WO2010116477A1 - 光通信装置及び分散補償方法 - Google Patents

光通信装置及び分散補償方法 Download PDF

Info

Publication number
WO2010116477A1
WO2010116477A1 PCT/JP2009/056583 JP2009056583W WO2010116477A1 WO 2010116477 A1 WO2010116477 A1 WO 2010116477A1 JP 2009056583 W JP2009056583 W JP 2009056583W WO 2010116477 A1 WO2010116477 A1 WO 2010116477A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification
error
information
bit
phase
Prior art date
Application number
PCT/JP2009/056583
Other languages
English (en)
French (fr)
Inventor
健壱 鏑木
紀明 水口
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2011508119A priority Critical patent/JP5206867B2/ja
Priority to PCT/JP2009/056583 priority patent/WO2010116477A1/ja
Publication of WO2010116477A1 publication Critical patent/WO2010116477A1/ja
Priority to US13/200,651 priority patent/US8538265B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

 ビット情報を識別する識別部の識別位相PHが最適化された状態から識別位相PHを変化させる状況において、変化させた位相における"0"誤り数及び"1"誤り数の比率により、波長分散の符号を得る。 "(1)RD+"で識別位相PHを前進させると、DTを上回って"1"と識別されるビットが増えることから、"0"誤り数が増える。故に、「"1"誤り数<"0"誤り数」という大小関係が成り立って波長分散符号は"正(+)"と判定される。また、"(3)RD-"で識別位相PHを前進させると、DTを下回って"0"と識別されるビットが増えることから、"1"誤り数が増える。故に、「"1"誤り数>"0"誤り数」という大小関係が成り立ち、波長分散符号は"負(-)"と判定される。

Description

光通信装置及び分散補償方法
 開示技術は、光通信システムにおける光信号の分散補償を行う光通信装置及び分散補償方法に関する。
 従来、光通信システムにおいて現在主流となっている光変調技術は、RZ(Return to Zero)又はNRZ(Non-Return to Zero)によるOOK(On-Off Key、二値シフトキーイング)である。OOKの場合、光信号の伝送速度は、10Gbpsである。
 送信側光通信装置から出力された光信号は、WDM(Wavelength Division Multiplexing)回線である光伝送ネットワークにより伝搬される。光伝送ネットワークは、経路途中に光波長分割多重装置、光増幅装置、波長分割分離装置等を有する。
 ここで、光増幅装置における光信号の増幅時、光信号のSN比が劣化する。また、長距離の光伝送では、ファイバケーブルが有する非線形特性によって波長分散が発生し、波形歪みが生じる。波長分散による光信号の波形歪みは、概ね伝送速度の2乗に比例して大きくなる。
 近年、光伝送システムに要求される伝送容量の増加、光通信通信の高速化に伴い、波長分散の影響を軽減する仕組みの構成が必要とされている。光信号の伝送速度が40Gbpsである光変調技術の開発が盛んに行われ、製品化されている。具体的には、デュオバイナリ方式、CSRZ(Carrier-Suppressed Return-to-Zero)方式、DPSK(Differential Phase Shift Keying)方式、BPSK(Binary Phase Shift Keying)方式、DQPSK(Differential Quadrature Phase Shift Keying)方式等の光変調技術が利用されてきている。
 そして、前述の様に、波長分散による光信号の波形歪みが光信号の伝送速度の2乗に比例して大きくなることから、光信号の伝送速度の高速化が進むほど波長分散の補償が重要性を増してきている。WDM回線である光ネットワークにおける波長分散の補償は、波長毎に分散補償する方法と、全波長を一括して分散補償する方法がある。
 波長毎に分散補償する方法は、全波長を一括して分散補償する方法に比べコストが高くなる。一方、一括分散補償方式は、波長の零点における分散の傾きを示す表分散スロープが光伝送ネットワークの伝送路によって異なるため、全波長について伝送路分散を完全に分散補償する事が出来ない。
 そこで、近年、伝送速度が40Gbpsである光通信システムにおいて、例えば、DPSK、DQPSKの直接検波方式に対してチャネル毎に可変分散補償装置を用い、光信号の波長分散を補償することが主流となってきている。
 例えば、光伝送ネットワークの伝送路による波長分散に摂動を与え、前後の位相へと摂動が与えられたときの誤り数をカウントして比較し、誤りが少ない方向に摂動の中心を変更することで分散を補償する従来技術が開示されている。
 また、温度変化等によって生じる残留分散が正分散、負分散の方向に応じて、光信号のある固定識別点において符号毎の符号誤り数若しくは符号誤り率が変化する特性を利用し、可変分散補償装置において波長分散に摂動を与えることなく、分散補償する従来技術が開示されている。
国際公開第1999/048231号 特開2005-286382号公報
 しかしながら、上記従来技術では、波長分散に摂動を与えるため、受信した復調波形自体に歪みを意図的に発生させる必要がある。このため、例えば、Q値の劣化を伴う他、抽出されたクロックの品質が劣化する。さらに、予期せぬ誤動作を誘発する恐れもある。例えば、摂動により符号間干渉の増大が誘発され、その歪んだ波形の周波数成分のうち、クロック抽出装置の伝達特性の帯域に含まれる周波数成分はそのまま伝達されることで、クロックのジッタが増大する。
 また、上記従来技術では、残留分散が発生しても、光信号のある固定識別点における符号毎の符号誤り数が概ね等しい場合、符号毎の符号誤り情報から残留分散を検出することが困難となってしまう。
 開示技術は、上記問題点(課題)を解消するためになされたものであって、残留分散によって発生した、光信号のある固定識別点における符号毎の符号誤り数が概ね等しい場合であっても、可変分散補償装置によって波長分散に摂動を与えず光信号の波長分散を補償する光通信装置及び分散補償方法を提供する。
 上述した問題を解決し、目的を達成するため、開示技術は、光伝送路から受信した光信号の波長分散の補償を行い、可変分散補償部によって波長分散が行われた光信号を電気信号へ変換し、光電変換部によって変換された電気信号の周波数を抽出し、抽出された周波数に基づき電気信号のビット情報を識別位相PH及び識別閾値DTに基づき識別し、識別されたビット情報の誤りに関する情報であるビット誤り情報を検出し、検出されたビット誤り情報に基づき光信号の波長分散の補償量を操作することを要件とする。
 開示技術によれば、残留分散によって発生した、光信号のある固定識別点における符号毎の符号誤り数が概ね等しい場合であっても、可変分散補償装置によって波長分散に摂動を与えず簡易な処理で光信号の波長分散を補償し、速やかに起動して光通信を可能とするという効果を奏する。
図1-1は、実施例の概要を説明するための図(その1)である。 図1-2は、実施例の概要を説明するための図(その2)である。 図2は、実施例に係る光通信装置の基本構成を示す機能ブロック図である。 図3は、実施例1に係る光通信装置の構成を示す機能ブロック図である。 図4-1は、実施例1に係る識別部への入力波形を示す図(その1)である。 図4-2は、実施例1に係る識別部への入力波形を示す図(その2)である。 図4-3は、実施例1に係る識別部への入力波形を示す図(その3)である。 図5-1は、実施例1に係る識別位相及び識別閾値が最適化された状態での誤り訂正数の関係を示す図(その1)である。 図5-2は、実施例1に係る識別位相及び識別閾値が最適化された状態での誤り訂正数の関係を示す図(その2)である。 図5-3は、実施例1に係る識別位相及び識別閾値が最適化された状態での誤り訂正数の関係を示す図(その3)である。 図6-1は、実施例1に係る識別位相を最適状態から進み側へ操作した状態での誤り訂正数の関係を示す図(その1)である。 図6-2は、実施例1に係る識別位相を最適状態から進み側へ操作した状態での誤り訂正数の関係を示す図(その2)である。 図6-3は、実施例1に係る識別位相を最適状態から進み側へ操作した状態での誤り訂正数の関係を示す図(その3)である。 図7-1は、実施例1に係る識別位相を最適状態から遅れ側へ操作した状態での誤り訂正数の関係を示す図(その1)である。 図7-2は、実施例1に係る識別位相を最適状態から遅れ側へ操作した状態での誤り訂正数の関係を示す図(その2)である。 図7-3は、実施例1に係る識別位相を最適状態から遅れ側へ操作した状態での誤り訂正数の関係を示す図(その3)である。 図8は、実施例1に係る分散補償処理手順を示すフローチャートである。 図9は、実施例2に係る光通信装置の構成を示す機能ブロック図である。 図10は、実施例2に係る識別閾値の操作の概要を示す図である。 図11は、実施例2に係る分散補償処理手順を示すフローチャートである。 図12は、実施例3に係る光通信装置の構成を示す機能ブロック図である。 図13は、実施例3に係る分散補償処理手順を示すフローチャートである。
符号の説明
100、100a、100b、100c 光通信装置
101、101a、101b、101c 制御部
102 可変分散補償部
103 光電変換部
104 クロック抽出部
105、105a、105b、105c 識別部
106 誤り検出部
106a、106b、106c 誤り訂正部
107 フレーマ部
DT 識別閾値
PH 識別位相
[開示技術の概要]
 以下に添付図面を参照し、開示技術の光通信装置及び分散補償方法に係る実施例を詳細に説明する。なお、実施例の説明に先立ち、開示技術の概要を述べる。開示技術は、RZやNRZ等の周期的な対称波形を持つ光信号を変換した電気信号について、例えば、FEC(Forward Error Correction、前方誤り訂正)による識別誤りのビット情報“0”及び“1”の出力数を等しくするものである。なお、ビット情報は、符号とも呼ばれる。なお、以下の実施例では、光変調方式はRZ-DQPSKを例に説明するが、RZ-DQPSKに限らず、例えばRZ-mPSK、RZ-mQAM、RZ-mQPSK、RZ-DmPSK(いずれも、mは正整数等)、RZ-OOKなどの変調方式であってもよい。
 図1-1は、波形が同一の二つの光信号を二分の1だけ周期をずらして多重したDQPSKの信号において、識別誤りのビット情報“0”及び“1”の出力数が等しい状態を示す。なお、図1-1及び図1-2において、縦軸は識別位相PH(Phase)であり、横軸はビットの“0”及び“1”を識別するための識別閾値DT(DT、Data Threshold、電圧値の閾値)である。
 図1-1の“(1)RD(Residual Dispersion)+”は、正の分散時の受信信号の波形を示す。同図において、“(1)RD+”は、ある識別位相PH近傍においてDTを下回る波形が遅延している状態(正分散)を示す。また、“(2)Normal”は、ある識別位相PH近傍において波形分散が発生していない状態を示す。また、“(3)RD-”は、ある識別位相PH近傍においてDTを上回る波形が遅延している状態(負分散)を示す。何れも、PHが最適化されているため、“0”を“1”と誤って識別した数(以下、“0”誤り数と呼ぶ)、及び、“1”を“0”と誤って識別した数(以下、“1”誤り数と呼ぶ)が等しい。
 図1-2では、図1-1示すビット情報を識別する識別部の識別位相PHが最適化された状態から識別位相PHを変化させる状況を示す。変化させた位相における“0”誤り数及び“1”誤り数訂正数の比率により、波長分散の符号を得る。図1-2に示す通り、“(1)RD+”で識別位相PHを前進させると、DTを上回って“1”と識別されるビットが増えることから、“0”誤り数が増える。故に、「“1”誤り数<“0”誤り数」という大小関係が成り立って波長分散符号は“正(+)”と判定される。
 また、図1-2に示す通り、“(3)RD-”で識別位相PHを前進させると、DTを下回って“0”と識別されるビットが増えることから、“1”誤り数が増える。故に、「“1”誤り数>“0”誤り数」という大小関係が成り立ち、波長分散符号は“負(-)”と判定される。
 なお、図1-2の“(2)Normal”では、識別位相PHを前進させても、図1-1の“(2)Normal”と同様に「“1”誤り数=“0”誤り数」であるので、「波長分散影響なし」と判定される。これらの波長分散符号から可変分散補償部の操作方向を決定し、波長分散の最適化制御を行うことが可能になる。
 図2は、開示技術の光通信装置100の基本構成を示す機能ブロック図である。開示技術の光通信装置100は、可変分散補償部102、光電変換部103、クロック抽出部104、識別部105、誤り検出部106、制御部101を備えた光通信装置である。なお、光通信装置100は、受信した光信号の分散補償に係る構成のみを説明し、その他の構成については図示及び説明を省略する。以下の実施例についても同様である。
 可変分散補償部102は、光伝送路から受信した光信号の分散補償を行い、少なくとも光信号の遅延位相を操作する。光電変換部103は、可変分散補償部102によって波長分散が補償された光信号を電気信号へ変換する光電変換を行う。クロック抽出部104は、光電変換部103によって変換された電気信号から該電気信号の周波数を抽出し、クロックの位相遅延(若しくは位相前進)を操作する。
 識別部105は、光電変換された電気信号と、抽出されたクロックを入力とし、ある固定された識別点において電気信号が“0”及び“1”の何れのビットであるかを示すビット情報を識別する。ある固定された識別点とは、ビット情報を識別するための識別位相PH及び識別閾値DTで特定される電気信号の波形上の点である。識別位相PHは、ビット情報を識別する電気信号の位相である。識別閾値DTは、ビット情報を識別する電気信号の電圧の閾値である。例えば、識別閾値DT未満の電圧を“0”と識別し、識別閾値DTを超える電圧を“1”と識別する。
 誤り検出部106は、識別部105によって識別された電気信号から、“0”又は“1”それぞれのビット情報毎のビット誤り数を検出する。ビット情報毎のビット誤り数とは、“0”誤り数及び“1”誤り数である。なお、誤り検出には、FECが代表的であるが、FECに限らず、誤り検出及び/又は誤り訂正可能なコードであれば、何れでもよい。
 制御部101は、ビット情報毎のビット誤り数を入力とし、クロック抽出部104のクロックの位相遅延(若しくは位相前進)と、可変分散補償部102における光信号の分散補償量を操作する。
 また、光通信装置100が行う光信号の分散補償方法は、識別部105に入力するクロックの位相をある状態から前進側又は遅延側に操作する。可変分散補償部102は、制御部101がクロックの位相を前進側又は遅延側に操作した方向及び操作量(以下、位相情報と呼ぶ)、残留分散が正分散又は負分散の何れかの状態、及び、残留分散の正負の極性及び分散量に応じて“0”誤り数と、“1”誤り数の増減が変化することを用いて光信号の分散補償を行う。
 制御部101は、操作したクロックの位相情報と、ビット情報毎のビット誤り数とから、残留分散が正分散、負分散のいずれの状態であるかを可変分散補償の摂動を伴わずに判定する。
 例えば、残留分散によって光電変換後の電気信号に波形歪みが発生している状態において、ある識別位相PHにおけるビット情報毎のビット誤り数を予め検出し、前述のある識別位相PHからクロックの位相を前進側又は遅延側に操作する。すると、ビット情報毎のビット誤り数は、前述のある識別位相PHにおけるビット情報毎のビット誤り数の検出値とは異なる。クロック操作前後において、クロック操作方向に応じたビット情報毎のビット誤り数の変化から、可変分散補償器の分散量を操作する方向を判定する。
 なお、光電変換部103によって変換された電気信号のSN比は、光受信直後の品質劣化に応じて変化する。クロックの位相の操作又は電気信号のSN比の操作によってビット情報毎のビット誤り数の増減量を変化させることができるため、分散補償のためのモニタ感度を操作することが可能である。
 以下、図3~図8を参照して、開示技術に係る実施例1を説明する。実施例1では、伝送路による波長分散を補償するため、識別位相PHを操作し、FECによる誤り訂正情報である“0”誤り訂正数及び“1”誤り訂正数を増減させることで、誤り訂正情報から求まる可変分散補償部102の位相制御方向を決定する。実施例1では、誤り検出部106を誤り訂正部106aとし、誤り検出情報をFEC誤り訂正情報、“0”誤り数を“0”誤り訂正数、“1”誤り数を“1”誤り訂正数とする場合である。FEC誤り訂正情報とは、FECによってビット情報“1”を“0”と訂正した数(以下、“0”誤り訂正数と呼ぶ)、及び、ビット情報“0”を“1”と訂正した数(以下、“1”誤り訂正数と呼ぶ)の情報である。
 図3は、実施例1に係る光通信装置の構成を示す機能ブロック図である。同図に示す様に、実施例1に係る光通信装置100aは、可変分散補償部102、光電変換部103、クロック抽出部104、識別部105a、誤り訂正部106a、制御部101aを備えた光通信装置である。
 可変分散補償部102、光電変換部103、クロック抽出部104は、上記開示技術の概要で述べた機能部と同一の構成であり、同一の処理を行う。実施例1に係る光通信装置100aは、光通信装置100と比較して制御部101が制御部101aとなり、識別部105が識別部105aとなり、誤り検出部106が誤り訂正部106aとなっている。誤り訂正部106aは、識別部105aの識別位相PHの遅延をFECによる誤り訂正情報でモニタ(監視)する。制御部101aは、モニタした情報をもとに識別部105aの識別位相PHを操作し、可変分散補償部102の分散補償の操作方向及び補償量を操作する。
 次に、可変分散補償部102の操作方向の決定を容易にするための方法を説明する。図4-1~図4-3は、RZ-DQPSKによる光信号の変調方式における波長分散を与えた時の識別部105aへ入力される電気信号のシミュレーション波形を示す。波長分散を与えた時の識別部105aのへ入力波形を用いて、シミュレーション波形の歪み状態を用いた可変分散補償部102の分散補償の制御方向の決定方法を波長分散状態とFECによる誤り訂正情報との関係を説明する。
 図4-1は、波長分散がない場合の識別部105aへの電気信号の入力波形を示す。図4-2は、波長分散が-120ps/nm(位相遅延)の場合の識別部105aへの電気信号の入力波形を示す。図4-3は、波長分散が+120ps/nm(位相前進)の場合の識別部105aへの電気信号の入力波形を示す。
 図5-1、図5-2、図5-3は、図4-1、図4-2、図4-3それぞれの入力波形を模式化した図である。図4-1~図4-3が示す様に、識別部105aの識別位相PH及び識別閾値DTが最適化されている場合、同図における“a”及び“b”の値が波長分散に関係なくa=bとなるため、“0”誤り訂正数と“1”誤り訂正数の差はない。なお、“a”は、ある識別閾値DT及びある識別位相PHにおいて、ある識別閾値DTを超える電気信号波形の電圧値の絶対値である。また、“b”は、同一のある識別閾値DT及び同一のある識別位相PHにおいて、ある識別閾値DT未満の電気信号波形の電圧値の絶対値である。
 図6-1、図6-2、図6-3は、図5-1、図5-2、図5-3それぞれの入力波形の識別位相PHを識別部105aで操作した場合を示す。識別部105aの識別位相PHを位相前進側に操作した場合、「波長分散なし」のとき(図6-1の場合)、a=bより“0”誤り訂正数=“1”誤り訂正数である。また、「波長分散が負」のとき(図6-2の場合)、a<bより“0”誤り訂正数<“1”誤り訂正数である。また、「波長分散が正」のとき(図6-3の場合)、a>bより“0”誤り訂正数>“1”誤り訂正数である。
 図5-1~図5-3に示す状態が残留分散による歪みが最も少ない状態とすると、例えば、上記の通りa=bであることから、ビット情報毎に誤り訂正したビット情報誤り数の情報をもとに可変分散補償部102の制御方向の決定が困難である。しかし、入力波形の識別位相PHを識別部105aで操作した場合、残留分散の方向に応じた波形の歪み具合を検知することができ、分散補償を行うために可変分散補償部102を操作すべき方向が容易に決定できる。
 なお、図6-1、図6-2、図6-3は、識別部105aの識別位相PHを位相前進側に操作した場合を示すが、識別位相PHを位相遅延側に操作しても残留分散の方向に応じた波形の歪み具合を検知することができ、分散補償を行うために可変分散補償部102を操作すべき方向が容易に決定できる。
 図7-1、図7-2、図7-3は、図6-1、図6-2、図6-3それぞれに対応し、識別位相PHを位相前進側ではなく位相遅延側に操作した場合を示す。識別部105aの識別位相PHを位相遅延側に操作した場合、「波長分散なし」のとき(図7-1の場合)、a=bより“0”誤り訂正数=“1”誤り訂正数である。また、「波長分散が負」のとき(図7-2の場合)、a>bより“0”誤り訂正数>“1”誤り訂正数である。また、「波長分散が正」のとき(図7-3の場合)、a<bより“0”誤り訂正数<“1”誤り訂正数である。
 図8は、実施例1に係る分散補償処理手順を示すフローチャートである。ステップS101では、制御部101aは、識別部105aの識別位相PHを位相前進側(または位相遅延側)へ操作する。ステップS102では、制御部101aは、誤り訂正部106aからFECによる誤り訂正情報を取得する。ステップS103では、制御部101aは、ステップS102で取得した“0”誤り訂正数と“1”誤り訂正数とを比較する。
 ステップS104では、制御部101aは、次の様に可変分散補償部102の操作方向を決定する。次は、識別部105aにおいて識別位相PHを位相前進側へ操作した場合である。すなわち、“0”誤り訂正数=“1”誤り訂正数のとき、可変分散補償部102の操作は行わないと決定する。“0”誤り訂正数<“1”誤り訂正数とき、可変分散補償部102の操作方向を正側と決定する。“0”誤り訂正数>“1”誤り訂正数のとき、可変分散補償部102の操作方向を負側と決定する。
 また、識別部105aにおいて識別位相PHを位相遅延側へ操作した場合、次の様に可変分散補償部102の操作方向を決定する。すなわち、“0”誤り訂正数=“1”誤り訂正数のとき、可変分散補償部102の操作は行わないと決定する。“0”誤り訂正数>“1”誤り訂正数のとき、可変分散補償部102の操作方向を正側と決定する。“0”誤り訂正数<“1”誤り訂正数のとき、可変分散補償部102の操作方向を負側と決定する。ステップS105では、制御部101aは、ステップS104の決定結果に基づき、可変分散補償部102の操作を行う。なお、“0”誤り訂正数及び“1”誤り訂正数ではなく、誤り検出部106の“0”誤り数及び“1”誤り数を代わりに用いてもよい。
 また、可変分散補償部の102操作方向を“0”誤り訂正数及び“1”誤り訂正数ではなく、誤り訂正比率から決定してもよい。この場合、ステップS103では、制御部101aは、取得した誤り訂正情報をもとに次ぎの計算を行う。制御部101aは、「誤り訂正率11=“0”誤り訂正数/(“0”誤り訂正数+“1”誤り訂正数)」又は「誤り訂正率12=“1”誤り訂正数/(“0”誤り訂正数+“1”誤り訂正数)」を算出する。なお、誤り訂正率11+誤り訂正率12=1は自明である。
 ステップS104では、制御部101aは、前述のようにして算出した誤り訂正率11又は誤り訂正率12をもとに、可変分散補償部102の操作方向を決定する。この場合、誤り訂正率11(または誤り訂正率12)のみで可変分散補償部102の操作方向を決定することができる。すなわち、誤り訂正率11(または誤り訂正率12)=0.5のとき、可変分散補償部102の操作は行わないと決定する。誤り訂正率11(または誤り訂正率12)<0.5のとき、可変分散補償部102の操作方向を正側(または、負側)と決定する。誤り訂正率11(または誤り訂正率12)>0.5のとき、可変分散補償部102の操作方向を負側(または、正側)と決定する。
 また、識別部105aにおいて識別位相PHを位相遅延側へ操作した場合、次の様に可変分散補償部102の操作方向を決定する。すなわち、誤り訂正率11(または誤り訂正率12)=0.5のとき、可変分散補償部102の操作は行わないと決定する。誤り訂正率11(または誤り訂正率12)<0.5のとき、可変分散補償部102の操作方向を負側(または、正側)と決定する。誤り訂正率11(または誤り訂正率12)>0.5のとき、可変分散補償部102の操作方向を正側(または、負側)と決定する。
 なお、誤り訂正率11及び誤り訂正率12の大小関係を用いても可変分散補償部102の操作方向を決定することができる。すなわち、識別部105aにおいて識別位相PHを位相前進側へ操作した場合、誤り訂正率11=誤り訂正率12=0.5のとき、可変分散補償部102の操作は行わないと決定する。誤り訂正率11<誤り訂正率12のとき、可変分散補償部102の操作方向を正側と決定する。誤り訂正率11>誤り訂正率12のとき、可変分散補償部102の操作方向を負側と決定する。
 また、識別部105aにおいて識別位相PHを位相遅延側へ操作した場合、誤り訂正率11=誤り訂正率12=0.5のとき、可変分散補償部102の操作は行わないと決定する。誤り訂正率11<誤り訂正率12のとき、可変分散補償部102の操作方向を負側と決定する。誤り訂正率11>誤り訂正率12のとき、可変分散補償部102の操作方向を正側と決定する。
 また、上記“a”及び“b”がa=b±α(α≠0、例えば、α<δ、δは任意の正数)の場合は、次の様にして可変分散補償部102における操作方向を決定する。この場合、可変分散補償部102の操作方向の決定は、識別部105aにおける識別位相PH操作前後のビット情報毎の誤り訂正情報を比較することで行う。
 識別位相PHを位相前進側へ操作する場合、ステップS103で、制御部101aは、識別位相PHの操作前の識別位相PHに基づく誤り訂正率「誤り訂正率01=“0”誤り訂正数/(“0”誤り訂正数+“1”誤り訂正数)」又は「誤り訂正率02=“1”誤り訂正数/(“0”誤り訂正数+“1”誤り訂正数)」を算出する。また、制御部101aは、識別位相PHの操作後の識別位相PHに基づく「誤り訂正率11=“0”誤り訂正数/(“0”誤り訂正数+“1”誤り訂正数)」又は「誤り訂正率12=“1”誤り訂正数/(“0”誤り訂正数+“1”誤り訂正数)」を算出する。
 そして、誤り訂正率01=誤り訂正率11(または、誤り訂正率02=誤り訂正率12)のとき、可変分散補償部102の操作は行わないと決定する。また、誤り訂正率01>誤り訂正率11(または、誤り訂正率02<誤り訂正率12)のとき、可変分散補償部102の操作方向を正側(または負側)と決定する。また、誤り訂正率01<誤り訂正率11(または、誤り訂正率02>誤り訂正率12)のとき、可変分散補償部102の操作方向を負側と決定する。
 また、識別位相PHを位相遅延側へ操作する場合、ステップS103で、誤り訂正率01=誤り訂正率11(または、誤り訂正率02=誤り訂正率12)のとき、可変分散補償部102の操作は行わないと決定する。また、誤り訂正率01<誤り訂正率11(または、誤り訂正率02>誤り訂正率12)のとき、可変分散補償部102の操作方向を正側(または負側)と決定する。また、誤り訂正率01>誤り訂正率11(または、誤り訂正率02<誤り訂正率12)のとき、可変分散補償部102の操作方向を負側と決定する。
 なお、識別位相PHを位相前進側及び位相遅延側の両方のビット情報毎の誤り訂正情報用いることで、一時的な回線の劣化等による誤り訂正量の増減による誤判断を防ぎ、可変分散補償部102における分散補償を的確に行うことができる。識別位相PHを位相前進側に操作して求めた可変分散補償部102の操作方向の結果と、識別位相PHを位相遅延側に操作して求めた可変分散補償部102の操作方向の2つの結果をもとに、真の可変分散補償部102の操作方向を決定し、分散補償を行ってもよい。
 具体的には、識別位相PHを位相前進側へ操作したことによる可変分散補償部102の操作方向の決定結果と、識別位相PHを位相遅延側へ操作したことによる可変分散補償部102の操作方向の決定結果とが一致した場合に限り、一致する操作方向を可変分散補償部102の操作方向として決定し、可変分散補償部を制御する。操作方向の決定結果が一致しない場合、一致するまで識別位相PH操作を行う。“決定結果が一致する”ことは、分散補償が有意水準に達したと見なせる指標の一例である。
 以上の実施例1によれば、可変分散補償部102の操作方向を容易かつ的確に決定し、受信した光信号の分散補償を高速に行うことができる。
 以下、図9~図11を参照して、開示技術の実施例2を説明する。実施例2では、実施例1において、識別部105aの識別位相PHの位相前進側又は位相遅延側へ操作して可変分散補償部102の制御方向を決定する方法に対し、例えば、誤り訂正数又は誤り数が少なく決定が困難な場合、識別閾値DTの操作を追加することで、より的確に可変分散補償部102の操作方向を決定することができる。
 図9は、実施例2に係る光通信装置の構成を示す機能ブロック図である。同図に示す様に、実施例2に係る光通信装置100bは、可変分散補償部102、光電変換部103、クロック抽出部104、識別部105b、誤り訂正部106b、制御部101bを備えた光通信装置である。
 可変分散補償部102、光電変換部103、クロック抽出部104、誤り訂正部106bは、実施例1で述べた機能部と同一の構成であり、同一の処理を行う。実施例2に係る光通信装置100bは、光通信装置100aと比較して制御部101aが制御部101bとなり、識別部105aが識別部105bとなっている。
 識別部105bは、誤り訂正部106bからのFECによる誤り訂正情報をもとに識別位相PHが操作可能であるとともに、識別閾値DTの操作も可能である。制御部101bは、識別部105bにおける識別位相PH及び識別閾値DTの操作を制御する。
 制御部101bは、識別位相PHを位相前進側又は位相遅延側へ操作後、図10に示すように、識別閾値DTを正側へΔa、負側へΔbだけ操作し、それぞれのビット情報毎の誤り訂正情報をモニタし、所定の記憶領域に記憶する。このとき図10に示す様に、識別閾値DTの操作量はΔa=Δbとなる様に制御する。そして、制御部101bは、記憶したビット情報毎の誤り訂正情報から可変分散補償部102の操作方向を決定し、分散補償を行う。
 すなわち、制御部101bは、ビット情報を識別する識別位相PH及び識別閾値DTを操作し、識別位相を位相前進方向又は位相遅延方向に変化させた後、前記識別閾値を上下に同量操作して得られる二本の識別位相PH及び二本の識別閾値DTで形成される矩形領域内(矩形の辺も含む)における前記ビット情報の識別点と等距離の四点(すなわち、図9中に●で示す矩形の四つの角)におけるビット情報毎のビット誤りに応じて波長分散の補償の方向を決定する。
 例えば、実施例1の誤り訂正率11及び誤り訂正率12の算出結果をもとに、可変分散補償部102の制御方向を決定する。ここで、識別閾値DTを正側に操作したときのビット情報毎の誤り訂正情報の誤り訂正率12の算出結果を“RP1”、識別閾値DTを負側に操作したときのビット情報毎の誤り訂正率11の算出結果を“RN1”とする。
 そして、可変分散補償部102の操作方向は次の様に決定する。すなわち、|*|を“*”の絶対値と表記するとして、|RP1-0.5|=|RN1-0.5|のとき、可変分散補償部の操作をおこなわないと決定する。また、|RP1-0.5|>|RN1-0.5|のとき、可変分散補償部102の操作方向を正側と決定する。また、|RP1-0.5|<|RN1-0.5|のとき、可変分散補償部102の操作方向を負側と決定する。
 図11は、実施例2に係る分散補償処理手順を示すフローチャートである。ステップS201では、制御部101bは、識別部105bの識別位相PHを位相前進側(または位相遅延側)へ操作する。ステップS202では、制御部101bは、識別部105bにおける識別閾値DTを正負両側へ同量だけ移動操作する。ステップS203では、制御部101bは、誤り訂正部106aから識別閾値DTを正負両側へ同量だけ移動操作したそれぞれのFECによる誤り訂正情報を取得する。
 ステップS204では、制御部101bは、ステップS203で取得した“0”誤り訂正数と“1”誤り訂正数とを比較する。ステップS205では、制御部101bは、次の様に可変分散補償部102の操作方向を決定する。|RP1-0.5|=|RN1-0.5|のとき、可変分散補償部の操作をおこなわないと決定する。また、|RP1-0.5|>|RN1-0.5|のとき、可変分散補償部102の操作方向を正側と決定する。また、|RP1-0.5|<|RN1-0.5|のとき、可変分散補償部102の操作方向を負側と決定する。ステップS206では、制御部101bは、ステップS205の決定結果に基づき、可変分散補償部102の操作を行う。
 なお、光伝送路のSN比が悪い状態であるとき等に識別閾値DTを操作すると、光信号を光電変換した電気信号の誤り訂正情報の数値のオーバーフロー、又は、同期外れを引き起こすおそれがあるので、一度識別閾値DTを微小量操作し、操作したビット情報毎の誤り訂正情報の量をもとに可変分散補償部102の操作方向を決定するための識別閾値DT値の操作加減量を決定し、決定した加減量で識別閾値DTを操作し、可変分散補償部102の操作方向を決定し、分散補償を行ってもよい。このようにすると、光信号を光電変換した電気信号の誤り訂正情報の数値のオーバーフロー、及び、同期外れの発生を低減することが出来る。
 また、一時的な光伝送路の劣化等による誤り訂正量の増減による可変分散補償部102の操作方向の決定の誤判定を防ぐために、識別位相PHの位相前進側と識別閾値DTの操作によって得られた可変分散補償部の操作方向の結果と、識別位相PHの位相遅延と識別閾値DTの操作によって得られた可変分散補償部102の制御方向の結果とをもとに、両者が一致するまで識別位相PHの操作及び識別閾値DTの操作を繰り返すことによって、真の可変分散補償部102の操作方向を決定し、分散補償を行ってもよい。
 以上の実施例2によれば、識別閾値DTを正側に操作したときの“1”誤り訂正数の増加率と識別閾値DTを負側に操作した時の“0”誤り訂正数の増加率の大小関係を比較することで、可変分散補償部102の操作方向をより正確に決定することができる。
 以下、図12及び図13を参照して、開示技術の実施例3を説明する。実施例1及び2では、光通信のサービスイン中においてビット情報毎の誤り訂正数をカウントすることで分散を補償できるが、実施例3は、スタートアップ時等、ビット情報毎の誤り訂正数をカウントできない状態であっても、分散補償を行うことを可能にする。
 すなわち、ビット情報毎の誤り訂正数の代わりに、受信した光信号のフレーム同期及び非同期の判定結果、及び/又は、誤り訂正可否判定結果を用いることで、制御部101cが設定した識別位相PHにおける光信号を光電変換した電気信号のSN比が検出可能となるため、可変分散補償部102において分散補償を実施することができる。例えば、スタートアップ時等、光信号の品質が担保されていない状態では、ビット情報毎の誤り訂正数が莫大であり、カウントするための回路がオーバーフローする場合がある。その状態において、分散補償する場合に適用できる。
 図12は、実施例3に係る光通信装置の構成を示す機能ブロック図である。同図に示す様に、実施例3に係る光通信装置100cは、可変分散補償部102、光電変換部103、クロック抽出部104、識別部105c、フレーマ部107、誤り訂正部106c、制御部101cを備えた光通信装置である。
 可変分散補償部102、光電変換部103、クロック抽出部104は、実施例1及び実施例2で述べた機能部と同一の構成であり、同一の処理を行う。実施例3に係る光通信装置100cは、光通信装置100a及び光通信装置100bと比較して制御部101a又は制御部101bが制御部101cとなり、識別部105a又は識別部105bが識別部105cとなっている。また、誤り訂正部106a及び誤り訂正部106bが誤り訂正部106cとなり、識別部105cと誤り訂正部106cとの間にフレーマ部107が配置された構成となっている。
 フレーマ部107は、光電変換された電気信号がフレーム同期しているか否かを判定し、判定結果を制御部101cへ出力する。誤り訂正部106cは、FEC誤り訂正が可能であるか否かを判定し、判定結果を制御部101cへ出力する。
 実施例3では、識別部105cは、識別位相PHを位相前進側に操作し、その後、識別閾値DTを正側及び負側に操作する。制御部101cは、識別閾値操作時、フレーム同期及び/又は誤り訂正可否をモニタし、例えば、フレーム同期を用いる場合、同期から非同期となったときの識別閾値の操作量を求める。そして、制御部101cは、識別閾値の正側及び負側への各操作に対応する識別閾値の操作量をそれぞれ求め、それらの大小関係を比較することで可変分散補償部102の操作方向を決定する。
 具体的には、識別閾値を正側へ操作した場合、フレーム同期から非同期に切り替わったときの識別閾値操作量をΔAとし、識別閾値を負側へ操作した場合、フレーム同期から非同期に切り替わったときの識別閾値値操作量をΔBとする。すると、可変分散補償部102の操作方向は次の様に決定される。
 ΔA=ΔBのとき、可変分散補償部の制御は行わない。また、ΔA<ΔBのとき、可変分散補償部102の操作方向を正側と決定する。また、ΔA>ΔBのとき、可変分散補償部102の操作方向を負側と決定する。このような基準に基づいて可変分散補償部102の操作方向を決定し、分散補償を行うことができる。
 図13は、実施例3に係る分散補償処理手順を示すフローチャートである。ステップS301では、制御部101cは、識別部105cの識別位相PHを位相前進側(または位相遅延側)へ操作する。ステップS302では、制御部101cは、識別部105cにおける識別閾値DTを正負両側へ同量だけ移動操作する。ステップS303では、制御部101cは、フレーム同期を用いて波長分散するか否かを判定する。フレーム同期を用いて波長分散すると判定する場合(ステップS303肯定)、ステップS308へ移り、フレーム同期を用いて波長分散すると判定しない場合(ステップS303否定)、ステップS304へ移る。
 ステップS304では、制御部101cは、誤り訂正部106cから識別閾値DTを正負両側へ同量だけ移動操作したそれぞれのFECによる誤り訂正情報を取得する。ステップS305では、制御部101cは、ステップS304で取得した“0”誤り訂正数と“1”誤り訂正数とを比較する。ステップS306では、制御部101cは、実施例1又は実施例2示した方法と同様に可変分散補償部102の操作方向を決定する。ステップS307では、制御部101cは、ステップS306の決定結果に基づき、可変分散補償部102の操作を行う。
 一方、ステップS308では、制御部101cは、フレーマ部107からのフレーム同期判定結果をモニタし、フレーム非同期となったか否かを判定する。フレーム非同期となったと判定する場合(ステップS308肯定)、ステップS310へ移り、フレーム非同期となったと判定しない場合(ステップS308否定)、ステップS309へ移る。ステップS309では、制御部101cは、ステップS302と異なる操作量で識別部105cの識別閾値DTを操作する。この処理が終了すると、ステップS308へ移る。
 ステップS310では、制御部101cは、フレーム非同期となった識別閾値ΔA及びΔBを取得する。ステップS311では、ΔA及びΔBの大小関係に基づき、可変分散補償部102の操作方向及び操作量を決定し、決定した操作方向及び操作量に操作して光信号の分散補償を行う。本フローは一例であり、例えば、S311処理後にS304を実施してもよい。
 以上の実施例3によれば、例えば、光通信装置100cのスタートアップ時など信号品質が担保されていない状態で、ビット情報毎の誤り訂正数が莫大であり、誤り訂正数をカウントするための回路がオーバーフローする場合があるが、オーバーフロー状態によらず、分散補償を行うことができる。
 以上、開示技術の実施例を説明したが、開示技術は、上記実施例に限られるものではなく、請求の範囲に記載した技術的思想の範囲内で、更に種々の異なる実施例で実施されてもよい。また、実施例に記載した効果は、これに限定されるものではない。また、実施例は、ビット情報毎の誤り数の情報と、少なくとも可変識別位相機能を備える識別部、及び、可変分散補償部を有した分散補償装置を含む光通信装置を提供するものであるが、これら構成を他の公知例と組合せてもよい。例えば、ビット情報毎の誤り数の情報をモニタし、識別点を操作する制御は知られているが、開示技術の特徴的機能を実現する装置を他の制御と併用する場合、時分割で容易に処理することができる。
 ビット情報毎の誤り訂正数の検出は、誤り訂正部106a又は誤り訂正部106bによるビット情報毎に誤り訂正した数から検出することができる。対向する送信側の送通信装置において、ビット情報毎の誤り訂正数を検出するために予め定められたフレーム信号を生成しておき、受信側の光通信装置はフレーム信号を受信し、フレーム信号からビット情報毎に誤り数を検出してもよい。
 また、制御部101a又は制御部101b又は制御部101cは、可変分散補償部102の操作方向の決定を、識別位相PH又は識別閾値DTを操作した後に行うため、ある一つの識別部105bで決定するためには、時分割で処理する必要がある。その処理中に、光伝送路や送受双方の光通信装置において、ある瞬間予期せぬ光信号のSN比の劣化が発生した場合、ビット情報毎の誤り訂正数が瞬間変化することがある。その予期せぬ変化を伴った誤り訂正数をもとに判定するため、判定が誤る可能性がある。
 上記の事態を回避するため、少なくとも3回以上可変分散補償部を操作する方向を決定した結果を用いることで、判定を誤る確率を低減することができる。例えば、可変分散補償部を操作する判定を奇数回(例えば、3回)とし、回数の判定の多数決の結果に基づいて可変分散補償部102を操作してもよい。なお、その判定回数を増やす方法は、上記実施例の組み合わせによって容易に実現できる。
 また、上記実施例において説明した各処理のうち、自動的におこなわれるものとして説明した処理の全部または一部を手動的におこなうこともでき、あるいは、手動的におこなわれるものとして説明した処理の全部または一部を公知の方法で自動的におこなうこともできる。この他、上記実施例で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示のように構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。

Claims (23)

  1.  光伝送路から受信した光信号の波長分散の補償を行う可変分散補償部と、
     前記可変分散補償部によって波長分散が行われた前記光信号を電気信号へ変換する光電変換部と、
     前記光電変換部によって変換された前記電気信号の周波数を抽出するクロック抽出部と、
     前記クロック抽出部によって抽出された前記周波数に基づき前記電気信号のビット情報を識別位相及び識別閾値に基づき識別する識別部と、
     前記識別部によって識別された前記ビット情報の誤りに関する情報であるビット誤り情報を検出する誤り検出部と
     前記誤り検出部によって検出された前記ビット誤り情報に基づき前記可変分散補償部が行う前記光信号の波長分散の補償量を操作する制御部と
     を備えたことを特徴とする光通信装置。
  2.  前記ビット情報の誤りを訂正する誤り訂正部を備え、
     前記誤り検出部は、前記識別部によって誤って識別されたビット情報が前記誤り訂正部によって誤り訂正された前記ビット情報毎の誤り訂正に関する情報である誤り訂正情報に基づき前記ビット誤り情報を検出する
     ことを特徴とする請求項1記載の光通信装置。
  3.  前記誤り検出部は、光伝送路から前記光信号とともに該光信号に対応するフレーム信号から前記ビット情報毎の誤り情報を検出する
     ことを特徴とする請求項1記載の光通信装置。
  4.  前記ビット情報毎の誤り訂正に関する情報、又は、前記ビット情報毎の誤り情報は、前記ビット情報毎の誤り数である
     ことを特徴とする請求項1、2又は3記載の光通信装置。
  5.  前記ビット情報毎の誤り訂正に関する情報、又は、前記ビット情報毎の誤り情報は、前記ビット情報の全ての誤り数に対する各前記ビット情報の誤り数の比率である
     ことを特徴とする請求項1、2又は3記載の光通信装置。
  6.  前記制御部は、光通信中において前記誤り訂正情報を監視し、予め定められたSN比の範囲内で前記可変分散補償部が行う前記光信号の波長分散の補償量を操作する
     ことを特徴とする請求項2記載の光通信装置。
  7.  前記制御部は、光通信開始時において、フレーム同期非同期判定結果、及び/又は、誤り訂正可否判定結果に基づいて前記可変分散補償部が行う前記光信号の波長分散の補償量を操作する
     ことを特徴とする請求項2記載の光通信装置。
  8.  前記制御部は、前記識別位相を操作し、
     前記誤り検出部は、前記制御部に操作させる前後の前記識別位相に基づく前記ビット情報毎のビット誤りの比較結果に基づき前記ビット誤り情報を検出する
     ことを特徴とする請求項1記載の光通信装置。
  9.  前記ビット情報毎の前記ビット誤りの比較結果が一致又は近似する場合、さらに前記制御部に操作させる前後の前記識別位相に基づく前記ビット情報毎の前記ビット誤りの比較結果に基づき前記ビット誤り情報を検出する
     ことを特徴とする請求項8記載の光通信装置。
  10.  前記制御部は、前記識別位相を前進方向又は遅延方向に操作して発生する前記識別位相の変化に応じて前記波長分散の補償の方向を決定して分散補償を行い、分散補償が所定の補償水準に達するまで前記識別位相を前進方向又は遅延方向に操作して発生する前記識別位相の変化に応じて前記波長分散の補償の方向を決定して分散補償を継続する
     ことを特徴とする請求項8又は9記載の光通信装置。
  11.  前記制御部は、前記識別位相を前進方向又は遅延方向に変化させて発生する前記識別位相の変化後の状態における前記識別位相に基づく前記ビット情報毎の前記ビット誤りに応じて前記波長分散の補償の方向を決定する
     ことを特徴とする請求項8又は9記載の光通信装置。
  12.  前記制御部は、前記識別位相を前進方向、又は、遅延方向に操作した後、さらに前記識別位相を遅延方向、又は、前進方向にそれぞれ操作した状態における前記識別位相に基づく前記ビット情報毎の前記ビット誤りに応じて前記波長分散の補償の方向を決定する
     ことを特徴とする請求項8又は9記載の光通信装置。
  13.  前記制御部は、前記識別位相を前進方向、又は、遅延方向に操作した後、さらに前記識別位相を前進方向、又は、遅延方向にそれぞれ操作した状態における前記識別位相に基づく前記ビット情報毎の前記ビット誤りに応じて前記波長分散の補償の方向を決定する
     ことを特徴とする請求項8又は9記載の光通信装置。
  14.  前記制御部は、前記ビット情報を識別する識別閾値をさらに操作することであって、前記識別位相を前進方向又は遅延方向に変化させた後、前記識別閾値を上下に同量操作し、前記識別位相、及び、上下に同量操作された各前記識別閾値に基づく前記ビット情報毎の前記ビット誤りに応じて前記波長分散の補償の方向を決定する
     ことを特徴とする請求項8又は9記載の光通信装置。
  15.  前記制御部は、前記ビット情報を識別する識別閾値をさらに操作することであって、前記識別位相を前進方向又は遅延方向に変化させ、前記識別閾値を上下に同量操作した後、さらに前記識別閾値を上下に異なる量だけそれぞれ操作し、前記識別位相、及び、上下に同量操作された各前記識別閾値に基づく前記ビット情報毎の前記ビット誤りに応じて前記波長分散の補償の方向を決定する
     ことを特徴とする請求項8又は9記載の光通信装置。
  16.  前記制御部は、前記ビット情報を識別する識別閾値をさらに操作することであって、前記識別位相を前進方向及び遅延方向に変化させた後、前記識別閾値を上下に同量操作して得られる二本の前記識別位相及び二本の前記識別閾値で形成される矩形領域内における前記ビット情報の識別点と等距離の四点における前記ビット情報毎の前記ビット誤りに応じて前記波長分散の補償の方向を決定する
     ことを特徴とする請求項8又は9記載の光通信装置。
  17.  前記誤り検出部によって、前記識別部により識別された前記ビット情報の誤りに関する情報であるビット誤り情報を3以上の奇数回検出した結果に基づき前記可変分散補償部が行う前記光信号の波長分散の補償量を操作する
     ことを特徴とする請求項1記載の光通信装置。
  18.  光通信装置が実行する分散補償方法であって、
     光伝送路から受信した光信号の波長分散の補償を行う可変分散補償ステップと、
     前記可変分散補償ステップによって波長分散が行われた前記光信号を電気信号へ変換する光電変換ステップと、
     前記光電変換ステップによって変換された前記電気信号の周波数を抽出するクロック抽出ステップと、
     前記クロック抽出ステップによって抽出された前記周波数に基づき前記電気信号のビット情報を識別位相及び識別閾値に基づき識別する識別ステップと、
     前記識別ステップによって識別された前記ビット情報の誤りに関する情報であるビット誤り情報を検出する誤り検出ステップと
     前記誤り検出ステップによって検出された前記ビット誤り情報に基づき前記可変分散補償ステップが行う前記光信号の波長分散の補償量を操作する制御ステップと
     を含むことを特徴とする分散補償方法。
  19.  前記ビット情報の誤りを訂正する誤り訂正ステップを含み、
     前記誤り検出ステップは、前記識別ステップによって誤って識別されたビット情報が前記誤り訂正ステップによって誤り訂正された前記ビット情報毎の誤り訂正に関する情報である誤り訂正情報に基づき前記ビット誤り情報を検出する
     ことを特徴とする請求項18記載の分散補償方法。
  20.  前記誤り検出ステップは、光伝送路から前記光信号とともに該光信号に対応するフレーム信号から前記ビット情報毎の誤り情報を検出する
     ことを特徴とする請求項18記載の分散補償方法。
  21.  前記制御ステップは、前記識別位相を操作し、
     前記誤り検出ステップは、前記制御ステップに操作させる前後の前記識別位相に基づく前記ビット情報毎のビット誤りの比較結果に基づき前記ビット誤り情報を検出する
     ことを特徴とする請求項18記載の分散補償方法。
  22.  前記ビット情報毎の前記ビット誤りの比較結果が一致又は近似する場合、さらに前記制御ステップに操作させる前後の前記識別位相に基づく前記ビット情報毎の前記ビット誤りの比較結果に基づき前記ビット誤り情報を検出する
     ことを特徴とする請求項20記載の分散補償方法。
  23.  前記制御ステップは、前記識別位相を前進方向又は遅延方向に操作して発生する前記識別位相の変化に応じて前記波長分散の補償の方向を決定して分散補償を行い、分散補償が所定の補償水準に達するまで前記識別位相を前進方向又は遅延方向に操作して発生する前記識別位相の変化に応じて前記波長分散の補償の方向を決定して分散補償を継続する
     ことを特徴とする請求項21又は22記載の分散補償方法。
PCT/JP2009/056583 2009-03-30 2009-03-30 光通信装置及び分散補償方法 WO2010116477A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011508119A JP5206867B2 (ja) 2009-03-30 2009-03-30 光通信装置及び分散補償方法
PCT/JP2009/056583 WO2010116477A1 (ja) 2009-03-30 2009-03-30 光通信装置及び分散補償方法
US13/200,651 US8538265B2 (en) 2009-03-30 2011-09-28 Optical communication device and dispersion compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056583 WO2010116477A1 (ja) 2009-03-30 2009-03-30 光通信装置及び分散補償方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/200,651 Continuation US8538265B2 (en) 2009-03-30 2011-09-28 Optical communication device and dispersion compensation method

Publications (1)

Publication Number Publication Date
WO2010116477A1 true WO2010116477A1 (ja) 2010-10-14

Family

ID=42935788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056583 WO2010116477A1 (ja) 2009-03-30 2009-03-30 光通信装置及び分散補償方法

Country Status (3)

Country Link
US (1) US8538265B2 (ja)
JP (1) JP5206867B2 (ja)
WO (1) WO2010116477A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011250266A (ja) * 2010-05-28 2011-12-08 Hitachi Ltd 光受信器および光伝送装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075241B (zh) * 2009-11-19 2014-01-01 华为技术有限公司 动态色散检测方法及装置
US9178614B2 (en) * 2011-01-24 2015-11-03 Nippon Telegraph And Telephone Corporation Method for estimating amount of wavelength dispersion, wavelength dispersion compensation circuit, and receiving device
US8873615B2 (en) * 2012-09-19 2014-10-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and controller for equalizing a received serial data stream
US10404397B2 (en) * 2015-12-23 2019-09-03 Adva Optical Networking Se Wavelength division multiplexed telecommunication system with automatic compensation of chromatic dispersion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224523A (ja) * 2002-01-30 2003-08-08 Mitsubishi Electric Corp 分散等化装置および分散等化方法
JP2005286382A (ja) * 2004-03-26 2005-10-13 Fujitsu Ltd 分散補償方法及びその装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048231A1 (fr) * 1998-03-19 1999-09-23 Fujitsu Limited Procede et dispositif d'egalisation de dispersion de longueurs d'onde
JP3380755B2 (ja) * 1998-10-06 2003-02-24 日本電信電話株式会社 自動波長分散等化光伝送システム
US7016567B2 (en) * 2001-12-31 2006-03-21 3M Innovative Properties Company System for higher-order dispersion compensation including a delay line
JP4056846B2 (ja) * 2002-10-03 2008-03-05 富士通株式会社 分散モニタ装置、分散モニタ方法および自動分散補償システム
JP4138557B2 (ja) * 2003-03-31 2008-08-27 富士通株式会社 波長分散補償制御システム
JP5091739B2 (ja) * 2008-03-21 2012-12-05 株式会社日立製作所 光信号伝送装置
JP5263289B2 (ja) * 2008-05-27 2013-08-14 日本電気株式会社 光ファイバの分散検出装置およびそれを用いた自動分散補償システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224523A (ja) * 2002-01-30 2003-08-08 Mitsubishi Electric Corp 分散等化装置および分散等化方法
JP2005286382A (ja) * 2004-03-26 2005-10-13 Fujitsu Ltd 分散補償方法及びその装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011250266A (ja) * 2010-05-28 2011-12-08 Hitachi Ltd 光受信器および光伝送装置

Also Published As

Publication number Publication date
JPWO2010116477A1 (ja) 2012-10-11
JP5206867B2 (ja) 2013-06-12
US8538265B2 (en) 2013-09-17
US20120020661A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP4468656B2 (ja) 信号波形劣化補償器
US7991301B2 (en) Detecting abnormality in an optical receiver
JP5206867B2 (ja) 光通信装置及び分散補償方法
US8346099B2 (en) Optical reception device and optical reception method
JP4973362B2 (ja) 光受信装置およびその制御方法
US20080069571A1 (en) Optical receiving apparatus
WO2015132776A1 (en) Osnr margin monitoring for optical coherent signals
JP2016143959A (ja) 推定装置、及び、推定方法
JP6048049B2 (ja) デジタルコヒーレント光受信器、その制御方法、及び伝送装置
KR101322929B1 (ko) Dqpsk 변조를 근거한 위상차의 모니터 및 제어 방법 및 장치
JP4861804B2 (ja) 受信装置および受信方法
JP2008311875A (ja) 光伝送装置および光伝送装置制御方法
Yoshida et al. Performance monitoring for live systems with soft FEC and multilevel modulation
JP4282559B2 (ja) 光伝送方法および光伝送システム
US7903982B2 (en) Optical receiver
JP2017005605A (ja) 光受信装置および光パス切替制御方法
KR101821970B1 (ko) 편광 분할 다중화 광신호의 직접 검출 방법 및 장치
US8254787B2 (en) PMDC feedback arrangement for APol-DPSK
JP5260710B2 (ja) 光受信装置
CN115516816A (zh) 帧同步系统、帧同步电路和帧同步方法
JP2020137014A (ja) 光通信装置、サーバ装置、光伝送システム、及び光通信方法
Oda et al. Three Benefits Brought by Perturbation Back-Propagation Algorithm in 224Gb/s DP-16QAM Transmission
JP2009303181A (ja) 光受信器
Hauske et al. On the Mitigation of the Differential Decoding Penalty in 100G PDM-QPSK Digital Coherent Receivers for Multirate WDM Transmission
Yan et al. Performance enhancement in 10-Gb/s long-haul fiber links with adaptive eye mapping in an integrated 16-bit Si-CMOS transceiver IC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011508119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842987

Country of ref document: EP

Kind code of ref document: A1