WO2010123026A1 - 発泡性アルコール飲料及びその製造方法 - Google Patents

発泡性アルコール飲料及びその製造方法 Download PDF

Info

Publication number
WO2010123026A1
WO2010123026A1 PCT/JP2010/057057 JP2010057057W WO2010123026A1 WO 2010123026 A1 WO2010123026 A1 WO 2010123026A1 JP 2010057057 W JP2010057057 W JP 2010057057W WO 2010123026 A1 WO2010123026 A1 WO 2010123026A1
Authority
WO
WIPO (PCT)
Prior art keywords
laccase
raw material
fermentation
malt
alcoholic beverage
Prior art date
Application number
PCT/JP2010/057057
Other languages
English (en)
French (fr)
Inventor
達二 木村
茂樹 荒木
隆 飯牟礼
Original Assignee
サッポロビール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サッポロビール株式会社 filed Critical サッポロビール株式会社
Priority to JP2011510342A priority Critical patent/JP5832894B2/ja
Priority to EP10767083A priority patent/EP2423300A1/en
Priority to US13/265,995 priority patent/US20120058220A1/en
Priority to CA2758717A priority patent/CA2758717C/en
Priority to KR1020117026114A priority patent/KR20120011025A/ko
Publication of WO2010123026A1 publication Critical patent/WO2010123026A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G3/00Preparation of other alcoholic beverages
    • C12G3/02Preparation of other alcoholic beverages by fermentation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C5/00Other raw materials for the preparation of beer
    • C12C5/004Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G3/00Preparation of other alcoholic beverages
    • C12G3/02Preparation of other alcoholic beverages by fermentation
    • C12G3/021Preparation of other alcoholic beverages by fermentation of botanical family Poaceae, e.g. wheat, millet, sorghum, barley, rye, or corn
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C2200/00Special features
    • C12C2200/01Use of specific genetic variants of barley or other sources of fermentable carbohydrates for beer brewing

Definitions

  • the present invention relates to an effervescent alcoholic beverage and a method for producing the same, and more particularly to an improvement in the drinkability of the effervescent alcoholic beverage.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an effervescent alcoholic beverage with improved drinkability and a method for producing the same.
  • the method for producing an effervescent alcoholic beverage according to an embodiment of the present invention for solving the above problem includes a pre-fermentation step of preparing a pre-fermentation solution using a raw material containing nitrogen source and carbon source and water, And a fermentation step of performing alcoholic fermentation by adding yeast to the pre-fermentation solution, wherein the raw material contains laccase in the pre-fermentation step.
  • a pre-fermentation step of preparing a pre-fermentation solution using a raw material containing nitrogen source and carbon source and water And a fermentation step of performing alcoholic fermentation by adding yeast to the pre-fermentation solution, wherein the raw material contains laccase in the pre-fermentation step.
  • the raw material may contain 550 U / g or less of the laccase.
  • the raw material may contain 1 U / g or more and 550 U / g or less of the laccase.
  • the raw material may contain 1 U / g or more and 60 U / g or less of the laccase.
  • the raw material may contain 1 U / g or more and 50 U / g or less of the laccase.
  • the raw material may include malt prepared from barley lipoxygenase-1 deficient barley.
  • a sparkling alcoholic beverage according to an embodiment of the present invention for solving the above-mentioned problems is manufactured by any one of the above-described manufacturing methods. According to the present invention, a sparkling alcoholic beverage with improved drinkability can be provided.
  • FIG. 1 is an explanatory diagram showing main steps included in an example of a method for producing a sparkling alcoholic beverage according to an embodiment of the present invention (hereinafter referred to as “the present production method”).
  • the present production method includes a pre-fermentation step 10 for preparing a pre-fermentation solution using laccase, and a fermentation step 20 for adding yeast to the pre-fermentation solution to perform alcohol fermentation. .
  • the alcoholic drink as used in the field of this invention is a drink which contains ethanol by the density
  • the sparkling alcoholic beverage as used in the present invention is an alcoholic beverage containing carbon dioxide gas such as beer or sparkling liquor, for example, a foam layer is formed at the top of the liquid surface when poured into a container such as a glass. It is an alcoholic beverage having the foaming characteristics to be formed and the foam-holding characteristics in which the formed foam is maintained for a certain time or more.
  • this sparkling alcoholic beverage is, for example, an alcoholic beverage that exhibits an NIBEM value (unit representing foam retention characteristics) of 50 or more according to the EBC (European Brewery Convention) method.
  • a pre-fermentation solution is prepared using a raw material containing nitrogen and carbon sources and water.
  • the nitrogen source is not particularly limited as long as the yeast is a nitrogen-containing compound that can be used for alcoholic fermentation, and any one or two or more kinds can be appropriately selected and used.
  • the carbon source is not particularly limited as long as yeast is a carbon-containing compound that can be used for alcoholic fermentation, and any one or two or more carbon sources can be appropriately selected and used.
  • malt can be used as part of the raw material.
  • the malt contains a nitrogen source and a carbon source.
  • Malt can be prepared by soaking barley with a suitable amount of moisture in the presence of oxygen at an appropriate temperature and allowing germination.
  • the amount of nitrogen source and carbon source contained in the malt can be adjusted according to germination conditions (for example, the degree of progress of germination).
  • the pre-fermentation process 10 can also include the process of germinating barley as mentioned above and preparing the said malt.
  • the malt is not particularly limited as long as it is prepared by germinating barley.
  • malt was prepared from barley lipoxygenase-1 (LOX-1) -deficient barley (hereinafter referred to as “LOX-less barley”).
  • LOX-less barley is barley having a mutation in the LOX gene (see, for example, JP 2008-043348 A).
  • LOX-less malt can be prepared by germinating LOX-less barley in the same manner as normal malt.
  • a grain-derived protein or peptide degradation product (hereinafter referred to as “protein degradation product”) can be used.
  • Proteolysates mainly contain nitrogen sources.
  • a protein degradation product can be prepared by degrading (lowering the molecular weight) a protein or peptide extracted from cereals using a degrading enzyme such as a protease or an acid.
  • the proteolysate contains amino acids that can be used by yeast.
  • the proteolysate may contain a protein or peptide derived from cereal.
  • the grain used as the raw material for the proteolysate is not particularly limited as long as it contains protein or peptide, and any one kind or two or more kinds can be appropriately selected and used. That is, for example, beans and cereals can be used.
  • beans for example, peas, soybeans, red beans, black beans, mung beans, Taisho gold, tiger beans, chickpeas, broad beans, quail beans, hana beans, lentil beans, and hitachi beans can be used.
  • cereals for example, corn (corn), rice, and potato can be used.
  • At least one selected from the group consisting of a pea-derived protein or peptide degradation product, a soybean-derived protein or peptide degradation product, and a corn-derived protein or peptide degradation product is preferably used. can do.
  • the pre-fermentation step 10 can also include a step of preparing the proteolysate by causing a protease or peptidase or the like to act on the protein or peptide extracted from the grain.
  • starch degradation product a grain-derived starch degradation product
  • the starch degradation product mainly contains a carbon source.
  • the starch degradation product can be prepared by degrading starch extracted from cereals using a degrading enzyme such as amylase or an acid. Therefore, the starch degradation product contains sugars (so-called fermentable sugars) that can be used by yeast.
  • fermentable sugars include monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, and trisaccharides such as maltotriose.
  • any grain may be used as long as it contains starch, and any one kind or two or more kinds can be appropriately selected and used. That is, for example, corn, potato, rice, wheat, and barley can be used. More specifically, for example, liquid saccharides (so-called liquid sugar) produced using cereal grains such as corn as a raw material can be used.
  • yeast extract can be used as a part of the raw material.
  • Yeast extract mainly contains a nitrogen source. That is, the yeast extract contains proteins, peptides and amino acids extracted from yeast.
  • Yeast extract can also contain peptides and amino acids with smaller molecular weights prepared by degrading proteins or peptides contained in yeast using a degrading enzyme or acid.
  • hops can be used as part of the raw material. Hops are not particularly limited, and any one or two or more hops can be appropriately selected and used.
  • the form of the hop is not particularly limited, and any form appropriately processed according to the purpose of storage or transportation can be used. That is, for example, a press hop obtained by compressing dried hop spikelets, a hop powder obtained by pulverizing dried hop spikelets, and a hop obtained by compression molding the hop powder into a pellet Pellets can be used.
  • hops may not be used as part of the raw material.
  • herbs can be used as part of the raw material instead of hops. Any herb can be used, for example, rosemary, coriander and chamomile.
  • desired properties are imparted to the effervescent alcoholic beverage produced by the present production method, such as coloring, flavoring, foam retention, fermentation efficiency, etc., or production of the present production method
  • desired properties are imparted to the effervescent alcoholic beverage produced by the present production method, such as coloring, flavoring, foam retention, fermentation efficiency, etc., or production of the present production method
  • Other materials that are effective to improve performance can be further used.
  • a material that improves foam properties such as foaming and foam retention of an effervescent alcoholic beverage
  • a protein can be used.
  • the protein for example, the same protein derived from cereal as that used as the raw material of the above-mentioned protein degradation product can be used. More specifically, for example, pea-derived protein, soybean-derived protein, and corn-derived protein can be used.
  • yeast activator that promotes alcohol fermentation by yeast
  • vitamins, inositol, and a mineral can be used, for example.
  • a pigment such as caramel pigment can be used.
  • a pigment such as caramel pigment
  • rice, corn, corn, potato, starch, which is also used as an auxiliary material for beer, can be used.
  • the raw material of the pre-fermentation solution contains laccase.
  • Laccase is an enzyme having an EC (Enzyme Commission) number of “1.10.3.3.2” and is also called polyphenol oxidase. Laccase catalyzes an oxidation reaction using, for example, various phenolic compounds and aniline compounds as substrates.
  • the amount of laccase to be used can be appropriately determined according to conditions such as the production scale in the production method and the characteristics of the foamable alcoholic beverage to be produced. That is, the amount (U) of laccase contained per unit weight (g) of the raw material can be, for example, 550 U / g or less, and more preferably 1 U / g or more and 550 U / g or less. it can.
  • the unit “U” indicating the amount of laccase can be calculated from the amount of the laccase necessary for a predetermined oxidation reaction. That is, for example, the amount of laccase capable of oxidizing 1 ⁇ mol of substrate per minute under optimum conditions (optimum temperature, optimum pH) is defined as “1 U”. More specifically, for example, when laccase is allowed to act on 4-aminoantipyrine and phenol at pH 4.5 and 30 ° C., the absorbance at 505 nm of the quinoneimine dye produced by the oxidative condensation reaction is 0.1 for the first minute of the reaction. The amount of laccase required to increase can be “1U”.
  • the weight of the raw material may be calculated using the weight of the solid content contained in the liquid material. That is, for example, when liquid sugar is used as part of the raw material, the weight of the raw material is calculated using the weight of the solid content of the liquid sugar.
  • the content (U / g) of laccase in the raw material can be calculated as the amount (U) of the laccase per weight (g) of the solid content contained in the raw material.
  • the content of laccase in the raw material is, for example, preferably 1 U / g or more and 60 U / g or less, more preferably 1 U / g or more and 50 U / g or less, and more preferably 1 U / g or more and 40 U / g. More preferably, it is set to g or less.
  • the drinkability of the sparkling alcoholic beverage can be improved reliably.
  • the flavor and foam characteristic of an effervescent alcoholic beverage can also be improved.
  • the content of laccase in the raw material can be, for example, 2 U / g or more and 60 U / g or less, more preferably 2 U / g or more and 50 U / g or less, and more preferably 2 U / g or more and 40 U / g. More preferably, it is set to g or less.
  • the drinkability of the sparkling alcoholic beverage can be improved more reliably.
  • the flavor and foam characteristic of an effervescent alcoholic beverage can also be improved reliably.
  • hops that have been previously subjected to an enzyme treatment with laccase can be used. That is, for example, when hops are used as a part of the raw material, hops that have been previously subjected to enzyme treatment with laccase can be used.
  • This enzyme treatment can be carried out, for example, by preparing a reaction solution containing laccase and hops and maintaining the reaction solution under conditions (temperature and pH) suitable for the enzyme reaction with laccase for a predetermined time. And the hop after an enzyme process is collect
  • the reaction temperature in the enzyme treatment is not particularly limited as long as laccase can act on the substrate, and can be, for example, 30 ° C. to 80 ° C., preferably 40 ° C. to 70 ° C., and around 60 ° C. More preferably. Moreover, reaction time will not be restricted especially if the effect by the use of laccase is acquired.
  • the concentration of laccase in the reaction solution can be appropriately determined according to conditions such as the amount of hops to be treated.
  • hops malt, proteolysate, starch degradation product, yeast extract, protein, yeast activator, pigment, rice, corn, corn, potato, starch, etc.
  • any of these materials can be preliminarily treated with laccase.
  • the amount (U) of laccase used per unit volume (L) of the pre-fermentation solution can be defined. That is, in this case, the amount of laccase used for preparing a 1 L pre-fermentation solution can be, for example, 50 U / L or more, and preferably 100 U / L or more. More specifically, the concentration of laccase can be 50 U / L or more and 200000 U / L or less, and preferably 100 U / L or more and 200000 U / L or less.
  • the raw material of the pre-fermentation solution can contain the above-mentioned materials in any combination as long as alcohol fermentation by yeast is possible. That is, for example, raw materials containing malt and laccase can be used. In this case, raw materials containing malt, hops and laccase can also be used.
  • raw materials that do not contain malt and contain a nitrogen source, a carbon source, and laccase can also be used.
  • a raw material which does not contain malt and contains a nitrogen source, a carbon source, hops and laccase can also be used.
  • a raw material that does not contain malt and hops and contains a nitrogen source, a carbon source, and laccase can also be used.
  • a protein degradation product can be preferably used as the nitrogen source
  • a starch degradation product can be preferably used as the carbon source.
  • a pre-fermentation solution is prepared using the above-described nitrogen source, carbon source, and raw material containing laccase and water. That is, for example, first, a raw material liquid is prepared by mixing all or a part of the raw material with water. Next, the raw material liquid is subjected to a predetermined process as described later. In the process, the remaining raw materials can be added. Finally, a pre-fermentation solution suitable for yeast addition is obtained.
  • water brewing water can be preferably used. The temperature of water can be in the range of 25 to 80 ° C., for example.
  • an enzyme reaction with laccase is performed.
  • This enzymatic reaction can be carried out by maintaining a raw material solution containing laccase at a predetermined temperature for a predetermined time.
  • the reaction temperature is not particularly limited as long as laccase can act on the substrate, and can be, for example, 30 ° C. to 80 ° C., preferably 40 ° C. to 70 ° C., and preferably about 60 ° C. More preferred.
  • the reaction time is not particularly limited as long as the effect of using laccase is obtained, and can be, for example, 1 minute to 180 minutes, preferably 30 minutes to 120 minutes.
  • the reaction with the laccase and the reaction with the enzyme are performed in parallel (simultaneously) or continuously. It can also be done (sequentially).
  • an enzyme treatment with laccase can be performed together with a treatment (so-called saccharification treatment) that causes a degradation enzyme contained in the malt to act. That is, since the optimum temperature of peptidase or amylase to be acted on by saccharification is close to the optimum temperature of laccase, enzymatic treatment with laccase can also be carried out by carrying out saccharification treatment in the pre-fermentation step 10. .
  • a process of boiling the raw material liquid can be performed. That is, in this case, for example, first, a raw material liquid is prepared by mixing a part of a raw material not containing hops and containing laccase and water. Subsequently, the raw material liquid is maintained at the reaction temperature as described above for a predetermined time to perform an enzyme treatment with laccase. At this time, when malt is contained in the raw material, a saccharification treatment is also performed in parallel. And a hop is added to the raw material liquid after an enzyme process, and it heats further and boiles the said raw material liquid. By this boiling treatment, the components contained in the hop are extracted into the raw material liquid, and enzymes such as laccase contained in the raw material liquid are deactivated.
  • the laccase when the raw material liquid is boiled in the pre-fermentation step 10, the laccase can be added before the boiling, and the enzyme treatment with the laccase can also be performed before the boiling.
  • the addition of laccase and the enzyme treatment with laccase can be performed after the boiling treatment. In this case, for example, a saccharification treatment is first performed, then a boiling treatment is performed, and then laccase is added to the raw material solution and an enzyme treatment with the laccase is performed.
  • hops when hops are added after enzymatic treatment with laccase, by using hops that have been previously enzymatically treated with laccase as described above, enzymatic treatment with laccase is sufficient even for components contained in the hops. Can be prepared.
  • the raw material liquid is filtered and cooled, and finally suitable for addition of yeast in the subsequent fermentation step 20 Prepare a sterile pre-fermentation solution.
  • alcohol fermentation is performed by adding yeast to the pre-fermentation solution prepared in the pre-fermentation step 10.
  • pre-fermentation and post-fermentation are performed. That is, first, yeast is added to a sterile pre-fermentation solution whose temperature is adjusted in advance within a predetermined range (for example, a range of 0 ° C. to 40 ° C.) to prepare a fermentation broth.
  • the yeast is not particularly limited as long as it can perform alcoholic fermentation, and any kind of yeast can be appropriately selected and used. That is, for example, beer yeast such as bottom fermentation yeast and top fermentation yeast can be used, and bottom fermentation yeast can be preferably used.
  • the density of yeast in the fermentation broth at the start of fermentation can be adjusted as appropriate, and can be, for example, in the range of 1 ⁇ 10 6 cells / mL to 3 ⁇ 10 9 cells / mL.
  • pre-fermentation is performed by maintaining this fermented liquid at a predetermined temperature for a predetermined time.
  • the pre-fermentation temperature can be adjusted as appropriate, and can be, for example, in the range of 0 ° C. to 40 ° C., and preferably in the range of 6 ° C. to 15 ° C.
  • yeast performs metabolic activities such as alcohol fermentation while consuming a nitrogen source and a carbon source contained in the pre-fermentation solution and further nutrient sources such as vitamins and minerals added as necessary.
  • ethanol, carbon dioxide, and flavor components are produced by yeast in the fermentation broth.
  • Post-fermentation is performed by maintaining the fermented liquid after pre-fermentation at a predetermined temperature for a predetermined time. That is, for example, when the bottom fermentation yeast is used, the supernatant of the fermentation liquid in which the yeast has settled after the pre-fermentation is collected. The recovered supernatant is further maintained at a temperature in the range of minus 3 ° C. to 20 ° C. for a time in the range of 1 day to 150 days.
  • insoluble matters in the fermented liquid are precipitated to remove turbidity, and the flavor can be improved by aging.
  • carbon dioxide can be further dissolved in the fermentation broth.
  • a post-fermentation solution containing ethanol and flavor components produced by yeast can be obtained.
  • concentration of ethanol contained in the post-fermentation liquid can be, for example, in the range of 1% to 20%, preferably 1% to 10%, and more preferably 3% to 10%. It can be.
  • This production method may further include a post-fermentation step for finally obtaining a sparkling alcoholic beverage by subjecting the post-fermentation solution prepared as described above to a predetermined treatment.
  • the post-fermentation process for example, the yeast contained in the post-fermentation liquid is removed by filtering the post-fermentation liquid.
  • pasteurization is performed by holding the post-fermentation liquid at a temperature of 60 ° C. or higher for 1 minute or more, or high-temperature sterilization by holding the post-fermentation liquid at a higher temperature for a short time. Carbon dioxide gas can also be blown into the post-fermentation liquid.
  • the post-fermentation process can include a process of adding spirits. That is, in this case, for example, in the post-fermentation process, spirits are added to the sparkling alcoholic beverage obtained as described above.
  • spirits those produced from grains as raw materials can be preferably used. That is, for example, distilled liquor produced using barley, wheat, rice, buckwheat, potato, sweet potato, corn, and sugar cane can be used, and particularly preferred is distilled liquor produced using barley or wheat as a raw material. Can be used.
  • the alcohol concentration contained in the spirits can be, for example, in the range of 20 to 90% by volume.
  • the effervescent alcoholic beverage according to the present embodiment (hereinafter referred to as “the present beverage”) can be preferably produced by such a production method.
  • This beverage can be, for example, an effervescent alcoholic beverage produced using malt and laccase as a raw material for the pre-fermentation solution.
  • the beverage can be a sparkling alcoholic beverage produced using malt, hops and laccase as a raw material for the pre-fermentation solution.
  • this beverage can be, for example, beer manufactured using laccase as a raw material for the pre-fermentation solution.
  • this drink can be made into the sparkling liquor manufactured using the amount of malt smaller than beer as a raw material of a pre-fermentation liquid, and using hop and laccase, for example.
  • this drink can be made into an effervescent alcoholic drink manufactured using a nitrogen source, a carbon source, and laccase as a raw material of a pre-fermentation liquid, for example, without using malt.
  • the beverage can be an effervescent alcoholic beverage produced using a nitrogen source, a carbon source, hops and laccase as a raw material for the pre-fermentation solution without using malt.
  • this drink can be made into the effervescent alcoholic beverage manufactured using the nitrogen source, the carbon source, and laccase as a raw material of a pre-fermentation liquid, for example, without using malt and a hop.
  • this drink can be made into the sparkling alcoholic drink manufactured by adding spirit to the sparkling alcoholic drinks mentioned above.
  • the present beverage is, for example, an effervescent alcohol produced by mixing a sparkling alcoholic beverage produced using malt and laccase as part of the raw material of the pre-fermentation solution as described above and spirits. It can be an alcoholic beverage.
  • this drink mixes spirits and the sparkling alcoholic drink manufactured using the nitrogen source, the carbon source, and laccase as a raw material of a pre-fermentation liquid, for example, without using malt as mentioned above. It can also be set as an effervescent alcoholic beverage produced in this way.
  • the present beverage can be used as an effervescent alcoholic beverage with improved drinkability compared to conventional effervescent alcoholic beverages. Become.
  • laccase contributes to improving the drinkability of this beverage, but for example, yeast is added to the pre-fermentation solution prepared without using laccase. Even if laccase is added after performing the above, the drinkability of the finally obtained sparkling alcoholic beverage is not effectively improved. Therefore, it is considered important to use laccase as a raw material for the pre-fermentation solution.
  • the beverage has excellent flavor characteristics as compared to an effervescent alcoholic beverage produced without using laccase. It will have.
  • laccase contributes to improving the flavor characteristics of this beverage.
  • yeast can be added to the pre-fermentation solution prepared without using laccase. Even if laccase is added after the process, the flavor characteristics of the finally obtained sparkling alcoholic beverage are not effectively improved. Therefore, it is considered important to use laccase as a raw material for the pre-fermentation solution.
  • the beverage has excellent foam characteristics as compared to the sparkling alcoholic beverage produced without using laccase. It will have.
  • the foaming property of a sparkling alcoholic beverage can be evaluated by, for example, the NIBEM value.
  • the NIBEM value can be measured, for example, as follows. That is, first, an effervescent alcoholic beverage at 20 ° C. is forcibly poured into a cylindrical glass (for example, an inner diameter of 60 mm and an inner height of 120 mm) using carbon dioxide gas to cause foaming. Next, the time from when the foam surface of the sparkling alcoholic beverage is reduced by 10 mm from the position immediately after foaming to when the foam surface is further reduced to 40 mm is measured with a commercially available measuring device. The NIBEM value is expressed as this measured time (in seconds).
  • the NIBEM value of this beverage can be, for example, 50 or more, preferably 100 or more, and more preferably 200 or more.
  • Effervescent alcoholic beverages were produced using malt, hops, laccase and protease as raw materials. That is, using a pre-fermentation solution prepared using laccase, so-called malt beer 100% was produced.
  • solubilized nitrogen Solid Nitrogen: SN
  • Daiwa Y120 Daiwa Kasei Co., Ltd. was used as the laccase.
  • the titer of this laccase was 108000 U / g or more.
  • unit “U” representing the enzyme activity
  • the amount of enzyme required to increase the amount by 0.1 was defined as 1U unit.
  • the optimum pH of this laccase was 4.0 to 4.5, and the optimum temperature was 60 ° C.
  • the protease Sumiteam LP50D (Shin Nihon Chemical Industry Co., Ltd.) was used.
  • Example 1-1 4 L of raw material liquid was prepared by mixing 1200 g of malt, 1.2 g of protease, and 0.03 g of laccase (0.0025 wt% with respect to malt) with water at 60 ° C. did.
  • Example 1-2 a 4 L raw material solution was prepared in the same manner as in Example 1-1 except that 0.06 g of laccase (0.005% by weight with respect to malt) was used.
  • Example 1-3 a 4 L raw material solution was prepared in the same manner as in Example 1-1 above, except that 0.12 g of laccase (0.01% by weight based on malt) was used.
  • Example 1-4 a 4 L raw material solution was prepared in the same manner as in Example 1-1 above, except that 0.3 g of laccase (0.025 wt% with respect to malt) was used.
  • Example 1-5 a 4 L raw material solution was prepared in the same manner as in Example 1-1 above, except that 0.6 g of laccase (0.05% by weight with respect to malt) was used.
  • Example 1-6 4 L of a raw material solution was prepared in the same manner as in Example 1-1 above, except that 1.2 g of laccase (0.1% by weight based on malt) was used.
  • Example 1-7 a 4 L raw material solution was prepared in the same manner as in Example 1-1 described above except that 3.0 g of laccase (0.25 wt% with respect to malt) was used.
  • Example 1-8 a 4 L raw material solution was prepared in the same manner as in Example 1-1 above, except that 6.0 g of laccase (0.5% by weight based on malt) was used.
  • Example 1-C1 1200 g of malt was mixed with 60 ° C. water to prepare a 4 L raw material solution.
  • Example 1-C2 a 4 L raw material solution was prepared using the same amount of malt and 1.2 g of protease as in Example 1-C1 described above. In this way, 10 kinds of raw material liquids were prepared.
  • each of these 10 kinds of raw material liquids was maintained at a temperature in the range of 60 ° C. to 67 ° C. for 90 minutes to carry out a saccharification treatment together with an enzymatic reaction with laccase. Thereafter, 5.45 g of hops were added to each raw material solution, and boiling treatment was performed for 90 minutes. And the raw material liquid was filtered, and it cooled to the temperature suitable for addition of yeast. Thus, 10 types of 4L pre-fermentation solutions were prepared.
  • FIG. 2 shows the concentration of laccase used in each example.
  • the laccase concentration (U / g) indicates the amount (U) of laccase used per unit weight (g) of the raw material of the pre-fermentation solution.
  • the laccase concentration (U / L) indicates the amount (U) of laccase used per unit volume (L) of the pre-fermentation solution.
  • yeast was added to the pre-fermentation solution to prepare a fermentation solution.
  • Pre-fermentation was performed by maintaining this fermentation broth at a temperature of 11 ° C. for 7 days. Thereafter, the fermentation broth was maintained at a temperature of 0 ° C. to 11 ° C. for 35 days for storage. Filtration and sterilization were performed on the fermented liquor after storage (post-fermented liquid). Thus, 10 types of beer were obtained using each of the 10 types of pre-fermentation solutions.
  • a sensory test and measurement of NIBEM values were conducted by five experienced panelists.
  • various items such as ester flavor, malt flavor, sulfur odor, sweet taste, acidity, astringency, miscellaneous taste, and drinkability were evaluated.
  • the drinkability was evaluated as ease of drinking, for example, whether or not you want to drink another glass of sparkling alcoholic beverage after drinking a glass. That is, it can be said that a sparkling alcoholic beverage with high drinkability is a sparkling alcoholic beverage that makes you want to drink another cup after drinking.
  • Fig. 3 shows the results of the sensory test.
  • “1-C1, 1-C2, 1-1 to 8” on the horizontal axis in FIG. 3 indicates “Example 1-C1, Example 1-C2, Example 1-1 to Example 1-8”, and the vertical axis represents Shows the average score given by the panelists.
  • the white bar graph shows the result of comprehensive evaluation, and the black bar graph shows the result of evaluating the drinkability. The higher the score, the better evaluation was obtained.
  • FIG. 4 shows the measurement result of the NIBEM value.
  • “1-C1, 1-C2, 1-1 to 8” on the horizontal axis in FIG. 4 indicates “Example 1-C1, Example 1-C2, Example 1-1 to Example 1-8”, and the vertical axis represents The measured NIBEM value is shown.
  • FIG. 4 it was shown that by using laccase as part of the raw material of the pre-fermentation solution, the foam properties of beer are not impaired but rather enhanced.
  • Effervescent alcoholic beverages were produced using malt, hops and laccase as raw materials. That is, 100% malt beer was produced using a pre-fermentation solution prepared using laccase. The malt used was a medium melt.
  • laccase Daiwa Y120 (Daiwa Kasei Co., Ltd.) used in Example 1 was used.
  • Example 2-1 1200 g of malt and 0.03 g of laccase (0.0025 wt% with respect to malt) were mixed with water at 60 ° C. to prepare a 4 L raw material solution. And 5.45g of hops were added to this raw material liquid, the boiling process was performed for 90 minutes, the filtration process was further performed, and it cooled, and prepared 4 L of pre-fermentation liquid. Then, the process similar to the above-mentioned Example 1 was implemented, and beer was manufactured.
  • Example 2-2 beer was produced by preparing a 4 L pre-fermentation solution in the same manner as in Example 2-1 above except that 0.06 g of laccase (0.005 wt% with respect to malt) was used.
  • Example 2-3 beer was produced by preparing a 4 L pre-fermentation solution in the same manner as in Example 1-1 above, except that 0.12 g of laccase (0.01% by weight based on malt) was used.
  • Example 2-4 4 L of a pre-fermentation solution was prepared and beer was produced in the same manner as in Example 2-1 above, except that 0.3 g of laccase (0.025% by weight based on malt) was used.
  • Example 2-5 beer was produced by preparing a 4 L pre-fermentation solution in the same manner as in Example 2-1 above, except that 0.6 g of laccase (0.05% by weight based on malt) was used.
  • Example 2-6 4 L of a pre-fermentation solution was prepared and beer was produced in the same manner as in Example 2-1 above except that 1.2 g of laccase (0.1% by weight based on malt) was used.
  • Example 2-7 beer was produced by preparing a 4 L pre-fermentation solution in the same manner as in Example 2-1 above, except that 3.0 g of laccase (0.25 wt% with respect to malt) was used.
  • Example 2-8 first, 1200 g of malt was mixed with 60 ° C. water to prepare a 4 L raw material solution containing no laccase. And 5.45g of hops were added to this raw material liquid, the boiling process was performed for 90 minutes, the filtration process was further performed, and it cooled, and prepared 4 L of pre-fermentation liquid. Subsequently, pre-fermentation was performed in the same manner as in Example 1 described above. Next, 0.3 g of laccase (0.025% by weight with respect to malt) was added to the fermented liquid after the pre-fermentation, and the beer was stored to produce beer. That is, in Example 2-8, beer was produced under the same conditions as in Example 2-4 except that the timing for adding laccase was not after fermentation but after pre-fermentation and before storage.
  • Example 2-C 4 g of raw material liquid was prepared by mixing 1200 g of malt with 60 ° C. water. And 5.45g of hops were added to this raw material liquid, the boiling process was performed for 90 minutes, the filtration process was further performed, and it cooled, and prepared 4 L of pre-fermentation liquid. Subsequently, beer was produced in the same manner as in Example 1 described above. In this way, nine types of beer were obtained.
  • FIG. 5 shows the concentration of laccase used in each example.
  • the laccase concentration (U / g) indicates the amount (U) of laccase used per unit weight (g) of the raw material of the pre-fermentation solution. Also, the laccase concentration (U / L) per unit volume (L) of the pre-fermentation solution for Examples 2-1 to 2-7 and Example 2-C, and the unit volume of the fermentation solution (Example 2-8) The amount (U) of laccase used per L) is indicated.
  • FIG. 6 shows the result of the sensory test. “2-C, 2-1 to 8” on the horizontal axis in FIG. 6 represents “Example 2-C, Example 2-1 to Example 2-8”, and the vertical axis represents the average value of points assigned by the panelists. Indicates.
  • the white bar graph shows the result of comprehensive evaluation, and the black bar graph shows the result of evaluating the drinkability.
  • Example 2-8 in which laccase was not added before fermentation but laccase was added after pre-fermentation, favorable results were not obtained in both sensory evaluation and drinkability. That is, it was thought that the effect of the comprehensive evaluation in the sensory test and the improvement of the drinkability was obtained by using laccase as a part of the raw material of the pre-fermentation solution.
  • FIG. 7 shows the measurement result of the NIBEM value.
  • “2-C, 2-1 to 8” on the horizontal axis in FIG. 7 indicates “Example 2-C, Example 2-1 to Example 2-8”, and the vertical axis indicates the measured NIBEM value.
  • the NIBEM value was slightly lowered as compared to Example 2-C in which laccase was not used.
  • Effervescent alcoholic beverages were produced on a pilot scale using malt, hops and laccase as raw materials. That is, a pre-fermentation solution prepared using laccase was used to produce 100% malt beer on a 400 L scale.
  • a pre-fermentation solution prepared using laccase was used to produce 100% malt beer on a 400 L scale.
  • malt as in Example 2 described above, a medium-melting one was used.
  • laccase Daiwa Y120 (Daiwa Kasei Co., Ltd.) used in Example 1 was used.
  • Example 3-1 400 kg of raw material liquid was prepared by mixing 120 kg of malt and 6 g of laccase (0.005 wt% with respect to malt) with water at 60 ° C. And 545g of hops were added to this raw material liquid, the boiling process was performed for 90 minutes, the filtration process was further performed, and it cooled, and prepared the 400L pre-fermentation liquid. Then, the process similar to the above-mentioned Example 1 was implemented, and beer was manufactured.
  • the concentration of the laccase used in Example 3-1 was 5.4 (U / g) per unit weight of the raw material of the pre-fermentation liquid and 1620 (U / L) per unit volume of the pre-fermentation liquid.
  • Example 3-2 a beer was produced by preparing a 400 L pre-fermentation solution in the same manner as in Example 3-1 except that 30 g of laccase (0.025 wt% with respect to malt) was used.
  • the concentration of laccase used in Example 3-2 was 26.9 (U / g) per unit weight of the raw material of the pre-fermentation solution and 8100 (U / L) per unit volume of the pre-fermentation solution.
  • Example 3-C a 400 L raw material solution was prepared by mixing 120 kg of malt with 60 ° C. water. And 545g of hops were added to this raw material liquid, the boiling process was performed for 90 minutes, the filtration process was further performed, and it cooled, and prepared the 400L pre-fermentation liquid. Then, the process similar to the above-mentioned Example 1 was implemented, and beer was manufactured, without using laccase. Thus, three types of beer were obtained.
  • FIG. 8 shows the result of the sensory test. “3-C, 3-1, 3-2” on the horizontal axis in FIG. 8 indicates “Example 3-C, Example 3-1, Example 3-2”, and the vertical axis indicates the number of points assigned by the panelist. Average values are shown.
  • the white bar graph shows the result of comprehensive evaluation, and the black bar graph shows the result of evaluating the drinkability.
  • Effervescent alcoholic beverages were produced using malt, liquid sugar, hops and laccase as raw materials.
  • the amount of malt used in the raw material was about 24% by weight. That is, so-called happoshu was produced using a pre-fermentation solution prepared using laccase.
  • Example 1 As the malt, a medium melting medium was used. S75C (Nippon Corn Starch Co., Ltd.) was used as the liquid sugar. This liquid sugar contained a solid content of 75% by weight. As the laccase, Daiwa Y120 (Daiwa Kasei Co., Ltd.) used in Example 1 was used.
  • Example 4-1 4 g of raw material liquid was prepared by mixing 206 g of malt, 686 g of liquid sugar (solid content 514.5 g), and 0.15 g of laccase with water at 60 ° C. And 3.76g of hops were added to this raw material liquid, the boiling process was performed for 80 minutes, the filtration process was further performed, and it cooled, and prepared 4 L pre-fermentation liquid. Then, the process similar to the above-mentioned Example 1 was implemented, and the sparkling liquor was manufactured.
  • the concentration of laccase used in Example 4-1 was 22.4 (U / g) per unit weight of the raw material of the pre-fermentation liquid and 4050 (U / L) per unit volume of the pre-fermentation liquid. In calculating the weight of the raw material, the weight (514.5 g) of the solid content of the liquid sugar was used instead of the weight of the whole liquid sugar (686 g).
  • Example 4-C 4 g of raw material liquid was prepared by mixing 206 g of malt and 686 g of liquid sugar (solid content 514.5 g) with water at 60 ° C. Then, 3.76 g of hops were added to this raw material liquid, boiling was performed for 90 minutes, further filtered, and cooled to prepare a 4 L pre-fermentation liquid. Subsequently, the same process as in Example 4-1 was performed to produce a happoshu without using laccase. In this way, two types of happoshu were obtained.
  • FIG. 9 shows the result of the sensory test. “4-C, 4-1” on the horizontal axis in FIG. 9 indicates “Example 4-C, Example 4-1,” and the vertical axis indicates the average value of points assigned by panelists.
  • the white bar graph shows the result of comprehensive evaluation, and the black bar graph shows the result of evaluating the drinkability.
  • Effervescent alcoholic beverages were produced using pea protein, pea protein degradation product, liquid sugar, hops and laccase as raw materials. That is, an effervescent alcoholic beverage was produced using a pre-fermentation solution prepared using laccase without using malt as a raw material.
  • pea protein a protein extracted from pea was used.
  • pea protein degradation product a composition containing a peptide and an amino acid prepared by enzymatic degradation of pea protein was used.
  • liquid sugar S75C (Nihon Corn Starch Co., Ltd.) containing 75% by weight of solid content, which was also used in Example 4 above, was used.
  • laccase Daiwa Y120 (Daiwa Kasei Co., Ltd.) used in Example 1 was used.
  • Example 5-1 4.8 g of a pea protein composition, 600 g of liquid sugar (solid content 450 g), and 0.15 g of laccase were mixed with water at 60 ° C. to prepare a 4 L raw material liquid.
  • the enzyme reaction with laccase was carried out by maintaining this raw material solution at 60 ° C. for 20 minutes. Thereafter, 2.88 g of hops were added to the raw material liquid, and boiling treatment was performed for 90 minutes. Then, processes, such as filtration and alcohol fermentation, were implemented similarly to Example 1, and the effervescent alcoholic beverage was manufactured.
  • the concentration of the laccase used in Example 5-1 was 35.1 (U / g) per unit weight of the raw material of the pre-fermentation liquid and 4050 (U / L) per unit volume of the pre-fermentation liquid.
  • the weight of the solid content of the liquid sugar was used as in Example 4 described above.
  • Example 5-C 4 L of raw material liquid was prepared by mixing 7.8 g of pea protein composition and 600 g of liquid sugar (solid content 450 g) with 60 ° C. water. And the hop 2.88g was added to this raw material liquid, and the boiling process was performed for 60 minutes. Subsequently, the same process as in Example 5-1 was performed to produce a sparkling alcoholic beverage without using laccase. Thus, two types of sparkling alcoholic beverages were obtained.
  • FIG. 10 shows the result of the sensory test. “5-C, 5-1” on the horizontal axis in FIG. 10 indicates “Example 5-C, Example 5-1,” and the vertical axis indicates the average value of points assigned by the panelists.
  • the white bar graph shows the result of comprehensive evaluation, and the black bar graph shows the result of evaluating the drinkability.
  • Example 1 the sparkling alcoholic beverage manufactured in the above-mentioned Example 1, Example 4, and Example 5, when the component contained was quantified, it was manufactured using laccase as a part of the raw material of a pre-fermentation liquid. In the sparkling alcoholic beverage, it was confirmed that the content of hydrogen sulfide was reduced as compared with the sparkling alcoholic beverage produced without using laccase.
  • This hydrogen sulfide is a component that increases the content and impairs the flavor when the amount of malt used in the raw material is small in, for example, an effervescent alcoholic beverage produced using malt as a part of the raw material.
  • the above quantitative result that the amount of hydrogen sulfide contained in the sparkling alcoholic beverage can be reduced by using laccase as a part of the raw material of the pre-fermentation solution is the use of the sparkling alcoholic beverage by using the laccase. This supported the sensory test result that the flavor characteristics were improved.
  • Example 6-1 a sparkling alcoholic beverage was produced using LOX-less malt, hops, laccase and protease as raw materials.
  • LOX-less malt one having a low degree of melting was used as in Example 1 described above.
  • laccase Daiwa Y120 (Daiwa Kasei Co., Ltd.) used in Example 1 was used.
  • protease Sumiteam LP50D (Shin Nihon Chemical Industry Co., Ltd.) used in Example 1 was used.
  • Example 6-C1 1200 g of LOX-less malt having a low degree of dissolution as in Example 6-1 and 1.2 g of protease were mixed with water at 60 ° C. to prepare a 4 L raw material solution. And 5.45g of hops were added to this raw material liquid, the boiling process was performed for 90 minutes, the filtration process was further performed, and it cooled, and prepared 4 L of pre-fermentation liquid. Then, the process similar to the above-mentioned Example 1 was implemented, and beer was manufactured.
  • Example 6-2 LOX-less malt, hops and laccase were used as raw materials to produce a sparkling alcoholic beverage.
  • LOX-less malt a medium melting medium was used as in Example 2 described above.
  • laccase Daiwa Y120 (Daiwa Kasei Co., Ltd.) was used as in Example 6-1 above.
  • Example 6-C2 as in Example 6-2, 1200 g of LOX-less malt having a medium solubility was mixed with water at 60 ° C. to prepare a 4 L raw material solution. And 5.45g of hops were added to this raw material liquid, the boiling process was performed for 90 minutes, the filtration process was further performed, and it cooled, and prepared 4 L of pre-fermentation liquid. Subsequently, beer was produced in the same manner as in Example 1 described above.
  • the concentrations of laccase used in Examples 6-1 and 6-2 were 5.4 U / g per unit weight of the raw material for the pre-fermentation solution and 1620 U / L per unit volume of the pre-fermentation solution.
  • FIG. 11 shows the result of the sensory test. “6-C1, 6-1, 6-C2, 6-2” on the horizontal axis in FIG. 11 indicates “Example 6-C1, Example 6-1, Example 6-C2, Example 6-2”.
  • the vertical axis represents the average value of points assigned by panelists.
  • the white bar graph shows the result of comprehensive evaluation, and the black bar graph shows the result of evaluating the drinkability.
  • Effervescent alcoholic beverages were produced using barley, hops, laccase, protease and ⁇ -amylase as raw materials. That is, a 100% barley sparkling alcoholic beverage was produced using a pre-fermentation solution prepared using barley and laccase without using malt as a raw material.
  • Example 1 Crushed barley was used.
  • laccase Daiwa Y120 (Daiwa Kasei Co., Ltd.) used in Example 1 was used.
  • protease Sumiteam LP50D (Shin Nihon Chemical Industry Co., Ltd.) used in Example 1 was used.
  • a commercially available ⁇ -amylase was used.
  • Example 7-1 1080 g of barley, 0.027 g of laccase (0.0025 wt% with respect to barley), 1.08 g of protease, and 1.08 g of ⁇ -amylase are mixed with water at 50 ° C. Thus, 4 L of a raw material solution was prepared.
  • the concentration of the laccase used in Example 7-1 was 2.7 (U / g) per unit weight of the raw material of the pre-fermentation solution and 729 (U / L) per unit volume of the pre-fermentation solution.
  • Example 7-2 a 4 L raw material solution was prepared in the same manner as in Example 7-1 except that 0.054 g of laccase (0.005% by weight with respect to barley) was used.
  • Example 7-3 4 L of a raw material solution was prepared in the same manner as in Example 7-1 except that 0.108 g of laccase (0.01% by weight based on barley) was used.
  • Example 7-4 a 4 L raw material solution was prepared in the same manner as in Example 7-1 except that 0.270 g of laccase (0.025% by weight based on barley) was used.
  • Example 7-5 a 4 L raw material solution was prepared in the same manner as in Example 7-1 except that 1.08 g of laccase (0.1% by weight based on barley) was used.
  • Example 7-6 a 4 L raw material solution was prepared in the same manner as in Example 7-1 above, except that 5.40 g of laccase (0.5% by weight based on barley) was used.
  • concentrations of laccase used in these examples were as in Example 7-2. 5.4 U / g and 1458 U / L, 10.8 U / g and 2916 U / L in Example 7-3, 27.0 U / g and 7290 U / L in Example 7-4, 108 U / g and 29160 U in Example 7-5 / L, 540 U / g and 145800 U / L in Examples 7-6.
  • a sparkling alcoholic beverage was produced in the same manner as in Example 7-1 above. That is, by maintaining the raw material solution at 50 ° C. for 30 minutes, enzyme reaction mainly with protease and laccase was performed. Next, the temperature of the raw material liquid was increased by heating and maintained at 65 ° C. for 60 minutes, whereby enzyme reaction mainly with ⁇ -amylase and laccase was performed. Thereafter, 7.01 g of hops were added to the raw material liquid, and boiling treatment was performed for 90 minutes. Then, processes, such as filtration and alcohol fermentation, were implemented similarly to the above-mentioned Example 1.
  • Example 7-C1 1080 L of barley and 1.08 g of ⁇ -amylase were mixed with water at 50 ° C. to prepare a 4 L raw material solution.
  • Example 7-C2 1080 L of barley, 1.08 g of protease, and 1.08 g of ⁇ -amylase were mixed with water at 50 ° C. to prepare a 4 L raw material solution.
  • a sparkling alcoholic beverage was produced in the same manner as in Example 7-1 above. That is, by maintaining the raw material solution at 50 ° C. for 30 minutes, enzyme reaction mainly with protease and laccase was performed. Next, the temperature of the raw material liquid was increased by heating and maintained at 65 ° C. for 60 minutes, whereby enzyme reaction mainly with ⁇ -amylase and laccase was performed. Thereafter, 7.01 g of hops were added to the raw material liquid, and boiling treatment was performed for 90 minutes. Then, processes, such as filtration and alcohol fermentation, were implemented similarly to the above-mentioned Example 1.
  • FIG. 12 shows the result of the sensory test. “7-C1, 7-C2, 7-1 to 6” on the horizontal axis in FIG. 12 indicates “Example 7-C1, Example 7-C2, Example 7-1 to Example 7-6” and the vertical axis Indicates the average score given by the panelists.
  • the white bar graph shows the result of comprehensive evaluation, and the black bar graph shows the result of evaluating the drinkability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Alcoholic Beverages (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 ドリンカビリティの向上した発泡性アルコール飲料及びその製造方法を提供する。 本発明に係る発泡性アルコール飲料の製造方法は、窒素源及び炭素源を含む原料と水とを使用して発酵前液を調製する発酵前工程(10)と、前記発酵前液に酵母を添加してアルコール発酵を行わせる発酵工程(20)と、を含む発泡性アルコール飲料の製造方法であって、前記発酵前工程(10)において、前記原料はさらにラッカーゼを含む。

Description

発泡性アルコール飲料及びその製造方法
 本発明は、発泡性アルコール飲料及びその製造方法に関し、特に、発泡性アルコール飲料のドリンカビリティの向上に関する。
 近年、ビールに加え、ビールに比べて少ない量の麦芽を使用し、又は麦芽を使用することなく、ビールと同様の方法で製造された発泡性アルコール飲料が登場している(例えば、特許文献1)。
国際公開第2005/005593号
 このような発泡性アルコール飲料の市場においては、飲みやすさ、すなわちドリンカビリティの向上という要望がある。しかしながら、ドリンカビリティを向上させた発泡性アルコール飲料については、未だ十分な検討がなされていない。
 本発明は、上記課題に鑑みて為されたものであり、ドリンカビリティの向上した発泡性アルコール飲料及びその製造方法を提供することをその目的の一つとする。
 上記課題を解決するための本発明の一実施形態に係る発泡性アルコール飲料の製造方法は、窒素源及び炭素源を含む原料と水とを使用して発酵前液を調製する発酵前工程と、前記発酵前液に酵母を添加してアルコール発酵を行う発酵工程と、を含む発泡性アルコール飲料の製造方法であって、前記発酵前工程において、前記原料はラッカーゼを含むことを特徴とする。本発明によれば、ドリンカビリティの向上した発泡性アルコール飲料の製造方法を提供することができる。
 また、前記原料は、550U/g以下の前記ラッカーゼを含むこととしてもよい。また、前記原料は、1U/g以上、550U/g以下の前記ラッカーゼを含むこととしてもよい。また、前記原料は、1U/g以上、60U/g以下の前記ラッカーゼを含むこととしてもよい。また、前記原料は、1U/g以上、50U/g以下の前記ラッカーゼを含むこととしてもよい。発酵前液の原料がこのような範囲でラッカーゼを含むことにより、発泡性アルコール飲料のドリンカビリティをより確実に向上させることができる。また、前記原料は、大麦リポキシゲナーゼ-1欠失大麦から調製された麦芽を含むこととしてもよい。
 上記課題を解決するための本発明の一実施形態に係る発泡性アルコール飲料は、上記いずれかの製造方法により製造されたことを特徴とする。本発明によれば、ドリンカビリティの向上した発泡性アルコール飲料を提供することができる。
 本発明によれば、ドリンカビリティの向上した発泡性アルコール飲料及びその製造方法を提供することができる。
本発明の一実施形態に係る発泡性アルコール飲料の製造方法の一例に含まれる主な工程を示す説明図である。 本発明の一実施形態に係るビールの製造方法におけるラッカーゼ濃度の一例を示す説明図である。 本発明の一実施形態において製造したビールの官能検査結果の一例を示す説明図である。 本発明の一実施形態において製造したビールの泡特性を測定した結果の一例を示す説明図である。 本発明の一実施形態に係るビールの製造方法におけるラッカーゼ濃度の他の例を示す説明図である。 本発明の一実施形態において製造したビールの官能検査結果の他の例を示す説明図である。 本発明の一実施形態において製造したビールの泡特性を測定した結果の他の例を示す説明図である。 本発明の一実施形態において製造したビールの官能検査結果のさらに他の例を示す説明図である。 本発明の一実施形態において麦芽を使用して製造した発泡酒の官能検査結果の一例を示す説明図である。 本発明の一実施形態において麦芽を使用することなく製造した発泡性アルコール飲料の官能検査結果の一例を示す説明図である。 本発明の一実施形態において、大麦リポキシゲナーゼ-1欠失大麦から調製された麦芽を使用して製造した発泡性アルコール飲料の官能検査結果の一例を示す説明図である。 本発明の一実施形態において、麦芽を使用することなく大麦を使用して製造した発泡性アルコール飲料の官能検査結果の一例を示す説明図である。
 以下に、本発明の一実施形態について説明する。なお、本発明は本実施形態に限られるものではない。
 図1は、本発明の一実施形態に係る発泡性アルコール飲料の製造方法(以下、「本製造方法」という。)の一例に含まれる主な工程を示す説明図である。図1に示すように、本製造方法は、ラッカーゼを使用して発酵前液を調製する発酵前工程10と、当該発酵前液に酵母を添加してアルコール発酵を行う発酵工程20と、を含む。
 なお、本発明でいうアルコール飲料とは、例えば、エタノールを1体積%以上の濃度で含有する飲料である。そして、本発明でいう発泡性アルコール飲料とは、ビールや発泡酒等、炭酸ガスを含有するアルコール飲料であって、例えば、グラス等の容器に注いだ際に液面上部に泡の層が形成される泡立ち特性と、その形成された泡が一定時間以上保たれる泡持ち特性と、を有するアルコール飲料である。具体的に、この発泡性アルコール飲料は、例えば、EBC(European Brewery Convention:欧州醸造協会)法によるNIBEM値(泡持ち特性を表す単位)で50以上を示すアルコール飲料である。
 発酵前工程10においては、窒素源及び炭素源を含む原料と水とを使用して発酵前液を調製する。窒素源は、酵母がアルコール発酵に利用できる窒素含有化合物であれば特に限られず任意の1種又は2種以上を適宜選択して使用することができる。炭素源は、酵母がアルコール発酵に利用できる炭素含有化合物であれば特に限られず任意の1種又は2種以上を適宜選択して使用することができる。
 より具体的に、原料の一部として、麦芽を使用することができる。麦芽は、窒素源及び炭素源を含有する。麦芽は、適切な温度で、酸素の存在下、大麦に適切な量の水分を浸み込ませ、発芽させることにより、調製することができる。
 麦芽に含まれる窒素源及び炭素源の量は、発芽条件(例えば、発芽の進行の程度)により調節することができる。麦芽を使用する場合、発酵前工程10は、上述のように大麦を発芽させて当該麦芽を調製する工程を含むこともできる。
 麦芽は、大麦を発芽させて調製されたものであれば特に限られないが、例えば、大麦リポキシゲナーゼ-1(LOX-1)欠失大麦(以下、「LOXレス大麦」という。)から調製された麦芽(以下、「LOXレス麦芽」という。)を使用することができる。LOXレス大麦は、LOX遺伝子に変異を有する大麦である(例えば、特開2008-043348号公報を参照)。LOXレス麦芽は、通常の麦芽と同様に、LOXレス大麦を発芽させることにより調製することができる。
 また、原料の一部として、穀物由来のタンパク質又はペプチドの分解物(以下、「タンパク分解物」という。)を使用することができる。タンパク分解物は、主に窒素源を含有する。タンパク分解物は、穀物から抽出されたタンパク質やペプチドをプロテアーゼ等の分解酵素や酸を用いて分解(低分子化)することにより調製することができる。したがって、タンパク分解物は、酵母が利用可能なアミノ酸を含有する。なお、タンパク分解物は、穀物に由来するタンパク質又はペプチドを含有してもよい。
 タンパク分解物の原料となる穀物は、タンパク質やペプチドを含有するものであれば特に限られず任意の1種又は2種以上を適宜選択して使用することができる。すなわち、例えば、豆類や穀類を使用することができる。
 豆類としては、例えば、エンドウ、大豆、小豆、黒豆、緑豆、大正金時、トラ豆、ヒヨコ豆、ソラ豆、ウズラ豆、ハナ豆、ヒラ豆、ヒタシ豆を使用することができる。穀類としては、例えば、コーン(トウモロコシ)、米、馬鈴薯を使用することができる。
 より具体的に、例えば、エンドウ由来のタンパク質又はペプチドの分解物、大豆由来のタンパク質又はペプチドの分解物、及びコーン由来のタンパク質又はペプチドの分解物からなる群より選択される少なくとも一つを好ましく使用することができる。
 タンパク分解物を使用する場合、発酵前工程10は、穀物から抽出されたタンパク質やペプチドにプロテアーゼやペプチダーゼ等の分解酵素を作用させて当該タンパク分解物を調製する工程を含むこともできる。
 また、原料の一部として、穀物由来のデンプンの分解物(以下、「デンプン分解物」という。)を使用することができる。デンプン分解物は、主に炭素源を含有する。デンプン分解物は、穀物から抽出されたデンプンをアミラーゼ等の分解酵素や酸を用いて分解することにより調製することができる。したがって、デンプン分解物は、酵母が利用可能な糖類(いわゆる発酵性糖)を含有する。発酵性糖としては、例えば、グルコースやフルクトース等の単糖類や、マルトースやシュクロース等の二糖類、マルトトリオース等の三糖類を挙げることができる。
 デンプン分解物の原料となる穀物としては、デンプンを含有するものであれば特に限られず任意の1種又は2種以上を適宜選択して使用することができる。すなわち、例えば、コーン、馬鈴薯、米、小麦、大麦を使用することができる。より具体的に、例えば、コーン等の穀類を原料として製造された液状の糖類(いわゆる液糖)を使用することができる。
 また、原料の一部として、酵母エキスを使用することができる。酵母エキスは、主に窒素源を含有する。すなわち、酵母エキスは、酵母から抽出されたタンパク質、ペプチド及びアミノ酸を含有する。また、酵母エキスは、酵母に含有されているタンパク質又はペプチドを分解酵素や酸を用いて分解することにより調製された、より分子量の小さいペプチドやアミノ酸を含有することもできる。
 また、原料の一部として、ホップを使用することができる。ホップは、特に限られず任意の1種又は2種以上を適宜選択して使用することができる。ホップの形態は特に限られず、保存や輸送等の目的に応じて適切に加工された任意の形態のものを使用することができる。すなわち、例えば、乾燥させたホップの毬花を圧縮して得られるプレスホップ、乾燥させたホップの毬花を粉砕して得られるホップパウダー、当該ホップパウダーをペレット状に圧縮成形して得られるホップペレットを使用することができる。
 また、原料の一部としてホップを使用しないこととしてもよい。この場合、ホップの代わりに、原料の一部としてハーブ類を使用することができる。ハーブとしては、任意のものを使用でき、例えば、ローズマリー、コリアンダー、カモミールを使用することができる。
 また、原料の一部として、着色、香味の付与、泡持ちの向上、発酵効率の向上等、本製造方法により製造される発泡性アルコール飲料に所望の特性を付与し、又は本製造方法の生産性を向上させるために有効な他の材料をさらに使用することができる。
 例えば、発泡性アルコール飲料の泡立ちや泡持ち等の泡特性を向上させる材料を使用することができる。すなわち、例えば、タンパク質を使用することができる。タンパク質としては、例えば、上述のタンパク分解物の原料となるものと同様の穀物由来のタンパク質を使用することができる。より具体的に、例えば、エンドウ由来のタンパク質、大豆由来のタンパク質、コーン由来のタンパク質を使用することができる。
 また、例えば、酵母によるアルコール発酵を促進する酵母活性化剤を使用することができる。酵母活性化剤としては、例えば、ビタミン類、イノシトール、ミネラルを使用することができる。
 また、例えば、カラメル色素等の色素を使用することができる。また、例えば、ビールの副原料としても使用される、米、コーン、こうりゃん、馬鈴薯、デンプンを使用することができる。
 そして、本製造方法において特徴的なことの一つは、発酵前液の原料がラッカーゼを含むことである。ラッカーゼは、EC(Enzyme Commission)番号が「1.10.3.2」の酵素であり、ポリフェノールオキシダーゼとも呼ばれる。ラッカーゼは、例えば、種々のフェノール系化合物及びアニリン系化合物を基質とした酸化反応を触媒する。
 使用するラッカーゼの量は、本製造方法における製造スケールや、製造される発泡性アルコール飲料が備えるべき特性等の条件に応じて適宜決定することができる。すなわち、原料の単位重量(g)あたりに含まれるラッカーゼの量(U)は、例えば、550U/g以下とすることができ、より好ましくは、1U/g以上、550U/g以下とすることができる。
 ここで、ラッカーゼの量を示す単位「U」は、所定の酸化反応に必要な当該ラッカーゼの量から算出することができる。すなわち、例えば、至適条件下(至適温度、至適pH)で、1分間に1μmolの基質を酸化することのできるラッカーゼの量を「1U」とする。より具体的に、例えば、ラッカーゼを4-アミノアンチピリンとフェノールにpH4.5、30℃で作用させた場合に、酸化縮合反応により生成するキノンイミン色素の505nmにおける吸光度を反応初期1分間に0.1増加させるのに必要な当該ラッカーゼの量を「1U」とすることができる。
 なお、原料に液状の材料が含まれる場合には、当該原料の重量は、当該液状の材料に含まれる固形分の重量を使用して算出してもよい。すなわち、例えば、原料の一部に液糖を使用する場合、当該液糖のうち固形分の重量を使用して当該原料の重量を算出する。そして、原料におけるラッカーゼの含有量(U/g)は、当該原料に含まれる固形分の重量(g)あたりの当該ラッカーゼの量(U)として算出することができる。
 また、原料におけるラッカーゼの含有量は、例えば、1U/g以上、60U/g以下とすることが好ましく、1U/g以上、50U/g以下とすることがより好ましく、1U/g以上、40U/g以下とすることがさらに好ましい。
 ラッカーゼの含有量をこのような範囲内とすることにより、発泡性アルコール飲料のドリンカビリティを確実に向上させることができる。また、発泡性アルコール飲料の香味及び泡特性を向上させることもできる。
 さらに、原料におけるラッカーゼの含有量は、例えば、2U/g以上、60U/g以下とすることもでき、2U/g以上、50U/g以下とすることがより好ましく、2U/g以上、40U/g以下とすることがさらに好ましい。
 ラッカーゼの含有量をこのような範囲内とすることにより、発泡性アルコール飲料のドリンカビリティをより確実に向上させることができる。また、発泡性アルコール飲料の香味及び泡特性を確実に向上させることもできる。
 また、上述した原料の一部として、予めラッカーゼによる酵素処理を施したものを使用することもできる。すなわち、例えば、原料の一部としてホップを使用する場合、予めラッカーゼによる酵素処理を施したホップを使用することができる。この酵素処理は、例えば、ラッカーゼとホップとを含有する反応溶液を調製し、当該反応溶液をラッカーゼによる酵素反応に適した条件(温度やpH)で所定時間維持することにより実施することができる。そして、酵素処理後のホップを回収し、原料の一部として使用する。
 酵素処理における反応温度は、ラッカーゼが基質に作用し得る範囲であれば特に限られず、例えば、30℃~80℃とすることができ、40℃~70℃とすることが好ましく、60℃前後とすることがより好ましい。また、反応時間は、ラッカーゼの使用による効果が得られる範囲であれば特に限られない。反応溶液におけるラッカーゼの濃度は、処理すべきホップの量等の条件に応じて適宜決定することができる。
 また、ホップ以外にも、麦芽、タンパク分解物、デンプン分解物、酵母エキス、タンパク質、酵母活性化剤、色素、米、コーン、こうりゃん、馬鈴薯、デンプン等、原料の一部として使用される他の任意の材料についても同様に、予めラッカーゼによる酵素処理を施すことができる。
 また、発酵前液の単位体積(L)あたりに使用されるラッカーゼの量(U)を規定することもできる。すなわち、この場合、1Lの発酵前液を調製するのに使用されるラッカーゼの量は、例えば、50U/L以上とすることができ、100U/L以上とすることが好ましい。より具体的に、ラッカーゼの濃度は、50U/L以上、200000U/L以下とすることができ、100U/L以上、200000U/L以下とすることが好ましい。
 発酵前液の原料は、酵母によるアルコール発酵が可能な範囲で、上述の材料を任意の組み合わせで含むことができる。すなわち、例えば、麦芽及びラッカーゼを含む原料を使用することができる。この場合、麦芽、ホップ及びラッカーゼを含む原料を使用することもできる。
 また、例えば、麦芽を含まず、窒素源、炭素源及びラッカーゼを含む原料を使用することもできる。この場合、例えば、麦芽を含まず、窒素源、炭素源、ホップ及びラッカーゼを含む原料を使用することもできる。また、例えば、麦芽及びホップを含まず、窒素源、炭素源及びラッカーゼを含む原料を使用することもできる。これら原料が麦芽を含まない場合、窒素源としてはタンパク分解物を好ましく使用することができ、炭素源としてはデンプン分解物を好ましく使用することができる。
 そして、発酵前工程10においては、上述の窒素源、炭素源及びラッカーゼを含む原料と水とを使用して発酵前液を調製する。すなわち、例えば、まず、原料の全部又は一部と水とを混合することにより原料液を調製する。次いで原料液に後述するような所定の処理を施す。その過程で、残りの原料を添加することができる。そして、最終的に、酵母の添加に適した発酵前液を得る。水としては、醸造用水を好ましく使用することができる。水の温度は、例えば、25~80℃の範囲とすることができる。
 さらに、発酵前工程10においては、ラッカーゼによる酵素反応を行う。この酵素反応は、ラッカーゼを含有する原料液を所定の温度で所定の時間維持することにより行うことができる。
 反応温度は、ラッカーゼが基質に作用し得る範囲であれば特に限られず、例えば、30℃~80℃とすることができ、40℃~70℃とすることが好ましく、60℃前後とすることがより好ましい。反応時間は、ラッカーゼの使用による効果が得られる範囲であれば特に限られず、例えば、1分~180分とすることができ、30分~120分とすることが好ましい。
 また、原料液がラッカーゼ以外の酵素を含有し、発酵前工程10において当該酵素による反応を行う場合には、ラッカーゼによる反応と、当該酵素による反応とを、並行して(同時に)又は連続して(順次)行うこともできる。
 例えば、原料が麦芽を含む場合には、当該麦芽に含まれる分解酵素を作用させる処理(いわゆる糖化処理)とともに、ラッカーゼによる酵素処理を行うことができる。すなわち、糖化処理で作用させるペプチダーゼやアミラーゼの至適温度と、ラッカーゼの至適温度と、は近いため、発酵前工程10において糖化処理を実施することにより、ラッカーゼによる酵素処理も実施することができる。
 原料がホップを含む場合、発酵前工程10においては、原料液を煮沸させる処理を実施することができる。すなわち、この場合、例えば、まず、ホップを含まずラッカーゼを含む原料の一部と水とを混合して原料液を調製する。次いで、原料液を上述のような反応温度で所定時間維持することでラッカーゼによる酵素処理を実施する。このとき、原料に麦芽が含まれる場合には、糖化処理も並行して実施する。そして、酵素処理後の原料液にホップを添加し、さらに加熱して当該原料液を煮沸させる。この煮沸処理により、ホップに含有される成分を原料液中に抽出するとともに、原料液に含有されるラッカーゼ等の酵素を失活させる。
 このように、発酵前工程10で原料液を煮沸させる場合、ラッカーゼは、当該煮沸前に添加し、ラッカーゼによる酵素処理も当該煮沸前に実施することができる。なお、ラッカーゼの添加及びラッカーゼによる酵素処理を煮沸処理の後に実施することもできる。この場合、例えば、まず糖化処理を実施し、次いで煮沸処理を実施し、その後、原料液にラッカーゼを添加して当該ラッカーゼによる酵素処理を実施する。
 また、ラッカーゼによる酵素処理後にホップを添加する場合、上述のような予めラッカーゼによる酵素処理が施されたホップを使用することにより、当該ホップに含有される成分に対してもラッカーゼによる酵素処理が十分に施された発酵前液を調製することができる。
 発酵前工程10においては、上述のように原料液の調製及びラッカーゼによる酵素処理を実施した後、当該原料液のろ過及び冷却を行い、最終的に、続く発酵工程20における酵母の添加に適した無菌状態の発酵前液を調製する。
 発酵工程20においては、発酵前工程10で調製された発酵前液に酵母を添加してアルコール発酵を行う。発酵工程20においては、前発酵と後発酵(貯酒)とを行う。すなわち、まず、予め温度が所定の範囲内(例えば、0℃~40℃の範囲)に調整された無菌状態の発酵前液に酵母を添加して発酵液を調製する。
 酵母は、アルコール発酵を行うことができるものであれば特に限られず、任意の種類のものを適宜選択して使用することができる。すなわち、例えば、下面発酵酵母や上面発酵酵母等のビール酵母を使用することができ、下面発酵酵母を好ましく使用することができる。発酵開始時の発酵液における酵母の密度は適宜調節することができ、例えば、1×10個/mL~3×10個/mLの範囲内とすることができる。
 そして、この発酵液を所定の温度で所定の時間だけ維持することにより前発酵を行う。前発酵の温度は適宜調節することができ、例えば、0℃~40℃の範囲内とすることができ、好ましくは、6℃~15℃の範囲内とすることができる。前発酵において、酵母は、発酵前液に含有される窒素源及び炭素源、さらに必要に応じて添加されるビタミンやミネラル等の栄養源を消費しながらアルコール発酵等の代謝活動を行う。この結果、発酵液中では酵母によって、エタノール、炭酸ガス、香味成分(エステル等)が生成される。
 後発酵は、前発酵後の発酵液をさらに所定の温度で所定の時間だけ維持することにより行う。すなわち、例えば、下面発酵酵母を用いた場合には、前発酵を終えて酵母が沈降した発酵液の上澄みを回収する。そして、回収された上澄みをさらにマイナス3℃~20℃の範囲内の温度で、1日~150日の範囲内の時間維持する。この後発酵により、発酵液中の不溶物を沈殿させて濁りを取り、また、熟成により香味を向上させることができる。また、後発酵においては、発酵液中に炭酸ガスをさらに溶解させることもできる。
 こうして発酵工程20においては、酵母により生成されたエタノールや香味成分を含有する発酵後液を得ることができる。発酵後液に含まれるエタノールの濃度は、例えば、1%~20%の範囲内とすることができ、好ましくは、1%~10%とすることができ、より好ましくは、3%~10%とすることができる。
 本製造方法は、上述のようにして調製された発酵後液に所定の処理を施すことにより、最終的に発泡性アルコール飲料を得る発酵後工程をさらに含むことができる。発酵後工程においては、例えば、発酵後液をろ過することにより、当該発酵後液に含まれる酵母を除去する。また、例えば、発酵後液を60℃以上の温度で1分以上保持する低温殺菌や、発酵後液をより高温で短時間保持する高温殺菌を行う。また、発酵後液に炭酸ガスを吹き込むこともできる。
 また、発酵後工程は、スピリッツを添加する工程を含むこともできる。すなわち、この場合、例えば、発酵後工程において、上述のようにして得られた発泡性アルコール飲料にスピリッツを添加する。スピリッツとしては、穀物を原料として製造されたものを好ましく使用することができる。すなわち、例えば、大麦、小麦、米、蕎麦、馬鈴薯、サツマイモ、トウモロコシ、サトウキビを原料として製造された蒸留酒を使用することができ、特に好ましくは、大麦又は小麦を原料として製造された蒸留酒を使用することができる。スピリッツに含有されるアルコール濃度は、例えば、20~90体積%の範囲内とすることができる。
 本実施形態に係る発泡性アルコール飲料(以下、「本飲料」という。)は、このような本製造方法により好ましく製造することができる。
 本飲料は、例えば、発酵前液の原料として麦芽及びラッカーゼを使用して製造された発泡性アルコール飲料とすることができる。この場合、本飲料は、発酵前液の原料として麦芽、ホップ及びラッカーゼを使用して製造された発泡性アルコール飲料とすることができる。
 すなわち、本飲料は、例えば、発酵前液の原料としてラッカーゼを使用して製造されたビールとすることができる。また、本飲料は、例えば、発酵前液の原料として、ビールに比べて少ない量の麦芽を使用し、且つホップ及びラッカーゼを使用して製造された発泡酒とすることができる。
 また、本飲料は、例えば、麦芽を使用することなく、発酵前液の原料として窒素源、炭素源及びラッカーゼを使用して製造された発泡性アルコール飲料とすることができる。この場合、本飲料は、例えば、麦芽を使用することなく、発酵前液の原料として窒素源、炭素源、ホップ及びラッカーゼを使用して製造された発泡性アルコール飲料とすることができる。また、本飲料は、例えば、麦芽及びホップを使用することなく、発酵前液の原料として窒素源、炭素源及びラッカーゼを使用して製造された発泡性アルコール飲料とすることができる。
 また、本飲料は、上述のような発泡性アルコール飲料にスピリッツを添加することにより製造された発泡性アルコール飲料とすることができる。この場合、本飲料は、例えば、上述のように発酵前液の原料の一部として麦芽及びラッカーゼを使用して製造された発泡性アルコール飲料と、スピリッツと、を混合して製造された発泡性アルコール飲料とすることができる。また、本飲料は、例えば、上述のように麦芽を使用することなく、発酵前液の原料として窒素源、炭素源及びラッカーゼを使用して製造された発泡性アルコール飲料と、スピリッツと、を混合して製造された発泡性アルコール飲料とすることもできる。
 上述のように、本製造方法において発酵前液の原料として微量のラッカーゼを使用し作用させることにより、本飲料は、従来の発泡性アルコール飲料に比べてドリンカビリティの向上した発泡性アルコール飲料となる。
 ラッカーゼの使用が本飲料のドリンカビリティの向上にどのようなメカニズムで寄与しているかについては明らかではないが、例えば、ラッカーゼを使用することなく調製した発酵前液に酵母を添加して前発酵を行った後にラッカーゼ添加しても、最終的に得られる発泡性アルコール飲料のドリンカビリティは効果的には向上しない。したがって、発酵前液の原料としてラッカーゼを使用して作用させることが重要と考えられる。
 また、本製造方法の発酵前工程10において発酵前液の原料としてラッカーゼを使用し作用させることにより、本飲料は、ラッカーゼを使用することなく製造された発泡性アルコール飲料に比べて優れた香味特性を有することとなる。
 ラッカーゼの使用が本飲料の香味特性の向上にどのようなメカニズムで寄与しているかについても明らかではないが、例えば、ラッカーゼを使用することなく調製した発酵前液に酵母を添加して前発酵を行った後にラッカーゼ添加しても、最終的に得られる発泡性アルコール飲料の香味特性は効果的には向上しない。したがって、発酵前液の原料としてラッカーゼを使用して作用させることが重要と考えられる。
 また、本製造方法の発酵前工程10において発酵前液の原料としてラッカーゼを使用し作用させることにより、本飲料は、ラッカーゼを使用することなく製造された発泡性アルコール飲料に比べて優れた泡特性を有することとなる。
 ラッカーゼの使用が本飲料の泡特性の向上にどのようなメカニズムで寄与しているかについても明らかではないが、例えば、当該ラッカーゼの使用量が増加するにつれて、本飲料の泡持ち特性が向上する傾向がある。
 なお、発泡性アルコール飲料の泡持ち特性は、例えば、NIBEM値により評価することができる。NIBEM値は、例えば、次のようにして測定することができる。すなわち、まず、20℃の発泡性アルコール飲料を、円筒形グラス(例えば、内径60mm、内高120mm)の中に炭酸ガスを用いて強制的に注ぎ起泡させる。次いで、発泡性アルコール飲料の泡面が、起泡直後の位置から10mm低下したときから、さらに40mmまで低下するまでの時間を、市販の測定装置により測定する。NIBEM値は、この測定された時間(秒)として表わされる。
 本飲料のNIBEM値は、例えば、50以上とすることができ、好ましくは100以上とすることができ、より好ましくは200以上とすることができる。
 次に、本実施形態に係る具体的な実施例について説明する。
 原料として、麦芽、ホップ、ラッカーゼ及びプロテアーゼを使用し、発泡性アルコール飲料を製造した。すなわち、ラッカーゼを使用して調製された発酵前液を使用して、いわゆる麦芽100%のビールを製造した。
 麦芽としては、可溶性窒素(Soluble Nitrogen:SN)が比較的低い、いわゆる溶けの程度が低いものを使用した。ラッカーゼとしては、ダイワY120(大和化成株式会社)を使用した。
 このラッカーゼの力価は、108000U/g以上であった。酵素活性を表す単位「U」については、4-アミノアンチピリンとフェノールにpH4.5、30℃で作用するとき、ラッカーゼが触媒する酸化縮合反応により生成するキノンイミン色素の505nmにおける吸光度を反応初期1分間に0.1増加させるのに必要な酵素量を1U単位とした。また、このラッカーゼの至適pHは4.0~4.5であり、至適温度は60℃であった。プロテアーゼとしては、スミチームLP50D(新日本化学工業株式会社)を使用した。
 例1-1では、麦芽1200gと、プロテアーゼ1.2gと、ラッカーゼ0.03g(麦芽に対して0.0025重量%)と、を60℃の水と混合することにより、4Lの原料液を調製した。
 例1-2では、ラッカーゼ0.06g(麦芽に対して0.005重量%)を使用した以外は上述の例1-1と同様にして4Lの原料液を調製した。例1-3では、ラッカーゼ0.12g(麦芽に対して0.01重量%)を使用した以外は上述の例1-1と同様にして4Lの原料液を調製した。例1-4では、ラッカーゼ0.3g(麦芽に対して0.025重量%)を使用した以外は上述の例1-1と同様にして4Lの原料液を調製した。
 例1-5では、ラッカーゼ0.6g(麦芽に対して0.05重量%)を使用した以外は上述の例1-1と同様にして4Lの原料液を調製した。例1-6では、ラッカーゼ1.2g(麦芽に対して0.1重量%)を使用した以外は上述の例1-1と同様にして4Lの原料液を調製した。例1-7では、ラッカーゼ3.0g(麦芽に対して0.25重量%)を使用した以外は上述の例1-1と同様にして4Lの原料液を調製した。例1-8では、ラッカーゼ6.0g(麦芽に対して0.5重量%)を使用した以外は上述の例1-1と同様にして4Lの原料液を調製した。
 また、例1-C1では、麦芽1200gを60℃の水と混合することにより、4Lの原料液を調製した。例1-C2では、上述の例1-C1と同量の麦芽とプロテアーゼ1.2gを使用して4Lの原料液を調製した。このようにして、10種類の原料液を調製した。
 次いで、これら10種類の原料液のそれぞれを、60℃~67℃の範囲の温度で90分維持することにより、ラッカーゼによる酵素反応とともに、糖化処理を行った。その後、各原料液にホップ5.45gを添加して煮沸処理を90分間行った。そして、原料液のろ過処理を行い、酵母の添加に適した温度に冷却した。こうして、10種類の4Lの発酵前液を調製した。
 図2には、各例で使用されたラッカーゼの濃度を示す。ラッカーゼ濃度(U/g)は、発酵前液の原料の単位重量(g)あたりに使用されたラッカーゼの量(U)を示す。また、ラッカーゼ濃度(U/L)は、発酵前液の単位体積(L)あたりに使用されたラッカーゼの量(U)を示す。
 次いで、発酵前液に酵母を添加して発酵液を調製した。この発酵液を11℃の温度で7日間維持することにより前発酵を行った。その後、さらに発酵液を0℃~11℃の温度で35日間維持することにより貯酒を行った。貯酒後の発酵液(発酵後液)にろ過処理及び殺菌処理を施した。こうして、10種類の発酵前液のそれぞれを使用して、10種類のビールを得た。
 10種類のビールの各々について、熟練した5人のパネリストによる官能検査及びNIBEM値の測定を行った。なお、官能検査においては、エステル香、麦芽香、硫黄臭、甘味、酸味、渋味、雑味等の香味や、ドリンカビリティといった様々な項目を評価した。ドリンカビリティとは、例えば、グラス一杯の発泡性アルコール飲料を飲んだ後に、もう一杯飲みたくなるかどうかといった飲みやすさとして評価された。すなわち、ドリンカビリティが高い発泡性アルコール飲料は、一杯飲んだ後に、さらにもう一杯飲みたくなるような発泡性アルコール飲料であるということができる。
 図3には、官能検査の結果を示す。図3の横軸における「1-C1、1-C2、1-1~8」は、「例1-C1、例1-C2、例1-1~例1-8」を示し、縦軸はパネリストにより付けられた点数の平均値を示す。白抜きの棒グラフは総合評価の結果を示し、黒塗りの棒グラフはドリンカビリティを評価した結果を示す。点数が高いほど好ましい評価が得られたことを示す。
 図3に示すように、発酵前液の原料の一部としてラッカーゼを使用することによって、ビールの総合評価及びドリンカビリティが高められる(特に、ドリンカビリティが向上する)ことが示された。特に、例1-2では、その効果が顕著であった。
 図4には、NIBEM値の測定結果を示す。図4の横軸における「1-C1、1-C2、1-1~8」は、「例1-C1、例1-C2、例1-1~例1-8」を示し、縦軸は測定されたNIBEM値を示す。NIBEM値が高いほど好ましい泡特性が得られたことを示す。図4に示すように、発酵前液の原料の一部としてラッカーゼを使用することによって、ビールの泡特性は損なわれず、むしろ高められることが示された。
 原料として、麦芽、ホップ及びラッカーゼを使用し、発泡性アルコール飲料を製造した。すなわち、ラッカーゼを使用して調製された発酵前液を使用して、麦芽100%のビールを製造した。麦芽としては、溶けが中程度のものを使用した。ラッカーゼとしては、上述の実施例1でも使用したダイワY120(大和化成株式会社)を使用した。
 例2-1では、麦芽1200gと、ラッカーゼ0.03g(麦芽に対して0.0025重量%)と、を60℃の水と混合することにより、4Lの原料液を調製した。そして、この原料液にホップ5.45gを添加して煮沸処理を90分間行い、さらにろ過処理を行い、冷却して4Lの発酵前液を調製した。続いて、上述の実施例1と同様の工程を実施して、ビールを製造した。
 例2-2では、ラッカーゼ0.06g(麦芽に対して0.005重量%)を使用した以外は上述の例2-1と同様にして4Lの発酵前液を調製しビールを製造した。例2-3では、ラッカーゼ0.12g(麦芽に対して0.01重量%)を使用した以外は上述の例1-1と同様にして4Lの発酵前液を調製しビールを製造した。例2-4では、ラッカーゼ0.3g(麦芽に対して0.025重量%)を使用した以外は上述の例2-1と同様にして4Lの発酵前液を調製しビールを製造した。
 例2-5では、ラッカーゼ0.6g(麦芽に対して0.05重量%)を使用した以外は上述の例2-1と同様にして4Lの発酵前液を調製しビールを製造した。例2-6では、ラッカーゼ1.2g(麦芽に対して0.1重量%)を使用した以外は上述の例2-1と同様にして4Lの発酵前液を調製しビールを製造した。例2-7では、ラッカーゼ3.0g(麦芽に対して0.25重量%)を使用した以外は上述の例2-1と同様にして4Lの発酵前液を調製しビールを製造した。
 例2-8では、まず、麦芽1200gを60℃の水と混合することにより、ラッカーゼを含有しない4Lの原料液を調製した。そして、この原料液にホップ5.45gを添加して煮沸処理を90分間行い、さらにろ過処理を行い、冷却して4Lの発酵前液を調製した。続いて、上述の実施例1と同様に前発酵を行った。次いで、前発酵後の発酵液にラッカーゼ0.3g(麦芽に対して0.025重量%)を添加し、貯酒を行い、ビールを製造した。すなわち、この例2-8では、ラッカーゼを添加するタイミングを、発酵前ではなく、前発酵後であって貯酒前とした以外は上述の例2-4と同様の条件でビールを製造した。
 また、例2-Cでは、麦芽1200gを60℃の水と混合することにより、4Lの原料液を調製した。そして、この原料液にホップ5.45gを添加して煮沸処理を90分間行い、さらにろ過処理を行い、冷却して4Lの発酵前液を調製した。続いて、上述の実施例1と同様にビールを製造した。こうして、9種類のビールを得た。
 図5には、各例で使用されたラッカーゼの濃度を示す。ラッカーゼ濃度(U/g)は、発酵前液の原料の単位重量(g)あたりに使用されたラッカーゼの量(U)を示す。また、ラッカーゼ濃度(U/L)は、例2-1~例2-7及び例2-Cについては発酵前液の単位体積(L)あたり、例2-8については発酵液の単位体積(L)あたりに使用されたラッカーゼの量(U)を示す。
 9種類のビールの各々について、熟練した5人のパネリストによる官能検査及びNIBEM値の測定を行った。図6には、官能検査の結果を示す。図6の横軸における「2-C、2-1~8」は、「例2-C、例2-1~例2-8」を示し、縦軸はパネリストにより付けられた点数の平均値を示す。白抜きの棒グラフは総合評価の結果を示し、黒塗りの棒グラフはドリンカビリティを評価した結果を示す。
 図6に示すように、発酵前液の原料の一部としてラッカーゼを使用することによって、ビールの総合評価及びドリンカビリティが高められる(特に、ドリンカビリティが向上する)ことが示された。特に例2-1及び例2-2では、その効果が顕著であった。
 一方、発酵前にラッカーゼを添加せず、前発酵後にラッカーゼを添加した例2-8においては、官能評価及びドリンカビリティともに好ましい結果は得られなかった。すなわち、発酵前液の原料の一部としてラッカーゼを使用することで官能検査における総合評価及びドリンカビリティの向上という効果が得られると考えられた。
 図7には、NIBEM値の測定結果を示す。図7の横軸における「2-C、2-1~8」は、「例2-C、例2-1~例2-8」を示し、縦軸は測定されたNIBEM値を示す。図7に示すように、発酵前液の原料の一部としてラッカーゼを使用することによって、ビールの泡特性は損なわれず、むしろ高められることが示された。一方、ラッカーゼを前発酵後に添加した例2-8においては、ラッカーゼを使用しなかった例2-Cに比べて、NIBEM値がやや低下した。
 原料として、麦芽、ホップ及びラッカーゼを使用し、パイロットスケールにて、発泡性アルコール飲料を製造した。すなわち、ラッカーゼを使用して調製された発酵前液を使用して、400Lスケールで、麦芽100%のビールを製造した。麦芽としては、上述の実施例2と同様、溶けが中程度のものを使用した。ラッカーゼとしては、上述の実施例1でも使用したダイワY120(大和化成株式会社)を使用した。
 例3-1では、麦芽120kgと、ラッカーゼ6g(麦芽に対して0.005重量%)と、を60℃の水と混合することにより、400Lの原料液を調製した。そして、この原料液にホップ545gを添加して煮沸処理を90分間行い、さらにろ過処理を行い、冷却して400Lの発酵前液を調製した。続いて、上述の実施例1と同様の工程を実施して、ビールを製造した。この例3-1において使用されたラッカーゼの濃度は、発酵前液の原料の単位重量あたり5.4(U/g)、発酵前液の単位体積あたり1620(U/L)であった。
 例3-2では、ラッカーゼ30g(麦芽に対して0.025重量%)を使用した以外は上述の例3-1と同様にして400Lの発酵前液を調製しビールを製造した。この例3-2において使用されたラッカーゼの濃度は、発酵前液の原料の単位重量あたり26.9(U/g)、発酵前液の単位体積あたり8100(U/L)であった。
 また、例3-Cでは、麦芽120kgを60℃の水と混合することにより、400Lの原料液を調製した。そして、この原料液にホップ545gを添加して煮沸処理を90分間行い、さらにろ過処理を行い、冷却して400Lの発酵前液を調製した。続いて、上述の実施例1と同様の工程を実施して、ラッカーゼを使用することなく、ビールを製造した。こうして、3種類のビールを得た。
 3種類のビールの各々について、熟練した10人のパネリストによる官能検査を行った。図8には、官能検査の結果を示す。図8の横軸における「3-C、3-1、3-2」は、「例3-C、例3-1、例3-2」を示し、縦軸はパネリストにより付けられた点数の平均値を示す。白抜きの棒グラフは総合評価の結果を示し、黒塗りの棒グラフはドリンカビリティを評価した結果を示す。
 図8に示すように、発酵前液の原料の一部としてラッカーゼを使用することによって、ビールの総合評価及びドリンカビリティ(特に、ドリンカビリティ)が高められることが示された。
 原料として、麦芽、液糖、ホップ及びラッカーゼを使用し、発泡性アルコール飲料を製造した。原料に占める麦芽の使用量は、約24重量%であった。すなわち、ラッカーゼを使用して調製された発酵前液を使用して、いわゆる発泡酒を製造した。
 麦芽としては、溶けが中程度のものを使用した。液糖としては、S75C(日本コーンスターチ株式会社)を使用した。この液糖は、固形分を75重量%含有していた。ラッカーゼとしては、上述の実施例1でも使用したダイワY120(大和化成株式会社)を使用した。
 例4-1では、麦芽206gと、液糖686g(固形分514.5g)と、ラッカーゼ0.15gと、を60℃の水と混合することにより、4Lの原料液を調製した。そして、この原料液にホップ3.76gを添加して煮沸処理を80分間行い、さらにろ過処理を行い、冷却して4Lの発酵前液を調製した。続いて、上述の実施例1と同様の工程を実施して、発泡酒を製造した。この例4-1において使用されたラッカーゼの濃度は、発酵前液の原料の単位重量あたり22.4(U/g)、発酵前液の単位体積あたり4050(U/L)であった。なお、原料の重量を算出するにあたっては、液糖全体の重量(686g)ではなく当該液糖の固形分の重量(514.5g)を使用した。
 また、例4-Cでは、麦芽206gと、液糖686g(固形分514.5g)とを60℃の水と混合することにより、4Lの原料液を調製した。そして、この原料液にホップ3.76gを添加して煮沸処理を90分間行い、さらにろ過処理を行い、冷却して4Lの発酵前液を調製した。続いて、上記例4-1と同様の工程を実施して、ラッカーゼを使用することなく、発泡酒を製造した。こうして、2種類の発泡酒を得た。
 2種類の発泡酒の各々について、熟練した6人のパネリストによる官能検査を行った。図9には、官能検査の結果を示す。図9の横軸における「4-C、4-1」は、「例4-C、例4-1」を示し、縦軸はパネリストにより付けられた点数の平均値を示す。白抜きの棒グラフは総合評価の結果を示し、黒塗りの棒グラフはドリンカビリティを評価した結果を示す。
 図9に示すように、発酵前液の原料の一部としてラッカーゼを使用することによって、発泡酒の総合評価及びドリンカビリティが高められることが示された。
 原料として、エンドウタンパク、エンドウタンパク分解物、液糖、ホップ及びラッカーゼを使用し、発泡性アルコール飲料を製造した。すなわち、原料として麦芽を使用することなく、ラッカーゼを使用して調製された発酵前液を使用して、発泡性アルコール飲料を製造した。
 エンドウタンパクとしては、エンドウから抽出されたタンパク質を使用した。エンドウタンパク分解物としては、エンドウタンパクを酵素で分解することにより調製されたペプチド及びアミノ酸を含有する組成物を使用した。液糖としては、上述の実施例4でも使用した、75重量%の固形分を含有するS75C(日本コーンスターチ株式会社)を使用した。ラッカーゼとしては、上述の実施例1でも使用したダイワY120(大和化成株式会社)を使用した。
 例5-1では、エンドウタンパク組成物7.8gと、液糖600g(固形分450g)と、ラッカーゼ0.15gとを60℃の水と混合することにより、4Lの原料液を調製した。
 ラッカーゼによる酵素反応は、この原料液を60℃℃で20分間維持することにより行った。その後、原料液にホップ2.88gを添加し、煮沸処理を90分間行った。続いて、ろ過や、アルコール発酵等の工程を実施例1と同様に実施して、発泡性アルコール飲料を製造した。
 この例5-1において使用されたラッカーゼの濃度は、発酵前液の原料の単位重量あたり35.1(U/g)、発酵前液の単位体積あたり4050(U/L)であった。なお、発酵前液の原料の重量を算出するにあたっては、上述の実施例4と同様、液糖の固形分の重量を使用した。
 また、例5-Cでは、エンドウタンパク組成物7.8gと、液糖600g(固形分450g)とを60℃の水と混合することにより、4Lの原料液を調製した。そして、この原料液にホップ2.88gを添加して煮沸処理を60分間行った。続いて、上記例5-1と同様の工程を実施して、ラッカーゼを使用することなく、発泡性アルコール飲料を製造した。こうして、2種類の発泡性アルコール飲料を得た。
 2種類の発泡性アルコール飲料の各々について、熟練した6人のパネリストによる官能検査を行った。図10には、官能検査の結果を示す。図10の横軸における「5-C、5-1」は、「例5-C、例5-1」を示し、縦軸はパネリストにより付けられた点数の平均値を示す。白抜きの棒グラフは総合評価の結果を示し、黒塗りの棒グラフはドリンカビリティを評価した結果を示す。
 図10に示すように、発酵前液の原料の一部としてラッカーゼを使用することによって、発泡性アルコール飲料のドリンカビリティが顕著に高められることが示された。
 また、上述の実施例1、実施例4、実施例5で製造された発泡性アルコール飲料について、含有される成分を定量したところ、発酵前液の原料の一部としてラッカーゼを使用して製造された発泡性アルコール飲料においては、ラッカーゼを使用することなく製造された発泡性アルコール飲料に比べて、硫化水素の含有量が減少していることが確認された。
 この硫化水素は、例えば、原料の一部として麦芽を使用して製造される発泡性アルコール飲料において、原料に占める麦芽の使用量が少ない場合に含有量が増加し、香味を損なう成分である。
 したがって、発酵前液の原料の一部としてラッカーゼを使用することにより発泡性アルコール飲料に含有される硫化水素の量を低減できるという上記の定量結果は、当該ラッカーゼの使用により当該発泡性アルコール飲料の香味特性が向上するという上記の官能検査結果を裏付けるものであった。
 ラッカーゼを使用して調製された発酵前液を使用して、LOXレス麦芽100%のビールを製造した。
 すなわち、例6-1では、原料として、LOXレス麦芽、ホップ、ラッカーゼ及びプロテアーゼを使用し、発泡性アルコール飲料を製造した。LOXレス麦芽として、上述の実施例1と同様に、溶けの程度が低いものを使用した。ラッカーゼとしては、上述の実施例1でも使用したダイワY120(大和化成株式会社)を使用した。プロテアーゼとしては、上述の実施例1でも使用したスミチームLP50D(新日本化学工業株式会社)を使用した。
 具体的に、LOXレス麦芽1200gと、プロテアーゼ1.2gと、ラッカーゼ0.06g(LOXレス麦芽に対して0.005重量%)と、を60℃の水と混合することにより、4Lの原料液を調製した。そして、この原料液にホップ5.45gを添加して煮沸処理を90分間行い、さらにろ過処理を行い、冷却して4Lの発酵前液を調製した。続いて、上述の実施例1と同様の工程を実施して、ビールを製造した。
 例6-C1では、例6-1と同様に溶けの程度が低いLOXレス麦芽1200gと、プロテアーゼ1.2gと、を60℃の水と混合することにより、4Lの原料液を調製した。そして、この原料液にホップ5.45gを添加して煮沸処理を90分間行い、さらにろ過処理を行い、冷却して4Lの発酵前液を調製した。続いて、上述の実施例1と同様の工程を実施して、ビールを製造した。
 例6-2では、原料として、LOXレス麦芽、ホップ及びラッカーゼを使用し、発泡性アルコール飲料を製造した。LOXレス麦芽として、上述の実施例2と同様に、溶けが中程度のものを使用した。ラッカーゼとしては、上述の例6-1と同様にダイワY120(大和化成株式会社)を使用した。
 具体的に、LOXレス麦芽1200gと、ラッカーゼ0.06g(LOXレス麦芽に対して0.005重量%)と、を60℃の水と混合することにより、4Lの原料液を調製した。そして、この原料液にホップ5.45gを添加して煮沸処理を90分間行い、さらにろ過処理を行い、冷却して4Lの発酵前液を調製した。続いて、上述の実施例1と同様の工程を実施して、ビールを製造した。
 例6-C2では、例6-2と同様に溶けが中程度のLOXレス麦芽1200gを60℃の水と混合することにより、4Lの原料液を調製した。そして、この原料液にホップ5.45gを添加して煮沸処理を90分間行い、さらにろ過処理を行い、冷却して4Lの発酵前液を調製した。続いて、上述の実施例1と同様にビールを製造した。
 なお、例6-1及び例6-2において使用されたラッカーゼの濃度は、発酵前液の原料の単位重量あたり5.4U/g、発酵前液の単位体積あたり1620U/Lであった。
 こうして得られた4種類のビールの各々について、熟練した9人のパネリストによる官能検査を行った。図11には、官能検査の結果を示す。図11の横軸における「6-C1、6-1、6-C2、6-2」は、「例6-C1、例6-1、例6-C2、例6-2」」を示し、縦軸はパネリストにより付けられた点数の平均値を示す。白抜きの棒グラフは総合評価の結果を示し、黒塗りの棒グラフはドリンカビリティを評価した結果を示す。
 図11に示すように、LOXレス麦芽を使用した場合、発酵前液の原料の一部としてラッカーゼを使用することによって、ビールの総合評価及びドリンカビリティがより高められる(特に、ドリンカビリティが向上する)ことが示された。
 原料として、大麦、ホップ、ラッカーゼ、プロテアーゼ及びα-アミラーゼを使用し、発泡性アルコール飲料を製造した。すなわち、原料として麦芽を使用することなく、大麦及びラッカーゼを使用して調製された発酵前液を使用して、大麦100%の発泡性アルコール飲料を製造した。
 大麦としては、粉砕したものを使用した。ラッカーゼとしては、上述の実施例1でも使用したダイワY120(大和化成株式会社)を使用した。プロテアーゼとしては、上述の実施例1でも使用したスミチームLP50D(新日本化学工業株式会社)を使用した。α-アミラーゼとしては、市販のものを使用した。
 例7-1では、大麦1080gと、ラッカーゼ0.027g(大麦に対して0.0025重量%)と、プロテアーゼ1.08gと、α-アミラーゼ1.08gと、を50℃の水と混合することにより、4Lの原料液を調製した。
 そして、原料液を50℃で30分間維持することにより、主にプロテアーゼ及びラッカーゼによる酵素反応を行った。次に、原料液を加熱して昇温し、65℃で60分間維持することにより、主にα-アミラーゼ及びラッカーゼによる酵素反応を行った。その後、原料液にホップ7.01gを添加し、煮沸処理を90分間行った。続いて、ろ過や、アルコール発酵等の工程を上述の実施例1と同様に実施して、発泡性アルコール飲料を製造した。
 この例7-1において使用されたラッカーゼの濃度は、発酵前液の原料の単位重量あたり2.7(U/g)、発酵前液の単位体積あたり729(U/L)であった。
 例7-2では、ラッカーゼ0.054g(大麦に対して0.005重量%)を使用した以外は上述の例7-1と同様にして4Lの原料液を調製した。例7-3では、ラッカーゼ0.108g(大麦に対して0.01重量%)を使用した以外は上述の例7-1と同様にして4Lの原料液を調製した。例7-4では、ラッカーゼ0.270g(大麦に対して0.025重量%)を使用した以外は上述の例7-1と同様にして4Lの原料液を調製した。例7-5では、ラッカーゼ1.08g(大麦に対して0.1重量%)を使用した以外は上述の例7-1と同様にして4Lの原料液を調製した。例7-6では、ラッカーゼ5.40g(大麦に対して0.5重量%)を使用した以外は上述の例7-1と同様にして4Lの原料液を調製した。
 これらの例において使用されたラッカーゼの濃度(発酵前液の原料の単位重量あたりの濃度(U/g)及び発酵前液の単位体積あたりの濃度(U/L))は、例7-2において5.4U/g及び1458U/L、例7-3において10.8U/g及び2916U/L、例7-4において27.0U/g及び7290U/L、例7-5において108U/g及び29160U/L、例7-6において540U/g及び145800U/Lであった。
 次いで、上述の例7-1と同様にして発泡性アルコール飲料を製造した。すなわち、原料液を50℃で30分間維持することにより、主にプロテアーゼ及びラッカーゼによる酵素反応を行った。次に、原料液を加熱して昇温し、65℃で60分間維持することにより、主にα-アミラーゼ及びラッカーゼによる酵素反応を行った。その後、原料液にホップ7.01gを添加し、煮沸処理を90分間行った。続いて、ろ過や、アルコール発酵等の工程を上述の実施例1と同様に実施した。
 また、例7-C1では、大麦1080gと、α-アミラーゼ1.08gと、を50℃の水と混合することにより、4Lの原料液を調製した。また、例7-C2では、大麦1080gと、プロテアーゼ1.08gと、α-アミラーゼ1.08gと、を50℃の水と混合することにより、4Lの原料液を調製した。
 次いで、上述の例7-1と同様にして発泡性アルコール飲料を製造した。すなわち、原料液を50℃で30分間維持することにより、主にプロテアーゼ及びラッカーゼによる酵素反応を行った。次に、原料液を加熱して昇温し、65℃で60分間維持することにより、主にα-アミラーゼ及びラッカーゼによる酵素反応を行った。その後、原料液にホップ7.01gを添加し、煮沸処理を90分間行った。続いて、ろ過や、アルコール発酵等の工程を上述の実施例1と同様に実施した。
 こうして得られた8種類のビールの各々について、熟練した6人のパネリストによる官能検査を行った。図12には、官能検査の結果を示す。図12の横軸における「7-C1、7-C2、7-1~6」は、「例7-C1、例7-C2、例7-1~例7-6」」を示し、縦軸はパネリストにより付けられた点数の平均値を示す。白抜きの棒グラフは総合評価の結果を示し、黒塗りの棒グラフはドリンカビリティを評価した結果を示す。
 図12に示すように、麦芽を使用せず、大麦を使用した場合(特に、原料が、1U/g以上、10U/g以下のラッカーゼを含む場合)においても、発酵前液の原料の一部としてラッカーゼを使用することによって、ビールの総合評価及びドリンカビリティが高められる(特に、ドリンカビリティが向上する)ことが示された。
 
 
 

Claims (7)

  1.  窒素源及び炭素源を含む原料と水とを使用して発酵前液を調製する発酵前工程と、
     前記発酵前液に酵母を添加してアルコール発酵を行う発酵工程と、
     を含む発泡性アルコール飲料の製造方法であって、
     前記発酵前工程において、前記原料はラッカーゼを含む
     ことを特徴とする発泡性アルコール飲料の製造方法。
  2.  前記原料は、550U/g以下の前記ラッカーゼを含む
     ことを特徴とする請求項1に記載された発泡性アルコール飲料の製造方法。
  3.  前記原料は、1U/g以上、550U/g以下の前記ラッカーゼを含む
     ことを特徴とする請求項2に記載された発泡性アルコール飲料の製造方法。
  4.  前記原料は、1U/g以上、60U/g以下の前記ラッカーゼを含む
     ことを特徴とする請求項3に記載された発泡性アルコール飲料の製造方法。
  5.  前記原料は、1U/g以上、50U/g以下の前記ラッカーゼを含む
     ことを特徴とする請求項4に記載された発泡性アルコール飲料の製造方法。
  6.  前記原料は、大麦リポキシゲナーゼ-1欠失大麦から調製された麦芽を含む
     ことを特徴とする請求項1乃至5のいずれかに記載された発泡性アルコール飲料の製造方法。
  7.  請求項1乃至6に記載された製造方法により製造された
     ことを特徴とする発泡性アルコール飲料。
PCT/JP2010/057057 2009-04-24 2010-04-21 発泡性アルコール飲料及びその製造方法 WO2010123026A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011510342A JP5832894B2 (ja) 2009-04-24 2010-04-21 発泡性アルコール飲料の製造方法
EP10767083A EP2423300A1 (en) 2009-04-24 2010-04-21 Sparkling alcoholic drink and method for producing same
US13/265,995 US20120058220A1 (en) 2009-04-24 2010-04-21 Sparkling alcoholic drink and method for producing the same
CA2758717A CA2758717C (en) 2009-04-24 2010-04-21 Sparkling alcoholic drink and method for producing the same
KR1020117026114A KR20120011025A (ko) 2009-04-24 2010-04-21 발포성 알코올 음료 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-106407 2009-04-24
JP2009106407 2009-04-24

Publications (1)

Publication Number Publication Date
WO2010123026A1 true WO2010123026A1 (ja) 2010-10-28

Family

ID=43011143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057057 WO2010123026A1 (ja) 2009-04-24 2010-04-21 発泡性アルコール飲料及びその製造方法

Country Status (6)

Country Link
US (1) US20120058220A1 (ja)
EP (1) EP2423300A1 (ja)
JP (1) JP5832894B2 (ja)
KR (1) KR20120011025A (ja)
CA (1) CA2758717C (ja)
WO (1) WO2010123026A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119645A (ja) * 2013-12-20 2015-07-02 キリン株式会社 光誘導による風味劣化の抑制された飲料
JP2015536674A (ja) * 2012-12-11 2015-12-24 ディーエスエム アイピー アセッツ ビー.ブイ. 安定な飲料の製造
JP2017205038A (ja) * 2016-05-17 2017-11-24 サッポロビール株式会社 ビールテイスト飲料、ビールテイスト飲料の製造方法、及びビールテイスト飲料の香味向上方法
JP2017205036A (ja) * 2016-05-17 2017-11-24 サッポロビール株式会社 ビールテイスト飲料、ビールテイスト飲料の製造方法、及びビールテイスト飲料の香味向上方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385299B2 (en) * 2013-12-25 2019-08-20 Idemitsu Kosan Co., Ltd. Metal-carrying zeolite for alcoholic beverages and alcoholic beverage manufacturing method
CN105886178A (zh) * 2016-06-21 2016-08-24 淮阴师范学院 漆酶预处理提高麦芽出糖率的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267177A (ja) * 2003-03-04 2004-09-30 Servicetec Japan Corp 液体中のポリフェノールの除去方法
WO2005005593A1 (ja) 2003-07-10 2005-01-20 Sapporo Breweries Limited 発泡アルコール飲料及びその製造方法
JP2007518407A (ja) * 2004-01-15 2007-07-12 アンスティテュ ナシオナル ドゥ ラ ルシェルシュ アグロノミック シュタケ(P.cinnabarinus)の一核株によって所定の組換えタンパク質を過剰生成する方法
WO2007096184A1 (en) * 2006-02-23 2007-08-30 Vialactia Biosciences (Nz) Limited Polypeptides with laccase activity
WO2007101846A1 (en) * 2006-03-07 2007-09-13 Novozymes A/S Beer-brewing method
JP2007290998A (ja) * 2006-04-24 2007-11-08 Morishita Jintan Kk 発芽ハトムギ発酵処理物
JP2008043348A (ja) 2007-10-29 2008-02-28 Sapporo Breweries Ltd 大麦リポキシゲナーゼ−1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122303A1 (en) * 2000-02-01 2001-08-08 Quest International Nederland Bv Process for the production of beer having improved flavour stability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267177A (ja) * 2003-03-04 2004-09-30 Servicetec Japan Corp 液体中のポリフェノールの除去方法
WO2005005593A1 (ja) 2003-07-10 2005-01-20 Sapporo Breweries Limited 発泡アルコール飲料及びその製造方法
JP2007518407A (ja) * 2004-01-15 2007-07-12 アンスティテュ ナシオナル ドゥ ラ ルシェルシュ アグロノミック シュタケ(P.cinnabarinus)の一核株によって所定の組換えタンパク質を過剰生成する方法
WO2007096184A1 (en) * 2006-02-23 2007-08-30 Vialactia Biosciences (Nz) Limited Polypeptides with laccase activity
WO2007101846A1 (en) * 2006-03-07 2007-09-13 Novozymes A/S Beer-brewing method
JP2007290998A (ja) * 2006-04-24 2007-11-08 Morishita Jintan Kk 発芽ハトムギ発酵処理物
JP2008043348A (ja) 2007-10-29 2008-02-28 Sapporo Breweries Ltd 大麦リポキシゲナーゼ−1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CANTARELLI, C. ET AL.: "Beverage stabilization through enzymatic removal of phenolics", FOOD BIOTECHNOL., vol. 3, no. 2, 1989, pages 203 - 213, XP008162019 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015536674A (ja) * 2012-12-11 2015-12-24 ディーエスエム アイピー アセッツ ビー.ブイ. 安定な飲料の製造
JP2015119645A (ja) * 2013-12-20 2015-07-02 キリン株式会社 光誘導による風味劣化の抑制された飲料
JP2017205038A (ja) * 2016-05-17 2017-11-24 サッポロビール株式会社 ビールテイスト飲料、ビールテイスト飲料の製造方法、及びビールテイスト飲料の香味向上方法
JP2017205036A (ja) * 2016-05-17 2017-11-24 サッポロビール株式会社 ビールテイスト飲料、ビールテイスト飲料の製造方法、及びビールテイスト飲料の香味向上方法

Also Published As

Publication number Publication date
JPWO2010123026A1 (ja) 2012-10-25
JP5832894B2 (ja) 2015-12-16
EP2423300A1 (en) 2012-02-29
CA2758717A1 (en) 2010-10-28
CA2758717C (en) 2017-05-23
US20120058220A1 (en) 2012-03-08
KR20120011025A (ko) 2012-02-06

Similar Documents

Publication Publication Date Title
JP5468771B2 (ja) 発泡性アルコール飲料及びその製造方法
JP4319243B2 (ja) 発泡アルコール飲料及びその製造方法
JP5066083B2 (ja) 発泡性アルコール飲料及びその製造方法
US9848627B2 (en) Method for producing a non-alcoholic beverage
JP5832894B2 (ja) 発泡性アルコール飲料の製造方法
JP6862145B2 (ja) ビールテイスト飲料、ビールテイスト飲料の製造方法、及びビールテイスト飲料の不快臭を低減する方法
JP5917166B2 (ja) 発酵麦芽飲料の製造方法
CN113811193A (zh) 啤酒味饮料
JP5671652B2 (ja) 植物原料液及び飲料並びにこれらに関する方法
JP5584446B2 (ja) 発泡性アルコール飲料及びその製造方法
JP4781342B2 (ja) 発泡性アルコール飲料及びその製造方法
US20100055236A1 (en) Method for Making Beer
JP4256351B2 (ja) 発泡アルコール飲料及びその製造方法
JP6005004B2 (ja) 穀物原料液と酵母との接触を含む方法並びに穀物原料液及び発泡性飲料
WO2017150082A1 (ja) 飲料の製造方法及び飲料の香味向上方法
JP5855579B2 (ja) ピルビン酸含有量の高いビール様発泡性発酵飲料の製造方法
CN112313322B (zh) 用麦芽和麦芽根制备基于麦芽或未发芽的谷物颗粒的饮料的方法
KR102341079B1 (ko) 감을 이용한 맥주 제조 방법
JP7215820B2 (ja) ビールテイスト飲料及びその製造方法並びにビールテイスト飲料の香味を向上させる方法
JP7202792B2 (ja) 発酵ビール様発泡性飲料及びその製造方法
Archana et al. BEER PRODUCTION BY FERMENTATION PROCESS: A REVIEW.
JP2023047095A (ja) ビールテイスト飲料並びにその製造方法及び香味向上方法
JP2023042249A (ja) ビール様発酵麦芽飲料
JP2012010620A (ja) 発泡性飲料及びその製造方法
JP2015089362A (ja) 原料液の製造条件を決定する方法及び原料液、発泡性飲料並びにこれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011510342

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2758717

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13265995

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117026114

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010767083

Country of ref document: EP