて、水素導出管201および酸素導出管202の設置位置を決定すればよい。したがって、水素生成部201を構成する半導体電極および対極間を流れる電子の方向によっては、半導体電極側に水素導出管202が設けられ、対極側に酸素導出管203が設けられていてもよい。
 水素生成システム2Aにおいては、ポンプ205の動力により循環ライン204を流れる循環水は、水素生成部201の内部で、半導体電極側を流れる水流と対極側を流れる水流とに分岐される。太陽光照射により生成した水素ガスおよび酸素ガスは、水素導出管202および酸素導出管203から水素生成部201の外部に導出される。同時に循環水は太陽光により加熱され、その後、熱交換器207により、水流ライン206を流れる水と熱交換される。その後、循環水は、循環ライン204を導通し、再び水素生成部201に供給される。なお、循環水が減少してきた場合は、適宜外部から水を供給してもよい。
 水流ライン206を流れる水は、熱交換器207において循環ライン204を流れる循環水から熱を受け取って温水となる。水流ライン206上に、たとえば弁210を設け、この弁を開閉することにより、必要なときに温水を取り出せる構成にしてもよい。
 熱エネルギーの損失を抑制するために、水素生成部201と熱交換器207とは互いに隣接して設けられることが好ましい。水素生成部201と熱交換器207の間の水の配管は、外気と断熱され、水温が低下しない構造となっていることが好ましい。
 水素生成部201の内部において、半導体電極側と対極側に分離して水を流すための循環ライン204の分岐は、必ずしも水素生成部201の内部で行われる必要はない。図2Bに示す、本実施の形態の別の例である水素生成システム2Bのように、水素生成部201に導入される手前で分岐する構造としてもよい。
 水素生成部201において生成した水素ガスおよび酸素ガスが、それぞれ分離された状態で水素生成部201から導出される必要はない。図2Cに示す、本実施の形態のさらに別の例である水素生成システム2Cのように、太陽光照射により生成した水素ガスおよび酸素ガスが、循環水と共に水素生成部201の外部に輸送される構成であってもよい。水素生成部201を構成する、太陽光が照射されない電極側(対極側)から外部に導出された水素を含んだ循環水は、気液分離装置208aに導入され、液体と気体に分離される。液体と分離された気体は、水素導出管202により、循環ライン204から導出される。一方、水素生成部201を構成する太陽光が照射される電極側(半導体電極側)から外部に導出された酸素を含んだ循環水は、熱交換器207に導入され、水流ライン206を流れる水と熱交換される。熱交換器207を出た循環水は、もう一方の電極側を流れた循環水と合流し、気液分離装置208bへ導入され、液体と気体に分離される。分離した気体は、酸素導出管203により、循環水から導出される。その後、循環水は循環ライン204を導通し、再び水素生成部201に供給される。なお、ここでは、対極側から外部に導出された循環水に水素が、半導体電極側から外部に導出された循環水に酸素が含まれる例について説明している。しかし、水素生成部201を構成する半導体電極および対極間を流れる電子の方向によっては、半導体電極側から水素が発生し、対極側から酸素が発生する場合もあるため、必ずしも対極側から外部に導出された循環水に水素が、半導体電極側から外部に導出された循環水に酸素が含まれる構成に限定されない。水素生成部201を構成する半導体電極および対極間を流れる電子の方向によっては、半導体電極側の循環水に水素が含まれており、対極側の循環水に酸素が含まれていてもよい。その場合は、気液分離装置208aで分離された気体は酸素となり、気液分離装置208bで分離された気体は水素となるため、水素導出管202と酸素導出管203との設置位置が逆となる。
 なお、半導体電極側および対極側を流れた水流の合流箇所は、図2D示す水素生成システム2Dのように、半導体電極側の水が気液分離装置208bを通過し、かつ、対極側の水が気液分離装置208aを通過した後でもよい。
 また、本実施の形態の水素生成システムは、図2Eに示す水素生成システム2Eのように、水素導出管202上に水素ガスを貯蔵する貯蔵設備209をさらに設けた構成であってもよい。貯蔵設備209を設けることにより、昼間生成した水素を、夜間にも使えるようになる。
 なお、図2A~図2Dに示したいずれの構成にも、貯蔵設備209を設けることができる。
 また、貯蔵設備209には、気体圧縮機構が付随していることが望ましい。貯蔵設備209としては、タンク様の容器でも可能であるが、水素貯蔵を行う場合は、水素吸蔵合金からなる貯蔵設備でもよい。必要に応じて、貯蔵設備209に水素を導入する前に、水素を乾燥させる設備(除湿装置)を設けてもよい。
 また、循環ライン204には、内部の水量を調整するための水導入口が設けられていてもよい。
 以下、水素生成部201の構成例を説明するが、本発明における水素生成システムは、以下に述べる水素生成部201の各構成例に限るものではない。
 [構成例1]
 図3Aに、水素生成部201の一構成例である水素生成部201Aを示す。水素生成部201Aは、図2Aに示す水素生成システム2Aに好適に用いられる構成である。水素生成部201Aは、光触媒である半導体材料を導電基板の上に配置した半導体電極301と、導電性材料からなる対極(金属および炭素等の導体物質からなる対極、もしくは、導電基材に金属を担持した構造を有した対極)302と、半導体電極301と対極302とを連結する外部回路303と、を有する。半導体電極301を構成する半導体は、必ずしも単相の半導体である必要はなく、複数種類の半導体からなる複合体でもよい。半導体電極301および対極302は第1の液体としての循環水305と接しており、半導体電極301、対極302および循環水305は、筐体部304の内部に保持されている。
 また、半導体電極301と対極302との間にバイアスを印加できるような機構(図示せず)が設けられていてもよい。
 筐体部304の内部には、水素生成部201Aにおいて分解に供する循環水305が流通している。循環水305は、水素生成部201Aの外部においては、循環ライン204内部を流れる。循環水305は、支持電解質、酸化還元材料および犠牲試薬等を含んでいてもよい。
 筐体部304の半導体電極301側の面の一部は、太陽光を透過する部材で構成されている。
 半導体電極301と対極302との間は、セパレーター306により分離されている。セパレーター306は、液体とそれに含まれるイオンは透過するが、気体は遮断するような材質からなっていることが好ましい。セパレーター306で水素生成部201Aの内部を半導体電極301側の領域と対極302側の領域とに分離することにより、生成した水素ガスおよび酸素ガスが混じり合うことを防止できる。水素生成部201Aでは、セパレーター306で半導体電極301側と対極302側とを完全に分離せず、水の流路を低い位置に設けている。ガスは高所へ浮上していくため、流路を低位置に設けることで、ガスの混合を防止できる。また、この構造にすることで、一つの水導入口307から、半導体電極301側および対極302側の双方に、潤滑に循環水305を供給することが可能となる。水導入口307は半導体電極側、対極側のいずれに設けてもよい。
 循環水305は、水導入口307より水素生成部201Aに導入される。半導体電極301を構成する半導体がn型半導体の場合、半導体電極301側に流れた循環水305は太陽光が照射された電極上で上記反応式(1)の反応により酸素を生成する。一方、励起された電子は、外部回路303を伝導して、対極302上で上記反応式(2)の反応により水素を生成する。この時、半導体電極301により吸収されなかった光、特に赤外光や、半導体電極301により吸収されたものの、反応式(1)および(2)の化学反応に使われなかった場合に放出される熱エネルギーにより、循環水305は加熱される。
 循環水305において、半導体電極301側を流れたものは、半導体電極301側の水排出口308から水素生成部201の外部へ排出される。一方、対極302側を流れたものは、対極302側の水排出口309から排出される。上記反応式(1)および(2)の反応により、半導体電極301および対極302上で生成した酸素および水素は、それぞれ酸素ガス排出口310および水素ガス排出口311から水素生成部201の外部に排出される。
 半導体電極301側の水排出口308から排出された、太陽光により加熱された循環水305は、循環ライン204を通って、図2Aに示す熱交換器207に導入される。熱交換器207において、水分解の用途に供した循環水305と、水流ライン206を流れる熱量を蓄積する用途に供する第2の液体(ここでは水)との間で熱交換される。したがって、熱量を蓄積する用途に供する液体には、支持電解質、酸化還元材料および犠牲試薬等の化学物質が混入することはない。よって、第1の液体としての循環水305を、水分解に最も適した液性に調整することができ、また熱量を蓄積した第2の液体をそのまま生活に用いることもできる。熱交換器207において熱交換された後、半導体電極301側の水排出口308および対極302側の水排出口309から水素生成部201Aの外部に排出された2系統の水流は、合流し、再び水素生成部201Aに供給される。
 半導体電極301側の水排出口308と対極302側の水排出口309から排出された水流は、熱交換器207の上流側および下流側のどちら側で合流しても構わないが、図2Aに示すように、半導体電極301側の水排出口308から排出された水流が熱交換器207を通過した後に、対極302側の水排出口309から排出された水流と合流することが好ましい。熱交換器207の上流側で両者の水流を合流させると、半導体電極301側の水排出口308から排出された水流に蓄えられている太陽光の熱エネルギーの一部が損なわれてしまうためである。
 [構成例2]
 図3Bに、水素生成部201の別の構成例である水素生成部201Bを示す。水素生成部201Bは、図2Bに示す水素生成システム2Bに好適に用いられる構成である。図3Bにおいて、図3Aと同じ構成要素については同じ符号を用い、説明は省略する。
 水素生成部201Bにおいては、半導体電極301側の領域と対極302側の領域とが、セパレーター306によって完全に分離されている。半導体電極301側および対極302側に、それぞれ、水導入口307および312が設けられている。
 また、半導体電極301と対極302との間にバイアスを印加できるような機構(図示せず)が設けられていてもよい。
 したがって、水素生成部201Bの構成の場合、半導体電極301側および対極302側双方への水路を設けるために、図2Bに示すように循環ライン204を分岐する必要がある。水素生成部201Bのような構造にすることで、生成した酸素および水素の混合をより確実に防ぎ、上記反応式(3)の逆反応を防止すると共に、水素爆発をより確実に防止することが可能となる。
 水導入口307および312から導入された循環水305は、それぞれ半導体電極301および対極302上で、上記反応式(1)および(2)の反応により酸素と水素とを生成した後、水排出口308および309から排出される。
 排出された後の過程は、構成例1における水素生成部201Aの場合と同様であるので、省略する。
 [構成例3]
 図3Cに、水素生成部201のさらに別の構成例である水素生成部201Cを示す。水素生成部201Cは、図2C~2Eに示す水素生成システム2C~2Eに好適に用いられる構成である。図3Cにおいて、図3Aおよび図3Bと同じ構成要素については同じ符号を用い、説明は省略する。
 水素生成部201Cは、その内部に酸素導出管および水素導出管が設けられていない構成となっている。半導体電極301および対極302上で生成した酸素および水素は、それぞれ循環水305と共に半導体電極301側の水排出口308および対極302側の水排出口309から排出される。
 排出された循環水305と気体の混合物は、図2C~2Eに示すように、それぞれ気液分離装置208a,208bに導入され、気体と液体とに分離される。分離された気体は、それぞれ、水素導出管202および酸素導出管203から導出される。分離の方法は、加熱、振動、超音波、攪拌、遠心分離などいずれの方法でもよく、確実に分離するために、気液分離装置を直列に複数個配置してもよい。
 対極302側の水排出口309から排出された水と水素との分離は、図2Cおよび図2Eに示す構成のように、半導体電極301側の水排出口308から排出された水流と合流する前に行なわれることが望ましい。
 一方、半導体電極301側の水排出口308から排出された水の流路にあっては、気液分離装置208bの設置は、熱交換器207において熱交換される前でも構わないが、熱損失をできる限り小さくするために、水素生成システム2C~2Eのように熱交換後が好ましい。特に、余分の残留気体を水循環ライン204から完全に除去するために、水素生成システム2C,2Eのように、対極302側の水排出口309から排出された水との合流後に気液分離装置208bが設けられることが望ましい。
 なお、合流前後の双方に気液分離装置が設けられていてもよい。
 (実施の形態2)
 図4A~図4Dは、本発明の実施の形態2における水素生成システムの各構成例を示す。図4A~図4Dにおいて、図2A~図2Eと同じ構成要素については、同じ符号を用い、説明は省略する。なお、水素生成部201の構成は、実施の形態1に示した構成に限るものではない。
 図4Aに示す水素生成システム4Aは、実施の形態1の水素生成システム2A~2Eに燃料電池401をさらに組み込み、水素生成部201において生成した水素を外部へ導出する水素導出管202を燃料電池401に接続するとともに、熱交換器207で循環ライン204と熱交換を行い加熱された水流ライン206を燃料電池401に導通させた構成となっている。本実施の形態では、燃料電池401に接続された水素導出管202によって、水素生成部201において生成された水素を燃料電池401に供給する機構が実現されている。かかる構成によれば、水素生成部201において発生した水素を電気エネルギーに変換することが可能となると共に、熱交換器207により加熱され、水流ライン206を流れてきた液体を、燃料電池401内部に設置された熱交換器(第2の熱交換器)402でさらに加熱することができる。
 燃料電池401は、固体高分子型、固体酸化物型、リン酸型燃料電池などいずれの発電形式のものを用いてもよい。
 燃料電池401において水素と酸素とが反応すると、電気エネルギーと水が生成すると同時に反応エネルギーが熱として放出される。また、燃料電池401においては、発電した電流と内部抵抗に由来するジュール熱も生じる。この反応エネルギーおよびジュール熱を回収・利用することで、水素生成部201において吸収した熱エネルギーのみを回収・利用した場合と比較して、飛躍的に効率的なエネルギー利用が可能になる。
 また、必要に応じて、水素導出管202および酸素導出管203上に、貯蔵設備を設けてもよい。貯蔵設備には気体圧縮機構が付随していることが望ましい。貯蔵設備としては、タンク様の容器でも可能であるが、水素貯蔵を行う場合は、水素吸蔵合金からなる貯蔵設備でもよい。また、循環ライン204には、内部の水量を調整するための水導入口が設けられていてもよい。
 水流ライン206上には、例えば燃料電池401で加熱された後の部分に、弁405が設置されていてもよい。この弁405を開閉することにより、必要なときに温水を得ることができる。
 図4Bに示す、本実施の形態の別の例である水素生成システム4Bのように、水流ライン206を流れる水であって、熱交換器207により熱交換される前の水を、熱交換器207を通さずに、再び水流ライン206と、熱交換器207と燃料電池401との間とで合流させる、バイパスライン403を設けた構造としてもよい。バイパスライン403は必要に応じて用いられるものであるため、弁404を設ける。
 従来、燃料電池を構成するスタック部の温度が不安定になると、燃料電池の性能も不安定になるという課題があった。本発明においても、熱交換器207で加熱された水流ライン206を流れる液体の温度がばらつくことで、燃料電池401の性能も不安定になるという課題を有している。これに対し、水素生成システム4Bの構成によれば、熱交換器207において熱交換された水の温度が高すぎる場合に、弁404を開けることにより、冷水により燃料電池401へ導入される水の温度を調整することができる。
 図4Cに示す、本実施の形態の別の例である水素生成システム4Cのように、水素および酸素と水との分離を水素生成部201では行わず、水流とともに外部に導出して、別途設けられた気液分離装置208a,208bで分離する構成とすることもできる。
 水素生成システム4Cにおいて、バイパスライン403および弁404は設置してもよいし、しなくてもよい。
 気液分離装置208a,208bの設置方法については、実施の形態1と同様であるため、説明は省略する。
 図4Dに示す、本実施の形態の別の例である水素生成システム4Dのように、水素導出管202上に貯蔵設備209を設けてもよい。貯蔵設備209には、気体圧縮機構が付随していることが望ましい。貯蔵設備209としては、タンク様の容器でも可能であるが、水素貯蔵を行う場合は、水素吸蔵合金からなる貯蔵設備でもよい。必要に応じて、貯蔵設備209に水素を導入する前に、水素を乾燥させる設備(除湿装置)を設けてもよい。
 水素生成システム4Dの構成によれば、従来太陽光が水素生成部201に照射していない時間帯には水素を生成することができなかったが、太陽光が照射している時間帯に水素を貯蔵設備209に貯蔵することで、照射していない時間帯であっても燃料電池401に水素を供給することが可能となる。
 水素生成システム4Dには、バイパスライン403および弁404が設置されているが、これらは必ずしも設置する必要はない。また、水素生成システム4Dでは、水素と酸素との分離を、水素生成部201の外部に設けられた気液分離装置208a,208bによって行っているが、水素生成システム4A,4Bのように水素生成部201の内部で行ってもよい。
 (実施の形態3)
 図5A~図5Dは、本発明の実施の形態3における水素生成システムの各構成例を示す。図5A~図5Dにおいて、図2A~図2Eおよび図4A~図4Dと同じ構成要素については、同じ符号を用い、説明は省略する。なお、水素生成部201の構成は、実施の形態1に示した構成に限るものではない。
 図5Aに示す水素生成システム5Aは、実施の形態1および実施の形態2の水素生成システムの構成に、燃料電池401において発生した熱と水素生成部201で発生した熱とを回収して得られた湯を貯める貯湯槽501をさらに設けた構成を有する。水素生成システム5Aは、熱交換器(第1の熱交換器)207と、燃料電池401に設けられた熱交換器(第2の熱交換器)402とにおいて得られた熱量を、貯湯槽501に設けられた熱交換器(第3の熱交換器)502において水流ライン503を流れてきた液体(第3の液体)と交換して蓄積する構成となっている。この時、熱交換器207および402において得られた熱量は、水流ライン206を流れる液体(第2の液体)によって輸送される。水流ライン206は、貯湯槽501に設けられた熱交換器502において水流ライン503と熱交換を行なった後、再び熱交換器207へ流通する循環ラインを構成している。
 水流ライン206は、水を循環させるためのポンプ504をさらに備えている。水流ライン206を流れる液体は、燃料電池401を腐食から防止するために純水が好ましいが、不凍液等の液体であってもよい。貯湯槽501において、蓄えられた温水は、水流ライン503上に、例えば弁505が設けられていて、必要に応じて弁505を開閉することにより、水流ライン503を通じて分配される。
 水素生成システム5Aの構成によれば、水素生成部201において、太陽光の照射時間の少ない時間帯、すなわち夜間、悪天候時、冬季に安定的に温水を供給できなくなるという従来の課題を解決することができる。
 すなわち、貯湯槽501を設ける構成とすることにより、太陽光が照射している時間帯に水素生成部201および燃料電池401において生成した熱を、一度貯湯槽501に蓄積することが可能となり、夜間、悪天候時、冬季といった太陽光の照射時間が少なくなる時間帯においても安定的に温水を供給することが可能となる。
 貯湯槽501は、断熱材等で被覆されていることが望ましい。
 また、必要に応じて、水素導出管202および酸素導出管203上に、貯蔵設備を設けてもよい。貯蔵設備には気体圧縮機構が付随していることが望ましい。貯蔵設備としては、タンク様の容器でも可能であるが、水素貯蔵を行う場合は、水素吸蔵合金からなる貯蔵設備でもよい。必要に応じて、貯蔵設備に水素又は酸素を導入する前に、水素又は酸素を乾燥させる設備(除湿装置)を設けてもよい。
 また、循環ライン204には、内部の水量を調整するための水導入口が設けられていてもよい。
 図5Bに示す、本実施の形態の別の例である水素生成システム5Bのように、水素生成システム5Aの構成に対して、実施の形態2の水素生成システム4Bと同様に、水流ライン206にバイパスライン403と弁404とを設置した構成とすることもできる。
 実施の形態2で説明したとおり、従来、燃料電池を構成するスタック部の温度が不安定になると、燃料電池の性能も不安定になるという課題があった。本発明においても、熱交換器207で加熱された水流ライン206を流れる液体の温度がばらつくことで燃料電池401の性能も不安定になるという課題を有している。この構造によれば、熱交換器207において熱交換された水の水温が高すぎる場合に、弁404を開けることにより、冷水により燃料電池401へ導入される水の温度を調整することができる。
 なお、燃料電池401へ導入される水の温度調整に用いられる冷水は、必ずしも水流ライン206に設けられたバイパスライン403で行う必要はなく、例えば市水を導入する機構などを設けることにより行なってもよい。
 図5Cに示す、本実施の形態の別の例である水素生成システム5Cは、水素生成システム5Bにおいて、水素および酸素と水との分離を水素生成部201では行わずに、水素および酸素を水流とともに外部に導出して気液分離装置208a、208bで分離する構成を有している。
 水素生成システム5Cにおいてもバイパスライン403および弁404を設けているが、これらは必ずしも設置する必要はない。
 気液分離装置208a,208bの設置方法については、実施の形態1と同様であるため、説明は省略する。
 図5Dに示す、本実施の形態の別の例である水素生成システム5Dは、水素生成システム5Cにおいて、水素導出管202上に貯蔵設備209をさらに設けた構成を有する。貯蔵設備209には、気体圧縮機構が付随していることが望ましい。貯蔵設備209としては、タンク様の容器でも可能であるが、水素貯蔵を行う場合は、水素吸蔵合金からなる貯蔵設備でもよい。必要に応じて、貯蔵設備209に水素を導入する前に、水素を乾燥させる設備(除湿装置)を設けてもよい。
 水素生成システム5Dによれば、従来太陽光が水素生成部201に照射していない時間帯には水素を生成することができなかったが、太陽光が照射している時間帯に水素を貯蔵設備209に貯蔵することで、照射していない時間帯であっても燃料電池401に水素を供給することが可能となる。
 なお、水素生成システム5Dにおいてもバイパスライン403および弁404を設けているが、これらは必ずしも設置する必要はない。
 (実施の形態4)
 図6A~図6Cは、本発明の実施の形態4における水素生成システムの各構成例を示す。図6A~図6Cにおいて、図2A~図2E、図4A~図4Dおよび図5A~図5Dと同じ構成要素については、同じ符号を用い、説明は省略する。
 図6Aに示す水素生成システム6Aは、実施の形態3の水素生成システムと同様に、実施の形態1の水素生成システムに燃料電池401および貯湯槽501をさらに設けた構成であるが、水流ライン206、燃料電池401および貯湯槽501の関係が実施の形態3の水素生成システムとは異なる。
 図6Aに示す水素生成システム6Aにおいては、熱交換器207において循環ライン204と熱交換をする水流ライン206は、貯湯槽501の内部の水の温度が低い温度域の部分から供給され、熱交換器207において循環ライン204と熱交換を行い、貯湯槽501内部で中間の温度域の部分に供給される。水流ライン206を流れる水は、水流ライン206上に設けられたポンプ504の動力により流通する。また、貯湯槽501内部の低温部には、好ましくは市水がライン601を通じて導入される。
 さらに、燃料電池401における熱交換は、水流ライン602を流れる水によって行なわれる。水流ライン602を流れる水は、貯湯槽501内部の低温域の部分から供給され、熱交換器(第2の熱交換器)402を介して燃料電池401と熱交換を行い、貯湯槽501内部の水が高温の部分に供給される。水流ライン602を流れる水は、水流ライン602上に設けられたポンプ603の動力により行なわれる。
 すなわち、水素生成システム6Aは、水素生成部201で発生した熱の回収と、燃料電池401で発生した熱の回収とが、水流ライン206および水流ライン602を介して並列的に行われる構成を有する。
 貯湯槽501に蓄積された高温域の水は、水流ライン604を通って取り出される。取り出された温水は、バイパスライン605により供給される低温水と混合され、使用する目的に適した温度に調節される。この時、供給される低温水は、必ずしも図6Aが示すように、水流ライン206から分岐して行う必要はなく、水流ライン601から分岐しても、また別に低温水が流れる水流ラインを設けて行なってもよい。
 貯湯槽501からの高温域の温水の取り出し、および、バイパスライン605を流れる水の流通は、それぞれ、ポンプ609およびポンプ610の動力により行われる。
 水流ライン601、水流ライン604およびバイパスライン605にはそれぞれ弁606、弁607および弁608が設けられ、この弁を開閉することにより、必要なときだけ水が流通するような機構にする方が好ましい。
 図6Bに示す、本実施の形態の別の例である水素生成システム6Bは、水素生成システム6Aにおいて、循環ライン204上に放熱器611がさらに設置された構成を有している。
 たとえば、夏期において、湯の需要が少なく、かつ熱交換器207において得られる太陽熱が豊富にあるときなど、貯湯槽501内において中温域の水量が過剰になる。その際、貯湯槽501内の水の温度分布を破壊しないようにするための方法の一つとして、ポンプ504の運転を停止し、中温域の水の生成を止めたほうがよい場合がある。
 しかしながらこの際、熱交換器207において、循環ライン204と水流ライン206の間で熱交換が行なわれなくなるため、水素生成部201の温度が上昇していく。水素生成部201の温度上昇により、半導体電極に用いられている半導体のバンド構造が変動し、半導体の物性が設計どおりの特性を示さなくなる。
 この際、水素生成システム6Bのように、循環ライン204上に放熱器611を設置することにより、循環ライン204の温度上昇を抑制することができ、前記課題を解決することができる。
 放熱器611の設置場所は、循環ライン204上であれば特に限定されないが、水素生成部201にできる限り温度の低い水を導入するためにも、循環ライン204上であって、水素生成部201に循環水が導入される直前が望ましい。
 また、図6Cに示す、本実施の形態の別の例である水素生成システム6Cは、水素生成システム6Aにおいて、水流ライン206は熱交換器207で熱交換を行なった後、貯湯槽501に戻ることなく、貯湯槽501から取り出された高温域の温水と混合される構成を有している。本構成の場合も、水素生成システム6Aと同様に、取り出された温水は、バイパスライン605により供給される低温水と混合され、使用する目的に適した温度に調節される。この時、供給される低温水は、必ずしも図6Cに示すように、水流ライン206から分岐して行う必要はなく、水流ライン601から分岐しても、また別に低温水が流れる水流ラインを設けて行なってもよい。この構成においても、水素生成システム6Bと同様に、循環ライン204上に放熱器611を設置することも可能である。
 水素生成システム6Cの構成によれば、貯湯槽501内の温度分布が低温部と高温部のみとなり、温度境界層の形成および維持が容易になる。
 実施の形態4においても、実施の形態1~3のように、水から水素と酸素を分離するための気液分離装置208a,208bを設置する構成、また、水素を貯蔵するための貯蔵設備209を水素導出ライン202上に設置する構成を適用できる。設置の方法は前述のとおりであるため、ここでは省略する。
 以上のように、本実施の形態の水素生成システムは、本発明の水素生成システムの必須構成である水素生成部(ここでは水素生成部201)、第1の熱交換器(ここでは熱交換器207)、前記第1の熱交換器において冷却された第1の液体(ここでは、循環ライン204の循環水)を前記水素生成部に導入する機構(ここでは循環ライン204およびポンプ205)に対し、さらに、燃料電池(ここでは燃料電池401)と、貯湯槽(ここでは貯湯槽501)と、前記第1の熱交換器によって加熱された第2の液体(ここでは水流ライン206の水)を、前記貯湯槽の湯と合流させる、または、温水として供給する機構(ここでは、水流ライン206およびポンプ504)と、前記燃料電池との熱交換により、第3の液体としての水(ここでは水流ライン602の水)を加熱する、第2の熱交換器(ここでは熱交換器402)と、加熱された前記第3の液体を前記貯湯槽の湯と合流させる機構(ここでは水流ライン602およびポンプ603)と備えた構成を有するといえる。
 (実施の形態5)
 図7A~図7Cは、本発明の実施の形態5における水素生成システムの各構成例を示す。図7A~図7Cにおいて、図2A~図2E、図4A~図4D、図5A~図5Dおよび図6A~図6Cと同じ構成要素については、同じ符号を用い、説明は省略する。
 図7Aに示す水素生成システム7Aは、実施の形態4の水素生成システムと同様に、実施の形態1の水素生成システムに燃料電池401および貯湯槽501をさらに設けた構成であるが、水流ライン206、燃料電池401および貯湯槽501の関係が実施の形態4の水素生成システムとは異なる。
 図7Aに示す水素生成システム7Aにおいて、水流ライン206は、水流ライン206上に設置されたポンプ504の動力により、貯湯槽501内部の低温の部分から水が供給され、熱交換器207において循環ライン204と熱交換を行い加熱された後、熱交換器402において燃料電池401と熱交換を行い、貯湯槽501内部の水が高温の部分に流入する構成となっている。
 すなわち、水素生成システム7Aは、水素生成部201で発生した熱の回収と、燃料電池401で発生した熱の回収とが、水流ライン206を介して直列的に行われる構成を有する。
 貯湯槽の低温の部分には、水流ライン601を通じて冷水(好ましくは市水)を導入する。
 貯湯槽501に蓄積された高温域の水は、ポンプ609の動力により、水流ライン604を通って取り出される。取り出された温水は、バイパスライン605により供給される低温水と混合され、使用する目的に適した温度に調節される。この時、供給される低温水は、必ずしも図6Aに示すように水流ライン206から分岐して行う必要はなく、水流ライン601から分岐しても、また別に低温水が流れる水流ラインを設けて行なってもよい。
 水流ライン601、水流ライン604、水流ライン605にはそれぞれ弁606、弁607および弁608が設置され、必要に応じて弁の開閉を行い、水が導通する構成にすることが望ましい。
 図7Bに示す、本実施の形態の別の例である水素生成システム7Bは、水素生成システム7Aにおいて、水流ライン206を流れる水であって、熱交換器207により熱交換される前の水を、熱交換器207を通さずに、再び水流ライン206と、熱交換器207と燃料電池401の間で合流させるバイパスライン403を設ける構成を有する。バイパスライン403は必要に応じて用いられるものであるため、弁404が設けてある。
 水素生成システム7Bの構成によれば、熱交換器207において熱交換された水の水温が高すぎる場合に、弁404を開けることにより、冷水により燃料電池401へ導入される水の温度を調整できる。
 この時、水の温度調整に用いられる水は、必ずしもバイパスライン403により供給される必要はなく、水流ライン601から分岐させて供給される構成でもよいし、また別に低温水が流れる水流ラインを設けて供給される構成としてもよい。
 図7Cに示す、本実施の形態の別の例である水素生成システム7Cは、水素生成システム7Bにおいて、循環ライン204上に放熱器611をさらに設けた構成を有している。本構成により、例えば温水の需要が少なく、貯湯槽501内部の高温の湯が増えすぎた場合などにおいて、ポンプ504の運転を止める必要が生じた場合などに、放熱器611で循環ライン204を流れる水の温度を下げることができる。放熱器611の設置方法については、実施の形態4で説明したとおりである。
 実施の形態5においても、実施の形態1~4のように、水から水素と酸素とを分離するための気液分離装置208a,208bを設置する構成、また、水素を貯蔵するための貯蔵設備209を水素導出ライン202上に設置する構成を適用できる。設置の方法は前述のとおりであるため、ここでは省略する。
 以上のように、本実施の形態の水素生成システムは、本発明の水素生成システムの必須構成である水素生成部(ここでは水素生成部201)、第1の熱交換器(ここでは熱交換器207)、前記第1の熱交換器において冷却された第1の液体(ここでは、循環ライン204の循環水)を前記水素生成部に導入する機構(ここでは循環ライン204およびポンプ205)に対し、さらに、燃料電池(ここでは燃料電池401)と、貯湯槽(ここでは貯湯槽501)と、前記第1の熱交換器において加熱された第2の液体(ここでは水流ライン206の水)を、前記燃料電池との熱交換によって加熱する、第2の熱交換器(ここでは熱交換器402)と、前記第2の熱交換器において加熱された前記第2の液体を前記貯湯槽の湯と合流させる機構(ここでは水流ライン206およびポンプ504)と備えた構成といえる。
 (実施の形態6)
 図8A~図8Cは、本発明の実施の形態6における水素生成システムの各構成例を示す。図8A~図8Cにおいて、図2A~図2E、図4A~図4D、図5A~図5D、図6A~図6Cおよび図7A~図7Cと同じ構成要素については、同じ符号を用い、説明は省略する。
 図8Aに示す水素生成システム8Aは、実施の形態4の水素生成システムと同様に、実施の形態1の水素生成システムに燃料電池401および貯湯槽501をさらに設けた構成であるが、貯湯槽501の構成および貯水槽501内部の水の利用方法が実施の形態4の水素生成システムとは異なる。
 水素生成システム8Aにおいては、好ましくは市水が流れる水流ライン601を、貯湯槽501に入る手前で水流ライン206と水流ライン604を流れる水流に分岐する。
 水流ライン206を流れる水流は、熱交換器207において、循環ライン204と熱交換した後、貯湯槽501の水温が中温域の部分に供給される。
 一方、水流ライン604を流れる水流は、貯湯槽501内部において、内部に設置された熱交換器(第3の熱交換器)801において、加熱される。加熱された水は、そのまま水流ライン604を通って、外部に導出され、生活などに用いられる。
 水流ライン206および水流ライン604には、それぞれ弁802および弁607が設けられており、これらの弁を開閉することにより、必要に応じて流通させることができることが望ましい。
 また、燃料電池401との熱交換は、水流ライン602を流れる水によって行なわれる。水流ライン602を流れる水は、貯湯槽501内部の中温域の部分、もしくは直接水流ライン601から分岐することにより供給され、熱交換器(第2の熱交換器)402を介して燃料電池401と熱交換を行い、貯湯槽501内部の水が高温の部分に供給する。水流ライン602を流れる水の流通は、ポンプ603の動力により行なわれる。
 ここでは、水流ライン601を分岐させて貯湯槽501の内部に供給することで、貯湯槽501の内部に低温域の層を設け、この低温の部分から水流ライン602に水を供給する構成にしてもよい。
 貯湯槽501内部の高温の部分の水は、ポンプ803の動力を用いて、水流ライン804を通じて、貯湯槽501の外部へ排出される。排出された温水は主として暖房用途などに用いられることが望ましい。水流ライン804には弁805が設けられており、必要に応じて取り出される構成になっていることが望ましい。
 このような構成にすることにより、生活用途に使う水流ライン604を流れる水を長期間にわたり貯湯槽に貯蔵しておくことがなくなるため、雑菌等の混入等の危険性が少なくなる。
 水流ライン604および水流ライン804には、水流ライン206または水流ライン601からバイパスライン605が連結している構造になっており、得られた温水と低温水とを混合することで、水を使用する目的に適した温度に調節することができる構成になっている。
 バイパスライン605上には弁806および弁807が設置されていて、水流ライン604および水流ライン804と混合される低温水の水量を調節できる構成になっていることが望ましい。
 図8Bに示す、本実施の形態の別の例である水素生成システム8Bは、水素生成システム8Aにおいて、循環ライン204上に放熱器611をさらに設けた構成を有している。本構成により、例えば温水の需要が少なく、貯湯槽501内部の中温の湯が増えすぎた場合などにおいて、弁802を閉め、熱交換器207において熱交換を停止する必要が生じた場合などに、放熱器611で、循環ライン204を流れる水の温度を下げることができる。放熱器611の設置方法については、前述のとおりであるので、ここでは省略する。
 また、図8Cに示す、本実施の形態の別の例である水素生成システム8Cは、水素生成システム8Aにおいて、水流ライン206は熱交換器207で熱交換を行なった後、貯湯槽501に戻ることなく、貯湯槽501から取り出された高温域の温水と混合される構成を有している。本構成の場合も、水素生成システム8Aと同様に、取り出された温水は、バイパスライン605により供給される低温水と混合され、使用する目的に適した温度に調節される。この時、供給される低温水は、必ずしも図8Aに示すように水流ライン206から分岐されて供給される必要はなく、水流ライン601から分岐しても、また別に低温水が流れる水流ラインを設けて供給されてもよい。
 水素生成システム8Cにおいても、バイパスライン605上には弁806および弁807が設置されていて、水流ライン601および水流ライン804と混合される低温水の水量を調節できる構成になっていることが望ましい。
 また、燃料電池401と熱交換する水流ライン602を流れる水は、図8Cのように、水流ライン601から分岐させてもよいし、一度水流ライン601から分岐させた水流ラインを設け、貯湯槽501に低温域の層を形成させて、そこから供給してもよい。水流ライン602には弁808が設けられていることが望ましい。
 水素生成システム8Cの構成によれば、貯湯槽501内の温度分布が高温部のみ、または、低温部と高温部のみとなり、温度境界層の形成および維持が容易になる。
 実施の形態6においても、実施の形態1~5のように、水から水素と酸素を分離するための気液分離装置208a,208bを設置する構成、また、水素を貯蔵するための貯蔵設備209を水素導出ライン202上に設置する構成を適用できる。設置の方法は前述のとおりであるので、ここでは省略する。
 以上のように、本実施の形態の水素生成システムは、本発明の水素生成システムの必須構成である水素生成部(ここでは水素生成部201)、第1の熱交換器(ここでは熱交換器207)、前記第1の熱交換器において冷却された第1の液体(ここでは、循環ライン204の循環水)を前記水素生成部に導入する機構(ここでは循環ライン204およびポンプ205)に対し、さらに、燃料電池(ここでは燃料電池401)と、貯湯槽(ここでは貯湯槽501)と、前記第1の熱交換器によって加熱された第2の液体(ここでは水流ライン206の水)を、前記貯湯槽の湯と合流させる、または、温水として供給する機構(ここでは水流ライン206およびポンプ802)と、前記燃料電池との熱交換により、第3の液体としての水(ここでは水流ライン602の水)を加熱する、第2の熱交換器(ここでは熱交換器402)と、加熱された前記第3の液体を前記貯湯槽の湯と合流させる機構(ここでは水流ライン602およびポンプ603)と、前記貯湯槽の内部に設けられ、当該貯湯槽内の湯と第4の液体としての水(ここでは水流ライン601の水)との熱交換によって前記第4の液体を加熱する、第3の熱交換器(ここでは熱交換器801)と備えた構成といえる。
 (実施の形態7)
 図9A~図9Cは、本発明の実施の形態7における水素生成システムの各構成例を示す。図9A~図9Cにおいて、図2A~図2E、図4A~図4D、図5A~図5D、図6A~図6C、図7A~図7Cおよび図8A~図8Cと同じ構成要素については、同じ符号を用い、説明は省略する。
 図9Aに示す水素生成システム9Aは、実施の形態5の水素生成システムと同様に、実施の形態1の水素生成システムに燃料電池401および貯湯槽501をさらに設けた構成であるが、貯湯槽501の構成および貯水槽501内部の水の利用方法が実施の形態5の水素生成システムとは異なる。
 水素生成システム9Aにおいては、好ましくは市水が流れる水流ライン601を、貯湯槽501に入る手前で、水流ライン206と、水流ライン604を流れる水流とに分岐する。
 水流ライン206は、水流ライン601から分岐した後、熱交換器207において循環ライン204と熱交換を行う。熱交換器207において加熱された後、燃料電池401と熱交換器402を介して熱交換を行い、さらに加熱された後、貯湯槽501の高温領域に流入する。
 また、水流ライン604は、貯湯槽501の内部において、熱交換器801を介して加熱される。
 貯湯槽501の内部に蓄積された温水は、ポンプ803の動力を用いて水流ライン804により暖房用途に、水流ライン604を流れ、貯湯槽501内部で加熱された温水は給湯用途に、それぞれ用いられることが望ましい。
 水流ライン604および水流ライン804には、それぞれ弁607および弁805が設置されていて、必要に応じて取り出せる構成になっていることが望ましい。
 さらに、水流ライン604および水流ライン804には、それぞれ、水流ライン206の熱交換器207において加熱される手前の部分(熱交換器207よりも上流の部分)で分岐したバイパスライン605が連結している構造になっており、得られた温水と低温水とを混合することで、水温を使用する目的に適した温度に調節することができる構成になっている。
 バイパスライン605上には弁806および弁807が設置されていて、水流ライン604および水流ライン804と混合する低温水の水量を調節できる構成になっていることが望ましい。
 また、図9Bに示す、本実施の形態の別の例である水素生成システム9Bは、水素生成システム9Aにおいて、水流ライン206を流れる水であって、熱交換器207により熱交換される前の水(熱交換器207よりも上流の水)を、熱交換器207を通さずに、再び水流ライン206と、熱交換器207と燃料電池401の間で合流させるバイパスライン403を設けた構造となっている。バイパスライン403は必要に応じて用いられるものであるため、弁404が設けてある。
 水素生成システム9Bの構造により、熱交換器207において熱交換された水の水温が高すぎる場合に、弁404を開けることにより、冷水により燃料電池401へ導入される水の温度を調整することができる。
 この時、水の温度調整に用いられる水は、必ずしもバイパスライン403により供給される必要はなく、水流ライン601から分岐させて供給される構成でもよいし、また別に低温水が流れる水流ラインを設けて供給される構成としてもよい。
 図9Cに示す、本実施の形態の別の例である水素生成システム9Cは、水素生成システム9Bにおいて、循環ライン204上に放熱器611をさらに設けた構成となっている。本構成により、例えば温水の需要が少なく、貯湯槽501内部の高温の湯が増えすぎた場合などにおいて、ポンプ504の運転を止める必要が生じた場合などに、放熱器611で循環ライン204を流れる水の温度を下げることができる。放熱器611の設置方法については、実施の形態4で説明したとおりである。
 実施の形態7においても、実施の形態1~6のように、水から水素と酸素とを分離するための気液分離装置208a,208bを設置する構成、また、水素を貯蔵するための貯蔵設備209を水素導出ライン202上に設置する構成を適用できる。設置の方法は前述のとおりであるため、ここでは省略する。
 以上のように、本実施の形態の水素生成システムは、本発明の水素生成システムの必須構成である水素生成部(ここでは水素生成部201)、第1の熱交換器(ここでは熱交換器207)、前記第1の熱交換器において冷却された第1の液体(ここでは、循環ライン204の循環水)を前記水素生成部に導入する機構(ここでは循環ライン204およびポンプ205)に対し、さらに、燃料電池(ここでは燃料電池401)と、貯湯槽(ここでは貯湯槽501)と、前記第1の熱交換器において加熱された第2の液体(ここでは水流ライン206の水)を、前記燃料電池との熱交換によって加熱する、第2の熱交換器(ここでは熱交換器402)と、前記第2の熱交換器において加熱された前記第2の液体を前記貯湯槽の湯と合流させる機構(ここでは水流ライン206およびポンプ802)と、前記貯湯槽の内部に設けられ、当該貯湯槽内の湯と第3の液体としての水(ここでは水流ライン601の水)との熱交換によって前記第3の液体を加熱する、第3の熱交換器(ここでは熱交換器801)とを備えた構成といえる。
 (実施の形態8)
 図10Aおよび図10Bは、本発明の実施の形態8における水素生成システムの各構成例を示す。図10Aおよび図10Bにおいて、図2A~図2E、図4A~図4D、図5A~図5D、図6A~図6C、図7A~図7C、図8A~図8Cおよび図9A~図9Cと同じ構成要素については、同じ符号を用い、説明は省略する。
 図10Aに示す水素生成システム10Aにおいては、熱交換器(第1の熱交換器)207において、循環ライン204、水流ライン1001および水流ライン1002の間で熱交換を行う。
 ここで、水流ライン1001は主として暖房用途に用いる水流ラインであり、水流ライン1002は、貯湯槽501の高温域部分から低温域部分もしくは中温域部分へ流れる水流ラインである。
 水流ライン1001および水流ライン1002は、それぞれ動力源として、ポンプ1003およびポンプ1004を備えている。
 また、水流ライン601は、貯湯槽501の低温域部分と連結されている。水流ライン601には、必要に応じて流せる仕組みにするために、弁606が設けられていることが望ましい。
 燃料電池401との熱交換は、水流ライン602を流れる水との間で、熱交換器(第2の熱交換器)402において行う。水流ライン602には、動力源としてポンプ603が設置されている。
 水流ライン602は、貯湯槽501の低温域部分または水流ライン601を分岐することにより、低温水を流す構成となっている。水流ライン602は、燃料電池401と熱交換を行なった後、貯湯槽501の高温域部分に流れる構成となっている。
 貯湯槽501の高温域の温水は、ポンプ803の動力により、水流ライン604を通じて、給湯の用途に用いられる。水流ライン604には、弁607が設けられていて、必要に応じて取り出せる構成になっていることが望ましい。
 水流ライン604および水流ライン1001には、それぞれバイパスライン605およびバイパスライン1005が設けられており、得られた温水と低温水を混合することで、水温を使用する目的に適した温度に調節することができる構成になっている。
 バイパスライン605は、水流ライン1002において熱交換器207で熱を与えた後の低温部分からのライン、貯湯槽の低温域部分からのラインまたは水流ライン601を分岐してなるラインである。バイパスライン1005も同様のラインまたはバイパスライン605を分岐してなるラインである。
 バイパスライン605およびバイパスライン1005には、必要に応じて流せる構成とするために、弁806および弁807が設けられていることが望ましい。
 水流ライン1001上にも、必要に応じて流せる構成とするために、弁1006が設置されている。
 図10Bに示す、本実施の形態の別の例である水素生成システム10Bは、水素生成システム10Aにおいて、循環ライン204上に放熱器611をさらに設けた構成となっている。本構成により、何らかの理由で、熱交換器207において、熱交換ができなくなった場合などにおいても、放熱器611で、循環ライン204を流れる水の温度を下げることができる。放熱器611の設置方法については、前述したとおりであるので、ここでは省略する。
 実施の形態8においても、実施の形態1~7のように、水から水素と酸素とを分離するための気液分離装置208a,208bを設置する構成、また、水素を貯蔵するための貯蔵設備209を水素導出ライン202上に設置する構成を適用できる。設置の方法は前述のとおりであるため、ここでは省略する。
 (実施の形態9)
 図11A~図11Eは、本発明の実施の形態9における水素生成システムの各構成例とそれらの運転方法を示す。図11A~図11Eにおいて、図2A~図2E、図4A~図4D、図5A~図5D、図6A~図6C、図7A~図7C、図8A~図8C、図9A~図9C、図10Aおよび図10Bと同じ構成要素については、同じ符号を用い、説明は省略する。
 図11Aに示す水素生成システム11Aは、実施の形態3の水素生成システム5Aと同様の構成を有しているが、その運転方法が異なる。なお、水素生成部201の構成は、実施の形態1に示した構成に限るものではない。
 水素生成システムは内部に液体を包含する。そのため、液体の温度が低下し凍結すると、水素生成システムが破損してしまう恐れがある。また、積雪により水素生成部が雪で被覆されてしまうと、水素生成部に太陽光が照射されず、水分解反応を起こすことができなくなる。
 このような課題に対し、本実施の形態の水素生成システム11Aは、循環ライン204の循環水(第1の液体)の温度が水流ライン206の液体(第2の液体)および水流ライン503の水(貯湯槽501の湯(第3の液体))の温度よりも低い場合に、循環ライン204の循環水と水流ライン206の液体または水流ライン503の水との熱交換によって、循環ライン204の循環水を加熱可能とする機構を備えている。具体的には、通常運転時に循環ライン204から貯湯槽501の方向へ流れている熱量を、逆に循環ライン204へ戻すことにより、凍結防止や融雪を行うことを可能としている。
 このような運転を実現する方法の一つとして、循環ライン206を流れる液体が、熱交換器502→熱交換器402→熱交換器207となるように、水流ライン206を流れる水を逆流させればよい。
 本運転方法によれば、熱交換器502において貯湯槽501内に蓄積されている熱量が、水流ライン206を流れる液体に与えられ、さらに熱交換器207において循環ライン206を流れる液体から循環ライン204を流れる液体に与えられる。
 したがって、降雪量の多い地域において冬季に雪により水素生成部201が被覆されることにより太陽光が照射されなくなる、また、厳寒地域において水素生成システム11A内部の水が凍結する、という課題を解決することができる。
 水素生成システム11Aの構成は、実施の形態1~8の水素生成システムと併用することができる。
 図11Bに示す、本実施の形態の別の例である水素生成システム11Bは、貯湯槽501から、循環ライン204に温水を配給することを可能とした、バイパスライン1101を設けた構成となっている。
 本構成によれば、積雪により水素生成部201が被覆されることにより太陽光が照射されなくなる、また、水素生成システム11B内部の水が凍結する恐れが出た場合に、バイパスライン1101上に設けた弁1102を操作し、温水を循環ライン204に導入することで、凍結を防止しまたは融雪することができる。
 バイパスライン1101には、動力源として、ポンプ1103が設置された構成となっている。
 水素生成システム11Bの構成は、実施の形態1~8のシステムと併用することができる。
 図11Cに示す、本実施の形態の別の例である水素生成システム11Cは、水素生成システム11Bにおいて、循環ライン204上に弁1104および導出ライン1105をさらに設け、循環ライン204内部の液体を外部に排出できる構成を有している。
 本構成によれば、冬季に循環ライン204内部の液体が凍結し、水素生成システム11Cが破損する恐れが生じたときに、弁1104を操作し、導出ライン1105から循環ライン204内部の液体を外部に排出することで、水素生成システム11Cの破損を防止することができる。
 循環ライン204内部の液体を外部に排出してしまった場合には、詰め替え用の液体を用意し、充填しなおすことで、水素生成システム11Cは容易に復帰させることができる。
 水素生成システム11Cの構成は、実施の形態1~8の水素生成システムおよび本実施の形態の水素生成システム11A,11Bと併用することができる。
 実施の形態9においても、実施の形態1~8のように、水から水素と酸素を分離するための気液分離装置208a,208bを設ける構成(図11D参照)、また、水素を貯蔵するための貯蔵設備209を水素導出ライン202上に設置する構成(図11E参照)を適用できる。設置の方法は前述のとおりであるため、ここでは省略する。
 以上に説明した実施の形態1~9の水素生成システムは、水素を生成するシステムであると同時に、温水をも生成するシステムである。したがって、実施の形態1~9の水素生成システムの構成およびそれらの説明は、同時に、本発明の温水生成システムの実施の形態の構成およびそれらの説明としても適用できる。なお、本発明の温水生成システムとは、第1の液体を保持し、太陽光が照射されることによって、前記第1の液体の少なくとも一部を加熱する太陽熱温水器と、燃料電池と、前記太陽熱温水器において加熱された前記第1の液体から回収された熱と、前記燃料電池で発生した熱とを利用して、湯を供給する機構と、を備えたシステムである。本発明の温水システムは、前記太陽熱温水器と、前記燃料電池と、前記太陽熱温水器において加熱された前記第1の液体を、第2の液体との熱交換によって冷却し、かつ、前記第2の液体を加熱する、第1の熱交換器と、前記第1の熱交換器において加熱された前記第2の液体と前記燃料電池との熱交換により、前記第2の液体をさらに加熱する第2の熱交換器と、を備え、前記第2の熱交換器において加熱された前記第2の液体を利用して湯を供給するシステムとすることもできる。実施の形態1~9の水素生成システムの構成およびそれらの説明を本発明の温水生成システムの実施の形態の構成およびそれらの説明としても適用する場合、水素生成部が本発明の温水生成システムにおける太陽熱温水器に相当する。
 本発明にかかる水素生成システムは、太陽光照射により水を分解することにより得られる水素エネルギーのみならず、太陽光により加熱された循環水から熱エネルギーを回収し、温水を得ることが可能となるため、太陽エネルギーを高い効率で利用することが可能であり、家庭用の発電システム等として有用である。

Claims (25)

  1.  水を含む第1の液体を保持し、太陽光が照射されることによって、前記第1の液体に含まれる水の一部が水素と酸素とに分解され、かつ、前記第1の液体の少なくとも一部が加熱される、水素生成部と、
     前記水素生成部において加熱された前記第1の液体と第2の液体との熱交換によって、前記第1の液体を冷却し、かつ、前記第2の液体を加熱する、第1の熱交換器と、
     前記第1の熱交換器において冷却された前記第1の液体を、前記水素生成部に導入する機構と、
    を備えた、水素生成システム。
  2.  前記第1の熱交換器は、前記水素生成部に隣接して設けられている、請求項1に記載の水素生成システム。
  3.  燃料電池と、
     前記水素生成部において生成された水素を前記燃料電池に供給する機構と、をさらに備えた、請求項1に記載の水素生成システム。
  4.  燃料電池と、
     前記燃料電池において発生した熱を回収して得られた湯を貯める貯湯槽と、をさらに備えた、請求項1に記載の水素生成システム。
  5.  前記貯湯槽の湯が、前記水素生成部で発生した熱をさらに回収して得られた湯である、請求項4に記載の水素生成システム。
  6.  前記第2の液体が水であり、
     前記貯湯槽の湯と前記第2の液体とを合流させる機構をさらに備えた、請求項4に記載の水素生成システム。
  7.  燃料電池と、
     前記第1の熱交換器において加熱された前記第2の液体を、前記燃料電池との熱交換によって加熱する、第2の熱交換器と、
    をさらに備えた、請求項1に記載の水素生成システム。
  8.  前記第2の熱交換器において加熱された前記第2の液体から熱を回収して得られる湯を貯める貯湯槽をさらに備えた、請求項7に記載の水素生成システム。
  9.  前記水素生成部は、水を水素と酸素とに分解し得る半導体材料を含む半導体電極と、前記半導体電極と電気的に接続された、導電性材料からなる対極と、前記半導体電極および前記対極と接する前記第1の液体と、前記半導体電極、前記対極および前記第1の液体を内部に保持する筐体部と、を備えており、
     前記半導体電極に太陽光が照射されることによって、前記第1の液体に含まれる水の一部が水素と酸素とに分解されて水素が生成される、
    請求項1に記載の水素生成システム。
  10.  前記第1の液体を前記水素生成部に導入する前に、前記半導体電極側の流路と前記対極側の流路とに分岐する、請求項9に記載の水素生成システム。
  11.  前記水素生成部において発生した水素と前記第1の液体との混合物を、水素と前記第1の液体とに分離する気液分離装置が、前記水素生成部の外に設けられている、請求項1に記載の水素生成システム。
  12.  燃料電池と、
     前記第1の熱交換器において加熱された前記第2の液体を、前記燃料電池との熱交換によって加熱する、第2の熱交換器と、
     前記第2の熱交換器において加熱された前記第2の液体と第3の液体との熱交換によって、前記第3の液体を加熱し、かつ、前記第2の液体を冷却する、第3の熱交換器と、をさらに備えた、請求項1に記載の水素生成システム。
  13.  前記燃料電池において発生した熱を回収して得られた湯を貯める貯湯槽をさらに備え、
     前記第3の熱交換器は、前記貯湯槽の内部に設けられている、請求項12に記載の水素生成システム。
  14.  前記第3の熱交換器によって冷却された前記第2の液体の一部を、前記第1の熱交換器により加熱された後であって、かつ、前記第2の熱交換器に導入される前の前記第2の液体に合流させる機構をさらに備えた、請求項12に記載の水素生成システム。
  15.  前記第1の液体の温度が、前記第2の液体の温度および前記第3の液体の温度よりも低い場合に、前記第1の液体と前記第2の液体または前記第3の液体との熱交換によって、前記第1の液体を加熱可能とする機構をさらに備えた、請求項12に記載の水素生成システム。
  16.  前記第1の液体と前記第2の液体または前記第3の液体との熱交換によって、前記第1の液体を加熱可能とする前記機構が、
     前記第2の熱交換器により加熱された前記第2の液体を前記第1の液体に導入する機構、または、前記第3の熱交換器により加熱された前記第3の液体を前記第1の液体に導入する機構である、請求項15に記載の水素生成システム。
  17.  前記第1の液体を流路から導出可能とする機構をさらに備えた、請求項1に記載の水素生成システム。
  18.  前記水素生成部で生成された水素を貯蔵する貯蔵設備をさらに備えた、請求項1に記載の水素生成システム。
  19.  燃料電池と、
     貯湯槽と、
     前記第2の液体が水であり、前記第1の熱交換器によって加熱された前記第2の液体を、前記貯湯槽の湯と合流させる、または、温水として供給する機構と、
     前記燃料電池との熱交換により、第3の液体としての水を加熱する、第2の熱交換器と、
     加熱された前記第3の液体を前記貯湯槽の湯と合流させる機構と、
    をさらに備えた、請求項1に記載の水素生成システム。
  20.  燃料電池と、
     貯湯槽と、
     前記第2の液体が水であり、前記第1の熱交換器において加熱された前記第2の液体を、前記燃料電池との熱交換によって加熱する、第2の熱交換器と、
     前記第2の熱交換器において加熱された前記第2の液体を前記貯湯槽の湯と合流させる機構と、
    をさらに備えた、請求項1に記載の水素生成システム。
  21.  前記第1の熱交換器において加熱された後であって、かつ、前記第2の熱交換器において前記燃料電池との熱交換を行う前の前記第2の液体に対して、冷水を供給して前記第2の液体の温度を調整する機構をさらに備えた、請求項20に記載の水素生成システム。
  22.  燃料電池と、
     貯湯槽と、
     前記第2の液体が水であり、前記第1の熱交換器によって加熱された前記第2の液体を、前記貯湯槽の湯と合流させる、または、温水として供給する機構と、
     前記燃料電池との熱交換により、第3の液体としての水を加熱する、第2の熱交換器と、
     加熱された前記第3の液体を前記貯湯槽の湯と合流させる機構と、
     前記貯湯槽の内部に設けられ、当該貯湯槽内の湯と第4の液体としての水との熱交換によって前記第4の液体を加熱する、第3の熱交換器と、
    をさらに備えた、請求項1に記載の水素生成システム。
  23.  燃料電池と、
     貯湯槽と、
     前記第2の液体が水であり、前記第1の熱交換器において加熱された前記第2の液体を、前記燃料電池との熱交換によって加熱する、第2の熱交換器と、
     前記第2の熱交換器において加熱された前記第2の液体を前記貯湯槽の湯と合流させる機構と、
     前記貯湯槽の内部に設けられ、当該貯湯槽内の湯と第3の液体としての水との熱交換によって前記第3の液体を加熱する、第3の熱交換器と、
    をさらに備えた、請求項1に記載の水素生成システム。
  24.  前記第1の熱交換器において加熱された後であって、かつ、前記第2の熱交換器において前記燃料電池との熱交換を行う前の前記第2の液体に対して、冷水を供給して前記第2の液体の温度を調整する機構をさらに備えた、請求項23に記載の水素生成システム。
  25.  第1の液体を保持し、太陽光が照射されることによって、前記第1の液体の少なくとも一部を加熱する太陽熱温水器と、
     燃料電池と、
     前記太陽熱温水器において加熱された前記第1の液体から回収された熱と、前記燃料電池で発生した熱とを利用して、湯を供給する機構と、
    を備えた、温水生成システム。
PCT/JP2010/003451 2009-05-21 2010-05-21 水素生成システムおよび温水生成システム WO2010134356A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080018615.7A CN102414118B (zh) 2009-05-21 2010-05-21 氢生成系统及热水生成系统
US13/320,626 US20120063967A1 (en) 2009-05-21 2010-05-21 Hydrogen generation system and hot water production system
JP2010546993A JP4759655B2 (ja) 2009-05-21 2010-05-21 水素生成システムおよび温水生成システム
EP10777592.6A EP2433903B1 (en) 2009-05-21 2010-05-21 Hydrogen generation system and hot water production system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-123124 2009-05-21
JP2009123124 2009-05-21

Publications (1)

Publication Number Publication Date
WO2010134356A1 true WO2010134356A1 (ja) 2010-11-25

Family

ID=43126045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003451 WO2010134356A1 (ja) 2009-05-21 2010-05-21 水素生成システムおよび温水生成システム

Country Status (5)

Country Link
US (1) US20120063967A1 (ja)
EP (1) EP2433903B1 (ja)
JP (1) JP4759655B2 (ja)
CN (1) CN102414118B (ja)
WO (1) WO2010134356A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120835A1 (ja) * 2011-03-08 2012-09-13 パナソニック株式会社 エネルギーシステム
JP2013045696A (ja) * 2011-08-25 2013-03-04 Sharp Corp アニオン交換膜型燃料電池システム
JP2015180774A (ja) * 2015-03-31 2015-10-15 株式会社エクォス・リサーチ 太陽光利用システム及びその制御方法
JP2015214470A (ja) * 2014-05-13 2015-12-03 大和ハウス工業株式会社 太陽エネルギー利用システム
JP2015214469A (ja) * 2014-05-13 2015-12-03 大和ハウス工業株式会社 太陽エネルギー利用システム
JP2019139837A (ja) * 2018-02-06 2019-08-22 株式会社フジクラ 燃料電池システム
JP2020093950A (ja) * 2018-12-12 2020-06-18 東洋エンジニアリング株式会社 水素製造装置および水素製造方法
JP2022021115A (ja) * 2020-07-21 2022-02-02 東邦瓦斯株式会社 水素生成システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9369723B2 (en) 2011-07-14 2016-06-14 Comcast Cable Communications, Llc Preserving image quality in temporally compressed video streams
US8936734B2 (en) 2012-12-20 2015-01-20 Sunpower Technologies Llc System for harvesting oriented light—water splitting
CN106276787B (zh) * 2016-07-29 2018-09-28 卢占龙 高温热导水等离子产生系统
CN109764709B (zh) * 2018-12-11 2020-08-04 全球能源互联网研究院有限公司 能源回收系统
FI128890B (en) * 2019-09-12 2021-02-26 Lappeenrannan Lahden Teknillinen Yliopisto Lut System and method for alkaline electrolysis of water
JP7355720B2 (ja) * 2020-10-11 2023-10-03 トヨタ自動車株式会社 光触媒を用いた水素ガス製造装置
US11217805B1 (en) * 2021-06-28 2022-01-04 II Richard W. Fahs Point of use hydrogen production unit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124584A (ja) 1974-03-04 1975-09-30
JPS57191202A (en) 1981-05-22 1982-11-25 Toshiba Corp Solar energy converting apparatus
JP2000054174A (ja) * 1998-08-07 2000-02-22 Matsushita Electric Ind Co Ltd 水電解装置および水電解蓄電池
JP2000333481A (ja) 1999-05-18 2000-11-30 Nst:Kk 超小型クリーン発電システム
JP2002095167A (ja) * 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd 余剰電力貯蔵供給装置
JP2003054902A (ja) * 2001-08-09 2003-02-26 Japan Atom Energy Res Inst 放射線を利用した光触媒利用型水素・酸素製造方法及びその装置
JP2005281716A (ja) * 2004-03-26 2005-10-13 Tadahiko Mizuno 電解発光装置、電解発光装置用電極、水素ガス発生装置、発電装置、コジェネレーションシステム、水素ガス発生方法、発電方法およびエネルギー供給方法
JP2007196165A (ja) * 2006-01-27 2007-08-09 National Institute For Materials Science 新規なデバイス
JP2007528935A (ja) * 2003-07-13 2007-10-18 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング 水素を直接発生し、収集するための光電池
JP2008507464A (ja) * 2004-05-18 2008-03-13 ハイドロジェン ソーラー リミテッド 光電気化学システムおよびその方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL55477A (en) * 1978-09-01 1982-04-30 Yeda Res & Dev System for utilizing solar energy
US4240882A (en) * 1979-11-08 1980-12-23 Institute Of Gas Technology Gas fixation solar cell using gas diffusion semiconductor electrode
US4439301A (en) * 1982-10-07 1984-03-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Photoelectrochemical cells including chalcogenophosphate photoelectrodes
JP2888717B2 (ja) * 1992-04-06 1999-05-10 公生 石丸 エネルギー供給システム
US5306577A (en) * 1992-07-15 1994-04-26 Rockwell International Corporation Regenerative fuel cell system
US5632870A (en) * 1994-05-13 1997-05-27 Kucherov; Yan R. Energy generation apparatus
US5976724A (en) * 1997-07-15 1999-11-02 Niagara Mohawk Power Corporation Fuel cell power plant with electrochemical autothermal reformer
EP1263072B1 (en) * 2001-05-30 2016-04-06 Casale SA Method and apparatus for the storage and redistribution of electrical energy
US20030207161A1 (en) * 2002-05-01 2003-11-06 Ali Rusta-Sallehy Hydrogen production and water recovery system for a fuel cell
US7485799B2 (en) * 2002-05-07 2009-02-03 John Michael Guerra Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same
WO2004027914A1 (ja) * 2002-09-20 2004-04-01 Matsushita Electric Industrial Co., Ltd. 燃料電池コージェネレーションシステム
GB0304709D0 (en) * 2003-03-01 2003-04-02 Univ Aberdeen Photo-catalytic fuel cell
US7014932B2 (en) * 2003-03-19 2006-03-21 Proton Energy Systems, Inc. Drainage system and process for operating a regenerative electrochemical cell system
JP3787686B2 (ja) * 2003-03-26 2006-06-21 松下電器産業株式会社 水の光分解装置および光分解方法
WO2005074064A1 (ja) * 2004-01-30 2005-08-11 Matsushita Electric Industrial Co., Ltd. 燃料電池システム
US7510640B2 (en) * 2004-02-18 2009-03-31 General Motors Corporation Method and apparatus for hydrogen generation
US20050183962A1 (en) * 2004-02-24 2005-08-25 Oakes Thomas W. System and method for generating hydrogen gas using renewable energy
DE102004012303B3 (de) * 2004-03-11 2005-07-14 Dieter Ostermann Photoelektrochemische Reaktionszelle und Vorrichtung zur Umsetzung von Lichtenergie mit dieser Reaktionszelle
US8019445B2 (en) * 2004-06-15 2011-09-13 Intelligent Generation Llc Method and apparatus for optimization of distributed generation
JP4887158B2 (ja) * 2004-11-25 2012-02-29 アイシン精機株式会社 燃料電池システム
US8481219B2 (en) * 2005-02-18 2013-07-09 Panasonic Corporation Fuel cell system and operation method thereof
DE102006002470A1 (de) * 2005-09-08 2007-03-15 Airbus Deutschland Gmbh Brennstoffzellensystem zur Versorgung mit Trinkwasser und Sauerstoff
JP4989155B2 (ja) * 2005-09-21 2012-08-01 三洋電機株式会社 燃料電池
DE102006010111A1 (de) * 2006-02-28 2007-08-30 Siegfried Gutfleisch Einrichtung zur Energieversorung von Gebäuden unter Nutzung der Sonnenenergie als Energiequelle
WO2008116254A1 (en) * 2007-03-23 2008-10-02 Robin Brimblecombe Water oxidation catalyst
US8206857B2 (en) * 2007-06-26 2012-06-26 Hyteon Inc. Fuel cell combined heat and power generation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124584A (ja) 1974-03-04 1975-09-30
JPS57191202A (en) 1981-05-22 1982-11-25 Toshiba Corp Solar energy converting apparatus
JP2000054174A (ja) * 1998-08-07 2000-02-22 Matsushita Electric Ind Co Ltd 水電解装置および水電解蓄電池
JP2000333481A (ja) 1999-05-18 2000-11-30 Nst:Kk 超小型クリーン発電システム
JP2002095167A (ja) * 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd 余剰電力貯蔵供給装置
JP2003054902A (ja) * 2001-08-09 2003-02-26 Japan Atom Energy Res Inst 放射線を利用した光触媒利用型水素・酸素製造方法及びその装置
JP2007528935A (ja) * 2003-07-13 2007-10-18 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング 水素を直接発生し、収集するための光電池
JP2005281716A (ja) * 2004-03-26 2005-10-13 Tadahiko Mizuno 電解発光装置、電解発光装置用電極、水素ガス発生装置、発電装置、コジェネレーションシステム、水素ガス発生方法、発電方法およびエネルギー供給方法
JP2008507464A (ja) * 2004-05-18 2008-03-13 ハイドロジェン ソーラー リミテッド 光電気化学システムおよびその方法
JP2007196165A (ja) * 2006-01-27 2007-08-09 National Institute For Materials Science 新規なデバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2433903A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120835A1 (ja) * 2011-03-08 2012-09-13 パナソニック株式会社 エネルギーシステム
CN103403940A (zh) * 2011-03-08 2013-11-20 松下电器产业株式会社 能量系统
JP5891358B2 (ja) * 2011-03-08 2016-03-23 パナソニックIpマネジメント株式会社 エネルギーシステム
JP2013045696A (ja) * 2011-08-25 2013-03-04 Sharp Corp アニオン交換膜型燃料電池システム
JP2015214470A (ja) * 2014-05-13 2015-12-03 大和ハウス工業株式会社 太陽エネルギー利用システム
JP2015214469A (ja) * 2014-05-13 2015-12-03 大和ハウス工業株式会社 太陽エネルギー利用システム
JP2015180774A (ja) * 2015-03-31 2015-10-15 株式会社エクォス・リサーチ 太陽光利用システム及びその制御方法
JP2019139837A (ja) * 2018-02-06 2019-08-22 株式会社フジクラ 燃料電池システム
JP7007941B2 (ja) 2018-02-06 2022-02-10 株式会社フジクラ 燃料電池システム
JP2020093950A (ja) * 2018-12-12 2020-06-18 東洋エンジニアリング株式会社 水素製造装置および水素製造方法
JP7219077B2 (ja) 2018-12-12 2023-02-07 東洋エンジニアリング株式会社 水素製造装置および水素製造方法
JP2022021115A (ja) * 2020-07-21 2022-02-02 東邦瓦斯株式会社 水素生成システム

Also Published As

Publication number Publication date
CN102414118B (zh) 2014-07-23
CN102414118A (zh) 2012-04-11
EP2433903A1 (en) 2012-03-28
JPWO2010134356A1 (ja) 2012-11-08
US20120063967A1 (en) 2012-03-15
EP2433903A4 (en) 2014-12-24
JP4759655B2 (ja) 2011-08-31
EP2433903B1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP4759655B2 (ja) 水素生成システムおよび温水生成システム
RU2670991C2 (ru) Способ электролиза и электролизная установка
JP4482057B2 (ja) 固体高分子型燃料電池システム
US6699612B2 (en) Fuel cell power plant having a reduced free water volume
EP2755269B1 (en) Cogeneration system
JP3706937B2 (ja) 燃料電池システム
JP4624670B2 (ja) 燃料電池発電装置の多数の構成部品の機能の統合化
KR101163464B1 (ko) 전기 전도도 관리 및 난방 성능이 개선된 연료전지 차량용 열 및 물 관리 시스템
JP2009036473A (ja) 燃料電池システム
JP2004207093A (ja) 燃料電池システムおよびその運転方法
JP2013076146A (ja) 水素生成システム
JP2016515190A (ja) 加熱設備および加熱設備の動作方法
KR101078964B1 (ko) 연료전지 시스템
JP2006299323A (ja) 水電解装置
JP2004311347A (ja) 燃料電池の冷却システム
JP2007213942A (ja) 燃料電池システム及び燃料電池システムの起動方法
JP3780714B2 (ja) 燃料電池発電装置
JP5068291B2 (ja) 燃料電池システム
KR100778480B1 (ko) 연료 전지 시스템의 열 저장 장치
JP2007242493A (ja) 燃料電池システムおよびその運転停止方法
CN110350220B (zh) 一种适用于水下动力系统的燃料电池供氧系统
JP2009170189A (ja) 燃料電池システム及び燃料電池システムにおける凝縮水の回収方法
JP2009170131A (ja) 燃料電池発電システムおよびその運転方法
KR100517936B1 (ko) 결정화촉진장치가 구비된 연료전지 시스템의발전성능향상장치
US11833927B2 (en) Thermal management system for fuel cell vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018615.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010546993

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010777592

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13320626

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE