WO2012173358A2 - 정소의 체세포-유래의 다능성 줄기세포, 이의 제조방법 및 이를 포함하는 발기부전 치료용 약학 조성물 - Google Patents

정소의 체세포-유래의 다능성 줄기세포, 이의 제조방법 및 이를 포함하는 발기부전 치료용 약학 조성물 Download PDF

Info

Publication number
WO2012173358A2
WO2012173358A2 PCT/KR2012/004546 KR2012004546W WO2012173358A2 WO 2012173358 A2 WO2012173358 A2 WO 2012173358A2 KR 2012004546 W KR2012004546 W KR 2012004546W WO 2012173358 A2 WO2012173358 A2 WO 2012173358A2
Authority
WO
WIPO (PCT)
Prior art keywords
cells
htscs
stem cells
passage
positive
Prior art date
Application number
PCT/KR2012/004546
Other languages
English (en)
French (fr)
Other versions
WO2012173358A3 (ko
Inventor
이동율
최원윤
윤태기
Original Assignee
의료법인 성광의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 의료법인 성광의료재단 filed Critical 의료법인 성광의료재단
Priority to US14/126,220 priority Critical patent/US9688961B2/en
Priority to CN201280029658.4A priority patent/CN103620023B/zh
Publication of WO2012173358A2 publication Critical patent/WO2012173358A2/ko
Publication of WO2012173358A3 publication Critical patent/WO2012173358A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0681Cells of the genital tract; Non-germinal cells from gonads
    • C12N5/0683Cells of the male genital tract, e.g. prostate, epididymis; Non-germinal cells from testis, e.g. Leydig cells, Sertoli cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0668Mesenchymal stem cells from other natural sources

Definitions

  • the present invention relates to a novel testicular somatic-derived pluripotent stem cells, more particularly pluripotent adult stem cells, which have a positive immune response against both CD34 and CD73 and are derived from testicular somatic cells.
  • the present invention also relates to a method for producing a testicular somatic-derived pluripotent stem cell and a pharmaceutical composition for treating erectile dysfunction comprising the same.
  • BM-MSCs bone marrow-derived mesenchymal stem cells
  • BM-MSCs are very painful for the patient and it is difficult to maintain BM-MSCs in the medium once separated, which leads to the easy aging of BM-MSCs (usually in the 8th passage), and the loss of differentiation easily. And also in some cases become neoplastic after proliferation in in vitro culture.
  • Other origins of stem cells include dental pulp, waton jelly, amnion, and adipose tissue, but all have limited lifespan and differentiation capacity.
  • CD34 is found in early hematopoietic and vascular-associated tissues.
  • CD34 is a 116-kD type I transmembrane glycoprotein: little is known about its exact function.
  • cells expressing CD34 on the surface proliferate by cytokine or growth factor stimulation and also differentiate into all lymphohematopoietic lineages.
  • CD34 has been used as a marker to aid in the identification and isolation of lymphoid stem / progenitor cell populations; More recently, it has been used as a marker to help control other tissue-specific stem cells, including muscle satellite cells and epithelial progenitor cells.
  • CD34-positive stromal cells are distributed in various organs including breast, fallopian tubes, thyroid, rectum, pancreas, cervix, and testes (Kim J, Seandel M, Falciatori I, et al. CD34 + testicular stromal cells support long-term expansion of embryonic and adult stem and progenitor cells.Stem Cells. 2008; 26: 2516-2522).
  • ASC adipose-derived stromal cell
  • CD34-positive cells showed higher proliferative capacity and colony-forming capacity than CD34-negative cells, but showed lower differentiation capacity.
  • the authors suggested that CD34 expression is inversely related to the physiological differentiation process from immature to specific lines (Suga H, Matsumoto D, Eto H, et al. Functional implications of CD34 expression in human adipose-derived stem / progenitor cells.Stem Cells Dev. 2009; 18: 1201-1210).
  • CD73 is a glycosyl phosphatidyl inositol ((GPI) -linked membrane-binding glycoprotein that hydrolyzes extracellular nucleoside monophosphates to bioactive nucleoside intermediates.
  • GPI glycosyl phosphatidyl inositol
  • mammalian testis consists of germ cells and various kinds of somatic cells. The absence of certain markers made it difficult to identify and localize potential stem cells in tissues.
  • Some researchers have isolated and expanded unipotent stem cells, such as spermatogonial stem cells (SSCs) and Leydig stem cells (Kanatsu-Shinohara M, Ogonuki N, Inoue). K, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells.Biol Reprod. 2003; 69: 612-616; and Ge RS, Dong Q, Sottas CM, et al.
  • testicular somatic stem cells Only recently have MSC-like cell populations been isolated from adult human testes and characterized by differentiation into mesodermal-line cells (Gonzalez R, Griparic L, Vargas V, et al. A putative mesenchymal stem cells population isolated from adult human testes Biochem Biophys Res Commun. 2009; 385: 570-575). These cells are positive for CD90 and negative for CD34, suggesting that they are testis-derived MSCs with limited lifespan in vitro. In mice, CD34-positive stromal cells efficiently supported proliferation of adult testicular progenitor cells (Seandel M, James D, Shmelkov SV, et al.
  • CD34 / CD73-double-positive cells show significantly better proliferative capacity than CD34-negative cells and also show much higher differentiation into cells of fat, bone, nerve, pancreatic lineages and the like.
  • the cells did not form teratomas in NOD-SCID mice and retained high genetic stability by maintaining normal karyotype after 30 passages. They promoted functional recovery of erectile dysfunction in a rat model of bilateral cavernous nerve crush injury. It has also been found that the proportion of cells expressing CD34 decreases as the number of passages of cells increases in vitro and decreases as the cells finally differentiate.
  • the present invention aims to provide a CD34 / CD73-double-positive pluripotent adult stem cell derived from somatic cells of the testis.
  • an object of the present invention is to provide a pharmaceutical composition for treating erectile dysfunction comprising CD34 / CD73-bi-positive pluripotent adult stem cells derived from the somatic cells of the testis as an active ingredient.
  • a pluripotent adult stem cell which shows a positive immune response against both CD34 and CD73 and is derived from somatic cells of the testis.
  • the method comprises the steps of: (a) isolating and passaged the outer periphery of the lavage tube from human testis tissue isolated from the human body; And (b) sorting the cells obtained from step (a) using anti-CD34 antibody and anti-CD73 antibody to isolate and passage CD34-positive and CD73-positive cells.
  • a method of producing a pluripotent adult stem cell comprising a positive immune response against both CD34 and CD73.
  • a pharmaceutical composition for treating erectile dysfunction which has a positive immune response against both CD34 and CD73 and comprises pluripotent adult stem cells derived from testicular somatic cells as an active ingredient.
  • CD34 / CD73-double-positive testicular stromal cells ie pluripotent adult stem cells derived from testicular somatic cells.
  • the pluripotent adult stem cells exhibit excellent proliferative capacity (population diploidy of about 67.3 ⁇ 2.1 on average), and also of the trioderm lineage, including adipocytes, bone cells, nerve cells, pancreatic cells (eg insulin-isolating cells). Much higher differentiation into cells.
  • the pluripotent adult stem cells do not form teratomas and retain high genetic stability by maintaining normal karyotype after 30 passages.
  • the pluripotent adult stem cells promote functional recovery of erectile dysfunction in a rat model of bilateral cavernous nerve crush injury. Therefore, the pluripotent adult stem cells can be usefully applied to pharmaceutical compositions for treating erectile dysfunction.
  • FIG. 1 shows co-localization of CD34 with CD73, ⁇ SMA, and CD31 in testes of patients with non-obstructive autism (NOA, FIG. 1A) and obstructive autism (OA, FIG. 1B).
  • NOA non-obstructive autism
  • OA obstructive autism
  • DAPI nuclear staining is blue
  • FITC staining is green
  • Cy3 staining is red.
  • White arrows are CD34, CD73-double positive signal.
  • Open arrowheads are signals for ⁇ SMA. The white arrowhead is the signal for CD31.
  • BM-MSCs bone marrow-derived mesenchymal stem cells
  • TSCs testis-derived stem cells
  • HTSCs hyperproliferative testicular-derived stem cells
  • 2A is an immunocytochemical analysis showing the expression of CD34 in human TSCs cell population (100X), and the red signal is CD34 expression.
  • 2B is an immunocytochemical analysis showing CD34 and CD73 expression in BM-MSCs, TSCs, and HTSCs, with DAPI nuclear staining blue.
  • 2C is an immunocytochemical analysis showing the expression of pluripotent stem cell markers OCT4, c-Kit, Tra-1-60, Tra-1-81, SSEA3 and SSEA4 in HTSCs; FITC staining is green; Cy3 and TRITC staining is red.
  • FIG. 3 shows the morphological and proliferative properties of various types of testis-derived stem cells (TSCs).
  • FIG. 3A is a phase contrast image (MSC-like vs. aging-like form) showing differences in the morphology of cells maintained under the same culture conditions, bone marrow-derived intermediate at passage 1 and passage 6.
  • BM-MSCs Lobe stem cells
  • HTSCs hyperproliferative testicular-derived stem cells
  • 4 shows flow cytometry analysis of sorted cell populations before and after further culture.
  • 4A shows a comparison of cumulative doubling of bone marrow-derived mesenchymal stem cells (BM-MSCs), testicular-derived stem cells (TSCs), hyperproliferative testicular-derived stem cells (HTSCs), and reclassified HP-TMSCs.
  • 4B shows that after further incubation of HTSCs, CD34-positive cells were reduced but CD73-positive cells remained abundant.
  • 4C shows that during incubation, HTSCs gradually lost CD34-expression and failed to recover CD34 expression, but prolonged the proliferation of HTSCs when the population of CD34-positive cells were sorted and expanded by MACS.
  • FIG. 5 is a test of mesenchymal lineages (cartilage, fat, bone cells) of bone marrow-derived mesenchymal stem cells (BM-MSCs), testis-derived stem cells (TSCs), and hyperproliferative testicular-derived stem cells (HTSCs). Shows differentiation capacity in the tube.
  • BM-MSCs bone marrow-derived mesenchymal stem cells
  • TSCs testis-derived stem cells
  • HTSCs hyperproliferative testicular-derived stem cells
  • FIG. 5A shows Alcian blue staining for sulfate proteoglycans in BM-MSCs of passage 5, TSCs of passage 3, HTSCs of passages 5, 13, 20 and reclassified passage 20 after cartilage differentiation for 3 weeks
  • Figure 5B shows lipid droplets using oil red O.
  • Figure 5C is for assessing calcium accumulation (left panel) and bone differentiation of Alizarin Red S.
  • CBFA I left of right panel
  • COL I right of right panel
  • FIG. 6 shows in vitro differentiation capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs) and hyperproliferative testicular-derived stem cells (HTSCs) into insulin-secreting cells.
  • BM-MSCs bone marrow-derived mesenchymal stem cells
  • HTSCs hyperproliferative testicular-derived stem cells
  • 6A and 6B show the results of an enzyme-linked immunosorent assay for insulin and C-peptide secretion after incubation in various differentiation conditions.
  • 6C shows a comparison of insulin and NGN-3 gene expression between insulin secreting cells derived from HTSCs and BM-MSCs.
  • FIG. 7A shows the electrical stimulation of the cavernous nerve near the site of injury in the rat, and inserted into the corpus cavernosum using a 24-gauge needle.
  • 7B shows the measurement of foot function, with red, blue and green curves, respectively, showing the mean arterial pressure (MAP), intracavernous pressue (IAP) and ICP / MAP ratios for nerve stimulation.
  • MAP mean arterial pressure
  • IAP intracavernous pressue
  • ICP / MAP ratios for nerve stimulation.
  • 7C shows that injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and hyperproliferative testicular-derived stem cells (HTSCs) increased the ICP / MAP ratio compared to the injured group.
  • BM-MSCs bone marrow-derived mesenchymal stem cells
  • HTSCs hyperproliferative testicular-derived stem cells
  • 7D shows perineural prostatic tissue stained with CellTracker (red fluorescence) and neuronal markers (TuJI, dark brown) to visualize HTSCs (arrowheads).
  • 7E is TuJI (purple, arrow) and human cell-specific antibody Stem 121 (green, white arrowhead).
  • DAPI nuclear staining is blue; CellTracker is red (open arrowhead).
  • FIG. 8 shows an example of a process for separating CD34-positive and CD73-positive testicular-derived mesenchymal stem cells.
  • 9A shows specific marker expression in early testicular stromal cells. Immunohistochemical analysis showed CD34 (red, white arrowhead) and 3 ⁇ -HSD (green, open arrowhead) and GFR ⁇ 1 (red, white arrowhead) and Thy-1 (green, open arrow) in the second column. Head), and the third column shows the expression of ⁇ SMA (red) and Desmin (green). 9B shows the number of cells isolated at each step per 100 mg of testis tissue. Starting material was counted on day 0, adherent cells were counted on day 3, CD73-sorted cells were counted at passage 2 and CD34-sorted cells were counted at passage 3.
  • 9C shows specific marker expression in hyperproliferative testis-derived stem cells (HTSCs) at passage 3 and passage 8. Immunocytochemical analysis shows expression of CD34 (red) and non-expression of GFR ⁇ 1 or Thy-1 (green). 9D is an immunocytochemical analysis showing expression of CD34 (red) and non-expression of 3 ⁇ -HSD. 9E is an immunocytochemical analysis showing expression of CD34 (red) and non-expression of Desmin or ⁇ SMA.
  • HTSCs hyperproliferative testis-derived stem cells
  • 11 shows the properties of hyperproliferative testis-derived stem cells (HTSCs).
  • 11A shows that HTSCs have normal karyotypes (2n, 46XY) at the indicated passages.
  • 11B shows the results of RT-PCR analysis of pluripotency markers (Oct4, NANOG, SOX2) and germ cell markers (VASA) in HTSCs.
  • FIG. 12 shows colony forming unit assay results for bone marrow-derived mesenchymal stem cells (BM-MSCs) and hyperproliferative testicular-derived stem cells (HTSCs).
  • BM-MSCs and HTSCs did not show colony formation in hematopoietic conditions (B), but colony formation in non-hematopoietic conditions (A).
  • FIG. 13A shows the results of teratoma formation of hyperproliferative testis-derived stem cells (HTSCs) in kidney (A1-A4) and testis (A5-A8) (100X). There was no teratoma formation in both tissues.
  • 13B shows teratoma formation from embryonic stem cells (x200). Gut-like epithelium (endoderm, HE stained, B1), cartilage (mesoderm, alcian blue stained, B2), secretory epithelium (endodermal, PAS stained, B3), and myofiber (muscle fibers) (mesoderm, Masson's trichrome staining, B4).
  • 13C shows expression of specific human cell-specific markers (Stem 121) in mouse and human testis tissue. Immunocytochemical analysis shows non-expression of Stem 121 in the first row, but expression in the second and third rows.
  • FIG. 14 shows mesodermal lineage (fat, bone) of embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose-derived (AD) -MSCs, and hyperproliferative testicular-derived stem cells (HTSCs). And in vitro differentiation capacity into chondrocytes).
  • ESCs embryonic stem cells
  • BM-MSCs bone marrow-derived mesenchymal stem cells
  • AD adipose-derived
  • HTSCs hyperproliferative testicular-derived stem cells
  • 15 shows in vitro differentiation capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs) and hyperproliferative testicular-derived stem cells (HTSCs) into neural lineage cells.
  • 15a shows nestine was expressed in neurons differentiated from BM-MSCs and HTSCs (x200).
  • 15B is a phase contrast micrograph (100X) of neurons differentiated from BM-MSCs and HTSCs.
  • FIG. 15C shows gene expression of GFAP and ⁇ -tubulin 3 in cells differentiated into neurons to induced HTSCs compared to BM-MSCs.
  • FIG. 16 shows in vivo differentiation capacity of hyperproliferative testicular-derived stem cells (HTSCs) into mesoderm lineage (fat, bone and chondrocytes).
  • HTSCs hyperproliferative testicular-derived stem cells
  • 16A and 16B show gene and protein expression of PPAR ⁇ and C / EBPa in HTSCs differentiated into adipocytes, gene and protein expression of COL I and CBFA I in osteoblast differentiated HTSCs, compared with non-induced chondrocytes.
  • 16C and 16D show the results of immunocytochemical analysis using specific staining and specific markers.
  • 17A and 17B show the results of analyzing the ratio of cells expressing CD34 and the degree of differentiation of cells.
  • the percentage of cells expressing CD34 decreased with passage (passages 5, 13, and 20), and marker genes of all three germ cell pains (mesoderm genes: PPAR, C / EBP, COL I, CBFA I, COMP, and Expression levels of SOX9; endoderm genes: Insulin and NGN; and ectoderm genes: GFAP and ⁇ -Tubulin 3) were also reduced.
  • the present invention provides pluripotent adult stem cells, which show a positive immune response against both CD34 and CD73 and are derived from testicular somatic cells.
  • Pluripotent adult stem cells exhibit excellent proliferative capacity (population diploidy of about 67.3 ⁇ 2.1 on average), and also include adipocytes, bone cells, nerve cells, pancreatic cells (eg insulin-isolating cells). Show much higher differentiation into cells of the germ lineage.
  • the pluripotent adult stem cells do not form teratomas and retain high genetic stability by maintaining normal karyotype after 30 passages.
  • the testicular somatic cells may be outer surrounding cells, preferably interstitial cells of the seminiferous tubles.
  • the present invention also provides a method for producing the pluripotent adult stem cells. That is, the present invention comprises the steps of: (a) separating and passaged the outer periphery of the lavage tube from human testis tissue isolated from the human body; And (b) sorting the cells obtained from step (a) using anti-CD34 antibody and anti-CD73 antibody to isolate and passage CD34-positive and CD73-positive cells. It provides a method for producing a pluripotent adult stem cells comprising a positive immune response to both CD34 and CD73.
  • Human testis tissue isolated from the human body refers to male testis tissue that has been conventionally harvested for clinical purposes in infertility clinics. That is, an infertile male patient, for example, an atypical patient, collects testicular tissue for the treatment of sperm-intracellular sperm injection (TESE-ICSI) in an infertility clinic, and the tissue remaining after clinical use is discarded.
  • the production method of the present invention can be used in the testis tissue of the male separated from the human body, discarded in infertility clinic as described above.
  • the testis tissue may be isolated in vitro from a patient with obstructive or non-obstructive atherosclerosis.
  • Testis tissue separated out of the body can be obtained by enzymatic treatment of the outer periphery of the lavage tube, preferably the stromal cells of the lavage tube.
  • the separation may be performed by enzymatic treatment of collagenase, dispase, or a mixture of human testis tissue isolated from the human body.
  • the enzymatic treatment may be carried out by stirring at about 37 ° C. for about 30 minutes.
  • Outer periphery of the obtained lavage tube (e.g., stromal cells) can be subcultured in a conventional cell culture medium, for example, up to 2-4 passages in a medium containing support cells and serum, Preferably up to three passages may be performed.
  • the support cell may be gelatin.
  • a mixed medium of DMEM-F12 (Gibco) and Stempro 34 (Invitrogen Corporation, Camarillo, Calif.), Supplemented with fetal bovine serum, penicillin / streptomycin, may be preferably used.
  • Each passage can be separated into single cells using trypsin-EDTA or the like, for example when reaching 80% confluency, to perform subsequent passages.
  • the production method of the present invention performs sorting using an anti-CD34 antibody and an anti-CD73 antibody to the cells obtained from step (a) to separate CD34-positive and CD73-positive cells, and passage them. Step (ie, step (b)).
  • the sorting may be performed by a method commonly used in the field of biotechnology, preferably by magnetic activating-cell sorting.
  • the magnetic activating cell sorting is a separation method for separating cells in response to a specific marker, for example, can be performed using a device such as Dynabeads Flowcomp (Invitrogen).
  • the self-activating cell sorting is described in Lim, JJ, et al. Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions. Using the method disclosed in Cell Prolif 43 , 405-417 (2010), it can be performed using anti-CD34 antibody and anti-CD73 antibody. This document is incorporated herein in its entirety.
  • the passage in step (b) may be preferably performed up to 7 to 9 passages in the medium containing the support cells and serum.
  • the support cells may be gelatin and the serum-containing medium is DMEM-F12 (Gibco) and Stempro 34 (Invitrogen Corporation, Camarillo, Calif.), Supplemented with fetal bovine serum, penicillin / streptomycin. It may be a mixed medium of, but is not limited thereto.
  • Each passage can be separated into single cells using trypsin-EDTA or the like, for example when reaching 80% confluency, to perform subsequent passages.
  • step (b) If the cells isolated by MACS using anti-CD34 antibody and anti-CD73 antibody were passaged for a long time in step (b), the number of stem cells showing CD34-positiveness after 7-9 passages (about 8 passages) Can be drastically reduced.
  • the present inventors have found that when performing additional sorting, for example, by MACS, for cells performed up to 7-9 passages (approximately 8 passages), the stem cells exhibiting CD34-positive expression in a longer passage passage. It was found that it could be maintained.
  • sorting with anti-CD34 antibodies preferably sorting by MACS [ie, secondary MACS] is performed on cells performed up to 7-9 passages, and further passage ( additional subculturing) may be further included.
  • the additional passage is carried out in addition to the passage in step (b) up to 7-12 passages (eg, up to 15-20 passages if the initial passage in step (b) has been performed up to 8 passages). Can be.
  • the additional passaging is performed up to 12 passages in addition to the passage of step (b) (eg, if the initial passage of step (b) is performed up to 8 passages, 20 Up to passage], sorting with an anti-CD34 antibody, preferably by MACS [ie, tertiary MACS], and subsequent passage may be performed.
  • the present invention also provides a pharmaceutical composition for treating erectile dysfunction, which shows a positive immune response against both CD34 and CD73 and comprises pluripotent adult stem cells derived from somatic cells of the testis as an active ingredient.
  • BCNCI bilateral cavernous nerve crush injury
  • the pharmaceutical composition of the present invention may include pluripotent adult stem cells derived from the somatic cells of CD34-positive and CD73-positive testis as described above, and may include a pharmaceutically acceptable carrier, according to a conventional method. It may be formulated into parenteral formulations such as solutions, suspensions, emulsions, lyophilizers and the like.
  • the pharmaceutically acceptable carrier may include an aqueous diluent or solvent such as phosphate buffered saline, purified water, and sterile water. Moreover, a conventional preservative etc. can be included as needed.
  • the dosage of the pluripotent adult stem cells derived from the somatic cells of the CD34-positive and CD73-positive testes is determined by the condition and weight of the erectile dysfunction patient, the degree of the disease, the dosage form, the route of administration It depends on the period.
  • the pluripotent adult stem cells derived from the somatic cells of the CD34-positive and CD73-positive testis may be administered at a dose of 10 5 to 10 8 cells / ml, but is not limited thereto. .
  • Testis tissue is washed with RBC lysis buffer (Roche Diagnostics, Basel, Switzerland) and interstitial cells of intact seminiferous tubules are enzymatic solution [0.5 mg / ml collagenase (type IV; Gibco; , Hank's balanced salt solution (HBSS, Gibco, Grand Island, NY) containing 0.25 mg / ml dispase II (neutral protease, grade III, Roche)] I was. To separate stromal cells, only the surrounding cells outside the seminiferous tubule were separated by enzyme digestion and physical agitation, avoiding the separation of the tubule as much as possible.
  • RBC lysis buffer Roche Diagnostics, Basel, Switzerland
  • Suspensions of stromal cells were collected, washed and filtered through 40 ⁇ m mesh (BD, Franklin Lakes, NJ). These were then 50 of DMEM-F12 (Gibco) and Stempro 34 (Invitrogen Corporation, Camarillo, Calif.), Supplemented with basal culture medium (10% fetal bovine serum (FBS, Gibco), penicillin / streptomycin (1X, Gibco). : 50 mixture) and transferred to a culture flask coated with 0.1% gelatin (Gibco) to attach (5.0x10 5 / ml). After 7-8 days, 80% confluency cells were detached with 0.25% trypsin-EDTA (Gibco) and passaged.
  • basal culture medium 10% fetal bovine serum (FBS, Gibco), penicillin / streptomycin (1X, Gibco).
  • the initial cultured cells were detached and sorted by Dynabeads Flowcomp (Invitrogen) to obtain CD73 (Santa Cruz Biotechnology) / CD34 (Santa Cruz Biotechnology, CA) -double positive cells. That is, the detached cells were incubated with CD73 antibody and biotin-conjugated goat anti-mouse IgM (IgM), followed by streptavidin-coupled magnetic dynavides (streptavidin-bound magnetic). Dynabead). After sorting, cells were incubated in free buffer and then transferred to Dynal MPC-1 magnets.
  • IgM biotin-conjugated goat anti-mouse IgM
  • streptavidin-bound magnetic streptavidin-coupled magnetic dynavides
  • Sorted CD34-negative / CD73-positive cells were termed TSCs and were transferred and attached (5.0x10 5 / ml) to culture flasks coated with 0.1% gelatin (Gibco) in basal culture medium.
  • Sorted CD34-positive / CD73-positive cells were also referred to as HTSCs, again transferred to new culture flasks (1,000 cells / 25 cm 2 ) and incubated in basal culture medium for 10-14 days. The medium was changed once every two days.
  • HTSCs with 80% confluency were passaged at 3-4 day intervals.
  • some of the HTSCs were resuspended and then incubated with antibodies for 20 minutes in the dark at 4 ° C. to allow CD34, CD73, HLA ABC, CD166, CD44, CD29, CD105, CD90, CD31, CD45, HLA DR, TRA-1-60, SSEA3, SSEA4, TRA-1-81, CD14 (BD), CD133 (eBioscience inc, San Diego, CA), c-Kit (Santa Cruz Biotechnology) and Stro-1 (Bioregend, San Diego, CA) was detected.
  • HTSCs were washed, suspended in 500 ⁇ l PBS and immediately analyzed by flow cytometer (FACS Vantage SE System, BD). To identify dead cells, HTSCs were incubated with propidium iodide (Sigma-Aldrich, St. Louis, Mo.). The percentage of cells positive for each specific antibody was calculated by comparison with the appropriate isotype control.
  • HTSCs were fixed with 4% paraformaldehyde (PFA) and stored at 4 ° C. After permeabilization in 0.1% Triton X-100 (Sigma) and blocking in blocking solution (Dako Cytomation Inc., Carpinteria, Calif.), The primary antibody diluted in blocking buffer was overnight at 4 ° C. Reacted. Cells were incubated with secondary antibody in blocking buffer for 1 hour at room temperature and then using 4 ', 6-diimidino-2-phenylindole (DAPI) (1: 500, Jakson Immunoresearch, West Grove, PA). Counter staining and mounting (Dako Cytomation Inc.) were performed.
  • PFA paraformaldehyde
  • CD34 1: 100, Santa Cruz Biotechnology
  • CD73 1: 100, Santa Cruz Biotechnology
  • OCT4 c-Kit
  • TRA-1-60 TRA-1-81
  • SSEA3, SSEA4 1: 100, Chemicon, Thmecula, CA
  • GFR ⁇ 1 Thy-1
  • 3 ⁇ -HSD Desmine
  • ⁇ SMC nestin
  • FITC 1: 200, Jakson Immunoresearch
  • CY3 1: 200, Jakson Immunoresearch
  • TRITC 1: 200, Jakson Immunoresarch conjugated with secondary antibodies were used.
  • HTSC cytogenetic analysis of HTSC
  • cells at passages 5, 13, 20 and 30 were incubated for 3 hours in basal culture medium containing 0.1 ⁇ g / ml Colsemid (KaryoMax Colcemid Solution; Gibco). Thereafter, the mixture was treated with a hypotonic solution (1% sodium citrate buffer) for 30 minutes, and then fixed using methanol and acetic acid (3: 1, vol / vol).
  • a hypotonic solution 1% sodium citrate buffer
  • methanol and acetic acid 3: 1, vol / vol.
  • Cells were spread out on glass slides and dried, and chromosomes identified by G banding. For karyotyping of each cell line, at least 20 intermediate chromosomes were counted by experts.
  • RT-PCR Reverse transcription polymerase chain reaction
  • Target mRNA was quantified relative to ⁇ -actin.
  • Amplification products were quantified on a DNA Engine 2 fluorescence detection system (MJ research) using the DyNAmo SYBR green qPCR kit (Finnzymes, Espoo, Finland). Total 20 ⁇ l volume containing 4 ⁇ l DEPC-treated water, 2 ⁇ l forward primer (5 pmol), 2 ⁇ l reverse primer (2 pmol), 10 ⁇ l SYBR green premix, and 2 ⁇ l cDNA template The reaction was carried out with a reaction mixture of. Fluorescence was measured at the end of each cycle during the 72 ° C. extension step. In the final stage of real-time PCR, constant fluorescence measurements were used to raise the temperature from 65 ° C. to 95 ° C. at a rate of 0.1 ° C./s and then cooled to 40 ° C. for 30 seconds to produce a melting curve. Relative gene expression was quantified using the 2- ⁇ CT method.
  • HTSCs and BM-MSCs at three different concentrations (2X10 5 , 1X10 5 , 0.5X10 5 cells / ml) were inoculated in a culture dish containing NH CFU-F medium (Milteny Biotec, Bergisch Gladbach, Germany). It was. On day 14, the cells were fixed with methanol and dried. Stain with Kimsa staining solution (Sigma-Aldrich) and incubate at room temperature for 5 minutes. After washing and drying, colonies (more than 20 cells) with diameters between 1-8 mm were counted.
  • HTSCs For tumor growth analysis, undifferentiated HTSCs were resuspended in PBS (1 ⁇ 10 6 cells / 20 ⁇ l) and injected into the kidney capsules and testes of immunodeficient SCID mice.
  • human ESCs As a positive control for teratoma formation, human ESCs (CHA-hESC35: hES12012006, Korea Stem Cell Registry, KNIH, Osong, South Korea) were injected into testes of immunodeficient SCID mice. 12-16 weeks after allowing tumors to form, mice were killed. The teratoma tissue was placed in 4% PFA and placed in paraffin. Tissue sections were stained with hematoxylin and eosin (Sigma) for histological examination. To identify human cells in mouse tissues, immunocytochemical analysis was performed using human-specific antibodies (Stem-121 TM , Stem Cells Inc., Cambridge, UK) in SCID mouse testis with or without HTSC injection. .
  • HTSCs were collected at passage 5, passage 13, and passage 20, and reclassified HTSCs were also collected at passage 20.
  • hESCs at passage 72 and BM-MSCs at passage 3 were also collected and analyzed for differentiation into trioderm cell layers. All cells were resuspended and plated back in 6 well-culture flasks. After 24 hours, unadhered cells were removed by changing medium and adherent cells were incubated to confluence. The cells were then incubated for 21 days in media (Invitrogen) for lipogenesis, bone formation, and cartilage formation. Adipogenesis was visualized by staining with Oil Red O (Sigma-Aldrich).
  • lipogenesis-specific genes PPAR ⁇ and C / EBPa
  • PPAR ⁇ and C / EBPa lipogenesis-specific genes
  • bone differentiation was visualized by staining with Alizarin Red S (Sigma-Aldrich) and analyzed by bone formation-specific gene (COL I and CBFA I) expression.
  • Cartilage differentiation was visualized by staining with Alcian blue (Sigma-Aldrich) and analyzed by cartilage-specific gene (COMP and SOX9) expression.
  • Neurogenic differentiation of HTSCs and BM-MSCs was induced in DMEM-F12 medium (Gibco) containing N2 supplement (Gibco), 2 mM L-glutamine (Gibco) and penicillin / streptomycin solution (1X, Gibco) . After 3 days, the cells were fixed and then processed for immunocytochemical analysis.
  • the cells (1 ⁇ 10 6 cells / ml) are removed; Replating on fibronectin (10 ⁇ g / ml, Sigma) -coated dishes; Incubate for 3 days in Neural Progenitor Basal Medium (NPBM, Cambrex, One Meadowlands Plaza, NJ) supplemented with 2 mM L-glutamine, 10 ng / ml epidermal growth factor (EGF, Invitrogen), 10 ng / ml bFGF and penicillin / streptomycin solution It was. Growth factors were added daily.
  • NPBM Neural Progenitor Basal Medium
  • EGF epidermal growth factor
  • streptomycin penicillin / streptomycin
  • the induction of the last neuronal differentiation was 0.5 ⁇ M all-trans-retinoic acid (Sigma), 1% FBS (Gibco), 5% horse serum (Gibco), 1% N2 supplement and penicillin / Cells were started by plating cells in Neurobasal Medium (Gibco) supplemented with streptomycin solution. Cells were differentiated for 10-14 days. Nerve differentiation was observed under a microscope and confirmed by RT-PCR.
  • Differentiation into insulin secreting cells is carried out in specific media (Bcell Bio, Seoul, Korea) (Kang, HM, et al. Insulin-secreting cells from human eyelid-derived stem cells alleviate type I diabetes in immunocompetent mice.Stem Cells 27 , 1999- 2008 (2009)). Differentiation efficiency was analyzed by measurement of insulin and C-peptide secreted in the culture medium. That is, cells were treated with low glucose (5.5 mM) -DMEM containing 0.5% BSA for 12 hours and then stimulated with high glucose (25 mM) -DMEM at 37 ° C. for 2 hours.
  • the amount of insulin and C-peptide released into the medium was measured according to the manufacturer's instructions using human insulin and C-peptide enzyme-linked immunosorbent assay (ELISA) kits (Mercodia, Winston Salem, NC). Synthesis of insulin and C-peptide in differentiated cells was confirmed by RT-PCR.
  • ELISA enzyme-linked immunosorbent assay
  • paw function was assessed by cavernous nerve electrical stimulation (3V, 0.2 ms, 50 s, 20 HZ) near the site of injury (FIG. 7A) .
  • Systemic average blood pressure (MAP) and intracavernosal pressure (ICP) were recorded and analyzed electrically (Powerlab, AD Instruments, Colorado Springs, CO, USA , FIG. 7B). The ICP / MAP ratio between the groups was compared.
  • the prostate lobes of each rat were harvested. Nuclear and neural staining was performed using hematoxylin and nestin antibodies (Santa Cruz Biotechnology).
  • immunocytochemical analysis was performed using human-specific antibodies (Stem-121 TM ) and neuron-specific ⁇ -tubulin class III (TuJI, Santa Cruz Biotechnology) at the site of comminuted injury of each mouse.
  • CD34-positive cells were predominantly distributed in seminiferous tubules and between tubules. Expression of CD31 was localized only in the blood vessels and ⁇ SMA was present only in the tubules (FIG. 1). In addition, expression patterns of CD34, CD73, CD31, and ⁇ SMC were very similar in testes of OA and NOA patients. However, although the number of CD73 was very small, it was not expressed in the basal lamina of the lavage tube. In addition, no CD34 / CD31-bi-positive cells were observed in the testes.
  • CD34 / CD73-bi-positive cells were localized and distributed widely outside of the lavage (in interstitial cells), but only a few were present (FIG. 1).
  • TSCs testis-derived stem cells
  • CD34-positive TSCs were sorted by magnetic activating-cell sorting (MACS) and plated again on culture dishes. Since CD34-positive cells were very few among CD73-sorted TSCs (FIG. 9A).
  • CD34 / CD73 coexpression was very small compared to CD34-negative TSCs [approximately 1,000 cells in 100 mg biopsy tissue. (0.02%)].
  • CD34 / CD73-double positive cells did not reach 80% confluency after 14 days of culture, indicating passage 1 (p1) of these cells.
  • CD34 / CD73-bi-positive cells showed high proliferative activity; Therefore, they were referred to as high proliferative-TSCs (HTSCs).
  • HTSCs high proliferative-TSCs
  • BM-MSCs and TSCs retained MSC-like morphology up to passage 6 and passage 13, respectively, followed by senescent morphology (gross enlargement and flattening, 3a).
  • CD34-negative / CD73-positive TSCs showed population doublings of an average of 34.3 ⁇ 2.1 and the total number of these cells harvested per patient was 2.2 ⁇ 10 13 cells.
  • HTSCs showed an average of 67.3 ⁇ 2.1 cell doubling and the total cell count harvested was 5.6 ⁇ 10 16 cells per patient (FIG. 3B).
  • HTSCs were strong positive for CD34 (96.53% ⁇ 3.5), CD73 (95.65% ⁇ 1.5), class I major histocompatibility (MHC) antigen (HLA ABC), CD29, CD44, CD90, CD105, and CD166; Weak positive in CD14, CD133, and StroI; It was also negative for CD31, CD45, HLA DR, TRA-1-60, SSEA3, SSEA4, TRA-1-81, c-Kit, and CD140 (FIG. 10).
  • MHC major histocompatibility
  • HTSCs express CD34 and CD73 simultaneously, while TSCs and BM-MSCs express only CD73 and not CD34 (FIG. 2B).
  • HTSCs did not express the pluripotent markers c-Kit, TRA-1-60, TRA-1-81, SSEA3 and SSEA4, which also did not express OCT4 (FIG. 2c).
  • the germ cell markers GFR ⁇ 1 and Thy-1
  • the Leydig cell markers (3 ⁇ -HSD)
  • the peritubular myoid cell markers (Desmin and HTSCs were analyzed by immunocytochemistry using ⁇ SMC).
  • FIG. 9A few CD34-positive cells were present in the initial cultured cells containing various somatic cells. After sorting by CD73 and CD34, most cells expressed CD34 at passage 3 but did not express markers for germ cells or testicular somatic cells. After post-sorting passage 8 (P8), the number of CD34-positive cells decreased significantly. Markers for germ cells and radic cells were no longer detected, but the signals for Desmin and ⁇ SMC reappeared in a few CD34-negative cells (FIGS. 9B-9D).
  • HTSCs To analyze the genetic stability of HTSCs during long-term proliferation in vitro, karyotyping was performed at passage 5, passage 13, passage 20 and passage 30, and normal diploid karyotypes (46, XY) without chromosomal aberrations were performed. Is shown continuously (FIG. 11A). In addition, RT-PCR analysis showed that at passage 5, 13, or 20, HTSCs expressed extremely low levels of pluripotency-related OCT4, SOX2, and NANOG genes, and also did not express germ cell-specific VASA mRNAs. Proven (FIG. 11B).
  • HTSCs exhibited other typical characteristics of stem cells
  • colony formation assays were performed on isolated HTSCs and the results were compared to BM-MSCs.
  • HTSCs formed typical stem cell colonies and colony formation efficiency was much higher than BM-MSCs (15.2 ⁇ 2.1% vs. 1.0 ⁇ 0.1, FIG. 12A).
  • BM-MSCs BM-MSCs
  • no colonies of hematopoietic cells were observed for both stem cells.
  • FIG. 12B To confirm tumorigenicity, HTSC cell lines were injected into the renal and testis of SCID mice. Up to 12-16 weeks after injection, None of the HTSC cell lines injected into 10 mice formed tumors, but few of the injected human HTSCs (Stem-121 TM -positive cells) remained in testis (FIG. 13).
  • CD34-positive cells were analyzed during prolonged incubation of HTSCs.
  • the cell population of CD34-positive cells gradually decreased as the culture continued (FIG. 4b).
  • HTSCs reached passages 15-20, the cell population of CD34-positive cells was virtually gone.
  • the doubling time of the cells increased and their morphology also changed (FIGS. 3A and 4A).
  • HTSCs were reclassified by MACS using CD34 (reclassified HTSCs) and then their proliferation was analyzed.
  • FIG. 4C the cell populations of CD34-positive cells in the reclassified HTSCs were maintained for an additional 8 passages and then decreased, again propagating up to passage 30.
  • HTSCs were collected at passage 5, passage 13, and passage 20, reclassified (passage 20; at passage 20 after sorting) and then differentiated in chondrocyte differentiation medium for three weeks.
  • Passage 3 BM-MSCs and passage 3 TSCs were used as experimental controls.
  • Those derived from HTSCs, TSCs and BM-MSCs showed Alcian blue staining, a label of the polysaccharide product.
  • mRNA levels of the chondrogenic genes COMP and SOX9 were significantly higher in HTSCs-derived chondrocytes compared to BM-MSCs-derived chondrocytes (FIG. 5A).
  • the expression of COMP and SOX9 in HTSCs decreased as passage continued, but remained in reclassified HTSCs.
  • HTSCs were incubated for three weeks in adiogenic cells. Passage 3 BM-MSCs and passage 3 TSCs were used as experimental controls. Under these conditions, those derived from HTSC-derived adipocytes showed a typical morphology of lipid-laden cells containing intracellular lipid droplets and were positive for oil red O staining.
  • adipocytes differentiated from BM-MSCs and HTSCs of early passages similarly expressed the adipogenic genes PPAR ⁇ and C / EBPa (FIG. 5B). However, these levels were very low in TSCs. Gene expression levels of PPAR ⁇ and C / EBPa in HTSCs gradually decreased with continuous culture, but were maintained when differentiated reclassified HTSCs.
  • HTSCs, TSCs and BM-MSCs were also incubated for 3 weeks in osteogenic medium. Under these conditions, those derived from all HTSCs and BM-MSCs were positive for Alizarin Red S staining, a label of calcium product. In addition, both types of cells showed similar expression levels of the osteoblast marker genes COL I and CBFA I (FIG. 5C). However, the intensity of staining and osteoblast gene expression were low in TSCs.
  • HTSCs Differentiation capacity analysis of ESCs, BM-MSCs, adipose-derived hMSCs (AD-MSCs), TSCs, and HTSCs was performed by measuring the relative expression levels of specific genes associated with chondrogenesis, adipocytes, and osteocytosis ( 14).
  • Lipoforming ability of HTSCs was comparable to that of ESCs and BM-MSCs, but was much better than AD-MSCs and TSCs.
  • HTSCs at passage 5, passage 13 and passage 20, and HTSCs reclassified at passage 20, and BM-MSCs at passage 3 were incubated for 3 days in neurogenic Stage I medium.
  • some derived from HTSCs and BM-MSCs were positively stained with anti-nestine antibodies (FIG. 15A).
  • FIG. 15B When these nestin-positive cells were reincubated for 3 days in neurogenic Phase II medium, the morphology of those derived from HTSCs and BM-MSCs changed to neurons with bipolar form properties.
  • expression of neuronal cell-specific genes of GFAP and ⁇ -tubulin 3 was observed in these bipolar cells from HTSCs and BM-MSCs (FIG. 15B).
  • HTSCs Mesodermal lineage multipotencies of HTSCs, reclassified HTSCs, and BM-MSCs were also measured by differentiation in vitro into insulin-secreting cells. After incubation in insulinogenic media, insulin-secreting activity, in particular glucose-dependent secretion of cells, was analyzed by stimulating cells with low (5.5 mM) or high (25 mM) concentrations of glucose. When cells were not induced to differentiate, the amount of insulin and C-peptide released into the medium in response to glucose stimulation was determined by all HTSCs (passage 5, passage 13, passage 20, and reclassified passage 20) and BM-MSCs (passage). Similar in 3).
  • insulin and C-peptide released by the cells were significantly increased by high glucose stimulation.
  • HTSCs at passage 5 and 13 secreted an amount of insulin and C-peptide similar to BM-MSCs at passage 3.
  • HTSCs showed a decrease in their ability to secrete insulin and C-peptide, but rescued these decreases when reclassified to CD34 at passage 8 so that these cells maintained high insulin and C-peptide release at passage 20 (FIGS. 6A and 6B)).
  • pancreatic beta-cell marker genes insulin and NGN3 were clearly expressed in both HTSCs and BM-MSCs cultured in insulinogenic differentiation medium, but not in non-differentiated cells (FIG. 6C).
  • HTSCs mixed with microspheres containing growth factors were divided into 4 groups and implanted subcutaneously into the back of 10 nude BALB / c female mice.
  • Expression of differentiation-related genes including PPAR ⁇ , C / EBPa, CBFA I, COL I, SOX 9 and COL II, was detected by RT-PCR.
  • Genetic characteristics of fat, bone, and chondrocytes were highly expressed in differentiated HTSCs transplanted into specific growth factor-containing microspheres (FIG. 16A).
  • HTSCs or BM-MSCs were injected periprostatically in rats with spongy nerve damage on both sides.
  • the therapeutic efficacy of HTSCs was compared with BM-MSCs by evaluating the functional recovery of crush injury, systemic mean arterial pressure (MAP), and intracranial pressure (ICP) (FIG. 7A and FIG. 7B).
  • MAP systemic mean arterial pressure
  • ICP intracranial pressure
  • Mean ICP / MAP ratio was significantly lower (p ⁇ 0.001) in the injured group (0.20 ⁇ 0.01) compared to the Siamese group (0.70 ⁇ 0.02) (Table 2, FIG. 7C).
  • the percentage of cells expressing CD34 and the degree of differentiation of the cells were analyzed. As the percentage of cells expressing CD34 decreased during subsequent passages (passage 5, passage 13, and passage 20), the marker gene expression levels of three germ layer lineage cells also decreased.
  • testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors.Hum Reprod. 2012; 27: 210-221). In total, all testicular stem cells obtained from previous studies are derived from testicular germ cells, not from somatic cells. These cells have ESC-like colony morphology and have different characteristics from human HTSCs in terms of stem cell gene expression.
  • HTSCs Are MSC-like Cells in Human Testis And BM-MSCs similar in form and properties, but HTSCs are different from other known MSCs or MSC-like cells in that they initially express both CD34 and CD73, which are the membrane antigens of CD73, CD90, and CD105.
  • HTSCs are novel stem cells / progenitor cells derived from human testicular somatic cells. That is, CD34 / CD73-bi-positive cells are rarely present in vivo (FIG. 1), and they constitute only 0.03% of the initial CD73-sorted TSC cell population (FIG. 2A).
  • CD34 / CD73-double-positive cells were interstitial cells. It is assumed that these cells exist in interstitial cells and may also be mesenchymal or precursor cells to stromal cells.
  • CD34 was considered a hall marker of hematopoietic stem cells, but CD34 is actually expressed in a variety of non-hematopoietic tissues and cells, such as vascular endothelial cells and soft tissue neoplasms. In human adipose-derived stem cells, CD34 expression was detected but decreased with incubation time, which may be related to proliferative capacity, differentiation capacity, and immature or stem cell nature of the cells. Since CD73 is constantly expressed in a variety of MSCs, in order to isolate stem cells with regenerative potential from biopsy samples of human testes, we selected CD73 as an additional selection marker, along with CD34.
  • CD34 / CD73-double-positive HTSCs showed higher proliferative capacity compared to CD34-negative / CD73-positive TSCs. Extremely small amounts of HTSCs were able to proliferate into very large cell populations after culture at 23-32 passages or higher. The proliferation and differentiation of these cells was strongly related to their CD34 levels. As shown in FIG. 17, CD34 expression was inversely related to the differentiation state of cells. As the cells differentiated into specific cell types, CD34 expression was reduced, indicating that CD34 is a stem / juvenility marker of this type of stem cell.
  • CD34 expression on testicular stromal cells may be a useful selection marker for young and healthy stem cells. have.
  • HTSCs had features common to MSCs, but differed from ESCs (FIG. 2C).
  • ESCs BM-MSCs (passage 3), TSCs (passage 5) and HTSCs (passage 5).
  • HTSCs could be differentiated into fat, bone, chondrocytes in a way comparable to BM-MSCs (FIGS. 5 and 14).
  • HTSCs were able to differentiate into neurons and insulin-secreting cells when certain protocols were applied (FIGS. 15 and 6).
  • HTSCs In in vivo cell transplantation studies, undifferentiated HTSCs contributed to the recovery of bilateral cavernous nerve crush injury and also contributed to blood flow recovery in injured rat models 4 weeks after initial cell injection (FIG. 7).
  • Radical prostatectomy for prostate cancer frequently causes erectile dysfunction by damage to neurovascular bundles (cavernous nerves) along the posterior prostate.
  • the inventors have found that periproximal injection of HTSCs or BM-MSCs around the site of crush injury improves erectile function. Indeed, we found exogenous HTSC-derived neurons inside the cavernous nerves of these rats (FIG. 7E) and also observed a functional improvement in blood pressure.
  • HTSC autologous stem cells
  • Testes contain germ cells as well as different types of culture-derived pluripotent stem cells.
  • the culture-derived stem cells can be used as patient-specific cell therapy without causing serious ethical problems, but the efficiency of establishing stem cell lines is very low, and the isolated cell lines are not well characterized in humans (Ko K, Arauzo-Bravo MJ, Tapia N, et al. Human adult germline stem cells in question.Nature. 2010; 465: E1; discussion E3).
  • stem cell lines established using spermatogonial germ cells form tumors after injection into NOD-SCID mice (Seandel M, James D, Shmelkov SV, et al. Generation of functional multipotent adult stem cells).
  • CD34 / CD73 co-expression is closely associated with proliferative, differentiating, and immature or stem cell sex in human testis stromal cells.
  • CD34 and CD73 can be used as early screening markers to obtain high proliferative adult stem cells from simple testes biopsies. These cells can be used for patient-specific cell-based therapy without species formation or ethical controversy, which is a problem associated with the use of human ESCs.
  • these CD34 / CD73-co-expressing HTSCs are particularly useful for treatments that require multiple cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Reproductive Health (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Rheumatology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Endocrinology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 정소의 체세포-유래의 다능성 줄기세포, 더욱 상세하게는 CD34 및 CD73 모두에 대하여 양성 면역 반응을 나타내고, 정소의 체세포로부터 유래된, 다능성 성체줄기세포를 제공한다. 또한, 본 발명은 상기 정소의 체세포-유래의 다능성 줄기세포의 제조방법 및 이를 포함하는 발기부전 치료용 약학 조성물을 제공한다.

Description

정소의 체세포-유래의 다능성 줄기세포, 이의 제조방법 및 이를 포함하는 발기부전 치료용 약학 조성물
본 발명은 신규의 정소의 체세포-유래의 다능성 줄기세포, 더욱 상세하게는 CD34 및 CD73 모두에 대하여 양성 면역 반응을 나타내고, 정소의 체세포로부터 유래된, 다능성 성체줄기세포에 관한 것이다. 또한, 본 발명은 상기 정소의 체세포-유래의 다능성 줄기세포의 제조방법 및 이를 포함하는 발기부전 치료용 약학 조성물에 관한 것이다.
인간의 성체 조직-특이적 줄기세포는 손상된 조직을 수선 및/또는 교체할 수 있는 능력으로 인하여 임상적 유용성을 가지고 있다. 그러나, 성체줄기세포의 동정은, 적절한 조직-특이적 줄기세포의 결여로 인하여 곤란한 것으로 입증된 바 있다. 성체줄기세포의 임상적 적용을 더욱 제한하는 것은 이들이 배양에 있어서 한정된 수명을 가지며, 또한 특히 인간 배아줄기세포(ESCs)에 비하여 제한적인 분화능을 가지고 있다는 점이다. 현재까지 분리된 성체줄기세포 중, 골수-유래 중간엽 줄기세포(BM-MSCs)가 가장 잘 특징분석되어 있다. BM-MSCs는 10년 전에 동정되었으며, 중배엽 기원의 다양한 분화된 세포 형태를 야기한다. 그러나, BM-MSCs의 분리는 환자에게 매우 고통스러우며, 일단 분리되더라도 배지 중에서 BM-MSCs를 유지하는 것은 곤란하며, 이는 BM-MSCs가 쉽게 노화에 이르고(통상 8계대에서), 쉽게 분화능을 상실하며, 또한 몇몇의 경우에는 시험관내 배양에서 증식시킨 후 종양형성성(neoplastic)이 되기 때문이다. 줄기세포의 다른 기원은 치수(dental pulp), 와톤 젤리, 양막, 및 지방조직을 포함하지만, 이들 모두 제한된 수명 및 분화능을 가지고 있다.
특이적 줄기세포 마커 중, CD34는 초기 조혈(hematopoietic) 및 혈관-연관(vascular-associated) 조직에서 발견된다. CD34는 116-kD 타입 I 막횡단 당단백질이나: 그 정확한 기능에 관해서는 거의 알려져 있지 않다. 조혈 시스템에서, 표면에 CD34를 발현하는 세포는 사이토카인 또는 성장인자 자극에 의해 증식하고 또한 모든 림프조혈 계통(lymphohematopoietic lineages)으로 분화한다. 따라서, CD34는 림프조혈 줄기/전구 세포 세포군의 동정 및 분리를 돕기 위한 마커로서 사용되어 왔으며; 더욱 최근에는 근육 위성 세포 및 상피 전구세포를 포함한, 다른 조직-특이적 줄기세포를 통정하는데 도움을 주는 마커로서 사용된 바 있다. 최근, CD34-양성 기질 세포는 유방, 난관(fallopian tubes), 갑상선, 직장, 췌장, 자궁경부, 및 정소를 포함한 다양한 기관에 분포되어 있다는 것이 밝혀졌다(Kim J, Seandel M, Falciatori I, et al. CD34+ testicular stromal cells support long-term expansion of embryonic and adult stem and progenitor cells. Stem Cells. 2008;26:2516-2522). 지방-유래 기질 세포(adipose-derived stromal cell, ASC) 세포군에서, CD34-양성 세포는 내피세포와의 구조적 및 기능적 상호작용에 의해 혈관 안정성에 중요한 역할을 하는 체류 혈관주위세포(resident pericytes)이다. 다른 연구에서, CD34-양성 세포는 CD34-음성 세포에 비하여 더욱 높은 증식능 및 콜로니-형성능을 나타냈으나, 더욱 낮은 분화능을 나타냈다. 따라서, 저자들은 CD34 발현은 미성숙 상태에서 특정 계통으로의 생리학적 분화 과정에 대하여 역으로 관련된다는 것을 제안하였다(Suga H, Matsumoto D, Eto H, et al. Functional implications of CD34 expression in human adipose-derived stem/progenitor cells. Stem Cells Dev. 2009;18:1201-1210). 그러나, CD73은 그라이코실 포스파티딜 이노시톨((GPI)-연결된 막-결합 당단백질로서, 세포밖 뉴클레오시드 모노포스페이트를 생활성의 뉴클레오시드 중간체로 가수분해한다. 이 항원은 중간엽 줄기세포, B-세포 및 T-세포의 아형(subsets), 및 내피세포를 포함한 대부분의 세포에서 발견된다. 따라서, 이 분자는 상이한 조직들로부터 유래된 MSCs를 동정하기 위한 마커로서 사용되어 왔다. 흥미롭게도, 현재까지 분리된 MSCs의 어느 것도 CD73 및 CD34 모두를 발현하지 않는다.
한편, 포유동물의 정소는 생식세포 및 다양한 종류의 체세포로 구성되어 있다. 특정 마커의 부재로 인하여 조직에서 잠재적인 줄기세포를 동정 및 편재화시키는 것은 곤란하였다. 몇몇의 연구자들은 정원줄기세포(spermatogonial stem cells, SSCs) 및 레이딕 줄기세포(Leydig stem cells)와 같은 단능성(unipotent) 줄기세포를 분리 및 증식시킨 바 있다(Kanatsu-Shinohara M, Ogonuki N, Inoue K, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 2003;69:612-616; 및 Ge RS, Dong Q, Sottas CM, et al. In search of rat stem Leydig cells: identification, isolation, and lineage-specific development. Proc Natl Acad Sci U S A. 2006;103:2719-2724). 또한, 원시 생식세포-유래의(primordial germ cell-derived) 배아줄기세포-유사 세포를 인간 및 마우스로부터 정소 생검(testis biopsies)을 이용하여 생성시킨 바 있다(Conrad S, Renninger M, Hennenlotter J, et al. Generation of pluripotent stem cells from adult human testis. Nature. 2008;456:344-349; Guan K, Nayernia K, Maier LS, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 2006;440:1199-1203; Seandel M, James D, Shmelkov SV, et al. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature. 2007;449:346-350; Kanatsu-Shinohara M, Inoue K, Lee J, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell. 2004;119:1001-1012). 이들 세포는 모든 3배엽 세포로 분화되었으며, NOD-SCID 마우스에 주입하였을 때 종양을 형성하였다(Conrad S, Renninger M, Hennenlotter J, et al. Generation of pluripotent stem cells from adult human testis. Nature. 2008;456:344-349).
그러나, 정소의 체세포 줄기세포에 대한 연구는 거의 없다. 최근에서야 MSC-유사 세포군이 성체 인간 정소로부터 분리되었으며, 이를 중배엽-계통의 세포로 분화시킴으로써 특성분석되었다(Gonzalez R, Griparic L, Vargas V, et al. A putative mesenchymal stem cells population isolated from adult human testes. Biochem Biophys Res Commun. 2009;385:570-575). 이들 세포는 CD90에 대하여 양성이고 CD34에 대하여 음성이며, 이는 이들이 시험관내에서 제한된 수명을 갖는 정소-유래의 MSCs임을 시사한다. 마우스에서, CD34-양성 기질 세포는 성체 정소 전구 세포의 증식을 효율적으로 뒷받침하였다(Seandel M, James D, Shmelkov SV, et al. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature. 2007;449:346-350). 그러나, CD34/CD73-이중-양성 정소 기질 세포가 또다른 체세포 줄기세포의 기원일 수 있는지 여부, 및 만약 그렇다면, 그들의 분화 및 증식능은 어떠한지를 결정하기 위한 연구는 수행된 바 없다.
본 발명자들은 CD34/CD73-이중-양성 세포가 CD34-음성 세포에 비하여 현저하게 우수한 증식능을 나타내며, 또한 지방, 골, 신경, 췌장 계통 등의 세포로의 훨씬 높은 분화능을 나타낸다는 것을 발견하였다. 상기 세포는 NOD-SCID 마우스에서 테라토마를 형성하지 않았으며, 30계대 후에도 정상적인 핵형을 유지함으로써 높은 유전적 안정성을 보유하였다. 이들은 양측성 해면체 신경 분쇄 손상(bilateral cavernous nerve crush injury) 랫트 모델에서 발기부전의 기능적 회복을 촉진하였다. 또한, CD34를 발현하는 세포의 비율은 시험관내에서 세포의 계대 수가 증가함에 따라 감소하며, 세포가 최종적으로 분화됨에 따라 감소한다는 것이 밝혀졌다.
따라서, 본 발명은 정소의 체세포로부터 유래된, CD34/CD73-이중-양성의 다능성 성체줄기세포를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 정소의 체세포로부터 유래된, CD34/CD73-이중-양성의 다능성 성체줄기세포의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 정소의 체세포로부터 유래된, CD34/CD73-이중-양성의 다능성 성체줄기세포를 유효성분으로 포함하는 발기부전 치료용 약학 조성물을 제공하는 것을 목적으로 한다.
본 발명의 일 태양에 따라, CD34 및 CD73 모두에 대하여 양성 면역 반응을 나타내고, 정소의 체세포로부터 유래된, 다능성 성체줄기세포가 제공된다.
본 발명의 다른 태양에 따라, (a) 인체로부터 분리된 인간의 정소 조직으로부터 세정관의 바깥 주위 세포를 분리하고, 계대배양하는 단계; 및 (b) 단계(a)로부터 얻어진 세포에 대하여, 항-CD34 항체 및 항-CD73 항체를 사용한 분류(sorting)를 수행하여, CD34-양성 및 CD73-양성의 세포를 분리하고, 계대배양하는 단계를 포함하는, CD34 및 CD73 모두에 대하여 양성 면역 반응을 나타내는 다능성 성체줄기세포의 제조방법이 제공된다.
본 발명의 또다른 태양에 따라, CD34 및 CD73 모두에 대하여 양성 면역 반응을 나타내고, 정소의 체세포로부터 유래된, 다능성 성체줄기세포를 유효성분으로서 포함하는, 발기부전 치료용 약학 조성물이 제공된다.
본 발명에 따라, CD34/CD73-이중-양성의 정소 기질 세포 즉, 정소의 체세포로부터 유래된 다능성 성체줄기세포가 새롭게 분리되었다. 상기 다능성 성체줄기세포는 우수한 증식능을 나타내며(약 평균 67.3±2.1의 세포군 이배화), 또한 지방 세포, 골 세포, 신경 세포, 췌장 세포(예를 들어, 인슐린-분리 세포)를 포함한 3배엽 계통의 세포로의 훨씬 높은 분화능을 나타낸다. 상기 다능성 성체줄기세포는 테라토마를 형성하지 않으며, 30계대 후에도 정상적인 핵형을 유지함으로써 높은 유전적 안정성을 보유한다. 특히, 상기 다능성 성체줄기세포는 양측성 해면체 신경 분쇄 손상(bilateral cavernous nerve crush injury) 랫트 모델에서 발기부전의 기능적 회복을 촉진한다. 따라서, 상기 다능성 성체줄기세포는 발기부전 치료용 약학 조성물에 유용하게 적용될 수 있다.
도 1은 비-폐색성 무정자증(NOA, 도 1a) 및 폐색성 무정자증(OA, 도 1b) 환자의 정소에서 CD34과 CD73, αSMA, 및 CD31의 동시-편재화를 나타낸다. DAPI 핵 염색은 청색이며; FITC 염색은 녹색이고; Cy3 염색은 적색이다. 백색 화살표는 CD34, CD73-이중 양성 시그널이다. 개방 화살표머리(open arrowheads)는 αSMA에 대한 시그널이다. 백색 화살표머리는 CD31에 대한 시그널이다.
도 2는 골수-유래 중간엽 줄기세포(BM-MSCs), 정소-유래 줄기세포(TSCs), 및 고증식성 정소-유래 줄기세포(HTSCs)에 의한 특이적 마커 발현을 나타낸다. 도 2a는 인간 TSCs 세포군에서 CD34의 발현을 나타내는 면역세포화학 분석 결과이고(100X), 적색 시그널은 CD34 발현이다. 도 2b는 BM-MSCs, TSCs, 및 HTSCs에서 CD34 및 CD73 발현을 나타내는 면역세포화학 분석결과이고, DAPI 핵 염색은 청색이다. 도 2c는 HTSCs에서 만능줄기세포 마커인 OCT4, c-Kit, Tra-1-60, Tra-1-81, SSEA3 및 SSEA4의 발현을 나타내는 면역세포화학 분석 결과이고; FITC 염색은 녹색이며; Cy3 및 TRITC 염색은 적색이다.
도 3은 다양한 종류의 정소-유래 줄기세포(TSCs)의 형태적 및 증식적 특성을 나타낸다. 도 3a는 동일한 배양조건하에 유지된 세포들의 형태에 있어서의 차이를 나타내는 위상차 현미경 이미지(phase contrast image)로서(MSC-유사 vs. 노화-유사 형태), 계대 1 및 계대 6에서의 골수-유래 중간엽 줄기세포(BM-MSCs), 계대 1 및 계대 13에서의 인간 TSCs, 및 계대 5, 13, 20, 및 27에서의 고증식성 정소-유래 줄기세포(HTSCs)의 위상차 이미지이다. 도 3b는 BM-MSCs, TSCs, 및 HTSCs의 누적 이배수의 비교를 나타낸다.
도 4는 추가 배양 전 및 후에 분류된 세포군의 유세포 분석를 나타낸다. 도 4a는 골수-유래 중간엽 줄기세포(BM-MSCs), 정소-유래 줄기세포(TSCs), 고증식성 정소-유래 줄기세포(HTSCs), 및 재분류된 HP-TMSCs의 누적 이배수의 비교를 나타낸다. 도 4b는 HTSCs의 추가 배양 후에, CD34-양성 세포는 감소되었지만, CD73-양성 세포는 풍부하게 유지되었음을 나타낸다. 도 4c는 배양 동안, HTSCs는 CD34-발현이 점차 없어졌고 CD34 발현을 회복하지 못했으나, CD34-양성 세포의 집단을 MACS에 의해 분류하고 증식시켰을 때, HTSCs의 증식이 더 연장되었음을 나타낸다.
도 5는 골수-유래 중간엽 줄기세포(BM-MSCs), 정소-유래 줄기세포(TSCs), 및 고증식성 정소-유래 줄기세포(HTSCs)의 중배엽 계통(연골, 지방, 골 세포)으로의 시험관내 분화 능력을 나타낸다. 도 5a는 3주 동안 연골 분화 후에, 계대 5의 BM-MSC, 계대 3의 TSCs, 계대 5, 13, 20 및 재분류된 계대 20의 HTSCs에서 황산 프로테오글리칸((sulfated proteoglycans)에 대한 알시안 블루 염색(왼쪽 패널)과 동일한 군에서 연골 분화 전후에 분석된 SOX9 (오른쪽 패널의 왼쪽) 및 COMP (오른쪽 패널의 오른쪽)의 유전자 발현을 나타낸다. 도 5b는 오일 레드 O를 사용한 지방구(lipid droplets)의 염색(왼쪽 패널)과 PPARγ(오른쪽 패널의 왼쪽) 및 C/EBPα(오른쪽 패널의 오른쪽)의 유전자 발현을 나타낸다. 도 5c는 알리자린 레드 S의 칼슘 축적물(왼쪽 패널)과 골 분화를 평가하기 위한 CBFA I (오른쪽 패널의 왼쪽) 및 COL I (오른쪽 패널의 오른쪽)의 유전자 발현을 나타낸다.
도 6은 골수-유래 중간엽 줄기세포(BM-MSCs) 및 고증식성 정소-유래 줄기세포(HTSCs)의 인슐린-분비 세포로의 시험관내 분화 능력을 나타낸다. 도 6a 및 도 6b는 다양한 분화 조건에서 배양한 후에, 인슐린 및 C-펩타이드 분비에 대한 효소결합 면역흡착 분석(enzyme-linked immunosorent assay)결과를 나타낸다. 도 6c는 HTSCs 및 BM-MSCs으로부터 유래된 인슐린 분비 세포간에 인슐린 및 NGN-3 유전자 발현의 비교를 나타낸다.
도 7a는 랫트에서 손상 부위 가까이의 해면체 신경(cavernous nerve)의 전기자극을 나타내며, 상기 해면체(corpus cavernosum)에 24-게이지 바늘을 사용하여 삽관하였다. 도 7b는 발기능의 측정결과를 나타내며, 각각 적색, 청색 및 녹색 커브는 신경 자극에 대한 평균 혈압(mean arterial pressure)(MAP), 음경해면체내압(intracavernous pressue) (IAP) 및 ICP/MAP 비율을 각각 나타낸다. 도 7c는 골수-유래 중간엽 줄기세포(BM-MSCs) 및 고증식성 정소-유래 줄기세포(HTSCs)의 주입이 손상 그룹에 비하여 ICP/MAP 비율을 증가시켰음을 나타낸다. 도 7d는 HTSCs (화살표머리)를 시각화하기 위하여 CellTracker (적색 형광) 및 뉴우런 마커(TuJI, 짙은 브라운색)로 염색한 주위신경성 전립선(perineural prostatic) 조직을 나타낸다. 도 7e는 TuJI (보라색, 화살표) 및 인간 세포-특이적 항체 Stem 121 (녹색, 백색 화살표머리)이다. DAPI 핵 염색은 청색이며; CellTracker는 적색이다(개방 화살표머리).
도 8은 CD34-양성 및 CD73-양성의 정소-유래 중간엽 줄기세포를 분리하는 과정의 일 예를 나타낸다.
도 9a는 초기 정소 간질세포에서의 특이적 마커 발현을 나타낸다. 면역세포화학 분석결과는 첫번째 열에서 CD34 (적색, 백색 화살표머리) 및 3β-HSD (녹색, 개방 화살표머리), 두번째 열에서 GFR α1 (적색, 백색 화살표머리) 및 Thy-1 (녹색, 개방 화살표머리), 및 세번째 열에서 αSMA (적색) 및 Desmin (녹색)의 발현을 나타낸다. 도 9b는 정소 조직 100 mg 당 각 단계에서 분리된 세포 수를 나타낸다. 출발 물질은 0일째에 계수하였고, 부착 세포는 3일째에 계수하였고, CD73-분류 세포는 계대 2에서 계수하였고, CD34-분류 세포는 계대 3에서 계수하였다. 도 9c는 계대 3 및 계대 8에서의 고증식성 정소-유래 줄기세포(HTSCs)에서의 특이적 마커 발현을 나타낸다. 면역세포화학 분석결과는 CD34 (적색)의 발현 및 GFR α1 혹은 Thy-1 (녹색)의 비-발현을 나타낸다. 도 9d는 CD34 (적색)의 발현 및 3β-HSD의 비-발현을 나타내는 면역세포화학 분석결과이다. 도 9e는 CD34 (적색)의 발현 및 Desmin 또는 αSMA의 비-발현을 나타내는 면역세포화학 분석결과이다.
도 10은 고증식성 정소-유래 줄기세포(HTSCs)의 유세포 분석 결과를 나타낸다. HTSCs는 HLA-ABC, CD73, CD166, CD44, CD29, CD90, CD105 및 CD34에 대하여 강한 양성이고; CD14, CD133, 및 StroI에서 약한 양성이며; 또한 SSEA3, TRA-1-81, c-Kit, CD31, TRA-1-60, CD140, HLA-DR, CD45 및 SSEA4 항원에 대하여 음성이다. 약어: APC, 알로피코시아닌(allophycocyanin); FITC, 형광 이소티오시아네이트(Fluorescein isothiocyanate); PE, 피코에리쓰린(phycoerythrin).
도 11은 고증식성 정소-유래 줄기세포(HTSCs)의 특성을 나타낸다. 도 11a는 HTSCs가 표시된 계대에서 정상적인 핵형(2n, 46XY)을 가지고 있음을 나타낸다. 도 11b는 HTSCs에서 만능성 마커(Oct4, NANOG, SOX2) 및 생식세포 마커(VASA)의 RT-PCR 분석결과를 나타낸다.
도 12는 골수-유래 중간엽 줄기세포(BM-MSCs) 및 고증식성 정소-유래 줄기세포(HTSCs)에 대한 콜로니 형성 단위 분석(Colony forming unit assay) 결과를 나타낸단. BM-MSCs 및 HTSCs는 조혈 조건에서 콜로니 형성을 나타내지 않지만(B), 비-조혈 조건에서는 콜로니 형성을 나타냈다(A).
도 13a는 신장(A1-A4) 및 정소(A5-A8)에서 고증식성 정소-유래 줄기세포(HTSCs)의 테라토마 형성 분석결과를 나타낸다(100X). 두 조직 모두에서 기형종 형성은 없었다. 도 13b는 배아줄기세포로부터의 테라토마 형성을 나타낸다(x200). 창자-유사 내피(gut-like epithelium) (내배엽, H-E 염색, B1), 연골 (중배엽, 알시안 블루 염색, B2), 분비성 내피(secretory epithelium) (내배엽, PAS 염색g, B3), 및 근섬유(muscle fibers) (중배엽, 매슨 트리크롬 염색(Masson’s trichrome staining), B4). 도 13c는 마우스 및 인간 정소 조직에서 특정 인간 세포-특이적 마커(Stem 121) 발현을 나타낸다. 면역세포화학분석은 첫번째 열에서 Stem 121의 비-발현을 나타내나, 두번째 및 세번째 열에서는 발현을 나타낸다.
도 14는 배아줄기세포(ESCs), 골수-유래 중간엽 줄기세포(BM-MSCs), 지방-유래(AD)-MSCs, 및 고증식성 정소-유래 줄기세포(HTSCs)의 중배엽 계통(지방, 골 및 연골 세포)으로의 시험관내 분화 능력을 나타낸다. (A)는 PPARγ (상부 왼쪽) 및 C/EBPα (상부 오른쪽)의 유전자 발현을 나타내며. (B)는 COL I (중간 왼쪽) 및 CBFA I (중간 오른쪽)의 유전자 발현을 나타내며. (C)는 COMP (하부 왼쪽) 및 SOX9 (하부 오른쪽)의 유전자 발현을 나타낸다.
도 15는 골수-유래 중간엽 줄기세포(BM-MSCs) 및 고증식성 정소-유래 줄기세포(HTSCs)의 신경 계통 세포로의 시험관내 분화 능력을 나타낸다. 도 15a는 네스틴이 BM-MSCs 및 HTSCs로부터 분화된 신경 세포에서 발현되었음을 나타낸다(x200). 도 15b는 BM-MSCs 및 HTSCs로부터 분화된 신경 세포의 위상차 현미경 사진이다(100X). 도 15c는 BM-MSCs와 비교하여 유도된 HTSCs에 신경으로 분화시킨 세포에서 GFAP 및 β-튜불린 3의 유전자 발현을 나타낸다.
도 16은 고증식성 정소-유래 줄기세포(HTSCs)의서 중배엽 계통(지방, 골 및 연골 세포)으로의 생체내 분화 능력을 나타낸다. 도 16a 및 도 16b는 지방세포로 분화시킨 HTSCs에서 PPARγ 및 C/EBPα의 유전자 및 단백질 발현, 골세포 분화시킨 HTSCs에서 COL I 및 CBFA I의 유전자 및 단백질 발현, 비-유도된 것과 비교하여 연골세포로 분화시킨 HTSCs에서의 COMP 및 SOX9의 유전자 및 단백질 발현을 나타낸다. 도 16c 및 도 16d는 특이적 염색 및 특정 마커를 사용한 면역세포화학 분석 결과를 나타낸다.
도 17a 및 도 17b는 CD34를 발현하는 세포의 비율 및 세포의 분화 정도를 분석한 결과이다. CD34를 발현하는 세포의 비율은 계대배양(계대 5, 13, 및 20)에 따라 감소하였으며, 모든 3배엽 게통의 마커 유전자(중배엽 유전자: PPAR, C/EBP, COL I, CBFA I, COMP, 및 SOX9; 내배엽 유전자: Insulin 및 NGN; 및 외배엽 유전자: GFAP 및 β-Tubulin 3)의 발현 수준도 또한 감소하였다.
본 발명은 CD34 및 CD73 모두에 대하여 양성 면역 반응을 나타내고, 정소의 체세포로부터 유래된, 다능성 성체줄기세포를 제공한다.
본 발명에 따른 다능성 성체줄기세포는 우수한 증식능을 나타내며(약 평균 67.3±2.1의 세포군 이배화), 또한 지방 세포, 골 세포, 신경 세포, 췌장 세포(예를 들어, 인슐린-분리 세포)를 포함한 3배엽 계통의 세포로의 훨씬 높은 분화능을 나타낸다. 상기 다능성 성체줄기세포는 테라토마를 형성하지 않으며, 30계대 후에도 정상적인 핵형을 유지함으로써 높은 유전적 안정성을 보유한다. 상기 다능성 성체줄기세포에 있어서, 상기 정소의 체세포는 세정관(seminiferous tubles)의 바깥 주위 세포(outer surrounding cells), 바람직하게는 간질세포(interstitial cells)일 수 있다.
본 발명은 또한 상기 다능성 성체줄기세포의 제조방법을 제공한다. 즉, 본 발명은 (a) 인체로부터 분리된 인간의 정소 조직으로부터 세정관의 바깥 주위 세포를 분리하고, 계대배양하는 단계; 및 (b) 단계(a)로부터 얻어진 세포에 대하여, 항-CD34 항체 및 항-CD73 항체를 사용한 분류(sorting)를 수행하여, CD34-양성 및 CD73-양성의 세포를 분리하고, 계대배양하는 단계를 포함하는, CD34 및 CD73 모두에 대하여 양성 면역 반응을 나타내는 다능성 성체줄기세포의 제조방법을 제공한다.
인체로부터 분리된 인간의 정소 조직(testis tissue)은 불임 클리닉에서 임상적인 목적으로 통상적으로 채취된 남성의 정소 조직을 말한다. 즉, 불임 남성 환자 예를 들어, 무정자증 환자는 불임 클리닉에서 정자채취-세포질내 정자주입(TESE-ICSI)의 시술을 위하여 정소 조직을 채취하게 되며, 임상적인 사용 후 남아있는 조직은 폐기되게 된다. 본 발명의 제조방법은 상기와 같이 불임 클리닉 등에서 폐기되는, 인체로부터 분리된 남성의 정소 조직을 사용할 수 있다. 상기 정소 조직은 폐색성 또는 비-폐색성 무정자증 환자로부터 체외로 분리된 것일 수 있다.
체외로 분리된 정소 조직, 바람직하게는 RBC 용해 완충액으로 세척된 정소 조직은 효소처리를 통하여 세정관의 바깥 주위 세포, 바람직하게는 세정관의 간질세포를 얻을 수 있다. 예를 들어, 상기 분리는 인체로부터 분리된 인간의 정소 조직을 콜라게나아제, 디스파아제, 또는 이들의 혼합물을 사용한 효소처리에 의해 수행될 수 있다. 상기 효소처리는 약 37℃에서 약 30분 동안 교반함으로써 수행될 수 있다.
얻어진 세정관의 바깥 주위 세포(예를 들어, 간질세포)는 통상의 세포 배양 배지 중에서 계대배양(subculturing)할 수 있으며, 예를 들어, 지지세포 및 혈청을 함유한 배지 중에서 2 내지 4 계대까지, 바람직하게는 3계대까지 수행될 수 있다. 일 구현예에서, 상기 지지세포는 젤라틴일 수 있다. 또한, 상기 혈청을 함유한 배지로는 우태아혈청, 페니실린/스트렙토마이신으로 보충된, DMEM-F12 (Gibco) 및 Stempro 34(Invitrogen Corporation, Camarillo, CA)의 혼합 배지를 바람직하게 사용할 수 있다. 각각의 계대배양은 예를 들어 80% 콘플루언시(confluency)에 도달하였을 때, 트립신-EDTA 등을 사용하여 단일 세포로 분리하여, 이어지는 계대를 수행할 수 있다.
본 발명의 제조방법은 단계(a)로부터 얻어진 세포에 대하여, 항-CD34 항체 및 항-CD73 항체를 사용한 분류(sorting)를 수행하여, CD34-양성 및 CD73-양성의 세포를 분리하고, 계대배양하는 단계[즉, 단계(b)]를 포함한다.
상기 분류(sorting)은 생명공학 분야에서 통상적으로 사용되는 방법에 의해 수행될 수 있으며, 바람직하게는 자기 활성화 세포 분류(magnetic activating-cell sorting)에 의해 수행될 수 있다. 상기 자기 활성화 세포 분류(magnetic activating-cell sorting, MACS)는 특정 마커에 반응하는 세포를 분리해내는 분리방법으로서, 예를 들어 Dynabeads Flowcomp (Invitrogen) 등의 기기를 사용하여 수행될 수 있다. 상기 자기 활성화 세포 분류는 본 발명자들의 선행 논문인 Lim, J.J., et al. Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions. Cell Prolif 43, 405-417 (2010)에 개시된 방법을 이용하여, 항-CD34 항체 및 항-CD73 항체를 사용하여 수행될 수 있다. 상기 문헌은 전체로서 본 명세서에 포함된다.
단계(b)의 상기 계대배양은 지지세포 및 혈청을 함유한 배지 중에서 7 내지 9 계대까지 바람직하게 수행될 수 있다. 일 구현예에서, 상기 지지세포는 젤라틴일 수 있으며, 상기 혈청을 함유한 배지는 우태아혈청, 페니실린/스트렙토마이신으로 보충된, DMEM-F12 (Gibco) 및 Stempro 34(Invitrogen Corporation, Camarillo, CA)의 혼합 배지일 수 있으나, 이에 제한되는 것은 아니다. 각각의 계대배양은 예를 들어 80% 콘플루언시(confluency)에 도달하였을 때, 트립신-EDTA 등을 사용하여 단일 세포로 분리하여, 이어지는 계대를 수행할 수 있다.
단계(b)에서 항-CD34 항체 및 항-CD73 항체를 사용한 MACS에 의해 분리된 세포를 장기간 동안 계대배양할 경우, 7 내지 9 계대(약 8계대) 이후에 CD34-양성을 나타내는 줄기세포의 수가 급격하게 감소될 수 있다. 본 발명자들은 7 내지 9 계대(약 8계대) 까지 수행된 세포에 대하여 추가의 분류, 예를 들어 MACS에 의한 분류를 수행할 경우, 더욱 장기간 동안의 계대배양 과정에서도 CD34-양성을 나타내는 줄기세포를 유지할 수 있다는 것을 발견하였다.
따라서, 일 구현예에서, 상기 7 내지 9 계대까지 수행된 세포에 대하여, 항-CD34 항체를 사용한 분류, 바람직하게는 MACS에 의한 분류[즉, 2차 MACS]를 수행하고, 추가의 계대배양(additional subculturing)을 수행하는 단계를 추가로 포함할 수 있다. 상기 추가의 계대배양은 상기 단계(b)의 계대배양에 추가하여 7 내지 12 계대까지[예를 들어, 단계(b)의 초기 계대배양이 8계대까지 수행되었을 경우, 15 내지 20 계대까지] 수행될 수 있다.
또다른 구현예에서, 상기 추가의 계대배양은 상기 단계(b)의 계대배양에 추가하여 12계대까지 수행하고[예를 들어, 단계(b)의 초기 계대배양이 8계대까지 수행되었을 경우, 20 계대까지 수행하고], 항-CD34 항체를 사용한 분류, 바람직하게는 MACS에 의한 분류[즉, 3차 MACS]를 수행하고, 이어지는 계대배양을 수행할 수도 있다.
본 발명은 또한, CD34 및 CD73 모두에 대하여 양성 면역 반응을 나타내고, 정소의 체세포로부터 유래된, 다능성 성체줄기세포를 유효성분으로서 포함하는, 발기부전 치료용 약학 조성물을 제공한다.
본 발명에 따라 얻어진 상기 다능성 성체줄기세포를 양측성 해면체 신경 분쇄 손상(bilateral cavernous nerve crush injury, BCNCI) 랫트의 전립선주변(periprostatic)에 국소 투여하였을 때, BCNCI가 회복되는 것을 밝혀냈다. 따라서, 상기 다능성 성체줄기세포는 발기부전의 치료에 유용하게 사용될 수 있으며, 특히 본 발명에 따라 얻어진 CD34-양성 및 CD73-양성의 다능성 성체줄기세포는 테라토마를 형성하지 않으므로, 안전하게 환자에 투여될 수 있다. 또한, 통상 전립선암이 전립선의 생검술(transrectal biopsy), 예를 들어 근치적 전립선 적출술(radical prostatectomy)을 통해 진단될 경우, 얻어진 정소 생검물로부터 본 발명의 제조방법에 따라 자가(autologous) 정소-유래의 줄기세포를 얻을 수 있으므로, 상기 다능성 성체줄기세포는 면역 부적합 등의 안전성 문제없이 투여될 수 있다. 따라서, 본 발명의 약학 조성물은 근치적 전립선 적출술(radical prostatectomy)에 의하여 발생된 발기부전의 치료에 특히 적합하게 적용될 수 있다.
본 발명의 약학 조성물은 상기한 바와 같이 CD34-양성 및 CD73-양성의 정소의 체세포에서 유래된 다능성 성체줄기세포를 포함하고, 약학적으로 허용가능한 담체를 포함할 수 있으며, 통상의 방법에 따라 액제, 현탁액, 에멀젼, 동결건조제 등의 비경구용 제형으로 제제화될 수 있다. 상기 약학적으로 허용가능한 담체는 인산 완충 식염수(phosphate buffered saline), 정제수, 멸균수 등의 수성 희석제 혹은 용제를 포함할 수 있다. 또한, 필요에 따라 통상의 보존제 등을 포함할 수 있다.
본 발명의 약학 조성물에 있어서, 상기 CD34-양성 및 CD73-양성의 정소의 체세포에서 유래된 다능성 성체줄기세포의 투여량은 발기부전 환자의 상태 및 체중, 질병의 정도, 투여형태, 투여경로 및 기간에 따라 상이하다. 예를 들면, 상기 CD34-양성 및 CD73-양성의 정소의 체세포에서 유래된 다능성 성체줄기세포는 1회 투여시 105 내지 108 cells/ml의 용량으로 투여될 수 있으나, 이에 제한되는 것은 아니다.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나, 하기 실시예는 본 발명을 예시하거나 설명하기 위한 것으로 본 발명을 제한하는 것이 아니다.
1. 재료 및 방법
(1) 고증식성의 인간 정소-유래 줄기세포(HTSCs)의 분리 및 배양
정자채취-세포질내 정자주입(TESE-ICSI) 치료를 받은 남성 환자로부터 임상 사용 후에 남아있는 총 25개의 정소 조직을 환자의 동의(informed consent)하에 얻었다. 이 중 10개의 샘플은 계대 1-2 과정에서 세포가 마이코플라스마-오염에 대하여 양성 반응을 보여(MycoAlert® mycoplasma detection kit, Lonza, Rockland, ME) 제외시켰다. 최종적으로, 폐색성(OA, n=2) 또는 비-폐색성(NOA) 무정자 환자(n=13)로부터 얻어진 정소 조직을 본 연구에 사용하였다. 본 연구는 강남 차병원(서울, 대한민국)의 기관윤리위원회(Institutional Review Board)의 승인을 받았다.
전체적인 연구 디자인을 도 8의 플로우 챠트에 요약하였다. 정소 조직을 RBC 용해 완충액(Roche Diagnostics, 바젤, 스위스)을 사용하여 세척하고, 세정관(intact seminiferous tubules)의 간질세포(interstitial cells)를 효소 용액[0.5 mg/ml 콜라게나아제(type IV; Gibco), 0.25mg/ml 디스파아제 II (neutral protease, grade III, Roche)를 함유하는 Hank's balanced salt solution (HBSS, Gibco, Grand Island, NY)] 중에서 37℃에서 30분 동안 교반하여 효소적으로 분리시켰다. 간질세포를 분리하기 위하여, 세정관(seminiferous tubule) 바깥의 주위 세포만을, 가능한 많이 세관(tubule)의 분리를 회피하면서, 효소 분해(enzyme digestion) 및 물리적 교반에 의해 분리하였다. 간질세포의 현탁액을 모으고, 세척한 후, 40 ㎛ 메쉬 (BD, Franklin Lakes, NJ)를 통하여 여과하였다. 이후, 이들을 기초 배양 배지(10% 우태아혈청(FBS, Gibco), 페니실린/스트렙토마이신(1X, Gibco)로 보충된, DMEM-F12 (Gibco) 및 Stempro 34(Invitrogen Corporation, Camarillo, CA)의 50:50 혼합물)에서 0.1% 젤라틴(Gibco)으로 코팅된 배양 플라스크로 옮겨 부착시켜 배양하였다(5.0x105/ml). 7-8일 후에, 80% 콘플루언시(confluency)의 세포를 0.25% 트립신-EDTA (Gibco)로 떼어내고, 계대배양하였다. 계대 2-3 후에, 초기 배양된 세포를 떼어낸 다음, Dynabeads Flowcomp(Invitrogen)으로 분류(sorting)하여 CD73(Santa Cruz Biotechnology)/CD34(Santa Cruz Biotechnology, CA)-이중 양성 세포를 얻었다. 즉, 떼어낸 세포를 CD73 항체 및 바이오틴-컨쥬게이티드 고우트 항-마우스 IgM(biotin-conjugated goat anti-mouse IgM)과 함께 인큐베이션한 후, 스트렙트아비딘-결합된 마그네틱 다이나비드(streptavidin-bound magnetic Dynabead)와 혼합하였다. 분류(sorting) 후, 세포를 유리 완충액(releasing buffer) 중에서 인큐베이션한 후, Dynal MPC-1 magnet로 옮겼다. 유리된 CD73-양성 세포를 모으고, 4-7일 동안 추가 배양한 다음, 떼어내고, 상기한 방법을 사용하여 바이오티닐화된 CD34 항체를 사용하여 2차 분리를 수행하였다. 분류된 CD34-음성/CD73-양성 세포를 TSCs로 칭하였으며, 기초 배양 배지 중에서 0.1% 젤라틴(Gibco)으로 코팅된 배양 플라스크에 옮겨 부착시켜 배양하였다(5.0x105/ml). 또한, 분류된 CD34-양성/CD73-양성 세포는 HTSCs로 칭하였으며, 다시 새로운 배양 플라스크에 옮겨 부착시키고(1,000 세포 /25cm2), 10 내지 14일 동안 기초 배양 배지에서 배양하였다. 배지는 2일에 한번 교체하였다. 각 계대에서 누적 세포군 이배수(cumulative population doubling)는 공식 2X=NH/NI을 사용하여 계산하였으며, 여기서 NI 은 접종된 세포수이고, NH 는 콘플루언스(confluence)(>80%)에서 수확한 세포수이며, X는 집단 이배수이다. 계산된 집단 이배수 증가는 이전의 집단 이배수 값에 더하여, 누적 집단 이배수 값을 얻었다.
(2) 유세포 분석 (Flow Cytometric Analysis)
계대 2 후에, 80% 콘플루언시를 갖는 HTSCs를 3-4일 간격으로 계대배양하였다. 계대 5에서, HTSCs의 일부를 재현탁시킨 후, 항체와 함께 암소에서 4℃에서 20분 동안 인큐베이션하여 CD34, CD73, HLA ABC, CD166, CD44, CD29, CD105, CD90, CD31, CD45, HLA DR, TRA-1-60, SSEA3, SSEA4, TRA-1-81, CD14 (BD), CD133(eBioscience inc, San Diego, CA), c-Kit (Santa Cruz Biotechnology) 및 Stro-1 (Bioregend, San Diego, CA)를 검출하였다. 세포를 세척하고, 500 ㎕ PBS에 현탁하고, 즉시 유세포분석기(FACS Vantage SE System, BD)로 분석하였다. 죽은 세포를 확인하기 위해, HTSCs를 프로피디움 아이오다이드(Sigma-Aldrich, St. Louis, MO)와 함께 인큐베이션하였다. 각각의 특이적인 항체에 양성인 세포의 퍼센트를 적절한 동형(isotype) 대조군과 비교하여 계산하였다.
(3) 면역세포화학(Immunocytochemistry)
HTSCs를 4% 파라포름알데히드(PFA)로 고정하고, 4℃에서 보관하였다. 0.1% 트리톤 X-100(Sigma) 중에서의 투과(permeabilization) 및 블로킹 용액(blocking solution)(Dako Cytomation Inc., Carpinteria, CA) 중에서의 블로킹 후에, 블로킹 완충액에 희석시킨 1차 항체를 4℃에서 밤새 반응시켰다. 세포를 블록킹 완충액 중의 2차 항체와 함께 1시간 동안 실온에서 인큐베이션한 후, 4',6-디아미디노-2-페닐인돌(DAPI) (1:500, Jakson Immunoresearch, West Grove, PA)를 사용한 염색(counter staining) 및 봉입(mounting)(Dako Cytomation Inc.)을 수행하였다. 사용된 1차 항체는 CD34(1:100, Santa Cruz Biotechnology), CD73(1:100, Santa Cruz Biotechnology), OCT4, c-Kit, TRA-1-60, TRA-1-81, SSEA3, SSEA4(1:100, Chemicon, Thmecula, CA), GFRα1, Thy-1, 3β-HSD, Desmine, αSMC 및 nestin (1:100, Millipore, Billerica, MA)이었다. 2차 항체가 컨쥬게이션된 FITC (1:200, Jakson Immunoresearch), CY3 (1:200, Jakson Immunoresearch) 및 TRITC (1:200, Jakson Immunoresarch)를 사용하였다.
인간 정소에서 CD34 및 CD73의 편재화(localization)을 위하여, 냉동편(cryosections)을 10% 중성 완충 포르말린으로 1시간 동안 고정하였다. 세척 및 블록킹 후, 블로킹 완충액에 희석시킨 1차 항체를 4℃에서 밤새 반응시켰다. 조직들을 블록킹 완충액 중의 2차 항체와 함께 1시간 동안 실온에서 인큐베이션한 후, DAPI로 염색(counter staining)하고 봉입입하였다. 사용된 1차 항체는 CD34 (1:100, Santa Cruz Biotechnology), CD73 (1:10, Santa Cruz Biotechnology), CD31 (1:50, Abcam, Cambridge, UK), αSMA (1:50, Abcam)이었다. 2차 항체가 컨쥬게이션된 FITC (1:100) 또는 Cy3 (1:100)를 사용하였다.
(4) 핵형분석(Karyotying)
HTSC의 세포유전학적 분석을 위해, 계대 5, 13, 20 및 30에서의 세포를 0.1 ㎍/ml 콜세미드(KaryoMax Colcemid Solution; Gibco)를 함유하는 기초 배양 배지에서 3시간 동안 배양하였다. 이후, 저장성 용액(hypotonic solution)(1% 구연산나트륨 완충액)으로 30분 동안 처리한 다음, 메탄올 및 아세트산(3:1, vol/vol)을 사용하여 고정하였다. 세포를 유리 슬라이드 상에 펴서 건조시키고, 염색체를 G 밴딩(G banding)으로 확인하였다. 각 세포주의 핵형분석을 위해, 20 이상의 중기 염색체를 전문가에 의해 계수하였다.
(5) 실시간-RT-PCR (Real time-RT-PCR)
제조사의 지침서에 따라, Tri-reagent(Sigma-Aldrich)를 사용하여 RNA를 분리하였다. RNA의 순도는 분광광도계(ND-1000, NanoDdrop, Thermo Scientific, Wilminton, DE)를 사용하여 분석하였다. 역전사 중합효소 연쇄반응(RT-PCR)은 Prime script 1st strand cDNA 합성 키트(TakaRa Bio Inc, Otsu, Shiga, Japan)를 사용하여 수행하였다. 이어지는 PCR 반응은 cDNA, 하기 표1의 프라이머 쌍(primer pairs)와 함께, 계대 5에서의 TSC, 계대 5에서의 HTSCs, hESCs (계대 72에서의 CHA-hES4)(Lee, J.E., et al. Evaluation of 28 human embryonic stem cell lines for use as unrelated donors in stem cell therapy: implications of HLA and ABO genotypes. Cell Transplant 19, 1383-1395 (2010)), 계대 3에서의 BM-MSCs (PT-2501, LONZA, Walkersville, MD), 및 계대 3에서의 지방유래 hMSCs (AD-MSC)(Hwang ST, Kang SW, Lee SJ, et al. The expansion of human ES and iPS cells on porous membranes and proliferating human adipose-derived feeder cells. Biomaterials. 2010;31:8012-8021)로부터 유래된 RNAs을 사용하여 수행하였다.
표 1
Figure PCTKR2012004546-appb-T000001
목표 mRNA는 β-액틴에 대하여 상대적으로 정량하였다. 증폭 생성물은 DyNAmo SYBR green qPCR kit (Finnzymes, Espoo, Finland)를 사용하여 DNA Engine 2 형광 검출 시스템(MJ research) 상에서 정량하였다. 4 ㎕ DEPC-처리된 물, 2 ㎕ 정방향 프라이머(5 pmol), 2 ㎕ 역방향 프라이머(2 pmol), 10 ㎕ SYBR green 프리믹스(premix with SYBR green), 및 2 ㎕ cDNA 주형을 함유하는 총 20 ㎕ 용적의 반응 혼합물로 반응을 수행하였다. 72℃ 연장 단계(extension step) 동안 각 싸이클의 마지막에 형광을 측정하였다. 실시간 PCR의 최종 단계에서, 일정한 형광 측정치를 사용하여 온도를 65℃에서 95℃로 0.1℃/s의 속도로 상승시키고, 이어서 30초 동안 40℃로 냉각시켜 멜팅 커브(melting curve)를 생성시켰다. 상대적 유전자 발현은 2-△△CT 방법을 사용하여 정량하였다.
(6) 콜로니 형성 단위분석 (Colony forming unit assay)
콜로니에 대하여, 세 개의 상이한 농도(2X105, 1X105, 0.5X105 cells/ml)의 HTSCs 및 BM-MSCs를 NH CFU-F 배지(Milteny Biotec, Bergisch Gladbach, Germany)를 함유하는 배양접시에 접종하였다. 14일째에, 세포를 메탄올로 고정하고, 건조시켰다. 김사 염색 용액(Sigma-Aldrich)으로 염색하고 실온에서 5분 동안 인큐베이션하였다. 세척 및 건조 후에, 지름이 1-8mm 사이인 콜로니(20 세포 이상)를 계수하였다.
(7) 면역결핍된 마우스에서 테라토마 형성
종양 성장 분석을 위해, 미분화된 HTSCs를 PBS에 재현탁하고(1x106 세포/20㎕), 면역결핍된 SCID 마우스의 신내막(kidney capsules) 및 정소에 주사하였다. 테라토마 형성을 위한 양성 대조군으로서, 인간 ESCs(CHA-hESC35: hES12012006, Korea Stem Cell Registry, KNIH, 오송, 대한민국)를 면역결핍된 SCID 마우스의 정소에 주사하였다. 종양이 형성되도록 한지 12 내지 16주 후에, 마우스를 치사시켰다. 테라토마 조직을 4% PFA에 놓고, 파라핀에 넣었다. 조직 절편(sections)을 헤마톡실린 및 에오신(시그마)으로 염색하여 조직학적 검사를 하였다. 마우스 조직에서 인간 세포를 확인하기 위하여, HTSC 주사 혹은 주사 없이, SCID 마우스 정소에서 인간-특이적 항체(Stem-121TM, Stem Cells Inc., Cambridge, UK)을 사용하여 면역세포화학분석을 수행하였다.
(8) 지방세포(adipogenic cells), 골 세포, 연골세포로의 시험관내(in vitro) 분화
HTSCs를 계대 5, 계대 13 및 계대 20에서 수집하였고, 재분류시킨 HTSCs 또한 계대 20에서 수집하였다. 콘트롤로서 계대 72에서의 hESCs 및 계대 3에서의 BM-MSCs를 또한 수집하여 3배엽 세포층으로의 분화능을 분석하였다. 모든 세포를 재현탁하고, 6 웰-배양 플라스크에 다시 도말하였다. 24시간 후에, 미-부착 세포를 배지를 교체하여 제거하고, 부착 세포를 콘플루언스까지 배양하였다. 이후, 상기 세포들을 지방형성, 골형성, 및 연골형성을 위한 배지들(Invitrogen)에서 21일 동안 배양하였다. 지방 분화는 오일 레드 O(Oil Red O)(Sigma-Aldrich)로 염색하여 시각화하였다. 지방형성-특이적 유전자(PPARγ 및 C/EBPα)의 발현은 실시간 RT-PCR에 의해 분석하였다. 골 분화는 알리자린 레드 S(Alizarin Red S)(Sigma-Aldrich)로 염색하여 시각화하였고, 골형성-특이적 유전자(COL I 및 CBFA I) 발현에 의해 분석하였다. 연골 분화는 알시안 블루(Alcian blue)(Sigma-Aldrich)로 염색하여 시각화하였고, 연골형성-특이적 유전자(COMP 및 SOX9) 발현에 의해 분석하였다.
(9) 신경세포(neurogenic cells)로의 시험관내(in vitro) 분화
HTSCs 및 BM-MSCs의 신경 분화(neurogenic differentiation)는 N2 supplement(Gibco), 2mM L-글루타민 (Gibco) 및 페니실린/스트렙토마이신 용액(1X, Gibco)을 함유한 DMEM-F12 배지(Gibco)에서 유도시켰다. 3일 후에, 상기 세포를 고정한 다음, 면역세포화학 분석을 위해 처리하였다. 신경구(neurospheres)와 같은 부유하는 구형 세포(spheric cells)의 형성 후에, 세포(1X106 cells/ml)를 떼어내고; 피브로넥틴(10 ㎍/ml, Sigma)-코팅된 접시상에 다시 도말하고; 2mM L-글루타민, 10ng/ml 상피 성장 인자 (EGF, Invitrogen), 10ng/ml bFGF 및 페니실린/스트렙토마이신 용액으로 보충된 Neural Progenitor Basal Medium(NPBM, Cambrex, One Meadowlands Plaza, NJ)에서 3일 동안 배양하였다. 성장 인자는 매일 가하였다. 마지막 신경 분화의 유도는 0.5 μM 트랜스-레티논산(all-trans-retinoic acid)(Sigma), 1% FBS (Gibco), 5% 말 혈청(horse serum)(Gibco), 1% N2 supplement 및 페니실린/스트렙토마이신 용액으로 보충된 Neurobasal Medium(Gibco)에서 세포를 도말하여 개시시켰다. 세포는 10-14일 동안 분화시켰다. 신경 분화는 현미경하에서 관찰하였고, RT-PCR로 확인하였다.
(10) 인슐린-분비 세포로의 HTSCs의 시험관내 분화
인슐린 분비 세포로의 분화는 특정 배지(Bcell Bio, Seoul, Korea)(Kang, H.M., et al. Insulin-secreting cells from human eyelid-derived stem cells alleviate type I diabetes in immunocompetent mice. Stem Cells 27, 1999-2008 (2009))의 제조사의 지침서에 따라 유도시켰다. 분화 효율은 배양 배지에 분비된 인슐린 및 C-펩타이드의 측정에 의하여 분석하였다. 즉, 세포를 0.5% BSA를 함유한 저-글루코오스(5.5mM)-DMEM으로 12시간 동안 처리한 다음, 고-글루코오스(25mM)-DMEM으로 2시간 동안 37℃에서 자극하였다. 배지로 방출된 인슐린 및 C-펩타이드의 양은 인간 인슐린 및 C-펩타이드 효소-결합 면역흡착 분석(ELISA) 키트(Mercodia, Winston Salem, NC)를 사용하여 제조사의 지침서에 따라 측정하였다. 분화된 세포에서 인슐린 및 C-펩타이드의 합성은 RT-PCR로 확인하였다.
(11) 지방세포(adipogenic cells), 골 세포, 연골세포로의 생체내(in vivo) 분화
마우스 취급에 관한 동물 실험은 차의과학대학의 동물실험윤리위원회(Institutional Animal Care and Use Commitee)의 승인을 받았다. BALB/c 암컷 마우스(6 주령)을 4개의 군으로 나누었다. HTSCs(30 mg)를 함유하는 덱스트란(DEX)-로딩된 마이크로스피어(30 mg)를 12마리의 누드 마우스의 등에 피하로 이식하였다. 그룹 I은 대조군(n=3)으로, DEX-로딩된 마이크로스피어를 암컷 마우스의 등 피하에 주입하였다. 그룹 II(n=3)는 100 ng/ml TGFβ3-코팅된 마이크로스피어를 암컷 마우스의 등 피하에 주입하였다. 그룹 III(n=3)는 100 ng/ml BMP2-코팅된 마이크로스피어를 암컷 마우스의 등 피하에 조심스럽게 주입하였다. 그룹 IV(n=3)는 50 ng/ml IGF 및 bFGF (Invitrogen)-코팅된 마이크로스피어를 암컷 마우스의 등 피하에 주입하였다. 처리 4주 후에, 상기 암컷 마우스들을 마취제(케타민)의 과잉 주입을 통해 치사시키고, 주입된 부위를 포함하는 피부(2 x 2 cm2)를 조심스럽게 절개하여 이어지는 생물학적 검사를 수행하였다. 조직을 수확하고, RT-PCR, 웨스턴 면역블롯팅, 면역세포화학 및 면역조직화학을 수행하여 생체내 분화를 확인하였다.
(12) 양측성 해면체 신경 분쇄 손상(bilateral cavernous nerve crush injury) (BCNCI) 랫트 모델로의 HTSCs의 이식
32마리의 12주령 수컷 스프레그-도울리 랫트를 다음과 같이 무작위로 4 군(군당 8마리)으로 나누었다: 1) 개복만 한 군 (샴 군); 2) 양측성 해면체 신경 분쇄 손상(bilateral cavernous nerve crush injury) (BCNCI) 및 0.1 mol/L 인산완충식염수 점적 (손상 군); 3) BCNCI 및 전립선주변(periprostatic) BM-MSC 점적, 100 ㎕ 멸균 PBS에 현탁시킨 줄기세포 1x107 (BM 군); 및 4) BCNCI 및 전립선주변 HTSC 점적, 100 ㎕ 멸균 PBS에 현탁시킨 줄기세포 1x107 (HTSC group). 주입 전에, 줄기세포 추적을 위해 줄기세포를 Cell TrackerTM CM-Dil (C7000, Invitrogen)로 표지하였다.
이식 후 4주 후에, 손상 부위 가까이에서 해면체 신경 전기자극(3V, 0.2ms, 50s, 20 HZ)에 의해 발기능을 평가하였다(도 7a). 전신 평균 혈압(mean arterial pressure, MAP) 및 해면체간 압(intracavernosal pressure, ICP)을 기록하고, 전기적으로 분석하였다(Powerlab, ADInstruments, Colorado Springs, CO, USA, 도 7b). 그룹들 간의 ICP/MAP 비율을 비교하였다. 발기능 측정 후에, 각 랫트의 전립선 엽(prostate lobes)을 수확하였다. 핵 및 신경 염색(Nuclear and neural staining)은 헤마톡실린 및 네스틴 항체(Santa Cruz Biotechnology)를 사용하여 수행하였다. 또한, 각 마우스의 분쇄 손상 부위에서 인간-특이적 항체(Stem-121TM) 및 뉴런-특이적 β-튜블린 클래스 III(TuJI, Santa Cruz Biotechnology)를 사용하여 면역세포화학분석을 수행하였다.
(13) 통계 분석
모든 시험은 적어도 3회 반복하였으며, 데이터는 평균±SEM으로 나타내었다. 그룹들 간의 차이는 ANOVA 테스트로 분석하였다. p 값 < 0.05를 통계학적으로 유의성 있는 것으로 간주하였다. CD34 발현 및 3배엽 계통(lineasge)에 특이적인 유전자의 관련성은 Pearson's coefficient of correlation을 사용하여 분석하였다.
2. 시험결과
(1) 인간 HTSCs의 분리 및 증식
15명의 기증자의 평균 연령은 36.7±6.7이었다(29세 및 55세 사이). 인간 정소 조직에서, CD34-양성 세포는 세정관(seminiferous tubules) 내에 및 세관들(tubules) 사이에서 주로 분포하였다. CD31의 발현은 단지 혈관에만 편재화되어 있었으며, αSMA는 세관들(tubules)에만 존재하였다 (도 1). 또한, CD34, CD73, CD31, 및 αSMC의 발현 패턴은 OA 및 NOA 환자의 정소에서 매우 유사하였다. 그러나, CD73은, 그 수가 매우 적었으나, 세정관의 기저막(basal lamina)에서는 발현되지 않았다. 또한, CD34/CD31-이중-양성 세포는 정소(testes)에서 관찰되지 않았다. 인간 정소에서 CD34/CD73-이중-양성 세포를 편재화시키기 위하여, 생검된 세정관의 냉동편(cryosections)을 제조하고, CD34 및 CD73 항체로 염색하였다. CD34/CD73-이중-양성 세포는 세정관의 바깥에[간질 세포(interstitial cells) 내에] 편재화되어 넓게 분포하였으나, 소수만이 존재하였다(도 1).
수집된 간질세포를 2-3 계대로 먼저 배양하였다(도 9a). 시험관내 배양시, 인간 정소의 세정관으로부터 분리된 부착성 세포를 CD73에 의해 분류(sorting)하였다. 이들 세포는 MSC-유사 형태를 가졌으며, CD73 항체를 지속적으로 발현하였으므로, 이들을 정소-유래 줄기세포(testis-derived stem cells, TSCs)로 지칭하였다. TSCs는 두 종의 세포군(CD34-음성 및 CD34-양성)을 포함하였다. CD34-양성 TSCs를 자기 활성화-세포 분류(magnetic activating-cell sorting, MACS)에 의해 분류시키고, 배양 접시 상에 다시 도말하였다. CD73-분류된 TSCs 중 CD34-양성 세포는 매우 소수였기 때문에(도 2a), CD34-음성 TSCs에 비해 CD34/CD73 공동발현에 대하여 양성인 세포의 수는 매우 적었다[100 mg의 생검 조직 중 대략 1,000 세포(0.02%)]. 또한, 이들 초기의 소수(small number)로 인하여, CD34/CD73-이중 양성 세포는 배양 14일 후에야 80% 콘플루언시에 도달하였으며, 이는 이들 세포의 계대 1(p1)을 나타낸다. 그러나, 일단 이들이 추가적으로 증식되면, CD34/CD73-이중-양성 세포는 높은 증식 활성을 나타내었으며; 따라서 이들을 HTSCs(high proliferative-TSCs, HTSCs)로 지칭하였다. 세포는 3-4일 마다 새로운 배지를 공급하였으며, 계대 26 또는 27까지 MSC-유사 형태를 유지하였다(도 3). 대조적으로, BM-MSCs 및 TSCs는 각각 계대 6 및 계대 13까지 MSC-유사 형태를 유지하였으며, 이후에는 노화된(senescent) 형태를 나타내었다 (세포의 팽대(gross enlargement) 및 편평화(flattening), 도 3a). 배양 전체에 걸쳐, CD34-음성/CD73-양성 TSCs는 평균 34.3±2.1의 세포군 이배화(population doublings)를 나타냈고, 환자 당 수거된 이들 세포의 총 수는 2.2x1013 세포였다. 대조적으로, HTSCs는 평균 67.3±2.1의 세포군 이배화를 나타냈고, 수거된 총 세포수는 환자당 5.6x1016 세포였다(도 3b).
(2) HTSCs(CD34/CD73-이중-양성 TSCs)의 특성분석
HTSCs의 특성분석을 위하여, 유세포분석, 면역세포화학, 및 RT-PCR을 수행하였다. 계대 3에서, 다중-색깔(multi-color) 유세포 분석을 다양한 마커들을 사용하여 수행하였다. HTSCs는 CD34 (96.53%±3.5), CD73 (95.65%±1.5), class I major histocompatibility (MHC) 항원 (HLA ABC), CD29, CD44, CD90, CD105, 및 CD166에 대하여 강한 양성이었고; CD14, CD133, 및 StroI에서 약한 양성이었며; 또한 CD31, CD45, HLA DR, TRA-1-60, SSEA3, SSEA4, TRA-1-81, c-Kit, 및 CD140에 대하여 음성이었다(도 10).
면역세포화학적 분석에 의해, HTSCs는 CD34 및 CD73을 동시에 발현하지만, TSCs 및 BM-MSCs는 CD73만을 발현하고 CD34는 발현하지 않는다는 것이 확인되었다(도 2b). 또한, 유세포분석 결과로부터, HTSCs는 만능성(pluripotent) 마커인 c-Kit, TRA-1-60, TRA-1-81, SSEA3 및 SSEA4를 발현하지 않았으며, 이들은 또한 OCT4도 발현하지 않았다 (도 2c).
생식 세포 및 다른 체세포의 오염을 분석하기 위하여, 생식세포 마커(GFR α1 및 Thy-1), 레이딕(Leydig) 세포 마커(3β-HSD), 및 관주 근양 세포(peritubular myoid cell) 마커(Desmin 및 αSMC)를 사용한 면역세포화학에 의해 HTSCs를 분석하였다. 도 9a에 나타낸 바와 같이, 다양한 체세포를 함유한 초기 배양된 세포 중에 소수의 CD34-양성 세포가 존재하였다. CD73 및 CD34에 의해 분류된 후, 대부분의 세포는 계대 3에서 CD34를 발현하였으나, 생식세포 또는 정소 체세포에 대한 마커를 발현하지 않았다. 분류 후 계대 8(P8) 이후에는, CD34-양성 세포의 수는 유의성 있게 감소하였다. 생식 세포 및 레이딕 세포에 대한 마커는 더이상 검출되지 않았으나, Desmin 및 αSMC 에 대한 시그널이 소수의 CD34-음성 세포에서 다시 나타났다(도 9b 내지 도 9d).
시험관내 장기 증식 과정에서의 HTSCs의 유전적 안정성을 분석하기 위하여, 계대 5, 계대 13, 계대 20 및 계대 30에서 핵형분석을 수행하였으며, 염색체 이상(chromosomal aberrations) 없이 정상적인 이배체 핵형(46, XY)을 지속적으로 나타내었다(도 11a). 또한, RT-PCR 분석에 의해, 계대 5, 13 또는 20에서 HTSCs가 극히 낮은 수준의 만능성-관련된 OCT4, SOX2, 및 NANOG 유전자를 발현하였으며, 또한 생식세포-특이적인 VASA mRNA을 발현하지 않음이 입증되었다(도 11b).
HTSCs가 줄기세포의 다른 전형적인 특징을 나타내는지 결정하기 위하여, 분리된 HTSCs에 대하여 콜로니 형성 분석을 수행하였으며, 그 결과를 BM-MSCs와 비교하였다. HTSCs는 전형적인 줄기세포 콜로니를 형성하였고, 콜로니 형성 효율은 BM-MSCs보다 매우 높았다(15.2±2.1% vs. 1.0±0.1, 도 12a). 그러나, 조혈 세포의 콜로니는 두가지 모두의 줄기세포에 대하여 관찰되지 않았다(도 12b. 종양 형성능을 확인하기 위해, HTSC 세포주를 SCID 마우스의 신피막 및 정소에 주입하였다. 주입 후 12-16주까지, 10마리 마우스에 주입된 HTSC 세포주 어느 것도 종양을 형성하지 않았으나, 주입된 인간 HTSCs(Stem-121TM-양성 세포)의 소수는 정소에 그대로 남아있었다(도 13).
(3) 장기간의 배양 동안 CD34 발현의 변화 및 분류에 의한 세포군(population)-회수
HTSCs의 장기간 배양 동안 CD34-양성 세포의 세포군(population)을 분석하였다. CD34-양성 세포의 세포군은 배양이 지속됨에 따라 점차 감소하였다(도 4b). HTSCs가 계대 15-20에 도달하였을 때 CD34-양성 세포의 세포군은 거의 없어졌다. 이 시점에서, 세포의 이배수 시간은 증가하였고, 이들의 형태도 변화되었다(도 3a 및 도 4a). 계대 8에서, HTSCs를 CD34를 사용하여 MACS에 의해 재분류시킨 다음(재분류된 HTSCs), 이들의 증식을 분석하였다. 도 4c에 나타낸 바와 같이, 재분류된 HTSC에서 CD34-양성 세포의 세포군은 추가의 8 계대 동안 유지된 다음 감소하였고, 이들은 다시 계대 30까지 증식되었다. 이들 재분류된 HTSCs를 계대 18에서 다시 CD34에 의해 재분류시켰을 때(이중-재분류된 HTSCs), 이들 이중-재분류된 HTSCs의 증식은 p36 까지 유지되었다(이중-재분류된 HTSCs에서 79.8±2.4 이배수(population doubling) 및 1.3X1019 세포; 재분류된 HTSCs에서 81.1±1.5 이배수(population doubling) 및 1.84x1020 세포) (도 4c).
(4) 연골세포, 지방세포(adipogenic cells), 골 세포로의 시험관내(in vitro) 분화
HTSCs를 계대 5, 계대 13 및 계대 20에서 수집하였고, 재분류시킨 다음(계대 20; 분류 후 계대 20에서), 이들을 3주 동안 연골세포 분화 배지에서 분화시켰다. 계대 3의 BM-MSCs 및 계대 3의 TSCs를 실험 대조군으로 사용하였다. HTSCs, TSCs 및 BM-MSCs로부터 유도된 것들은, 다당류 생성물의 표지인, 알시안 블루 염색을 나타내었다. 그러나, 연골형성 유전자인 COMP 및 SOX9의 mRNA 수준은 BM-MSCs-유래된 연골세포에 비하여, HTSCs-유래된 연골세포에서 유의성있게 더 높았다(도 5a). HTSCs에서 COMP 및 SOX9의 발현은 계대배양이 지속될 수록 감소되었지만, 다시 재분류된 HTSCs에서는 유지되었다.
이들의 지방형성능을 시험하기 위하여, HTSCs를 지방형성(adipogenic) 배지 내에서 3주 동안 배양하였다. 계대 3의 BM-MSCs 및 계대 3의 TSCs를 실험 대조군으로 사용하였다. 이 조건하에서, HTSC-유래 지방세포로부터 유도된 것들은 세포간 지방구(intracellular lipid droplets)를 함유하는 지질함유(lipid-laden) 세포의 전형적인 형태를 나타내었으며, 오일 레드 O 염색에 대해 양성이었다. 또한, BM-MSCs 및 초기 계대의 HTSCs로부터 분화된 지방세포는 지방형성 유전자인 PPARγ 및 C/EBPα를 유사하게 발현하였다(도 5b). 그러나, 이들 수준은 TSCs에서 매우 낮았다. HTSCs에서 PPARγ 및 C/EBPα의 유전자 발현 수준은 지속적인 배양에 따라 점차 감소되었지만, 재분류된 HTSCs를 분화시켰을 때 유지되었다.
HTSCs, TSCs 및 BM-MSCs를 또한 골형성 배지에서 3주 동안 배양하였다. 이 조건하에서, 모든 HTSCs 및 BM-MSCs로부터 유도된 것은, 칼슘 생성물의 표지인 알리자린 레드 S 염색에 대해 양성이었다. 또한, 두 종류의 세포 모두 골세포 마커 유전자인 COL I 및 CBFA I의 유사한 발현 수준을 나타내었다(도 5c)). 그러나, 염색의 강도 및 골세포 유전자 발현은 TSCs에서는 낮았다.
(5) 연골세포, 지방세포, 골 세포로의 분화 후 다양한 줄기세포의 유전자 발현 프로파일
ESCs, BM-MSCs, 지방-유래 hMSCs (AD-MSC), TSCs, 및 HTSCs의 분화능 비교분석을 연골화, 지방세포화, 및 골세포화와 관련된 특이적 유전자의 상대적인 발현 수준을 측정함으로써 수행하였다 (도 14). HTSCs의 연골분화능은 BM-MSCs, AD-MSCs 및 TSCs에 비해 유의성있게 더 높았으며 (p≤0.001), ESCs만큼은 좋지 않았다. HTSCs의 지방형성능은 ESCs 및 BM-MSCs와 비교할만하였으나, AD-MSCs 및 TSCs에 비하여 매우 우수하였다.
(6) 신경세포로의 시험관내 분화
계대 5, 계대 13 및 계대 20에서의 HTSCs, 및 계대 20에서 재분류된 HTSCs, 및 계대 3에서의 BM-MSCs를 신경원성 단계 I 배지에서 3일 동안 배양하였다. 이 단계의 마지막에서, HTSCs 및 BM-MSCs로부터 유래된 일부는 항-네스틴 항체로 양성으로 염색되었다(도 15a). 이들 네스틴-양성 세포를 신경원성 단계 II 배지에서 3일 동안 다시 배양하였을 때, HTSCs 및 BM-MSCs로부터 유래된 것들의 형태는 양극 형태(bipolar form) 특성의 신경으로 변화되었다. 또한, GFAP 및 β-튜불린 3의 신경 세포-특이적 유전자의 발현이 HTSCs 및 BM-MSCs로부터의 상기 양극 세포에서 관찰되었다(도 15b).
(7) 인슐린-분비 세포로의 시험관내 분화
HTSCs, 재분류된 HTSCs, 및 BM-MSCs의 중배엽 계통 다능성(mesodermal lineage multipotencies)을 또한 인슐린-분비 세포로 시험관내에서 분화시킴으로써 측정하였다. 인슐린-생성 배지(insulinogenic media)에서 배양한 후, 인슐린-분비 활성, 특히 세포의 글루코오즈-의존성 분비를 저(5.5mM) 또는 고(25mM) 농도의 글루코오즈로 세포를 자극하여 분석하였다. 세포를 분화유도시키지 않았을 때, 글루코오즈 자극에 반응하여 배지로 방출된 인슐린 및 C-펩타이드의 양은 모든 HTSCs (계대 5, 계대 13, 계대 20, 및 재분류된 계대 20) 및 BM-MSCs (계대 3)에서 유사하였다. 동일한 세포를 분화 배지에서 배양한 후, 세포에 의하여 방출된 인슐린 및 C-펩타이드는 고-글루코오즈 자극에 의하여 현저하게 증가되었다. 고-글루코오즈으로 자극하였을 때, 계대 5 및 계대 13에서의 HTSCs는 계대 3에서의 BM-MSCs와 유사한 양의 인슐린 및 C-펩타이드를 분비하였다. 계대 20에서, HTSCs는 인슐린 및 C-펩타이드를 분비하는 능력의 감소를 나타내었으나, 계대 8에서 CD34로 재분류하였을 때 이들 감소를 구조하여 이들 세포가 계대 20에서 높은 인슐린 및 C-펩타이드 방출을 유지하도록 할 수 있었다 (도 6a 및 도 6b)). 또한, 췌장 베타-세포 마커 유전자인 인슐린 및 NGN3는 인슐린생성(insulinogenic) 분화배지에서 배양된 HTSCs 및 BM-MSCs 모두에서 명확히 발현되었으나, 비-분화된 세포에서는 발현되지 않았다(도 6c).
(8) 지방세포, 골 세포, 연골세포로의 생체내(in vivo) 분화
성장 인자를 함유한 마이크로스피어와 혼합된 HTSCs를 4군으로 나누어, 10마리 누드 BALB/c 암컷 마우스의 등에 피하 이식하였다. PPARγ, C/EBPα, CBFA I, COL I, SOX 9 및 COL II를 포함한, 분화-관련 유전자의 발현을 RT-PCR에 의해 검출하였다. 지방, 골, 및 연골 세포의 유전자 특징이 특이적인 성장인자-함유 마이크로스피어로 이식된 분화 HTSCs에서 높게 발현되었다(도 16a).
웨스턴 블롯 분석은 이들 마우스의 혈청에서 대응하는 단백질의 존재를 나타내었다(도 16b)). 또한, 특이적 염색 또는 특정 마커를 사용한 면역세포화학 분석은 생체내 및 시험관내 모두에서 HTSCs의 지방, 골, 연골 분화를 확인해 주었다(도 16c 및 도 16d)
(9) 이식된 HTSCs로부터 양측성 해면체 신경 분쇄 손상(bilateral cavernous nerve crush injury) (BCNCI)의 기능 회복
임상적으로 관련된 세포-기반 치료에 있어서, HTSCs의 사용가능성을 확인하기 위하여, 랫트에서 양측성 해면체 신경 분쇄 손상 모델을 사용하였다. HTSCs 또는 BM-MSCs를, 양측에 해면체 신경을 손상시킨 랫트의 전립선주변(periprostatically) 주사하였다. 분쇄 손상 부위의 기능 회복, 전신 평균 동맥 혈압(systemic mean arterial pressure, MAP) 및 음경해면체내압(intracavernosal pressure, ICP)을 평가하여 HTSCs의 치료 효능을 BM-MSCs와 비교하였다(도 7a 및 도 7b). 평균 ICP/MAP 비율은 샴 그룹(0.70 ± 0.02)과 비교했을 때 손상 그룹(0.20 ± 0.01)에서 유의성 있게 더 낮았다(p<0.001)(표 2, 도 7c). BM-MSCs 또는 HTSCs의 전립선주변 주입은 손상군에 비하여 ICP/MAP 비율의 유의성있는 증가를 나타내었다(p < 0.001). 해면체신경의 말단 부위를 자극함에 따라, 발기 반응의 부분적인 회복이 BM-MSC 군(0.44 ± 0.05) 및 HTSC 군(0.44 ± 0.07) 모두에서 나타났지만, 두 군 사이에 유의성 있는 차이는 없었다. 처리된 동물의 전립선에서, 인간 유래의 세포가 CellTrackerTM CM-DiI로 검출되었으며(적색). TuJi(신경)-양성인 것으로 밝혀졌으며, 이는 주입된 HTSCs가 랫트의 해면체 신경 주위에 혼입되었으며 신경 세포로 분화되었음을 나타낸다(도 7d). 또한, 분쇄 손상 분위에서의 Stem-121TM (FITC, 녹색, 화살표머리(arrowhead)) 및 TuJI (Cy5, 자주색, 화살표)-이중-양성 세포 및 몇몇의 CellTrackerTM CM-DiI (적색, 개방 화살표머리(open arrow heads))가 관찰된다는 것을 또한 확인하였다. 따라서, 이는 주입된 HTSCs가 뉴우런으로 분화 및 혼입될 수 있음을 나타낸다 (도 7e).
표 2
손상 BM-MSC HTSC 샴(sham) p 값
MAP (cm-H2O) 136.6±4.1 142±5.8 135.2±3.9 135.6±3.2 0.675
ICP (cm-H2O) 27.2±3.3 60.2±6.3 58.6±11.5 86.7±2.6 0.001
ICP/MAP 비율 0.20±0.014 0.44±0.048 0.44±0.073 0.70±0.019 < 0.001
(10) CD34 발현과 세포 분화와의 상관관계
CD34를 발현하는 세포의 비율과 세포의 분화정도를 분석하였다. CD34를 발현하는 세포의 비율이 이어지는 계대배양(계대 5, 계대 13, 및 계대 20) 과정에서 감소됨에 따라, 3배엽 계통의 세포(3 germ layer lineage cells)의 마커 유전자 발현 수준도 감소되었다. 중배엽(mesodermal) 유전자: PPARγ, C/EBPα, COL I, CBFA I, COMP, 및 SOX9; 내배엽(endodermal) 유전자: 인슐린 및 NGN; 및 외배엽(ectodermal) 유전자: GFAP 및 β-Tubulin 3의 발현은 유의성있게 낮게 발현되었다(도 17a 및 도 17b).
3. 고찰
본 연구에서, 본 발명자들은 인간 정소 조직으로부터, HTSCs를 분리하고 특징분석하였다. 정소의 마우스 다능성 정원줄기세포(spermatogonial stem cells, SSCs)에 관한 Kanatsu-Shinohara 등의 보고(Kanatsu-Shinohara M, Inoue K, Lee J, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell. 2004;119:1001-1012) 이래로, 많은 연구가 인간의 대응세포(counterparts)를 분리, 특징분석, 및 증식시키는데 촛점을 두어 왔다(Conrad S, Renninger M, Hennenlotter J, et al. Generation of pluripotent stem cells from adult human testis. Nature. 2008;456:344-349; Kossack N, Meneses J, Shefi S, et al. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells. 2009;27:138-149; Golestaneh N, Kokkinaki M, Pant D, et al. Pluripotent stem cells derived from adult human testes. Stem Cells Dev. 2009;18:1115-1126; Mizrak SC, Chikhovskaya JV, Sadri-Ardekani H, et al. Embryonic stem cell-like cells derived from adult human testis. Hum Reprod. 2010;25:158-167). 이들 분리된 인간 세포는 SSCs로부터 유래되는 것으로 생각되나, 이들의 정확한 기원(origins)에 대해서는 논쟁(controversial)이 존재한다(onrad S, Renninger M, Hennenlotter J, et al. Generation of pluripotent stem cells from adult human testis. Nature. 2008;456:344-349; Tapia N, Arauzo-Bravo MJ, Ko K, et al. Concise review: challenging the pluripotency of human testis-derived ESC-like cells. Stem Cells. 2011;29:1165-1169; Chikhovskaya JV, Jonker MJ, Meissner A, et al. Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors. Hum Reprod. 2012;27:210-221). 전체적으로, 기존의 연구로부터 얻어진 모든 정소 줄기 세포는 정소의 생식세포(testicular germ cells)로부터 유래된 것으로, 체세포로부터 유래된 것이 아니다. 이들 세포는 ESC-유사 콜로니 형태를 가지고 있으며, 줄기세포성 유전자 발현의 측면에서 인간의 HTSCs와 상이한 특성을 갖는다. HTSCs가 인간 정소의 MSC-유사 세포 및 BM-MSCs와 유사한 형태와 특성을 나타내지만, HTSCs는 초기에 CD34 및 CD73을 모두 발현한다는 점에서 다른 공지의 MSCs 또는 MSC-유사 세포와 상이하며, 이는 CD73, CD90, 및 CD105의 막 항원은 존재하지만 다른 세포 마커 유전자(CD34 및 CD45)의 발현은 결여하는 특성을 갖는 MSCs의 종래의 정의와 상반된다. 따라서, HTSCs는 인간의 정소 체세포 유래의 신규의 줄기세포/전구세포이다. 즉, CD34/CD73-이중-양성 세포는 생체내에 거의 존재하지 않으며(도 1), 이들은 초기 CD73-분류된 TSC 세포 군 중 0.03%만을 구성한다(도 2a). 또한, CD34/CD73-이중-양성 세포가 정소에는 없으며 또한 세정관의 기저층에서 CD73이 발현되지 않는다는 발견(도 1)에 의해, 본 발명자들은 CD34/CD73-이중-양성 세포(HTSCs)가 간질세포(interstitial cells)에 존재하며, 또한 간질세포에 대한 중간엽(mesenchymal) 혹은 전구(precursor) 세포일 수 있음을 가정하였다.
CD34는 조혈 줄기세포의 표지 마커(hall marker)로 간주되었으나, CD34는 실제적으로 다양한 비-조혈 조직 및 세포, 예를 들어 혈관내피세포 및 연 조직 신생물(soft tissue neoplasm)에서 발현된다. 인간 지방-유래 줄기세포에서, CD34 발현이 검출되었으나, 배양 시간에 따라 감소되며, 이는 증식능, 분화능, 및 세포의 미성숙 또는 줄기세포성에 관련될 수 있다. CD73이 다양한 MSCs에서 지속적으로 발현되므로, 인간 정소의 생검 샘플로부터 재생능(regenerative potential)을 갖는 줄기세포를 분리하기 위하여, 본 발명자들은 CD34와 함께, CD73을 추가의 선별마커로서 선택하였다.
CD34/CD73-이중-양성 HTSCs는 CD34-음성/CD73-양성 TSCs에 비하여 높은 증식능을 나타내었다. 극히 소량의 HTSCs를 23-32 계대 이상의 배양 후에 매우 많은 양의 세포군으로 증식시킬 수 있었다. 이러한 세포의 증식 및 분화능은 이들의 CD34 수준과 강한 관련성이 있었다. 도 17에 나타낸 바와 같이, CD34 발현은 세포의 분화 상태와 역으로 관련성이 있었다. 세포가 특정 세포 형태로 분화됨에 따라, CD34 발현은 감소되었으며, 이는 CD34가 이러한 종류의 줄기세포의 줄기세포성/미성숙성(stemness/juvenility) 마커임을 나타낸다. 또한, 상기한 지방-유래 줄기세포와 유사하게, CD34-양성 세포인 HTSCs의 비율 및 이들의 증식능은 연속적인 계대 배양과 함께 감소한다는 것이 밝혀졌다. 대조적으로, CD73의 발현은 배양 시간에 의해 영향을 받지 않았으며; 30계대 이상을 통하여 지속적으로 높은 발현을 나타내었다 (도 4b). CD34의 재분류(resorting)는 배양의 증식능을 확대시켰으며 또한 분화능을 향상시켰다. CD34의 재분류는 CD34-/CD73+ 세포를 제거하며, CD34+/CD73+ 세포를 남겨놓는다. 특정 세포 형태로의 HTSCs의 분화는 CD34의 저발현을 야기하고, 장기간의 배양은 통상 노화 및 분화를 야기하기 때문에, 정소 기질 세포 상의 CD34 발현의 정도는 젊고 건강한 줄기세포에 대한 유용한 선별 마커일 수 있다. 또한, CD34 발현과 세포의 줄기세포성 및 수명 사이의 밀접한 연관성 때문에, 정소 기질 세포 상에서의 CD34의 과발현 또는 연장시킨 발현이 세포의 수명 및 유연성(plasticity)을 증가시킬 수 있는지 여부는 중요할 수 있다.
HTSCs는 MSCs와 공통된 특징을 가졌으나, ESCs와는 상이하였다(도 2c). 본 발명자들은 다양한 종류의 줄기세포: ESCs, BM-MSCs (계대 3), TSCs (계대 5) 및 HTSCs (계대 5)의 분화능을 직접 비교하였다. 시험관내 및 생체내 분화 연구에서, HTSCs를 BM-MSCs와 비교할만한 방법으로 지방, 골, 연골 세포로 분화시킬 수 있었다(도 5 및 도 14). HTSCs는 특정 프로토콜을 적용하였을 때, 신경세포 및 인슐린-분비 세포로 분화시킬 수 있었다(도 15 및 도 6).
생체 내 세포 이식 연구에서, 미분화된 HTSCs는 양측성 해면체 신경 분쇄 손상(bilateral cavernous nerve crush injury)의 회복에 기여하였으며, 또한 초기 세포 주입 4주 후에 손상된 랫트 모델의 혈류 회복에 기여하였다(도 7). 전립선암에 대한 근치적 전립선 적출술(radical prostatectomy)은, 전립선 후측면을 따라 있는 신경혈관 묶음(해면체 신경)의 손상에 의해 자주 발기 부전을 야기한다. 본 발명자들은 분쇄 손상 부위 주위에 HTSCs 또는 BM-MSCs의 전립선주변 주입이 발기 기능을 개선한다는 것을 발견하였다. 실제로, 본 발명자들은 이들 랫트의 해면체 신경의 내부에서 외인성 HTSC-유래 뉴우런을 발견하였으며(도 7e) 또한 혈압의 기능적인 개선을 관찰하였다. 본 연구에서, HTSC 주입 후에, 손상 부위 주변의 몇몇의 뉴우런(TuJI-양성 세포)는 또한 인간 세포 전-염색 마커(CellTrackerTM CM-DiI) 및 인간-특이적 항체에 대하여 양성이었으며, 이는 주입된 HTSCs가 이식 후 뉴우런 세포로 분화하는 능력을 가짐을 나타낸다(도 7d 및 도 7e). 따라서, 환자가 전립선암으로 진단될 경우, 상기 방법은 향후 발기부전의 치료를 위한 정소 생검으로부터, 자가유래의 줄기 세포(HTSCs)를 얻고, 증식시키고, 또한 저장하기 위하여 사용될 수 있다.
정소는 생식세포뿐만 아니라 상이한 종류의 배양-유도된 만능성(pluripotent) 줄기세포를 함유한다. 상기 배양-유도된 줄기세포는 심각한 윤리적 문제를 야기함이 없이 환자-특이적 세포치료제로 사용될 수 있으나, 줄기세포주 확립 효율이 매우 낮고, 또한 분리된 세포주는 인간에서 잘 특성분석되어 있지 않다(Ko K, Arauzo-Bravo MJ, Tapia N, et al. Human adult germline stem cells in question. Nature. 2010;465:E1; discussion E3). 또한, 정원 생식세포(spermatogonial germ cells)를 사용하여 확립된 줄기세포주는 NOD-SCID 마우스에 주입한 후 종양을 형성하므로(Seandel M, James D, Shmelkov SV, et al. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature. 2007;449:346-350), 인간의 약제로 임상에서의 사용이 의문시된다. 본 연구에서, 본 발명자들은 특정 배양 조건(defined culture conditions) 및 간단하고 고효율의 MACS 시스템(100% 분리율)을 사용하여 정상적(폐색성 무정자 2) 및 비정상적 정소 생리(배엽 세포 없는, 비-폐색성 무정자 13)를 갖는 공여자로부터 다능성 줄기세포주를 확립하였다. 일반적으로, 인간의 성체줄기세포는 제한된 횟수로 증식될 수 있고, 분리 및 시험관내 증식후에는 신속히 노화 단계(senescence phase)로 들어간다. 또한, 인간의 성체줄기세포는 시험관내 증식과정에서 높은 염색체 이상을 나타낸다. 본 연구에서, 시험된 세포주는 모두 면역결핍 마우스에서 종양을 형성하지 않았고, 염색체 상태(chromosomal integrity)도 계대 30까지 유지되었으며, 이는 이들 세포주가 인간 배아줄기세포에 대하여 안전한 대체물임을 나타낸다. 또한, 두 종류의 남성 공여자로부터 분리된 HTSCs 사이에, 분화효율에 있어 차이점이 없었기 때문에, 상기 방법은 모든 남성에게 적용될 수 있다.
4. 결론
본 발명자들은 인간 정소 기질 세포에서 CD34/CD73 공동 발현이 증식능, 분화능, 및 미성숙성 혹은 줄기세포성과 밀접하게 연관된다는 것을 발견하였다. 따라서, CD34 및 CD73은 간단한 정소 생검으로부터 고증식성의 성체줄기세포를 얻기 위한 초기 선별마커로서 사용될 수 있다. 이들 세포는, 인간 ESCs의 사용과 관련한 문제인 종형 형성 혹은 윤리적 논란 없이 환자-특이적 세포-기반 치료에 사용될 수 있다. 또한, 이들의 높은 증식 능력으로 인하여, 이들 CD34/CD73-동시 발현 HTSCs는 다수의 세포를 필요로 하는 치료에 특히 유용하다.

Claims (15)

  1. CD34 및 CD73 모두에 대하여 양성 면역 반응을 나타내고, 정소의 체세포로부터 유래된, 다능성 성체줄기세포.
  2. 제1항에 있어서, 상기 정소의 체세포가 세정관(seminiferous tubles)의 바깥 주위 세포(outer surrounding cells)인 것을 특징으로 하는 다능성 성체줄기세포.
  3. 제2항에 있어서, 상기 세정관의 바깥 주위 세포가 간질세포(interstitial cells)인 것을 특징으로 하는 다능성 성체줄기세포.
  4. (a) 인체로부터 분리된 인간의 정소 조직으로부터 세정관의 바깥 주위 세포를 분리하고, 계대배양하는 단계; 및
    (b) 단계(a)로부터 얻어진 세포에 대하여, 항-CD34 항체 및 항-CD73 항체를 사용한 분류(sorting)를 수행하여, CD34-양성 및 CD73-양성의 세포를 분리하고, 계대배양하는 단계
    를 포함하는, CD34 및 CD73 모두에 대하여 양성 면역 반응을 나타내는 다능성 성체줄기세포의 제조방법.
  5. 제4항에 있어서, 상기 세정관의 바깥 주위 세포가 간질세포인 것을 특징으로 하는 제조방법.
  6. 제4항에 있어서, 단계(a)의 상기 분리가 인체로부터 분리된 인간의 정소 조직을 콜라게나아제, 디스파아제, 또는 이들의 혼합물을 사용한 효소로 처리하여 수행되는 것을 특징으로 하는 제조방법.
  7. 제4항에 있어서, 단계(a)의 상기 계대배양이 지지세포 및 혈청을 함유한 배지 중에서 2 내지 4 계대까지 수행되는 것을 특징으로 하는 제조방법.
  8. 제4항에 있어서, 상기 분류가 자기 활성화 세포 분류(magnetic activating-cell sorting)에 의해 수행되는 것을 특징으로 하는 제조방법.
  9. 제4항에 있어서, 단계(b)의 상기 계대배양이 지지세포 및 혈청을 함유한 배지 중에서 7 내지 9 계대까지 수행되는 것을 특징으로 하는 제조방법.
  10. 제9항에 있어서, 상기 7 내지 9 계대까지 수행된 세포에 대하여, 항-CD34 항체를 사용한 분류를 수행하고, 추가의 계대배양(additional subculturing)을 수행하는 단계를 추가로 포함하는 것을 특징으로 하는 제조방법.
  11. 제10항에 있어서, 상기 추가의 계대배양이 상기 단계(b)의 계대배양에 추가하여 7 내지 12 계대까지 수행되는 것을 특징으로 하는 제조방법.
  12. 제11항에 있어서, 상기 추가의 계대배양이 상기 단계(b)의 계대배양에 추가하여 12계대까지 수행하고, 항-CD34 항체를 사용한 분류를 수행하고, 이어지는 계대배양을 수행하는 것을 특징으로 하는 제조방법.
  13. 제1항 내지 제3항 중 어느 한 항에 따른 다능성 성체줄기세포를 유효성분으로서 포함하는, 발기부전 치료용 약학 조성물.
  14. 제13항에 있어서, 상기 다능성 성체줄기세포가 제4항에 따른 제조방법에 의해 제조된 것임을 특징으로 하는 약학 조성물.
  15. 제13항에 있어서, 상기 발기부전이 근치적 전립선 적출술(radical prostatectomy)에 의하여 발생된 것임을 특징으로 하는 약학 조성물.
PCT/KR2012/004546 2011-06-15 2012-06-08 정소의 체세포-유래의 다능성 줄기세포, 이의 제조방법 및 이를 포함하는 발기부전 치료용 약학 조성물 WO2012173358A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/126,220 US9688961B2 (en) 2011-06-15 2012-06-08 Process of preparing human multipotent stem cells co-expressing CD34 and CD73
CN201280029658.4A CN103620023B (zh) 2011-06-15 2012-06-08 睾丸体细胞来源的多能干细胞、其制备方法以及包含其的治疗勃起功能障碍的药物组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110057767 2011-06-15
KR10-2011-0057767 2011-06-15

Publications (2)

Publication Number Publication Date
WO2012173358A2 true WO2012173358A2 (ko) 2012-12-20
WO2012173358A3 WO2012173358A3 (ko) 2013-02-07

Family

ID=47357578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004546 WO2012173358A2 (ko) 2011-06-15 2012-06-08 정소의 체세포-유래의 다능성 줄기세포, 이의 제조방법 및 이를 포함하는 발기부전 치료용 약학 조성물

Country Status (4)

Country Link
US (1) US9688961B2 (ko)
KR (1) KR101429110B1 (ko)
CN (1) CN103620023B (ko)
WO (1) WO2012173358A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101781173B1 (ko) 2014-10-17 2017-09-22 경희대학교 산학협력단 면역 억제능이 증진된 중간엽 줄기 세포 및 이의 제조방법
CN105331579A (zh) * 2015-11-27 2016-02-17 中山大学 人睾丸间质干细胞的分离、培养方法及其用途
CN105902568A (zh) * 2016-04-29 2016-08-31 张宁 用于治疗勃起功能障碍的脂肪间充质干细胞
CN108588004A (zh) * 2018-04-09 2018-09-28 深圳市莱利赛生物科技有限公司 诱导分化睾丸间质细胞的方法及其在性功能恢复中的应用
EP3848455A4 (en) * 2018-09-07 2022-06-29 CHA Biotech Co., Ltd. Medium for direct differentiation of pluripotent stem cell-derived mesenchymal stem cell, method for preparing mesenchymal stem cell by using same, and mesenchymal stem cell prepared thereby
CN113662968B (zh) * 2021-09-18 2023-09-19 哈尔滨科技实业开发有限公司 一种用于治疗勃起功能障碍的药物组合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070030774A (ko) * 2006-10-13 2007-03-16 학교법인 성광학원 생식줄기세포의 체외 분리, 증식 및 분화 방법
US20110008764A1 (en) * 2009-06-02 2011-01-13 Davinci Biosciences Llc Human gonadal stem cells

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003296338A1 (en) * 2002-12-05 2004-06-30 Case Western Reserve University Cell-based therapies for ischemia
US7666673B2 (en) * 2003-04-15 2010-02-23 Kyoto University Method of growing sperm stem cells in vitro, sperm stem cells grown by the method, and medium additive kit to be used in growing sperm stem cells in vitro
JP2007532128A (ja) 2004-04-13 2007-11-15 カレッジ オブ メディスン ポーチョン シーエイチエー ユニバーシティ インダストリー−アカデミック コーポレーション ファウンデーション 生殖幹細胞の単離、増殖および分化のインビトロ方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070030774A (ko) * 2006-10-13 2007-03-16 학교법인 성광학원 생식줄기세포의 체외 분리, 증식 및 분화 방법
US20110008764A1 (en) * 2009-06-02 2011-01-13 Davinci Biosciences Llc Human gonadal stem cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GONZALEZ ET AL.: 'A putative mesenchymal stem cells population isolated from adult human testes' BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS vol. 385, 29 May 2009, pages 570 - 575 *
LIM ET AL.: 'Ling-term proliferation and characterization of human spermatogonial stemcells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions' CELL PROLIFERATION vol. 43, 2010, pages 405 - 417 *

Also Published As

Publication number Publication date
WO2012173358A3 (ko) 2013-02-07
KR20120140197A (ko) 2012-12-28
KR101429110B1 (ko) 2014-08-12
US9688961B2 (en) 2017-06-27
CN103620023A (zh) 2014-03-05
CN103620023B (zh) 2015-07-29
US20140120070A1 (en) 2014-05-01

Similar Documents

Publication Publication Date Title
Uchida et al. Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation
Corradetti et al. Mesenchymal stem cells from amnion and amniotic fluid in the bovine
Cakici et al. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation
EP2205724B1 (en) Method for isolating and culturing adult stem cells derived from human amniotic epithelium
Lange‐Consiglio et al. Characterization and potential applications of progenitor‐like cells isolated from horse amniotic membrane
Kruse et al. Adult pancreatic stem/progenitor cells spontaneously differentiate in vitro into multiple cell lineages and form teratoma-like structures
WO2012173358A2 (ko) 정소의 체세포-유래의 다능성 줄기세포, 이의 제조방법 및 이를 포함하는 발기부전 치료용 약학 조성물
WO2015105356A1 (ko) 순수 영양막층으로부터 유래된 줄기세포 및 이를 포함하는 세포치료제
Choi et al. Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy
TW200523368A (en) Multipotent placental stem cell and methods thereof
US11066647B2 (en) Pluripotent human adipose adult stem cells: isolation, characterization and clinical implications
Pan et al. Application of a novel population of multipotent stem cells derived from skin fibroblasts as donor cells in bovine SCNT
WO2013085303A1 (ko) 개과동물 양막-유래 다분화능 줄기세포
WO2012008733A2 (ko) 1기 태반조직 유래 줄기세포 및 이를 함유하는 세포치료제
US9468656B2 (en) Stem cell preparations and methods of use
Lange-Consiglio et al. In vitro studies of horse umbilical cord matrix-derived cells: from characterization to labeling for magnetic resonance imaging
WO2012033352A2 (ko) 말과동물 양수 유래 다분화능 줄기세포 및 그 제조방법
WO2011159075A2 (ko) 2차원 배양을 이용한 성체줄기세포의 신경전구세포로의 분화방법 및 신경전구세포를 이용한 신경손상 질환 치료용 약학 조성물
US10542743B2 (en) Isolation, expansion and characterization of wharton&#39;s jelly mesenchymal stem cells
AU2012202353B2 (en) Stem cell preparations and methods of use
JP2013532989A (ja) 羊水由来多能性幹細胞の単離及び自己免疫疾患の処置又は予防におけるその使用
WO2010008157A2 (ko) 줄기세포의 외배엽성 세포로의 분화 방법
KR100851040B1 (ko) 췌장 베타세포로의 분화능을 가지는 성체 줄기세포
US9464270B2 (en) Stem cell preparations and methods of use
Somasundaram Endometrial stem cells and its potential applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800231

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14126220

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800231

Country of ref document: EP

Kind code of ref document: A2