WO2010113926A1 - 測定装置、測定システム、測定方法、及びプログラム - Google Patents

測定装置、測定システム、測定方法、及びプログラム Download PDF

Info

Publication number
WO2010113926A1
WO2010113926A1 PCT/JP2010/055649 JP2010055649W WO2010113926A1 WO 2010113926 A1 WO2010113926 A1 WO 2010113926A1 JP 2010055649 W JP2010055649 W JP 2010055649W WO 2010113926 A1 WO2010113926 A1 WO 2010113926A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform information
sampling timing
intensity
wave
sensor
Prior art date
Application number
PCT/JP2010/055649
Other languages
English (en)
French (fr)
Inventor
尚志 斯波
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP10758697.6A priority Critical patent/EP2416170B1/en
Priority to JP2011507202A priority patent/JP5664869B2/ja
Priority to US13/256,708 priority patent/US9035820B2/en
Publication of WO2010113926A1 publication Critical patent/WO2010113926A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4418Monopulse radar, i.e. simultaneous lobing with means for eliminating radar-dependent errors in angle measurements, e.g. multipath effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4409HF sub-systems particularly adapted therefor, e.g. circuits for signal combination

Definitions

  • the present invention relates to a measuring apparatus, a measuring system, a measuring method, and a program for calculating sampling timing of waveform information of waves such as radio waves, sound waves, and light waves.
  • Non-Patent Document 1 shows the distribution of each azimuth at a certain time. This is obtained in time series, and the arrival time of the wave is read as the distance from the sensor based on the velocity of the wave. Spatial distribution is obtained. Furthermore, a time distribution can be obtained by arranging this spatial distribution in time series.
  • Non-Patent Document 1 is also a method considering this digitization.
  • the waveform information When processing as a digital signal, the waveform information is sampled only discretely. That is, in most cases, waveform information is not sampled at a desired phase. Therefore, when adjusting the phase of a digital signal, for example, including the same sampling timing as the sampling timing determined by the reference sensor element, the waveform information for a certain period of time is Fourier-transformed and multiplied by a complex number expressed phase. Adjust the phase accordingly.
  • the waveform information of the sensor element N from time t 0 to t 1 is f N and the phase is shifted by ⁇ .
  • the Fourier transform of f N is F N
  • F N e i ⁇ is the Fourier transform to be obtained with the phase adjusted.
  • i 2 ⁇ 1. This corresponds to extrapolating the waveform information at the desired phase from the waveform information at the sampled time.
  • the present invention provides a technique capable of suppressing a decrease in azimuth resolution and distance resolution even in a signal that has been modulated and transmitted / received and a signal that has been reflected by an object and has changed intensity when acquiring waveform information. That is.
  • the present invention for solving the above-mentioned problems is a measuring apparatus, and is received by each sensor based on a plurality of sensors that receive a wave propagating in space, a relative position of the sensor, and a velocity of the wave. And a sampling timing calculating means for calculating a sampling timing for obtaining the waveform information of the wave for each sensor based on the difference in arrival time of the waves to be obtained.
  • the present invention for solving the above problems is a measurement system, wherein each sensor receives a plurality of sensors that receive waves propagating in space, and based on the relative position of the sensors and the velocity of the waves. And a sampling timing calculating means for calculating a sampling timing for obtaining the waveform information of the wave for each sensor based on the difference in arrival time of the waves to be obtained.
  • the present invention for solving the above problem is a measurement method, wherein each sensor is based on a reception step of receiving a wave propagating in space by a sensor, a relative position of the sensor, and a velocity of the wave.
  • a sampling timing calculation step of calculating a sampling timing for obtaining the waveform information of the wave for each sensor based on the difference in arrival times of the received waves.
  • the present invention for solving the above-described problem is a program for an information processing device, which is based on the relative position of a sensor that receives a wave propagating in space and the velocity of the wave.
  • the difference between the arrival times of the waves received by the sensors is obtained, and a sampling timing calculation process for calculating the sampling timing for acquiring the waveform information of the waves for each sensor is executed based on the difference between the arrival times. It is characterized by that.
  • the effect of the present invention is to suppress a decrease in azimuth resolution and distance resolution even in signals that are modulated and transmitted / received or signals whose intensity has changed due to reflection in an apparatus that acquires waveform information such as radar, sonar, and rider. Is to be. This is because accurate frequency distribution can be obtained by sampling the waveform information at the sampling timing in consideration of the phase.
  • the block diagram which shows the structure of the 1st Embodiment of this invention The block diagram which shows the structure of the 2nd Embodiment of this invention.
  • the block diagram which shows the whole structure of the 3rd Embodiment of this invention Block diagram showing the overall configuration of the fourth embodiment of the present invention.
  • the block diagram which shows the whole structure of the 6th Embodiment of this invention The block diagram which shows the whole structure of the 7th Embodiment of this invention
  • the present invention acquires waveform information of waves such as radio waves, sound waves, and light waves that propagate in space, and sets sampling timing for sampling the acquired waveform information based on the relative position of the sensor that acquires the waveform information. Calculate for each sensor. As a result, it is possible to suppress a decrease in azimuth resolution and distance resolution even in a signal transmitted and received after modulation and a signal whose intensity is reflected by reflection from an object.
  • the space is a real space such as the air or water. Details of the present invention will be described below.
  • FIG. 1 is a block diagram of a measurement system (measurement apparatus) according to the first embodiment.
  • the measurement apparatus includes a waveform information acquisition unit 11, an optimum sampling calculation unit 12, a sampling control unit 13, a phasing unit 14, and an intensity mapping unit 15.
  • the waveform information acquisition unit 11 is a radar, sonar, lidar, or the like having a single or a plurality of sensor elements that receive waves such as radio waves, sound waves, and light waves propagating in space, and a sampling unit that samples the waves received by the sensor elements. It is.
  • the waveform information acquisition unit 11 can change the sampling timing.
  • the waveform information is acquired by sampling the wave received by each sensor element at the sampling timing set by the sampling control unit 13 to be described later, and the frequency distribution is obtained. Output.
  • the sensor elements are often arranged on a straight line at half-wavelength intervals. However, in the present invention, the arrangement is not limited.
  • sensor elements may be arranged on a ring, may be arranged on a spherical surface, or may be arranged on a three-dimensional lattice having a shape similar to a crystal lattice.
  • sensor elements are arranged with the same sensitivity characteristics and wavelength characteristics, but sensor elements with different sensitivity characteristics and different wavelength characteristics may be arranged.
  • the optimum sampling calculation unit 12 calculates the optimum sampling timing for each azimuth and distance based on the positional relationship between the sensor elements according to the azimuth resolution or distance resolution specified in advance. Since the position of each sensor element is known when the apparatus is set, position information indicating the position of each sensor element is stored in advance in the measurement apparatus.
  • the optimum sampling timing calculated by the optimum sampling calculation unit 12 is waveform information in which the phase of the wave received by the reference sensor element is the same as the phase of the wave received by a sensor element other than the reference sensor element. It is timing to be.
  • the azimuth resolution when calculating the sampling timing may not be uniform in all directions.
  • a method in which the azimuth resolution is fine at the front and the azimuth resolution is coarse at the periphery is also conceivable.
  • the distance resolution may not be uniform.
  • the wave source refers to one that radiates waves such as radio waves, sound waves, and light waves, or one that reflects waves such as radio waves, sound waves, and light waves.
  • the sampling control unit 13 controls the waveform information acquisition unit 11 so as to acquire the waveform information of the received wave at the optimal sampling timing. Further, the sampling control unit 13 considers the difference in arrival time of the same phase wave between the reference sensor element and each of the other sensor elements, and adds the waveform information of the waves received by each sensor element in a consistent manner.
  • the phasing unit 14 is controlled.
  • the phasing unit 14 is received by each sensor element based on the difference in arrival time of waves of the same phase between the reference sensor element from the sampling control unit 13 and other sensor elements under the control of the sampling control unit 13.
  • the waveform information of the corrected waves is added in a consistent manner. Waveform information is acquired for each azimuth and for each distance at the optimum sampling timing of each element obtained by the optimum sampling calculator 12. And the intensity
  • the waveform information may be added in real space or frequency space. When adding up in real space, it changes to the expression in frequency space by Fourier transformation etc., and calculates
  • the intensity of the band used for transmission / reception is obtained by changing to the expression in frequency space by Fourier transform or the like. Even when the frequency space is added, the intensity of the band used for transmission and reception is obtained. By obtaining the intensity at each sampling timing, the intensity of each direction and each distance can be obtained.
  • the intensity mapping unit 15 stores the strength of each direction and each distance obtained by the phasing unit 14 in a memory in time series. Further, for example, the frequency distribution is displayed in two dimensions or three dimensions on the display with the azimuth and distance as axes. In the case of displaying in two dimensions, for example, it is considered that the waveform information acquisition unit 11 is displayed in polar coordinates with the horizontal azimuth or vertical azimuth and distance as coordinate axes at the origin of the coordinate system, as generally called a B scope. It is done. If the intensity is expressed in shades or expressed in pseudo color, it can be distinguished visually. In the case of displaying in three dimensions, it is conceivable to display in polar coordinates as well. When the display can display only a two-dimensional image, the three-dimensional image is projected two-dimensionally, so it is preferable that the user's viewpoint can be freely changed. It is easy to understand the time variation if it is displayed as a moving image, for example.
  • the optimum sampling calculation unit 12, the sampling control unit 13, and the intensity mapping unit 14 can be configured by various devices capable of performing digital signal processing.
  • it may be a board computer composed of a DSP (Digital Signal Processor), a large-capacity auxiliary storage device, a large-capacity memory, or the like, or a general personal computer or workstation.
  • the intensity mapping unit 14 may further include a display for visually observing the intensity spatial distribution and time distribution.
  • waves such as radio waves, sound waves, and light waves are received and held by the waveform information acquisition unit 11.
  • the optimal sampling calculation unit 12 calculates the sampling timing required for each azimuth and distance based on the positional relationship between the sensor elements and the wave velocity according to the azimuth resolution or distance resolution specified in advance.
  • the waveform information acquisition unit 11 is controlled to acquire the waveform information of the received wave at the calculated optimum sampling timing.
  • the sampling control unit 13 notifies the phasing unit 14 of the difference in arrival time of waves of the same phase between the reference sensor element and other sensor elements.
  • the phasing unit 14 extracts the waveform information at the optimum sampling timing in each element of the waveform information acquisition unit 11 obtained by the optimum sampling calculation unit 12 for each azimuth and distance, and performs control by the sampling control unit 13. Originally, all sensor elements are matched and added to obtain the strength.
  • the intensity mapping unit 15 stores the strength of each direction and each distance obtained by the phasing unit 14 in a memory for each time series. Furthermore, for example, it is displayed in two dimensions or three dimensions on the display with the azimuth and distance as axes.
  • the optimum sampling timing is calculated based on the relative position from the wave source and the wave velocity.
  • these pieces of information include physical information such as the shape or size of the sensor element
  • the optimum sampling timing may be calculated by adding at least one of each wavelength component and each frequency component of the wave.
  • the waveform information of the wave received by each sensor element is matched, that is, the phase is adjusted based on the difference in arrival time of waves having the same phase. Matching may be performed based on the phase difference.
  • the optimum sampling timing in consideration of the phase is calculated in advance from the difference in arrival time of the wave for each sensor element from the desired azimuth resolution and distance resolution, and the waveform information is calculated at the calculated sampling timing. This is because the sampling timing of the waveform information acquisition unit is controlled so that the waveform can be acquired.
  • the second embodiment is a case where the waveform information acquisition unit 21 cannot change the sampling timing.
  • the second embodiment of the present invention has a configuration similar to that of the first embodiment, but there is no sampling control unit, and the optimum sampling waveform information estimation unit 23 is a waveform information acquisition unit. 21 and the phasing portion 24.
  • the optimum sampling calculation unit is connected only to the optimum sampling waveform information estimation unit 23.
  • the operations of the waveform information acquisition unit 21, the optimum sampling calculation unit 22, the phasing unit 24, and the intensity mapping unit 25 are the same as those in the first embodiment. Detailed description of the same configuration as that of the first embodiment is omitted.
  • the waveform information acquisition unit 21 samples at a predetermined sampling timing.
  • the optimal sampling waveform information estimation unit 23 uses the waveform information sampled and acquired at the sampling timing approximate to the optimal sampling timing calculated by the optimal sampling calculation unit 22 to estimate the waveform information that can be acquired by sampling at the optimal sampling timing. To do.
  • the waveform information acquisition unit 21 cannot change the sampling timing. Accordingly, the sampling timing in the time range including the time of the optimum sampling timing obtained by the optimum sampling calculation unit 22 is set.
  • the user specifies the time range in advance. It is conceivable that the optimum sampling timing is the center or the optimum sampling timing is tailed in time. Making the optimum sampling timing last in time corresponds to predicting waveform information at the future optimum sampling timing from past waveform information.
  • a plurality of sampling timings that can be actually set by the waveform information acquisition unit 21 are obtained. These are set as sub-optimal sampling timings. Thereafter, a frequency distribution which is waveform information of a wave received by each sensor element is obtained by Fourier transform or the like at each sub-optimal sampling timing.
  • the frequency distribution at the optimum sampling timing is estimated from the frequency distribution at the sub-optimal sampling timing according to the frequency distribution variation model determined in advance by the user.
  • a model of frequency distribution variation is determined in advance and model fitting is performed. For example, when transmitting / receiving waveform information subjected to amplitude modulation, frequency modulation, or phase modulation, fluctuations in frequency distribution can be easily estimated from the modulation. For example, in the case of linear frequency modulation, the fluctuation in the frequency direction of the frequency distribution can be expressed by a linear function related to time. Further, even when the intensity changes due to reflection on an object, the reflection can be estimated by simulation based on the physical laws of radio waves and sound waves. As a simulation method, for example, the FDTD method (Finite-difference time-domain method) obtained by expanding the wave equation with a difference equation may be used.
  • FDTD method Finite-difference time-domain method
  • PE parbolic equation
  • normal mode method normal mode method
  • sound ray theory or the like
  • amplitude modulation is applied in a simple form in which a single-peak function is applied to the reflecting surface. Even when the modulation due to the reflection of the object is not taken into account, the waveform information at the optimum sampling timing can be estimated with higher accuracy than in the past simply by following the intended modulation at the time of transmission / reception.
  • the optimal sampling timing is calculated through the same processing as in the first embodiment.
  • the optimal sampling waveform information estimation unit 23 sets the sampling timing in the time range including the optimal sampling timing so as to follow the content specified by the user. Furthermore, the optimum sampling waveform information estimation unit 23 obtains a plurality of sub-optimal sampling timings that can be actually set by the waveform information acquisition unit 21 within the set time range.
  • the optimal sampling waveform information estimation unit 23 sets the waveform information acquisition unit 21 to perform sampling at the obtained suboptimal sampling timing.
  • the waveform information acquisition unit 21 obtains a frequency distribution that is waveform information of a wave received by each sensor element at the set forward optimal sampling timing. Then, the optimum sampling waveform information estimation unit 23 estimates the frequency distribution at the optimal sampling timing from the frequency distribution at the sub-optimal sampling timing according to the frequency distribution variation model predetermined by the user.
  • the phasing unit 24 extracts the waveform information estimated by the optimum sampling waveform information estimation unit 23 for each azimuth and distance, and adds up all the sensor elements to obtain the strength.
  • the intensity mapping unit 25 stores the intensity of each direction and each distance obtained by the phasing unit 24 in a memory for each time series. Furthermore, for example, it is displayed in two dimensions or three dimensions on the display with the azimuth and distance as axes.
  • the waveform information at the optimal sampling timing is accurately obtained based on the waveform information at the sampling timing near the optimal sampling timing. I can guess.
  • the element load section 36 is disposed after the waveform information acquisition section 21 of the second embodiment.
  • the waveform information acquisition unit 31, the optimum sampling calculation unit 32, the optimum sampling waveform information estimation unit 33, the phasing unit 34, and the intensity mapping unit 35 are described in the second embodiment of the present invention. The detailed description is omitted.
  • the element load unit 36 applies weight to the waveform information for each sensor element constituting the waveform information acquisition unit 31 and improves the azimuth resolution.
  • This weighting may be set as appropriate.
  • the technique described in Non-Patent Document 2 may be used.
  • Non-Patent Document 2 Ocean Acoustics Society, “Basics and Applications of Ocean Acoustics” published by Naruyamado Shoten, April 28, 2004, pp. 64-65 and p. 163
  • the weighting technique is a technique generally called shading.
  • the weighting of the present embodiment is performed by multiplying the output of the sensor element by a Hanning function, a Chebyshev polynomial, or the like.
  • waveform information sampled by sub-optimal sampling is acquired through the same processing as in the second embodiment.
  • the element load unit 36 weights each waveform information.
  • the optimal sampling waveform information estimation unit 33 estimates the frequency distribution at the optimal sampling timing from the frequency distribution of each weighted waveform information.
  • the phasing unit 34 extracts the waveform information estimated by the optimum sampling waveform information estimation unit 33 for each azimuth and distance, and adds up all the sensor elements to obtain the strength.
  • the strength mapping unit 35 stores the strength of each direction and each distance obtained by the phasing unit 24 in a memory for each time series. Furthermore, for example, it is displayed in two dimensions or three dimensions on the display with the azimuth and distance as axes.
  • the waveform information acquisition unit cannot change the sampling timing freely, it is optimal based on the waveform information at the sampling timing near the optimal sampling timing. It is possible to accurately estimate waveform information at a sampling timing.
  • the modulation unit 46 is arranged in the preceding stage of the waveform information acquisition unit 21 of the second embodiment. In more detail, it is the latter stage of the sensor element and the former stage of the sampling unit that samples the wave received by the sensor element.
  • the waveform information acquisition unit 41, the optimum sampling calculation unit 42, the optimum sampling waveform information estimation unit 43, the phasing unit 44, and the intensity mapping unit 45 are the same as those in the second embodiment of the present invention. Detailed description is omitted for operation.
  • the modulation unit 46 modulates the wave received by the sensor element by applying a sine wave having a specific frequency or a sine wave having a specific modulation, and changes the frequency distribution through the band limiting filter.
  • the modulation unit 46 applies a sine wave, for example, to the received wave and passes it through a low-pass filter. Thereby, the frequency of the received wave is lowered, and the sampling rate of the waveform information acquisition unit 41 can be lowered. Moreover, since the time change of the amplitude of the waveform information becomes smaller as the frequency becomes lower, it becomes easier to estimate the waveform information at the optimum sampling timing.
  • the modulation unit 46 modulates the wave received by the sensor element and passes the band limiting filter.
  • the waveform information acquisition unit 41 obtains waveform information by sampling the modulated wave.
  • the present embodiment since the time change of the amplitude of the waveform information becomes small, it is easy to guess the waveform information at the optimum sampling timing.
  • the time smoothing unit 56 is arranged immediately after the waveform information acquisition unit of the second embodiment.
  • the waveform information acquisition unit 51, the optimum sampling calculation unit 52, the optimum sampling waveform information estimation unit 53, the phasing unit 54, and the intensity mapping unit 55 are the same as those in the second embodiment of the present invention. Since the same operation is performed, detailed description is omitted.
  • the time smoothing unit 56 considers that the influence of noise is large if the intensity value fluctuates abruptly compared with the fluctuation of the waveform information before and after each sampling timing, and determines the influence of the sampling timing from the fluctuation of the waveform information before and after. Guess the appropriate value.
  • a sine wave is fitted to the acquired waveform information in the time range set in advance, and the value of the waveform information at each sampling timing is replaced with the fitted value.
  • the value may be replaced with the fitted value only when the deviation from the sine wave is larger than a preset threshold value. Note that whether or not the fluctuation is abrupt is determined by setting a threshold and determining whether the fluctuation amount is within an allowable range.
  • the waveform information acquisition unit 51 acquires waveform information through the same processing as in the above embodiment.
  • the time smoothing unit 56 considers that the influence of noise is large if the value fluctuates abruptly compared to the fluctuation of the waveform information before and after each sampling timing, and more appropriately determines the sampling timing from the fluctuation of the waveform information before and after. Guess the value and correct the waveform information.
  • the spatial smoothing unit 66 is arranged immediately after the waveform information acquisition unit in the second embodiment.
  • the waveform information acquisition unit 61, the optimum sampling calculation unit 62, the optimum sampling waveform information estimation unit 63, the phasing unit 64, and the intensity mapping unit 65 are the second embodiment of the present invention. Since the same operation as that of the embodiment is performed, detailed description is omitted.
  • the space smoothing unit 66 compares the waveform information of other sensor elements near the sensor element at each sampling timing. If the intensity values are greatly different as a result of comparison, it is considered that the influence of noise is large, and a more appropriate value of the sensor element is estimated from the waveform information of other sensor elements in the vicinity.
  • a range to be regarded as a neighborhood is set in advance.
  • the waveform information of each sensor element at each sampling timing is arranged in space and regarded as a two-dimensional or three-dimensional image, and a moving average or a median filter used for noise removal in image processing is applied. However, before performing these processes, adjustment is made so that the phase of each element is the same.
  • phase shift by correlating the waveform information between the sensor elements. Note that whether or not the intensity is significantly different is determined by setting a threshold and determining whether the difference from the waveform information of other sensor elements is within an allowable range.
  • the waveform information acquisition unit 61 acquires waveform information through the same processing as in the above embodiment.
  • the spatial smoothing unit 66 considers that the influence of noise is large if the difference in intensity is large compared to the waveform information of the sensor element adjacent to the sensor element at each sampling timing, and the waveform information of the nearby sensor element The waveform information is corrected by estimating a more appropriate value of the sampling timing from the fluctuation.
  • the deconvolution unit 76 is arranged after the intensity mapping unit in the second embodiment.
  • the waveform information acquisition unit 71, the optimum sampling calculation unit 72, the optimum sampling waveform information estimation unit 73, the phasing unit 74, and the intensity mapping unit 75 are the same as those in the second embodiment of the present invention. Detailed description is omitted for operation.
  • the deconvolution unit 76 calculates a high-resolution multidimensional image by deconvolution of the multidimensional image obtained by the intensity mapping unit 75 using the directivity distribution for each direction.
  • the directivity distribution for each direction is measured in advance.
  • Many methods have been proposed as a deconvolution method. For example, the method disclosed in Patent Document 1 may be applied (Patent Document 1: Patent No. 003518056). However, this is an example, and the present invention is not limited to this method.
  • the deconvolution unit 76 may be provided with a display for displaying a higher-resolution multidimensional image.
  • the intensity mapping unit 75 obtains a multidimensional image through the same process as that of the above embodiment.
  • the deconvolution unit 76 deconvolves the multidimensional image obtained by the intensity mapping unit 75 using the directivity distribution for each direction. Thereby, the deconvolution unit 76 calculates a high-resolution multidimensional image.
  • the azimuth resolution and distance resolution can be increased. This is because the waveform information at the sampling timing in the phase adjusted for each direction can be obtained with high accuracy. As a result, the intensity distribution for each direction becomes more accurate, and a highly accurate image can be obtained even when deconvolution is performed.
  • the measuring apparatus of the present invention described above can be configured by hardware as is apparent from the above description, but can also be realized by a computer program. In such a configuration, functions and operations similar to those of the above-described embodiments are realized by a processor that operates according to a program stored in a program memory. Note that some of the functions of the above-described embodiments can be realized by a computer program.
  • the measurement system may be configured by providing the above-described components of the present invention in separate devices.
  • Appendix 4 The measuring apparatus according to appendix 2 or appendix 3, characterized by comprising measurement means for adjusting the acquired waveform information based on the obtained difference in arrival time, and obtaining at least one intensity for each direction and each distance. .
  • Appendix 5 The measuring apparatus according to any one of appendix 2 to appendix 4, further comprising weighting means for weighting each acquired waveform information.
  • Appendix 6 The measuring apparatus according to any one of appendix 2 to appendix 5, characterized by having modulation means for modulating the frequency distribution of the acquired waveform information to be changed.
  • the acquired waveform information includes time smoothing means for comparing the intensity at the sampling timing with the intensity before and after the sampling timing, and correcting the waveform information based on the intensity fluctuation amount according to the comparison result.
  • the measuring apparatus according to any one of appendix 2 to appendix 6, wherein
  • the measuring apparatus In the acquired waveform information, for each sampling timing, the intensity of the waveform information is compared with the intensity of the waveform information of a wave received by a sensor near the sensor that has received the wave of the waveform information. Accordingly, the measuring apparatus according to any one of appendix 2 to appendix 7, further comprising a spatial smoothing unit that corrects based on a difference in intensity.
  • Appendix 9 The measuring apparatus according to any one of appendix 2 to appendix 8, further comprising generating means for generating a multidimensional image using the measured intensity.
  • Appendix 10 The measuring apparatus according to appendix 9, wherein the generating unit generates a high-resolution multidimensional image by deconvolution of the generated multidimensional image using a directivity distribution for each direction.
  • appendix 14 The measurement system according to appendix 12 or appendix 13, further comprising a measuring unit that adjusts the acquired waveform information based on the obtained difference in arrival time and obtains at least one intensity for each direction and each distance. .
  • the acquired waveform information includes time smoothing means for comparing the intensity at the sampling timing with the intensity before and after the sampling timing, and correcting the waveform information based on the intensity fluctuation amount according to the comparison result.
  • the measurement system according to any one of supplementary note 12 to supplementary note 16, characterized by:
  • the intensity of the waveform information is compared with the intensity of the waveform information of a wave received by a sensor near the sensor that has received the wave of the waveform information. Accordingly, the measurement system according to any one of appendix 12 to appendix 17, further comprising a spatial smoothing unit that corrects based on the difference in intensity.
  • Appendix 19 The measurement system according to any one of appendix 12 to appendix 18, further comprising a generating unit configured to generate a multidimensional image using the measured intensity.
  • Appendix 20 The measurement system according to appendix 19, wherein the generation unit generates a high-resolution multidimensional image by deconvolution of the generated multidimensional image using a directivity distribution for each direction.
  • a receiving step of receiving a wave propagating in space with a sensor Based on the relative position of the sensor and the velocity of the wave, the difference between the arrival times of the waves received by the sensors is obtained, and the sampling for obtaining the waveform information of the wave based on the difference in the arrival times And a sampling timing calculation step for calculating timing for each sensor.
  • (Appendix 24) 24 The measuring method according to appendix 21 or appendix 23, further comprising a measurement step of adjusting the acquired waveform information based on the obtained difference in arrival time to obtain at least one intensity for each direction and each distance. .
  • Appendix 25 The measuring method according to any one of appendix 22 to appendix 24, further comprising a weighting step of weighting each acquired waveform information.
  • the obtained waveform information has a time smoothing step of comparing the intensity at the sampling timing with the intensity before and after the sampling timing, and correcting the waveform information based on the intensity fluctuation amount according to the comparison result.
  • the intensity of the waveform information is compared with the intensity of the waveform information of a wave received by a sensor near the sensor that has received the wave of the waveform information. Accordingly, the measurement method according to any one of appendix 22 to appendix 27, further comprising a spatial smoothing step of correcting based on the difference in intensity.
  • Appendix 30 30.
  • (Appendix 31) A program for an information processing apparatus, wherein the program is stored in the information processing apparatus. Based on the relative position of the sensor that receives the wave propagating in space and the velocity of the wave, a difference in the arrival time of the wave received by each sensor is obtained, and based on the difference in the arrival time, the waveform of the wave A program for executing a sampling timing calculation process for calculating a sampling timing for acquiring information for each sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 本発明の課題は、波形情報を取得するにあたって、変調して送受信した信号や、物体に反射して強度が変動した信号においても、方位分解能や距離分解能の低下を抑えることができる技術を提供することである。本発明は、空間を伝播する波を受信する複数のセンサと、前記センサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の到着時刻の差を求め、この到着時刻の差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出手段とを有する。

Description

測定装置、測定システム、測定方法、及びプログラム
 本発明は、電波、音波、光波などの波動の波形情報のサンプリングタイミングを算出する測定装置、測定システム、測定方法、及びプログラムに関する。
 電波や音波などの波形情報をレーダー、ソーナー、ライダーなどのセンサを用いて取得し、波源の強度の空間分布を求める方法が数多く提案されている。
 例えば、非特許文献1に示すように、ビームフォーマー法を始めとして様々な方法がある。非特許文献1には、ある時刻における各方位の分布であるが、これを時系列で取得し、波の速度をもとに波の到来時刻をセンサからの距離と読み替えることによって方位対距離の空間分布が得られる。更にこの空間分布を時系列で並べることによって時間分布が得られる。
 多くの方法は、指向性を得る際、センサを構成するセンサ素子の形状やセンサ素子間の相対位置を勘案して、センサ素子毎に取得した波形情報の位相を調整する。
 一方、これら波形情報について、時間軸上において連続したアナログ信号として処理されることが多かったが、最近は時間軸上において離散的にサンプリングしてディジタル信号として処理することが多くなってきた。ディジタル信号として処理できることにより様々な複雑なアルゴリズムを容易に適用できるようになった。非特許文献1に記載の方法も、このディジタル化を考慮した方法である。
菊間信良 著「アダプティブアンテナ技術」 オーム社出版、平成15年10月10日、pp.122-166
 ディジタル信号として処理が行われる場合、波形情報は離散的にしかサンプリングされない。すなわち、波形情報が所望の位相においてサンプリングされていないことがほとんどである。そのため、ディジタル信号に対して位相を調整する際、例えば基準となるセンサ素子で定めたサンプリングタイミングと同一のサンプリングタイミングを含めて、ある一定時間の波形情報をフーリエ変換して複素数表現した位相を掛け合わせて位相を調整する。
 例えば、センサ素子Nの時刻tからtにわたる波形情報をfとし、位相をθずらすとする。この場合、fのフーリエ変換をFとするならば、Fiθが位相調整された求めるべきフーリエ変換となる。ただしi=-1である。これは、所望の位相における波形情報を、サンプリングされた時刻での波形情報から外挿することに相当する。
 ところがこの外挿は周波数分布に時間変動が無いことを暗黙の前提としている。そのため、変調して送受信した信号や、物体に反射して強度が変動した信号では、外挿の精度が低下する。その結果、方位分解能や距離分解能が低下する場合がある。
 そこで、本発明は、波形情報を取得するにあたって、変調して送受信した信号や、物体に反射して強度が変動した信号においても、方位分解能や距離分解能の低下を抑えることができる技術を提供することである。
 上記課題を解決するための本発明は、測定装置であって、空間を伝播する波を受信する複数のセンサと、前記センサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の到着時刻の差を求め、この到着時刻の差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出手段とを有することを特徴とする。
 上記課題を解決するための本発明は、測定システムであって、空間を伝播する波を受信する複数のセンサと、前記センサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の到着時刻の差を求め、この到着時刻の差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出手段とを有することを特徴とする。
 上記課題を解決するための本発明は、測定方法であって、空間を伝播する波をセンサで受信する受信ステップと、前記センサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の到着時刻の差を求め、この到着時刻の差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出ステップとを有する。
 上記課題を解決するための本発明は、情報処理装置のプログラムであって、前記プログラムは前記情報処理装置に、空間を伝播する波を受信するセンサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の到着時刻の差を求め、この到着時刻の差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出処理を実行させることを特徴とする。
 本発明の効果は、レーダー、ソーナー、ライダーなどの波形情報を取得する装置において、変調して送受信した信号や、物体に反射して強度が変動した信号においても方位分解能や距離分解能の低下を抑えられることである。これは、位相を考慮したサンプリングタイミングで波形情報をサンプリングすることによって、正確な周波数分布を得られるからである。
本発明の第1の実施の形態の構成を示すブロック図 本発明の第2の実施の形態の構成を示すブロック図 本発明の第3の実施の形態の全体の構成を示すブロック図 本発明の第4の実施の形態の全体の構成を示すプロック図 本発明の第5の実施の形態の全体の構成を示すブロック図 本発明の第6の実施の形態の全体の構成を示すブロック図 本発明の第7の実施の形態の全体の構成を示すブロック図
 本発明は、空間を伝播する、電波、音波、光波等の波動の波形情報を取得して、波形情報を取得するセンサの相対位置に基づいて、取得した波形情報をサンプリングするためのサンプリングタイミングをセンサ毎に算出する。これにより、変調して送受信した信号や、物体に反射して強度が変動した信号においても、方位分解能や距離分解能の低下を抑えることができる。尚、空間とは、大気中や水中等の実空間である。以下に、本発明の詳細について説明する。
〈第1の実施の形態〉
 図1は、第1の実施の形態における測定システム(測定装置)のブロック図である。測定装置は、波形情報取得部11と、最適サンプリング算出部12と、サンプリング制御部13と、整相部14と、強度マッピング部15とを有する。
 波形情報取得部11は、空間を伝播する電波、音波、光波などの波を受信する単独あるいは複数のセンサ素子と、センサ素子が受信した波をサンプリングするサンプリング部とを有するレーダー、ソーナー、ライダーなどである。波形情報取得部11は、サンプリングタイミングを変更できるもので、各センサ素子が受波した波を、後述するサンプリング制御部13によって設定されたサンプリングタイミングでサンプリングして波形情報を取得し、周波数分布を出力する。複数のセンサ素子が配置される場合、一般的には直線上に半波長間隔で配置されることが多いが、本発明では配置に制限は無いものとする。例えばリング上に配置しても良いし、球面上に配置しても良いし、結晶格子とよく似た形状の立体格子上に配置してもよい。また、センサ素子は同じ感度特性や波長特性を並べる場合が多いが、異なる感度特性、異なる波長特性のセンサ素子を並べてもよい。
 最適サンプリング算出部12は、あらかじめ指定してある方位分解能、又は距離分解能に応じて、方位毎、距離毎に最適なサンプリングタイミングを、センサ素子間の位置関係に基づいて算出する。各センサ素子の位置は、装置をセッティングするときにわかるので、各センサ素子の位置を示す位置情報は測定装置に予め記憶されている。
 ここで、最適サンプリング算出部12の詳細について説明する。例えば、複数あるセンサ素子のいずれか一つを基準と設定して、ある方位のある位置に波源があると想定する。波源に対して各センサ素子が、基準となるセンサ素子と比較してどれだけ近いか又は遠いかを示す相対位置(距離の違い)と波の速度とから、各センサ素子において同一位相の波の到来時刻の違いを算出する。そして、算出した到来時刻の違いから各センサ素子の最適サンプリングタイミングを求める。従って、最適サンプリング算出部12が算出する最適サンプリングタイミングとは、基準センサ素子で受信された波の位相と基準センサ素子以外のセンサ素子で受信された波の位相とが同一となる波形情報が得られるタイミングである。サンプリングタイミングを算出する際の方位分解能については、全方位一様でなくてもよい。例えば正面は方位分解能を細かくとり、周辺は方位分解能を粗くとるという方法も考えられる。同様に距離分解能についても、一様でなくてもよい。例えば近距離の場合は細かくとり、遠距離の場合は粗くとるという方法も考えられる。尚、波源は、電波、音波、光波などの波を放射するもの、又は電波、音波、光波などの波を反射するものを指す。
 サンプリング制御部13は、上記最適なサンプリングタイミングで、受信した波の波形情報を取得するように波形情報取得部11を制御する。また、サンプリング制御部13は、基準センサ素子と他の各センサ素子との同一位相の波の到来時刻の違いを考慮して、各センサ素子が受信した波の波形情報を整合して加算するように整相部14を制御する。
 整相部14は、サンプリング制御部13の制御の元、サンプリング制御部13からの基準センサ素子と他の各センサ素子との同一位相の波の到来時刻の違いに基づいて、各センサ素子が受信した波の波形情報を整合して加算するものである。最適サンプリング算出部12で得られた各素子の最適のサンプリングタイミングで波形情報を、方位毎及び距離毎の少なくとも一方毎に取得する。そして、全センサ素子における波形情報を足し合わせて各方位又は各距離の強度を求める。波形情報を足し合わせるのは実空間であってもよいし周波数空間であってもよい。実空間で足し合わせた場合は、フーリエ変換などにより周波数空間での表現に変更し、送受信で用いる帯域の強度を求める。または実空間上、帯域通過フィルタなどにより、送受信で用いる帯域以外を削除した後、フーリエ変換などにより周波数空間での表現に変更して送受信で用いる帯域の強度を求める。周波数空間で足し合わせた場合も送受信で用いる帯域の強度を求める。各サンプリングタイミングでの強度を求めることにより、各方位及び各距離の強度が求まることになる。
 強度マッピング部15は、整相部14が求めた各方位及び各距離の強度について、時系列でメモリに蓄える。更に、例えば方位と距離とを軸にして周波数分布をディスプレイ上に2次元あるいは3次元で周波数分布を表示する。2次元で表示する場合は例えば、一般的にBスコープと言われるように、波形情報取得部11を座標系の原点において、水平方位あるいは垂直方位と距離を座標軸とした極座標で表示することが考えられる。強度を濃淡で表現したり、擬似カラーで表現したりすると目視で区別できる。3次元で表示する場合も同様に極座標で表示することが考えられる。ディスプレイが2次元画像しか表示できない場合は、3次元画像を2次元に投影することになるので、ユーザの視点を自由に変更できると好ましい。時間変動については例えば動画として表示すると理解しやすい。
 上記最適サンプリング算出部12、サンプリング制御部13、及び強度マッピング部14は、ディジタル信号処理を行うことができる多種多様な装置で構成できる。例えば、DSP(Digital Signal Processor)や大容量補助記憶装置や大容量メモリなどで構成されるボードコンピュータであってもよいし、一般的なパーソナルコンピュータやワークステーションであってもよい。強度マッピング部14には更に強度の空間分布や時間分布を目視するためのディスプレイが備わっていてもよい。
 続いて、図1を参照して本実施の形態の動作について説明する。
 まず電波、音波、光波などの波は波形情報取得部11によって受信され、保持される。
 最適サンプリング算出部12は、あらかじめ指定してある方位分解能、又は距離分解能に応じて、方位毎、距離毎に必要なサンプリングタイミングを、センサ素子間の位置関係及び波の速度に基づいて算出する。算出した最適サンプリングタイミングで受信した波の波形情報を取得するように波形情報取得部11を制御する。また、サンプリング制御部13は、基準センサ素子と他の各センサ素子との同一位相の波の到来時刻の違いを整相部14に通知する。
 整相部14は、最適サンプリング算出部12で得られた前記波形情報取得部11の各素子での最適のサンプリングタイミングでの波形情報を方位毎及び距離毎に取り出し、サンプリング制御部13による制御の元、全センサ素子について整合して足し合わせて強度を求める。
 強度マッピング部15は上記整相部14で求まった各方位及び各距離の強度について、時系列毎にメモリに蓄える。更に、例えば方位と距離を軸としてディスプレイ上に2次元あるいは3次元で表示する。
 尚、上記実施の形態では、波源からの相対位置と波の速度とに基づいて、最適サンプリングタイミングを算出していたが、これらの情報に、センサ素子の形状又は大きさ等の物理的情報、波の各波長成分、及び各振動数成分の少なくとも1つを加えて最適サンプリングタイミングを算出してもよい。また、上記説明では、同一位相の波の到来時刻の違いに基づいて、各センサ素子が受信した波の波形情報を整合、即ち位相を調整していたが、この到来時刻の違いから求めた位相差に基づいて整合してもよい。
 上記本実施の形態によると、変調して送受信した信号や、物体に反射して強度が変動した信号においても方位分解能や距離分解能の低下を抑えられることである。これは、上記実施の形態は所望の方位分解能や距離分解能からセンサ素子毎に波の到来時刻の差から、位相を考慮した最適なサンプリングタイミングをあらかじめ算出しておき、算出したサンプリングタイミングで波形情報を取得できるように、波形情報取得部のサンプリングタイミングを制御しているためである。
〈第2の実施の形態〉
 次に、本発明の第2の実施の形態について図を参照して詳細に説明する。第2の実施の形態は、波形情報取得部21がサンプリングタイミングを変更できない構成の場合である。
 図2を参照すると、本発明の第2の実施の形態は第1の実施の形態と類似した構成をしているが、サンプリング制御部が無く、最適サンプリング波形情報推定部23が波形情報取得部21と整相部24の間に配置される。また、最適サンプリング算出部は該最適サンプリング波形情報推定部23とのみ結びついている。波形情報取得部21と最適サンプリング算出部22と、整相部24と強度マッピング部25との動作は第1の実施の形態と同じである。上記第1の実施の形態と同じ構成については、詳細な説明を省略する。
 波形情報取得部21は、所定のサンプリングタイミングでサンプリングする。
 最適サンプリング波形情報推定部23は、最適サンプリング算出部22で算出した最適サンプリングタイミングに近似するサンプリングタイミングでサンプリングして取得した波形情報を用いて、最適サンプリングタイミングでサンプリングして取得できる波形情報を推測する。
 ここで、最適サンプリング波形情報推定部23の詳細を説明する。
 波形情報取得部21は、サンプリングタイミングを変更することができない。従って、前記最適サンプリング算出部22で得られた最適サンプリングタイミングの時刻を含む時間範囲のサンプリングタイミングを設定する。時間範囲については、ユーザがあらかじめ指定する。最適サンプリングタイミングを中心にする場合や、最適サンプリングタイミングを時間的に最後尾する場合が考えられる。最適サンプリングタイミングを時間的に最後尾とすることは、過去の波形情報から未来の最適サンプリングタイミングにおける波形情報を予測することに相当する。
 次に設定した時間範囲内において、実際に波形情報取得部21で設定可能な複数のサンプリングタイミングを求める。これらを準最適サンプリングタイミングとする。その後、各準最適サンプリングタイミングにおいてフーリエ変換などにより、各センサ素子が受信した波の波形情報である周波数分布を求める。
 そしてユーザがあらかじめ定めた周波数分布変動モデルに従って、準最適サンプリングタイミングでの周波数分布から、最適サンプリングタイミングでの周波数分布を推測する。
 推測する際、あらかじめ周波数分布変動のモデルを定めておき、モデルフィッティングする。例えば振幅変調や周波数変調や位相変調した波形情報を送受信する場合はその変調から周波数分布の変動は容易に推測できる。例えば線形な周波数変調の場合、周波数分布の周波数方向の変動は時間に関する一次関数で表現できる。また、物体に反射して強度変化する場合に対しても反射を電波や音波の物理法則に基づいてシミュレーションして推測することができる。シミュレーションする方法としては例えば波動方程式を差分方程式で展開したFDTD法(Finite-difference time-domain method:時間領域差分法)を使うことが考えられる。あるいはより簡易なPE(parabolic equation)法やノーマルモード法や音線理論などを適用してもよい。あるいはより単純に反射面で単峰状の関数がかかった形で振幅変調がかかるとみなしてもよい。なお、物体の反射による変調を考慮しない場合でも、送受信の際の意図した変調に追随するだけで従来よりも高精度に最適サンプリングタイミングでの波形情報を推測できる。
 続いて、第2の実施の形態の動作について説明する。
 上記第1の実施の形態と同じ処理を経て、最適サンプリングタイミングが算出される。
 最適サンプリング波形情報推定部23は、最適サンプリングタイミングを含む時間範囲のサンプリングタイミングを、ユーザによって指定された内容に沿うように設定する。更に、最適サンプリング波形情報推定部23は、設定された時間範囲内において、実際に波形情報取得部21で設定可能な複数の準最適サンプリングタイミングを求める。
 最適サンプリング波形情報推定部23は、求めた準最適サンプリングタイミングでサンプリングするように波形情報取得部21を設定する。波形情報取得部21は、設定された順最適サンプリングタイミングで、各センサ素子が受信した波の波形情報である周波数分布を求める。そして、最適サンプリング波形情報推定部23は、ユーザがあらかじめ定めた周波数分布変動モデルに従って、準最適サンプリングタイミングでの周波数分布から、最適サンプリングタイミングでの周波数分布を推測する。
 整相部24は、最適サンプリング波形情報推定部23で推測された波形情報を方位毎及び距離毎に取り出し、全センサ素子について足し合わせて強度を求める。
 強度マッピング部25は、上記整相部24で求まった各方位及び各距離の強度について、時系列毎にメモリに蓄える。更に、例えば方位と距離を軸としてディスプレイ上に2次元あるいは3次元で表示する。
 本実施の形態によると、サンプリングタイミングを自由に変更できない波形情報取得部であっても、最適なサンプリングタイミングの近傍のサンプリングタイミングで波形情報をもとに、最適なサンプリングタイミングにおける波形情報を精度よく推測できる。
〈第3の実施の形態〉
 次に、本発明の第3の実施の形態について図3を参照して詳細に説明する。尚、本実施の形態は、上記第2の実施の形態に基づいて説明するが、第1の実施の形態に適用させても良い。
 本実施の形態は、上記第2の実施の形態の波形情報取得部21の後段に素子荷重部36を配置している。
 本第3の実施の形態において、波形情報取得部31と最適サンプリング算出部32と最適サンプリング波形情報推定部33と整相部34と強度マッピング部35とについては本発明の第2の実施の形態と同じ動作をするため、詳細な説明は省略する。
 素子荷重部36は、波形情報取得部31を構成するセンサ素子毎に波形情報に対し重みをかけ、方位分解能を向上させる。この重み付けは、適宜設定すればよいが、例えば非特許文献2に記載されている技術を用いても良い。(非特許文献2:海洋音響学会編「海洋音響の基礎と応用」 成山堂書店出版、平成16年4月28日、pp.64-65及びp.163)非特許文献2に記載されている重み付けの技術は、一般的にシェーディングと呼ばれる手法である。本実施の形態の重み付けは、非特許文献2に記載されているようにハニング関数やチェビシェフ多項式等をセンサ素子の出力に掛けることによって行われる。
 続いて、第3の実施の形態の動作について説明する。
 本実施の形態は、上記第2の実施の形態と同じ処理を経て、準最適サンプリングでサンプリングした波形情報が取得される。
 素子荷重部36は、各波形情報に対して重み付けをする。
 最適サンプリング波形情報推定部33は、重み付けされた各波形情報の周波数分布から、最適サンプリングタイミングでの周波数分布を推測する。
 整相部34は、最適サンプリング波形情報推定部33で推定された波形情報を方位毎及び距離毎に取り出し、全センサ素子について足し合わせて強度を求める。
 強度マッピング部35は、上記整相部24で求まった各方位及び各距離の強度について、時系列毎にメモリに蓄える。更に、例えば方位と距離を軸としてディスプレイ上に2次元あるいは3次元で表示する。
 本実施の形態によると、第2の実施の形態同様に、サンプリングタイミングを自由に変更できない波形情報取得部であっても、最適なサンプリングタイミングの近傍のサンプリングタイミングで波形情報をもとに、最適なサンプリングタイミングにおける波形情報を精度よく推測できる。
〈第4の実施の形態〉
 次に、本発明の第4の実施の形態について図4を参照して詳細に説明する。尚、本実施の形態は、上記第2の実施の形態に基づいて説明するが、第1又は第3の実施の形態に適用させても良い。
 本実施の形態は、上記第2の実施の形態の波形情報取得部21の前段に変調部46を配置している。尚、詳細に説明すると、センサ素子の後段であり、センサ素子が受信した波をサンプリングするサンプリング部の前段である。
 第4の実施の形態において、波形情報取得部41と最適サンプリング算出部42と最適サンプリング波形情報推定部43と整相部44と強度マッピング部45については本発明の第2の実施の形態と同じ動作をするため、詳細な説明は省略する。
 変調部46は、センサ素子が受信した波に対し特定周波数の正弦波あるいは特定の変調のかけた正弦波をかけて変調し、帯域制限フィルタを通して周波数分布を変更する。
 ここで、変調部46の詳細について説明する。変調部46は、受信した波に、例えば正弦波をかけてローパスフィルタを通す。これにより、受信した波の周波数は低くなり、波形情報取得部41のサンプリングレートを下げることができる。また周波数が低くなると、波形情報の振幅の時間変化が小さくなるため、最適サンプリングタイミングでの波形情報を推測しやすくなる。
 続いて、第4の実施の形態の動作について説明する。
 変調部46は、センサ素子が受信した波に対して変調を施し、帯域制限フィルタを通す。
 波形情報取得部41は、変調された波をサンプリングして波形情報を得る。
 以降の処理は、上記実施の形態と同じであるため、詳細な説明は省略する。
 本実施の形態によると、波形情報の振幅の時間変化が小さくなるため、最適サンプリングタイミングでの波形情報を推測しやすくなる。
〈第5の実施の形態〉
 次に、本発明の第5の実施の形態について図5を参照して詳細に説明する。尚、本実施の形態は、上記第2の実施の形態に基づいて説明するが、第1、第3、又は第4の実施の形態に適用させても良い。
 本実施の形態は、第2の実施の形態の波形情報取得部の直後に時間平滑化部56を配置している。
 第5の実施の形態において、波形情報取得部51と最適サンプリング算出部52と最適サンプリング波形情報推定部53と整相部54と強度マッピング部55とについては本発明の第2の実施の形態と同じ動作をするため、詳細な説明は省略する。
 時間平滑化部56は、サンプリングタイミング毎に前後の波形情報の変動と比較して強度の値が急激に変動するならばノイズの影響が大きいとみなし前後の波形情報の変動から該サンプリングタイミングのより適切な値を推測する。推測する方法としては例えば取得した波形情報に対し、あらかじめ設定した時間範囲において、正弦波を最小2乗フィッティングし、各サンプリングタイミングにおける波形情報の値をフィッティングした値で置き換える。あるいは正弦波からのズレがあらかじめ設定したしきい値より大きい場合のみフィッティングした値で置き換えてもよい。尚、急激に変動するかの判断は、閾値を設定し、変動量が許容範囲かどうかで行う。
 続いて、第5の実施の形態の動作について説明する。
 上記実施の形態と同じ処理を経て、波形情報取得部51は波形情報を取得する。
 時間平滑化部56は、サンプリングタイミング毎に前後の波形情報の変動と比較して値が急激に変動するならばノイズの影響が大きいとみなし前後の波形情報の変動から該サンプリングタイミングのより適切な値を推測して、波形情報を修正する。
 以降の処理は、上記実施の形態と同じであるため、詳細な説明は省略する。
 本実施の形態によると、ノイズの影響を考慮することができるので、方位分解能や距離分解能の低下を抑えることができる。
〈第6の実施の形態〉
 次に、本発明の第6の実施の形態について図6を参照して詳細に説明する。尚、本実施の形態は、上記第2の実施の形態に基づいて説明するが、第1、第3、第4、又は第5の実施の形態に適用させても良い。
 本実施の形態は、第2の実施の形態において波形情報取得部の直後に空間平滑化部66を配置した場合について説明する。
 本発明の第6の実施の形態において、波形情報取得部61と最適サンプリング算出部62と最適サンプリング波形情報推定部63と整相部64と強度マッピング部65については本発明の第2の実施の形態と同じ動作をするため、詳細な説明は省略する。
 空間平滑化部66は、サンプリングタイミング毎に、そのセンサ素子に近傍する他センサ素子の波形情報と比較する。比較の結果、強度の値が大きく異なるならばノイズの影響が大きいとみなし近傍の他センサ素子の波形情報から該センサ素子のより適切な値を推測する。近傍と見なす範囲についてはあらかじめ設定しておく。推測する方法としては例えば、サンプリングタイミング毎の各センサ素子の波形情報を空間上に並べて2次元あるいは3次元の画像とみなし、画像処理でノイズ除去に用いられる移動平均やメディアンフィルタなどを適用する。ただしこれら処理を行う前に各素子で位相が同じとなるように調整する。位相を調整する方法としては例えばセンサ素子間で波形情報の相関をとることにより位相のずれを見出して調整することが考えられる。尚、強度が大きく異なるかの判断は閾値を設定し、他センサ素子の波形情報との差異が許容範囲かどうかで行う。
 続いて、第6の実施の形態の動作について説明する。
 上記実施の形態と同じ処理を経て、波形情報取得部61は波形情報を取得する。
 空間平滑化部66は、サンプリングタイミング毎に、そのセンサ素子に近傍するセンサ素子の波形情報と比較して、強度の差異が大きいならばノイズの影響が大きいとみなし、近傍センサ素子の波形情報の変動から該サンプリングタイミングのより適切な値を推測して、波形情報を修正する。
 以降の処理は、上記実施の形態と同じであるため、詳細な説明は省略する。
 本実施の形態によると、ノイズの影響を考慮することができるので、方位分解能や距離分解能の低下を抑えることができる。
〈第7の実施の形態〉
 次に、本発明の第7の実施の形態について図7を参照して詳細に説明する。尚、本実施の形態は、上記第2の実施の形態に基づいて説明するが、第1、第3、第4、第5、又は第6の実施の形態に適用させても良い。
 本実施の形態は、第2の実施の形態において強度マッピング部の後段にデコンボリューション部76を配置している。
 第7の実施の形態において、波形情報取得部71と最適サンプリング算出部72と最適サンプリング波形情報推定部73と整相部74と強度マッピング部75については本発明の第2の実施の形態と同じ動作をするため、詳細な説明は省略する。
 デコンボリューション部76は、強度マッピング部75で得られた多次元画像について、方位毎の指向性分布を用いてデコンボリューションすることにより高分解能の多次元画像を算出する。方位毎の指向性分布についてはあらかじめ測定しておく。デコンボリューションの方法としては数多くの手法が提案されている。例えば、特許文献1で示されている方法を適用してもよい(特許文献1:特許第003518056号)。ただしこれは一例であり、この方法に限るものではない。尚、デコンボリューション部76にはより高分解能の多次元画像を表示するためのディスプレイが備わっているとよい。
 上記実施の形態の処理と同じ処理を経て、強度マッピング部75は多次元画像を得る。
 デコンボリューション部76は、強度マッピング部75で得られた多次元画像について、方位毎の指向性分布を用いてデコンボリューションする。これにより、デコンボリューション部76は、高分解能の多次元画像を算出する。
 本実施の形態によると、方位分解能や距離分解能を高くできる。これは、方位毎に調整した位相におけるサンプリングタイミングでの波形情報を高い精度で得ることができるためである。その結果、方位毎の強度分布がより高精度となり、デコンボリューションを実施する場合においても、高精度な画像が得られる。
 尚、上述した本発明の測定装置は、上記説明からも明らかなように、ハードウェアで構成することも可能であるが、コンピュータプログラムにより実現することも可能である。このような構成の場合、プログラムメモリに格納されているプログラムで動作するプロセッサによって、上述した実施の形態と同様の機能、動作を実現させる。尚、上述した実施の形態の一部の機能をコンピュータプログラムにより実現することも可能である。
 また、上述した本発明の各構成部を別々の装置に設けて測定システムを構成させてもよい。
(付記1)
 空間を伝播する波を受信する複数のセンサと、
 前記センサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の到着時刻の差を求め、この到着時刻の差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出手段と
を有することを特徴とする測定装置。
(付記2)
 前記算出したサンプリングタイミングでサンプリングして波形情報を取得する取得手段を有することを特徴とする付記1に記載の測定装置。
(付記3)
 前記算出したサンプリングタイミングに近似するサンプリングタイミングでサンプリングして得られた前記波形情報を用いて、前記算出したサンプリングタイミングでサンプリングして取得できる波形情報を推測により取得する取得手段を有することを特徴とする付記1に記載の測定装置。
(付記4)
 前記取得した波形情報を前記求めた到着時刻の差に基づいて調整し、方位毎及び距離毎の少なくとも一方の強度を求める測定手段を有することを特徴とする付記2又は付記3に記載の測定装置。
(付記5)
 前記取得した波形情報毎に重み付けする重み付け手段を有することを特徴とする付記2から付記4のいずれかに記載の測定装置。
(付記6)
 取得する波形情報の周波数分布が変更されるように変調する変調手段を有することを特徴とする付記2から付記5のいずれかに記載の測定装置。
(付記7)
 前記取得した波形情報において、サンプリングタイミング時の強度とそのサンプリングタイミングの前後の強度とを比較し、比較の結果に応じて、波形情報を強度の変動量に基づいて修正する時間平滑化手段を有することを特徴とする付記2から付記6のいずれかに記載の測定装置。
(付記8)
 前記取得した波形情報において、サンプリングタイミング毎に、前記波形情報の強度と、前記波形情報の波を受信したセンサに近傍するセンサが受信した波の波形情報の強度とを比較し、比較の結果に応じて、強度の差異に基づいて修正する空間平滑化手段を有することを特徴とする付記2から付記7のいずれかに記載の測定装置。
(付記9)
 前記測定した強度を用いて、多次元画像を生成する生成手段を有することを特徴とする付記2から付記8のいずれかに記載の測定装置。
(付記10)
 前記生成手段は、前記生成した多次元画像について、方位毎の指向性分布を用いてデコンボリューションして、高分解能の多次元画像を生成することを特徴とする付記9に記載の測定装置。
(付記11)
 空間を伝播する波を受信する複数のセンサと、
 前記センサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の位相差を求め、この位相差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出手段と
を有することを特徴とする測定システム。
(付記12)
 前記算出したサンプリングタイミングでサンプリングして波形情報を取得する取得手段を有することを特徴とする付記11に記載の測定システム。
(付記13)
 前記算出したサンプリングタイミングに近似するサンプリングタイミングでサンプリングして得られた前記波形情報を用いて、前記算出したサンプリングタイミングでサンプリングして取得できる波形情報を推測により取得する取得手段を有することを特徴とする付記11に記載の測定システム。
(付記14)
 前記取得した波形情報を前記求めた到着時刻の差に基づいて調整し、方位毎及び距離毎の少なくとも一方の強度を求める測定手段を有することを特徴とする付記12又は付記13に記載の測定システム。
(付記15)
 前記取得した波形情報毎に重み付けする重み付け手段を有することを特徴とする付記2から付記14のいずれかに記載の測定システム。
(付記16)
 取得する波形情報の周波数分布が変更されるように変調する変調手段を有することを特徴とする付記12から付記15のいずれかに記載の測定システム。
(付記17)
 前記取得した波形情報において、サンプリングタイミング時の強度とそのサンプリングタイミングの前後の強度とを比較し、比較の結果に応じて、波形情報を強度の変動量に基づいて修正する時間平滑化手段を有することを特徴とする付記12から付記16のいずれかに記載の測定システム。
(付記18)
 前記取得した波形情報において、サンプリングタイミング毎に、前記波形情報の強度と、前記波形情報の波を受信したセンサに近傍するセンサが受信した波の波形情報の強度とを比較し、比較の結果に応じて、強度の差異に基づいて修正する空間平滑化手段を有することを特徴とする付記12から付記17のいずれかに記載の測定システム。
(付記19)
 前記測定した強度を用いて、多次元画像を生成する生成手段を有することを特徴とする付記12から付記18のいずれかに記載の測定システム。
(付記20)
 前記生成手段は、前記生成した多次元画像について、方位毎の指向性分布を用いてデコンボリューションして、高分解能の多次元画像を生成することを特徴とする付記19に記載の測定システム。
(付記21)
 空間を伝播する波をセンサで受信する受信ステップと、
 前記センサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の到着時刻の差を求め、この到着時刻の差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出ステップと
を有することを特徴とする測定方法。
(付記22)
 前記算出したサンプリングタイミングでサンプリングして波形情報を取得する取得ステップを有することを特徴とする付記21に記載の測定方法。
(付記23)
 前記算出したサンプリングタイミングに近似するサンプリングタイミングでサンプリングして得られた前記波形情報を用いて、前記算出したサンプリングタイミングでサンプリングして取得できる波形情報を推測して取得する取得ステップを有することを特徴とする付記21に記載の測定方法。
(付記24)
 前記取得した波形情報を前記求めた到着時刻の差に基づいて調整し、方位毎及び距離毎の少なくとも一方の強度を求める測定ステップを有することを特徴とする付記21又は付記23に記載の測定方法。
(付記25)
 前記取得した波形情報毎に重み付けする重み付けステップを有することを特徴とする付記22から付記24のいずれかに記載の測定方法。
(付記26)
 取得する波形情報の周波数分布が変更されるように変調する変調ステップを有することを特徴とする付記22から付記25のいずれかに記載の測定方法。
(付記27)
 前記取得した波形情報において、サンプリングタイミング時の強度とそのサンプリングタイミングの前後の強度とを比較し、比較の結果に応じて、波形情報を強度の変動量に基づいて修正する時間平滑化ステップを有することを特徴とする付記22から付記26のいずれかに記載の測定方法。
(付記28)
 前記取得した波形情報において、サンプリングタイミング毎に、前記波形情報の強度と、前記波形情報の波を受信したセンサに近傍するセンサが受信した波の波形情報の強度とを比較し、比較の結果に応じて、強度の差異に基づいて修正する空間平滑化ステップを有することを特徴とする付記22から付記27のいずれかに記載の測定方法。
(付記29)
 前記測定した強度を用いて、多次元画像を生成する生成ステップを有することを特徴とする付記22から付記28のいずれかに記載の測定方法。
(付記30)
 前記生成ステップは、前記生成した多次元画像について、方位毎の指向性分布を用いてデコンボリューションして、高分解能の多次元画像を生成することを特徴とする付記29に記載の測定方法。
(付記31)
 情報処理装置のプログラムであって、前記プログラムは前記情報処理装置に、
 空間を伝播する波を受信するセンサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の到着時刻の差を求め、この到着時刻の差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出処理を実行させることを特徴とするプログラム。
 以上好ましい実施の形態をあげて本発明を説明したが、本発明は必ずしも上記実施の形態に限定されるものではなく、その技術的思想の範囲内において様々に変形し実施することが出来る。
 本出願は、2009年3月31日に出願された日本出願特願2009-085932号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、2、3、4、5、6、7  測定システム
11、21、31、41、51、61、71  波形情報取得部
12、22、32、42、52、62、72  最適サンプリング算出部
13  サンプリング制御部
23、33、43、53、63、73  最適サンプリング波形情報推定部

14、24、34、44、54、64、74  整相部
15、25、35、45、55、65、75  強度マッピング部
36  素子荷重部
46  変調部
56  時間平滑化部
66  空間平滑化部
76  デコンボリューション部

Claims (22)

  1.  空間を伝播する波を受信する複数のセンサと、
     前記センサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の到着時刻の差を求め、この到着時刻の差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出手段と
    を有することを特徴とする測定装置。
  2.  前記算出したサンプリングタイミングでサンプリングして波形情報を取得する取得手段を有することを特徴とする請求項1に記載の測定装置。
  3.  前記算出したサンプリングタイミングに近似するサンプリングタイミングでサンプリングして得られた前記波形情報を用いて、前記算出したサンプリングタイミングでサンプリングして取得できる波形情報を推測により取得する取得手段を有することを特徴とする請求項1に記載の測定装置。
  4.  前記取得した波形情報を前記求めた到着時刻の差に基づいて調整し、方位毎及び距離毎の少なくとも一方の強度を求める測定手段を有することを特徴とする請求項2又は請求項3に記載の測定装置。
  5.  前記取得した波形情報毎に重み付けする重み付け手段を有することを特徴とする請求項2から請求項4のいずれかに記載の測定装置。
  6.  取得する波形情報の周波数分布が変更されるように変調する変調手段を有することを特徴とする請求項2から請求項5のいずれかに記載の測定装置。
  7.  前記取得した波形情報において、サンプリングタイミング時の強度とそのサンプリングタイミングの前後の強度とを比較し、比較の結果に応じて、波形情報を強度の変動量に基づいて修正する時間平滑化手段を有することを特徴とする請求項2から請求項6のいずれかに記載の測定装置。
  8.  前記取得した波形情報において、サンプリングタイミング毎に、前記波形情報の強度と、前記波形情報の波を受信したセンサに近傍するセンサが受信した波の波形情報の強度とを比較し、比較の結果に応じて、強度の差異に基づいて修正する空間平滑化手段を有することを特徴とする請求項2から請求項7のいずれかに記載の測定装置。
  9.  前記測定した強度を用いて、多次元画像を生成する生成手段を有することを特徴とする請求項2から請求項8のいずれかに記載の測定装置。
  10.  前記生成手段は、前記生成した多次元画像について、方位毎の指向性分布を用いてデコンボリューションして、高分解能の多次元画像を生成することを特徴とする請求項9に記載の測定装置。
  11.  空間を伝播する波を受信する複数のセンサと、
     前記センサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の位相差を求め、この位相差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出手段と
    を有することを特徴とする測定システム。
  12.  空間を伝播する波をセンサで受信する受信ステップと、
     前記センサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の到着時刻の差を求め、この到着時刻の差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出ステップと
    を有することを特徴とする測定方法。
  13.  前記算出したサンプリングタイミングでサンプリングして波形情報を取得する取得ステップを有することを特徴とする請求項12に記載の測定方法。
  14.  前記算出したサンプリングタイミングに近似するサンプリングタイミングでサンプリングして得られた前記波形情報を用いて、前記算出したサンプリングタイミングでサンプリングして取得できる波形情報を推測して取得する取得ステップを有することを特徴とする請求項12に記載の測定方法。
  15.  前記取得した波形情報を前記求めた到着時刻の差に基づいて調整し、方位毎及び距離毎の少なくとも一方の強度を求める測定ステップを有することを特徴とする請求項12又は請求項14に記載の測定方法。
  16.  前記取得した波形情報毎に重み付けする重み付けステップを有することを特徴とする請求項13から請求項15のいずれかに記載の測定方法。
  17.  取得する波形情報の周波数分布が変更されるように変調する変調ステップを有することを特徴とする請求項13から請求項16のいずれかに記載の測定方法。
  18.  前記取得した波形情報において、サンプリングタイミング時の強度とそのサンプリングタイミングの前後の強度とを比較し、比較の結果に応じて、波形情報を強度の変動量に基づいて修正する時間平滑化ステップを有することを特徴とする請求項13から請求項17のいずれかに記載の測定方法。
  19.  前記取得した波形情報において、サンプリングタイミング毎に、前記波形情報の強度と、前記波形情報の波を受信したセンサに近傍するセンサが受信した波の波形情報の強度とを比較し、比較の結果に応じて、強度の差異に基づいて修正する空間平滑化ステップを有することを特徴とする請求項13から請求項18のいずれかに記載の測定方法。
  20.  前記測定した強度を用いて、多次元画像を生成する生成ステップを有することを特徴とする請求項13から請求項19のいずれかに記載の測定方法。
  21.  前記生成ステップは、前記生成した多次元画像について、方位毎の指向性分布を用いてデコンボリューションして、高分解能の多次元画像を生成することを特徴とする請求項20に記載の測定方法。
  22.  情報処理装置のプログラムであって、前記プログラムは前記情報処理装置に、
     空間を伝播する波を受信するセンサの相対位置と前記波の速度とに基づいて、前記各センサが受信する波の到着時刻の差を求め、この到着時刻の差に基づいて、前記波の波形情報を取得するためのサンプリングタイミングをセンサ毎に算出するサンプリングタイミング算出処理を実行させることを特徴とするプログラム。
PCT/JP2010/055649 2009-03-31 2010-03-30 測定装置、測定システム、測定方法、及びプログラム WO2010113926A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10758697.6A EP2416170B1 (en) 2009-03-31 2010-03-30 Measurement device, measurement system, measurement method, and program
JP2011507202A JP5664869B2 (ja) 2009-03-31 2010-03-30 測定装置、測定システム、測定方法、及びプログラム
US13/256,708 US9035820B2 (en) 2009-03-31 2010-03-30 Measurement device, measurement system, measurement method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-085932 2009-03-31
JP2009085932 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113926A1 true WO2010113926A1 (ja) 2010-10-07

Family

ID=42828216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055649 WO2010113926A1 (ja) 2009-03-31 2010-03-30 測定装置、測定システム、測定方法、及びプログラム

Country Status (4)

Country Link
US (1) US9035820B2 (ja)
EP (1) EP2416170B1 (ja)
JP (1) JP5664869B2 (ja)
WO (1) WO2010113926A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902733A (zh) * 2018-03-26 2020-11-06 松下知识产权经营株式会社 距离测量装置、距离测量系统、距离测量方法和程序

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136888B2 (en) * 2013-06-28 2015-09-15 JVC Kenwood Corporation Radio receiver and reception frequency setting method used therein, and frequency setting device and frequency setting method
US10871554B1 (en) * 2018-03-08 2020-12-22 Government Of The United States, As Represented By The Secretary Of The Air Force Multispectral LADAR using wavelength shaping
WO2019180767A1 (ja) * 2018-03-19 2019-09-26 日本電気株式会社 物体検知装置、物体検知方法、及びコンピュータ読み取り可能な記録媒体
WO2020010257A1 (en) * 2018-07-06 2020-01-09 University Of Massachusetts Three-dimensional location estimation using multiplicative processing of sensor measurements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195170A (ja) * 1983-04-21 1984-11-06 Nec Corp ビ−ムフオ−ミング回路
JPS63187182A (ja) * 1987-01-29 1988-08-02 Mitsubishi Electric Corp ホログラフイツクレ−ダ
JP3518056B2 (ja) 1995-05-30 2004-04-12 日本無線株式会社 ディコンボルューション回路
JP2009085932A (ja) 2007-10-03 2009-04-23 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd サンゴの光合成活性評価装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028697A (en) * 1970-09-08 1977-06-07 Sperry Rand Corporation Adaptive signal processor for clutter elimination
US4549184A (en) * 1981-06-09 1985-10-22 Grumman Aerospace Corporation Moving target ordnance control
US4413332A (en) * 1981-06-24 1983-11-01 The United States Of America As Represented By The Secretary Of The Navy Scanning beamformer for a very high resolution circular arc sonar
US4559607A (en) * 1983-07-11 1985-12-17 International Telephone And Telegraph Corporation Arrangement to provide an accurate time-of-arrival indication for a plurality of received signals
US4559606A (en) * 1983-07-11 1985-12-17 International Telephone And Telegraph Corporation Arrangement to provide an accurate time-of-arrival indication for a received signal
US20030016157A1 (en) * 1984-12-03 2003-01-23 Fullerton Larry W. Time domain radio transmission system
GB8628397D0 (en) * 1986-11-27 1986-12-31 Secr Defence Digital correlator/structurator
GB2204431A (en) 1987-04-25 1988-11-09 Ferranti Plc Digital signal processing and transducer array beamforming
US5402129A (en) * 1993-08-04 1995-03-28 Vorad Safety Systems, Inc. Monopulse azimuth radar system for automotive vehicle tracking
EP0700116A3 (en) * 1994-08-29 1998-01-07 Atr Optical And Radio Communications Research Laboratories Apparatus and method for controlling array antenna comprising a plurality of antenna elements with improved incoming beam tracking
US5544655A (en) * 1994-09-16 1996-08-13 Atlantis Diagnostics International, Llc Ultrasonic multiline beamforming with interleaved sampling
EP1043801B1 (en) * 1999-04-05 2005-09-14 Nippon Telegraph and Telephone Corporation Adaptive array antenna system
GB9921042D0 (en) * 1999-09-07 1999-11-10 Stove George C Radar apparatus for spectrometric analysis and a method of performing spectrometric analysis of a substance
US7068211B2 (en) * 2000-02-08 2006-06-27 Cambridge Consultants Limited Methods and apparatus for obtaining positional information
DE10211387B4 (de) * 2001-03-15 2020-03-26 Omron Corp. Strahlungsimpulse verwendender Sensor
EP1282258A1 (en) * 2001-08-02 2003-02-05 Mitsubishi Electric Information Technology Centre Europe B.V. Method and apparatus for synchronising receivers
JP3988571B2 (ja) * 2001-09-17 2007-10-10 株式会社デンソー レーダ装置
CN1653354A (zh) * 2002-03-13 2005-08-10 雷神加拿大有限公司 雷达中用于频谱生成的系统和方法
JP3988653B2 (ja) * 2003-02-10 2007-10-10 株式会社デンソー アンテナの配列方法、及びレーダ装置
JP4096861B2 (ja) * 2003-11-04 2008-06-04 オムロン株式会社 検出装置
US20060262007A1 (en) * 2004-01-16 2006-11-23 Clariant Technologies, Corp. Methods and apparatus for automotive radar sensors
GB0411193D0 (en) * 2004-05-20 2004-06-23 Koninkl Philips Electronics Nv Method and apparatus for determining distance to a radio transponder
JP4833534B2 (ja) * 2004-09-29 2011-12-07 富士通株式会社 レーダ装置
WO2006067857A1 (ja) * 2004-12-24 2006-06-29 Fujitsu Limited 到来方向推定装置及びプログラム
DE102005022558A1 (de) * 2005-05-17 2006-11-23 Vega Grieshaber Kg Taktsteuervorrichtung eines Mikrowellenpulsradars
EP1913546A4 (en) * 2005-08-09 2009-12-16 Gil Zwirn HIGH-RESOLUTION MEDICAL HIGH-FREQUENCY IMAGING AND THERAPY SYSTEM
SG138497A1 (en) * 2006-06-27 2008-01-28 Sony Corp Method, device and system for determining direction of arrival of signal
JP4116053B2 (ja) * 2006-09-20 2008-07-09 北陽電機株式会社 測距装置
US20080100510A1 (en) * 2006-10-27 2008-05-01 Bonthron Andrew J Method and apparatus for microwave and millimeter-wave imaging
US7952513B2 (en) * 2008-06-16 2011-05-31 Lockheed Martin Corporation Counter target acquisition radar and acoustic adjunct for classification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195170A (ja) * 1983-04-21 1984-11-06 Nec Corp ビ−ムフオ−ミング回路
JPS63187182A (ja) * 1987-01-29 1988-08-02 Mitsubishi Electric Corp ホログラフイツクレ−ダ
JP3518056B2 (ja) 1995-05-30 2004-04-12 日本無線株式会社 ディコンボルューション回路
JP2009085932A (ja) 2007-10-03 2009-04-23 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd サンゴの光合成活性評価装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Marine Acoustics Society of Japan", 28 April 2004, SEIZANDO-SHOTEN PUBLISHING CO., LTD., article "Basics and Application of Marine Acoustics", pages: 64,65,16
NOBUYOSHI KIKUMA: "Adaptive Antenna Technology", 10 October 2003, OHMSHA, LTD., pages: 122 - 166
See also references of EP2416170A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902733A (zh) * 2018-03-26 2020-11-06 松下知识产权经营株式会社 距离测量装置、距离测量系统、距离测量方法和程序
CN111902733B (zh) * 2018-03-26 2024-04-16 松下知识产权经营株式会社 距离测量装置、距离测量系统、距离测量方法和程序

Also Published As

Publication number Publication date
JPWO2010113926A1 (ja) 2012-10-11
US20120056886A1 (en) 2012-03-08
EP2416170A4 (en) 2012-09-05
EP2416170B1 (en) 2016-05-25
JP5664869B2 (ja) 2015-02-04
EP2416170A1 (en) 2012-02-08
US9035820B2 (en) 2015-05-19

Similar Documents

Publication Publication Date Title
US9867594B2 (en) Ultrasonic measurement apparatus, ultrasonic image apparatus, and ultrasonic measurement method
JP5664869B2 (ja) 測定装置、測定システム、測定方法、及びプログラム
CN105559828B (zh) 血流成像方法及系统
US20180161003A1 (en) Ultrasound signal processing device, ultrasound signal processing method, and ultrasound diagnostic device
JP6676151B2 (ja) 波高算出装置、レーダ装置、及び波高算出方法
RU2484492C1 (ru) Гидроакустический комплекс для измерения координат источника звука в мелком море
JP6261839B1 (ja) 合成開口レーダ信号処理装置
JP5046793B2 (ja) 風計測装置
JP5767002B2 (ja) 超音波送受信装置、および魚量検出方法
JP6404212B2 (ja) 表層潮流推定装置、レーダ装置、表層潮流推定方法、及び表層潮流推定プログラム
US20180011178A1 (en) Ultrasound signal processing device, ultrasound signal processing method, and ultrasound diagnostic device
US11744555B2 (en) Ultrasound signal processing device, ultrasound diagnostic device, and ultrasound signal processing method
JP6492230B2 (ja) スペクトル解析装置、スペクトル解析方法及び超音波撮像装置
JP2012018036A (ja) 水中探知装置
JP6231547B2 (ja) 形状検出装置、及び形状検出方法
RU2476899C1 (ru) Гидроакустический комплекс для измерения азимутального угла и горизонта источника звука в мелком море
KR101135456B1 (ko) 수동 소나의 센서 신호 모의 장치
JP2014020907A (ja) 水中探知装置、水中探知方法、及びプログラム
US10702246B2 (en) Ultrasound diagnostic apparatus and an ultrasound signal processing method
JP5950534B2 (ja) 超音波距離画像生成装置
JP5603355B2 (ja) 超音波計測装置
JP5470108B2 (ja) 水中探知装置および水中探知方法
JP2017093869A (ja) 超音波画像装置及び超音波画像の生成方法
JP2022146506A (ja) 信号処理装置、信号処理方法及び信号処理プログラム
JP2763821B2 (ja) 音源特徴抽出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011507202

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010758697

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13256708

Country of ref document: US