WO2010113999A1 - X線診断装置及び長尺画像作成方法 - Google Patents
X線診断装置及び長尺画像作成方法 Download PDFInfo
- Publication number
- WO2010113999A1 WO2010113999A1 PCT/JP2010/055799 JP2010055799W WO2010113999A1 WO 2010113999 A1 WO2010113999 A1 WO 2010113999A1 JP 2010055799 W JP2010055799 W JP 2010055799W WO 2010113999 A1 WO2010113999 A1 WO 2010113999A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ray
- image
- unit
- long
- fluoroscopic
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000003745 diagnosis Methods 0.000 title claims abstract description 8
- 238000001514 detection method Methods 0.000 claims abstract description 60
- 230000001678 irradiating effect Effects 0.000 claims abstract description 13
- 238000003384 imaging method Methods 0.000 claims description 15
- 238000010586 diagram Methods 0.000 description 8
- 238000002594 fluoroscopy Methods 0.000 description 6
- 210000003141 lower extremity Anatomy 0.000 description 4
- 238000007792 addition Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5229—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
- A61B6/5235—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
- A61B6/5241—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
Definitions
- the present invention relates to an X-ray diagnostic apparatus and a long image creation method for creating a long image using a fluoroscopic image.
- the X-ray diagnostic device emits X-rays from the X-ray generator, detects transmitted X-rays transmitted through the subject with the X-ray detector, and detects X-ray signals based on the transmitted X-rays detected by the X-ray detector Is processed by the image processing unit, and a captured image or a fluoroscopic image is displayed on the display unit.
- the long image creation method used in the X-ray diagnostic apparatus is an image creation method performed when displaying an image related to a region of interest over a wide range of a subject.
- a plurality of captured images are connected based on position information of a video system including an X-ray generation unit and an X-ray detection unit at the time of X-ray imaging.
- One piece of connected image is referred to as a long image, and is used, for example, in the diagnosis of side bay disease.
- the captured images acquired previously are sequentially displayed in a superimposed manner. (For example, Patent Document 1).
- Patent Document 1 when creating a long image, it is necessary to shoot a part of a mutual captured image. For this reason, each of the overlapping portions of the photographed image is exposed. As described above, Patent Document 1 does not consider the suppression of the exposure of the subject.
- An object of the present invention is to provide an X-ray diagnostic apparatus and a long image creation method capable of creating a long image while suppressing exposure of a subject.
- an X-ray generation unit that irradiates a subject with X-rays, an X-ray detection unit that detects an X-ray signal based on X-rays transmitted through the subject, the X-ray generation unit, and the X-ray generation unit
- a drive unit that moves an image system including an X-ray detection unit, a position sensor that detects position information of the image system, and a plurality of fluoroscopic image frames based on an X-ray signal obtained by the X-ray detection unit;
- an X-ray diagnostic apparatus including an image processing unit that adds up based on detected position information to create a long image and a display unit that displays the long image.
- FIG. 6 is a view showing the structure of a diaphragm device 62 according to Embodiment 5 of the present invention.
- FIG. 10 is a diagram illustrating a specific example of control of the diaphragm device 62 according to the fifth embodiment of the present invention.
- FIG. 6 is a diagram for explaining the effect of Example 5 of the present invention.
- FIG. 10 is a diagram showing an operation flowchart of Embodiment 5 of the present invention.
- FIG. 1 is a diagram showing a mechanism system of the X-ray diagnostic apparatus 1 of the present invention. Details of the mechanical system are as shown in, for example, Japanese Patent Application Laid-Open No. 2008-136797. Here, the main part of the mechanical system related to the present invention will be described.
- the stand unit 10 is a housing that supports the entire photographing stand (support arm unit 20, support frame 30, support column unit 50, etc.). Inside the stand unit 10, an elevating mechanism for moving the support arm unit 20 up and down relative to the stand unit 10 and a rotation mechanism for rotating the support arm unit 20 relative to the stand unit 10 are housed.
- the support arm unit 20 is provided with a slide mechanism that slides the support frame 30 with respect to the support arm unit 20 in the longitudinal direction of the support frame 30.
- the slide mechanism includes a motor, a main sprocket that rotates by driving the motor, two driven sprockets, and a chain meshed with each sprocket. Both end portions of the chain are fixed to fixing portions of the support frame 30.
- the chain can be sent out by the rotation of the main sprocket, and as a result, the support frame 30 can be slid in the longitudinal direction with respect to the support arm portion 20.
- a top plate 40 on which the subject 100 is placed is provided on the upper portion of the support frame 30.
- the top plate 40 may be configured to be slidable in the longitudinal direction with respect to the support frame 30.
- the X-ray generation unit drive mechanism that slides the support column 50 in the longitudinal direction (A direction) and the short direction (B direction) of the top plate 40 with respect to the support frame 30.
- the X-ray generation unit drive mechanism includes a motor provided on one end side in the longitudinal direction of the support frame 30, a main sprocket that rotates by driving the motor, and a driven sprocket provided on the other end side of the support frame 30. And a chain connecting both sprockets.
- the base 51 of the support 50 is fixed to the chain, and the base 51, that is, the support 50 can be slid in the longitudinal direction (A direction) by rotating the chain with a sprocket.
- the short direction (B direction) can also be slid by a mechanism similar to the X-ray generator drive mechanism in the long direction (A direction).
- the X-ray generator 60 is a device that is connected to the distal end side of the support column 50 and irradiates the subject 100 with X-rays. Therefore, the X-ray generation unit drive mechanism can move the X-ray generation unit 60 connected to the column unit 50 in the longitudinal direction (A direction) and the short direction (B direction).
- a rotation mechanism that rotates the X-ray generation unit 60 in the C direction with respect to the connection part 53 is provided inside the connection part 53 of the support column 50.
- the X-ray irradiation direction can be moved in the longitudinal direction of the top board 40.
- the support column 50 extends in the vertical direction from the base portion 51 and extends in both the longitudinal direction and the width direction of the support frame 30 toward the connecting portion 53. Therefore, the operator's standing position can be secured on both sides of the support frame 30 with the X-ray generation unit 60 interposed therebetween, and the subject 100 can be accessed from the head side and both sides of the subject 100. .
- the support column 50 is curved so as to protrude in the direction away from the support frame 30, that is, protrude to the stand unit 10 side. Therefore, the movement of the operator standing beside the support column 50 is not hindered.
- a compression device 90 is provided on the side of the support 50 that faces the support frame 30. The compression device 90 is a device for performing imaging while compressing the region of interest of the subject 100.
- the X-ray detection unit 70 is installed inside the support frame 30.
- the X-ray detection unit 70 is configured by arranging a plurality of detection elements in a two-dimensional array.
- the X-ray detection unit 70 irradiates the X-ray according to the incident amount of X-rays irradiated from the X-ray generation unit 60 and transmitted through the subject 100.
- the X-ray detection unit 70 may be an image intensifier and a CCD (charge coupled device) camera configuration or an imaging plate configuration storing X-ray signals.
- An X-ray detection unit drive mechanism (not shown) for sliding the X-ray detection unit 70 is installed inside the support frame 30, and the X-ray detection unit 70 is moved in the longitudinal direction of the support frame 30 with respect to the support frame 30 ( And a slide mechanism that slides the X-ray detection unit 70 in the width direction (E direction) of the support frame 30 with respect to the support frame 30.
- the X-ray detection unit drive mechanism slides the X-ray detection unit 70 in the longitudinal direction (D direction) of the support frame 30 and the width direction (E direction) of the support frame 30 so as to face the X-ray generation unit 60.
- the X-ray detector drive mechanism operates the X-ray detector 70 so that the optical axis of the X-ray of the X-ray generator 60 passes through the center of the X-ray detector 70.
- the control for operating the X-ray detection unit 70 to follow the X-ray generation unit 60 is based on positional information (sliding state) of the base portion 51 of the support column 50 and the X-ray detection unit 70 with respect to the support frame 30. This is performed based on a position sensor (not shown) to be detected.
- This position sensor is generally a linear encoder, a rotary encoder, or the like.
- the display unit 80 is supported on the stand unit 10 by an articulated arm 82.
- the display unit 80 can display a fluoroscopic image, a captured image, and the like of the subject 100.
- FIG. 2 is a diagram showing the overall configuration of the X-ray diagnostic apparatus of the present invention. Power is supplied to the top plate 40 on which the subject 100 is placed, the X-ray generation unit 60 that irradiates the subject 100 with X-rays, the diaphragm device 62 that sets the X-ray irradiation area for the subject 100, and the X-ray generation unit 60 X-ray detection unit 70 for detecting X-rays transmitted through the subject 100 and the X-ray output from the X-ray detection unit 70.
- An image processing unit 112 that performs image processing on a line signal, an image storage unit 114 that stores an X-ray image output from the image processing unit 112, a display unit 80 that displays an X-ray image, and FIG.
- Driving unit 130 for driving each driving mechanism of the column unit 50, the X-ray generation unit 60, and the X-ray detection unit 70, a control unit 118 for controlling each component, and an operation unit for instructing the control unit 118 And 120.
- the X-ray detection unit 70 is disposed in the support frame 30.
- Each of the image processing unit 112, the image storage unit 114, and the drive unit 130 is indicated by a broken line, but is arranged in any one of the stand unit 10, the support arm unit 20, the support frame 30, the support column unit 50, and the base unit 51. Is done.
- the X-ray generator 60 has an X-ray tube that receives power supply from the high voltage generator 108 and generates X-rays.
- the high voltage generator 108 is a direct current that is applied between the anode and cathode of the X-ray tube by passing a current through the filament that is the cathode of the X-ray tube of the X-ray generator 60 to heat the filament to a predetermined temperature.
- This is a device for generating a tube voltage which is a high voltage. By applying this high voltage, X-rays are emitted from the X-ray tube.
- the X-ray dose is controlled by controlling the current flowing through the filament, which is the cathode of the X-ray tube, and controlling the tube current, tube voltage, and imaging time flowing through the anode and cathode of the X-ray tube.
- the diaphragm 62 has a plurality of X-ray shielding lead plates that shield the X-rays generated from the X-ray generation unit 60, and each of the plurality of X-ray shielding lead plates moves, so that Determine the irradiation area.
- the image processing unit 112 performs image processing on the X-ray signal output from the X-ray detection unit 70, and outputs an image-processed X-ray image.
- Image processing includes gamma conversion, gradation conversion processing, image enlargement / reduction, and the like.
- the image storage unit 114 stores the X-ray image output from the image processing unit 112 together with the name, sex, age information, time information, and the like of the subject 100.
- the display unit 80 can display the X-ray image output from the image processing unit 112 as a fluoroscopic image, a captured image, or the like of the subject 100.
- the drive unit 130 connects the X-ray generation unit 60 and the X-ray generation unit drive mechanism that slides the support column 50 in the longitudinal direction (A direction) and the short direction (B direction) of the top plate 40 with respect to the support frame 30.
- Rotation mechanism for rotating the part 53 in the C direction, X-ray detection unit 70 is slid in the longitudinal direction (D direction) and the width direction (E direction) of the support frame 30 relative to the support frame 30 It is connected to each drive mechanism of the detector drive mechanism.
- the drive unit 130 controls the X-ray generation unit drive mechanism and the X-ray detection unit drive mechanism to slide the X-ray generation unit 60 in the longitudinal direction (A direction) and move the X-ray detection unit 70 in the longitudinal direction ( (D direction) can be slid.
- the drive unit 130 is driven by the X-ray generator 60.
- the detection unit 70 can be operated.
- control unit 118 When the operation signal operated by the operation unit 120 is input to the control unit 118, the control unit 118 sequentially calculates the distance between the floor, the ceiling, and the mechanism unit from the position information of each drive mechanism, An operation or stop signal is output to each drive mechanism so as to avoid contact with the drive mechanism.
- Embodiment 1 in which a long image is created using a fluoroscopic image will be described.
- the fluoroscopic image is acquired while moving the X-ray generation unit 60 for irradiating X-rays and the X-ray detection unit 70 for detecting X-ray signals so as to follow each other.
- the fluoroscopy control method uses pulse fluoroscopy. Pulse fluoroscopy is an imaging technique in which imaging is performed by irradiating X-rays with pulses at preset time intervals.
- the image processing unit 112 adds the fluoroscopic image frame based on the X-ray signal obtained by the X-ray detection unit 70 according to the position information of the video system including the X-ray generation unit 60 and the X-ray detection unit 70, and adds a long Create a scale image.
- control unit 118 calculates the movement amount of the video system for one X-ray irradiation from the position information of the video system and the time interval of the X-ray irradiation. Then, the image processing unit 112 adds the shifted perspective image frames obtained sequentially by the calculated movement amount to create a long image.
- the display unit 80 displays the long image output from the image processing unit 112.
- Example 1 will be described in detail using the operation flowchart of FIG.
- step 1 The examiner uses the operation unit 120 to select a long image creation mode from various shooting modes. Then, the control unit 118 notifies each component that the long image creation mode has been selected.
- Step 2 The examiner uses the operation unit 120 to determine the operation direction of the video system (X-ray generation unit 60 and X-ray detection unit 70) and the driving condition of the steady speed (operation speed) of the video system necessary for acquiring a long image. Set. Then, the control unit 118 outputs the driving direction of the video system and the driving conditions of the steady speed to the driving unit 130.
- Step 3 The examiner sets with the operation unit 120 so that the video system moves to an image collection start point that is an end of the region of interest of the subject 100 for which a long image is to be acquired.
- the control unit 118 causes the drive unit 130 to move the video system to the image collection start point.
- a light irradiation unit (not shown) that indicates the X-ray irradiation range of the subject 100 by irradiating light is used.
- the subject 100 is irradiated with light from the light irradiation unit, and the examiner moves the video system to the image collection start point while confirming the X-ray irradiation range.
- Step 4 The control unit 118 detects the position information of the base 51 (that is, the X-ray generation unit 60) of the support column 50 and the position information of the position sensor of the X-ray detection unit 70, and recognizes the position information as the image collection start position. .
- Step 5 When the examiner presses the image collection button of the operation unit 120, the X-ray generation unit 60, the X-ray detection unit 70, the image processing unit 112, and the like are in an image collection start preparation state. Then, the control unit 118 calculates a distance until the video system reaches a steady speed.
- FIG. 4 (a) is a graph showing the relationship between video system speed V (t) and time T. FIG. Here, it takes time (t1) to reach the steady speed (V1) from the initial speed (0), and time (t5) ⁇ (t4) from the steady speed (V1) to the stop speed (0). ) The control unit 118 calculates the distance until the video system reaches the steady speed (V1) as (V1) ⁇ (t1).
- Step 6 In response to an instruction from the control unit 118, the drive unit 130 outputs a video image on the outside by a distance (V1) ⁇ (t1) based on the image collection start position so that the image collection start position becomes the steady speed (V1) of the video system. Move the system. In FIG. 4A, the drive unit 130 moves the video system to the head side of the subject 100 by a distance of (V1) ⁇ (t1) with reference to the image collection start position. The control unit 118 recognizes the position moved as described above as the video system drive start position.
- Step 7 the control unit 118, based on the steady-state speed (V1) of the video system, the X-ray conditions including the time interval of the X-rays that pulse the X-rays, the tube current flowing through the X-ray tube, the tube voltage, and the imaging time Are set in the high voltage generator 108 and the X-ray generator 60.
- the control unit 118 sets the time interval of the X-rays for pulsed X-ray irradiation to a predetermined value or less (for example, 10 ms or less). Or the X-ray dose per frame of the fluoroscopic image is set to a predetermined value or more (for example, 10 mAs or more).
- the steady speed (V1) is a predetermined value or less (e.g., 100 mm / s or less)
- the X-ray time interval for irradiating X-rays with pulses is greater than a predetermined value (e.g., 10 ms or more)
- the X-ray dose per unit is reduced to a predetermined value or less (for example, 10 mAs or less).
- the plurality of predetermined values may be set in the control unit 118 in advance.
- the drive unit 118 drives the video system from the drive start position of the video system, and the control unit 118 detects position information of the video system with a position sensor and determines whether the video system has reached the image collection start position. .
- the control unit 118 outputs a start signal to the high voltage generation unit 108, the X-ray generation unit 60, the X-ray detection unit 70, the image processing unit 112, and the like.
- the high voltage generation unit 108 and the X-ray generation unit 60 are determined based on the steady-state speed (V1), the time interval of the X-rays that pulse the X-rays, the tube current flowing through the X-ray tube, the tube voltage, and the imaging time.
- X-rays are generated under X-ray conditions including the above, and the X-ray detection unit 70 detects an X-ray signal transmitted through the subject 100.
- Step 9 The image processing unit 112 captures the fluoroscopic image frame based on the X-ray signal output from the X-ray detection unit 70 in real time together with the position information of the video system. Then, the image processing unit 112 adds a plurality of fluoroscopic image frames based on the position information and connects them to create a long image.
- the addition is to sequentially superimpose the luminance values of a plurality of fluoroscopic image frames in accordance with the position of the video system from which the fluoroscopic image frames are acquired.
- the image processing unit 112 joins the fluoroscopic image frames by adding 5 mm sequentially in the moving direction to add a long image. Create an image.
- the image processing unit 112 adds the fluoroscopic image frames by sequentially shifting the fluoroscopic image frame by 10 mm in the moving direction of the video system, thereby joining the fluoroscopic image frames and adding a long image. create.
- the image processing unit 112 manages the position information for each fluoroscopic image frame, thereby creating a long image by connecting the fluoroscopic image frames.
- FIG. 4 (b) is a graph showing the relationship between the number of added sheets F (t) and time T at a point where fluoroscopy was performed at an arbitrary elapsed time from the image collection start position.
- the fluoroscopic image frames are joined from time (t1) to time (t4) as the image collection start position.
- the number of additional fluoroscopic image frames increases from time (t1) to time (t2).
- the added number is (F1).
- the number of fluoroscopic image frames added from time (t2) to time (t3) is constant at (F1).
- the number of fluoroscopic image frames to be added decreases from time (t3) to time (t4).
- Step 10 The examiner continues to press the image collection button of the operation unit 120 to the region of interest of the subject 100 for which the long image is desired to be acquired while confirming the connected long image on the display unit 80. Then, the examiner releases the image collection button when the operation of the video system passes the region of interest.
- the control unit 118 recognizes that the image acquisition has ended, and the high voltage generation unit 108, the X-ray generation unit 60, the X-ray detection unit 70, the image processing unit 112, and the like enter an image acquisition end state. .
- the examiner may set in advance an image collection end point at which the collection of fluoroscopic image frames is stopped. Specifically, the video system is moved by the drive unit 130 to the image collection end point that is the other end of the image collection start point, and the position information of the X-ray generation unit 60 and the position information of the X-ray detection unit 70 are detected.
- the position sensor that reads the position information reads.
- the control unit 118 recognizes the position information of the video system read by the position sensor as the image collection end position.
- the control unit 118 detects position information of the video system in the position sensor, and determines whether or not the video system has reached the image collection end position.
- the control unit 118 When the video system reaches the image collection end position, the control unit 118 outputs an image collection end signal to the high voltage generation unit 108, the X-ray generation unit 60, the X-ray detection unit 70, the image processing unit 112, and the like.
- the high voltage generation unit 108, the X-ray generation unit 60, the X-ray detection unit 70, the image processing unit 112, and the like enter an image acquisition end state.
- Step 11 Based on the press information of the image acquisition button of the operation unit 120 (image acquisition button OFF) or the position information of the position sensor (the video system moves to the image acquisition end position), the control unit 118 generates the high voltage generation unit 108 and the X-ray generation An end signal is output to the unit 60, the X-ray detection unit 70, the image processing unit 112, and the like.
- the high voltage generator 108 and the X-ray generator 60 stop the generation of X-rays, and the drive unit 130 stops the movement of the video system.
- the moving speed of the video system is decelerated from time (t4), and the moving of the video system stops at time (t5).
- the image processing unit 112 ends joining of the fluoroscopic image frames at time (t4). Therefore, the added number of sheets F (t) also gradually decreases from time (t3) to time (t4).
- Step 12 From time (t1) to time (t2), and from time (t3) to time (t4), long images created by joining perspective image frames have different image densities because the number of fluoroscopic image frames added is different. Displayed on the display unit 80 as a long image.
- a long image from time (t1) to time (t2) and from time (t3) to time (t4) is defined as a long image at the end. Therefore, the examiner uses the operation unit 120 to select whether to correct the long image (whether to delete the long image at the end). If the long image at the end is not deleted, the operation ends.
- Step 13 When the operation unit 120 selects to correct the long image (delete the long image at the end), the image processing unit 112 deletes the long image at the end from the entire long image.
- the image processing unit 112 deletes only the long image from time (t2) to time (t3) when the added number of fluoroscopic image frames is constant by deleting the long image at the end from the entire long image. Is done.
- the display unit 80 can display a long image having a uniform density from time (t2) to time (t3). Then, the operation ends.
- Step 5 and (Step 6) may be omitted, and the drive start position and the image collection start position may be matched. Therefore, since the examiner moves the video system to the image collection start point while checking the X-ray irradiation range, the visibility of the image collection start position is improved. Further, since the drive start position and the image collection start position are the same, the collection of the fluoroscopic image starts from the drive start position. Therefore, the creation time of the long image can be shortened.
- the image storage unit 114 can store the fluoroscopic image obtained in real time from the image processing unit 112 as a moving image together with the acquisition time information, and also stores the long image obtained from the image processing unit 112 together with the acquisition time information. be able to.
- the display unit 80 can display a fluoroscopic image or a long image. Further, by outputting the long image together with the fluoroscopic image from the image storage unit 114 in accordance with the acquisition time information, the display unit 80 can display the long image together with the fluoroscopic image on the same screen. Therefore, the examiner can confirm the acquisition process of the long image together with the fluoroscopic image. For example, the examiner can confirm the injection state of the contrast agent with a fluoroscopic image and a long image.
- the present embodiment it is possible to create a long image using a fluoroscopic image, and it is possible to suppress exposure of the subject more than to create a long image using a captured image obtained by X-ray imaging. . Further, according to the present embodiment, since a long image is created by superimposing a plurality of fluoroscopic images, it is possible to display a long image with little influence of joints. Specifically, since the number of images constituting the long image is large, more image information can be acquired, and thus a long image with high joining accuracy can be created. Therefore, the examiner can make an accurate diagnosis.
- the X-ray dose is low because a fluoroscopic image is used, it is possible to diagnose a large number of subjects 100 such as a side bay examination.
- a long image can be created without stopping the movement of the video system, it takes less time than creating a long image using a photographed image by X-ray photography. Therefore, the burden on the subject 100 can be reduced.
- Example 2 will be described with reference to FIGS.
- the difference from the first embodiment is that the X-ray dose can be varied in order to further reduce the exposure.
- FIG. 5 (a) is a graph showing the relationship between the number of added sheets F (t) and time T at a point where an arbitrary time has elapsed from the image collection start position.
- FIG. 5B is a graph showing the relationship between the number of fluoroscopic image frames H (t) and time T added when creating a long image for one fluoroscopic image frame.
- the length Lmm of one fluoroscopic image frame (the same direction as the moving direction of the video system), the moving speed V (t) mm / s of the video system, and the fluoroscopic image frame rate as f / s (frame / sec) To do.
- the total number of fluoroscopic image frames H (m) irradiated to the arbitrary mth fluoroscopic image frame composing a long image (time t (m-1) to t (m)) shall be expressed by the equation (1). Can do.
- the total number of fluoroscopic image frames H (m) is as follows: . However, it is the number of frames added to the m-th perspective image frame constituted only by the region where F (t) is constant.
- the X-ray dose irradiated when moving the video system corresponding to one fluoroscopic image frame is H (m) fluoroscopic images. Since the frames are added, the total X-ray dose N (m) is as shown in Equation 3.
- the control unit 118 sets the total X-ray dose N (m) necessary for the long image for one fluoroscopic image frame to a predetermined value (exposure upper limit value). ). Then, the control unit 118 calculates the X-ray dose necessary for one fluoroscopic image frame as N (m) / H (m). The control unit 118 sets the X-ray condition of the X-ray dose in the high voltage generation unit 108 and the X-ray generation unit 60.
- the operation unit 120 can arbitrarily set a predetermined value (exposure upper limit value).
- step 7 Since the difference from the first embodiment is step 7, only step 7 will be described.
- Step 7 the control unit 118 sets the X-ray conditions to the high voltage generation unit 108 and the X-ray generation unit 60 based on the steady-state speed (V1) of the video system, but can be changed as in the second embodiment. It is. Specifically, the control unit 118 presets the total X-ray dose N (m) necessary for a long image for one fluoroscopic image frame as a predetermined value (exposure upper limit value). Then, the control unit 118 calculates the X-ray dose necessary for one fluoroscopic image frame as N (m) / H (m).
- control unit 118 sets the X-ray conditions including the tube current flowing through the X-ray tube, the tube voltage, the imaging time, and the like in the high voltage generation unit 108 and the X-ray generation unit 60. To do.
- the total X-ray dose N (m) required for a long image for one fluoroscopic image frame is set to a predetermined value (exposure upper limit value) in advance, and the object 100 is All X-ray doses can be reduced.
- Example 3 will be described with reference to FIGS.
- the difference from the first embodiment and the second embodiment is that a density gain for making the density of the long image uniform is set in each perspective image frame.
- the long image created by joining the perspective image frames is displayed on the display unit 80 as a long image having a different density because the number of additions of the perspective image frames is different.
- FIG. 7 (a) is a graph showing the relationship between the number of fluoroscopic image frames H (t) and time T added when creating a long image for one fluoroscopic image frame.
- FIG. 7 (b) is a graph showing the relationship between density gain G (t) and time T.
- the image processing unit 112 performs a process for equalizing the density of the long image as in Expression 4 when the required density ⁇ is obtained.
- the density of the long image due to the difference in the number of fluoroscopic image frames added can be kept uniform.
- Step 12 the examiner uses the operation unit 120 to select whether or not to correct the long image (whether or not to correct the density gain of the long image). If the density gain of the long image is not corrected, the operation ends.
- Step 13 When the operation unit 120 is selected to correct the long image (correct the density gain of the long image), the image processing unit 112 equalizes the density of the long image due to the difference in the added number of fluoroscopic image frames. Process to keep in.
- the display unit 80 can display a long image with uniform density based on the long image output from the image processing unit 112. Then, the operation ends.
- a long image having a uniform density can be displayed on the display unit 80, and the examiner can perform an accurate diagnosis.
- Example 4 will be described with reference to FIGS.
- the difference from the first to third embodiments is that the X-ray dose is made variable according to the region of interest (for example, body thickness) of the subject 100.
- the body thickness and the lower limb part of the subject 100 are different. Therefore, if fluoroscopic images are acquired on the trunk and lower limbs of the subject 100 under the same X-ray conditions, the image density of the fluoroscopic image frames may be different. Therefore, the control unit 120 can also set the X-ray condition in the high voltage generation unit 108 and the X-ray generation unit 60 based on the region of interest of the subject 100.
- time (t1) to time (t3 ′) are timings of irradiating the body part of the subject 100 with X-rays
- time (t3 ′) to time ( t4) is the timing of irradiating the lower limb of the subject 100 with X-rays. Therefore, the control unit 120 sets the high voltage generation unit 108 and the X-ray dose ⁇ (mAs) so that the X-ray dose ⁇ (mAs) is obtained from time (t1) to time (t3 ′), which is the timing of irradiating the body of the subject 100 with X-rays.
- Set to X-ray generator 60 sets the high voltage generation unit 108 and the X-ray dose ⁇ (mAs) so that the X-ray dose ⁇ (mAs) is obtained from time (t1) to time (t3 ′), which is the timing of irradiating the body of the subject 100 with X-rays.
- control unit 120 sets the high voltage generation unit 108 and the X-ray dose ⁇ (mAs) so that the X-ray dose ⁇ (mAs) is obtained from time (t3 ′) to time (t4), which is the timing of irradiating the lower limb of the subject 100 Set to X-ray generator 60.
- the X-ray dose can be varied according to the region of interest (for example, body thickness) of the subject 100. Therefore, a long image with a uniform density can be displayed on the display unit 80, and the examiner can make an accurate diagnosis.
- region of interest for example, body thickness
- Example 5 will be described with reference to FIGS.
- the difference from Embodiments 1 to 4 is that the X-ray irradiation area (aperture device 62) for the subject is varied so that the X-ray dose is uniform.
- FIG. 9 is a diagram mainly showing the structure of the diaphragm device 62. As shown in FIG. The diaphragm device 62 has a plurality of diaphragm blades 63-66.
- the diaphragm device 62 moves the diaphragm blade 63 and the diaphragm blade 64 positioned in the longitudinal direction (A direction) of the top board 40, that is, the moving direction of the video system, and thereby sees the fluoroscopic image frame.
- the X-ray irradiation area for the subject 100 is varied so that the X-ray dose of the long image obtained by adding the frames becomes uniform.
- the control unit 118 calculates the amount of movement of the video system for one X-ray irradiation from the position information of the video system and the time interval of X-ray irradiation, and moves the video system.
- FIG. 10 is a diagram illustrating a specific example of the control of the diaphragm device 62.
- the diaphragm device 62 collects fluoroscopic images while increasing the opening degree of the diaphragm blade 63 and the diaphragm blade 64.
- the fluoroscopic images are collected while the diaphragm blades 64 are fixed and the diaphragm blades 63 are driven in the direction opposite to the moving direction of the video system.
- the diaphragm blades 64 are fixed and the diaphragm blades 63 are driven for the number of times of pulse fluoroscopy (time) for obtaining the number of fluoroscopic image frames necessary for creating a long image.
- the diaphragm blade 64 when the diaphragm blade 64 is fixed while the image system is moving, the diaphragm blade 64 moves together with the image system.
- the diaphragm blade 63 when the diaphragm blade 63 is driven in a direction opposite to the moving direction of the video system in accordance with the moving speed of the video system, the spatial position of the diaphragm blade 63 can be fixed.
- the aperture device 62 collects fluoroscopic images while keeping the apertures of the aperture blade 63 and the aperture blade 64 constant. Specifically, the diaphragm blade 63 and the diaphragm blade 64 are fixed, and a fluoroscopic image is collected. As shown in FIG. 10, when the diaphragm blade 63 and the diaphragm blade 64 are fixed while the video system is moving, the diaphragm blade 63 and the diaphragm blade 64 are moved together with the video system.
- the diaphragm device 62 collects fluoroscopic images while reducing the opening degree of the diaphragm blade 63 and the diaphragm blade 64. Specifically, the fluoroscopic images are collected while the diaphragm blade 63 is fixed and the diaphragm blade 64 is driven in the direction opposite to the moving direction of the video system. For example, as with the perspective image capture start area, the diaphragm blade 63 is fixed and the diaphragm blade 64 is driven for the number of times of pulse fluoroscopy (time) for obtaining the number of fluoroscopic image frames necessary for creating a long image. To do.
- the speed of the diaphragm blade 64 is the same as that of the diaphragm blade 63 driven in the fluoroscopic image capturing start area. As shown in FIG. 10, if the diaphragm blade 63 is fixed while the video system is moving, the diaphragm blade 63 moves together with the video system. When the diaphragm blades 64 are driven in the direction opposite to the moving direction of the video system in accordance with the moving speed of the video system, the spatial position of the diaphragm blades 64 can be fixed.
- the image processing unit 112 adds the fluoroscopic image frame based on the X-ray signal obtained by the X-ray detection unit 70 in accordance with the position information of the video system including the X-ray generation unit 60 and the X-ray detection unit 70. Create a long image.
- the lower graph of FIG. 10 is a graph showing the X-ray dose in the long image.
- FIG. 11 is a diagram for explaining the effect of the fifth embodiment.
- FIG. 11 (a) shows a long image obtained by collecting perspective images with the apertures of the aperture blades 63 and 64 kept constant.
- Long images created by adding fluoroscopic image frames are displayed on the display unit 80 as long images having different densities because the number of fluoroscopic image frames added is different.
- FIG. 11 (b) shows a long image obtained by collecting fluoroscopic images by appropriately changing the opening degree of the diaphragm blade 63 and the diaphragm blade 64 as shown in FIG.
- Example 5 will be described with reference to the operation flowchart of FIG.
- Step 51 The examiner uses the operation unit 120 to select a long image creation mode from various shooting modes. Then, the control unit 118 notifies each component that the long image creation mode has been selected.
- Step 52 The examiner uses the operation unit 120 to set the operating direction of the video system (X-ray generation unit 60 and X-ray detection unit 70) and driving conditions for the operating speed of the video system necessary for acquiring a long image. Then, the control unit 118 outputs the driving direction of the video system and the driving conditions of the steady speed to the driving unit 130.
- Step 53 The examiner uses the operation unit 120 to set a video system at an image collection start point that is an end of the region of interest of the subject 100 for which a long image is to be acquired.
- the control unit 118 causes the drive unit 130 to move the video system to the image collection start point.
- a light irradiation unit (not shown) that indicates the X-ray irradiation range of the subject 100 by irradiating light is used.
- the subject 100 is irradiated with light from the light irradiation unit, and the examiner moves the video system to an image collection start point (a fluoroscopic image capture start point) while checking the X-ray irradiation range.
- Step 54 The control unit 118 detects the position information of the base 51 (that is, the X-ray generation unit 60) of the support column 50 and the position information of the position sensor of the X-ray detection unit 70, and recognizes the position information as the image collection start position. .
- Step 55 When the examiner presses the image collection button of the operation unit 120, the X-ray generation unit 60, the X-ray detection unit 70, the image processing unit 112, and the like are in an image collection start preparation state. Then, the control unit 118 calculates a distance until the video system reaches a steady speed. Here, it takes time (t1) to reach the steady speed (V1) from the initial speed (0), and time (t5) ⁇ (t4) from the steady speed (V1) to the stop speed (0). ) The control unit 118 calculates the distance until the video system reaches the steady speed (V1) as (V1) ⁇ (t1).
- Step 56 In response to an instruction from the control unit 118, the drive unit 130 outputs a video image on the outside by a distance (V1) ⁇ (t1) based on the image collection start position so that the image collection start position becomes the steady speed (V1) of the video system. Move the system.
- the drive unit 130 moves the video system to the head side of the subject 100 by a distance of (V1) ⁇ (t1) with reference to the image collection start position.
- the control unit 118 recognizes the position moved as described above as the video system drive start position.
- Step 57 In addition, the control unit 118, based on the steady-state speed (V1) of the video system, the X-ray conditions including the time interval of the X-rays that pulse the X-rays, the tube current flowing through the X-ray tube, the tube voltage, the imaging time Are set in the high voltage generator 108 and the X-ray generator 60.
- V1 steady-state speed
- the control unit 118 sets the time interval of the X-rays for pulsed X-ray irradiation to a predetermined value or less (for example, 10 ms or less). Or the X-ray dose per frame of the fluoroscopic image is set to a predetermined value or more (for example, 10 mAs or more).
- the steady-state speed (V1) is a predetermined value or less (e.g., 100 mm / s or less)
- the X-ray time interval for irradiating X-rays with a pulse is set to a predetermined value or more (e.g., 10 ms or more), or the fluoroscopic image 1
- the X-ray dose per frame is set to a predetermined value or less (for example, 10 mAs or less).
- the plurality of predetermined values may be set in the control unit 118 in advance.
- the drive unit 118 drives the video system from the drive start position of the video system, and the control unit 118 detects position information of the video system with a position sensor and determines whether the video system has reached the image collection start position. .
- the control unit 118 outputs a start signal to the high voltage generation unit 108, the X-ray generation unit 60, the X-ray detection unit 70, the image processing unit 112, and the like.
- the high voltage generation unit 108 and the X-ray generation unit 60 are determined based on the steady-state speed (V1), the time interval of the X-rays that pulse the X-rays, the tube current flowing through the X-ray tube, the tube voltage, and the imaging time.
- X-rays are generated under X-ray conditions including the above, and the X-ray detection unit 70 detects an X-ray signal transmitted through the subject 100.
- Step 59 In the fluoroscopic image capturing start area, the diaphragm device 62 collects fluoroscopic images while increasing the apertures of the diaphragm blade 63 and the diaphragm blade 64.
- Step 60 In the fluoroscopic image capturing intermediate region (between the start region and the end region), the diaphragm device 62 collects fluoroscopic images while keeping the apertures of the diaphragm blade 63 and the diaphragm blade 64 constant.
- Step 61 the examiner continues to press the image collection button of the operation unit 120 to the region of interest of the subject 100 where the long image is desired to be acquired while confirming the connected long image on the display unit 80. Then, the examiner releases the image collection button when the operation of the video system passes the region of interest.
- the control unit 118 recognizes that the image acquisition has ended (perspective image acquisition end point), and the high voltage generation unit 108, the X-ray generation unit 60, the X-ray detection unit 70, the image processing unit 112, etc. Then, the image collection is finished.
- the high voltage generation unit 108, the X-ray generation unit 60, the X-ray detection unit 70, the image processing unit 112, and the like enter an image acquisition end state.
- the examiner may set in advance an image collection end point at which the collection of fluoroscopic image frames is stopped.
- the video system is moved by the drive unit 130 to the image collection end point that is the other end of the image collection start point, and the position information of the X-ray generation unit 60 and the position information of the X-ray detection unit 70 are detected.
- the position sensor that reads the position information reads.
- the control unit 118 recognizes the position information of the video system read by the position sensor as the image collection end position.
- the control unit 118 detects position information of the video system in the position sensor, and determines whether or not the video system has reached the image collection end position.
- the control unit 118 outputs an image collection end signal to the high voltage generation unit 108, the X-ray generation unit 60, the X-ray detection unit 70, the image processing unit 112, and the like.
- the aperture device 62 collects fluoroscopic images while reducing the apertures of the aperture blade 63 and the aperture blade 64.
- Step 63 The image processing unit 112 captures the fluoroscopic image frame based on the X-ray signal output from the X-ray detection unit 70 in real time together with the position information of the video system. Then, the image processing unit 112 adds a plurality of fluoroscopic image frames based on the position information and connects them to create a long image.
- the addition is to sequentially superimpose the luminance values of a plurality of fluoroscopic image frames in accordance with the position of the video system from which the fluoroscopic image frames are acquired.
- the image processing unit 112 joins the fluoroscopic image frames by adding 5 mm sequentially in the moving direction to add a long image. Create an image.
- the image processing unit 112 adds the fluoroscopic image frames by sequentially shifting the fluoroscopic image frame by 10 mm in the moving direction of the video system, thereby joining the fluoroscopic image frames and adding a long image. create.
- the image processing unit 112 manages the position information for each fluoroscopic image frame, thereby creating a long image by connecting the fluoroscopic image frames.
- Step 64 Based on the press information of the image acquisition button of the operation unit 120 (image acquisition button OFF) or the position information of the position sensor (the video system moves to the image acquisition end position), the control unit 118 generates the high voltage generation unit 108 and the X-ray generation An end signal is output to the unit 60, the X-ray detection unit 70, the image processing unit 112, and the like.
- the high voltage generator 108 and the X-ray generator 60 stop the generation of X-rays, and the drive unit 130 stops the movement of the video system.
- Step 55 and (Step 56) may be omitted, and the drive start position and the image collection start position may be matched. Therefore, since the examiner moves the video system to the image collection start point while checking the X-ray irradiation range, the visibility of the image collection start position is improved. Further, since the drive start position and the image collection start position are the same, the collection of the fluoroscopic image starts from the drive start position. Therefore, the creation time of the long image can be shortened.
- the image storage unit 114 can store the fluoroscopic image obtained in real time from the image processing unit 112 as a moving image together with the acquisition time information, and also stores the long image obtained from the image processing unit 112 together with the acquisition time information. be able to.
- the display unit 80 can display a fluoroscopic image or a long image. Further, by outputting the long image together with the fluoroscopic image from the image storage unit 114 in accordance with the acquisition time information, the display unit 80 can display the long image together with the fluoroscopic image on the same screen. Therefore, the examiner can confirm the acquisition process of the long image together with the fluoroscopic image. For example, the examiner can confirm the injection state of the contrast agent with a fluoroscopic image and a long image.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Veterinary Medicine (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
被検体100の被曝を抑えて長尺画像を作成するX線診断装置及び長尺画像作成方法を提供するために、X線を被検体100に照射するX線発生部60と、被検体100を透過したX線に基づくX線信号を検出するX線検出部70と、X線発生部60とX線検出部70とを含む映像系を移動させる駆動部130と、映像系の位置情報を検出する位置センサと、X線検出部70で得られたX線信号に基づく複数の透視画像フレームを該検出された位置情報に基づいて加算して長尺画像を作成する画像処理部112と、長尺画像を表示する表示部80とを備える。
Description
本発明は、透視画像を用いて長尺画像を作成するX線診断装置及び長尺画像作成方法に関する。
X線診断装置は、X線発生部からX線を照射し、被検体に透過した透過X線をX線検出部で検出し、X線検出部で検出された透過X線に基づくX線信号を画像処理部で処理することにより、表示部に撮影画像又は透視画像を表示するものである。
X線診断装置で用いられる長尺画像作成方法は、被検体の広範囲にわたる関心領域に関する画像を表示するときに行われる画像作成方法である。長尺画像作成方法は、X線撮影時のX線発生部とX線検出部を含む映像系の位置情報に基づいて、複数の撮影画像を繋ぎ合わせる。繋ぎ合わせられた一枚の画像を長尺画像と称され、例えば、側湾症の診断に用いられる。長尺画像作成を実施するときに、先に取得された撮影画像を順次に重ねて表示することが行なわれる。(例えば、特許文献1)。
X線診断装置で用いられる長尺画像作成方法は、被検体の広範囲にわたる関心領域に関する画像を表示するときに行われる画像作成方法である。長尺画像作成方法は、X線撮影時のX線発生部とX線検出部を含む映像系の位置情報に基づいて、複数の撮影画像を繋ぎ合わせる。繋ぎ合わせられた一枚の画像を長尺画像と称され、例えば、側湾症の診断に用いられる。長尺画像作成を実施するときに、先に取得された撮影画像を順次に重ねて表示することが行なわれる。(例えば、特許文献1)。
特許文献1では、長尺画像作成を実施するときに、相互の撮影画像の一部を重複して撮影しなければならない。そのため、撮影画像の重複部分においてそれぞれ被曝してしまうことになる。このように、特許文献1では被検体の被曝を抑えることについては考慮されていない。
本発明は、被検体の被曝を抑えて長尺画像を作成することができるX線診断装置及び長尺画像作成方法を提供することを目的とする。
上記目的を達成するため、X線を被検体に照射するX線発生部と、前記被検体を透過したX線に基づくX線信号を検出するX線検出部と、前記X線発生部と前記X線検出部とを含む映像系を移動させる駆動部と、前記映像系の位置情報を検出する位置センサと、前記X線検出部で得られたX線信号に基づく複数の透視画像フレームを該検出された位置情報に基づいて加算して長尺画像を作成する画像処理部と、前記長尺画像を表示する表示部とを備えるX線診断装置を提供する。また、X線を照射し、X線に基づくX線信号を検出するステップと、X線信号に基づく複数の透視画像フレームを位置情報に基づいて加算して長尺画像を作成するステップと、前記長尺画像を表示するステップとを有する長尺画像作成方法を提供する。
本発明によれば、被検体の被曝を抑えて長尺画像を作成することができる。
以下、本発明について図面を用いて説明する。図1は本発明X線診断装置1の機構系を示す図である。機構系の詳細については、例えば特開2008-136797に示す通りである。ここでは、本発明に関する機構系の主要部について説明する。
スタンド部10は、撮影台全体(支持腕部20、支持枠30、支柱部50等)を支える筐体である。このスタンド部10の内部には、支持腕部20をスタンド部10に対して昇降させる昇降機構および支持腕部20をスタンド部10に対して回転させる回転機構が収納されている。
支持腕部20には、支持枠30を支持腕部20に対して支持枠30の長手方向にスライドさせるスライド機構が設けられている。スライド機構は、図示はしないが、モータと、モータの駆動により回転する主動スプロケット、2つの従動スプロケットと、各スプロケットに噛み合わせたチェーンとを備える。チェーンの両端部は、支持枠30の固定部に固定される。主動スプロケットの回転によりチェーンを送り出すことができ、その結果、支持枠30を支持腕部20に対して長手方向にスライドさせることができる。
支持枠30の上部には、被検体100を乗せる天板40が設けられている。撮影台1では、天板40は支持枠30に対して長手方向にスライド自在に構成してもよい。
支持枠30の内部には、支柱部50を支持枠30に対して天板40の長手方向(A方向)及び短手方向(B方向)にスライドさせるX線発生部駆動機構が設けられている。X線発生部駆動機構は、図示はしないが、支持枠30の長手方向の一端側に設けられるモータと、モータの駆動により回転する主動スプロケットと、支持枠30の他端側に設けられる従動スプロケットと、両スプロケットを連結するチェーンとを有する。チェーンには、支柱部50の基底部51が固定されており、スプロケットによりチェーンを回転させることで、基底部51、即ち、支柱部50を長手方向(A方向)にスライドさせることができる。なお、短手方向(B方向)も長手方向(A方向)のX線発生部駆動機構と同様な機構でスライドさせることができる。X線発生部60は、支柱部50の先端側に連結され、被検体100にX線を照射する機器である。よって、X線発生部駆動機構により、支柱部50に連結されているX線発生部60を長手方向(A方向)及び短手方向(B方向)に移動させることができる。
また、支柱部50の連結部53の内部には、X線発生部60を連結部53に対してC方向に回転させる回転機構が設けられている。X線の照射方向を天板40の長手方向に振ることができる。支柱部50は、基底部51から鉛直方向に延びると共に、連結部53に向かうに従って支持枠30の長手方向と幅方向の両方に延びている。そのため、X線発生部60を挟んで支持枠30の両側に術者の立ち位置を確保することができ、被検体100の頭部側および両側側の三方から被検体100にアクセスすることができる。
支柱部50は、支持枠30から離れる方向に凸となるように、すなわち、スタンド部10側に突出するように湾曲している。そのため、支柱部50の傍に立つ術者の動きを妨げることがない。さらに、支柱部50のうち、支持枠30に対向する側には圧迫装置90が設けられている。圧迫装置90は、被検体100の関心領域を圧迫しながら撮影を行なうための装置である。
X線検出部70は、支持枠30の内部に設置されている。X線検出部70は、複数の検出素子が2次元アレイ状に配置されて構成されており、X線発生部60から照射され、被検体100を透過したX線の入射量に応じたX線信号を検出する機器である。X線検出部70は、イメージ・インテンシファイアとCCD(charge coupled device;固体撮像素子)カメラの構成やX線信号を記憶するイメージングプレートの構成でもよい。
X線検出部70をスライドさせるX線検出部駆動機構(図示しない。)は、支持枠30の内部に設置され、X線検出部70を支持枠30に対しての支持枠30の長手方向(D方向)にスライドさせるスライド機構と、X線検出部70を支持枠30に対して支持枠30の幅方向(E方向)にスライドさせるスライド機構とを備える。X線検出部駆動機構は、X線発生部60に対向するようにX線検出部70を支持枠30の長手方向(D方向)および支持枠30の幅方向(E方向)にスライドさせる。具体的には、X線検出部駆動機構は、X線発生部60のX線の光軸がX線検出部70の中心を貫くようにX線検出部70を動作させる。なお、X線発生部60に従動するようにX線検出部70を動作させるための制御は、支持枠30に対する支柱部50の基底部51及びX線検出部70の位置情報(スライド状態)を検知する位置センサ(図示しない。)に基づいて行なう。この位置センサは、一般にリニアエンコーダ、ロータリーエンコーダ等である。
表示部80は、多関節のアーム82によりスタンド部10に支持されている。表示部80は、被検体100の透視画像や撮影画像等を表示することができる。
図2は、本発明のX線診断装置の全体構成を示す図である。被検体100を載せる天板40と、被検体100にX線を照射するX線発生部60と、被検体100に対するX線照射領域を設定する絞り装置62と、X線発生部60に電力供給を行なう高電圧発生部108と、X線発生部60に対向する位置に配置され、被検体100を透過したX線を検出するX線検出部70と、X線検出部70から出力されたX線信号に対して画像処理を行なう画像処理部112と、画像処理部112から出力されたX線画像を記憶する画像記憶部114と、X線画像を表示する表示部80と、図1で示した支柱部50とX線発生部60とX線検出部70の各駆動機構を駆動する駆動部130と、各構成要素を制御する制御部118と、制御部118に対して指令を行なう操作部120とを備えている。X線検出部70は、支持枠30内に配置される。画像処理部112、画像記憶部114、駆動部130それぞれは、破線で記したが、スタンド部10、支持腕部20、支持枠30、支柱部50、基底部51内のいずれか1つに配置される。
X線発生部60は、高電圧発生部108から電力供給を受けてX線を発生させるX線管を有する。高電圧発生部108は、X線発生部60のX線管の陰極であるフィラメントに電流を流して該フィラメントを所定の温度に加熱しておき、X線管の陽極と陰極間に印加する直流の高電圧である管電圧を発生する装置である。この高電圧の印加によりX線管からX線が曝射される。X線線量の制御は、X線管の陰極であるフィラメントに流れる電流を制御してX線管の陽極と陰極に流れる管電流、管電圧及び撮影時間の制御により行う。
絞り装置62は、X線発生部60から発生したX線を遮蔽するX線遮蔽用鉛板を複数有し、複数のX線遮蔽用鉛板をそれぞれ移動することにより、被検体100に対するX線照射領域を決定する。
画像処理部112は、X線検出部70から出力されたX線信号を画像処理し、画像処理されたX線画像を出力する。画像処理とは、ガンマ変換、階調変換処理、画像の拡大・縮小等である。画像記憶部114は、画像処理部112から出力されたX線画像を被検体100の氏名、性別、年齢の情報、時間情報等とともに記憶する。表示部80は、画像処理部112から出力されたX線画像を被検体100の透視画像や撮影画像等として表示することができる。
駆動部130は、支柱部50を支持枠30に対して天板40の長手方向(A方向)や短手方向(B方向)にスライドさせるX線発生部駆動機構、X線発生部60を連結部53に対してC方向に回転させるための回転機構、X線検出部70を支持枠30に対しての支持枠30の長手方向(D方向)や幅方向(E方向)にスライドさせるX線検出部駆動機構の各駆動機構に接続される。
駆動部130は、X線発生部駆動機構とX線検出部駆動機構を制御することにより、X線発生部60を長手方向(A方向)にスライドさせるとともに、X線検出部70を長手方向(D方向)にスライドさせることができる。また、支持枠30に対する支柱部50の基底部51及びX線検出部70の位置(スライド状態)を検知する位置センサに基づいて、駆動部130はX線発生部60に従動するようにX線検出部70を動作させることができる。
駆動部130は、X線発生部駆動機構とX線検出部駆動機構を制御することにより、X線発生部60を長手方向(A方向)にスライドさせるとともに、X線検出部70を長手方向(D方向)にスライドさせることができる。また、支持枠30に対する支柱部50の基底部51及びX線検出部70の位置(スライド状態)を検知する位置センサに基づいて、駆動部130はX線発生部60に従動するようにX線検出部70を動作させることができる。
また、操作部120で操作された操作信号が制御部118に入力された際、制御部118は各駆動機構の位置情報から床や天井および機構部どうしの相互間の距離の計算を逐次行い、それらの接触を回避するよう、動作または停止の信号を各駆動機構へ出力する。
ここで、透視画像を利用して長尺画像を作成する実施例1について説明する。本発明では、X線を照射するX線発生部60とX線信号を検出するX線検出部70を互いに従動するように移動しながら透視画像の取得を行なう。透視の制御方式はパルス透視を用いる。パルス透視とは、予め設定された時間間隔でX線をパルス照射して撮影する撮影手法である。画像処理部112は、X線検出部70で得られたX線信号に基づく透視画像フレームをX線発生部60とX線検出部70とを含む映像系の位置情報に合わせて加算し、長尺画像を作成する。
具体的には、制御部118は、映像系の位置情報とX線照射の時間間隔から、X線照射1回分の映像系の移動量を計算する。そして、画像処理部112は、順次得られる透視画像フレームを計算された移動量分ずらして加算し、長尺画像を作成する。表示部80は、画像処理部112から出力された長尺画像を表示する。
図3の動作フローチャートを用いて実施例1を詳細に説明する。
(ステップ1)
検者は、各種撮影モードの中から長尺画像作成モードを操作部120で選択する。そして、制御部118は、長尺画像作成モードが選択されたことを各構成要素に伝達する。
検者は、各種撮影モードの中から長尺画像作成モードを操作部120で選択する。そして、制御部118は、長尺画像作成モードが選択されたことを各構成要素に伝達する。
(ステップ2)
検者は、長尺画像を取得するために必要な映像系(X線発生部60及びX線検出部70)の動作方向、映像系の定常速度(動作スピード)の駆動条件を操作部120で設定する。そして、制御部118は、映像系の動作方向や定常速度の駆動条件を駆動部130に出力する。
検者は、長尺画像を取得するために必要な映像系(X線発生部60及びX線検出部70)の動作方向、映像系の定常速度(動作スピード)の駆動条件を操作部120で設定する。そして、制御部118は、映像系の動作方向や定常速度の駆動条件を駆動部130に出力する。
(ステップ3)
検者は、長尺画像を取得したい被検体100の関心領域の端部である画像収集開始地点に映像系が移動するように操作部120で設定する。制御部118は、画像収集開始地点に映像系を駆動部130で移動させる。例えば、光を照射することで被検体100のX線照射範囲を示す光照射部(図示しない。)を用いる。光照射部の光を被検体100に照射し、検者はX線照射範囲を確認しながら、画像収集開始地点に映像系を移動させる。
検者は、長尺画像を取得したい被検体100の関心領域の端部である画像収集開始地点に映像系が移動するように操作部120で設定する。制御部118は、画像収集開始地点に映像系を駆動部130で移動させる。例えば、光を照射することで被検体100のX線照射範囲を示す光照射部(図示しない。)を用いる。光照射部の光を被検体100に照射し、検者はX線照射範囲を確認しながら、画像収集開始地点に映像系を移動させる。
(ステップ4)
制御部118は、支柱部50の基底部51(すなわちX線発生部60)の位置情報及びX線検出部70の位置センサの位置情報を検出し、その位置情報を画像収集開始位置として認識する。
制御部118は、支柱部50の基底部51(すなわちX線発生部60)の位置情報及びX線検出部70の位置センサの位置情報を検出し、その位置情報を画像収集開始位置として認識する。
(ステップ5)
検者は、操作部120の画像収集ボタンを押すと、X線発生部60及びX線検出部70と画像処理部112等は、画像収集開始準備状態になる。そして、制御部118は、映像系が定常速度になるまでの距離を計算する。図4(a)は、映像系の速度V(t)と時間Tとの関係を示すグラフである。ここでは、初期速度(0)から定常速度(V1)に到達するまでの時間(t1)掛かるものとし、定常速度(V1)から停止速度(0)に到達するまでの時間(t5)-(t4)掛かるものとする。制御部118は、映像系が定常速度(V1)になるまでの距離は(V1)×(t1)と計算する。
検者は、操作部120の画像収集ボタンを押すと、X線発生部60及びX線検出部70と画像処理部112等は、画像収集開始準備状態になる。そして、制御部118は、映像系が定常速度になるまでの距離を計算する。図4(a)は、映像系の速度V(t)と時間Tとの関係を示すグラフである。ここでは、初期速度(0)から定常速度(V1)に到達するまでの時間(t1)掛かるものとし、定常速度(V1)から停止速度(0)に到達するまでの時間(t5)-(t4)掛かるものとする。制御部118は、映像系が定常速度(V1)になるまでの距離は(V1)×(t1)と計算する。
(ステップ6)
駆動部130は、制御部118の指示により、画像収集開始位置が映像系の定常速度(V1)になるように、画像収集開始位置を基準に距離(V1)×(t1)分、外側に映像系を移動させる。図4(a)では、駆動部130は、画像収集開始位置を基準にして被検体100の頭側に(V1)×(t1)の距離分、映像系を移動させる。制御部118は、上記のように移動された位置を映像系の駆動開始位置として認識する。
駆動部130は、制御部118の指示により、画像収集開始位置が映像系の定常速度(V1)になるように、画像収集開始位置を基準に距離(V1)×(t1)分、外側に映像系を移動させる。図4(a)では、駆動部130は、画像収集開始位置を基準にして被検体100の頭側に(V1)×(t1)の距離分、映像系を移動させる。制御部118は、上記のように移動された位置を映像系の駆動開始位置として認識する。
(ステップ7)
また、制御部118は、映像系の定常速度(V1)に基づいて、X線をパルス照射するX線の時間間隔、X線管に流れる管電流、管電圧及び撮影時間等を含むX線条件を高電圧発生部108及びX線発生部60に設定する。
また、制御部118は、映像系の定常速度(V1)に基づいて、X線をパルス照射するX線の時間間隔、X線管に流れる管電流、管電圧及び撮影時間等を含むX線条件を高電圧発生部108及びX線発生部60に設定する。
具体的には、定常速度(V1)が所定値以上(例えば、100mm/s以上)場合、制御部118は、X線をパルス照射するX線の時間間隔を所定値以下(例えば、10ms以下)したり、透視画像1フレーム当たりのX線線量を所定値以上(例えば、10mAs以上)したりする。逆に、定常速度(V1)が所定値以下(例えば、100mm/s以下)場合、X線をパルス照射するX線の時間間隔を所定値以上(例えば、10ms以上)したり、透視画像1フレーム当たりのX線線量を所定値以下(例えば、10mAs以下)したりする。本実施例では、上記複数の所定値を予め制御部118に設定させておくこともできる。
(ステップ8)
駆動部118は、映像系の駆動開始位置から映像系を駆動させ、制御部118は、位置センサで映像系の位置情報を検出し、映像系が画像収集開始位置に到達したかどうかを判定する。映像系が画像収集開始位置に到達した場合、制御部118は、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等に開始信号を出力する。高電圧発生部108及びX線発生部60は、定常速度(V1)に基づいて定められた、X線をパルス照射するX線の時間間隔、X線管に流れる管電流、管電圧及び撮影時間等を含むX線条件でX線を発生させ、X線検出部70は被検体100を透過したX線信号を検出する。
駆動部118は、映像系の駆動開始位置から映像系を駆動させ、制御部118は、位置センサで映像系の位置情報を検出し、映像系が画像収集開始位置に到達したかどうかを判定する。映像系が画像収集開始位置に到達した場合、制御部118は、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等に開始信号を出力する。高電圧発生部108及びX線発生部60は、定常速度(V1)に基づいて定められた、X線をパルス照射するX線の時間間隔、X線管に流れる管電流、管電圧及び撮影時間等を含むX線条件でX線を発生させ、X線検出部70は被検体100を透過したX線信号を検出する。
(ステップ9)
画像処理部112は、X線検出部70から出力されたX線信号に基づく透視画像フレームを映像系の位置情報とともにリアルタイムに取り込む。そして、画像処理部112は、位置情報に基づいて複数の透視画像フレームを加算して繋ぎ合わせ、長尺画像を作成する。ここで加算とは、透視画像フレームが取得された映像系の位置に合わせて、複数の透視画像フレームの輝度値を順次重ね合わせることである。
画像処理部112は、X線検出部70から出力されたX線信号に基づく透視画像フレームを映像系の位置情報とともにリアルタイムに取り込む。そして、画像処理部112は、位置情報に基づいて複数の透視画像フレームを加算して繋ぎ合わせ、長尺画像を作成する。ここで加算とは、透視画像フレームが取得された映像系の位置に合わせて、複数の透視画像フレームの輝度値を順次重ね合わせることである。
具体的には、透視画像フレーム1枚当たり5mm映像系が移動する場合、画像処理部112は、透視画像フレームを移動方向に順次5mmずらして加算することにより、透視画像フレームを繋ぎ合せて長尺画像を作成する。透視画像フレーム1枚当たり10mm映像系が移動する場合、画像処理部112は、透視画像フレームを映像系の移動方向に順次10mmずらして加算することにより、透視画像フレームを繋ぎ合せて長尺画像を作成する。このように画像処理部112は、透視画像フレーム毎に位置情報を管理することにより、各透視画像フレームを繋ぎ合わせて長尺画像を作成することができる。
図4(b)は、画像収集開始位置から任意経過時間に透視を行なった地点における加算枚数F(t)と時間Tとの関係を示すグラフである。図4(b)に示すように、画像収集開始位置である時間(t1)~時間(t4)まで透視画像フレームが繋ぎ合せられる。時間(t1)~時間(t2)まで透視画像フレームの加算枚数が増える。時間(t2)に達したとき、加算枚数が(F1)となる。時間(t2)~時間(t3)までの透視画像フレームの加算枚数が(F1)と一定となる。そして、時間(t3)~時間(t4)まで透視画像フレームの加算枚数が減る。
(ステップ10)
検者は、繋ぎ合わされた中途段階の長尺画像を表示部80で確認しながら、長尺画像を取得したい被検体100の関心領域まで操作部120の画像収集ボタンを押し続ける。そして、検者は映像系の動作が関心領域を過ぎた時点で画像収集ボタンを離す。画像収集ボタンが離されたら、制御部118は画像収集終了として認識し、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等は、画像収集終了状態になる。
検者は、繋ぎ合わされた中途段階の長尺画像を表示部80で確認しながら、長尺画像を取得したい被検体100の関心領域まで操作部120の画像収集ボタンを押し続ける。そして、検者は映像系の動作が関心領域を過ぎた時点で画像収集ボタンを離す。画像収集ボタンが離されたら、制御部118は画像収集終了として認識し、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等は、画像収集終了状態になる。
また、検者は、透視画像フレームの収集を停止する画像収集終了地点を予め設定してもよい。具体的には、画像収集開始地点の他端部である画像収集終了地点に映像系を駆動部130で移動させて、X線発生部60の位置情報及びX線検出部70の位置情報を検知する位置センサは、その位置情報を読み取る。制御部118は、位置センサで読み取られた映像系の位置情報を画像収集終了位置として認識する。制御部118は、位置センサにおける映像系の位置情報を検出し、映像系が画像収集終了位置に到達したかどうかを判定する。映像系が画像収集終了位置に到達した場合、制御部118は、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等に画像収集終了信号を出力する。高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等は、画像収集終了状態になる。
(ステップ11)
操作部120の画像収集ボタンの押圧情報(画像収集ボタンOFF)、又は位置センサの位置情報(画像収集終了位置に映像系が移動)により、制御部118は、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等に終了信号を出力する。高電圧発生部108及びX線発生部60は、X線の発生を停止させるとともに、駆動部130は、映像系の移動を停止させる。
操作部120の画像収集ボタンの押圧情報(画像収集ボタンOFF)、又は位置センサの位置情報(画像収集終了位置に映像系が移動)により、制御部118は、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等に終了信号を出力する。高電圧発生部108及びX線発生部60は、X線の発生を停止させるとともに、駆動部130は、映像系の移動を停止させる。
図4(a)に示すように、時間(t4)から映像系の移動速度が減速され、時間(t5)で映像系の移動が停止する。図4(b)に示すように、画像処理部112は、時間(t4)で透視画像フレームの繋ぎ合わせを終了させる。よって、加算枚数F(t)も時間(t3)から時間(t4)まで徐々に減ることとなる。
(ステップ12)
時間(t1)~時間(t2)、時間(t3)~時間(t4)において、透視画像フレームを繋ぎ合せて作成した長尺画像は、透視画像フレームの加算枚数が異なるため、画像の濃度が異なった長尺画像として表示部80に表示されてしまう。ここでは、時間(t1)~時間(t2)、時間(t3)~時間(t4)における長尺画像を端部の長尺画像とする。そこで、検者は、操作部120によって、長尺画像を補正するか否か(端部の長尺画像を削除するか否か)について選択する。端部の長尺画像を削除しない場合、動作が終了する。
時間(t1)~時間(t2)、時間(t3)~時間(t4)において、透視画像フレームを繋ぎ合せて作成した長尺画像は、透視画像フレームの加算枚数が異なるため、画像の濃度が異なった長尺画像として表示部80に表示されてしまう。ここでは、時間(t1)~時間(t2)、時間(t3)~時間(t4)における長尺画像を端部の長尺画像とする。そこで、検者は、操作部120によって、長尺画像を補正するか否か(端部の長尺画像を削除するか否か)について選択する。端部の長尺画像を削除しない場合、動作が終了する。
(ステップ13)
操作部120によって、長尺画像を補正する(端部の長尺画像を削除する)と選択された場合、画像処理部112は、全体の長尺画像から端部の長尺画像を削除する。画像処理部112は、全体の長尺画像から端部の長尺画像を削除することにより、透視画像フレームの加算枚数が一定となる時間(t2)~時間(t3)における長尺画像のみが抽出される。表示部80は、時間(t2)~時間(t3)における濃度が均一な長尺画像を表示することができる。そして、動作が終了する。
操作部120によって、長尺画像を補正する(端部の長尺画像を削除する)と選択された場合、画像処理部112は、全体の長尺画像から端部の長尺画像を削除する。画像処理部112は、全体の長尺画像から端部の長尺画像を削除することにより、透視画像フレームの加算枚数が一定となる時間(t2)~時間(t3)における長尺画像のみが抽出される。表示部80は、時間(t2)~時間(t3)における濃度が均一な長尺画像を表示することができる。そして、動作が終了する。
なお、(ステップ5)(ステップ6)を省略することもでき、駆動開始位置と画像収集開始位置を一致させてもよい。よって、検者はX線照射範囲を確認しながら、画像収集開始地点に映像系を移動させるため、画像収集開始位置の視認性が良くなる。また、駆動開始位置と画像収集開始位置が一致されているため、駆動開始位置から透視画像の収集が開始することになる。よって、長尺画像の作成時間を短縮することができる。
画像記憶部114は、画像処理部112からリアルタイムに得られる透視画像を動画像として取得時間情報とともに記憶することができ、また画像処理部112から得られた長尺画像を取得時間情報とともに記憶することができる。
画像記憶部114から透視画像又は長尺画像を出力させることにより、表示部80は、透視画像又は長尺画像を表示することができる。また、画像記憶部114から透視画像とともに長尺画像を、それらの取得時間情報に合わせて出力させることにより、表示部80は、透視画像とともに長尺画像を同一画面に表示することができる。よって、検者は長尺画像の取得過程を透視画像とともに確認することができる。例えば、検者は造影剤の注入状況を透視画像及び長尺画像で確認することができる。
以上、本実施例によれば、透視画像を用いて長尺画像を作成することができ、X線撮影による撮影画像を用いて長尺画像を作成するよりも被検体の被曝を抑えることができる。
また、本実施例によれば、透視画像を複数枚重ね合わせて長尺画像を作成するため、繋ぎ目の影響が少ない長尺画像を表示することができる。具体的には、長尺画像を構成する画像枚数が多いため、より多くの画像情報を取得できるので、繋ぎ合わせ精度の高い長尺画像を作成することができる。よって、検者は的確な診断を行なうことができる。
また、本実施例によれば、透視画像を複数枚重ね合わせて長尺画像を作成するため、繋ぎ目の影響が少ない長尺画像を表示することができる。具体的には、長尺画像を構成する画像枚数が多いため、より多くの画像情報を取得できるので、繋ぎ合わせ精度の高い長尺画像を作成することができる。よって、検者は的確な診断を行なうことができる。
また、本実施例によれば、透視画像を用いるためX線線量が低線量であることから、側湾症検診など数多くの被検体100の診断を行うことができる。
また、本実施例によれば、映像系の移動を停止させずに長尺画像を作成できるため、X線撮影による撮影画像を用いて長尺画像を作成するよりも、短時間ですむ。よって、被検体100の負担を軽減することができる。
次に、実施例2について、図1~5を用いて説明する。実施例1と異なる点は、被曝をさらに低減させるためにX線線量を可変可能とする点である。
図5(a)は、画像収集開始位置から任意時間経過した地点における加算枚数F(t)と時間Tとの関係を示すグラフである。図5(b)は、透視画像フレーム1枚分の長尺画像を作成するときに加算される透視画像フレーム数H(t)と時間Tとの関係を示すグラフである。
ここでは、透視画像フレーム1枚の長さLmm(映像系の移動方向と同一方向)、映像系の移動速度V(t)mm/s、透視画像フレームレートをf/s(フレーム/sec)とする。長尺画像を構成する任意の透視画像フレームm枚目(時間t(m-1)~t(m))に照射される総透視画像フレーム数H(m)は、数1の式で表すことができる。
なお、操作部120により所定値(被曝上限値)を任意に設定することができる。
次に実施例2の動作について図3を用いて説明する。実施例1と異なる点は、ステップ7であるため、ステップ7のみ説明する。
(ステップ7)
実施例1では、制御部118は、映像系の定常速度(V1)に基づいてX線条件を高電圧発生部108及びX線発生部60に設定したが、上記実施例2のように変更可能である。具体的には、制御部118は、透視画像フレーム1枚分の長尺画像に必要な総X線線量N(m)を所定値(被曝上限値)として予め設定する。そして、制御部118は、透視画像フレーム1枚当りに必要なX線線量をN(m)/H(m)として算出する。そして、制御部118は、算出されたX線線量に基づいて、X線管に流れる管電流、管電圧及び撮影時間等を含むX線条件を高電圧発生部108及びX線発生部60に設定する。
実施例1では、制御部118は、映像系の定常速度(V1)に基づいてX線条件を高電圧発生部108及びX線発生部60に設定したが、上記実施例2のように変更可能である。具体的には、制御部118は、透視画像フレーム1枚分の長尺画像に必要な総X線線量N(m)を所定値(被曝上限値)として予め設定する。そして、制御部118は、透視画像フレーム1枚当りに必要なX線線量をN(m)/H(m)として算出する。そして、制御部118は、算出されたX線線量に基づいて、X線管に流れる管電流、管電圧及び撮影時間等を含むX線条件を高電圧発生部108及びX線発生部60に設定する。
以上、本実施例によれば、透視画像フレーム1枚分の長尺画像に必要な総X線線量N(m)を所定値(被曝上限値)に予め設定することにより、被検体100に対しての照射するX線線量を低減することができる。
ここで実施例3について、図1~3、6、7を用いて説明する。実施例1、実施例2と異なる点は、長尺画像の濃度を均一にする濃度ゲインを各透視画像フレームに設定する点である。
図6(a)に示すように、透視画像フレームを繋ぎ合せて作成した長尺画像は、透視画像フレームの加算枚数が異なるため、濃度が異なった長尺画像として表示部80に表示されてしまう。例えば、m=1の左端から1番目の長尺画像は、透視画像フレーム1のみで作成される。また、m=1の左端から2番目の長尺画像は、透視画像フレーム1とその次の透視画像フレーム2で作成される。m=1の左端から7番目の長尺画像は、透視画像フレーム1~透視画像フレーム7で作成される。
図7(a)は、透視画像フレーム1枚分の長尺画像を作成するときに加算される透視画像フレーム数H(t)と時間Tとの関係を示すグラフである。図7(b)は、濃度ゲインG(t)と時間Tとの関係を示すグラフである。
画像処理部112は、透視画像フレームの加算枚数の違いによる長尺画像の濃度を均一にする処理を行う。具体的には、画像処理部112は、加算される透視画像フレーム数が少ない部分(例えば、m=1の左端から1番目の長尺画像)に高い濃度ゲインG(t)係数を掛け合わせ、加算される透視画像フレーム数が多い部分(例えば、m=1の左端から7番目の長尺画像)に低い濃度ゲインG(t)係数を掛け合わる。ここでは、画像処理部112は、必要な濃度αのとき、長尺画像の濃度を均一にする処理を数4のように行なう。
次に実施例3の動作について図3を用いて説明する。実施例1と異なる点は、ステップ12、ステップ13であるため、ステップ12、ステップ13のみ説明する。
(ステップ12)
そこで、検者は、操作部120によって、長尺画像を補正するか否か(長尺画像の濃度ゲインを補正するか否か)について選択する。長尺画像の濃度ゲインを補正しない場合、動作が終了する。
そこで、検者は、操作部120によって、長尺画像を補正するか否か(長尺画像の濃度ゲインを補正するか否か)について選択する。長尺画像の濃度ゲインを補正しない場合、動作が終了する。
(ステップ13)
操作部120によって、長尺画像を補正する(長尺画像の濃度ゲインを補正する)と選択された場合、画像処理部112は、透視画像フレームの加算枚数の違いによる長尺画像の濃度を均一に保つ処理を行う。表示部80は、画像処理部112から出力される長尺画像に基づいて、濃度が均一な長尺画像を表示することができる。そして、動作が終了する。
操作部120によって、長尺画像を補正する(長尺画像の濃度ゲインを補正する)と選択された場合、画像処理部112は、透視画像フレームの加算枚数の違いによる長尺画像の濃度を均一に保つ処理を行う。表示部80は、画像処理部112から出力される長尺画像に基づいて、濃度が均一な長尺画像を表示することができる。そして、動作が終了する。
以上、本実施例によれば、濃度が均一な長尺画像を表示部80に表示することができ、検者は的確な診断を行なうことができる。
ここで実施例4について、図1~3、8を用いて説明する。実施例1~実施例3と異なる点は、被検体100の関心領域(例えば体厚)に応じてX線線量を可変にする点である。
例えば、被検体100の胴体部と下肢部とでは、体厚が異なる。よって、被検体100の胴体部と下肢部において、同じX線条件で透視画像の取得を行なうと、透視画像フレームの画像濃度が異なってしまう可能性がある。そこで、制御部120は、被検体100の関心領域に基づいて、X線条件を高電圧発生部108及びX線発生部60に設定することもできる。
具体的には、図8(b)に示すように、時間(t1)~時間(t3´)は被検体100の胴体部にX線を照射するタイミングであり、時間(t3´)~時間(t4)は被検体100の下肢部にX線を照射するタイミングである。そこで、制御部120は、被検体100の胴体部にX線を照射するタイミングである時間(t1)~時間(t3´)にX線線量α(mAs)となるよう、高電圧発生部108及びX線発生部60に設定する。
そこで、制御部120は、被検体100の下肢部にX線を照射するタイミングである時間(t3´)~時間(t4)にX線線量β(mAs)となるよう、高電圧発生部108及びX線発生部60に設定する。
そこで、制御部120は、被検体100の下肢部にX線を照射するタイミングである時間(t3´)~時間(t4)にX線線量β(mAs)となるよう、高電圧発生部108及びX線発生部60に設定する。
以上、本発明によれば、被検体100の関心領域(例えば体厚)に応じてX線線量を可変することできる。よって、濃度が均一な長尺画像を表示部80に表示することができ、検者は的確な診断を行なうことができる。
ここで実施例5について、図1、2、9~12を用いて説明する。実施例1~実施例4と異なる点は、X線線量が均一になるように、被検体に対するX線照射領域(絞り装置62)を可変する点である。
具体的に図9~12を用いて説明する。図9は、主に絞り装置62の構造を示す図である。絞り装置62は、複数の絞り羽根63~66を有している。ここで、透視画像フレームを取得する際、絞り装置62は、天板40の長手方向(A方向)すなわち、映像系の移動方向に位置する絞り羽根63と絞り羽根64を移動して、透視画像フレームを加算して得られる長尺画像のX線線量が均一になるように、被検体100に対するX線照射領域を可変する。制御部118は、映像系の位置情報とX線照射の時間間隔から、X線照射1回分の映像系の移動量を計算し、映像系を移動させる。
具体的に図9~12を用いて説明する。図9は、主に絞り装置62の構造を示す図である。絞り装置62は、複数の絞り羽根63~66を有している。ここで、透視画像フレームを取得する際、絞り装置62は、天板40の長手方向(A方向)すなわち、映像系の移動方向に位置する絞り羽根63と絞り羽根64を移動して、透視画像フレームを加算して得られる長尺画像のX線線量が均一になるように、被検体100に対するX線照射領域を可変する。制御部118は、映像系の位置情報とX線照射の時間間隔から、X線照射1回分の映像系の移動量を計算し、映像系を移動させる。
図10は、絞り装置62の制御の具体例を示す図である。まず、透視画像取込み開始領域においては、絞り装置62は、絞り羽根63と絞り羽根64の開度を拡大しながら、透視画像の収集を行なう。具体的には、絞り羽根64を固定し、絞り羽根63を映像系の移動方向と逆方向へ駆動させながら、透視画像の収集を行なう。例えば、長尺画像を作成するのに必要な透視画像フレームの枚数が得られるパルス透視の回数分(時間)、絞り羽根64を固定し、絞り羽根63を駆動する。図10に示すように、映像系が移動している時、絞り羽根64を固定すると、映像系とともに絞り羽根64が移動する。一方、絞り羽根63は、映像系の移動速度に合わせて、映像系の移動方向と逆方向に駆動させると、絞り羽根63の空間位置を固定することができる。
透視画像取込み中間領域(透視画像取込み開始領域と透視画像取込み終了領域の間)においては、絞り装置62は、絞り羽根63と絞り羽根64の開度を一定して、透視画像の収集を行なう。具体的には、絞り羽根63及び絞り羽根64を固定し、透視画像の収集を行なう。図10に示すように、映像系が移動している時、絞り羽根63及び絞り羽根64を固定すると、映像系とともに絞り羽根63及び絞り羽根64が移動する。
そして、透視画像取込み終了領域においては、絞り装置62は、絞り羽根63と絞り羽根64の開度を縮小しながら、透視画像の収集を行なう。具体的には、絞り羽根63を固定し、絞り羽根64を映像系の移動方向と逆方向へ駆動させながら、透視画像の収集を行なう。例えば、透視画像取込み開始領域と同様に、長尺画像を作成するのに必要な透視画像フレームの枚数が得られるパルス透視の回数分(時間)、絞り羽根63を固定し、絞り羽根64を駆動する。また、絞り羽根64の速度は、透視画像取込み開始領域で駆動した絞り羽根63と同じ速度である。図10に示すように、映像系が移動している時、絞り羽根63を固定すると、映像系とともに絞り羽根63が移動する。絞り羽根64は、映像系の移動速度に合わせて、映像系の移動方向と逆方向に駆動させると、絞り羽根64の空間位置を固定することができる。
そして、画像処理部112は、X線検出部70で得られたX線信号に基づく透視画像フレームをX線発生部60とX線検出部70とを含む映像系の位置情報に合わせて加算し、長尺画像を作成する。図10の下段のグラフは、長尺画像におけるX線線量を示すグラフである。
長尺画像の全領域は、同じ枚数の透視画像フレームが加算されているので、そのX線線量N(m)は、常に一定である。
図11は、実施例5の効果を説明する図である。
図11(a)は、絞り羽根63と絞り羽根64の開度を常に一定にし、透視画像の収集を行って得られた長尺画像を示すものである。
図11(a)は、絞り羽根63と絞り羽根64の開度を常に一定にし、透視画像の収集を行って得られた長尺画像を示すものである。
透視画像取込み開始領域において、例えば、m=1の左端から1番目の長尺画像は、透視画像フレーム1のみで作成される。また、m=1の左端から2番目の長尺画像は、透視画像フレーム1とその次の透視画像フレーム2で作成される。m=1の左端から7番目の長尺画像は、透視画像フレーム1~透視画像フレーム7で作成される。透視画像フレームを加算して作成した長尺画像は、透視画像フレームの加算枚数が異なるため、濃度が異なった長尺画像として表示部80に表示されてしまう。
図11(b)は、絞り羽根63と絞り羽根64の開度を図10で示すように、適宜可変して、透視画像の収集を行って得られた長尺画像を示すものである。
透視画像取込み開始領域において、例えば、m=1の左端から1番目の長尺画像は、透視画像フレーム1~透視画像フレーム7で作成される。また、m=1の左端から2番目の長尺画像は、透視画像フレーム2~透視画像フレーム8で作成される。m=1の左端から7番目の長尺画像は、透視画像フレーム7~透視画像フレーム13で作成される。このように、透視画像フレームを加算して作成した長尺画像の全領域は、透視画像フレームの加算枚数(7枚)が同じであるため、濃度が均一な長尺画像を表示部80に表示させることができる。
図12の動作フローチャートを用いて実施例5を説明する。
(ステップ51)
検者は、各種撮影モードの中から長尺画像作成モードを操作部120で選択する。そして、制御部118は、長尺画像作成モードが選択されたことを各構成要素に伝達する。
検者は、各種撮影モードの中から長尺画像作成モードを操作部120で選択する。そして、制御部118は、長尺画像作成モードが選択されたことを各構成要素に伝達する。
(ステップ52)
検者は、長尺画像を取得するために必要な映像系(X線発生部60及びX線検出部70)の動作方向、映像系の動作速度の駆動条件を操作部120で設定する。そして、制御部118は、映像系の動作方向や定常速度の駆動条件を駆動部130に出力する。
検者は、長尺画像を取得するために必要な映像系(X線発生部60及びX線検出部70)の動作方向、映像系の動作速度の駆動条件を操作部120で設定する。そして、制御部118は、映像系の動作方向や定常速度の駆動条件を駆動部130に出力する。
(ステップ53)
検者は、長尺画像を取得したい被検体100の関心領域の端部である画像収集開始地点に映像系を操作部120で設定する。制御部118は、画像収集開始地点に映像系を駆動部130で移動させる。例えば、光を照射することで被検体100のX線照射範囲を示す光照射部(図示しない。)を用いる。光照射部の光を被検体100に照射し、検者はX線照射範囲を確認しながら、画像収集開始地点(透視画像取込み開始地点)に映像系を移動させる。
検者は、長尺画像を取得したい被検体100の関心領域の端部である画像収集開始地点に映像系を操作部120で設定する。制御部118は、画像収集開始地点に映像系を駆動部130で移動させる。例えば、光を照射することで被検体100のX線照射範囲を示す光照射部(図示しない。)を用いる。光照射部の光を被検体100に照射し、検者はX線照射範囲を確認しながら、画像収集開始地点(透視画像取込み開始地点)に映像系を移動させる。
(ステップ54)
制御部118は、支柱部50の基底部51(すなわちX線発生部60)の位置情報及びX線検出部70の位置センサの位置情報を検出し、その位置情報を画像収集開始位置として認識する。
制御部118は、支柱部50の基底部51(すなわちX線発生部60)の位置情報及びX線検出部70の位置センサの位置情報を検出し、その位置情報を画像収集開始位置として認識する。
(ステップ55)
検者は、操作部120の画像収集ボタンを押すと、X線発生部60及びX線検出部70と画像処理部112等は、画像収集開始準備状態になる。そして、制御部118は、映像系が定常速度になるまでの距離を計算する。ここでは、初期速度(0)から定常速度(V1)に到達するまでの時間(t1)掛かるものとし、定常速度(V1)から停止速度(0)に到達するまでの時間(t5)-(t4)掛かるものとする。制御部118は、映像系が定常速度(V1)になるまでの距離は(V1)×(t1)と計算する。
検者は、操作部120の画像収集ボタンを押すと、X線発生部60及びX線検出部70と画像処理部112等は、画像収集開始準備状態になる。そして、制御部118は、映像系が定常速度になるまでの距離を計算する。ここでは、初期速度(0)から定常速度(V1)に到達するまでの時間(t1)掛かるものとし、定常速度(V1)から停止速度(0)に到達するまでの時間(t5)-(t4)掛かるものとする。制御部118は、映像系が定常速度(V1)になるまでの距離は(V1)×(t1)と計算する。
(ステップ56)
駆動部130は、制御部118の指示により、画像収集開始位置が映像系の定常速度(V1)になるように、画像収集開始位置を基準に距離(V1)×(t1)分、外側に映像系を移動させる。駆動部130は、画像収集開始位置を基準にして被検体100の頭側に(V1)×(t1)の距離分、映像系を移動させる。制御部118は、上記のように移動された位置を映像系の駆動開始位置として認識する。
駆動部130は、制御部118の指示により、画像収集開始位置が映像系の定常速度(V1)になるように、画像収集開始位置を基準に距離(V1)×(t1)分、外側に映像系を移動させる。駆動部130は、画像収集開始位置を基準にして被検体100の頭側に(V1)×(t1)の距離分、映像系を移動させる。制御部118は、上記のように移動された位置を映像系の駆動開始位置として認識する。
(ステップ57)
また、制御部118は、映像系の定常速度(V1)に基づいて、X線をパルス照射するX線の時間間隔、X線管に流れる管電流、管電圧及び撮影時間等を含むX線条件を高電圧発生部108及びX線発生部60に設定する。
また、制御部118は、映像系の定常速度(V1)に基づいて、X線をパルス照射するX線の時間間隔、X線管に流れる管電流、管電圧及び撮影時間等を含むX線条件を高電圧発生部108及びX線発生部60に設定する。
具体的には、定常速度(V1)が所定値以上(例えば、100mm/s以上)の場合、制御部118は、X線をパルス照射するX線の時間間隔を所定値以下(例えば、10ms以下)にしたり、透視画像1フレーム当たりのX線線量を所定値以上(例えば、10mAs以上)にしたりする。逆に、定常速度(V1)が所定値以下(例えば、100mm/s以下)の場合、X線をパルス照射するX線の時間間隔を所定値以上(例えば、10ms以上)にしたり、透視画像1フレーム当たりのX線線量を所定値以下(例えば、10mAs以下)にしたりする。本実施例では、上記複数の所定値を予め制御部118に設定させておくこともできる。
(ステップ58)
駆動部118は、映像系の駆動開始位置から映像系を駆動させ、制御部118は、位置センサで映像系の位置情報を検出し、映像系が画像収集開始位置に到達したかどうかを判定する。映像系が画像収集開始位置に到達した場合、制御部118は、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等に開始信号を出力する。高電圧発生部108及びX線発生部60は、定常速度(V1)に基づいて定められた、X線をパルス照射するX線の時間間隔、X線管に流れる管電流、管電圧及び撮影時間等を含むX線条件でX線を発生させ、X線検出部70は被検体100を透過したX線信号を検出する。
駆動部118は、映像系の駆動開始位置から映像系を駆動させ、制御部118は、位置センサで映像系の位置情報を検出し、映像系が画像収集開始位置に到達したかどうかを判定する。映像系が画像収集開始位置に到達した場合、制御部118は、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等に開始信号を出力する。高電圧発生部108及びX線発生部60は、定常速度(V1)に基づいて定められた、X線をパルス照射するX線の時間間隔、X線管に流れる管電流、管電圧及び撮影時間等を含むX線条件でX線を発生させ、X線検出部70は被検体100を透過したX線信号を検出する。
(ステップ59)
透視画像取込み開始領域においては、絞り装置62は、絞り羽根63と絞り羽根64の開度を拡大しながら、透視画像の収集を行なう。
透視画像取込み開始領域においては、絞り装置62は、絞り羽根63と絞り羽根64の開度を拡大しながら、透視画像の収集を行なう。
(ステップ60)
透視画像取込み中間領域(開始領域と終了領域の間)においては、絞り装置62は、絞り羽根63と絞り羽根64の開度を一定して、透視画像の収集を行なう。
透視画像取込み中間領域(開始領域と終了領域の間)においては、絞り装置62は、絞り羽根63と絞り羽根64の開度を一定して、透視画像の収集を行なう。
(ステップ61)
そして、検者は、繋ぎ合わされた中途段階の長尺画像を表示部80で確認しながら、長尺画像を取得したい被検体100の関心領域まで操作部120の画像収集ボタンを押し続ける。そして、検者は映像系の動作が関心領域を過ぎた時点で画像収集ボタンを離す。画像収集ボタンが離されたら、制御部118は画像収集終了(透視画像取込み終了地点)として認識し、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等は、画像収集終了状態になる。高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等は、画像収集終了状態になる。
そして、検者は、繋ぎ合わされた中途段階の長尺画像を表示部80で確認しながら、長尺画像を取得したい被検体100の関心領域まで操作部120の画像収集ボタンを押し続ける。そして、検者は映像系の動作が関心領域を過ぎた時点で画像収集ボタンを離す。画像収集ボタンが離されたら、制御部118は画像収集終了(透視画像取込み終了地点)として認識し、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等は、画像収集終了状態になる。高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等は、画像収集終了状態になる。
また、検者は、透視画像フレームの収集を停止する画像収集終了地点を予め設定してもよい。具体的には、画像収集開始地点の他端部である画像収集終了地点に映像系を駆動部130で移動させて、X線発生部60の位置情報及びX線検出部70の位置情報を検知する位置センサは、その位置情報を読み取る。制御部118は、位置センサで読み取られた映像系の位置情報を画像収集終了位置として認識する。制御部118は、位置センサにおける映像系の位置情報を検出し、映像系が画像収集終了位置に到達したかどうかを判定する。映像系が画像収集終了位置に到達した場合、制御部118は、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等に画像収集終了信号を出力する。
(ステップ62)
透視画像取込み終了領域においては、絞り装置62は、絞り羽根63と絞り羽根64の開度を縮小しながら、透視画像の収集を行なう。
透視画像取込み終了領域においては、絞り装置62は、絞り羽根63と絞り羽根64の開度を縮小しながら、透視画像の収集を行なう。
(ステップ63)
画像処理部112は、X線検出部70から出力されたX線信号に基づく透視画像フレームを映像系の位置情報とともにリアルタイムに取り込む。そして、画像処理部112は、位置情報に基づいて複数の透視画像フレームを加算して繋ぎ合わせ、長尺画像を作成する。ここで加算とは、透視画像フレームが取得された映像系の位置に合わせて、複数の透視画像フレームの輝度値を順次重ね合わせることである。
画像処理部112は、X線検出部70から出力されたX線信号に基づく透視画像フレームを映像系の位置情報とともにリアルタイムに取り込む。そして、画像処理部112は、位置情報に基づいて複数の透視画像フレームを加算して繋ぎ合わせ、長尺画像を作成する。ここで加算とは、透視画像フレームが取得された映像系の位置に合わせて、複数の透視画像フレームの輝度値を順次重ね合わせることである。
具体的には、透視画像フレーム1枚当たり5mm映像系が移動する場合、画像処理部112は、透視画像フレームを移動方向に順次5mmずらして加算することにより、透視画像フレームを繋ぎ合せて長尺画像を作成する。透視画像フレーム1枚当たり10mm映像系が移動する場合、画像処理部112は、透視画像フレームを映像系の移動方向に順次10mmずらして加算することにより、透視画像フレームを繋ぎ合せて長尺画像を作成する。このように画像処理部112は、透視画像フレーム毎に位置情報を管理することにより、各透視画像フレームを繋ぎ合わせて長尺画像を作成することができる。
(ステップ64)
操作部120の画像収集ボタンの押圧情報(画像収集ボタンOFF)、又は位置センサの位置情報(画像収集終了位置に映像系が移動)により、制御部118は、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等に終了信号を出力する。高電圧発生部108及びX線発生部60は、X線の発生を停止させるとともに、駆動部130は、映像系の移動を停止させる。
操作部120の画像収集ボタンの押圧情報(画像収集ボタンOFF)、又は位置センサの位置情報(画像収集終了位置に映像系が移動)により、制御部118は、高電圧発生部108及びX線発生部60及びX線検出部70と画像処理部112等に終了信号を出力する。高電圧発生部108及びX線発生部60は、X線の発生を停止させるとともに、駆動部130は、映像系の移動を停止させる。
なお、(ステップ55)(ステップ56)を省略することもでき、駆動開始位置と画像収集開始位置を一致させてもよい。よって、検者はX線照射範囲を確認しながら、画像収集開始地点に映像系を移動させるため、画像収集開始位置の視認性が良くなる。また、駆動開始位置と画像収集開始位置が一致されているため、駆動開始位置から透視画像の収集が開始することになる。よって、長尺画像の作成時間を短縮することができる。
画像記憶部114は、画像処理部112からリアルタイムに得られる透視画像を動画像として取得時間情報とともに記憶することができ、また画像処理部112から得られた長尺画像を取得時間情報とともに記憶することができる。
画像記憶部114から透視画像又は長尺画像を出力させることにより、表示部80は、透視画像又は長尺画像を表示することができる。また、画像記憶部114から透視画像とともに長尺画像を、それらの取得時間情報に合わせて出力させることにより、表示部80は、透視画像とともに長尺画像を同一画面に表示することができる。よって、検者は長尺画像の取得過程を透視画像とともに確認することができる。例えば、検者は造影剤の注入状況を透視画像及び長尺画像で確認することができる。
以上、本実施例によれば、透視画像を用いて濃度が均一な長尺画像を作成することができ、X線撮影による撮影画像を用いて長尺画像を作成するよりも被検体の被曝を抑えることができる。
10 スタンド部、20 支持腕部、30 支持枠、40 天板、50 支柱部、60 X線発生部、70 X線検出部、80 表示部、100 被検体、108 高電圧発生部、112 画像処理部、114 画像記憶部、118 制御部、120 操作部、130 駆動部
Claims (19)
- X線を被検体に照射するX線発生部と、前記被検体を透過したX線に基づくX線信号を検出するX線検出部と、前記X線発生部と前記X線検出部とを含む映像系を移動させる駆動部と、前記映像系の位置情報を検出する位置センサと、前記X線検出部で得られたX線信号に基づく複数の透視画像フレームを該検出された位置情報に基づいて加算して長尺画像を作成する画像処理部と、前記長尺画像を表示する表示部とを備えることを特徴とするX線診断装置。
- 前記X線発生部は、予め設定された時間間隔でX線を照射することを特徴とする請求項1記載のX線診断装置。
- 前記X線発生部は、前記映像系の移動速度に基づいて、X線をパルス照射するX線の時間間隔、管電流、管電圧及び撮影時間を含むX線条件を設定し、該設定されたX線条件でX線を照射することを特徴とする請求項1記載のX線診断装置。
- 前記映像系の移動速度は、前記映像系の定常速度であることを特徴とする請求項3記載のX線診断装置。
- 前記画像処理部は、前記透視画像フレームが取得された前記映像系の位置に合わせて、複数の前記透視画像フレームの輝度値を順次重ね合わせることを特徴とする請求項1記載のX線診断装置。
- 前記画像処理部は、前記X線発生部のX線照射1回分の前記映像系の移動量に基づいて、順次得られる透視画像フレームを前記移動量分ずらして加算し、前記長尺画像を作成することを特徴とする請求項1記載のX線診断装置。
- 前記駆動部は、前記透視画像フレームの収集を開始する画像収集開始位置で前記映像系が定常速度となるように、前記映像系を移動することを特徴とする請求項1記載のX線診断装置。
- 前記画像処理部は、濃度が異なった端部の前記長尺画像を削除し、前記長尺画像を作成することを特徴とする請求項1記載のX線診断装置。
- 前記画像処理部から得られる透視画像を動画像として取得時間情報とともに記憶し、前記長尺画像を取得時間情報とともに記憶する画像記憶部を備えることを特徴とする請求項1記載のX線診断装置。
- 前記表示部は、前記透視画像とともに前記長尺画像を同一画面に表示することを特徴とする請求項1記載のX線診断装置。
- 前記X線発生部は、前記透視画像フレーム1枚分の長尺画像に必要な総X線線量に基づいて、前記透視画像フレーム1枚のX線線量を設定することを特徴とする請求項1記載のX線診断装置。
- 前記画像処理部は、前記長尺画像の濃度を均一にする濃度ゲインを各透視画像フレームに設定することを特徴とする請求項1記載のX線診断装置。
- 前記X線発生部は、前記被検体の関心領域に応じてX線線量を可変にすることを特徴とする請求項1記載のX線診断装置。
- 前記長尺画像のX線線量が均一になるように、前記被検体に対するX線照射領域を可変する絞り部を備えることを特徴とする請求項1記載のX線診断装置。
- 前記透視画像の取込み開始領域においては、前記絞り部の開度を拡大しながら、透視画像の収集を行なうことを特徴とする請求項14記載のX線診断装置。
- 前記透視画像の取込み終了領域においては、前記絞り部の開度を縮小しながら、透視画像の収集を行なうことを特徴とする請求項14記載のX線診断装置。
- 前記透視画像の取込み開始領域と前記透視画像の取込み終了領域の間においては、前記絞り部の開度を一定して、透視画像の収集を行なうことを特徴とする請求項15または16記載のX線診断装置。
- 前記長尺画像の全領域は、前記透視画像フレームの加算枚数が同じであることを特徴とする請求項14記載のX線診断装置。
- X線を照射し、X線に基づくX線信号を検出するステップと、X線信号に基づく複数の透視画像フレームを位置情報に基づいて加算して長尺画像を作成するステップと、前記長尺画像を表示するステップとを有する長尺画像作成方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080015002.8A CN102378598B (zh) | 2009-03-31 | 2010-03-31 | X射线诊断装置和长条图像生成方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009086873A JP5507869B2 (ja) | 2009-03-31 | 2009-03-31 | X線診断装置 |
JP2009-086873 | 2009-03-31 | ||
JP2009-207604 | 2009-09-09 | ||
JP2009207604A JP2011055970A (ja) | 2009-09-09 | 2009-09-09 | X線診断装置及び長尺画像作成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010113999A1 true WO2010113999A1 (ja) | 2010-10-07 |
Family
ID=42828288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/055799 WO2010113999A1 (ja) | 2009-03-31 | 2010-03-31 | X線診断装置及び長尺画像作成方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102378598B (ja) |
WO (1) | WO2010113999A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017035203A (ja) * | 2015-08-07 | 2017-02-16 | 株式会社島津製作所 | X線撮影装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106028935A (zh) * | 2014-03-24 | 2016-10-12 | 株式会社日立制作所 | X射线图像取得装置以及长条摄影方法 |
WO2016046895A1 (ja) * | 2014-09-22 | 2016-03-31 | 株式会社島津製作所 | X線透視撮影装置 |
CN107147840A (zh) * | 2017-03-31 | 2017-09-08 | 上海品臻影像科技有限公司 | 一种x射线影像系统图像获取方法及装置 |
JP2019146679A (ja) * | 2018-02-26 | 2019-09-05 | 株式会社島津製作所 | X線撮影装置 |
JP7211230B2 (ja) * | 2019-04-10 | 2023-01-24 | 株式会社島津製作所 | X線透視撮影装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007195612A (ja) * | 2006-01-24 | 2007-08-09 | Shimadzu Corp | X線撮像装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0759010A (ja) * | 1993-08-19 | 1995-03-03 | Hitachi Medical Corp | 画像撮影装置およびx線撮影装置 |
JP2001095790A (ja) * | 1999-09-30 | 2001-04-10 | Shimadzu Corp | X線透視撮影装置 |
JP4164644B2 (ja) * | 2002-07-22 | 2008-10-15 | 株式会社日立メディコ | X線画像診断装置 |
JP4230731B2 (ja) * | 2002-07-29 | 2009-02-25 | 株式会社東芝 | ディジタル画像処理装置及びx線診断装置 |
JP4533587B2 (ja) * | 2003-02-07 | 2010-09-01 | 株式会社東芝 | 医用画像の貼り合わせ装置 |
JP2007185209A (ja) * | 2006-01-11 | 2007-07-26 | Hitachi Medical Corp | X線撮影装置 |
JP4740779B2 (ja) * | 2006-03-28 | 2011-08-03 | 株式会社日立メディコ | 放射線撮影装置 |
JP2007330278A (ja) * | 2006-06-12 | 2007-12-27 | Hitachi Medical Corp | X線撮影装置 |
JP2008017965A (ja) * | 2006-07-12 | 2008-01-31 | Hitachi Medical Corp | X線撮影装置 |
-
2010
- 2010-03-31 WO PCT/JP2010/055799 patent/WO2010113999A1/ja active Application Filing
- 2010-03-31 CN CN201080015002.8A patent/CN102378598B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007195612A (ja) * | 2006-01-24 | 2007-08-09 | Shimadzu Corp | X線撮像装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017035203A (ja) * | 2015-08-07 | 2017-02-16 | 株式会社島津製作所 | X線撮影装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102378598A (zh) | 2012-03-14 |
CN102378598B (zh) | 2014-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5507869B2 (ja) | X線診断装置 | |
JP4793492B2 (ja) | X線撮影装置 | |
WO2010113999A1 (ja) | X線診断装置及び長尺画像作成方法 | |
JP4740779B2 (ja) | 放射線撮影装置 | |
JP5042887B2 (ja) | 放射線画像撮影装置 | |
JP2008067933A (ja) | デジタルマンモグラフィ装置 | |
JP2010017376A (ja) | 放射線画像撮影装置 | |
JP2012065769A (ja) | 可搬型の放射線画像撮影システム、およびこれに用いる保持具、並びに可搬型の放射線画像撮影セット | |
JP4779699B2 (ja) | X線撮影装置 | |
JP2005270277A (ja) | 放射線画像撮影装置及び放射線画像生成方法 | |
JP5792569B2 (ja) | 放射線撮影システムおよび放射線撮影システムの長尺撮影方法 | |
US11903753B2 (en) | Dental x-ray imaging system for producing intraoral x-ray images | |
WO2015045005A1 (ja) | X線撮影装置およびx線撮影方法 | |
US8958525B2 (en) | Radiographic imaging apparatus and method | |
JP2010012024A (ja) | 放射線画像撮影装置 | |
JP5049836B2 (ja) | 放射線撮影方法 | |
JP4174628B2 (ja) | X線撮影装置 | |
JP2011055970A (ja) | X線診断装置及び長尺画像作成方法 | |
JP2003235835A (ja) | X線診断装置 | |
JP2009082169A (ja) | 放射線画像撮影装置及び撮影方法 | |
JP4227348B2 (ja) | X線発生装置の制御方法、プログラム、及びコンピュータ可読記憶媒体 | |
JP5052384B2 (ja) | 放射線画像撮影装置 | |
JP2004081275A (ja) | X線診断装置およびその制御方法 | |
JP2012161472A (ja) | 放射線画像撮影装置および放射線画像撮影方法 | |
JP2010012030A (ja) | 放射線画像撮影装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080015002.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10758770 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10758770 Country of ref document: EP Kind code of ref document: A1 |