WO2010114086A1 - 超音波診断装置、及び送波信号発生回路 - Google Patents

超音波診断装置、及び送波信号発生回路 Download PDF

Info

Publication number
WO2010114086A1
WO2010114086A1 PCT/JP2010/055997 JP2010055997W WO2010114086A1 WO 2010114086 A1 WO2010114086 A1 WO 2010114086A1 JP 2010055997 W JP2010055997 W JP 2010055997W WO 2010114086 A1 WO2010114086 A1 WO 2010114086A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
ultrasonic
circuit
probe
source
Prior art date
Application number
PCT/JP2010/055997
Other languages
English (en)
French (fr)
Inventor
奏子 畑山
健二 麻殖生
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2011507284A priority Critical patent/JP5410508B2/ja
Priority to US13/259,347 priority patent/US9022941B2/en
Publication of WO2010114086A1 publication Critical patent/WO2010114086A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52019Details of transmitters
    • G01S7/5202Details of transmitters for pulse systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/903Transmit-receive circuitry

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus that visualizes a tomographic image of a living body using a reception signal obtained by transmitting ultrasonic waves to a living body, and more particularly to a transmission technique that generates an arbitrary transmission waveform to be applied to an ultrasonic probe. .
  • a sinusoidal wave or a rectangular wave of about 100 Vpp and several MHz to 20 MHz is used to drive an ultrasonic probe of an ultrasonic diagnostic apparatus. Therefore, as a simple method for generating such a high-voltage transmission pulse from a transmission circuit that transmits ultrasonic waves in the ultrasonic transmission / reception unit, an electronic switch is provided for each of the positive and negative DC high-voltage power supplies Vp, Vn, A method of switching alternately is known (see Patent Document 1). In order to perform high-speed switching using such an electronic switch, a P-type MOS transistor (hereinafter referred to as PMOS) and an N-type MOS transistor (hereinafter referred to as NMOS) are usually used.
  • PMOS P-type MOS transistor
  • NMOS N-type MOS transistor
  • An object of the present invention is to solve the above-described problems and provide an ultrasonic diagnostic apparatus and a transmission signal generation circuit including a transmission circuit for generating a transmission signal excellent in IC.
  • a probe that transmits and receives ultrasonic waves to a subject, a transmission circuit unit that supplies a voltage to be applied to the probe, and a received signal from the probe
  • An ultrasonic diagnostic apparatus comprising: a receiving circuit unit that amplifies; an ultrasonic image forming unit that forms an ultrasonic image based on ultrasonic image data from the receiving circuit unit; and a display unit that displays the ultrasonic image
  • a source follower circuit of a field effect transistor hereinafter referred to as FET
  • the source follower circuit provides a configuration for supplying an arbitrary voltage to the probe by controlling the gate voltage of the FET.
  • the transmission circuit unit includes a plurality of connected source follower circuits, a control unit for controlling the gate voltage for each of the plurality of connected source follower circuits, and a drain of each FET via a diode.
  • a power supply unit that applies a voltage lower than the power supply voltage is provided.
  • the transmission circuit unit includes a plurality of connected source follower circuits and a control unit that commonly connects the gates of the FETs for the plurality of connected source follower circuits, and controls the voltage of the commonly connected gates.
  • the drain of each FET may be provided with a power supply unit that applies a voltage lower than the power supply voltage via a diode.
  • a current source for supplying a bias current to the source of the source follower circuit is configured using the same type of FET as the source follower circuit.
  • bias constant current sources of the source follower circuit are provided, one of the bias constant current sources is set to a predetermined voltage power source, and the other bias constant current sources are higher and different.
  • the level power supply is connected via a diode.
  • ultrasonic waves are transmitted / received to / from a subject and applied to a probe of an ultrasonic diagnostic apparatus that constitutes an ultrasonic image based on the received ultrasonic image data.
  • An FET source follower circuit is used as a transmission signal generation circuit for generating an ultrasonic signal, and this source follower circuit provides a configuration for supplying an arbitrary voltage to the probe by controlling the gate voltage of the FET. .
  • ultrasonic waves are transmitted to and received from a subject, and applied to a probe of an ultrasonic diagnostic apparatus that constitutes an ultrasonic image based on the received ultrasonic image data.
  • a transmission signal generation circuit for generating an ultrasonic signal an emitter follower circuit of a bipolar transistor may be used, and an arbitrary voltage may be supplied to the probe by controlling the base voltage of the bipolar transistor.
  • the ultrasonic diagnostic apparatus using the transmission signal generation circuit of the present invention has the following effects. (1) Since the structure uses a transistor source follower circuit, an arbitrary output waveform can be generated by controlling the gate voltage.
  • the transistors corresponding to each channel can be replaced with low-voltage transistors, so that the transistors can be reduced in size (space saving) and reduced in cost.
  • the block diagram which shows one structural example of the whole ultrasonic diagnostic apparatus with which this invention is applied
  • FIG. 1 is a block diagram showing the basic configuration of an ultrasonic diagnostic apparatus.
  • the ultrasonic diagnostic apparatus 1 is a device that forms and displays a two-dimensional ultrasonic image or a three-dimensional ultrasonic image for a diagnostic region using a reflected echo signal obtained by transmitting and receiving ultrasonic waves in the subject 2.
  • An ultrasonic probe 3 having a plurality of transducer elements that receive and receive an ultrasonic signal on the specimen 2, an ultrasonic transmission / reception unit 4 that transmits / receives an ultrasonic signal, and a two-dimensional ultrasonic image based on the received signal (B-mode image) or an ultrasonic image constructing unit 5 that constitutes a three-dimensional ultrasound image, a display unit 6 that displays an ultrasound image constructed in the ultrasonic image constructing unit 5, and a control unit that controls each element 7 and a control panel 8 for giving instructions to the control unit 7.
  • Such an ultrasonic probe 3 requires a large number of transmission amplifiers.
  • the present invention provides a transmission circuit for transmitting ultrasonic waves, particularly a transmission signal generation circuit suitable for IC formation, in the ultrasonic transmission / reception unit 4.
  • the transmission circuit may be called a transmission signal generation circuit or a transmission circuit unit.
  • FIG. 2 is a diagram showing a transmission signal generation circuit for one channel.
  • 11 to 14 are source follower type NMOSFETs (TR11 to TR14) connected in multiple stages (so-called cascode connection)
  • 21 to 24 are resistors with resistance values R21 to R24
  • 31 is a variable current source
  • 32 is a bias constant.
  • a current source 41 is a probe for one channel.
  • Reference numerals 51 and 52 denote DC power supplies Vdd and Vss, for example, + 100V and -100V.
  • V4a Vdd ⁇ (R21 + R22 + R23 + R24)
  • Vgs4 is a voltage between the gate and the source of the NMOSFET 14.
  • Ib1 constant
  • Vgs4 is substantially constant and small, so Vo ⁇ V4 approximately.
  • the transmission signal generation circuit of the present embodiment can generate a waveform with an arbitrary amplitude, and can be configured with only NMOSFETs using a low breakdown voltage NMOSFET by cascode connection. Therefore, a low-cost transmission signal generation circuit can be provided.
  • FIG. 3A 53 to 55 are newly installed power supplies V1 to V3, which supply constant voltages having a relationship of Vdd>V1>V2> V3.
  • V1 to V3 which supply constant voltages having a relationship of Vdd>V1>V2> V3.
  • a power supply to be used is automatically selected according to a desired output voltage. For example, when the output is lower than V3, the current source 36 is controlled so that the output voltage Vo becomes a predetermined output voltage Vo ( ⁇ Vdd ⁇ R24a * I4).
  • the NMOSFETs 11 to 13 are controlled so that the NMOSFETs 11 to 13 are turned off.
  • I3 may be controlled so that the gate voltage of the NMOSFET 13 is several V lower than V3.
  • the control of the current sources 33 to 36 is performed by the control unit 7.
  • Vdd 100V
  • Vss -100V
  • resistors 21a-24a 10k ⁇
  • V1 70V
  • V2 40V
  • V3 10V
  • forward voltage of diodes 61-63 is 0V for convenience
  • NMOSFETs 11-14 are turned on The voltage between the gate and source is 0V.
  • Vo 5V
  • I4 0.5mA is applied.
  • I1 to I3 pass a current of 3 mA or more in order to keep the FET 13 in the cut-off state, as described above.
  • the power supply to the load can be controlled, and the power consumption can be suppressed.
  • This power saving effect is effective when the number of probes is very large (as many as several thousand channels) like a two-dimensional probe.
  • the voltage, waveform, frequency, and the like of the transmission signal depend on the part to be imaged, the depth, and the probe to be used, and can be realized by controlling the current of the variable current source with a signal from the control unit.
  • the power supply can be automatically switched by the current of the variable current source 37.
  • the variable current source 37 is controlled by a control signal from the control unit.
  • the operation of the transmission signal generating circuit of this embodiment will be described in detail.
  • the gates of NMOSFETs 11 to 14 are short-circuited and driven by NMOSFET 15 functioning as a control circuit. Therefore, since the NMOSFET 15 and the NMOSFETs 11 to 14 constitute a so-called Darlington connection, driving with the variable current source 37 and the resistor 25 can be achieved with low power.
  • the variable current source 37 is controlled by, for example, a control signal from the control unit 7 in FIG. In this circuit, as in the second embodiment, an appropriate voltage power supply is automatically selected according to the output voltage of the NMOSFET 15.
  • the gate voltage V5 of the NMOSFET 11 is lower than V1, so the NMOSFET 11 is turned off.
  • the gate voltage V5 of the NMOSFET 12 is higher than V2, the NMOSFET 12 is turned on and the diode 62 is turned off.
  • NMOSFETs 13 and 14 are on and diode 63 is off. In this way, only the power supply V1 is selected.
  • the configuration of the present embodiment is the same at other levels, and an appropriate power source is selected according to the output of the variable current source 37, so that power consumption is small. Furthermore, since only one variable current source is required, control is easy.
  • the bias constant current source 32 is used to flow the source follower bias current Ib1, but this bias constant current source circuit can be realized as shown in FIG. 5A, for example.
  • FIG. 5B shows an example of the waveform timing of this embodiment of the constant current source for bias.
  • an N-type FET (NMOSFET 16) of the same type as the FET used in the source follower circuit is used as the bias constant current source.
  • An appropriate bias voltage is applied to the gate of the resistor 26 and the resistor 27 so that a small DC bias current Ib1 flows through the NMOSFET 16. Since the probe is normally a capacitive load, a large charge / discharge current instantaneously flows only when Vo rises and falls.
  • the charging current is supplied from the source follower of the NMOSFET 14, and the discharging current is pulled by this constant current source for bias.
  • Example 4 only one constant current source for bias by NMOSFET 16 was used and connected to a predetermined power supply Vss.However, as shown in FIG.6A, a large number of constant current sources for bias by NMOSFETs 16, 17, and 18 were prepared. By connecting to different power supply voltages Vss, Vs1, Vs2 (Vss ⁇ Vs1 ⁇ Vs2) and selecting an appropriate constant current source for bias according to the output voltage, power consumption can be further reduced.
  • the diodes 64 and 65 prevent the NMOSFETs 17 and 18 from flowing in the reverse direction when the output voltage Vo is lower than Vs1 and Vs2.
  • Vss -100V
  • Vs1 -60V
  • Vs2 -20V.
  • the NMOS source follower type FET has been described as the transistor for the transmission amplifier. Instead, a circuit modification such as using an emitter follower type of a bipolar transistor is used. May be added. In that case, the base voltage may be controlled instead of the gate voltage.
  • the present invention relates to an ultrasonic diagnostic apparatus that visualizes a tomographic image of a living body from a reception signal obtained by transmitting ultrasonic waves to a living body, and particularly as a transmission circuit technique for generating an arbitrary transmission waveform to be applied to an ultrasonic probe. Useful.
  • 1 ultrasonic diagnostic device 2 subject, 3 ultrasonic probe, 4 ultrasonic transmission / reception unit, 5 ultrasonic image configuration unit, 6 display unit, 7 control unit, 8 control panel, 11-18 N-type MOSFET, 21 -30, 44, 45 resistance, 28, 42, 43 capacitor, 31-38 current source, 41 probe, 51-57 DC power supply, 61-65 diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 IC化に優れた送波信号発生回路を備えた超音波診断装置を提供することにより、製造プロセス簡単且つ低コスト且つ消費電力の軽減を可能とするために、超音波探触子41に印加する出力電圧Voを発生するための送波信号発生回路が、カスコード接続されたソースフォロア型のNMOSFET11~14と可変電流源31、バイアス用定電流源32で構成される。可変電流源31の出力電流値を制御することによりゲート電圧V4を制御することにより、探触子41に任意の振幅の出力電圧Voを発生することができる。また、NMOSFET11~14を多段に接続することで、各NMOSFETにかかる電圧は分圧でき、NMOSFETの耐圧は小さくて良い。

Description

超音波診断装置、及び送波信号発生回路
 本発明は、生体に超音波を送信して得られる受信信号により生体の断層像等を映像化する超音波診断装置、特に超音波探触子に印加する任意の送信波形を発生させる送信技術に関する。
 従来、超音波診断装置の超音波探触子の駆動には、約100Vpp、数MHz~20MHz程度の正弦波や矩形波が使われる。そのため、超音波送受信部のうち超音波を送信する送信回路から、このような高電圧送波パルスを発生する簡便な方法として、正負の直流高電圧電源Vp、Vnの各々に電子スイッチを設け、交互に切り替える方法が知られている(特許文献1参照)。このような電子スイッチによる高速スイッチングのため、通常、P型MOSトランジスタ(以下PMOS)とN型MOSトランジスタ(以下NMOS)が使われていた。
特開平9-234202号公報
 しかしながら、上記従来技術には、次のような問題点があった。
 (1)出力パルス電圧がVpとVnの2値しかとれないため、任意のレベルが要求される超音波診断装置に対応できない。
 (2)PMOSとNMOSの両方が必要であり、IC化する場合に製造プロセスが複雑になり、経済的ではない。
 (3)PMOS、NMOSとも高耐圧が必要だが、高耐圧MOSは半導体チップサイズが大きく、多数スイッチを1チップに実装するのに不向きである。
 本発明の目的は、上述した課題を解決し、IC化に優れた送波信号発生用の送信回路を備えた超音波診断装置、送波信号発生回路を提供することにある。
 上記の目的を達成するため、本発明においては、被検体に超音波を送受信する探触子と、この探触子に印加する電圧を供給する送信回路部と、探触子からの受信信号を増幅する受信回路部と、この受信回路部からの超音波画像データに基づいて超音波画像を構成する超音波画像構成部と、この超音波画像を表示する表示部とを備えた超音波診断装置として、送信回路部は電界効果トランジスタ(以下、FET)のソースフォロア回路が用いられ、ソースフォロア回路はFETのゲート電圧を制御することで任意の電圧を前記探触子に供給する構成を提供する。
 また、本発明において、送信回路部は、複数接続されたソースフォロア回路と、複数接続されたソースフォロア回路毎のゲート電圧を制御するための制御部と、FET各々のドレインに、ダイオードを介して電源電圧より低い電圧を印加する電源部を備える構成とする。
 また、本発明において、送信回路部は、複数接続されたソースフォロア回路と、複数接続されたソースフォロア回路毎のFETのゲートを共通接続し、共通接続されたゲートの電圧を制御する制御部と、FET各々のドレインに、ダイオードを介して電源電圧より低い電圧を印加する電源部を備える構成とすることもできる。
 更に、本発明においては、ソースフォロア回路のソースにバイアス電流を流すための電流源を、ソースフォロア回路と同じ型のFETを使って構成する。
 また、更に、ソースフォロア回路の上記バイアス用定電流源を複数個設置し、バイアス用定電流源の一つを所定の電圧電源に、他のバイアス用定電流源にはそれより高く、かつ異なるレベルの電圧電源にダイオードを介して接続する構成とする。
 更にまた、上記の目的を達成するため、本発明においては、被検体に超音波を送受信し、受信した超音波画像データに基づき超音波画像を構成する超音波診断装置の探触子に印加する超音波信号を発生する送波信号発生回路として、FETのソースフォロア回路を用い、このソースフォロア回路はFETのゲート電圧を制御することで任意の電圧を前記探触子に供給する構成を提供する。
 同様に、上記の目的を達成するため、本発明においては、被検体に超音波を送受信し、受信した超音波画像データに基づき超音波画像を構成する超音波診断装置の探触子に印加する超音波信号を発生する送波信号発生回路として、バイポーラトランジスタのエミッタフォロア回路を用い、バイポーラトランジスタのベース電圧を制御することで任意の電圧を探触子に供給する構成とすることもできる。
 以上、本発明の送波信号発生回路を用いた超音波診断装置によれば次の効果がある。
 (1)トランジスタのソースフォロア回路を用いた構成のため、そのゲート電圧を制御することにより任意の出力波形を発生できる。
 (2)1種類のトランジスタのみで構成されるため、IC化するための製造プロセスが簡単かつ低コスト化が可能である。特に、NMOSFETを用いた場合、動作スピード、製造プロセス上その効果が大きい。
 (3)多段構成(いわゆるカスコード接続)とすることで、各チャネルに対応したトランジスタを低耐圧トランジスタで置き換えられるため、トランジスタの小型化(省スペース化)、低コスト化が可能である。
 (4)出力電圧に応じて多段構成のトランジスタの供給電源を自動的に切り替えることができるため、消費電力の軽減が可能であり、熱やノイズの軽減になる。
本発明が適用される超音波診断装置全体の一構成例を示すブロック図 第1の実施例に係わる、探触子への送波信号を発生する送信回路を示す図 第2の実施例に係わる、探触子への送波信号を発生する送信回路を示す図 第2の実施例に係わる、送信回路の動作波形の一例を示す図 第3の実施例に係わる、探触子への送波信号を発生する送信回路を示す図 第4の実施例に係わる、送信回路のバイアス用定電流源回路を示す図 第4の実施例に係わる、送信回路のバイアス用定電流源回路の動作波形の一例を示す図 第5の実施例に係わる、送信回路のバイアス用定電流源回路を示す図 第5の実施例に係わる、送信回路のバイアス用定電流源回路の動作波形の一例を示す図
 以下、本発明の実施例を図面に従い詳細に説明するが、まず、本発明が適用される超音波診断装置の基本構成を説明する。
 図1は超音波診断装置の基本構成を示すブロック図である。超音波診断装置1は、被検体2内に超音波を送受信し得られた反射エコー信号を用いて診断部位について2次元超音波画像或いは3次元超音波画像を形成して表示するもので、被検体2に超音波信号を照射し受信する複数の振動子素子を備えた超音波探触子3と、超音波信号を送受信する超音波送受信部4と、受信信号に基づいて2次元超音波画像(Bモード画像)或いは3次元超音波画像を構成する超音波画像構成部5と、超音波画像構成部5において構成された超音波画像を表示する表示部6と、各要素を制御する制御部7と、制御部7に指示を与えるコントロールパネル8を有している。このような超音波探触子3では多数の送波アンプが必要となる。
 本発明は、超音波送受信部4のうち超音波を送信する送信回路、特にIC化に適した送波信号発生回路を提供するものである。なお、送信回路を送波信号発生回路、あるいは送信回路部と呼ぶ場合がある点、留意されたい。
 まず、第1の実施例の送波信号発生回路を図2に基づき説明する。
 図2は1チャネル分の送波信号発生回路を示した図である。同図において11~14は多段(いわゆるカスコード接続)に接続したソースフォロア型のNMOSFET(TR11~TR14)、21~24は抵抗値R21~R24の抵抗、31は可変電流源、32はバイアス用定電流源、41は1ch分の探触子である。また51及び52は直流電源Vdd、Vssであり、例えば+100V及び-100Vである。
 いま、可変電流源31により、電流値がIaからIbに変化するパルス電流Isを発生させると、NMOSFET14のゲート電圧V4はV4a=Vdd-(R21+R22+R23+R24)IaからV4b=Vdd-(R21+R22+R23+R24)Ibに変化するため、NMOSFET14のソース電圧VoにはVo=V4-Vgs4の電圧が現れる。ここでVgs4はNMOSFET14のゲート・ソース間の電圧である。通常Ib1=一定の場合、Vgs4はほぼ一定であり、かつ小さいので近似的にVo≒V4である。このように可変電流源31の出力電流を制御することにより、探触子41に任意の振幅の電圧を発生できる。また、NMOSFETを多段に接続することで、各NMOSFETにかかる電圧(ソース-ドレイン間電圧)は分圧されるため、NMOSFET11~14の耐圧は小さくて良い。例えば、R21~R24が等しく、Vdd=100v、Vss=-100vでVo=-60vの場合、各NMOSFETにかかる電圧は約40vである。
 このように本実施例の送波信号発生回路では任意の振幅の波形を発生でき、またカスコード接続により低耐圧のNMOSFETを使用し、かつNMOSFETだけで構成できるため、小サイズであり、IC化プロセスが容易なため低コストの送波信号発生回路を提供することができる。
 次に第2の実施例について図3Aを用いて説明する。第1の実施例と異なる点は、探触子41に出力する送波パルスの電圧によってNMOSFET11~14への供給電源を切り替える点である。該電圧に応じて供給電源が自動的に切り替わるため、省電力化となる。
 以下、本実施例の送波信号発生回路の構成と動作を詳細に説明する。
 図3Aにおいて、53~55は新規に設置した電源V1~V3であり、Vdd>V1>V2>V3の関係を持つ定電圧を供給する。ダイオード61~63と可変電流源33~36の制御により、所望する出力電圧に応じて使う電源が自動的に選択される。例えば、V3より低いレベルの出力では、電流源36を制御して所定の出力電圧Vo(≒Vdd-R24a*I4)になるようにする。このとき、NMOSFET11~13での電力消費をなくすため、NMOSFET11~13がオフするように、NMOSFET11~13を制御する。例えば、NMOSFET13をオフするには、NMOSFET13のゲート電圧がV3より数V低くなるようにI3を制御すれば良い。NMOSFET11、NMOSFET12も同様である。電流源33~36の制御は制御部7によって行われる。
 よりわかり易くするために具体的な数値で説明する。例えば、Vdd=100V,Vss=-100V,抵抗21a~24a=10kΩ,V1=70V,V2=40V,V3=10Vとし、ダイオード61~63の順方向電圧を便宜上0V,NMOSFET11~14がオンしているときのゲート-ソース間電圧も0Vとする。この状態で図3Bに示す出力電圧Vo波形を生成する場合を考える。
 (1)図3Bのt=0~t1間はVo=0Vのため、V3(=10V)から電流を供給するのが良い。このため、I4=1mAとする。一方I1~I3には3mA以上の電流を流すことでFET13のゲート電圧を10V以下にし、FET13をカットオフ状態にできる。
 (2)t=t1~t2間はVo=5Vのため上記の(1)同様、V3から電流を供給するのが良い。Vo=5Vを得るために、I4=0.5mAを流す。一方I1~I3は上記同様、FET13をカットオフ状態に保持するため3mA以上の電流を流す。
 (3)t=t3~t4間では、Vo=30VのためV2(=40V)から電流を供給する。このため、I4=0にして、FET14をダイオード接続状態にし、I3=1mAにする。一方、FET12をカットオフにするために、I1~I2には3mA以上の電流を流す。
 (4)最後にt5~t6では、V=90vのため、Vdd(=100V)から電流を供給する。このため、I1=1mAとする。一方FET11~14はダイオード接続状態にするため、I2~I4=0mAにする。
 このように、出力電圧に応じて、可変電流源33~36の電流を制御することで負荷への供給電源を制御でき、電力消費を抑制できる。この省電力効果は二次元探触子のように、探触子数が非常に多い場合(数1000chにもなる)に効果的である。送信信号の電圧、波形、周波数等は、画像化する部位、深さ、使用する探触子に依存し、可変電流源の電流を制御部からの信号などにより制御することによって実現できる。
 さらに第3の実施例を図4に基づき説明する。
 第2の実施例と同様に可変電流源37の電流によって供給電源を自動的に切り替えることができる。可変電流源37の制御は制御部からの制御信号によって行う。
 以下本実施例の送波信号発生回路の動作を詳細に説明する。 
 同図において、NMOSFET11~14のゲートはショートされ、制御回路として機能するNMOSFET15によって駆動される。したがってNMOSFET15とNMOSFET11~14はいわゆるダーリントン接続を構成しているため、可変電流源37と抵抗25による駆動は低電力で達成できる。なお、可変電流源37は、例えば、図1の制御部7からの制御信号等によって制御される。また本回路でも実施例2と同様、NMOSFET15の出力電圧に応じて適切な電圧電源が自動的に選択される。
 例えば、I5を抵抗25に流した時の電圧V5がV2<V5<V1のとき、NMOSFET11のゲート電圧V5はV1より低くなるので、NMOSFET11はオフされる。一方、NMOSFET12のゲート電圧V5は、V2より高いため、NMOSFET12はオンで、ダイオード62はオフとなる。同様にNMOSFET13及び14はオンで、ダイオード63はオフである。このように電源V1だけが選択される。
 本実施例の構成により、他のレベルでも同様であり、可変電流源37の出力に応じて適切な電源が選択されるため、電力消費は小さい。更に可変電流源も一つで良いため、制御が容易である。
 上述した実施例1~3ではソースフォロアのバイアス電流Ib1を流すために、バイアス用定電流源32を使用しているが、このバイアス用定電流源回路は例えば図5Aのように実現できる。図5Bにこのバイアス用定電流源の実施例の波形のタイミングの一例を図示した。
 同図では、一例としてバイアス用定電流源にソースフォロア回路で使用しているFETと同じ型のN型のFET(NMOSFET16)を用いて示している。NMOSFET16に小さな直流バイアス電流Ib1が流れるように抵抗26と抵抗27の分圧回路で、そのゲートに適切なバイアス電圧を印加する。探触子は通常容量性負荷であるため、Voの立ち上がり及び立下り時のみ大きな充放電電流が瞬間的に流れる。充電電流はNMOSFET14のソースフォロアから供給され、放電電流はこのバイアス用定電流源で引っ張ることになる。このため、Voの立下り時のみ大きな電流を流せるように、抵抗26,27のバイアス点に容量28を介して、Vo波形と逆位相の波形の電圧Vi6を供給すると、Voの立下り時(t=t2)にVi6が立ち上がり、NMOSFET16が深くオンして大きな電流をNMOSFET16に流すことができる。一方Voの立ち上がり時(t=t1及びt3)は、NMOSFET16のゲート電圧が下がり、NMOSFETの閾電圧以下の期間、即ちtd1及びtd3の期間、電流はオフする。
 このように、本実施例のバイアス用定電流源回路によれば、立下り時のみ大きな電流を流し、パルスを送波している間は小電流にでき、電力消費を抑制できる。
 上記の実施例4ではNMOSFET16によるバイアス用定電流源を一個だけ使用し、所定の電源Vssに接続したが、図6AのようにNMOSFET16、17、18によるバイアス用定電流源を多数準備し、それぞれ異なる電源電圧Vss,Vs1,Vs2(Vss<Vs1<Vs2)に接続し、出力電圧に応じて適切なバイアス用定電流源を選択するようにすれば、さらに電力消費を低減できる。
 ここで、ダイオード64,65は出力電圧VoがVs1,Vs2より低いとき、NMOSFET17,18が逆方向に電流が流れないようにするためである。実施例5の構成を図6Aの構成図,及び図6Bのタイミング図を使って詳細に説明する。ここで、Vss=-100V,Vs1=-60V,Vs2=-20Vとする。
 (1)例えば、Voが-20V以上の場合は、NMOSFET18のみが動作、すなわち電流は電源電圧Vs2に流れ、消費電力を抑制する。
 (2)図6Bに示すように、t=t3~t4間はVo=-50Vになるため、Vs1(=-60V)を使うようにする。このため、t=t3~t4の期間のみsw2をオンにする。
 (3)t=t5~t6間では、Vo=-80Vになるため、Vss(=-100V)を使う。このため、t=t5~t6の期間のみsw1をオンにする。
 なお、以上の実施例の説明にあっては、送波アンプ用のトランジスタとして、NMOSのソースフォロア型FETを用いて説明したが、その替りにバイポーラトランジスタのエミッタフォロア型を用いる等の回路の変形を加えても良い。その場合、ゲート電圧に代えてベース電圧を制御対象とすれば良い。
 本発明は、生体に超音波を送信して得られる受信信号により生体の断層像等を映像化する超音波診断装置、特に超音波探触子に印加する任意送信波形を発生させる送信回路技術として有用である。
 1 超音波診断装置、2 被検体、3 超音波探触子、4 超音波送受信部、5 超音波画像構成部、6 表示部、7 制御部、8 コントロールパネル、11~18 N型MOSFET、21~30、44、45 抵抗、28、42、43 コンデンサ、31~38 電流源、41 探触子、51~57 直流電源、61~65 ダイオード

Claims (7)

  1.  被検体に超音波を送受信する探触子と、前記探触子に印加する電圧を供給する送信回路部と、前記探触子からの受信信号を増幅する受信回路部と、前記受信回路部からの超音波画像データに基づいて超音波画像を構成する超音波画像構成部と、前記超音波画像を表示する表示部とを備えた超音波診断装置であって、
     前記送信回路部は電界効果トランジスタ(FET)のソースフォロア回路が用いられ、前記ソースフォロア回路は前記FETのゲート電圧を制御することで任意の電圧を前記探触子に供給することを特徴とする超音波診断装置。
  2.  前記送信回路部は、複数の前記ソースフォロア回路と、複数接続された前記ソースフォロア回路毎の前記ゲート電圧を制御するための制御部と、前記FET各々のドレインに、ダイオードを介して電源電圧より低い電圧を印加する電源部を備える請求項1記載の超音波診断装置。
  3.  前記送信回路部は、複数の前記ソースフォロア回路と、複数接続された前記ソースフォロア回路毎の前記FETのゲートを共通接続し、共通接続された前記ゲートの電圧を制御する制御部と、前記FET各々のドレインに、ダイオードを介して電源電圧より低い電圧を印加する電源部を備える請求項1記載の超音波診断装置。
  4.  前記ソースフォロア回路にバイアス電流を流すための電流源を、前記ソースフォロア回路と同じ型のFETを使って構成する請求項1乃至3のいずれか一項に記載の超音波診断装置。
  5.  前記ソースフォロア回路のバイアス用定電流源を複数個設置し、前記バイアス用定電流源の一つを所定の電圧電源に、他の前記バイアス用定電流源にはそれより高く、かつ異なるレベルの電圧電源にダイオードを介して接続する請求項1乃至3のいずれか一項に記載の超音波診断装置。
  6.  被検体に超音波を送受信し、受信した超音波画像データに基づき超音波画像を構成する超音波診断装置の探触子に印加する超音波信号を発生する送波信号発生回路であって、FETのソースフォロア回路が用いられ、前記ソースフォロア回路は前記FETのゲート電圧を制御することで任意の電圧を前記探触子に供給することを特徴とする送波信号発生回路。
  7.  被検体に超音波を送受信し、受信した超音波画像データに基づき超音波画像を構成する超音波診断装置の探触子に印加する超音波信号を発生する送波信号発生回路であって、バイポーラトランジスタのエミッタフォロア回路が用いられ、前記バイポーラトランジスタのベース電圧を制御することで任意の電圧を前記探触子に供給することを特徴とする送波信号発生回路。
PCT/JP2010/055997 2009-04-02 2010-04-01 超音波診断装置、及び送波信号発生回路 WO2010114086A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011507284A JP5410508B2 (ja) 2009-04-02 2010-04-01 超音波診断装置、及び送波信号発生回路
US13/259,347 US9022941B2 (en) 2009-04-02 2010-04-01 Ultrasonic diagnostic apparatus and carrier signal generating circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-090099 2009-04-02
JP2009090099 2009-04-02

Publications (1)

Publication Number Publication Date
WO2010114086A1 true WO2010114086A1 (ja) 2010-10-07

Family

ID=42828374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055997 WO2010114086A1 (ja) 2009-04-02 2010-04-01 超音波診断装置、及び送波信号発生回路

Country Status (3)

Country Link
US (1) US9022941B2 (ja)
JP (1) JP5410508B2 (ja)
WO (1) WO2010114086A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676001B2 (en) * 2012-07-18 2017-06-13 Koninklijke Philips N.V. Driver device and driving method for driving a load, in particular an ultrasound transducer
KR102192005B1 (ko) * 2014-02-28 2020-12-16 삼성전자주식회사 초음파 진단 장치 및 그 동작방법
DE102015225116B4 (de) 2015-12-14 2023-09-07 Robert Bosch Gmbh Vorrichtung zur Kühlung eines optischen Elements
KR102432198B1 (ko) * 2017-11-01 2022-08-12 엘지전자 주식회사 초음파 센서 및 그를 구비하는 로봇 청소기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117533A (ja) * 1985-11-15 1987-05-29 株式会社東芝 超音波診断装置の送信回路
JPH105218A (ja) * 1996-06-20 1998-01-13 Ge Yokogawa Medical Syst Ltd 超音波振動子駆動方法および装置並びに超音波撮像装置
JPH1156839A (ja) * 1997-08-14 1999-03-02 Ge Yokogawa Medical Syst Ltd 超音波送波パルス発生回路および超音波診断装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696009B2 (ja) * 1986-09-30 1994-11-30 株式会社東芝 超音波診断装置
JP2735203B2 (ja) * 1987-12-17 1998-04-02 株式会社東芝 超音波診断装置
JP3665408B2 (ja) 1996-02-29 2005-06-29 株式会社東芝 駆動パルス発生装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117533A (ja) * 1985-11-15 1987-05-29 株式会社東芝 超音波診断装置の送信回路
JPH105218A (ja) * 1996-06-20 1998-01-13 Ge Yokogawa Medical Syst Ltd 超音波振動子駆動方法および装置並びに超音波撮像装置
JPH1156839A (ja) * 1997-08-14 1999-03-02 Ge Yokogawa Medical Syst Ltd 超音波送波パルス発生回路および超音波診断装置

Also Published As

Publication number Publication date
US9022941B2 (en) 2015-05-05
JP5410508B2 (ja) 2014-02-05
JPWO2010114086A1 (ja) 2012-10-11
US20120029351A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US7692456B2 (en) Semiconductor integrated circuit capable of directly coupling low-voltage signals with high-voltage signals
JP5337523B2 (ja) 半導体集積回路装置
JP4768300B2 (ja) 電圧レベル変換回路及び半導体集積回路装置
US6856175B2 (en) Ultrasound transmitter with voltage-controlled rise/fall time variation
US7956653B1 (en) Complementary high voltage switched current source integrated circuit
US20100041997A1 (en) Ultrasonic imaging apparatus
JP2004274721A (ja) 超音波トランスデューサ・アレイのための集積型高電圧スイッチング回路
JP5410508B2 (ja) 超音波診断装置、及び送波信号発生回路
US7728628B2 (en) Level shift circuit and method for the same
US10339914B2 (en) Transmit/receive channel for ultrasound applications
JP2005081140A (ja) 超音波トランスデューサ・アレイの高電圧スイッチングのための方法及び装置
JP6325379B2 (ja) スイッチ回路および半導体集積回路装置
JPH11290321A (ja) 超音波診断装置
KR20120092070A (ko) 캐스코드 트리밍을 이용한 통합 초음파 송신기
JP4641660B2 (ja) レベルシフト回路
JP5598462B2 (ja) 信号送信回路
Jeon et al. A high-voltage fast-speed pulse generator with current-mode dead-time control comparator for shoot-through current suppression
JP2008289780A (ja) 超音波診断装置および超音波プローブ
JP4631399B2 (ja) 超音波診断装置
Vaishnavi et al. Design and analysis of level shifter in high voltage transmitter
US7733154B2 (en) Semiconductor device
JP4473293B2 (ja) 半導体装置の入出力回路
JP2018110713A (ja) 超音波振動子の送信回路、超音波プローブ、および超音波診断装置
EP3723286A1 (en) Ultrasound transducer half-bridge driver circuit
JPH03106115A (ja) ドライバ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507284

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13259347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758857

Country of ref document: EP

Kind code of ref document: A1