WO2010125732A1 - 燃料電池用改質装置 - Google Patents

燃料電池用改質装置 Download PDF

Info

Publication number
WO2010125732A1
WO2010125732A1 PCT/JP2010/001570 JP2010001570W WO2010125732A1 WO 2010125732 A1 WO2010125732 A1 WO 2010125732A1 JP 2010001570 W JP2010001570 W JP 2010001570W WO 2010125732 A1 WO2010125732 A1 WO 2010125732A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
fuel cell
unit
reforming
gas flow
Prior art date
Application number
PCT/JP2010/001570
Other languages
English (en)
French (fr)
Inventor
西村佳展
門脇正天
藤生昭
梶田琢也
原嘉孝
Original Assignee
株式会社Eneosセルテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Eneosセルテック filed Critical 株式会社Eneosセルテック
Priority to EP10769434.1A priority Critical patent/EP2426770A4/en
Publication of WO2010125732A1 publication Critical patent/WO2010125732A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0877Methods of cooling by direct injection of fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1609Shutting down the process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a reformer for a fuel cell that reforms raw fuel to generate a reformed gas used in a fuel cell.
  • a polymer electrolyte fuel cell has a basic structure in which a polymer electrolyte membrane, which is an electrolyte membrane, is disposed between a fuel electrode and an air electrode.
  • the fuel electrode contains hydrogen and the air electrode contains oxygen. It is a device that supplies the agent gas and generates power by the following electrochemical reaction.
  • the fuel electrode H 2 ⁇ 2H + + 2e - ⁇ (1)
  • Cathode 1 / 2O 2 + 2H + + 2e - ⁇ H 2 O ⁇ (2)
  • hydrogen used as a fuel for a polymer electrolyte fuel cell is a natural gas, a hydrocarbon gas such as naphtha, or a raw fuel gas of alcohols such as methanol and water vapor, which are relatively easily and inexpensively available.
  • the technique obtained by mixing and reforming in the reforming section is employed. Hydrogen gas obtained by reforming is supplied to the fuel electrode of the fuel cell and used for power generation.
  • FIG. 1 is a schematic diagram showing the configuration of a conventional fuel cell system.
  • the fuel cell system 300 includes a fuel cell reformer 302 that generates hydrogen-rich reformed gas from raw fuel, and a fuel cell 400.
  • raw fuel hydrogen gas such as natural gas or LPG
  • LPG low-density polyethylene
  • the raw fuel from which the sulfur component has been removed is supplied to the reforming unit 320.
  • the reforming unit 320 steam-reforms the raw fuel by passing the raw fuel through the catalyst heated by the burner 322 to generate a reformed gas.
  • the reformed gas generated by the reforming unit 320 is heat-exchanged with reformed water (steam) before being added to the raw fuel in the heat exchanging unit 340, and then supplied to the CO converting unit 350.
  • carbon monoxide is converted to hydrogen by a shift reaction. Thereby, the hydrogen concentration is increased and the CO concentration is reduced.
  • the reformed gas whose CO concentration has been reduced by the CO shifter 350 is heat-exchanged with the water vapor evaporated in the vaporizer 330 in the heat exchanger 342 and then supplied to the CO remover 360.
  • the CO concentration is further reduced by the CO oxidation reaction using the CO selective oxidation catalyst. Note that air necessary for the CO oxidation reaction is supplied to the reformed gas whose CO concentration has been reduced by the CO conversion unit 350.
  • the reformed gas whose CO concentration is further reduced by the CO removing unit 360 is supplied to the fuel electrode of the fuel cell 400 after exchanging heat with water vapor in the heat exchanging unit 344.
  • Air is supplied as an oxidant to the air electrode of the fuel cell 400, and power is generated by an electrochemical reaction between hydrogen and oxygen.
  • the steam necessary for the reforming reaction in the reforming unit 320 is generated from the reformed water supplied from the outside of the fuel cell system 300.
  • the liquid reforming water supplied from the outside is vaporized by exchanging heat with the exhaust gas from the burner 322 in the vaporizing section 330 to become water vapor.
  • the water vapor generated by the vaporization unit 330 is heat-exchanged with the reformed gas in the order of the heat exchange unit 342, the CO removal unit 360, and the heat exchange unit 344, and then the reformed gas in the order of the CO conversion unit 350 and the heat exchange unit 340. After further heat exchange, it is mixed with the desulfurized raw fuel.
  • the inlet side of the reformer for the fuel cell ( The raw fuel supply port) and the outlet of the reformer for the fuel cell (the outlet part of the reformed gas) are closed, the raw fuel is introduced from the inlet of the reformer for the fuel cell, and the reformer for the fuel cell
  • a method for purging the gas flow path of the apparatus a method for purging the gas flow path of the fuel cell reformer by introducing air from the outlet side of the fuel cell reformer.
  • the inside of the reformer for the fuel cell is depressurized due to water condensation due to a temperature drop.
  • the electromagnetic valve etc. which seal the gas flow path in the reformer for fuel cells are easily damaged.
  • the reaction of the reformer or the like may be heated to a temperature higher than the thermal decomposition temperature at startup. This causes a problem that coking occurs on the reforming catalyst and the catalyst performance is lowered.
  • the selective oxidation catalyst of the CO removal unit may be oxidized by the inflow of air.
  • the selective oxidation catalyst of the CO removal unit may be oxidized by the inflow of air.
  • a sacrificial oxidant is provided on the downstream side of the selective oxidation catalyst, air remains in the gas flow path from the downstream side of the sacrificial oxidant to the outlet side of the fuel cell reformer to which air is introduced. To do. For this reason, when the reforming device for a fuel cell is started, the air remaining in the gas flow channel flows into the fuel cell, whereby the oxidation of the catalyst metal used for the electrode of the fuel cell proceeds, and the fuel cell The durability of is reduced.
  • the present invention has been made in view of these problems, and the object thereof is to reduce the degradation of the selective oxidation catalyst with a simple configuration when the fuel cell reformer is stopped without causing a decrease in the durability of the fuel cell. It is to provide technology that can be suppressed.
  • An embodiment of the present invention is a fuel cell reformer.
  • the fuel cell reformer reduces the CO concentration of the reformed gas generated in the reforming unit and reforming unit that reforms the raw fuel to generate reformed gas mainly composed of hydrogen by shift reaction.
  • An air supply unit capable of introducing air into the gas flow channel via the air supply flow channel, and after stopping the supply of raw fuel to the reforming unit, the gas upstream of the CO removal unit Air is introduced into the flow path.
  • the reforming section and the CO conversion section are higher in temperature and larger in volume than the CO removal section. For this reason, when the fuel cell reforming apparatus is shut down, the reforming section and the CO conversion section are more affected by water condensation and temperature drop, and the interior of the reforming section and the CO conversion section is compared to the CO removal section. It becomes easy to be decompressed. As a result, the air introduced into the gas flow path on the upstream side of the CO removal unit can easily flow into the CO conversion unit side. Oxygen in the air is removed from the air that has flowed into the CO conversion section by oxidation of the shift catalyst. The air from which oxygen has been removed naturally flows into the reforming section.
  • the volume of the gas flow path from the CO conversion section to the location where the air supply flow path is connected is from the location where the air supply flow path is connected to the CO removal section. It may be smaller than the volume of the gas flow path.
  • the volume of the gas flow path from the CO transformation section to the location where the air supply flow path is connected is 1/6 or less of the volume of the gas flow path from the location where the air supply flow path is connected to the CO removal section It may be.
  • the part of the air supply channel connected to the gas channel may also serve as a path for supplying air used for selective oxidation in the CO removal unit.
  • a diffusion part for diffusing the gas flow may be provided in the gas flow channel located on the downstream side with respect to the location where the air supply flow channel is connected.
  • the air supply unit may have a normally open type on-off valve.
  • the deterioration of the selective oxidation catalyst can be suppressed with a simple configuration when the fuel cell reforming apparatus is stopped, without causing deterioration of the durability of the fuel cell.
  • FIG. 2 is a schematic diagram showing the configuration of the fuel cell system 100 including the fuel cell reforming apparatus 10 according to the embodiment.
  • the fuel cell reforming apparatus 10 includes a desulfurization unit 20, a reforming unit 30, a burner 32, a vaporization unit 40, a heat exchange unit 50, a CO conversion unit 60, and a CO removal unit 70.
  • raw fuel hydrocarbon gas such as natural gas or LPG
  • the sulfur component acts as a catalyst poison for the catalyst contained in the reforming unit 30 and the fuel cell 12, and the reforming performance of the fuel cell reforming device 10 and the power generation performance of the fuel cell 12 are affected by sulfur poisoning. Decrease is suppressed.
  • the desulfurization unit 20 performs desulfurization of the raw fuel by a so-called hydrodesulfurization method that removes the sulfur component by reacting the raw fuel containing the sulfur component with hydrogen in the presence of the catalyst.
  • the supply amount of the raw fuel is appropriately controlled by adjusting the output of the raw fuel supply pump 14.
  • An on-off valve 16 is provided on the downstream side of the raw fuel supply pump 14, and the inflow of the raw fuel can be blocked by closing the on-off valve 16.
  • Raw fuel from which sulfur components have been removed is supplied to the reforming unit 30.
  • the reforming unit 30 has a catalyst layer made of a reforming catalyst in which a metal catalyst such as ruthenium (Ru) is supported on a carrier such as alumina.
  • a metal catalyst such as ruthenium (Ru)
  • the raw fuel is steam reformed under the reforming catalyst heated by the burner 32, and a reformed gas containing about 80% of hydrogen (fuel) is generated.
  • the reaction temperature during steam reforming is, for example, in the range of about 650 ° C. to 700 ° C.
  • a part of the raw fuel is supplied to the burner 32 in order to raise the temperature of the reforming unit 30.
  • the fuel cell 12 can be stably operated, the supply of the raw fuel to the burner 32 is stopped, and the battery off gas discharged from the fuel cell 12 is supplied to the burner 32, whereby the temperature of the reforming unit 30 is increased. Is planned.
  • the exhaust gas generated by the combustion of the burner 32 is discharged from the fuel cell system 100 to the outside after exchanging heat with the reforming water in the vaporization section 40. Further, air is supplied to the burner 32 and used for combustion of the burner 32.
  • the reformed gas generated by the reforming unit 30 is supplied to the CO conversion unit 60 after exchanging heat with water vapor that has passed through the vaporization unit 40 when passing through the heat exchange unit 50.
  • the CO conversion unit 60 has a catalyst layer made of a Cu—Zn-based catalyst made of, for example, copper oxide or zinc oxide pellets.
  • carbon monoxide is converted to hydrogen by a shift reaction. Thereby, the hydrogen concentration of the reformed gas is increased and the CO concentration is reduced to 0.5% or less.
  • the CO selective oxidation reaction is performed, for example, in the range of about 70 ° C. to 180 ° C.
  • FIG. 3 shows a specific example of the diffusion unit 80.
  • the diffusion unit 80 is a twist plate that is formed by twisting a flat plate-like member and is installed in a gas flow path (pipe) from the CO conversion unit 60 to the CO removal unit 70.
  • the gas passes through the pipe in which the diffusing unit 80 is provided, the gas collides with the diffusing unit 80, whereby the gas diffusibility is enhanced.
  • the reformed gas and the selective oxidation air pass through the pipe provided with the diffusion portion 80, so that the reforming gas and the selective oxidation air can be mixed (mixed) and gas dispersible. Can be improved.
  • the entire selective oxidation catalyst used in the CO removing unit 70 can be efficiently contributed to CO removal, and thus the durability of the CO removing unit 70 can be improved.
  • the CO removal unit 70 can be made compact while the lifetime of the CO removal unit 70 is equal.
  • the CO removing unit 70 has a catalyst layer made of a CO selective oxidation catalyst in which Ru is supported on a carrier such as alumina, and the reformed gas is formed by a CO oxidation reaction using the CO selective oxidation catalyst.
  • the CO concentration is reduced to about 10 ppm.
  • air necessary for the CO oxidation reaction is supplied to the reformed gas whose CO concentration has been reduced by the CO conversion unit 60.
  • the air supply flow path 102 is connected to a gas flow path located upstream of the diffusion section 80.
  • the air supply flow path 102 is branched into two parts, an air supply flow path 102a and an air supply flow path 102b.
  • air is supplied to the gas flow channel located upstream of the diffusion unit 80 via the air supply flow channel 102 a, and the CO oxidation reaction in the CO removal unit 70 is performed. Used.
  • the air supply channel 102 a is provided with an air supply pump 104 and an on-off valve 106, and the supply amount of air can be adjusted by controlling the output of the air supply pump 104. Further, by closing the on-off valve 106, the inflow of air to the gas flow channel located upstream of the diffusing unit 80 is blocked.
  • an on-off valve 108 is provided in the air supply channel 102a.
  • the on-off valve 108 is specifically a normally open type electromagnetic valve. That is, the on-off valve 108 is closed during the operation of the fuel cell reforming apparatus 10, but when the operation of the fuel cell reforming apparatus 10 is stopped, the on-off valve 108 is opened to supply air. Air is supplied to the gas flow channel located on the upstream side of the diffusing section 80 via the use flow channel 102b.
  • the volume of the gas flow path from the CO transformation section 60 to the location where the air supply flow path 102 is connected is the volume of the gas flow path from the location where the air supply flow path 102 is connected to the CO removal section 70. It is desirable that it is small compared. More desirably, the volume of the gas flow path from the CO transformation section 60 to the location where the air supply flow path 102 is connected is such that the gas flow from the location where the air supply flow path 102 is connected to the CO removal section 70. 1/6 or less of the volume of the road.
  • the gas flow path from the location where the air supply flow path 102 is connected to the CO removal section 70 is more effective from the CO transformation section 60 to the air.
  • the supply channel 102 is longer than the gas channel up to the connected location. According to this configuration, the reformed gas, the reformed gas, and the air for selective oxidation pass through the gas flow path from the location where the air supply flow path 102 is connected to the CO removal unit 70 to mix them. Can be improved.
  • the volume of the gas flow path from the CO transformation section 60 to the location where the air supply flow path 102 is connected is preferably 10 cm 3 or less.
  • a typical example of the volume of the gas flow path from the CO transformation section 60 to the location where the air supply flow path 102 is connected is 6 cm 3 .
  • a typical example of the volume of the gas flow path from the location where the air supply flow path 102 is connected to the CO removing unit 70 is 43.5 cm 3 .
  • the diameter of the gas flow path provided between the CO conversion unit 60 and the CO removal unit 70 is preferably 6 to 12 mm, typically 3/8 inch.
  • the reformed gas whose CO concentration is further reduced by the CO removing unit 70 is supplied to the fuel electrode of the fuel cell 12.
  • An on-off valve 18 is provided on the downstream side of the CO removing unit 70, and the gas flow from the CO removing unit 70 to the fuel cell 12 can be blocked by closing the on-off valve 18.
  • the fuel cell 12 is, for example, a solid polymer fuel cell, and is a laminate in which a plurality of membrane electrode assemblies (single cells) each having a solid polymer electrolyte membrane provided between a fuel electrode and an air electrode are laminated. Have. Air is supplied to the air electrode of the fuel cell 12 as an oxidant, and power is generated by an electrochemical reaction between hydrogen and oxygen.
  • the amount of air supplied to the air electrode of the fuel cell 12 is adjusted by controlling the output of the air supply pump 112.
  • An on-off valve 110 is provided on the upstream side of the air supply pump 112, and the inflow of air to the air electrode of the fuel cell 12 can be blocked by closing the on-off valve 110.
  • the water vapor necessary for the reforming reaction in the reforming unit 30 is generated from the reformed water supplied from the outside of the fuel cell system 100.
  • the reformed water is generated by treating the clean water with a water treatment device (not shown) provided with a reverse osmosis membrane and an ion exchange resin.
  • the water treatment device reduces the conductivity of clean water and suppresses the mixing of organic substances.
  • the supply amount of the reforming water is appropriately controlled by adjusting the output of the reforming water supply pump 90.
  • the liquid reforming water supplied from the outside is heated by exchanging heat with the reformed gas at the CO shift section 60 and then supplied to the vaporizing section 40.
  • the reformed water starts to evaporate when heat is exchanged with the reformed gas in the CO shift section 60. Further, vaporization is completed by exchanging heat with the exhaust gas from the burner 32 in the vaporization section 40.
  • the water vapor vaporized in the vaporization unit 40 is heated to become superheated steam when passing through the heat exchange unit 50 and then added to the raw fuel on the downstream side of the desulfurization unit 20.
  • the raw fuel supply pump 14 is driven, the on-off valve 16 is opened, and the raw fuel is supplied to the desulfurization unit 20.
  • the raw fuel is desulfurized in the desulfurization unit 20 and then supplied to the reforming unit 30 together with steam, and a reformed gas containing hydrogen is generated by the reforming reaction.
  • the reformed gas generated in the reforming unit 30 passes through the heat exchanging unit 50 and is then supplied to the CO conversion unit 60, so that the CO concentration in the reformed gas is reduced by a shift reaction.
  • the outlet gas of the shift reaction unit is supplied to the CO removal unit 70.
  • the on-off valve 106 is opened and the air supply pump 104 is driven, whereby the air for selective oxidation reaction is supplied to the gas flow path on the upstream side of the diffusion unit 80.
  • the on-off valve 108 is closed.
  • the on-off valve 18 is opened, and the reformed gas containing hydrogen is supplied to the fuel cell 12.
  • the on-off valve 110 is opened and the air supply pump 112 is driven to supply air to the fuel cell 12.
  • the supply of air for the selective oxidation reaction is stopped by closing the on-off valve 106, and the supply of air to the fuel cell 12 is stopped by closing the on-off valve 110. Further, the supply of the reformed gas to the fuel cell 12 is stopped by closing the on-off valve 18. Further, when the power supply to the on-off valve 108 is stopped, the on-off valve 108 is opened, so that the air supply channels 102 and 102b are opened to the atmosphere. As a result, as the temperature of the fuel cell reforming apparatus 10 decreases, air flows from the air supply channel 102 into the gas channel between the CO conversion unit 60 and the CO removal unit 70.
  • the volume of the gas flow path from the CO transformation section 60 to the location where the air supply flow path 102 is connected is the gas from the location where the air supply flow path 102 is connected to the CO removal section 70.
  • the volume smaller than the volume of the flow path the air that has flowed into the gas flow path from the air supply flow path 102 can easily flow toward the CO shift section 60, and the shift catalyst is oxidized in the CO shift section 60. Oxygen in the air is removed.
  • the air from which oxygen has been removed naturally flows into the reforming unit 30.
  • the inside of the fuel cell reforming device 10 is prevented from becoming negative pressure without purging the gas flow path in the fuel cell reforming device 10, and sacrificial oxidation is performed downstream of the CO removal unit 70.
  • the oxidation of the selective oxidation catalyst used for the CO removing unit 70 can be suppressed without installing an agent.
  • the present invention can be used in a fuel cell reforming apparatus that reforms raw fuel to generate reformed gas mainly composed of hydrogen gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 燃料電池用改質装置10は、原燃料を改質して水素を主成分とする改質ガスを生成する改質部30と、改質部30で生成した改質ガスのCO濃度をシフト反応により低減するCO変成部60と、CO変成部60によりCO濃度が低減された改質ガスのCO濃度を選択酸化触媒を用いてさらに低減するCO除去部70と、CO除去部70の上流側のガス流路に接続された空気供給用流路102を経由してガス流路に空気を導入可能な構成を備える。改質部30への原燃料の供給を停止した後、CO除去部70の上流側のガス流路に空気が導入される。

Description

燃料電池用改質装置
 本発明は、原燃料を改質して燃料電池で使用される改質ガスを生成する燃料電池用改質装置に関する。
 近年、エネルギー変換効率が高く、かつ、発電反応により有害物質を発生しない燃料電池が注目を浴びている。こうした燃料電池の一つとして、固体高分子形燃料電池が知られている。
 固体高分子形燃料電池は、電解質膜である固体高分子膜を燃料極と空気極との間に配した基本構造を有し、燃料極に水素を含む燃料ガス、空気極に酸素を含む酸化剤ガスを供給し、以下の電気化学反応により発電する装置である。
燃料極:H→2H+2e・・・・(1)
空気極:1/2O+2H+2e→HO・・・・(2)
 実用的には、固体高分子形燃料電池の燃料となる水素は、比較的容易かつ安価に入手可能な天然ガス、ナフサ等の炭化水素系ガスまたはメタノール等のアルコール類の原燃料ガスと水蒸気とを混合して、改質部で改質することで得る手法が採用されている。改質により得られた水素ガスは燃料電池の燃料極に供給され、発電に用いられる。
 図1は、従来の燃料電池システムの構成を示す概略図である。燃料電池システム300は、原燃料から水素リッチな改質ガスを生成する燃料電池用改質装置302と、燃料電池400とを有する。従来、燃料電池システム300では、まず、原燃料(天然ガスやLPGなどの炭化水素系ガス)が脱硫部310に供給され、原燃料から硫黄成分が除去される。
 硫黄成分が除去された原燃料は改質部320に供給される。改質部320は、バーナー322で熱した触媒に原燃料を通すことにより原燃料を水蒸気改質し、改質ガスを生成する。
 改質部320の起動時には、改質部320を昇温するために、バーナー322に原燃料の一部が供給される。燃料電池400が安定的に運転できるようになると、バーナー322への原燃料の供給を停止し、燃料電池400から排出される電池オフガスをバーナー322に供給することにより、改質部320の昇温が図られる。バーナー322の燃焼により生じる排ガスは、気化部330において改質水と熱交換した後、燃料電池システム300から外部へ排出される。また、バーナー322には、空気が供給され、バーナー322の燃焼に用いられる。
 改質部320によって生成された改質ガスは、熱交換部340で原燃料に加えられる前の改質水(水蒸気)と熱交換した後、CO変成部350に供給される。CO変成部350では、シフト反応により一酸化炭素が水素に変成される。これにより、水素濃度が高められるとともに、CO濃度が低減される。
 CO変成部350によりCO濃度が低減された改質ガスは、熱交換部342で気化部330で気化された水蒸気と熱交換した後、CO除去部360に供給される。CO除去部360では、CO選択酸化触媒を用いたCO酸化反応によりCO濃度がさらに低減される。なお、CO変成部350によりCO濃度が低減された改質ガスには、CO酸化反応に必要な空気が供給される。
 CO除去部360によりCO濃度がさらに低減された改質ガスは、熱交換部344で水蒸気と熱交換した後、燃料電池400の燃料極に供給される。燃料電池400の空気極には酸化剤として空気が供給され、水素と酸素による電気化学反応により発電が行われる。
 改質部320における改質反応に必要な水蒸気は、燃料電池システム300の外部から供給された改質水から生成される。具体的には、外部から供給された液体の改質水は、気化部330において、バーナー322からの排ガスと熱交換することにより気化し、水蒸気となる。気化部330により生成した水蒸気は、熱交換部342、CO除去部360、熱交換部344の順で改質ガスと熱交換した後、CO変成部350、熱交換部340の順で改質ガスとさらに熱交換したのち、脱硫された原燃料に混合される。
特開2008-247735号公報 特開2003-12302号公報 特開2007-95549号公報 特開2007-230837号公報
 従来、燃料電池用改質装置に設けられた選択酸化触媒の劣化を抑制するため、層燃料電池用改質装置を停止する場合に実施される手法として、燃料電池用改質装置の入口側(原燃料供給口)および燃料電池用改質装置の出口側(改質ガスの出口部分)の弁を閉じる手法、燃料電池用改質装置の入口側から原燃料を導入して燃料電池用改質装置のガス流路内をパージする手法、燃料電池用改質装置の出口側から空気を導入して燃料電池用改質装置のガス流路内をパージする手法などがある。
 燃料電池用改質装置の入口側および燃料電池用改質装置の出口側の弁を閉じる手法では、燃料電池用改質装置内部が温度降下による水の凝縮などにより減圧が生じる。これにより、燃料電池用改質装置内のガス流路を密閉する電磁弁などがダメージを受けやすくなる。
 また、燃料電池用改質装置の入口側から原燃料を導入して燃料電池用改質装置のガス流路内をパージする手法では、原燃料がLPGである場合に、改質器などの反応容器に残留するLPGが起動時に熱分解温度以上に加熱されることがある。これにより、改質触媒上にコーキングが起こり、触媒性能が低下するという問題が発生する。
 また、燃料電池用改質装置の出口側から空気を導入して燃料電池用改質装置のガス流路内をパージする手法では、空気の流入によってCO除去部の選択酸化触媒が酸化する可能性がある。このため、選択酸化触媒の酸化を抑制するために、選択酸化触媒の下流側に犠牲酸化剤等を設ける必要が生じ、コストが増大するという問題が生じる。また、選択酸化触媒の下流側に犠牲酸化剤を設けた場合には、犠牲酸化剤の下流側から、空気が導入される燃料電池用改質装置の出口側までのガス流路に空気が残留する。このため、燃料電池用改質装置を起動する際に、当該ガス流路内に残存した空気が燃料電池に流入することにより、燃料電池の電極に用いられる触媒金属の酸化が進行し、燃料電池の耐久性が低下する。
 本発明はこうした課題に鑑みてなされたものであり、その目的は、燃料電池の耐久性の低下を招くことなく、燃料電池用改質装置の停止時に簡便な構成にて選択酸化触媒の劣化を抑制することのできる技術の提供にある。
 本発明のある態様は、燃料電池用改質装置である。当該燃料電池用改質装置は、原燃料を改質して水素を主成分とする改質ガスを生成する改質部と、改質部で生成した改質ガスのCO濃度をシフト反応により低減するCO変成部と、CO変成部によりCO濃度が低減された改質ガスのCO濃度を選択酸化触媒を用いてさらに低減するCO除去部と、CO除去部の上流側のガス流路に接続された空気供給用流路を経由して、ガス流路に空気を導入可能な空気供給部と、を備え、改質部への原燃料の供給を停止した後、CO除去部の上流側のガス流路に空気が導入されることを特徴とする。
 一般に、改質部およびCO変成部の方がCO除去部より温度が高く、容積も大きい。このため、燃料電池用改質装置の運転停止時において改質部およびCO変成部は、水の凝縮および温度降下の影響が大きくなり、改質部およびCO変成部の内部はCO除去部に比べて減圧されやすくなる。この結果、CO除去部の上流側のガス流路に導入された空気は、CO変成部の側に流れ込みやすくなる。CO変成部に流入した空気は、シフト触媒が酸化することにより空気中の酸素が除去される。酸素が除去された空気は、改質部に自然に流入する。これによって、燃料電池用改質装置内のガス流路をパージすることなく、燃料電池用改質装置内が負圧になることを防止し、かつCO除去部の下流側に犠牲酸化剤を設置することなく、CO除去部に用いられる選択酸化触媒の酸化を抑制することができる。なお、燃料電池用改質装置の運転停止時には、ガス流路内の減圧によりCO変成部に順次空気が流入するため、CO変成部に用いられるシフト触媒の温度は速やかに低下する。このため、シフト触媒が酸化してもシンタリング(焼結)はほとんど生じず、シフト触媒の耐久性が大幅に低下するおそれはない。
 上記態様の燃料電池用改質装置において、CO変成部から、空気供給用流路が接続された箇所までのガス流路の容積が、空気供給用流路が接続された箇所からCO除去部までのガス流路の容積に比べて小さくてもよい。CO変成部から、空気供給用流路が接続された箇所までのガス流路の容積が、空気供給用流路が接続された箇所からCO除去部までのガス流路の容積の1/6以下であってもよい。
 上記態様の燃料電池用改質装置において、ガス流路に接続された部分の空気供給用流路は、CO除去部における選択酸化に用いられる空気を供給するための経路を兼ねていてもよい。
 また、空気供給用流路が接続された箇所に対して下流側に位置するガス流路にガスの流れを拡散する拡散部が設けられていてもよい。
 また、空気供給部は、ノーマルオープン型の開閉弁を有してもよい。
 なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。
 本発明によれば、燃料電池の耐久性の低下を招くことなく、燃料電池用改質装置の停止時に簡便な構成にて選択酸化触媒の劣化を抑制することができる。
従来の燃料電池システムの構成を示す概略図である。 実施の形態に係る燃料電池用改質装置を含む燃料電池システムの構成を示す概略図である。 拡散部の具体例を示す図である。
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 図2は、実施の形態に係る燃料電池用改質装置10を含む燃料電池システム100の構成を示す概略図である。
 燃料電池用改質装置10は、脱硫部20、改質部30、バーナー32、気化部40、熱交換部50、CO変成部60、およびCO除去部70を含む。
 まず、原燃料(天然ガスやLPGなどの炭化水素系ガス)が脱硫部20に供給され、原燃料から硫黄成分が除去される。これにより、硫黄成分が改質部30や燃料電池12に含まれる触媒に対して触媒毒として作用し、硫黄被毒により燃料電池用改質装置10の改質性能や燃料電池12の発電性能が低下することが抑制される。脱硫部20は、たとえば、触媒の存在化で硫黄成分を含む原燃料と水素とを反応させて硫黄成分を除去する、いわゆる水素化脱硫方式により原燃料の脱硫を行う。原燃料の供給量は、原燃料供給ポンプ14の出力を調整することで適宜制御される。また、原燃料供給ポンプ14の下流側に開閉弁16が設けられており、開閉弁16を閉じることにより、原燃料の流入を遮断することができる。
 硫黄成分が除去された原燃料は改質部30に供給される。改質部30は、たとえば、アルミナ等の担体にルテニウム(Ru)などの金属触媒が担持された改質触媒からなる触媒層を有する。改質部30において、バーナー32で熱した改質触媒下で原燃料が水蒸気改質され、水素(燃料)を約80%含有する改質ガスが生成する。なお、水蒸気改質時の反応温度は、たとえば約650℃~700℃の範囲である。
 改質部30の起動時には、改質部30を昇温するために、バーナー32に原燃料の一部が供給される。燃料電池12が安定的に運転できるようになると、バーナー32への原燃料の供給を停止し、燃料電池12から排出される電池オフガスをバーナー32に供給することにより、改質部30の昇温が図られる。バーナー32の燃焼により生じる排ガスは、気化部40において改質水と熱交換した後、燃料電池システム100から外部へ排出される。また、バーナー32には、空気が供給され、バーナー32の燃焼に用いられる。
 改質部30によって生成された改質ガスは、熱交換部50を通過する際に気化部40を経由した水蒸気と熱交換した後、CO変成部60に供給される。CO変成部60は、たとえば、酸化銅や酸化亜鉛のペレットからなるCu-Zn系の触媒からなる触媒層を有し、CO変成部60において、シフト反応により一酸化炭素が水素に変成される。これにより、改質ガスの水素濃度が高められるとともに、CO濃度が0.5%以下に低減される。なお、CO選択酸化反応は、たとえば、約70℃~180℃の範囲で行われる。
 CO変成部60によりCO濃度が低減された改質ガスは、拡散部80を通過した後、CO除去部70に供給される。図3に、拡散部80の具体例を示す。拡散部80は、平板状の部材をひねることにより形成され、CO変成部60からCO除去部70に至るガス流路(配管)内に設置されたひねり板である。拡散部80が設けられた配管内をガスが通過する際に、ガスが拡散部80に衝突することにより、ガスの拡散性が高められる。このため、改質ガスと選択酸化用の空気とが拡散部80が設けられた配管内を通過することにより、改質ガスと選択酸化用の空気と混合性(ミキシング性)およびガス分散性を向上させることができる。この結果、CO除去部70に用いられる選択酸化触媒全体を効率的にCO除去に寄与させることができるため、CO除去部70の耐久性を向上させることができる。見方を変えると、CO除去部70の寿命が同等としつつ、CO除去部70のコンパクト化を図ることができる。
 図2の説明に戻り、CO除去部70は、たとえば、アルミナ等の担体にRuを担持したCO選択酸化触媒からなる触媒層を有し、CO選択酸化触媒を用いたCO酸化反応により改質ガスのCO濃度が10ppm程度にまで低減される。なお、CO変成部60によりCO濃度が低減された改質ガスには、CO酸化反応に必要な空気が供給される。具体的には、拡散部80の上流側に位置するガス流路に空気供給用流路102が接続されている。空気供給用流路102は途中で空気供給用流路102a、空気供給用流路102bの二手に分岐している。燃料電池用改質装置10の運転中に、空気供給用流路102aを経由して、拡散部80の上流側に位置するガス流路に空気が供給され、CO除去部70におけるCO酸化反応に利用される。空気供給用流路102aには、空気供給用ポンプ104および開閉弁106が設けられており、空気供給用ポンプ104の出力を制御することにより、空気の供給量が調節可能になっている。また、開閉弁106を閉じることにより、拡散部80の上流側に位置するガス流路への空気の流入が遮断される。
 一方、空気供給用流路102aには、開閉弁108が設けられている。開閉弁108は、具体的にはノーマルオープン型の電磁弁である。すなわち、燃料電池用改質装置10の運転中には、開閉弁108は閉じられているが、燃料電池用改質装置10の運転が停止されると、開閉弁108は開放状態となり、空気供給用流路102bを経由して、拡散部80の上流側に位置するガス流路に空気が供給される。
 CO変成部60から、空気供給用流路102が接続された箇所までのガス流路の容積は、空気供給用流路102が接続された箇所からCO除去部70までのガス流路の容積に比べて小さいことが望ましい。より望ましくは、CO変成部60から、空気供給用流路102が接続された箇所までのガス流路の容積が、空気供給用流路102が接続された箇所からCO除去部70までのガス流路の容積の1/6以下である。これによれば、燃料電池用改質装置10の運転が停止され、空気供給用流路102bを経由して拡散部80の上流側に位置するガス流路に空気が供給される際に、CO除去部70に空気が流入することが抑制される。この結果、CO除去部70に用いられる選択酸化触媒が酸化により性能劣化することが抑制される。
 CO変成部60から、空気供給用流路102が接続された箇所までのガス流路の容積を、空気供給用流路102が接続された箇所からCO除去部70までのガス流路の容積に比べて小さくするということは、ガス流路の径が一定とすると、空気供給用流路102が接続された箇所からCO除去部70までのガス流路の方が、CO変成部60から、空気供給用流路102が接続された箇所までのガス流路より長いことを意味する。この構成によれば、空気供給用流路102が接続された箇所からCO除去部70までのガス流路を改質ガスと改質ガスと選択酸化用の空気とが通過する過程で両者の混合性を向上させることができる。
 また、CO変成部60から、空気供給用流路102が接続された箇所までのガス流路の容積が必要以上に大きいと、当該部分に溜まった空気がCO除去部70に流入することにより、CO除去部70に用いられる選択酸化触媒の酸化が進みやすくなる。このため、CO変成部60から、空気供給用流路102が接続された箇所までのガス流路の容積は10cm以下が望ましい。
 以上を踏まえると、CO変成部60から、空気供給用流路102が接続された箇所までのガス流路の容積の典型例は6cmである。また、空気供給用流路102が接続された箇所からCO除去部70までのガス流路の容積の典型例は43.5cmである。
 なお、CO変成部60とCO除去部70の間に設けられるガス流路の径が細いほどガス流路の容積を小さくでき、かつ改質ガスと選択酸化用の空気との混合性が向上するため有利であるが、ガス流路の径が細すぎるとガス流路における圧損が大きくなる。このため、CO変成部60とCO除去部70の間に設けられるガス流路の径としては、6~12mmが好ましく、典型的には、3/8インチである。
 CO除去部70によりCO濃度がさらに低減された改質ガスは、燃料電池12の燃料極に供給される。CO除去部70の下流側には、開閉弁18が設けられており、開閉弁18を閉じることにより、CO除去部70から燃料電池12へのガスの流通を遮断することができる。燃料電池12は、たとえば、固体高分子形燃料電池であり、燃料極と空気極との間に固体高分子電解質膜が設けられた膜電極接合体(単セル)が複数積層された積層体を有する。燃料電池12の空気極には酸化剤として空気が供給され、水素と酸素による電気化学反応により発電が行われる。燃料電池12の空気極への空気の供給量は、空気供給用ポンプ112の出力を制御することにより調整される。また、空気供給用ポンプ112の上流側には、開閉弁110が設けられており、開閉弁110を閉じることにより、燃料電池12の空気極への空気の流入を遮断することができる。
 改質部30における改質反応に必要な水蒸気は、燃料電池システム100の外部から供給された改質水から生成される。改質水は、逆浸透膜とイオン交換樹脂等を備えた水処理装置(図示せず)により上水を処理することにより生成される。水処理装置により上水の導電率が低下するとともに、有機物の混入が抑制される。改質水の供給量は、改質水供給ポンプ90の出力を調整することで適宜制御される。
 外部から供給された液体の改質水は、CO変成部60で改質ガスと熱交換することにより昇温した後、気化部40に供給される。改質水は、CO変成部60において改質ガスと熱交換する際に蒸発し始める。さらに、気化部40において、バーナー32からの排ガスと熱交換することにより気化が完了する。気化部40で気化された水蒸気は、熱交換部50を通過する際に加熱されて過熱蒸気となった後、脱硫部20の下流側で原燃料に加えられる。
(起動時の動作)
 燃料電池用改質装置10の起動時には、原燃料供給ポンプ14が駆動されるとともに、開閉弁16が開放され、脱硫部20に原燃料が供給される。原燃料は脱硫部20で脱硫された後、水蒸気とともに改質部30に供給され、改質反応により水素を含む改質ガスが生成される。改質部30で生成した改質ガスは熱交換部50を通過した後、CO変成部60に供給され、改質ガス中のCO濃度がシフト反応により低減される。シフト反応部の出口ガスはCO除去部70に供給される。また、開閉弁106が開放されるとともに、空気供給用ポンプ104を駆動させることにより、選択酸化反応用の空気が拡散部80の上流側のガス流路に供給される。なお、このとき、開閉弁108は閉じられている。また、開閉弁18は開放されており、水素を含む改質ガスが燃料電池12に供給される。燃料電池12への改質ガスの供給が開始された後、開閉弁110が開放されるとともに、空気供給用ポンプ112を駆動させることにより、燃料電池12に空気が供給される。
(停止時の動作)
 次に、燃料電池用改質装置10を停止する場合の手順について説明する。燃料電池用改質装置10の停止に際して、まず、原燃料供給ポンプ14の駆動が停止されるとともに、開閉弁16を閉じることにより、燃料電池用改質装置10への原燃料の供給が停止される。これと並行して、改質水供給ポンプ90の駆動が停止され、燃料電池用改質装置10への改質水の供給が停止される。また、バーナー32の燃料用の燃料および空気の供給が停止される。
 さらに、開閉弁106を閉じることにより選択酸化反応用の空気の供給を停止し、開閉弁110を閉じることにより燃料電池12への空気の供給を停止する。また、開閉弁18を閉じることにより燃料電池12への改質ガスの供給を停止する。また、開閉弁108への電力供給が停止することにともない開閉弁108開放状態となることにより、空気供給用流路102、102bが大気開放される。これにより、燃料電池用改質装置10の温度が低下するにともなって、空気供給用流路102からCO変成部60とCO除去部70との間のガス流路に空気が流入する。
 上述したように、CO変成部60から、空気供給用流路102が接続された箇所までのガス流路の容積を、空気供給用流路102が接続された箇所からCO除去部70までのガス流路の容積に比べて小さくすることにより、空気供給用流路102からガス流路に流入した空気はCO変成部60の方へ流れやすくなり、CO変成部60においてシフト触媒が酸化することにより空気中の酸素が除去される。酸素が除去された空気は、改質部30に自然に流入する。これによって、燃料電池用改質装置10内のガス流路をパージすることなく、燃料電池用改質装置10内が負圧になることを防止し、かつCO除去部70の下流側に犠牲酸化剤を設置することなく、CO除去部70に用いられる選択酸化触媒の酸化を抑制することができる。
 本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
10 燃料電池用改質装置、12 燃料電池、20 脱硫部、30 改質部、32 バーナー、40 気化部、50 熱交換部、60 CO変成部、70 CO除去部、80 拡散部、100 燃料電池システム
 本発明は、原燃料を改質して水素ガスを主成分とする改質ガスを生成する燃料電池用改質装置に利用できる。

Claims (6)

  1.  原燃料を改質して水素を主成分とする改質ガスを生成する改質部と、
     前記改質部で生成した改質ガスのCO濃度をシフト反応により低減するCO変成部と、
     前記CO変成部によりCO濃度が低減された改質ガスのCO濃度を選択酸化触媒を用いてさらに低減するCO除去部と、
     前記CO除去部の上流側のガス流路に接続された空気供給用流路を経由して、前記ガス流路に空気を導入可能な空気供給部と、
     を備え、
     前記改質部への原燃料の供給を停止した後、前記CO除去部の上流側のガス流路に空気が導入されることを特徴とする燃料電池用改質装置。
  2.  前記CO変成部から、前記空気供給用流路が接続された箇所までのガス流路の容積が、前記空気供給用流路が接続された箇所から前記CO除去部までのガス流路の容積に比べて小さい請求項1に記載の燃料電池用改質装置。
  3.  前記CO変成部から、前記空気供給用流路が接続された箇所までのガス流路の容積が、前記空気供給用流路が接続された箇所から前記CO除去部までのガス流路の容積の1/6以下である請求項2に記載の燃料電池用改質装置。
  4.  前記ガス流路に接続された部分の前記空気供給用流路は、前記CO除去部における選択酸化に用いられる空気を供給するための経路を兼ねている請求項1乃至3のいずれか1項に記載の燃料電池用改質装置。
  5.  前記空気供給用流路が接続された箇所に対して下流側に位置する前記ガス流路にガスの流れを拡散する拡散部が設けられている請求項4に記載の燃料電池用改質装置。
  6.  前記空気供給部は、ノーマルオープン型の開閉弁を有する請求項1乃至5のいずれか1項に記載の燃料電池用改質装置。
PCT/JP2010/001570 2009-04-28 2010-03-05 燃料電池用改質装置 WO2010125732A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10769434.1A EP2426770A4 (en) 2009-04-28 2010-03-05 REFORMER FOR FUEL CELL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009110059A JP5466871B2 (ja) 2009-04-28 2009-04-28 燃料電池用改質装置
JP2009-110059 2009-04-28

Publications (1)

Publication Number Publication Date
WO2010125732A1 true WO2010125732A1 (ja) 2010-11-04

Family

ID=43031892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001570 WO2010125732A1 (ja) 2009-04-28 2010-03-05 燃料電池用改質装置

Country Status (4)

Country Link
EP (1) EP2426770A4 (ja)
JP (1) JP5466871B2 (ja)
KR (1) KR20120029401A (ja)
WO (1) WO2010125732A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150152113A1 (en) * 2012-06-21 2015-06-04 Bristol-Myers Squibb Company Positive Allosteric Modulators of MGLUR2

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302821A (ja) * 1997-04-25 1998-11-13 Toshiba Corp 固体高分子燃料電池用一酸化炭素低減装置及びその運転方法
JP2001068137A (ja) * 1999-08-24 2001-03-16 Sanyo Electric Co Ltd Co除去装置及び燃料電池発電システム
JP2001199705A (ja) * 2000-01-12 2001-07-24 Tokyo Gas Co Ltd 改質ガス中のco酸化除去装置
JP2002362903A (ja) * 2001-06-12 2002-12-18 Matsushita Electric Ind Co Ltd 水素発生装置
JP2003012302A (ja) 2001-04-24 2003-01-15 Osaka Gas Co Ltd 燃料改質システム
JP2003192309A (ja) * 2001-12-27 2003-07-09 Aisin Seiki Co Ltd 燃料電池システムにおける燃料改質装置の制御装置
JP2003257461A (ja) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd 燃料電池システム
JP2004083348A (ja) * 2002-08-27 2004-03-18 Matsushita Electric Works Ltd 水素発生装置の停止方法
JP2004217435A (ja) * 2003-01-09 2004-08-05 Osaka Gas Co Ltd 水素含有ガス生成装置の停止方法及び水素含有ガス生成装置
JP2006179373A (ja) * 2004-12-24 2006-07-06 Equos Research Co Ltd 燃料電池システム
JP2006523004A (ja) * 2003-03-28 2006-10-05 ユーティーシー フューエル セルズ,エルエルシー 燃料電池発電設備用の高性能燃料処理システム
JP2007051917A (ja) * 2005-08-17 2007-03-01 Toyota Motor Corp 気密性異常判断装置およびガス供給装置
JP2007095549A (ja) 2005-09-29 2007-04-12 Sanyo Electric Co Ltd 燃料電池発電システムおよびその停止方法
JP2007230837A (ja) 2006-03-02 2007-09-13 Nippon Oil Corp 水素製造装置および燃料電池システム並びにその運転方法
JP2008247735A (ja) 2001-04-24 2008-10-16 Osaka Gas Co Ltd 燃料改質システム
JP2009026510A (ja) * 2007-07-18 2009-02-05 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システムおよび燃料電池発電システムの燃料改質方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1557395B1 (en) * 2004-01-22 2012-07-04 Panasonic Corporation Hydrogen generator and fuel cell system
WO2006009153A1 (ja) * 2004-07-20 2006-01-26 Matsushita Electric Industrial Co., Ltd. 水素生成装置およびその運転方法ならびに燃料電池システム
JP2008087990A (ja) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd 水素生成装置及びこれを備える燃料電池システム

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302821A (ja) * 1997-04-25 1998-11-13 Toshiba Corp 固体高分子燃料電池用一酸化炭素低減装置及びその運転方法
JP2001068137A (ja) * 1999-08-24 2001-03-16 Sanyo Electric Co Ltd Co除去装置及び燃料電池発電システム
JP2001199705A (ja) * 2000-01-12 2001-07-24 Tokyo Gas Co Ltd 改質ガス中のco酸化除去装置
JP2008247735A (ja) 2001-04-24 2008-10-16 Osaka Gas Co Ltd 燃料改質システム
JP2003012302A (ja) 2001-04-24 2003-01-15 Osaka Gas Co Ltd 燃料改質システム
JP2002362903A (ja) * 2001-06-12 2002-12-18 Matsushita Electric Ind Co Ltd 水素発生装置
JP2003192309A (ja) * 2001-12-27 2003-07-09 Aisin Seiki Co Ltd 燃料電池システムにおける燃料改質装置の制御装置
JP2003257461A (ja) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd 燃料電池システム
JP2004083348A (ja) * 2002-08-27 2004-03-18 Matsushita Electric Works Ltd 水素発生装置の停止方法
JP2004217435A (ja) * 2003-01-09 2004-08-05 Osaka Gas Co Ltd 水素含有ガス生成装置の停止方法及び水素含有ガス生成装置
JP2006523004A (ja) * 2003-03-28 2006-10-05 ユーティーシー フューエル セルズ,エルエルシー 燃料電池発電設備用の高性能燃料処理システム
JP2006179373A (ja) * 2004-12-24 2006-07-06 Equos Research Co Ltd 燃料電池システム
JP2007051917A (ja) * 2005-08-17 2007-03-01 Toyota Motor Corp 気密性異常判断装置およびガス供給装置
JP2007095549A (ja) 2005-09-29 2007-04-12 Sanyo Electric Co Ltd 燃料電池発電システムおよびその停止方法
JP2007230837A (ja) 2006-03-02 2007-09-13 Nippon Oil Corp 水素製造装置および燃料電池システム並びにその運転方法
JP2009026510A (ja) * 2007-07-18 2009-02-05 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システムおよび燃料電池発電システムの燃料改質方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2426770A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150152113A1 (en) * 2012-06-21 2015-06-04 Bristol-Myers Squibb Company Positive Allosteric Modulators of MGLUR2

Also Published As

Publication number Publication date
JP5466871B2 (ja) 2014-04-09
EP2426770A1 (en) 2012-03-07
JP2010257916A (ja) 2010-11-11
KR20120029401A (ko) 2012-03-26
EP2426770A4 (en) 2013-05-29

Similar Documents

Publication Publication Date Title
JP4911927B2 (ja) 固体酸化物形燃料電池システム
KR100762685B1 (ko) 개질기 및 이를 채용한 연료전지 시스템
JP6293044B2 (ja) 燃料電池システム
JP2006031989A (ja) 固体酸化物形燃料電池による発電方法及びシステム
EP2546913A1 (en) Fuel cell system and method for running a fuel cell system
US20100104897A1 (en) Fuel processing method for solid oxide fuel cell system
JP2003306309A (ja) 水素含有ガス生成装置の運転方法
KR100718106B1 (ko) 연료전지 시스템의 시동 방법
JP5127395B2 (ja) 燃料電池発電システム
JP2015195188A (ja) 燃料電池システム
JP2009087586A (ja) 燃料電池用改質装置
JP4570904B2 (ja) 固体酸化物形燃料電池システムのホットスタンバイ法及びそのシステム
JP2002097001A (ja) 燃料ガス改質装置及び燃料電池システム
JP5466871B2 (ja) 燃料電池用改質装置
JP2009026510A (ja) 燃料電池発電システムおよび燃料電池発電システムの燃料改質方法
JP2009076392A (ja) 液体燃料電池発電システム
JP2008130266A (ja) 燃料電池システムにおける凝縮水の循環方法
EP2433904B1 (en) Method for operating a hydrogen generation device and fuel cell system
JP5086144B2 (ja) 水素製造装置および燃料電池システムの停止方法
JP5305845B2 (ja) 燃料電池発電システムおよびその運転方法
JP2008105892A (ja) 燃料改質装置の停止方法
JP5461880B2 (ja) 燃料電池用改質装置
JP2007035359A (ja) 燃料電池システム
JP4977312B2 (ja) 燃料電池発電システムの停止方法
JP5369327B2 (ja) 燃料改質装置およびその前処理方法並びに燃料電池発電システムおよびその運転前処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117028130

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010769434

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010769434

Country of ref document: EP