WO2010122182A1 - Procedimiento para obtener revestimientos fotocatalíticos sobre sustratos metálicos - Google Patents

Procedimiento para obtener revestimientos fotocatalíticos sobre sustratos metálicos Download PDF

Info

Publication number
WO2010122182A1
WO2010122182A1 PCT/ES2009/070113 ES2009070113W WO2010122182A1 WO 2010122182 A1 WO2010122182 A1 WO 2010122182A1 ES 2009070113 W ES2009070113 W ES 2009070113W WO 2010122182 A1 WO2010122182 A1 WO 2010122182A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
titanium dioxide
coating
nanoparticles
metal
Prior art date
Application number
PCT/ES2009/070113
Other languages
English (en)
French (fr)
Inventor
Yolanda Rufina De Miguel
Irune Villaluenga Arranz
Antonio PORRO GUTIÉRREZ
Original Assignee
Fundacion Labein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Labein filed Critical Fundacion Labein
Priority to PCT/ES2009/070113 priority Critical patent/WO2010122182A1/es
Priority to EP09784115.9A priority patent/EP2423269B1/en
Priority to ES09784115T priority patent/ES2706297T3/es
Publication of WO2010122182A1 publication Critical patent/WO2010122182A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring

Definitions

  • the invention relates to the field of coatings on substrates that are to be protected and kept clean.
  • the invention relates to a process for obtaining a photocatalytic coating on a metal substrate by the inclusion of crystalline titanium dioxide nanoparticles in the anatase phase in a polymeric silica matrix.
  • the metal or metal alloy thus coated finds application in the field of construction or the environment, among others, since it is capable of destroying various pollutants on surfaces, on facades, in water or in air, for example.
  • nanoparticle-based coatings provide are that they can form with them coatings that can protect and keep surfaces on which they are clean.
  • Titanium dioxide is a photosensitive semiconductor, and valence electrons are excited in the conduction band by means of a radiation energy in the ultraviolet range (200-400 nm) (Balasubramanian G .; Dionysiou DD; Suidan MT., "Titanium Dioxide Coatings on Stainless Steet 'Encyclopedia of Nanoscience and Nanotechonology, Marcel Dekker; Schubert U., Husing N., "Synthesis of Inorganic Materials” Wiley-VCH, Weinheim, (2005)).
  • the crystallinity of this semiconductor is essential for good photocatalytic activity. The three most important crystalline forms are: anatase, brookite and rutile.
  • Rutile is stable at room temperature unlike the brookite and anatase phases that are metastable; however, the structure that has the highest photocatalytic activity is anatase, both the rutile structure and the anatase are formed by TiO 6 octahedron chains, being The difference between them the distortion of each octahedron and the pattern of union of the chains (Banfield, JF & Navrotsky A. "Nanoparticles and The Environmenf Mineralogical Society of Amer ica, Virginia, (2001)). Therefore, the mass densities and electronic band structures are different due to the differences in the network structures.
  • Titanium dioxide nanoparticles have been used in different applications depending on the configuration (powder, coatings, etc.) in which they are found. Titanium dioxide nanoparticle coatings with photocatalytic properties are of great interest for the development of new products. Many investigations are focused on the development of titanium dioxide coatings on different substrates (glass, ceramics, plastics, etc.). The most used substrate in the bibliography is glass. Other materials used to obtain coatings are metals such as aluminum or stainless steel (Jiaguo, Y. Rare metais 2004, 23 (4), 289). The use of this material, in particular, presents certain challenges such as obtaining good adhesion together with the preservation of the structural integrity of the metal.
  • the coatings were initially amorphous and were required a calcination stage at 500 3 C for 1 h to give rise to the anatase phase (more photoactive crystalline structure of TiO 2 ).
  • the photocatalytic activity seemed to be quite poor. Therefore, in a later article (Chen, Y .; Dionysiou, DD Appl. Catal A-Gen. 2007, 317, ⁇ 29) they modified the reaction conditions by adding TiO 2 P25 (Degussa) powder and polyethylene glycol (PEG) as pore forming agent to increase the photocatalytic activity.
  • TiO 2 P25 Degussa
  • PEG polyethylene glycol
  • US 7144840 B2 describes a synthesis method and different methods of deposition of one or several layers of TiO 2 nanoparticles on aluminum, stainless steel, etc. In this procedure, heat treatments were used at 450 3 C on the coated substrate in order to achieve good adhesion, so that, in this case, it was not possible to avoid the diffusion of ions in the metal.
  • FR 2838735 B1 describes coatings with photocatalytic properties on glass, ceramics, metals, etc., obtained by the layer-to-layer method.
  • the coatings were formed by two different layers: the first composed of a hydrophilic layer of silicon oxide derivatives and the second of titanium oxides that provided the photocatalytic activity to the coating.
  • the first composed of a hydrophilic layer of silicon oxide derivatives
  • the second of titanium oxides that provided the photocatalytic activity to the coating.
  • the deposition on the substrate one of the methods used was the chemical vapor deposition (CVD), so that the final cost of the product would become more expensive due to the high cost of the equipment.
  • CVD chemical vapor deposition
  • the heat treatments used either to generate the anatase phase of TiO 2 (which provides the photocatalytic activity) or to improve the adhesion of the coating on the metal are not suitable even for The structural integrity of the metal nor to obtain a good photocatalytic activity.
  • Another method of obtaining protective coatings on metals at low temperatures is that described in GB 2425975 B by means of a solid synthesis, although it does not employ TiO 2 nanoparticles and, therefore, said coatings lack photocatalytic activity.
  • These coatings were formed by two different layers: the first composed of a curative agent (triethylenetriamine, diethylenetriamine, tetraethylenepentamine, etc.) and the second by ormosyl (tetramethoxysilane, tetraethoxysilane, 3-glycidoxypropylmethoxysilane, etc.).
  • the final resulting coating was cured at room temperature or at 150 3 C in the event that the first layer incorporated silica gel particulates to increase the hardness of the coating.
  • Park et al. propose TiO 2 / SiO 2 hybrid coatings on stainless steel with photocatalytic properties for water purification. These coatings are prepared from a titanium dioxide sol in an unspecified solvent and a binder composed of a silica sol, methyltrimethoxysilane, an acid catalyst and isopropyl alcohol, a mixture that is applied to the substrate and cured at 200 3 C for 1 day.
  • WO 2007/131474 describes self-cleaning coating materials containing hydrophilic surface components such as silanol and titanium dioxide or silica nanoparticles, and which are applied on the substrate before curing at a temperature between room temperature and 500 3 C.
  • Said coatings are prepared from a solution of tetraethoxysilane optionally mixed with a polyether silane, to which hydrochloric acid is added and then silica nanoparticles in powder or in the form of a colloidal solution, and which is then applied on glass, ceramic, cement or Plastics, for example.
  • Said coating however, has the disadvantage of not having flexibility.
  • WO 2004/037944 describes a method for obtaining self-cleaning surfaces on substrates preferably of glass or plastic from an aqueous composition with a pH of 7-1 1 comprising nanoparticles of a metal oxide (SiO 2 , AI 2 O 3 , ZrO 2 , TiO 2 , CeO 2 , ZnO 2 and mixtures) and a surface modifier (a polydimethylsiloxane, an alkoxysilane, mixtures of both, fluorourethanes, fluorinated acrylic or methacrylic polymers, etc.).
  • a metal oxide SiO 2 , AI 2 O 3 , ZrO 2 , TiO 2 , CeO 2 , ZnO 2 and mixtures
  • a surface modifier a polydimethylsiloxane, an alkoxysilane, mixtures of both, fluorourethanes, fluorinated acrylic or methacrylic polymers, etc.
  • the present inventors have discovered that starting from an epoxysilane compound as the sole organosilane derivative together with a percentage Particularly of crystalline titanium dioxide nanoparticles essentially in anatase phase added in the form of a powder or acidified dispersion in water, and a polyethermine type catalyst can be obtained photocatalytic coatings on alternative steel in milder synthesis conditions.
  • the epoxysilane compounds have already been used in the preparation of photocatalytic coatings on plastic together with crystalline titanium dioxide nanoparticles, as described in JP 2008007610, although these coatings comprise two layers: a first polysiloxane film obtained at starting from an organosilane compound of the state of the art coated, in turn, with a second photocatalytic layer of a metal oxide such as TiO 2 , ZnO, SnO 2 , SrTiO 3 , WO 3 , Bi 2 O 3 or Fe 2 O 3 , for example.
  • a metal oxide such as TiO 2 , ZnO, SnO 2 , SrTiO 3 , WO 3 , Bi 2 O 3 or Fe 2 O 3 , for example.
  • US 6291070 describes nanostructured layers obtained by wet way preparing a sun from a suspension in a lower alcohol of solid nanoparticles of titanium dioxide (among other metals or metal derivatives such as oxides, chalcogenides, halides, arsenides, nitrides, phosphates, silicates, aluminates, etc.) to which an epoxysilane is added (among many other silane derivatives such as methacryloxysilanes, epoxysilanes, vinylsilanes, alkoxysilanes, alkylaminosilanes, etc., or mixtures thereof), which is prehydrolyzed .
  • titanium dioxide among other metals or metal derivatives such as oxides, chalcogenides, halides, arsenides, nitrides, phosphates, silicates, aluminates, etc.
  • an epoxysilane is added (among many other silane derivatives such as methacryloxysilanes, epoxysi
  • an imidazole catalyst is added and applied on a glass or plastic substrate.
  • Said coating has the disadvantage of having a limited photocatalytic activity due to the low TiO 2 content that is necessary to maintain adequate adhesion to the substrate.
  • Textor et al. (Textor et al., Micromol. Symp. 2007, 254, 196-202) describe a photocatalytic coating to develop self-cleaning textiles that is obtained by a sol-gel method from (3-glycidyloxy-propyl) trimethoxysilane and a sol of titanium dioxide or nanoparticles of anatase phase titanium dioxide in a very low proportion, using 1-methylimidazole as catalyst. Said coating, however, has poor adhesion properties on metal type substrates.
  • the process of the invention by means of a sol-gel method that uses an epoxysilane, a particular percentage of titanium dioxide nanoparticles Anatase crystalline crystals and a polyetheramine-type catalyst, allows to obtain photocatalytic coatings on metal surfaces under softer conditions of synthesis in terms of temperature and solvents. This is especially advantageous since working at room temperature prevents the diffusion of ions in the metal substrate to be coated, as well as the oxidation thereof. In addition, the costs are lower and, if the coating mixture is applied by immersion, in addition to reducing equipment costs, it allows coating large surfaces.
  • the coatings thus obtained have good photocatalytic properties, good adhesion, flexibility and transparency, while maintaining the intrinsic properties of the metal coated therewith.
  • the present invention is intended to provide a process for obtaining a photocatalytic coating on a substrate.
  • Another object of the present invention is to provide the coated substrate with the photocatalytic coating obtainable by said method.
  • Figure 1 shows the X-ray diffractogram (DRX) of the hybrid material that composes the coating obtained by the process of the invention but without TiO 2 nanoparticles (hybrid reference material).
  • DRX X-ray diffractogram
  • Figure 2 shows the X-ray diffractogram (DRX) of the hybrid material that composes the coating obtained by the process of the invention (hybrid material of the invention).
  • Figures 3a and 3b show the images obtained by scanning electron microscopy (E-SEM) of the coating obtained by the process of the invention from nanoparticles of TiO 2 powder at a resolution of 500 ⁇ m and 20 ⁇ m, respectively.
  • E-SEM scanning electron microscopy
  • Figure 4a shows an image of the coating obtained by the process of the invention from nanoparticles of TiO 2 powder.
  • the figures 4b and 4c show the images obtained by microanalysis of X-ray energy dispersion (EDAX) of silicon and titanium, respectively, in the area reflected in Figure 4a.
  • EDAX X-ray energy dispersion
  • Figures 5a and 5b show the images obtained by scanning electron microscopy (E-SEM) of the coating obtained by the method of the invention from TiO 2 nanoparticles dispersed at a resolution of 500 ⁇ m and 20 ⁇ m, respectively.
  • E-SEM scanning electron microscopy
  • Figure 6a shows an image of the coating obtained by the process of the invention from dispersed TiO 2 nanoparticles.
  • Figures 6b and 6c show the images obtained by microanalysis of X-ray energy dispersion (EDAX) of silicon and titanium, respectively, in the area reflected in Figure 6a.
  • EDAX X-ray energy dispersion
  • Figure 7 shows the photocatalytic performance of the coatings obtained by the process of the invention: using nanoparticles TiO 2 powder and TiO 2 using nanoparticles dispersed.
  • the present invention provides a method for obtaining a photocatalytic coating on a substrate, hereinafter "method of the invention", which comprises the steps of:
  • the epoxysilane compound which has previously been dissolved in a suitable solvent of the state of the art such as isopropanol preferably, compared to other types of alcohols, is add water to hydrolyze it. In this way, a series of hydrolysis and condensation reactions are generated that give rise to the formation of a silicate chain.
  • epoxysilane compound refers to a silane with epoxy functionality. More particularly, it refers to compounds of formula:
  • R 2 H, C r C 6 alkyl or C 3 -C 6 cycloalkyl
  • the epoxysilane compound is selected from (3-glycidyloxypropyl) trimethoxysilane, glycidoxypropyltriethoxy-silane; glycidoxypropylmethyldimethoxysilane; glycidoxypropylmethyldiethoxysilane; and epoxycyclohexylethyltrimethoxysilane.
  • the epoxysilane compound is (3-glycidyloxypropyl) trimethoxysilane.
  • crystalline titanium dioxide nanoparticles, the anatase phase being the predominant crystalline phase refers to titanium dioxide nanoparticles with crystalline structure with an anatase phase proportion greater than 75%.
  • titanium dioxide nanoparticles are added in step (b) in powder form.
  • the titanium dioxide nanoparticles are added in step (b) in the form of a dispersion in acidified water at a pH of 2. Said pH allows to achieve a stable dispersion of the titanium dioxide nanoparticles in water and it reaches adding to said dispersion an appropriate acid of the state of the art, such as hydrochloric acid, nitric acid, for example, in the appropriate proportion.
  • 1 M HC1 is used.
  • 1 1 HNO 3 is used .
  • titanium dioxide nanoparticles that have hydroxyl groups in the surface area.
  • they can be prepared by any of the methods described in the literature or the TiO 2 P25 nanoparticles sold by Degussa can be used, for example.
  • the nanoparticles to be used in the process of the invention can be nanoparticles of titanium dioxide modified by doping.
  • the visible light One way to achieve this objective is by doping the TiO 2 with other compounds that allow modifying its band structure and, therefore, presenting photocatalytic activity in the visible area of the electromagnetic spectrum.
  • the synthesis of the modified titanium dioxide nanoparticles is carried out by doping the nanoparticles with a compound or suitable element of the state of the art so that they exhibit photocatalytic properties in the range of visible light.
  • the titanium dioxide nanoparticles are titanium dioxide nanoparticles modified by doping with at least one of the following elements: nitrogen, carbon and sulfur.
  • Said doping of the starting titanium dioxide nanoparticles with nitrogen, carbon, sulfur or mixtures thereof is carried out using the sol-gel methodology from compounds derived from these elements such as tetramethylammonium hydroxide, ammonium chloride , ammonia, nitric acid, ammonium carbonate, dodecylamine, thiourea, ethylenediamine, carbon tetrachloride, etc.
  • a suitable solvent normally an alcohol such as ethanol, isopropanol, etc.
  • the organometallic precursor titanium isopropoxide, titanium tetra-n-butyl, etc.
  • distilled water is added and, finally, it is allowed to react for the necessary time (hours or days) until a gel is generated, which is then heat treated at a temperature around 500 3 C.
  • step (b) 10% by weight of titanium dioxide nanoparticles is added with respect to the total weight of the solution, that is, of the solution of hydrolyzed epoxysilane compound and nanoparticles of titanium dioxide.
  • step (c) of the process of the invention a catalyst consisting of a polyethermine is added to the solution previously obtained in step (b).
  • polyetheramine refers to a compound with primary amino groups attached to the ends of a polyether chain based on propylene oxide, ethylene oxide or mixtures thereof.
  • the polyether amine used as a catalyst in step (c) is selected from poly (propylene glycol) bis (2-aminopropyl ether); poly (propylene glycol) - ⁇ > -poli (ethylene glycol) - ⁇ > - poly (propylene glycol) bis (2-aminopropyl ether); and 0,0'-Bis (2-aminopropyl) polypropylene glycol- ⁇ > - polyethylene glycol- ⁇ > -poli-propylene glycol.
  • the polyetheramine used as catalyst in step (c) is poly (propylene glycol) bis (2-aminopropyl ether).
  • Said polyetheramine can be prepared by any suitable chemical method, or the JEFFAMINE D-230 polyethermine marketed by
  • the substrate which is of interest to protect with the solution obtained in the step (c) is covered.
  • any known application technique of the state of the art such as immersion, coil coating (coil-coating), roller coating (roll-coating), etc. can be used, although it is preferred to use the immersion.
  • step (e) of the process of the invention the coated substrate is subjected to a heat treatment to proceed to cure the coating on it.
  • This treatment is usually necessary to generate a film in a period of time appropriate to that of an industrial process.
  • the curing temperature is an important factor to take into account since it can produce ion diffusion in the case of a metallic substrate, altering its intrinsic properties or even generating the oxidation of the metal. In the process of the invention, this factor has been solved since low curing temperatures are used, obtaining good adhesion and thus maintaining the intrinsic properties of the metal.
  • step (e) the coated substrate is subjected to a heat treatment at a temperature of 100-120 3 C for a time of 5-70 minutes.
  • step (e) the coated substrate is subjected to a heat treatment at a temperature of 105 3 C for a time of 60 minutes.
  • the heat treatment can be carried out by any technique known in the state of the art such as heating in an oven, although it is preferred to use an electric oven.
  • a hybrid coating with titanium dioxide nanoparticles is obtained that has photocatalytic properties and that can be applied in various sectors that include, among others, the construction (destruction of contaminants in facades, surfaces, etc.) and the environment ( purification of air, water, etc.).
  • it can be used to destroy organic pollutants or other pollutants such as nitrogen oxides, for example, as well as to destroy microorganisms.
  • These coatings are particularly interesting when used to coat metal substrates, since they have good adhesion, flexibility and transparency properties, maintaining the intrinsic properties of the metal by preventing the diffusion of ions therein and / or their oxidation.
  • the substrate is a metallic substrate selected from a metal and a metal alloy. These include stainless steel, galvanized steel, painted steel or aluminum, for example. In a preferred embodiment, the metal substrate is stainless steel.
  • the process of the invention allows to gain in productivity, lower production costs and improve the quality of the final product.
  • the invention provides a substrate coated with the coating obtained by the procedure previously described.
  • said substrate is a metal substrate selected from a metal and a metal alloy.
  • the metal substrate is a stainless steel substrate.
  • the chemical components used to prepare this photocatalytic coating by the process of the invention are: (3- glycidyloxypropyl) trimethoxysilane (GLYMO), isopropanol ( 1 PrOH), distilled water, poly (propylene glycol) bis (2-aminopropyl ether) 130 (JEFFAMINE D-230) and nanoparticles of
  • TiO 2 P25 Commercial TiO 2 (TiO 2 P25, Degussa).
  • hybrid material that composes the coating obtained by the process of the invention: (1) without TiO 2 nanoparticles (hybrid reference material); and (2) with TiO 2 nanoparticles (hybrid material of the invention).
  • the objective of this study is to obtain information about the molecular structure and chemical composition (types of bond, crystallinity, etc.) of the hybrid material of which the coating is composed obtained.
  • the solvent was removed from the reaction and the hybrid powder obtained was cured at 105 3 C for 1 h.
  • the crystalline structure of the hybrid material obtained was characterized by X-ray diffraction (DRX).
  • DRX X-ray diffraction
  • Figure 2 shows the diffractogram of the hybrid material of the invention (with TiO 2 nanoparticles). In it it can be seen how the predominant phase corresponds to anatase (82%), although it also contains the rutile phase (18%) in a smaller amount. On the other hand, a small shoulder is observed in the position of ⁇ 20 e , corresponding to the amorphous silicon oxides that are part of this hybrid material.
  • the uniformity and homogeneity of the coating of the invention were characterized by scanning electron microscopy (E-SEM) and X-ray energy dispersion microanalysis (EDAX):
  • the coating of the invention prepared from powdered TiO 2 nanoparticles had small agglomerates on a uniform background of TiO 2 along its entire surface, as can be seen in Figures 3a and 3b in which images E are shown -SEM of said coating at a resolution of 500 ⁇ m and 20 ⁇ m, respectively. Said agglomerates, in any case, do not suppose a disadvantage as evidenced by the photocatalytic behavior shown in the test for discoloration of rhodamine B, which is detailed below.
  • EDAX X-ray energy dispersion microanalysis
  • the chemical components used to prepare this photocatalytic coating by the process of the invention are: (3-glycidyloxypropyl) - trimethoxysilane (GLYMO), isopropanol ( 1 PrOH), distilled water, poly (propylene glycol) bis (2- aminopropyl ether) 130 ( JEFFAMINE D-230) and commercial TiO 2 nanoparticles (TiO 2 P25, Degussa). The characteristics of the TiO 2 nanoparticles have been described in Table 1.
  • the coating of the invention prepared from dispersed TiO 2 nanoparticles had very good uniformity along its entire surface, as can be seen in Figures 5a and 5b, in which the E-SEM images thereof are shown at a resolution of 500 ⁇ m and 20 ⁇ m, respectively.
  • EDAX X-ray energy dispersion microanalysis
  • Rhodamine B Test was performed, taking as reference the method described by Cassar et al. (Cassar, L. MRS BULLETIN2004, 29 (5), 328). This method is based on the discoloration of Rhodamine B when irradiated with light U VA-340 (region of 315 to 400 nm). Thus, during exposure to UV radiation, the pink color of Rhodamina B gradually decreases in intensity becoming negligible after 30 min.
  • Rhodamine B decolorization test A solution of Rhodamine B in dichloromethane (CH 2 CI 2 ) was prepared, for which 0.1 g of the dye and 100 ml of CH 2 CI 2 were used . Then, an application was made by immersion of the solution with an immersion / emersion rate of 20 cm / min on the synthesized coatings. Subsequently, the steel plates coated with Rhodamine B were introduced in the QUV (accelerated aging chamber), which provides the ultraviolet light necessary to perform the test. Every 10 min from its exposure to UV light until the total degradation of Rhodamine B (disappearance of the pink color), measurements of the chromatic coordinate a * were made on the colorimeter. The data obtained from the colorimeter give information about the discoloration of Rhodamine B with UV light at different times.
  • QUV accelerated aging chamber
  • Example 1 In order to demonstrate that the choice of catalyst is essential in the process of the invention, a photocatalytic coating according to Example 1 was prepared, although 1-methylimidazole catalyst (used by Textor et al., Supra) instead of Jeffamine D-230. Thus, it was observed that the coating obtained exhibited a lack of adhesion, since the coating was detached by passing the finger over its surface.
  • 1-methylimidazole catalyst used by Textor et al., Supra

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Catalysts (AREA)

Abstract

La invención define un procedimiento para obtener un revestimiento fotocatalítico sobre un sustrato caracterizado porque comprende las etapas de: (a) preparar la disolución de un compuesto epoxisilano hidrolizado; (b) añadir a la disolución obtenida en (a) nanopartículas de dióxido de titanio cristalinas, siendo la fase cristalina predominante la fase anatasa, en una proporción de un 1-15% en peso respecto al peso total de la disolución; (c) añadir a la disolución obtenida en (b) un catalizador consistente en una poliéteramina; (d) recubrir el sustrato con la solución obtenida en (c); y (e) someter el sustrato recubierto a un tratamiento térmico. Dicho procedimiento permite obtener revestimientos sobre sustratos metálicos con buenas propiedades fotocatalíticas, buena adherencia, flexibilidad y transparencia, manteniendo las propiedades intrínsecas del metal recubierto con los mismos.

Description

PROCEDIMIENTO PARA OBTENER REVESTIMIENTOS FOTOCATALÍTICOS SOBRE SUSTRATOS METÁLICOS
CAMPO DE LA INVENCIÓN La invención se refiere al campo de los revestimientos sobre sustratos que se desean proteger y mantener limpios. En particular, Ia invención se refiere a un procedimiento para obtener un revestimiento fotocatalítico sobre un sustrato metálico mediante Ia inclusión de nanopartículas de dióxido de titanio cristalinas en fase anatasa en una matriz polimérica de sílice. El metal o aleación metálica así revestido encuentra aplicación en el campo de Ia construcción o del medio ambiente, entre otros, ya que es capaz de destruir contaminantes diversos en superficies, en fachadas, en agua o en aire, por ejemplo.
ANTECEDENTES DE LA INVENCIÓN Como es bien conocido en el estado de Ia técnica, es un problema generalizado
Ia existencia de superficies contaminadas o ensuciadas tanto por productos químicos como por el aire atmosférico debido a todos los contaminantes que es capaz de transportar. Esto se debe a que Ia limpieza de fachadas de edificios, suelos, paredes, etc., conlleva un gasto elevado en cuanto a material a emplear y a intervención humana.
La posibilidad de proteger Ia superficie o el entorno en el cual se encuentra es de gran interés en el campo de Ia construcción y del medio ambiente. En estos casos las ventajas que aportan los revestimientos basados en nanopartículas estriban en poder formar con ellas recubrimientos que puedan proteger y mantener limpias las superficies sobre las que se encuentren.
Hoy en día Ia mayoría de nanopartículas que se utilizan para lograr estos fines en construcción y medio ambiente son nanopartículas de dióxido de titanio (TiO2). A partir de que Fujishima y Honda (Fujishima, A.; Honda, K., Nature 1972, 37, 238) descubrieran en Ia década de los setenta Ia disociación fotocatalítica del agua sobre electrodos de Ti02 (Hashimoto K., Irie, H; Fujishima, A., Jpn. J. Appl. Phys. 2005, 44 (12) 8269) se inició el desarrollo de un gran número de investigaciones basadas en este semiconductor fotocatalítico. El dióxido de titanio es un semiconductor fotosensible, y los electrones de valencia son excitados en Ia banda de conducción mediante una energía de radiación en el rango del ultravioleta (200-400 nm) (Balasubramanian G.; Dionysiou D. D.; Suidan MT. , "Titanium Dioxide Coatings on Stainless Steet' Encyclopedia of Nanoscience and Nanotechonology, Marcel Dekker; Schubert U., Husing N., "Synthesis of Inorganic Materials" Wiley-VCH, Weinheim, (2005)). La cristalinidad de este semiconductor es fundamental para una buena actividad fotocatalítica. Las tres formas cristalinas de mayor importancia son: anatasa, brookita y rutilo. La fase rutilo es estable a temperatura ambiente a diferencia de las fases brookita y anatasa que son metaestables; sin embargo, Ia estructura que presentan mayor actividad fotocatalítica es Ia anatasa. Tanto Ia estructura rutilo como Ia anatasa están formadas por cadenas de octaedros de TiO6, siendo Ia diferencia entre ellas Ia distorsión de cada octaedro y el patrón de unión de las cadenas (Banfield, J. F. & Navrotsky A. " Nanoparticles and The Environmenf Mineralogical Society of America, Virginia, (2001 )). Por Io tanto, las densidades de masa y las estructuras de banda electrónica son diferentes debido a las diferencias existentes en las estructuras de red.
Las nanopartículas de dióxido de titanio se han usado en diferentes aplicaciones dependiendo de Ia configuración (polvo, revestimientos, etc.) en que se encuentren. Los revestimientos de nanopartículas de dióxido de titanio con propiedades fotocatalíticas están siendo de gran interés para el desarrollo de nuevos productos. Muchas investigaciones están enfocadas hacia el desarrollo de revestimientos de dióxido de titanio sobre diferentes sustratos (vidrio, cerámica, plásticos, etc.). El sustrato más utilizado en Ia bibliografía es el vidrio. Otros materiales empleados para obtener revestimientos son los metales tales como el aluminio o el acero inoxidable (Jiaguo, Y. Rare metáis 2004, 23 (4), 289). El empleo de este material, en particular, presenta ciertos retos como es obtener una buena adhesión junto con Ia preservación de Ia integridad estructural del metal.
Un método muy extendido para Ia obtención de revestimientos fotocatalíticos es Ia síntesis del revestimiento de TiO2 in situ. Así, Chen y col (Chen, Y.; Dionysiou, D. D. Appl. Catal. B-Environ. 2006, 69, 24) obtuvieron revestimientos de nanopartículas de dióxido de titanio sobre acero inoxidable. Para Ia obtención de estos revestimientos emplearon Ia síntesis SoI-GeI descrita porTakahashi y col (Takahashi, Y.; Matsuoka, Y. J. Mater. Sci. 1988, 23, 2259) con ciertas modificaciones, empleando dietanolamina (DEA) para controlar Ia etapa de hidrólisis del precursor de titanio (isopropóxido de titanio) bajo Ia adición de agua. Los revestimientos eran inicialmente amorfos y se requirió una etapa de calcinación a 500 3C durante 1 h para dar lugar a Ia fase anatasa (estructura cristalina más fotoactiva del TiO2). La actividad fotocatalítica parecía ser bastante pobre. Por ello, en un artículo posterior (Chen, Y.; Dionysiou, D. D. Appl. Catal A-Gen.2007, 317, λ 29) modificaron las condiciones de reacción adicionando TiO2 P25 (Degussa) en polvo y polietilenglicol (PEG) como agente formador de poros para aumentar Ia actividad fotocatalítica. En este caso, aunque Ia actividad fotocatalítica del revestimiento incrementaba, el sol que generaban no era estable y, además, los revestimientos se obtenían bajo tratamientos térmicos a elevadas temperaturas, con Ia consiguiente posibilidad de alteración de las propiedades intrínsecas del acero.
Otro ejemplo de revestimientos fotocatalíticos sobre acero inoxidable es el desarrollado por Fernández y Col. (Fernández, A.; Lassaletta, G.; Jiménez, V. M; Justo, A.; González-Elipe, A. R.; Herrmann, J. M.; Tahiri, H.; Ait-lchou, Y. Appl. Catal. B- Environ. 1995, 7, 49). Para ello, prepararon una suspensión de TiO2 P25 (Degussa) en acetona y revistieron el acero mediante deposición electroforética y, finalmente, para aumentar Ia adhesión de los revestimientos, sometieron estos a un tratamiento térmico en atmósfera de N2 a 500 3C durante 4-8 h. Como consecuencia de este tratamiento térmico se produjeron fenómenos de difusión de los iones Fe3+ y Cr3+. Estos heterocationes generaban una recombinación de los centros electrón-hueco, dando lugar a una disminución de Ia actividad fotocatalítica del revestimiento.
Asimismo, el documento US 7144840 B2 describe un método de síntesis y diferentes métodos de deposición de una o varias capas de nanopartículas de TiO2 sobre aluminio, acero inoxidable, etc. En este procedimiento se empleaban tratamientos térmicos a 450 3C sobre el sustrato revestido con el objetivo de conseguir una buena adherencia, por Io que, en este caso, tampoco se logró evitar Ia difusión de iones en el metal.
Igualmente, el documento FR 2838735 B1 describe revestimientos con propiedades fotocatalíticas sobre vidrio, cerámica, metales, etc., obtenidos mediante el método capa a capa. Los revestimientos estaban formados por dos capas diferentes: Ia primera compuesta por una capa hidrofílica de derivados de óxido de silicio y Ia segunda por óxidos de titanio que proporcionaban Ia actividad fotocatalítica al revestimiento. En este caso, además de emplearse tratamientos térmicos a 600-7003C (con Ia consecuente difusión de iones y Ia disminución de Ia actividad fotocatalítica), para la deposición sobre el sustrato uno de los métodos utilizados era el depósito por reacción química en fase de vapor (CVD), por Io que el coste final del producto se encarecería debido al coste elevado del equipamiento.
Por tanto, teniendo en cuenta el estado de Ia técnica anterior, los tratamientos térmicos empleados bien para generar Ia fase anatasa del TiO2 (que proporciona Ia actividad fotocatalítica) o bien para mejorar Ia adhesión del revestimiento sobre el metal, no son adecuados ni para Ia integridad estructural del metal ni tampoco para obtener una buena actividad fotocatalítica.
Existen otros métodos en el estado de Ia técnica que no requieren tratamientos térmicos a altas temperaturas como, por ejemplo, el descrito en el documento WO 2005/059196 A3. Este método estaba dirigido a obtener un revestimiento ultrafino (1 O- 100 nm) de un óxido protector sobre un metal a partir de una disolución acuosa de nanopartículas del óxido (SiO2, SnO2, TiO2, ZrO2, AI2O3, CeO2, Sb2O5, etc.) a Ia que se añadía un aditivo químico para controlar el espesor de Ia capa formada. Dicha disolución se depositaba después sobre el sustrato calentado previamente a una temperatura superior a 120 3C, siendo el tiempo de deposición inferior a 5 segundos. Este procedimiento, sin embargo, limita el empleo de disolventes orgánicos (isopropanol, etanol, etc.) en Ia solución inicial debido al empleo de un sustrato previamente calentado.
Otro método de obtención de revestimientos protectores sobre metales a bajas temperaturas es el descrito en el documento GB 2425975 B mediante una síntesis sol- gel, si bien no emplea nanopartículas de TiO2 y, por tanto, dichos revestimientos carecen de actividad fotocatalítica. Estos revestimientos estaban formados por dos capas diferentes: Ia primera compuesta por un agente curante (trietilentriamina, dietilentriamina, tetraetilenpentamina, etc.) y Ia segunda por ormosil (tetrametoxisilano, tetraetoxisilano, 3-glicidoxi-propilmetoxisilano, etc.). El revestimiento resultante final se curaba a temperatura ambiente o bien a 150 3C en el caso de que Ia primera capa incorporara particulados de gel de sílice para aumentar Ia dureza del revestimiento. Este procedimiento está basado en el método capa a capa, por Io que Ia adhesión es debida a Ia interacción electrostática entre las capas y no a Ia formación de una matriz polimérica híbrida entre el agente curante y el ormosil. Así pues, hoy en día sigue siendo un reto desarrollar una metodología viable para obtener revestimientos de nanopartículas de dióxido de titanio sobre metales que sean transparentes y que presenten actividad fotocatalítica sin alterar las propiedades intrínsecas del metal.
Recientemente, Park y col. (Park et al., Material Science Forum VoIs. 544-545 (2007) pp. 127-130) proponen revestimientos híbridos TiO2/SiO2 sobre acero inoxidable con propiedades fotocatalíticas para Ia purificación de agua. Estos revestimientos se preparan a partir de un sol de dióxido de titanio en un disolvente sin especificar y un aglutinante compuesto por un sol de sílice, metiltrimetoxisilano, un catalizador ácido y alcohol isopropílico, mezcla que se aplica sobre el sustrato y se cura a 200 3C durante 1 día.
Igualmente, el documento WO 2007/131474 describe materiales de revestimiento autolimpiables que contienen componentes de superficie hidrófilos tal como el silanol y nanopartículas de dióxido de titanio o de sílice, y que se aplican sobre el sustrato antes de proceder a su curado a una temperatura entre temperatura ambiente y 500 3C.
Dichos revestimientos se preparan a partir de una solución de tetraetoxisilano opcionalmente mezclado con un poliétersilano, a Ia que se añade ácido clorhídrico y luego nanopartículas de sílice en polvo o en forma de disolución coloidal, y que se aplica después sobre vidrio, cerámica, cemento o plásticos, por ejemplo. Dicho revestimiento, sin embargo, presenta el inconveniente de no tener flexibilidad .
Asimismo, el documento WO 2004/037944 describe un método para obtener superficies autolimpliables sobre sustratos preferentemente de vidrio o plástico a partir de una composición acuosa con un pH de 7-1 1 que comprende nanopartículas de un óxido metálico (SiO2, AI2O3, ZrO2, TiO2, CeO2, ZnO2 y mezclas) y un modificador de superficie (un polidimetilsiloxano, un alcoxisilano, mezclas de ambos, fluorouretanos, polímeros acrílicos o metacrílicos fluorados, etc.). Dicha mezcla se aplica sobre Ia superficie a recubrir y, tras Ia evaporación del disolvente, se forma sobre ella un recubrimiento autolimpiable transparente. Dicho revestimiento, sin embargo, presenta el inconveniente de sufrir una degradación por incidencia de Ia luz solar.
Sorprendentemente, los presentes inventores han descubierto que partiendo de un compuesto epoxisilano como único derivado organosilano junto con un porcentaje particular de nanopartículas de dióxido de titanio cristalinas esencialmente en fase anatasa añadidas en forma de polvo o de dispersión acidificada en agua, y un catalizador de tipo poliéteramina se pueden obtener revestimientos fotocatalíticos sobre acero alternativos en condiciones más suaves de síntesis.
Los compuestos epoxisilanos ya se han usado en Ia preparación de revestimientos fotocatalíticos sobre plástico junto con nanopartículas de dióxido de titanio cristalinas, tal y como se describe en el documento JP 2008007610, si bien estos recubrimientos comprenden dos capas: un primer film de polisiloxano obtenido a partir de un compuesto organosilano del estado de Ia técnica recubierto, a su vez, de una segunda capa fotocatalítica de un óxido metálico tal como TiO2, ZnO, SnO2, SrTiO3, WO3, Bi2O3 o Fe2O3, por ejemplo.
Igualmente, el documento US 6291070 describe capas nanoestructuradas obtenidas por vía húmeda preparando un sol a partir de una suspensión en un alcohol inferior de nanopartículas sólidas de dióxido de titanio (entre otros metales o derivados de metales tales como óxidos, calcogenuros, haluros, arseniuros, nitruros, fosfatos, silicatos, aluminatos, etc.) a Ia que se añade un epoxisilano (entre otros muchos derivados de silano tal como metacriloxisilanos, epoxisilanos, vinilsilanos, alcoxisilanos, alquilaminosilanos, etc., o mezclas de los mismos), que se prehidroliza. Al sol así obtenido se Ie añade un catalizador de tipo imidazol y se aplica sobre un sustrato de vidrio o plástico. Dicho revestimiento, sin embargo, presenta el inconveniente de tener una actividad fotocatalítica limitada debido al bajo contenido de TiO2 que es necesario para mantener una adherencia al sustrato adecuada.
Por otra parte, Textor y col. (Textor et al., Micromol. Symp. 2007, 254, 196-202) describen un revestimiento fotocatalítico para desarrollar textiles autolimpiables que se obtiene mediante un método sol-gel a partir de (3-glicidiloxi-propil)trimetoxisilano y un sol de dióxido de titanio o nanopartículas de dióxido de titanio en fase anatasa en una proporción muy baja, empleando 1 -metilimidazol como catalizador. Dicho revestimiento, sin embargo, presenta malas propiedades de adherencia sobre sustratos de tipo metálico.
Así pues, el procedimiento de Ia invención mediante un método sol-gel que emplea un epoxisilano, un porcentaje particular de nanopartículas de dióxido de titanio cristalinas en fase anatasa y un catalizador de tipo poliéteramina, permite obtener revestimientos fotocatalíticos sobre superficies metálicas en condiciones más suaves de síntesis en cuanto a temperatura y disolventes. Esto es especialmente ventajoso ya que al trabajar a temperatura ambiente se evita Ia difusión de iones en el sustrato metálico a recubrir, así como Ia oxidación del mismo. Además, los costes son menores y, si se aplica Ia mezcla de revestimiento mediante inmersión, además de reducir los costes de equipamiento, permite recubrir superficies de gran tamaño.
Los revestimientos así obtenidos presentan buenas propiedades fotocatalíticas, buena adherencia, flexibilidad y transparencia, manteniendo al mismo tiempo las propiedades intrínsecas del metal recubierto con los mismos.
OBJETO DE LA INVENCIÓN
La presente invención, por tanto, tiene por objeto proporcionar un procedimiento para obtener un revestimiento fotocatalítico sobre un sustrato.
Otro objeto de Ia presente invención es proporcionar el sustrato recubierto con el revestimiento fotocatalítico obtenible mediante dicho procedimiento.
DESCRIPCIÓN DE LAS FIGURAS
La figura 1 muestra el difractograma de rayos X (DRX) del material híbrido que compone el revestimiento obtenido mediante el procedimiento de Ia invención pero sin nanopartículas de TiO2 (material híbrido de referencia).
La figura 2 muestra el difractograma de rayos X (DRX) del material híbrido que compone el revestimiento obtenido mediante el procedimiento de Ia invención (material híbrido de Ia invención).
Las figuras 3a y 3b muestran las imágenes obtenidas mediante microscopía electrónica de barrido ambiental (E-SEM) del revestimiento obtenido mediante el procedimiento de Ia invención a partir de nanopartículas de TiO2 en polvo a una resolución de 500 μm y 20 μm, respectivamente.
La figura 4a muestra una imagen del revestimiento obtenido mediante el procedimiento de Ia invención a partir de nanopartículas de TiO2 en polvo. Las figuras 4b y 4c muestran las imágenes obtenidas mediante microanálisis de dispersión de energía de rayos X (EDAX) del silicio y del titanio, respectivamente, en Ia zona reflejada en Ia figura 4a.
Las figuras 5a y 5b muestran las imágenes obtenidas mediante microscopía electrónica de barrido ambiental (E-SEM) del revestimiento obtenido mediante el procedimiento de Ia invención a partir de nanopartículas de TiO2 dispersadas a una resolución de 500 μm y 20 μm, respectivamente.
La figura 6a muestra una imagen del revestimiento obtenido mediante el procedimiento de Ia invención a partir de nanopartículas de TiO2 dispersadas. Las figuras 6b y 6c muestran las imágenes obtenidas mediante microanálisis de dispersión de energía de rayos X (EDAX) del silicio y del titanio, respectivamente, en Ia zona reflejada en Ia figura 6a.
La figura 7 muestra el comportamiento fotocatalítico de los revestimientos obtenidos mediante el procedimiento de Ia invención: empleando nanopartículas de TiO2 en polvo y empleando nanopartículas de TiO2 dispersadas.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención proporciona un procedimiento para obtener un revestimiento fotocatalítico sobre un sustrato, en adelante "procedimiento de Ia invención", que comprende las etapas de:
(a) preparar Ia disolución de un compuesto epoxisilano hidrolizado; (b) añadir a Ia disolución obtenida en (a) nanopartículas de dióxido de titanio cristalinas, siendo Ia fase cristalina predominante Ia fase anatasa, en una proporción de un 1 -15% en peso respecto al peso total de Ia disolución; (c) añadir a Ia disolución obtenida en (b) un catalizador consistente en una poliéteramina; (d) recubrir el sustrato con Ia solución obtenida en (c); y
(e) someter el sustrato recubierto a un tratamiento térmico.
Así, en Ia primera etapa del procedimiento de Ia invención, al compuesto epoxisilano, que se ha disuelto previamente en un disolvente adecuado del estado de Ia técnica tal como isopropanol preferentemente, frente a otros tipos de alcoholes, se Ie añade agua para hidrolizarlo. De este modo, se generan una serie de reacciones de hidrólisis y condensación que dan lugar a Ia formación de una cadena de silicatos.
En el contexto de Ia invención el término "compuesto epoxisilano" se refiere a un silano con funcionalidad epoxi. Más en particular, se refiere a compuestos de fórmula:
Figure imgf000011_0001
en la que:
R1 = alquilo d-C4 x = 1 -3 n = 1 -4 m = 1 -4 y = 0-1 R2 = H, alquilo CrC6 o cicloalquilo C3-C6
En una realización preferida del procedimiento de Ia invención, el compuesto epoxisilano se selecciona de entre (3-glicidiloxipropil)trimetoxisilano, glicidoxipropiltrietoxi-silano; glicidoxipropilmetildimetoxisilano; glicidoxipropil- metildietoxisilano; y epoxiciclohexiletiltrimetoxisilano. En una realización aún más preferida, el compuesto epoxisilano es(3-glicidiloxipropil)trimetoxisilano.
En el contexto de Ia invención el término "nanopartículas de dióxido de titanio cristalinas, siendo Ia fase cristalina predominante Ia fase anatasa" se refiere a nanopartículas de dióxido de titanio con estructura cristalina con una proporción de fase anatasa superior al 75%.
En una realización particular del procedimiento de Ia invención, las nanopartículas de dióxido de titanio se añaden en Ia etapa (b) en forma de polvo. En otra realización particular, las nanopartículas de dióxido de titanio se añaden en Ia etapa (b) en forma de dispersión en agua acidificada a un pH de 2. Dicho pH permite conseguir una dispersión estable de las nanopartículas de dióxido de titanio en agua y se alcanza añadiendo a dicha dispersión un ácido apropiado del estado de Ia técnica, tal como ácido clorhídrico, ácido nítrico, por ejemplo, en Ia proporción adecuada. En una realización preferida, se emplea HC1 1 M. En otra realización preferida, se emplea HNO3 1 M.
En ambos casos pueden ser nanopartículas de dióxido de titanio comerciales o sintéticas que presentan en el área superficial grupos hidroxilo. Así, por ejemplo, se pueden preparar mediante cualquiera de los métodos descritos en Ia bibliografía o bien se pueden emplear las nanopartículas TiO2 P25 comercializadas por Degussa, por ejemplo.
Asimismo, las nanopartículas a emplear en el procedimiento de Ia invención pueden ser nanopartículas de dióxido de titanio modificadas mediante dopaje.
Efectivamente, Ia actividad fotocatalítica del dióxido de titanio se alcanza en el intervalo de Ia luz ultravioleta, Ia cual representa una pequeña fracción de Ia energía solar. Por tal motivo, uno de los retos es mejorar su eficacia logrando su activación con
Ia luz visible. Una manera de alcanzar este objetivo es dopando el TiO2 con otros compuestos que permitan modificar su estructura de bandas y, por tanto, presentar actividad fotocatalítica en Ia zona visible del espectro electromagnético. Así, Ia síntesis de las nanopartículas de dióxido de titanio modificadas se realiza mediante el dopaje de las nanopartículas con un compuesto o elemento adecuado del estado de Ia técnica de modo que las mismas presenten propiedades fotocatalíticas en el rango de Ia luz visible.
Por tanto, en una realización particular del procedimiento de Ia invención, las nanopartículas de dióxido de titanio son nanopartículas de dióxido de titanio modificadas mediante dopaje con al menos uno de los siguientes elementos: nitrógeno, carbono y azufre.
Dicho dopaje de las nanopartículas de dióxido de titanio de partida con nitrógeno, carbono, azufre o mezclas de los mismos, se lleva a cabo empleando Ia metodología sol-gel a partir de compuestos derivados de estos elementos tal como hidróxido de tetrametilamonio, cloruro de amonio, amoniaco, acido nítrico, carbonato de amonio, dodecilamina, tiourea, etilendiamina, tetracloruro de carbono, etc. Así, por ejemplo, se disuelve el compuesto derivado de nitrógeno en un disolvente adecuado (normalmente un alcohol tal como etanol, isopropanol, etc.) y a continuación se adiciona el precursor organometálico (isopropóxido de titanio, tetra-n-butil de titanio, etc.) bajo vigorosa agitación. A Ia disolución resultante se adiciona agua destilada y, por último, se deja reaccionar durante el tiempo necesario (horas o días) hasta generar un gel que, después, es tratado térmicamente a una temperatura en torno a los 500 3C.
En otra realización particular del procedimiento de Ia invención, en Ia etapa (b) se añade un 10% en peso de nanopartículas de dióxido de titanio con respecto al peso total de Ia disolución, es decir, de Ia disolución de compuesto epoxisilano hidrolizado y nanopartículas de dióxido de titanio.
En Ia etapa (c) del procedimiento de Ia invención, se añade a Ia disolución obtenida previamente en Ia etapa (b) un catalizador consistente en una poliéteramina.
En el contexto de Ia invención el término "poliéteramina" se refiere a un compuesto con grupos amino primarios unidos a los extremos de una cadena poliéter basada en el óxido de propileno, el óxido de etileno o mezclas de los mismos.
Así, en una realización particular del procedimiento de Ia invención, Ia poliéteramina empleada como catalizador en Ia etapa (c) se selecciona de entre poli(propilenglicol) bis(2-aminopropil éter); poli(propilenglicol)-¿>-poli(etilenglicol)-¿>- poli(propilenglicol) bis(2-aminopropil éter); y 0,0'-Bis(2-aminopropil) polipropilenglicol-¿>- polietilenglicol-¿>-poli-propilenglicol. En una realización preferida, Ia poliéteramina empleada como catalizador en Ia etapa (c) es el poli(propilenglicol) bis(2-aminopropil éter). Dicha poliéteramina puede prepararse por cualquier método químico adecuado, o bien se puede emplear Ia poliéteramina JEFFAMINE D-230 comercializada por
Huntsman por ejemplo, u otra comercial similar.
En Ia etapa (d) del procedimiento de Ia invención se procede a recubrir el sustrato que interesa proteger con Ia solución obtenida en Ia etapa (c). Para ello puede emplearse cualquier técnica de aplicación conocida del estado de Ia técnica tal como inmersión, recubrimiento de bobinas (coil-coating), recubrimiento con rodillo (roll- coating), etc., si bien se prefiere emplear Ia inmersión.
Finalmente, en Ia etapa (e) del procedimiento de Ia invención, el sustrato recubierto se somete a un tratamiento térmico para proceder al curado del revestimiento sobre el mismo. Este tratamiento suele ser necesario para generar una película en un plazo de tiempo adecuado al de un proceso industrial. La temperatura de curado es un factor importante a tener en cuenta ya que puede producir difusión de iones en el caso de un sustrato metálico, alterando las propiedades intrínsecas de este o incluso generando Ia oxidación del metal. En el procedimiento de Ia invención se ha solventado este factor ya que se emplean bajas temperaturas de curado obteniendo una buena adherencia y manteniendo de esta manera las propiedades intrínsecas del metal.
Así, en una realización particular del procedimiento de Ia invención, en Ia etapa
(e) el sustrato recubierto se somete a un tratamiento térmico a una temperatura de 100- 1203C durante un tiempo de 5-70 minutos. En una realización preferida, en Ia etapa (e) el sustrato recubierto se somete a un tratamiento térmico a una temperatura de 105 3C durante un tiempo de 60 minutos.
El tratamiento térmico puede efectuarse mediante cualquier técnica conocida del estado de Ia técnica tal como calentamiento en estufa, si bien se prefiere emplear un horno eléctrico.
De este modo se obtiene un revestimiento híbrido con nanopartículas de dióxido de titanio que presenta propiedades fotocatalíticas y que puede aplicarse en diversos sectores que incluyen, entre otros, Ia construcción (destrucción de contaminantes en fachadas, superficies, etc.) y el medio ambiente (purificación de aire, de aguas, etc.). Así, se puede emplear para destruir contaminantes orgánicos u otros contaminantes tal como los óxidos de nitrógeno, por ejemplo, al igual que para destruir microorganismos
(bacterias, algas, etc.).
Estos revestimientos son particularmente interesantes cuando se emplean para recubrir sustratos metálicos, ya que presentan unas buenas propiedades de adherencia, flexibilidad y transparencia, manteniendo las propiedades intrínsecas del metal al evitar Ia difusión de iones en el mismo y/o su oxidación.
Así, en una realización particular del procedimiento de Ia invención, el sustrato es un sustrato metálico seleccionado entre un metal y una aleación metálica. Entre ellos cabe citar el acero inoxidable, el acero galvanizado, el acero pintado o el aluminio, por ejemplo. En una realización preferida, el sustrato metálico es acero inoxidable.
Las condiciones de aplicabilidad que permiten pensar en su interés industrial y comercial en Ia industria de Ia construcción, en particular, son las siguientes: • Uso de una combinación de polímeros, moléculas orgánicas y organosilanos que favorecen Ia adherencia al metal.
• Empleo de nanopartículas dióxido de titanio comerciales o sintéticas, en este caso obtenidas mediante condiciones suaves de síntesis (temperatura ambiente, agua como disolvente, etc.) . • Condiciones de trabajo de los revestimientos a temperatura ambiente que evitan Ia posible oxidación del soporte metálico a recubrir.
• Empleo de un sistema de inmersión para llevar a cabo Ia aplicación de los revestimientos evitando costes elevados de equipamientos tales como CVD5PVD, spray pirólisis, etc. • Posibilidad de recubrir superficies de gran tamaño a diferencia de equipos tales como CVD, PVD, spray pirólisis, etc.
En todos los casos, el procedimiento de Ia invención permite ganar en productividad, abaratamiento de los costes de producción y mejora de Ia calidad del producto final.
En otro aspecto, por tanto, Ia invención proporciona un sustrato recubierto con el revestimiento obtenido mediante el procedimiento previamente descrito. En una realización particular, dicho sustrato es un sustrato metálico seleccionado entre un metal y una aleación metálica. En una realización preferida, el sustrato metálico es un sustrato de acero inoxidable.
Los siguientes ejemplos ilustran Ia invención y no deben ser considerados como limitativos del alcance de Ia misma.
EJEMPLO 1
Preparación de un revestimiento fotocatalítico sobre acero inoxidable a partir de (3-glicidiloxipropil)trimetoxisilano y nanopartículas de dióxido de titanio añadidas en forma de polvo. Descripción de los compuestos de partida
Los componentes químicos empleados para preparar este revestimiento fotocatalítico mediante el procedimiento de Ia invención son: (3- glicidiloxipropil)trimetoxisilano (GLYMO), isopropanol (1PrOH), agua destilada, poli(propilenglicol) bis(2-aminopropil éter) 130 (JEFFAMINE D-230) y nanopartículas de
TiO2 comerciales (TiO2 P25, Degussa).
En Ia Tabla 1 , se pueden observar las características de tamaño de partícula y cristalinidad (contenido de anatasa y rutilo) de las nanopartículas de TiO2 empleadas.
Tabla 1. Características de las nanopartículas de TiO2
Nanopartículas Tamaño de ,í?rista!inid®í, A - - de TiO2 partícula (nm) ^ & ' % AParιencιa
Comerciales (TiO2 P25, Degussa) 15-50 82/18 Polvo blanco
Procedimiento de obtención del revestimiento Se disolvieron 10 mi de GLYMO en 180 mi de isopropanol y se adicionaron 2,4 mi de agua destilada a temperatura ambiente y bajo agitación. A continuación se adicionaron las nanopartículas de TiO2 en polvo comerciales (TiO2 P25, Degussa) para obtener un 10% en peso respecto al peso total. Posteriormente, se adicionaron 2,7 mi de JEFFAMINE D-230 y se dejó reaccionando durante 30 min. Al cabo de ese tiempo, se realizó una aplicación por inmersión sobre una placa de acero inoxidable, a una velocidad de inmersión/emersión de 20 cm/min. Por último, se dejó curar el conjunto [revestimiento + sustrato] a 105 3C durante 1 h.
Por otro lado, se decidió realizar un estudio del material híbrido que compone el revestimiento obtenido mediante el procedimiento de Ia invención: (1 ) sin nanopartículas de TiO2 (material híbrido de referencia); y (2) con nanopartículas de TiO2 (material híbrido de Ia invención). El objetivo de este estudio es obtener información acerca de Ia estructura molecular y Ia composición química (tipos de enlace, cristalinidad, etc.) del material híbrido de que está compuesto el revestimiento obtenido. Para ello, tras añadir a Ia disolución de GLYMO hidrolizado las nanopartículas de dióxido de titanio, en su caso, y el catalizador, se eliminó el disolvente de Ia reacción y el polvo híbrido obtenido se curó a 105 3C durante 1 h.
Caracterización del material híbrido
La estructura cristalina del material híbrido obtenido se caracterizó por difracción de rayos X (DRX).
Difracción de rayos X (DRX) Mediante Ia caracterización por DRX se comprobó Ia inexistencia de fases cristalinas. Por tanto el material híbrido de referencia no presenta cristalinidad. El pico que se aprecia a ~ 20e, corresponde a los óxidos de silicio (amorfos) que constituyen el material híbrido de referencia. La Figura 1 muestra el difractograma de rayos X (DRX) del material híbrido de referencia (sin nanopartículas de TiO2).
La Figura 2 muestra el difractograma del material híbrido de Ia invención (con nanopartículas de TiO2). En él se puede apreciar como Ia fase predominante corresponde a Ia anatasa (82%), aunque también contiene en menor cantidad Ia fase rutilo (18%). Por otro lado, se observa un pequeño hombro en Ia posición de ~ 20e, correspondiente a los óxidos de silicio amorfos que forman parte de este material híbrido.
Por Io tanto se puede concluir afirmando Ia presencia de Ia fase anatasa en el material híbrido de Ia invención.
Caracterización del revestimiento
La uniformidad y homogeneidad del revestimiento de Ia invención fueron caracterizadas por microscopía electrónica de barrido ambiental (E-SEM) y por microanálisis de dispersión de energía de rayos X (EDAX):
Microscopía electrónica de barrido ambiental (E-SEM)
El revestimiento de Ia invención preparado a partir de nanopartículas de TiO2 en polvo presentaba pequeños aglomerados sobre un fondo uniforme de TiO2 a Io largo de toda su superficie, como puede observarse en las Figuras 3a y 3b en las que se muestran las imágenes E-SEM de dicho revestimiento a una resolución de 500 μm y 20 μm, respectivamente. Dichos aglomerados, en cualquier caso, no suponen una desventaja como evidencia el comportamiento fotocatalítico mostrado en el ensayo de decoloración de Ia rodamina B que se detalla a continuación.
Microanálisis de dispersión de energía de rayos X (EDAX)
Mediante EDAX se estudió Ia distribución química del silicio (Si) y del titanio (Ti) en el revestimiento de Ia invención preparado a partir de nanopartículas de TiO2 en polvo. En las Figuras 4b y 4c se muestran las distribuciones del Si y del Ti, respectivamente. Como puede observarse en las mismas, Ia distribución del silicio a Io largo de todo el revestimiento es muy uniforme, en cambio para el titanio Ia homogeneidad no es tan uniforme, ya que se pueden apreciar pequeños aglomerados de dióxido de titanio a Io largo de todo el revestimiento. Dichos aglomerados, en cualquier caso, no suponen una desventaja como evidencia el comportamiento fotocatalítico mostrado en el ensayo de decoloración de Ia rodamina B que se detalla a continuación.
EJEMPLO 2
Preparación de un revestimiento fotocatalítico sobre acero inoxidable a partir de (3-glicidiloxipropil)trimetoxisilano y nanopartículas de dióxido de titanio añadidas en forma de dispersión acuosa acidificada a pH 2.
Descripción de los compuestos de partida
Los componentes químicos empleados para preparar este revestimiento fotocatalítico mediante el procedimiento de Ia invención son: (3-glicidiloxipropil)- trimetoxisilano (GLYMO), isopropanol (1PrOH), agua destilada, poli(propilenglicol) bis(2- aminopropil éter) 130 (JEFFAMINE D-230) y nanopartículas de TiO2 comerciales (TiO2 P25, Degussa). Las características de las nanopartículas de TiO2 han sido descritas en Ia Tabla 1.
Procedimiento de obtención del revestimiento
Se disolvieron 10 mi de GLYMO en 180 mi de isopropanol y se adicionaron 2,4 mi de agua destilada a temperatura ambiente y bajo agitación. A continuación se adicionaron las nanopartículas de TiO2 dispersadas para obtener un 10% en peso respecto al peso total. Esta dispersión acuosa fue preparada a partir de nanopartículas de TiO2 comerciales (TiO2 P25, Degussa) en forma de polvo mediante su adición a agua destilada acidificada con HC1 1 M hasta un pH ~ 2, seguida de un tratamiento con ultrasonidos durante 30 min. Posteriormente, se adicionaron 2,7 mi de JEFFAMINE D- 230 y se dejó reaccionando durante 30 min. Al cabo de ese tiempo, se realizó una aplicación por inmersión sobre una placa de acero inoxidable, a una velocidad de inmersión/emersión de 20 cm/min. Por último, se dejó curar el conjunto [revestimiento + sustrato] a 105 3C durante 1 h.
Caracterización del revestimiento
A continuación, tanto Ia homogeneidad como Ia uniformidad del revestimiento obtenido fueron caracterizadas por microscopía electrónica de barrido ambiental (E-
SEM) y por microanálisis de dispersión de energía de rayos X (EDAX):
Microscopía electrónica de barrido ambiental (E-SEM)
El revestimiento de Ia invención preparado a partir de nanopartículas de TiO2 dispersadas presentaba muy buena uniformidad a Io largo de toda su superficie, tal como puede observarse en las Figuras 5a y 5b, en las que se muestran las imágenes E-SEM del mismo a una resolución de 500 μm y 20 μm, respectivamente.
Microanálisis de dispersión de energía de rayos X (EDAX) Mediante EDAX se estudió Ia distribución química del silicio (Si) y del titanio (Ti) en el revestimiento de Ia invención preparado a partir de nanopartículas de TiO2 dispersadas. En las Figuras 6b y 6c se muestran se muestran las distribuciones del Si y del Ti, respectivamente. Como puede observarse en las mismas, tanto Ia distribución del silicio como Ia del titanio a Io largo de todo el revestimiento es muy buena, generando revestimientos con excelente homogeneidad y uniformidad.
EJEMPLO 3
Comportamiento fotocatalítico de los revestimientos de Ia invención preparados en los ejemplos 1 y 2 Una vez llevada a cabo Ia síntesis de los revestimientos de Ia invención sobre acero inoxidable, se procedió a evaluar el comportamiento fotocatalítico de cada uno de ellos. Para ello, se realizó el Test de Ia Rodamina B, tomando como referencia el método descrito por Cassar y col. (Cassar, L. MRS BULLETIN2004, 29 (5), 328). Este método se basa en Ia decoloración de Ia Rodamina B al ser irradiada con luz U VA-340 (región de 315 a 400 nm). Así, durante Ia exposición a Ia radiación UV, el color rosa de Ia Rodamina B va gradualmente decreciendo en intensidad llegando a ser inapreciable al cabo de 30 min.
Ensayo de decoloración de Ia Rodamina B Se preparó una disolución de Rodamina B en diclorometano (CH2CI2), para Ia cual se emplearon 0,1 g del colorante y 100 mi de CH2CI2. A continuación, se realizó una aplicación por inmersión de Ia disolución con una velocidad de inmersión/emersión de 20 cm/min sobre los revestimientos sintetizados. Posteriormente se introdujeron las placas de acero recubiertas con Ia Rodamina B en Ia QUV (cámara de envejecimiento acelerado), que proporciona Ia luz ultravioleta necesaria para realizar el test. Cada 10 min desde su exposición a Ia luz UV hasta Ia degradación total de Ia Rodamina B (desaparición del color rosa), se realizaron medidas de Ia coordenada cromática a* en el colorímetro. Los datos obtenidos a partir del colorímetro dan información acerca de Ia decoloración de Ia Rodamina B con Ia luz UV a diferentes tiempos.
Se llevaron a cabo diversos ensayos empleando los revestimientos de Ia invención obtenidos sin emplear nanopartículas de TiO2 y empleando nanopartículas de TiO2 en forma de polvo y en forma dispersada. Así, se midió para cada uno de ellos Ia coordenada cromática a* de Ia Rodamina B frente al tiempo de exposición a Ia luz UV. Los resultados obtenidos al cabo de 50 min se muestran en Ia Figura 7 para los revestimientos de Ia invención.
Como se puede observar en Ia Figura 7, Ia decoloración total del revestimiento preparado a partir de nanopartículas de TiO2 en polvo fue después de 50 min de radiación UV. Por último, para el revestimiento preparado a partir de nanopartículas de
TiO2 dispersadas, Ia degradación del colorante fue en tan sólo 30 min después de su exposición a Ia luz UV.
EJEMPLO 4 - Ejemplo comparativo Preparación de un revestimiento fotocatalítico sobre acero inoxidable a partir de
(3-glicidiloxipropil)trimetoxisilano y nanopartículas de dióxido de titanio añadidas en forma de polvo empleando 1-metilimidazol como catalizador.
Con el fin de demostrar que Ia elección del catalizador es esencial en el procedimiento de Ia invención, se procedió a preparar un revestimiento fotocatalítico según el Ejemplo 1 , si bien se empleó como catalizador 1 -metilimidazol (empleado por Textor y col., supra) en lugar de Jeffamine D-230. Así, se observó que el revestimiento obtenido presentaba una falta de adherencia, ya que el revestimiento se desprendía al pasar el dedo sobre su superficie.

Claims

REIVINDICACIONES
1. Un procedimiento para obtener un revestimiento fotocatalítico sobre un sustrato caracterizado porque comprende las etapas de: (a) preparar Ia disolución de un compuesto epoxisilano hidrolizado;
(b) añadir a Ia disolución obtenida en (a) nanopartículas de dióxido de titanio cristalinas, siendo Ia fase cristalina predominante Ia fase anatasa, en una proporción de un 1 -15% en peso respecto al peso total de Ia disolución;
(c) añadir a Ia disolución obtenida en (b) un catalizador consistente en una poliéteramina;
(d) recubrir el sustrato con Ia solución obtenida en (c); y
(e) someter el sustrato recubierto a un tratamiento térmico.
2. Procedimiento según Ia reivindicación 1 , caracterizado porque en Ia etapa (b) las nanopartículas de dióxido de titanio se añaden en forma de polvo.
3. Procedimiento según Ia reivindicación 1 , caracterizado porque en Ia etapa (b) las nanopartículas de dióxido de titanio se añaden en forma de dispersión en agua acidificada a un pH de 2.
4. Procedimiento según una cualquiera de las reivindicaciones 2 y 3, caracterizado porque las nanopartículas de dióxido de titanio son nanopartículas de dióxido de titanio modificadas mediante dopaje con al menos uno de los siguientes elementos: nitrógeno, carbono y azufre.
5. Procedimiento según Ia reivindicación 1 , caracterizado porque en Ia etapa (b) se añade un 10% en peso, respecto al peso total de Ia disolución, de nanopartículas de dióxido de titanio.
6. Procedimiento según Ia reivindicación 1 , caracterizado porque el compuesto epoxisilano de Ia etapa (a) se selecciona de entre (3-glicidiloxipropil)trimetoxisilano, glicidoxipropiltrietoxisilano; glicidoxipropilmetil-dimetoxisilano; glicidoxipropilmetildietoxisilano; y epoxiciclohexiletiltrimetoxisilano.
7. Procedimiento según Ia reivindicación 6, caracterizado porque el compuesto epoxisilano de Ia etapa (a) es (3-glicidiloxipropil)trimetoxisilano.
8. Procedimiento según Ia reivindicación 1 , caracterizado porque el catalizador de Ia etapa (c) es una poliéteramina seleccionada de entre poli(propilenglicol) bis(2- aminopropil éter); poli(propilenglicol)-¿)-poli(etilenglicol)-¿)-poli(propilenglicol) bis(2- aminopropil éter); y 0,0'-Bis(2-aminopropil) polipropilenglicol-¿>-polietilenglicol-¿>- polipropilenglicol.
9. Procedimiento según Ia reivindicación 8, caracterizado porque el catalizador de Ia etapa (c) es poli(propilenglicol) bis(2-aminopropil éter).
10. Procedimiento según Ia reivindicación 1 , caracterizado porque en Ia etapa (e) el sustrato recubierto se somete a un tratamiento térmico a una temperatura de 100-120 3C durante un tiempo de 5-70 minutos.
1 1 . Procedimiento según Ia reivindicación 10, caracterizado porque en Ia etapa (e) el sustrato recubierto se somete a un tratamiento térmico a una temperatura de 105 3C durante un tiempo de 60 minutos.
12. Procedimiento según Ia reivindicación 1 , caracterizado porque el sustrato es un sustrato metálico seleccionado entre un metal y una aleación metálica.
13. Procedimiento según Ia reivindicación 12, caracterizado porque el sustrato metálico es acero inoxidable.
14. Sustrato recubierto del revestimiento fotocatalítico obtenible por el procedimiento de las reivindicaciones 1 -13.
15. Sustrato según Ia reivindicación 14, caracterizado porque es un sustrato metálico seleccionado entre un metal y una aleación metálica.
16. Sustrato según Ia reivindicación 15, caracterizado porque es un sustrato de acero inoxidable.
PCT/ES2009/070113 2009-04-24 2009-04-24 Procedimiento para obtener revestimientos fotocatalíticos sobre sustratos metálicos WO2010122182A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/ES2009/070113 WO2010122182A1 (es) 2009-04-24 2009-04-24 Procedimiento para obtener revestimientos fotocatalíticos sobre sustratos metálicos
EP09784115.9A EP2423269B1 (en) 2009-04-24 2009-04-24 Method for obtaining photocatalytic coatings on metal substrates
ES09784115T ES2706297T3 (es) 2009-04-24 2009-04-24 Procedimiento para obtener revestimientos fotocatalíticos sobre sustratos metálicos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2009/070113 WO2010122182A1 (es) 2009-04-24 2009-04-24 Procedimiento para obtener revestimientos fotocatalíticos sobre sustratos metálicos

Publications (1)

Publication Number Publication Date
WO2010122182A1 true WO2010122182A1 (es) 2010-10-28

Family

ID=41394128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070113 WO2010122182A1 (es) 2009-04-24 2009-04-24 Procedimiento para obtener revestimientos fotocatalíticos sobre sustratos metálicos

Country Status (3)

Country Link
EP (1) EP2423269B1 (es)
ES (1) ES2706297T3 (es)
WO (1) WO2010122182A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012069672A1 (es) 2010-11-25 2012-05-31 Fundacion Tecnalia Research & Innovation Recubrimientos fotocatalíticos híbridos, procedimiento para aplicarlos sobre distintos sustratos y usos de los sustratos así recubiertos
ES2429391A1 (es) * 2012-05-08 2013-11-14 Fmc Foret, S.A. Composición fotocatalítica formadora de película adherente a diferentes superficies y procedimiento de aplicación de la misma
WO2019058010A1 (es) 2017-09-20 2019-03-28 Liderkit Sl Nuevo gel-coat aditivado con partículas de dióxido de titanio y alúmina
CN113797927A (zh) * 2020-06-12 2021-12-17 赵石永 一种杀菌薄膜及其制备方法和其在照明装置中的应用
CN115772364A (zh) * 2021-09-08 2023-03-10 武汉苏泊尔炊具有限公司 烹饪器具及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016138272A1 (en) 2015-02-27 2016-09-01 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
TR201617722A2 (tr) * 2016-12-02 2017-02-21 Tuerkiye Sise Ve Cam Fabrikalari Anonim Sirketi Anorgani̇k nanoparti̇küller i̇çeren saydam uv koruyucu sert kaplama ve kaplamali cam
CN111849219A (zh) * 2019-09-23 2020-10-30 法国圣戈班玻璃公司 一种涂料分散液,其制备方法、由其获得的产品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291070B1 (en) 1997-05-13 2001-09-18 Institut für Neue Materialien Gemeinnützige GmbH Nanostructured moulded bodies and layers and method for producing same
WO2004037944A1 (en) 2002-10-23 2004-05-06 S. C. Johnson & Son, Inc. Process and composition for producing self-cleaning surfaces from aqueous systems
FR2838735B1 (fr) 2002-04-17 2005-04-15 Saint Gobain Substrat a revetement auto-nettoyant
WO2005059196A2 (fr) 2003-12-17 2005-06-30 Centre De Recherches Metallurgiques Asbl-Centrum Voor Research In De Metallurgie Vzw Procede de revetement d'une surface metallique par une couche ultrafine
US7144840B2 (en) 2004-07-22 2006-12-05 Hong Kong University Of Science And Technology TiO2 material and the coating methods thereof
GB2425975B (en) 2005-05-11 2007-04-18 Univ Sheffield Hallam Organic-inorganic hybrid coatings
US20070166467A1 (en) * 2006-01-18 2007-07-19 Ji Cui Water dispersible silanes as corrosion-protection coatings and paint primers for metal pretreatment
WO2007131474A1 (de) 2006-05-17 2007-11-22 Nano-X Gmbh Beschichtungsmaterial
JP2008007610A (ja) 2006-06-28 2008-01-17 Nippon Soda Co Ltd 有機無機複合体及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238550A (ja) * 2003-02-07 2004-08-26 Nisshin Steel Co Ltd 光触媒塗料組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291070B1 (en) 1997-05-13 2001-09-18 Institut für Neue Materialien Gemeinnützige GmbH Nanostructured moulded bodies and layers and method for producing same
FR2838735B1 (fr) 2002-04-17 2005-04-15 Saint Gobain Substrat a revetement auto-nettoyant
WO2004037944A1 (en) 2002-10-23 2004-05-06 S. C. Johnson & Son, Inc. Process and composition for producing self-cleaning surfaces from aqueous systems
WO2005059196A2 (fr) 2003-12-17 2005-06-30 Centre De Recherches Metallurgiques Asbl-Centrum Voor Research In De Metallurgie Vzw Procede de revetement d'une surface metallique par une couche ultrafine
US7144840B2 (en) 2004-07-22 2006-12-05 Hong Kong University Of Science And Technology TiO2 material and the coating methods thereof
GB2425975B (en) 2005-05-11 2007-04-18 Univ Sheffield Hallam Organic-inorganic hybrid coatings
US20070166467A1 (en) * 2006-01-18 2007-07-19 Ji Cui Water dispersible silanes as corrosion-protection coatings and paint primers for metal pretreatment
WO2007131474A1 (de) 2006-05-17 2007-11-22 Nano-X Gmbh Beschichtungsmaterial
JP2008007610A (ja) 2006-06-28 2008-01-17 Nippon Soda Co Ltd 有機無機複合体及びその製造方法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
BALASUBRAMANIAN G.; DIONYSIOU D.D.; SUIDAN M.T.: "Encyclopedia of Nanoscience and Nanotechonology", MARCEL DEKKER, article "Titanium Dioxide Coatings on Stainless Steel"
BANFIELD, J.F.; NAVROTSKY A: "Nanoparticles and The Environmenf", 2001, MINERALOGICAL SOCIETY OF AMERICA
CASSAR, L., MRS BULLETIN, vol. 29, no. 5, 2004, pages 328
CHEN, Y.; DIONYSIOU, D.D., APPL. CATAL A-GEN., vol. 317, 2007, pages 129
CHEN, Y.; DIONYSIOU, D.D., APPL. CATAL. B-ENVIRON., vol. 69, 2006, pages 24
FERNANDEZ, A.; LASSALETTA, G.; JIMÉNEZ, V.M; JUSTO, A.; GONZÁLEZ-ELIPE, A.R.; HERRMANN, J.M.; TAHIRI, H.; AIT-ICHOU, Y., APPL. CATAL. B-ENVIRON, vol. 7, 1995, pages 49
FUJISHIMA, A.; HONDA, K., NATURE, vol. 37, 1972, pages 238
HASHIMOTO K.; IRIE, H; FUJISHIMA, A., JPN. J. APPL. PHYS., vol. 44, no. 12, 2005, pages 8269
JIAGUO, Y., RARE METALS, vol. 23, no. 4, 2004, pages 289
PARK ET AL., MATERIAL SCIENCE FORUM, vol. 544-545, 2007, pages 127 - 130
SCHUBERT U.; HUSING N.: "Synthesis of Inorganic Materials", 2005, WILEY-VCH
T. TEXTOR, F. SCHRÖTER, E. SCHOLLMEYER: "Thin Coatings with photo-catalytic activity based on inorganic-organic hybrid polymers modified with anatase nanoparticles", MACROMOL. SYMP. 2007, vol. 254, no. 1, 10 August 2007 (2007-08-10), Weinheim, pages 196 - 202, XP002560344, DOI: 10.1002/masy.200750830 *
TAKAHASHI, Y.; MATSUOKA, Y., J. MATER. SCI., vol. 23, 1988, pages 2259
TEXTOR ET AL., MICROMOL. SYMP., vol. 254, 2007, pages 196 - 202

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012069672A1 (es) 2010-11-25 2012-05-31 Fundacion Tecnalia Research & Innovation Recubrimientos fotocatalíticos híbridos, procedimiento para aplicarlos sobre distintos sustratos y usos de los sustratos así recubiertos
ES2429391A1 (es) * 2012-05-08 2013-11-14 Fmc Foret, S.A. Composición fotocatalítica formadora de película adherente a diferentes superficies y procedimiento de aplicación de la misma
WO2019058010A1 (es) 2017-09-20 2019-03-28 Liderkit Sl Nuevo gel-coat aditivado con partículas de dióxido de titanio y alúmina
CN113797927A (zh) * 2020-06-12 2021-12-17 赵石永 一种杀菌薄膜及其制备方法和其在照明装置中的应用
CN115772364A (zh) * 2021-09-08 2023-03-10 武汉苏泊尔炊具有限公司 烹饪器具及其制备方法

Also Published As

Publication number Publication date
ES2706297T3 (es) 2019-03-28
EP2423269B1 (en) 2018-10-17
EP2423269A1 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
ES2706297T3 (es) Procedimiento para obtener revestimientos fotocatalíticos sobre sustratos metálicos
ES2333117T3 (es) Sustrato con capa fotocatalitica de tio2.
JP3930591B2 (ja) 光触媒性親水性コーティング組成物、親水性被膜の形成方法および被覆物品
ES2265150T3 (es) Uso de un material que tiene una superficie ultrahidrofila y fotocatalitica.
CN109641430B (zh) 光催化剂层叠体
ES2367168T3 (es) Partículas resistentes a las manchas.
JP5614709B2 (ja) 光触媒塗装体
WO2018042803A1 (ja) コーティング組成物および被覆物品
WO2012069672A1 (es) Recubrimientos fotocatalíticos híbridos, procedimiento para aplicarlos sobre distintos sustratos y usos de los sustratos así recubiertos
JP2008201655A (ja) 酸化チタン微粒子、分散液、構造体、および、それらの製造方法
JP2009012444A (ja) 積層体およびその製造方法
EP3495324B1 (en) Zinc oxide-containing composite particles, ultraviolet-shielding composition, and cosmetic
KR100784137B1 (ko) 상온 경화형 이산화티탄계 광촉매 조성물 및 코팅방법
JP6077659B2 (ja) コーティング組成物
JP2002079109A (ja) 光半導体金属−有機物質混合体、光半導体金属含有組成物、光触媒性被膜の製造法及び光触媒性部材
JP2006136758A (ja) 光触媒組成物、および光触媒部材
JP2003268306A (ja) 光触媒性複合材及び光触媒性コーティング剤
JP2003261330A (ja) 酸化チタン膜形成用液体、酸化チタン膜の形成法、酸化チタン膜及び光触媒性部材
JP2006136782A (ja) 光触媒アルミニウム部材
JP7463164B2 (ja) コーティング液
WO1999041322A1 (fr) Matiere de revetement pour former une pellicule photocatalytique hydrophile, procede de fabrication d'une pellicule photocatalytique hydrophile, et element photocatalytique hydrophile
KR101917149B1 (ko) 내후성이 우수한 방오성 코팅조성물
JP2010209288A (ja) 酸化チタンを含有する水溶性複合材料及びその製造方法
JPH1158629A (ja) 農業用防曇性フィルム
KR101834213B1 (ko) 초친수성 화강석 코팅용 조성물 및 코팅 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09784115

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009784115

Country of ref document: EP