WO2010114193A1 - 내부 세포 덩어리의 분리 방법 및 이를 이용한 배아 줄기 세포주의 제조 방법 - Google Patents

내부 세포 덩어리의 분리 방법 및 이를 이용한 배아 줄기 세포주의 제조 방법 Download PDF

Info

Publication number
WO2010114193A1
WO2010114193A1 PCT/KR2009/002806 KR2009002806W WO2010114193A1 WO 2010114193 A1 WO2010114193 A1 WO 2010114193A1 KR 2009002806 W KR2009002806 W KR 2009002806W WO 2010114193 A1 WO2010114193 A1 WO 2010114193A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover glass
blastocyst
embryonic stem
cells
micro cover
Prior art date
Application number
PCT/KR2009/002806
Other languages
English (en)
French (fr)
Inventor
김창현
Original Assignee
Kim Chang-Hyun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Chang-Hyun filed Critical Kim Chang-Hyun
Publication of WO2010114193A1 publication Critical patent/WO2010114193A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/10Tissue, human, animal or plant cell, or virus culture apparatus for culture in eggs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • C12N2509/10Mechanical dissociation

Definitions

  • the present invention relates to a method for isolating and culturing an inner cell mass, which is capable of obtaining an inner cell mass with a significantly high yield without chemical treatment, and a method for producing an embryonic stem cell line using the same.
  • blastocysts Through cell division. Inside the blastocyst, there is an inner cell mass, also called an inner cell mass, which divides and differentiates to form an embryo. Embryos develop into one individual throughout the gestation period.
  • embryonic stem cells are cells extracted during embryonic development and are cells that have yet to differentiate into cells of all tissues.
  • Embryonic stem cells have the ability to differentiate into cells of all tissues and can theoretically divide indefinitely. Because of these characteristics, it is expected that embryonic stem cells can be used to regenerate tissues when they are damaged by injury or disease. In particular, since Thomson et al. Succeeded in culturing human embryonic stem cells in 1998, research in the field of cell therapy using stem cells has become more active.
  • the method of separating the inner cell mass which is a premise for making embryonic stem cells.
  • the method currently commonly used among them is immunological isolation (immunosurgery).
  • the immunological separation method is briefly described as follows. First, the zona pellucida of the fertilized egg is dissolved with pronase 0.1% for about 1-2 minutes. The blastocyst cells in the zona pellucida were then left to stand for 20 minutes in 100% anti-human serum antibody (Sigma) and then in guinea pig complement for 30 minutes. Doing so destroys the trophic germ layer, allowing the internal cell mass to separate. As such, the immunological internal cell mass separation method is based on chemical treatment.
  • embryonic stem cell lines are established when their density and size increase.
  • the embryonic stem cells thus obtained are separated into smaller cell aggregates and transferred to a new dish under the same conditions, and repeated passages continue to proliferate while remaining undifferentiated. By repeating this process, a large number of embryonic stem cells can be produced.
  • the immunological separation method above destroys blastocysts through immunological and chemical treatment to separate internal cell masses, and thus, separated cells do not properly settle in the background nutritional cells.
  • the separated inner cell mass was not maintained in an undifferentiated state, but was inefficient in establishing an undifferentiated embryonic stem cell line to be obtained by differentiating into other cells.
  • the number of cells finally cultured in the background nutrient cells and established as an embryonic stem cell line is generally limited to only 10-20% based on the number of first embryos used. There is.
  • An object of the present invention is to provide a method for effectively separating and culturing an inner cell mass in an undifferentiated state by applying a pressure of the micro cover glass to the blastocyst.
  • the method of separating internal cell masses comprising placing the blastocysts from which the zona pellucida has been removed on a background nutrient cell and covering them with a micro cover glass for a certain period of time to apply pressure by the weight of the micro cover glass to the blastocysts.
  • micro cover glass comprises a lifting part.
  • the lifting part is a bent end of the ring or micro cover glass separation method of the inner cell mass.
  • the micro-cover glass covering the blastocyst time is 13 to 15 hours the separation method of the inner cell mass.
  • the micro cover glass is 3 to 8 mm in width and 2 to 6 mm in length of the separation method of the inner cell mass.
  • the method of separating the inner cell mass using a tweezers, hand grips or a micromanipulator when covering the blastocyst with a micro cover glass or after a certain time is removed.
  • Method for producing an embryonic stem cell line by propagating the inner cell mass separated in the background nutritional cells according to the separation method according to any one of the above 1 to 9.
  • the internal cell mass obtained by the isolation and culture method according to the present invention has a high rate of fixation in the background nutritive cells, which is useful for the production of embryonic stem cell lines.
  • the present invention does not undergo chemical treatment on blastocysts, the obtained internal cell mass can be well maintained in an undifferentiated state.
  • the separation method according to the present invention is effective to prevent the formation of the trophic mesoderm, which is the wall layer containing the inner cell mass, during the culturing process by inducing natural changes as much as possible by simply applying a constant pressure to the blastocyst. It is effective in producing embryonic stem cell lines.
  • Embryonic stem cells prepared by the method according to the present invention have the ability to form embryoid bodies well under differentiation conditions and differentiate into various tissues, and retain the cytological, immunological and genetic characteristics of undifferentiated cells under undifferentiated conditions.
  • Stem cell line production method according to the present invention (success rate 80% or more) is four times higher success rate than using the immunological separation method (success rate 20% or less).
  • the separation method according to the present invention has a shorter working time and is simpler than the immunological separation method (immunosurgery).
  • the method for separating and culturing the inner cell mass and the method for preparing an embryonic stem cell line according to the present invention can be usefully used in the field of treatment and research using human embryonic stem cells.
  • FIG. 1 is a view showing an example of the lifting unit of the present application
  • FIG. 2 is a view of a method of using a micro cover glass provided with a lifting portion
  • FIG. 3 is a photograph relating to the manufacture of a micro cover glass according to the embodiment
  • Figure 4 is a photograph of a method for covering the blastocyst with a transparent cover removed with a micro cover glass
  • FIG. 6 is a photograph of a method for removing the micro cover glass using a micromanipulator
  • FIG. 7 is a photograph of an embryonic stem cell line established according to an embodiment
  • blastocyst 21 inner cell mass (inner cell mass) 22: vegetative germ layer
  • coated dish 41 background nutrient cell layer
  • the present invention is to place the blastocyst from which the zona pellucida was removed on the background nutrient cells and covered with a micro cover glass to apply the pressure of the micro cover glass to the blastocyst for a certain period of time to separate and culture the internal cell masses, thereby significantly increasing the yield of the internal cells.
  • the present invention relates to a method of obtaining a mass and thus effectively establishing and propagating an embryonic stem cell line.
  • blastocysts obtained after fertilization and in vitro culture are used.
  • the blastocyst usually consists of 100-200 cells, consisting of 30-40 cells called inner cell masses and the trophectal layer, which surrounds it, a characteristic structure of native mammals. Embryos that have stopped growing according to different stages of fertilization are not visible but have the potential to partially extract stem cells.
  • Zona pellucida of blastocysts can be removed by dissolving for 1-2 minutes, for example, with 0.1% pronase.
  • blastocysts from which the zona pellucida has been removed may be treated with, for example, 25-125 nmol / ml of trichostatin-A for about 4 hours to prevent genetic methylation and increase the fertilization rate of fertilized eggs. More specifically, if one pronucleation is performed after artificial insemination (putting sperm into a drop containing an egg), 4 hours of incubation is performed in a culture solution containing 35-40 nmol / ml of trichostatin-A (TSA). Afterwards, the cells can be transferred to cultures that do not contain TSA for continued incubation.
  • TSA nmol / ml of trichostatin-A
  • the feeder cells of the present invention preferably use murine fetal fibroblasts, which are cells that have undergone radioactive treatment or chemical treatment such as mitomycin C to reduce their differentiation ability. These cells serve to suppress the differentiation and proliferation of embryonic stem cells without proliferating itself.
  • human embryonic stem cells unlike mouse embryonic stem cells, are required for background nutritional cells to maintain and propagate undifferentiated state.
  • mouse embryonic fibroblasts MEFs
  • the micro cover glass of the present invention is a thin cover glass commonly used in the field of biotechnology, and may be used without particular limitation as long as there is no shortage in covering the blastocyst and does not damage the blastocyst during loading and unloading.
  • the micro cover glass of the present invention may be loaded or unloaded with a tool such as a pincette, a forcep, a micro manipulator, or the like.
  • the micro cover glass of the present invention includes a lifting portion, it is possible to more easily perform the loading or unloading operation desired in the present invention.
  • the micro cover glass of the present invention is composed of a cover part which largely covers the blastocyst and a lifting part which comes into contact with each other during loading or unloading.
  • a tool such as a tweezers, a gripper, a micromanipulator, and the like, the part coming into contact with the tool becomes a lifting part.
  • the lifting portion may be a wire portion attached to the micro cover glass (FIGS. 1A and 1B).
  • a fine wire can be looped and attached to the top of the micro cover glass.
  • the method of attaching a fine wire to the upper surface of the micro cover glass is not particularly limited. For example, a method of attaching a fine wire to a portion of the glass by melting the glass using a micro forge (MF-900 narishige) device may be used.
  • the lifting portion may be part of the micro cover glass.
  • the distal end of the micro cover glass may be bent due to the weight of the micro cover glass. If the bent part is sufficient to be grasped by a tool such as a tweezers or a gripper, the distal end may function as a lifting part. (FIG. 1C).
  • FIG. 2 The case of using the micro cover glass provided with the lifting part is shown in FIG. 2.
  • the blastocyst is placed on the background nutrient cells (FIG. 2A) and is slowly pressed by the weight of the micro cover glass when the microcover glass is covered by the micromanipulator (FIG. 2B).
  • the micro cover glass may be processed to a size of 3 to 8 mm in width and 2 to 6 mm in length in consideration of the size of the blastocyst.
  • the microcover glass each 5 mm in width and length, weighs 0.008-0.01 g and can press the blastocyst at a weight of about 0.002 g per unit area (1 mm x 1 mm).
  • the time for the microcover glass to cover the blastocyst is preferably 3-20 hours. In the case of human blastocysts, it is preferred that they are 13-15 hours. Care should be taken not to crush or damage the blastocyst when covering the micro cover glass or removing it after a certain time. In view of this, it is preferable to use a micromanipulator.
  • Intracellular cell mass (ICM) isolated according to the separation method of the present invention can be proliferated in separate background nutrient cells can be prepared as an embryonic stem cell line.
  • the method for propagating the isolated internal cell mass and the method for producing an embryonic stem cell line may be any method that is commonly used in the field of biotechnology.
  • the separation method of the present invention since the amount of the inner cell mass obtained is large, the rate at which the cells settle in the background nutritional cells and the rate of successful culture in the background nutritional cells is high. The likelihood of forming a stem cell line is significantly higher than in the prior art.
  • the culture solution can be used without limitation, conventional ones used for culturing embryonic stem cells.
  • 0.1 mM ⁇ -mercaptoethanol mercaptoethanol, Sigma
  • 100 units / ml penicillin in a basic culture containing 20% Knockout Serum Replacement (Gibco Brl) in a solution of Mem ⁇ -gluta max (Gibco Brl, 32571) (penicillin), 100 ⁇ g / ml streptomycin and 4 ng / ml basic fibroblast growth factor (bFGF, invitorgen 13256-029)
  • bFGF basic fibroblast growth factor
  • the culture solution can be collected and used after one or two co-cultures in a mouse embryonic fibroblast (MEF) feeder cell layer before use.
  • the collected culture solution can be used by centrifugation with a centrifuge without filtering and only by conditioned media.
  • the stem cell line culture medium in which the existing embryonic stem cell line was cultured was recovered, and after centrifugation, only the supernatant was collected and mixed with the newly prepared culture medium at a ratio of 50%: 50% to establish the initial stem cell line.
  • the success rate of culturing stem cells into blastocysts increases.
  • the inner cell mass may optionally be cultured in a culture plate without mouse embryonic fibroblasts (MEFs), with the same conditions but with a 1:30 mixture of matrigel and PBS and After coating with 0.1% gelatin at 4 ° C. for 1 hour, the supernatant may be discarded and used as a culture dish.
  • MEFs mouse embryonic fibroblasts
  • the culture is preferably replaced every 24 hours.
  • mTsSR media Stem cell Technologies
  • embryonic stem cell lines can be cultured in an environment without background nutritional cells.
  • embryonic stem cells can differentiate into other cells, it is commonly used to culture inner cell masses on mouse embryonic fibroblasts (MEFs).
  • embryonic stem cells When embryonic stem cells are left together to grow, they form an embryonic cell mass, and embryonic stem cells begin to differentiate themselves. Cells derived from the inner cell mass have the ability to differentiate into the trioderm cells that make up the human body. In the future, finding a way to differentiate embryonic stem cells into specific cells based on the present invention would be very effective in treating diseases.
  • the micro cover glass is used to culture 30-40 cells called the inner cell masses in an undifferentiated state.
  • a micro cover glass manufactured by VWR International LLC, cat no.48366-089
  • VWR International LLC cat no.48366-089
  • the blastocyst (FIG. 5a) was dissolved for 1-2 minutes with 0.1% pronase to remove the zona pellucida of the blastocyst (FIG. 5b).
  • the blastocyst photograph immediately after covering the micro cover glass was as shown in Fig. 5C.
  • the micro cover glass After 14 hours of covering the micro cover glass, as shown in FIG. 5E, the nutrient germ layer almost disappeared, and stem cells started to proliferate in the inner cell mass therebetween. At this point, the micro cover glass should be removed. When removed, the blastocyst is settled on the bottom surface of the background nutrient cells, so it is sensitive to minute external stimuli. Therefore, in this embodiment, the micro cover glass was removed using a micromanipulator as shown in FIG. 6.
  • Figure 6a is a photograph that is cultured in a state covered with a micro cover glass
  • Figure 6b is a photograph located on the top of the culture dish microfiber
  • Figure 6c is a photograph of the lifting portion of the micro cover glass placed on the culture dish with a micromanipulator
  • FIG. 6D is a photograph illustrating an operation principle in which the opposite side is lifted up by pressing the lifting part of the micro cover glass finely with a micromanipulator.
  • the micro cover glass when the other side is lifted by pressing the lifting portion of the micro cover glass with a micromanipulator, the micro cover glass is removed by using a handgrip after moving to a position far from the inner cell mass with the micromanipulator.
  • the isolated internal cells were incubated in a saturated humidity incubator with 5% carbon dioxide and a temperature of 37 ° C. After 2-3 days of incubation, the photograph is shown in FIG. 5F. In the center of FIG. 5F, an inner cell mass is identified, and around it, it is confirmed that micronized embryonic stem cells grow like millet. The embryonic stem cells thus cultured were established into the embryonic stem cell line of FIG. 7 through several passages.
  • the method for subculture of embryonic stem cells obtained in the present invention was in accordance with conventional methods known in the art.
  • the culture medium for culturing the isolated internal cells was replaced with a 24-hour cycle, and the culture solution and the culture dish were prepared as follows.
  • the culture solution used in the present invention was used as a basic culture by mixing 20% Knockout Serum Replacement (Gibco Brl) to Mem ⁇ -gluta max (Gibco Brl, 32571) solution, and 0.1mM ⁇ -mercaptoethanol (mercaptoethanol) , Sigma), 100 units / ml penicillin, 100 ⁇ g / ml streptomycin and 4 ng / ml basic fibroblast growth factor (bFGF, invitorgen 13256-029) were used.
  • Knockout Serum Replacement Gibco Brl
  • Mem ⁇ -gluta max Mem ⁇ -gluta max
  • 0.1mM ⁇ -mercaptoethanol ⁇ -mercaptoethanol
  • bFGF basic fibroblast growth factor
  • a culture plate containing 10 ⁇ g / ml of mitomycin C (sigma), 50 per 0.2 mm 2 of the culture dish prepared above.
  • -Mouse embryonic fibroblasts battery nutrient cells growing to the extent of attachment to 100 cells were incubated for 5-6 hours to reduce their differentiation capacity, and then washed with embryonic stem cell culture medium, and used as background nutrient cells for growing embryonic stem cells.
  • a dish in which mouse embryo fibroblasts (MEFs) were cultured was prepared.
  • Embryonic stem cell lines were prepared by culturing and propagating the isolated cells as described above in the same manner as in the above example (FIG. 8).
  • Table 1 shows the results of the establishment of the embryonic stem cell line prepared according to the method of the above Examples and Comparative Examples.
  • Table 1 division Number of blastocyst fertilized eggs used for culture The number of internal cell masses settled on the bottom of the background nutrient cell The number of internal cell masses that started cultivation at the bottom of background nutrient cells Embryonic stem cell line established as embryonic stem cell line with sufficient number of cultured background cells Example 5 5 (100%) 5 (100%) 4 (80%) Comparative example 10 7 (70%) 4 (40%) 2 (20%)
  • the method for preparing an inner cell mass and method for preparing an embryonic stem cell line of the present application shows a remarkably excellent success rate compared to a method for preparing an immunologically isolated method and an embryonic stem cell line.
  • Using the culture method of the present invention can easily obtain a large amount of embryonic stem cell line capable of differentiating into a variety of cells, it can be useful in the field of treatment and research using embryonic stem cells in the future.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 내부 세포 덩어리의 분리 방법 및 이를 이용한 배아 줄기 세포주의 제조 방법에 관한 것으로서, 보다 상세하게는 투명대(zona pellucida)가 제거된 배반포(blastocyst)를 바탕영양세포(feeder cell) 위에 놓고 마이크로 커버 글라스(micro cover glass)로 덮어 일정 시간 동안 배반포에 마이크로 커버 글라스의 무게에 의한 압력을 가하여 내부 세포 덩어리(inner cell mass)를 분리함으로써 종래보다 현저히 높은 수율로 내부 세포 덩어리를 수득할 수 있고, 이에 따라 배아 줄기 세포주(embryonic stem cell lines)를 효과적으로 성립 및 증식시킬 수 있는 방법에 관한 것이다.

Description

[규칙 제26조에 의한 보정 14.08.2009] 내부 세포 덩어리의 분리 방법 및 이를 이용한 배아 줄기 세포주의 제조 방법
본 발명은 화학적 처리를 하지 않아 현저히 높은 수율로 내부 세포 덩어리를 수득할 수 있는 내부 세포 덩어리의 분리 및 배양방법과 이를 이용한 배아 줄기 세포주의 제조 방법에 관한 것이다.
정자와 난자가 결합하면 수정란이 형성되고 수정란은 세포분열을 통해 배반포(blastocyst)를 형성한다. 이 배반포의 안쪽에는 내세포괴라고도 불리는 내부 세포 덩어리(inner cell mass)가 있는데, 이 세포들이 세포분열과 분화를 거쳐 배아(embryo)를 형성한다. 배아는 임신 기간을 거쳐 하나의 개체로 발생하게 된다.
내부 세포 덩어리의 세포를 배반포로부터 분리하여 일정한 환경에서 배양하면 더 이상 분화는 일어나지 않지만 분화할 수 있는 능력은 여전히 가지고 있는 세포를 만들 수 있다. 이러한 세포를 배아 줄기 세포(embryonic stem cell)라고 한다. 즉, 배아 줄기 세포는 배아의 발생과정에서 추출한 세포로서 모든 조직의 세포로 분화할 수 있는 능력을 지녔으나 아직 분화되지 않은 세포를 말한다.
배아 줄기 세포는 모든 조직의 세포로 분화할 수 있는 능력을 갖고 있으며 이론상으로는 무한정 세포분열을 할 수 있다. 이러한 특성 때문에, 배아 줄기 세포는 부상이나 질병 등으로 조직이 손상되었을 때 그 조직을 재생시키는 데 이용할 수 있을 것이라고 기대되고 있다. 특히, 1998년 톰슨(Thomson) 등이 인간 배아 줄기 세포의 배양에 성공한 이후에는 줄기세포를 이용한 세포 치료(cell therapy) 분야의 연구가 더욱 활발해 지고 있다.
이에 따라, 배아 줄기 세포를 만들기 위한 전제가 되는 내부 세포 덩어리의 분리 방법에 대한 연구도 진행되어 왔다. 그 중 현재 통상적으로 사용되고 있는 방법은 면역학적 분리 방법(immunosurgery)이다. 면역학적 분리 방법을 간단히 설명하면 다음과 같다. 먼저 수정란의 투명대(zona pellucida)를 프로네이즈(pronase) 0.1% 로 약 1-2분간 녹인다. 그 후 투명대 안에 들어 있는 배반포 세포덩어리를 100%의 항-휴먼 혈청 항원 용액(anti-human serum antibody, 시그마사)에 약 20분간 정치시킨 후 다시 기니피그 혈장액(guinea pig complement)에 약 30분간 정치시키면 영양 배엽층이 파괴되어 내부 세포 덩어리를 분리할 수 있게 되는 것이다. 이와 같이 면역학적 내부 세포 덩어리 분리 방법은 화학적 처리를 바탕으로 한다.
면역학적 분리 방법에 따라 분리된 내부 세포 덩어리는 태아 섬유아세포(바탕영양세포)에 정착을 해서 증식이 되고, 이의 밀도 및 크기가 증가하게 되면 이를 배아줄기세포주가 성립된 것으로 판단한다. 이렇게 얻은 배아 줄기 세포를 더 작은 세포 집합체로 분리하고 이를 같은 조건의 새로운 배양접시로 옮겨 계대배양을 반복하면 미분화 상태를 유지한 채 계속 증식된다. 이와 같은 과정을 반복함으로써 다량의 배아줄기세포를 만들 수 있다.
그런데 위와 같은 면역학적 분리 방법은 면역학적 및 화학적 처리를 통해 배반포를 파괴하여 내부 세포 덩어리를 분리하기 때문에 분리된 세포들이 바탕영양세포에 제대로 정착하지 못하는 경우가 많다. 또한 화학적 처리로 인해서, 분리된 내부 세포 덩어리 부분이 미분화 상태를 유지하지 못하고 다른 세포로 분화를 하여 얻고자 하는 미분화 상태의 배아 줄기 세포주 확립에 효율적이지 못한 면이 있었다. 이에 따라 면역학적 분리 방법을 사용하면, 최종적으로 바탕영양세포에 충분한 세포가 배양되어 배아 줄기 세포주로 확립된 것의 개수는 처음 사용된 수정란의 개수를 기준으로 할 때 일반적으로 10-20%에 불과한 한계가 있다.
본 발명은 화학적 처리를 하지 않고 물리적인 방법으로 내부 세포 덩어리를 분리 및 배양하는 방법을 제공하는 것을 목적으로 한다.
본 발명은 배반포에 마이크로 커버 글라스의 무게에 의한 압력을 가함으로써 내부 세포 덩어리를 미분화 상태로 효과적으로 분리 및 배양하는 방법을 제공하는 것을 목적으로 한다.
또한, 위와 같은 방법에 따라 분리된 내부 세포 덩어리를 바탕영양세포에서 증식시켜 높은 수율로 배아 줄기 세포주를 제조하는 방법을 제공하는 것을 목적으로 한다.
1. 투명대가 제거된 배반포를 바탕영양세포 위에 놓고 마이크로 커버 글라스로 덮어 일정 시간 동안 배반포에 마이크로 커버 글라스의 무게에 의한 압력을 가하는 단계를 포함하는 내부 세포 덩어리의 분리 방법.
2. 위 1에 있어서, 마이크로 커버 글라스는 리프팅부를 포함하는 것인 내부 세포 덩어리의 분리 방법.
3. 위 2에 있어서, 리프팅부는 고리 또는 마이크로 커버 글라스의 구부러진 말단인 내부 세포 덩어리의 분리 방법.
4. 위 1에 있어서, 마이크로 커버 글라스의 무게에 의한 압력은 0.001-0.003g/mm2인 내부 세포 덩어리의 분리 방법.
5. 위 1에 있어서, 마이크로 커버 글라스가 배반포를 덮는 시간은 3 내지 20 시간인 내부 세포 덩어리의 분리 방법.
6. 위 5에 있어서, 마이크로 커버 글라스가 배반포를 덮는 시간은 13 내지 15 시간인 내부 세포 덩어리의 분리 방법.
7. 위 1에 있어서, 마이크로 커버 글라스는 가로가 3 내지 8 mm이고 세로가 2 내지 6 mm인 내부 세포 덩어리의 분리 방법.
8. 위 1에 있어서, 마이크로 커버 글라스로 배반포를 덮거나 일정 시간이 지난 후 걷어낼 때 핀셋, 손집게 또는 미세조작기를 사용하는 내부 세포 덩어리의 분리 방법.
9. 위 1에 있어서, 투명대가 제거된 배반포는 사전에 트리코스타틴-A로 처리된 것인 내부 세포 덩어리의 분리 방법.
10. 위 1 내지 9 중 어느 하나에 따른 분리 방법에 따라 분리된 내부 세포 덩어리를 바탕영양세포에서 증식시켜 배아 줄기 세포주를 제조하는 방법.
본 발명에 따른 분리 및 배양 방법으로 수득된 내부 세포 덩어리는 바탕영양세포에 정착하는 비율이 현저히 높아 배아 줄기 세포주 제조에 유용하다. 또한, 본 발명은 배반포에 화학적 처리를 하지 않기 때문에 수득된 내부 세포 덩어리가 미분화 상태를 잘 유지할 수 있다.
특히, 본 발명에 따른 분리 방법은 배반포에 단지 일정한 압력을 가하기만 하여 최대한 자연적인 변화를 유도함으로써 배양 과정에서 내부 세포 덩어리를 담고 있는 벽층인 영양배엽층이 생기는 것을 막는데 효과적이며, 이에 따라 미분화된 배아 줄기 세포주 제조에 효과적이다.
본 발명에 따른 방법으로 제조된 배아 줄기 세포는 분화 조건에서 배아체를 잘 형성하여 다양한 조직으로 분화되는 능력을 지니며 미분화 조건에서는 미분화 세포의 세포학적, 면역학적, 유전학적 특징을 유지한다.
본 발명에 따른 줄기 세포주 제조 방법(성공률 80% 이상)은 면역학적인 분리 방법(성공율 20% 이하)을 사용한 경우보다 4배 이상 성공율이 높다.
또한, 본 발명에 따른 분리 방법은 면역학적인 분리 방법(immunosurgery)에 비해서 작업 시간이 짧으며 그 방법이 간단하다.
본 발명에 따른 내부 세포 덩어리 분리 및 배양 방법 및 배아 줄기 세포주 제조방법은 인간 배아 줄기세포를 이용한 치료 및 연구 분야에서 유용하게 사용될 수 있다.
도 1은 본원의 리프팅부의 일례를 도시한 도면이며,
도 2는 리프팅부가 구비된 마이크로 커버 글라스를 사용하는 방법에 관한 도면이며,
도 3은 실시예에 따른 마이크로 커버 글라스의 제조에 관한 사진이며,
도 4는 마이크로 커버 글라스로 투명대가 제거된 배반포를 덮는 방법에 대한 사진이며,
도 5는 마이크로 커버 글라스를 덮은 전, 후의 배반포의 사진이며,
도 6은 미세조작기를 이용하여 마이크로 커버 글라스를 제거하는 방법에 관한 사진이며,
도 7은 실시예에 따라 성립된 배아 줄기 세포주의 사진이며,
도 8은 종래의 면역학적 분리방법에 따라 분리된 내부 세포 덩어리의 사진이다.
10: 마이크로 커버 글라스 11: 리프팅부 12: 커버부
20: 배반포 21: 내부 세포 덩어리(내세포괴) 22: 영양배엽층
30: 미세조정기
40: 코팅 접시 41: 바탕영양세포층
본 발명은 투명대가 제거된 배반포를 바탕영양세포 위에 놓고 마이크로 커버 글라스로 덮어 일정 시간 동안 배반포에 마이크로 커버 글라스의 무게에 의한 압력을 가하여 내부 세포 덩어리를 분리 및 배양함으로써 종래보다 현저히 높은 수율로 내부 세포 덩어리를 수득할 수 있고, 이에 따라 배아 줄기 세포주를 효과적으로 성립 및 증식시킬 수 있는 방법에 관한 것이다.
본 발명에서는 수정 및 체외 배양 후 얻어진 배반포(blastocyst)를 사용한다. 배반포는 통상 100-200개의 세포로 이루어져 있으며, 내부 세포 덩어리로 불리는 30-40개의 세포와 이것을 싸는 벽층인 영양배엽층으로 이루어져 있으며, 태생 포유류의 특징적 구조이다. 여러 단계의 수정란의 분화단계에 따라 성장이 멈춘 수정란도 눈으로 보이지는 않지만 부분적으로 줄기세포를 추출할 수 있는 잠재적 능력을 가지고 있다.
배반포의 투명대(zona pellucida)는 예컨대 0.1%의 프로네이즈(pronase)로 1-2분 정도 녹여 제거할 수 있다. 인간의 경우에는, 투명대가 제거된 배반포를 사전에 예컨대 25-125 nmol/ml의 트리코스타틴-A로 약 4시간 정도 처리하면 유전자적 메틸화 현상을 막을 수 있어 수정란의 발육률을 높일 수 있다. 보다 구체적으로는, 인공수정(정자를 난자가 들어있는 드롭(drop)에 같이 넣음) 후 하나의 전핵형성을 하면 트리코스타틴-A(TSA) 35-40nmol/ml이 들어있는 배양액에서 4 시간 배양을 한 후에 TSA가 들어있지 않은 배양액으로 옮겨서 계속 배양을 할 수 있다.
본 발명의 바탕영양세포(feeder cell)는 쥐 태아 섬유아세포를 이용하는 것이 바람직하며, 이는 사전에 방사능 처리 또는 마이토마이신 C와 같은 화학적 처리를 하여 분화능력을 떨어뜨린 세포이다. 이러한 세포는 자체 증식이 되지 않으면서 배아줄기세포의 분화억제 및 증식을 돕는 역할을 한다.
특히, 인간 배아 줄기 세포는 생쥐 배아 줄기 세포(mouse embryonic stem cell)와 달리 미분화 상태를 계속 유지하며 증식시키기 위하여 바탕영양세포가 반드시 필요하다. 지금까지의 인간배아 줄기세포의 배양에서는 주로 생쥐 배아 섬유아세포(mouse embryonic fibroblast, MEF)를 영양세포층으로 사용하여 왔다. 최근에는 생쥐와 같이 다른 종의 세포를 영양세포층으로 이용하지 않고 인간에서 유래한 세포를 이용한 배양방법에 대한 연구가 이루어지고 있으므로 바탕영양세포가 특별히 생쥐 배아 섬유아세포로 한정되는 것은 아니다.
본 발명의 마이크로 커버 글라스는 바이오테크놀로지 분야에서 통상 사용되는 얇은 커버 글라스로서 배반포를 덮기에 부족함이 없고 로딩 및 언로딩시 배반포에 손상을 주지 않는 것이라면 특별한 제한없이 사용할 수 있다. 본 발명의 마이크로 커버 글라스는 핀셋(pincette), 손집게(forcep), 미세조작기(micro manipulator) 등의 도구로 로딩 또는 언로딩될 수 있다.
본 발명의 마이크로 커버 글라스는 리프팅부를 포함하면 보다 용이하게 본 발명에서 목적하는 로딩 또는 언로딩 작업을 수행할 수 있다. 이 경우, 본 발명의 마이크로 커버 글라스는 크게 배반포를 덮는 커버부와 로딩 또는 언로딩시 접촉하게 되는 리프팅부로 이루어진다. 핀셋, 손집게, 미세조작기 등의 도구로 마이크로 커버 글라스를 로딩 또는 언로딩하는 경우에는 상기 도구와 접촉하게 되는 부분이 리프팅부가 된다.
리프팅부의 일례는 도 1에 도시되어 있다. 리프팅부는 마이크로 커버 글라스에 부착된 철사 부분이 될 수 있다(도 1a 및 도 1b). 마이크로 커버 글라스의 윗면에 미세한 철사를 고리 형태로 만들어 붙일 수 있다. 마이크로 커버 글라스의 윗면에 미세한 철사를 붙이는 방법은 특별히 한정되지 않으며, 예컨대 마이크로 포지(Micro Forge, MF-900 narishige) 장비를 이용하여 유리를 녹여 그 부분에 미세한 철사를 붙이는 방법을 사용할 수 있다.
또한, 리프팅부는 마이크로 커버 글라스의 일부일 수도 있다. 예컨대 마이크로 커버 글라스의 말단 부분에 열을 가하면 마이크로 커버 글라스의 무게 때문에 그 말단 부분이 구부러지게 되는데, 이 구부러진 부분이 핀셋, 손집게 등의 도구로 잡기에 충분하다면 그 말단 부분이 리프팅부로 기능할 수 있다(도 1c).
리프팅부가 구비된 마이크로 커버 글라스를 사용하는 경우에 대해서는 도 2에 도시되어 있다. 배반포는 바탕영양세포에 놓여지고(도 2a) 미세조작기에 의해 서서히 마이크로 커버 글라스가 덮이면 마이크로 커버 글라스의 무게에 의한 압력으로 눌리게 된다(도 2b).
마이크로 커버 글라스는 인간 배아 줄기 세포주의 제조를 위한 경우에는 배반포의 크기를 고려하여 가로가 3 내지 8 mm이고 세로가 2 내지 6 mm인 크기로 가공하여 사용할 수 있다. 예컨대 가로 및 세로가 각각 5 mm인 마이크로 커버 글라스의 무게는 0.008-0.01g이고 단위 면적당(1mm×1mm) 0.002g 정도의 무게로 배반포를 누를 수 있다.
마이크로 커버 글라스가 배반포를 덮는 시간은 3-20 시간인 것이 바람직하다. 인간 배반포의 경우에는 13-15 시간인 것이 바람직하다. 마이크로 커버 글라스를 덮거나 일정 시간이 지난 후 걷어낼 때에는 배반포가 뭉개지거나 손상되지 않도록 주의해야 한다. 이러한 관점에서는 미세조작기를 사용하는 것이 바람직하다.
본 발명의 분리 방법에 따라 분리된 내부 세포 덩어리(ICM)는 별도의 바탕영양세포에서 증식시켜 배아 줄기 세포주로 제조할 수 있다. 분리된 내부 세포 덩어리를 증식하는 방법과 배아 줄기 세포주로 제조하는 방법은 통상 바이오테크놀로지 분야에서 사용되는 방법을 제한없이 사용할 수 있다. 다만 본 발명의 분리 방법에 따르면, 수득된 내부 세포 덩어리의 양이 많고 그 세포가 바탕영양세포에 정착하는 비율 및 바탕영양세포에서 성공적으로 배양되는 비율이 높기 때문에, 어느 통상의 방법을 사용하더라도 배아 줄기 세포주로 성립될 가능성은 종래에 비해 현저히 높다.
배양액은 배아 줄기 세포 배양에 사용되는 통상의 것들을 제한없이 사용할 수 있다. 특히, Memα-gluta max (Gibco Brl사, 32571)용액에 20% Knockout Serum Replacement(Gibco Brl사)를 배합한 기본 배양액에 0.1mM β-메르캅토에탄올(mercaptoethanol, Sigma사), 100 유닛/ml 페니실린(penicillin), 100 ㎍/ml 스트렙토마이신(streptomycin) 및 4 ng/ml basic fibroblast growth factor(bFGF, invitorgen 13256-029)를 넣은 것을 사용하는 것이 바람직하다.
배양액은 사용 전에 생쥐 배아 섬유아세포(mouse embryonic fibroblast, MEF) 영양세포층에 하루 또는 이틀 정도 공배양을 한 후에 수거하여 사용할 수 있다. 수거된 배양액은 필터링은 하지 않고 원심분리기로 원심분리를 한 후 상층액만 걷어서(conditioned media) 사용할 수 있다.
또한, 줄기세포 배양을 위한 배양액을 제조하기 위해 기존의 배아줄기세포주가 배양되던 줄기세포주 배양액을 회수하여 원심분리 후 상층액만 걷어서 새로 만들어진 배양액과 50%:50% 비율로 섞어 초기 줄기 세포주 성립을 위한 배양액(conditioned media)으로 사용하면 배반포에서 줄기세포주로 배양되는 성공률이 증가한다.
치료용 줄기 세포주의 배양을 위해서는, 경우에 따라 내부 세포 덩어리를 생쥐 배아 섬유아세포(MEF)가 없는 배양접시에서 배양할 수도 있으며, 조건은 동일하나 접시 표면을 마트리겔과 PBS의 1:30 혼합물 및 젤라틴 0.1%로 4℃에서 1 시간 정도 정치시켜 코팅한 후 상층액을 버리고 배양접시로 이용할 수 있다.
배양액은 24시간에 한번 씩 교체하는 것이 바람직하다. 다만, 배양액 대신 mTsSR media (Stem cell Technologies)를 매일 교환하면 바탕영양세포가 없는 환경에서 배아 줄기 세포주를 배양할 수 있다. 하지만 배아 줄기 세포가 다른 세포로 분화를 할 수 있기 때문에 내부 세포 덩어리를 생쥐 배아 섬유아세포 (MEF) 위에서 배양하는 경우가 주로 사용된다.
배아 줄기 세포가 서로 뭉쳐서 자라도록 방치하면 배아 모양의 세포 덩어리를 형성하게 되고, 배아 줄기 세포는 스스로 분화하기 시작한다. 내부 세포 덩어리(inner cell mass)에서 유래한 세포들은 인간의 몸을 구성하는 삼배엽성 세포들로 분화할 수 있는 능력을 지니고 있다. 앞으로, 본 발명에 기초하여 배아 줄기 세포를 특정 세포로 분화시킬 수 있는 방법을 찾아낸다면 질병 치료에 매우 효과적일 것이다.
이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 실시예는 본 발명이 실제 구현되는 과정을 보다 쉽게 설명하기 위한 것일 뿐 이 실시예에 의해 본 발명의 권리범위가 제한 또는 한정되는 것은 아니다.
실시예
1. 마이크로 커버 글라스의 제조
본 발명에서는 상기 설명한 바와 같이 내부 세포 덩어리라고 불리는 30-40 개의 세포를 미분화 상태로 배양하기 위해서 마이크로 커버 글라스를 이용한다. 본 실시예에서는 가로 25mm×세로 25mm 크기의 마이크로 커버 글라스(제조사: VWR International LLC, cat no.48366-089)를 다음의 방법으로 가공하여 사용하였다.
구입한 가로 25mm×세로 25mm 크기의 마이크로 커버 글라스를 가로 7 mm, 세로 5 mm로 절단한 후(도 3a), 가스 버너로 한쪽 말단을 가열하였다(도 3b). 마이크로 커버 글라스는 그 자체의 무게로 인하여 가열된 부분이 구부러지며 도 3c에 도시된 바와 같이 변형되었다. 그 후 하이드로플로릭산(Hydrofluoric Acid 48-51%)을 10배 희석한 용액에서 마이크로 커버 글라스의 배반포 부분과 닿는 부분(리프팅부 포함) 표면의 미세한 흠집을 모두 제거하고 세정하였다.
2. 마이크로 커버 글라스로 배반포 덮기
위와 같이 제조된 마이크로 커버 글라스를 이용하여 다음과 같이 투명대가 제거된 배반포를 덮었다(도 4).
수정란이 체외에서 배양된 후 5-6일이 지난 배반포(도 5a)를 0.1%의 프로네이즈(pronase)로 1-2분 정도 녹여 배반포의 투명대를 제거하였다(도 5b). 투명대가 제거된 배반포를 바탕영양세포 바닥면에 놓고 손집게를 이용하여 마이크로 커버 글라스의 리프팅부(구부러진 말단 부분)를 잡고 천천히 배반포를 덮었다. 이에 따라 배반포에는 마이크로 커버 글라스의 무게에 의한 압력이 작용한다. 마이크로 커버 글라스를 덮은 직후의 배반포 사진은 도 5c와 같았다. 마이크로 커버 글라스로 누른 후 6시간 후에는 내부 세포 덩어리 부분의 줄기세포들이 영양배엽층 쪽으로 퍼져나가면서 영양배엽층이 점차 줄어들었다(도 5d). 그리고 마이크로 커버 글라스로 누른 후 14시간 후에는 영양배엽층이 보다 더 많이 줄어들었다(도 5e).
3. 마이크로 커버 글라스의 제거
마이크로 커버 글라스를 덮은 후 14 시간 후, 도 5e와 같이 영양배엽층이 거의 사라지고 그 사이로 내부 세포 덩어리에서 증식을 시작한 줄기세포가 위치하게 되었다. 이때 쯤, 마이크로 커버 글라스를 제거해야 한다. 제거할 때에는 배반포가 바탕영양세포의 바닥면에 정착한 상태이기 때문에 미세한 외부 자극에도 민감하게 반응한다. 따라서 본 실시예에서는 도 6과 같이 미세조작기를 이용하여 마이크로 커버 글라스를 제거하였다.
도 6a는 마이크로 커버 글라스가 덮여진 상태로 배양되는 사진이며, 도 6b는 미세조작기를 배양접시 상단에 위치한 사진이고, 도 6c는 미세조작기로 배양접시에 놓여진 마이크로 커버 글라스의 리프팅부를 누른 사진이다. 도 6d는 마이크로 커버 글라스의 리프팅부를 미세조작기로 미세하게 천천히 누르면 그 반대쪽이 위로 들어올려지는 작동 원리를 설명한 사진이다.
본 실시예에서는 미세조작기로 마이크로 커버 글라스의 리프팅부를 눌러 그 반대쪽이 들어올려지면 그 상태에서 미세조작기로 내부 세포 덩어리에서 멀리 떨어진 위치로 이동시킨 후 손집게를 이용하여 마이크로 커버 글라스를 제거하였다.
4. 배아 줄기 세포의 배양
마이크로 커버 글라스를 제거한 후, 분리된 내부 세포(줄기 세포)를 5%의 이산화탄소, 온도 37℃인 포화습도 배양기 안에서 배양하였다. 배양 후 2-3일 정도가 경과하였을 때의 사진은 도 5f와 같다. 도 5f의 가운데 부분에는 내부 세포 덩어리가 확인되며, 그 주위로는 좁쌀 같이 미분화된 배아 줄기 세포가 자라는 것이 확인된다. 이와 같이 배양된 배아 줄기 세포는 몇 차례의 계대배양을 통해 도 7의 배아 줄기 세포주로 성립되었다. 본 발명에서 수득된 배아줄기세포를 계대배양하는 방법은 당업계에 알려진 통상적인 방법에 따랐다.
분리된 내부 세포를 배양하기 위한 배양액은 24시간 주기로 교체하였으며 배양액 및 배양접시는 다음과 같이 제조하였다.
배아줄기세포주 배양액 및 배양접시 제조방법
(1) 배아줄기세포주 배양액 제조방법
본 발명에 사용된 배양액은 Memα-gluta max (Gibco Brl사, 32571)용액에 20% Knockout Serum Replacement(Gibco Brl사)를 배합하여 기본 배양액으로 사용하였으며, 여기에 0.1mM β-메르캅토에탄올(mercaptoethanol, Sigma사), 100 유닛/ml 페니실린(penicillin), 100 ㎍/ml 스트렙토마이신(streptomycin) 및 4 ng/ml basic fibroblast growth factor(bFGF, invitorgen 13256-029)을 넣어서 사용하였다.
제조된 배양액은 사용하기 전에 생쥐 배아 섬유아세포(mouse embryonic fibroblast, MEF) 영양세포층에 하루 또는 이틀 정도 공배양을 한 후에 수거하고, 수거된 배양액을 원심분리를 한 후 상층액만 걷어서 새로 만든 배양액과 50% : 50% 비율로 섞어서(conditioned media) 사용하였다.
(2) 배양접시 제조방법
4 웰(well) 접시(Nunclon, cat no.176740)에 젤라틴(Gelatin, sigma사 G1393)을 10배 희석하여(0.1% 코팅) 1시간 정치시킨 후 4 웰(well) 접시 안 용액을 걷어낸 후 배양 접시로 사용하였다.
생쥐 배아 섬유아세포(MEF) 영양세포층의 제조
내부 세포 덩어리를 생쥐 배아 섬유아세포(mouse embryonic fibroblast, MEF) 배양 접시에 이식하기 전에, 마이토마이신 C(mitomycin C, sigma) 10㎍/㎖ 가 들어 있는 배양액에 위에서 제작된 배양접시 0.2㎟ 당 50-100개 부착해서 자라는 정도의 생쥐 배아 섬유아세포(바탕영양세포)를 5-6시간 배양을 하여 분화능력을 떨어트린 후 배아줄기세포 배양액으로 세정하였고, 배아줄기세포가 자라는 바탕영양세포로 사용되는 생쥐 배아 섬유아세포(MEF)가 배양되는 접시를 제조하였다.
비교예
내부 세포 덩어리를 면역학적 분리 방법(immunosurgery)에 따라 배반포로부터 분리하였다. 먼저 수정란의 투명대(zona pellucida)를 프로네이즈(pronase) 0.1% 로 약 1-2분간 녹인 후, 투명대 안에 들어 있는 배반포 세포덩어리를 100%의 항-휴먼 혈청 항원 용액(anti-human serum antibody, 시그마사)에 약 20분간 정치시켰다. 그 후, 다시 기니피그 혈장액(guinea pig complement)에 약 30분간 정치시켰다.
위와 같이 분리된 세포를 위 실시예와 동일한 방법으로 배양 및 증식시켜 배아 줄기 세포주를 제조하였다(도 8).
시험예: 실시예 및 비교예의 배아줄세기포주 성립결과 비교
위 실시예 및 비교예의 방법에 따라 제조된 배아줄기세포주의 성립 결과를 정리하면 다음 표 1과 같다.
표 1
구분 배양에 사용된 배반포 수정란의 수 바탕영양세포 바닥면에 정착한 내부 세포 덩어리 개수 바탕영양세포 바닥면에서 배양을 시작한 내부 세포 덩어리 개수 바탕영양세포에서 충분한 숫자가 배양되어 배아 줄기 세포주로 성립된 배아 줄기 세포주 개수
실시예 5 5(100%) 5(100%) 4(80%)
비교예 10 7(70%) 4(40%) 2(20%)
위 표 1과 같이 본원의 내부 세포 덩어리 분리 방법 및 배아 줄기 세포주 제조방법은 종래의 면역학적 분리방법 및 그에 따른 배아 줄기 세포주 제조방법에 비해 현저히 우수한 성공률을 나타낸다. 본 발명의 배양방법을 이용하면 다양한 세포로 분화할 수 있는 배아줄기세포주를 다량으로 손쉽게 수득할 수 있고, 앞으로 배아줄기세포를 이용한 치료 및 연구 분야에서 유용하게 사용될 수 있다.

Claims (10)

  1. 투명대가 제거된 배반포를 바탕영양세포 위에 놓고 마이크로 커버 글라스로 덮어 일정 시간 동안 배반포에 마이크로 커버 글라스의 무게에 의한 압력을 가하는 단계를 포함하는 내부 세포 덩어리의 분리 방법.
  2. 청구항 1에 있어서, 마이크로 커버 글라스는 리프팅부를 포함하는 것인 분리 방법.
  3. 청구항 2에 있어서, 리프팅부는 고리 또는 마이크로 커버 글라스의 구부러진 말단인 분리 방법.
  4. 청구항 1에 있어서, 마이크로 커버 글라스의 무게에 의한 압력은 0.001-0.003g/mm2인 분리 방법.
  5. 청구항 1에 있어서, 마이크로 커버 글라스가 배반포를 덮는 시간은 3 내지 20 시간인 분리 방법.
  6. 청구항 5에 있어서, 마이크로 커버 글라스가 배반포를 덮는 시간은 13 내지 15 시간인 분리 방법.
  7. 청구항 1에 있어서, 마이크로 커버 글라스는 가로가 3 내지 8 mm이고 세로가 2 내지 6 mm인 분리 방법.
  8. 청구항 1에 있어서, 마이크로 커버 글라스로 배반포를 덮거나 일정 시간이 지난 후 걷어낼 때 핀셋, 손집게 또는 미세조작기를 사용하는 분리 방법.
  9. 청구항 1에 있어서, 투명대가 제거된 배반포는 사전에 트리코스타틴-A로 처리된 것인 분리 방법.
  10. 청구항 1 내지 9 중 어느 한 항에 따른 분리 방법에 따라 분리된 내부 세포 덩어리를 바탕영양세포에서 증식시켜 배아 줄기 세포주를 제조하는 방법.
PCT/KR2009/002806 2009-03-29 2009-05-27 내부 세포 덩어리의 분리 방법 및 이를 이용한 배아 줄기 세포주의 제조 방법 WO2010114193A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0026713 2009-03-29
KR20090026713 2009-03-29
KR20090045648 2009-05-25
KR10-2009-0045648 2009-05-25

Publications (1)

Publication Number Publication Date
WO2010114193A1 true WO2010114193A1 (ko) 2010-10-07

Family

ID=42784751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002806 WO2010114193A1 (ko) 2009-03-29 2009-05-27 내부 세포 덩어리의 분리 방법 및 이를 이용한 배아 줄기 세포주의 제조 방법

Country Status (3)

Country Link
US (1) US8093051B2 (ko)
KR (1) KR101066773B1 (ko)
WO (1) WO2010114193A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6268770B2 (ja) 2013-06-28 2018-01-31 東洋製罐グループホールディングス株式会社 細胞剥離方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100567535B1 (ko) * 2004-08-12 2006-04-03 김창현 작은크기로 채취된 동물세포를 슬라이드 글라스 유리판을 이용해 세포배양하는 방법
US20070010010A1 (en) * 2003-05-08 2007-01-11 Cellartis Ab Method for efficient transfer of human blastocyst-derived stem cell (hbs cells) from a feeder-supported to a feeder-free culture system
KR100715366B1 (ko) * 2004-12-27 2007-05-07 김창현 세포 배양방법
US7294508B2 (en) * 2001-08-23 2007-11-13 Reliance Life Sciences Pvt. Ltd. Isolation of inner cell mass for the establishment of human embryonic stem cell (hESC) lines

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515958A (ja) 2003-12-19 2007-06-21 ユニヴァーシティー オブ ウォータールー 培養細胞、細胞培養の方法および機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294508B2 (en) * 2001-08-23 2007-11-13 Reliance Life Sciences Pvt. Ltd. Isolation of inner cell mass for the establishment of human embryonic stem cell (hESC) lines
US20070010010A1 (en) * 2003-05-08 2007-01-11 Cellartis Ab Method for efficient transfer of human blastocyst-derived stem cell (hbs cells) from a feeder-supported to a feeder-free culture system
KR100567535B1 (ko) * 2004-08-12 2006-04-03 김창현 작은크기로 채취된 동물세포를 슬라이드 글라스 유리판을 이용해 세포배양하는 방법
KR100715366B1 (ko) * 2004-12-27 2007-05-07 김창현 세포 배양방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CORTES J. L. ET AL.: "Whole-blastocyst culture followed by laser drilling technology enhances the efficiency of inner cell mass isolation and embryos: new insights for derivation of human embryonic stem cell lines.", STEM CELLS AND DEVELOPMENT., vol. 17, no. 2, April 2008 (2008-04-01), pages 255 - 267 *
SUSANNE STROM ET AL.: "Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines.", HUMAN REPRODUCTION., vol. 22, no. 12, December 2007 (2007-12-01), pages 3051 - 3058, XP002585157, DOI: doi:10.1093/HUMREP/DEM335 *

Also Published As

Publication number Publication date
US8093051B2 (en) 2012-01-10
US20100248367A1 (en) 2010-09-30
KR101066773B1 (ko) 2011-09-27
KR20100108497A (ko) 2010-10-07

Similar Documents

Publication Publication Date Title
AU2006304788A1 (en) Parthenogenic activation of human oocytes for the production of human embryonic stem cells
WO2022145832A1 (ko) 역분화줄기세포(ipsc) 유래 자연 살해 세포 및 이의 용도
CN110042082B (zh) 视网膜色素上皮细胞及其制备方法和应用
WO2007047465A1 (en) Production of oligodendrocytes from placenta-derived stem cells
WO2015105357A1 (ko) 영양막 기저층으로부터 유래된 줄기세포 및 이를 포함하는 세포치료제
Kawase et al. Comparison of intracytoplasmic sperm injection for inbred and hybrid mice
CN108384749A (zh) 鸡性腺原始生殖细胞快速分离与建系的方法
CN101525592A (zh) 具有两条活性x染色体的人孤雌胚胎干细胞系及其衍生物
WO2012173358A2 (ko) 정소의 체세포-유래의 다능성 줄기세포, 이의 제조방법 및 이를 포함하는 발기부전 치료용 약학 조성물
WO2019198962A1 (ko) 소변유래줄기세포로부터 제작된 유도만능줄기세포의 증식 및 분화 촉진 방법
WO2012008733A2 (ko) 1기 태반조직 유래 줄기세포 및 이를 함유하는 세포치료제
WO2010114193A1 (ko) 내부 세포 덩어리의 분리 방법 및 이를 이용한 배아 줄기 세포주의 제조 방법
WO2011159075A2 (ko) 2차원 배양을 이용한 성체줄기세포의 신경전구세포로의 분화방법 및 신경전구세포를 이용한 신경손상 질환 치료용 약학 조성물
CN112159796A (zh) 一种人脐带来源的间充质干细胞原代分离的方法及应用
CA2015707A1 (en) In vitro maturation of bovine oocytes
WO2022035023A1 (ko) 천공을 통한 모유두세포 이식방법
Vanhems et al. Differentiation of glial cells and neurite outgrowth obtained from embryonic locust central nervous system explants
WO2014119893A1 (ko) 식물 줄기세포 또는 식물 역분화 줄기 세포의 추출물을 이용한 맞춤형 만능줄기세포의 유도 방법 및 상기 방법에 의해 제조된 만능줄기세포
Karasiewicz et al. Development of isolated sheep inner cell masses/embryonic discs in vitro
KR20090013543A (ko) 정조 줄기 세포의 분리방법
CN112522182A (zh) 一种胚胎干细胞的提取和分离方法
KR101374190B1 (ko) 돼지배아줄기세포 및 돼지 미성숙 난자로부터 돼지배아줄기세포를 제조하는 방법
US20080064100A1 (en) Method for Preparation of an Autologous Endometrial Culture for an Endometrium-Embryo Coculture
CN118256424B (zh) 基于胚胎分割技术建立非人灵长类自体胚胎干细胞的方法
CN109609446B (zh) 一种用于分离培养兔胚胎干细胞的培养液和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842730

Country of ref document: EP

Kind code of ref document: A1