WO2010113525A1 - Exposure apparatus, exposure method and device manufacturing method - Google Patents

Exposure apparatus, exposure method and device manufacturing method Download PDF

Info

Publication number
WO2010113525A1
WO2010113525A1 PCT/JP2010/002432 JP2010002432W WO2010113525A1 WO 2010113525 A1 WO2010113525 A1 WO 2010113525A1 JP 2010002432 W JP2010002432 W JP 2010002432W WO 2010113525 A1 WO2010113525 A1 WO 2010113525A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
substrate
alignment
areas
detection
Prior art date
Application number
PCT/JP2010/002432
Other languages
French (fr)
Japanese (ja)
Inventor
加藤正紀
戸口学
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2011507044A priority Critical patent/JP5429283B2/en
Publication of WO2010113525A1 publication Critical patent/WO2010113525A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to an exposure apparatus, an exposure method, and a device manufacturing method.
  • an exposure apparatus that exposes a substrate with exposure light is used.
  • the exposure apparatus includes an alignment system capable of deriving the position of the substrate, performs an alignment process using the alignment system, and exposes the substrate.
  • the throughput may decrease and the productivity of the device may decrease.
  • An object of an aspect of the present invention is to provide an exposure apparatus and an exposure method that can suppress a decrease in throughput. Moreover, the aspect of this invention aims at providing the device manufacturing method which can suppress the fall of productivity.
  • an exposure apparatus that sequentially exposes a plurality of exposure target areas of the substrate with exposure light while moving the substrate in a scanning direction with respect to an irradiation area that can be irradiated with exposure light.
  • the irradiation region in an acceleration state between the first position and the second position in the scanning direction, in a settling state in the vicinity of the second position, and in a constant speed state between the second position and the third position.
  • a substrate stage that can move to one side with respect to the scanning direction while holding the substrate, and at least the first position and the second position on the other side with respect to the irradiation region with respect to the scanning direction.
  • the detection area in which the alignment mark on the substrate adjacent to the first exposure target area to be exposed can be arranged, and the first exposure.
  • Territory An alignment system for deriving a position, an exposure apparatus equipped with is provided.
  • the exposure apparatus of the first aspect is used to expose the substrate coated with a photosensitive agent and to develop the photosensitive agent exposed by the exposure of the substrate. Then, there is provided a device manufacturing method including forming an exposure pattern layer and processing the substrate through the exposure pattern layer.
  • an exposure method for sequentially exposing a plurality of exposure target regions of the substrate with exposure light while moving the substrate in a scanning direction with respect to an irradiation region that can be irradiated with exposure light.
  • Alignment marks are arranged on the substrate to perform alignment processing for deriving the position of the exposure target region, and the first exposure processing and the alignment processing are performed while irradiating the irradiation light with the exposure light.
  • a moving direction related to the scanning direction when exposing the first exposure target area to be exposed first, and a moving direction related to the scanning direction when exposing the first exposure target area exposed first in the second exposure process. are provided that are the same.
  • the exposure method of the third aspect is used to expose the substrate coated with a photosensitive agent, and to develop the photosensitive agent exposed by the exposure of the substrate. Then, there is provided a device manufacturing method including forming an exposure pattern layer and processing the substrate through the exposure pattern layer.
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be described with reference to this XYZ orthogonal coordinate system.
  • a predetermined direction in the horizontal plane is defined as an X-axis direction
  • a direction orthogonal to the X-axis direction in the horizontal plane is defined as a Y-axis direction
  • a direction orthogonal to each of the X-axis direction and the Y-axis direction (that is, a vertical direction) is defined as a Z-axis direction.
  • the rotation (inclination) directions around the X axis, Y axis, and Z axis are the ⁇ X, ⁇ Y, and ⁇ Z directions, respectively.
  • FIG. 1 is a schematic block diagram showing an example of an exposure apparatus EX according to the first embodiment
  • FIG. 2 is a perspective view. 1 and 2
  • an exposure apparatus EX includes a mask stage 1 that can move while holding a mask M, a substrate stage 2 that can move while holding a substrate P, and a drive system 3 that moves the mask stage 1.
  • a driving system 4 that moves the substrate stage 2
  • an illumination system IS that illuminates the mask M with the exposure light EL
  • a projection system PS that projects an image of the pattern of the mask M illuminated by the exposure light EL onto the substrate P
  • a control device 5 for controlling the overall operation of the exposure apparatus EX.
  • the mask M includes a reticle on which a device pattern projected onto the substrate P is formed.
  • the substrate P includes, for example, a base material such as a glass plate and a photosensitive film (coated photosensitizer) formed on the base material.
  • the substrate P includes a large glass plate called mother glass, and the size of one side of the substrate P is, for example, 500 mm or more.
  • a rectangular glass plate having a side of about 3000 mm is used as the base material of the substrate P.
  • the exposure apparatus EX of the present embodiment includes an interferometer system 6 that measures the positions of the mask stage 1 and the substrate stage 2, and a first detection system 7 that detects the position of the surface (lower surface, pattern formation surface) of the mask M. And a second detection system 8 that detects the position of the surface (exposed surface, photosensitive surface) of the substrate P, and an alignment system 9 that detects an alignment mark on the substrate P.
  • the exposure apparatus EX includes a body 13.
  • the body 13 includes, for example, a base plate 10 disposed on a support surface (for example, floor surface) FL in a clean room via a vibration isolation table BL, a first column 11 disposed on the base plate 10, and a first column 11 And a second column 12 disposed on the surface.
  • the body 13 supports each of the projection system PS, the mask stage 1 and the substrate stage 2.
  • the projection system PS is supported by the first column 11 via the surface plate 14.
  • the mask stage 1 is supported so as to be movable with respect to the second column 12.
  • the substrate stage 2 is supported so as to be movable with respect to the base plate 10.
  • the projection system PS has a plurality of projection optical systems.
  • the illumination system IS has a plurality of illumination modules corresponding to a plurality of projection optical systems.
  • the exposure apparatus EX of the present embodiment projects an image of the pattern of the mask M onto the substrate P while moving the mask M and the substrate P synchronously in a predetermined scanning direction. That is, the exposure apparatus EX of the present embodiment is a so-called multi-lens scan exposure apparatus.
  • the projection system PS has seven projection optical systems PL1 to PL7, and the illumination system LS has seven illumination modules IL1 to IL7.
  • the number of projection optical systems and illumination modules is not limited to seven.
  • the projection system PS may have 11 projection optical systems, and the illumination system IS may have 11 illumination modules.
  • the illumination system IS can irradiate the exposure light EL to a predetermined illumination area.
  • the illumination area is an irradiation area where the exposure light EL emitted from each of the illumination modules IL1 to IL7 can be irradiated.
  • the illumination system IS illuminates each of the seven different illumination areas with the exposure light EL.
  • the illumination system IS illuminates a portion of the mask M arranged in the illumination area with the exposure light EL having a uniform illuminance distribution.
  • bright lines (g line, h line, i line) emitted from the mercury lamp 17 are used as the exposure light EL emitted from the illumination system IS.
  • the mask stage 1 is movable with respect to the illumination area while holding the mask M.
  • the mask stage 1 holds the mask M so that the lower surface (pattern formation surface) of the mask M and the XY plane are substantially parallel.
  • the drive system 3 includes, for example, a linear motor, and can move the mask stage 1 on the guide surface 12G of the second column 12. In the present embodiment, the mask stage 1 can be moved in the three directions of the X axis, the Y axis, and the ⁇ Z direction on the guide surface 12G while holding the mask M by the operation of the drive system 3.
  • Projection system PS can irradiate exposure light EL to a predetermined projection area.
  • the projection area is an irradiation area where the exposure light EL emitted from each of the projection optical systems PL1 to PL7 can be irradiated.
  • the projection system PS projects a pattern image on each of seven different projection regions PR1 to PR7.
  • the projection optical system PS projects an image of the pattern of the mask M on the portion of the substrate P arranged in the projection areas PR1 to PR7 with a predetermined projection magnification.
  • the substrate stage 2 is movable with respect to the projection regions PR1 to PR7 while holding the substrate P.
  • the substrate stage 2 holds the substrate P so that the surface (exposure surface) of the substrate P and the XY plane are substantially parallel.
  • the drive system 4 includes, for example, a linear motor, and can move the substrate stage 2 on the guide surface 10 ⁇ / b> G of the base plate 10.
  • the substrate stage 2 has six substrates in the X axis, Y axis, Z axis, ⁇ X, ⁇ Y, and ⁇ Z directions on the guide surface 10G while holding the substrate P by the operation of the drive system 4. It can move in the direction.
  • the control device 5 controls the mask stage 1 and the substrate stage 2 to move the mask M and the substrate P in a predetermined scanning direction in the XY plane intersecting the optical path of the exposure light EL.
  • the scanning direction (synchronous movement direction) of the substrate P is the X-axis direction
  • the scanning direction (synchronous movement direction) of the mask M is also the X-axis direction.
  • the control device 5 moves the substrate P in the X-axis direction relative to the projection regions PR1 to PR7 of the projection system PS, and in the illumination region of the illumination system IS in synchronization with the movement of the substrate P in the X-axis direction.
  • the substrate P is irradiated with the exposure light EL through the projection system PS while moving the mask M in the X-axis direction. Thereby, the pattern image of the mask M is projected onto the substrate P, and the substrate P is exposed with the exposure light EL.
  • FIG. 3 is a diagram showing an example of the projection system PS, the first detection system 7, the second detection system 8, the alignment system 9, and the substrate stage 2 arranged in the projection regions PR1 to PR7 according to the present embodiment.
  • a reference member 43 is arranged on the upper surface of the substrate stage 2.
  • the upper surface 44 of the reference member 43 is disposed in substantially the same plane as the surface of the substrate P held on the substrate stage 2.
  • a transmissive portion 45 that can transmit the exposure light EL is disposed on the upper surface 44 of the reference member 43.
  • a light receiving device 46 capable of receiving the light transmitted through the transmitting portion 45 is disposed below the reference member 43.
  • the light receiving device 46 includes a lens system 47 on which light that has passed through the transmission unit 45 enters, and an optical sensor 48 that receives the light that has passed through the lens system 47.
  • the optical sensor 48 includes an image sensor (CCD). The optical sensor 48 outputs a signal corresponding to the received light to the control device 5.
  • the transmission part 45 functions as a reference mark.
  • a mark disposed at a predetermined position with respect to the transmission portion 45 may be provided on the upper surface 44 of the reference member 43, and the mark may be used as the reference mark.
  • the interferometer system 6 includes a laser interferometer unit 6 ⁇ / b> A that measures the position of the mask stage 1 and a laser interferometer unit 6 ⁇ / b> B that measures the position of the substrate stage 2.
  • the laser interferometer unit 6 ⁇ / b> A can measure the position of the mask stage 1 using a measurement mirror arranged on the mask stage 1.
  • the laser interferometer unit 6 ⁇ / b> B can measure the position of the substrate stage 2 using a measurement mirror arranged on the substrate stage 2.
  • the interferometer system 6 can measure position information of the mask stage 1 and the substrate stage 2 with respect to the X axis, Y axis, and ⁇ X directions using the laser interferometer units 6A and 6B.
  • the first detection system 7 detects the position of the lower surface (pattern formation surface) of the mask M in the Z-axis direction.
  • the first detection system 7 is a so-called oblique incidence type multi-point focus / leveling detection system.
  • the second detection system 8 detects the position of the surface (exposure surface) of the substrate P in the Z-axis direction.
  • the second detection system 8 is a so-called oblique incidence type multi-point focus / leveling detection system.
  • the alignment system 9 detects an alignment mark provided on the substrate P.
  • the alignment system 9 includes a first alignment system 91 disposed on the ⁇ X side with respect to the X-axis direction (scanning direction) with respect to the projection system PS, and a second alignment system 92 disposed on the + X side.
  • the first and second alignment systems 91 and 92 are so-called off-axis type alignment systems. As shown in FIG. 3, the first alignment system 91 corresponds to a plurality of detectors 91A to 91F arranged to face the surface of the substrate P held on the substrate stage 2, and to the detectors 91A to 91F. It has a plurality of detection areas SA1 to SA6 arranged in the axial direction.
  • the second alignment system 92 includes a plurality of detectors 92A and 92B arranged to face the surface of the substrate P held on the substrate stage 2, and a plurality of detectors 92A and 92B arranged in the Y-axis direction. Detection areas SB1 and SB2.
  • Each of detectors 91A to 91F, 92A and 92B includes a projection unit for irradiating detection light to detection areas SA1 to SA6, SB1 and SB2, and an optical image of alignment marks arranged in detection areas SA1 to SA6, SB1 and SB2. And a light receiving unit capable of acquiring Each of the plurality of detectors 91A to 91F, 92A and 92B can detect alignment marks on the substrate P arranged in the detection areas SA1 to SA6, SB1 and SB2.
  • FIG. 4 is a schematic diagram showing an example of the positional relationship between the projection regions PR1 to PR7, the detection regions SA1 to SA6, SB1 and SB2, and the substrate P.
  • the positional relationship in a plane including the surface of the substrate P is shown. ing.
  • the surface of the substrate P has a plurality of exposure areas (exposure target areas) PA1 to PA4 onto which an image of the pattern of the mask M is projected.
  • the surface of the substrate P has four exposure areas PA1 to PA4.
  • the exposure areas PA1 and PA2 are arranged at substantially equal intervals in the Y axis direction, and the exposure areas PA3 and PA4 are arranged at substantially equal intervals in the Y axis direction.
  • the exposure area PA1 is arranged on the ⁇ Y side with respect to the exposure area PA2.
  • the exposure area PA3 is arranged on the + Y side with respect to the exposure area PA4.
  • the exposure areas PA1 and PA2 are arranged on the + X side with respect to the exposure areas PA3 and PA4.
  • each of the projection areas PR1 to PR7 is a trapezoid in the XY plane.
  • projection regions PR1, PR3, PR5, PR7 by the projection optical systems PL1, PL3, PL5, PL7 are arranged at substantially equal intervals in the Y-axis direction
  • projection regions PR2 by the projection optical systems PL2, PL4, PL6 are arranged.
  • PR4, PR6 are arranged at substantially equal intervals in the Y-axis direction.
  • the projection areas PR1, PR3, PR5, PR7 are arranged on the ⁇ X side with respect to the projection areas PR2, PR4, PR6.
  • the projection areas PR2, PR4, and PR6 are arranged between the projection areas PR1, PR3, PR5, and PR7 with respect to the Y-axis direction.
  • the distance between the two outer projection areas PR1 and the projection area PR7 with respect to the Y-axis direction is set to be two outside the plurality of exposure areas PA1 to PA4 with respect to the Y-axis direction. It is smaller than the interval between the ⁇ Y side edge of the two exposure areas PA1 (PA4) and the + Y side edge of the exposure area PA2 (PA3). Further, the distance between the two outer projection areas PR1 and PR7 in the Y-axis direction is substantially the same as or slightly larger than the distance between the ⁇ Y side edge and the + Y side edge of the exposure area PA1. In the present embodiment, the sizes and shapes of the exposure areas PA1 to PA4 are substantially the same.
  • the plurality of detection areas SA1 to SA6 by the detectors 91A to 91F of the first alignment system 91 are arranged at predetermined intervals in the Y-axis direction.
  • the plurality of detection regions SB1 and SB2 by the detectors 92A and 92B of the second alignment system 92 are arranged at predetermined intervals in the Y-axis direction.
  • the first alignment system 91 has six detection areas SA1 to SA6, and the second alignment system 92 has two detection areas SB1 and SB2.
  • the number of detection areas SB1 and SB2 of the second alignment system 92 is smaller than the number of detection areas SA1 to SA6 of the first alignment system 91.
  • the detection areas SA1 to SA6 are arranged on the ⁇ X side with respect to the X-axis direction (scanning direction) with respect to the projection areas PR1 to PR7.
  • the detection areas SB1 and SB2 are arranged on the + X side with respect to the X-axis direction (scanning direction) with respect to the projection areas PR1 to PR7.
  • the distance between the two outer detection areas SA1 and SA6 in the Y-axis direction is set so that the two outer exposure areas PA1 ( The distance between the ⁇ Y side edge of PA4) and the + Y side edge of exposure area PA2 (PA3) is substantially equal.
  • the distance between the two outer detection areas SB1 and the detection area SB2 with respect to the Y-axis direction is the two outer exposure areas PA1 ( The distance between the ⁇ Y side edge of PA4) and the + Y side edge of exposure area PA2 (PA3) is substantially equal.
  • the distance between the detection area SA1 and the detection area SA6 at both ends of the first alignment system 91 in the Y-axis direction, and the distance between the detection area SB1 and the detection area SB2 at both ends of the second alignment system 92. Is almost the same.
  • the positions of the detection areas SA1 and SA6 at both ends of the first alignment system 91 in the Y-axis direction are substantially the same as the positions of the detection areas SB1 and SB2 at both ends of the second alignment system 92. is there.
  • the first and second alignment systems 91 and 92 can detect a plurality of alignment marks m1 to m6 provided on the substrate P.
  • six alignment marks m1 to m6 are arranged on the substrate P so as to be separated in the Y-axis direction, and groups of these alignment marks m1 to m6 are arranged at four places separated in the X-axis direction.
  • Alignment marks m1, m2, and m3 are provided adjacent to both ends of exposure areas PA1 and PA4, and alignment marks m4, m5, and m6 are provided adjacent to both ends of exposure areas PA2, PA3.
  • the group of alignment marks m1 to m6 that is closest to the ⁇ X side edge of the substrate P is appropriately selected.
  • the group of alignment marks m1 to m6 near the ⁇ X side edge of the substrate P after the first group G1 is referred to as the first group G1, and is appropriately referred to as the second group G2, and the substrate P is next after the second group G2.
  • a group of alignment marks m1 to m6 close to the ⁇ X side edge of the substrate P is appropriately referred to as a third group G3, and a group of alignment marks m1 to m6 closest to the + X side edge of the substrate P is appropriately referred to as a fourth group G4. .
  • the detection areas SA1 to SA6 (detectors 91A to 91F) of the first alignment system 91 correspond to the six alignment marks m1 to m6 that are arranged apart from each other in the Y-axis direction on the substrate P. Has been placed.
  • the detectors 91A to 91F are provided so that the alignment marks m1 to m6 are simultaneously arranged in the detection areas SA1 to SA6.
  • the first alignment system 91 can simultaneously detect the six alignment marks m1 to m6 using the detectors 91A to 91F.
  • detection areas SB1 and SB2 (detectors 92A and 92B) of the second alignment system 92 are arranged corresponding to the two alignment marks m1 and m6 that are arranged apart from each other in the Y-axis direction on the substrate P. .
  • Detectors 92A and 92B are provided such that alignment marks m1 and m6 are simultaneously arranged in detection areas SB1 and SB2.
  • the second alignment system 92 can simultaneously detect the two outer alignment marks m1 and m6 in the Y-axis direction among the plurality of alignment marks m1 to m6 using the detectors 92A and 92B.
  • the exposure control information includes a control command group that defines the operation of the exposure apparatus EX, and is also called an exposure recipe.
  • the control information related to exposure is appropriately referred to as an exposure recipe.
  • the exposure recipe is stored in the control device 5 in advance.
  • the operating conditions of the exposure apparatus EX at least during exposure of the substrate P are determined in advance by the exposure recipe.
  • the control device 5 controls the operation of the exposure apparatus EX based on the exposure recipe.
  • the exposure recipe includes conditions for moving the mask stage 1 and the substrate stage 2 when the substrate P is exposed.
  • the control device 5 moves the mask stage 1 and the substrate stage 2 based on the exposure recipe.
  • the exposure apparatus EX of the present embodiment is a multi-lens scan exposure apparatus, and the mask M and the substrate P are moved in the X-axis direction in the XY plane when the exposure areas PA1 to PA4 of the substrate P are exposed.
  • the control device 5 irradiates the mask M with the exposure light EL while moving the mask M and the substrate P synchronously in the X-axis direction, and exposes the exposure area on the surface of the substrate P through the mask M.
  • Exposure light EL is irradiated to each of PA1 to PA4 to expose these exposure areas PA1 to PA4.
  • the control device 5 moves the substrate P in the X-axis direction (scanning direction) relative to the projection regions PR1 to PR7 based on the exposure recipe, while the plurality of exposure regions PA1 of the substrate P. ⁇ PA4 is sequentially exposed.
  • the exposure processing for the plurality of exposure areas PA1 to PA4 provided on the substrate P is performed by changing the exposure areas PA1 to PA4 from the projection areas PR1 to PR7 along the surface (XY plane) of the substrate P. It is executed while moving in the axial direction.
  • the control device 5 moves the exposure area PR1 of the substrate P in the X-axis direction with respect to the projection areas PR1 to PR7, and moves the substrate P in the X-axis direction.
  • the mask M is moved in the X-axis direction while irradiating the illumination area with the exposure light EL, and the exposure light EL from the mask M is projected through the projection system PS to the projection areas PR1 ⁇ PR. Irradiate PR7.
  • the exposure area PA1 of the substrate P is exposed with the exposure light EL irradiated to the projection areas PR1 to PR7, and the pattern image of the mask M is projected onto the exposure area PA1 of the substrate P.
  • a plurality of exposure regions PA1 to PA4 on the substrate P are sequentially exposed while irradiating the projection regions PR1 to PR7 with the exposure light EL, and the substrate P is subjected to the first exposure.
  • step SP1 of executing a first exposure process for forming one pattern layer (first layer) and alignment marks m1 to m6 on the substrate P on which the first exposure process has been performed using the alignment system 9 , And performing an alignment process for deriving the positions of the exposure areas PA1 to PA4 each having the first pattern layer formed by the first exposure process (step SP2), and exposing light to the projection areas PR1 to PR7 While irradiating EL, a plurality of exposure regions PA1 to PA4 on the substrate P on which the first exposure process and the alignment process have been performed are sequentially exposed, and the substrate P
  • the second pattern layer performing a second exposure process to form a (second layer) is performed (the first pattern layer).
  • the case where the first and second pattern layers are formed on the substrate P will be described as an example.
  • the third, fourth,... A plurality of arbitrary pattern layers such as the nth pattern layer can be formed.
  • the substrate P when manufacturing a thin film transistor, about five layers (pattern layers), such as a metal layer and a transparent electrode layer, are formed on the substrate P.
  • the exposure area PA1 is appropriately referred to as a first exposure area PA1
  • the exposure area PA2 is appropriately referred to as a second exposure area PA2
  • the exposure area PA3 is appropriately referred to as a third exposure area PA3.
  • the exposure area PA4 is appropriately referred to as a fourth exposure area PA4.
  • the control device 5 loads (loads) the substrate P onto the substrate stage 2.
  • a photosensitive agent is applied to the substrate P.
  • a mask M having a pattern corresponding to the first pattern layer formed on the substrate P is loaded (loaded) and held on the mask stage 1.
  • the substrate P is disposed at a predetermined position with respect to the projection regions PR1 to PR7 and the detection regions SA1 to SA6, SB1 and SB2. .
  • the position of the substrate P shown in FIG. 6A is appropriately referred to as an initial position.
  • a baseline measurement process is executed based on the exposure recipe.
  • the positional relationship (baseline amount) between the position of the pattern image of the mask M by the projection system PS (the positions of the projection areas PR1 to PR7) and the detection areas SA1 to SA6, SB1, and SB2 of the alignment system 9 is calculated. It is a process to measure.
  • the position of the substrate stage 2 is measured by the interferometer system 6, and an image of an alignment mark (not shown) arranged on the mask M is received by the light receiving device 46 via the projection system PS and the transmission unit 45.
  • the positions of the projection areas PR1 to PR7 and the positions of the detection areas SA1 to SA6, SB1 and SB2 in the coordinate system defined by the interferometer system 6 (the coordinate system in the XY plane) are detected, and the control device 5 Can derive the baseline amount.
  • the first exposure area PA1 is first exposed, then the second exposure area PA2 is exposed, and then the third exposure area PA3 is set. Finally, the fourth exposure area PA4 is exposed.
  • the first exposure process is an exposure process for forming the first pattern layer, and the alignment marks (m1 to m6) are not provided on the substrate P.
  • the process of detecting the position of the substrate P using the alignment system 9 is not executed.
  • the control device 5 starts exposure of the plurality of exposure areas PA1 to PA4.
  • the control device 5 controls the substrate stage 2 holding the substrate P in order to start the exposure of the first exposure area PA1, and the substrate is arranged so that the first exposure area PA1 is arranged at the exposure start position. P is moved from the initial position to the exposure start position of the first exposure area PA1.
  • the first exposure area PA1 is arranged outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the first exposure area PA1.
  • FIG. 6B shows a state where the first exposure area PA1 is arranged at the exposure start position.
  • the exposure start position of the first exposure area PA1 includes a position where the ⁇ X side end of the first exposure area PA1 is disposed at least in a part of the projection areas PR2, PR4, PR6.
  • the exposure start position of the first exposure area PA1 is such that the ⁇ X side end of the first exposure area PA1 is at the + X side of the projection areas PR2, PR4, PR6. It is a position arrange
  • the control device 5 controls the substrate stage 2 to move the first exposure area PA1 of the substrate P in the ⁇ X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the first exposure area PA1 is exposed.
  • the control device 5 moves the substrate P in the ⁇ X direction until at least the first exposure area PA1 is arranged at the exposure end position.
  • the exposure end position of the first exposure area PA1 includes a position where the + X side end of the first exposure area PA1 is arranged at least in a part of the projection areas PR1, PR3, PR5, PR7.
  • the exposure end position of the first exposure area PA1 is a position where the + X side end of the first exposure area PA1 is arranged at the ⁇ X side end of the projection areas PR1, PR3, PR5, PR7. is there.
  • the exposure of the first exposure area PA1 is completed.
  • the substrate stage 2 holding the substrate P moves at a substantially constant speed (constant speed) in the ⁇ X direction.
  • the control device 5 controls the substrate stage 2 holding the substrate P so that the second exposure area PA2 is arranged at the exposure start position.
  • the substrate P is moved from the exposure end position of the first exposure area PA1 to the exposure start position of the second exposure area PA2.
  • the second exposure area PA2 is arranged outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the second exposure area PA2.
  • FIG. 6C shows a state in which the second exposure area PA2 is arranged at the exposure start position.
  • the exposure start position of the second exposure area PA2 includes a position where the + X side end of the second exposure area PA2 is disposed at least in a part of the projection areas PR1, PR3, PR5, PR7.
  • the exposure start position of the second exposure area PA2 is such that the + X side end of the second exposure area PA2 is ⁇ of the projection areas PR1, PR3, PR5, PR7. This is the position at the end on the X side.
  • the control device 5 controls the substrate stage 2 to move the second exposure area PA2 of the substrate P in the + X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. . Thereby, the second exposure area PA2 is exposed.
  • the control device 5 moves the substrate P in the + X direction until at least the second exposure area PA2 is arranged at the exposure end position.
  • the exposure end position of the second exposure area PA2 includes a position where the ⁇ X side end of the second exposure area PA2 is disposed at least in a part of the projection areas PR2, PR4, PR6.
  • the exposure end position of the second exposure area PA2 is a position where the ⁇ X side end of the second exposure area PA2 is disposed at the + X side end of the projection areas PR2, PR4, and PR6.
  • the exposure of the second exposure area PA2 is completed.
  • the substrate stage 2 holding the substrate P moves at a substantially constant speed (constant speed) in the + X direction.
  • the control device 5 controls the substrate stage 2 holding the substrate P so that the third exposure area PA3 is arranged at the exposure start position.
  • the substrate P is moved from the exposure end position of the second exposure area PA2 to the exposure start position of the third exposure area PA3.
  • the third exposure area PA3 is arranged outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the third exposure area PA3.
  • FIG. 6D shows a state in which the third exposure area PA3 is arranged at the exposure start position.
  • the exposure start position of the third exposure area PA3 includes a position at which the ⁇ X side end of the third exposure area PA3 is disposed in at least a part of the projection areas PR2, PR4, PR6.
  • the exposure start position of the third exposure area PA3 is such that the ⁇ X side end of the third exposure area PA3 is at the + X side of the projection areas PR2, PR4, PR6. It is a position arrange
  • the control device 5 controls the substrate stage 2 to move the third exposure area PA3 of the substrate P in the ⁇ X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the third exposure area PA3 is exposed.
  • the control device 5 moves the substrate P in the ⁇ X direction until at least the third exposure area PA3 is arranged at the exposure end position.
  • the exposure end position of the third exposure area PA3 includes a position where the + X side end of the third exposure area PA3 is arranged at least in a part of the projection areas PR1, PR3, PR5, PR7.
  • the exposure end position of the third exposure area PA3 is a position where the + X side end of the third exposure area PA3 is arranged at the ⁇ X side end of the projection areas PR1, PR3, PR5, PR7. is there.
  • the exposure of the third exposure area PA3 is completed.
  • the substrate stage 2 holding the substrate P moves at a substantially constant speed (constant speed) in the ⁇ X direction.
  • the control device 5 controls the substrate stage 2 holding the substrate P so that the fourth exposure area PA4 is arranged at the exposure start position.
  • the substrate P is moved from the exposure end position of the third exposure area PA3 to the exposure start position of the fourth exposure area PA4.
  • the fourth exposure area PA4 is disposed outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the fourth exposure area PA4.
  • FIG. 6E shows a state where the fourth exposure area PA4 is arranged at the exposure start position.
  • the exposure start position of the fourth exposure area PA4 includes a position where the + X side end of the fourth exposure area PA4 is arranged at least in a part of the projection areas PR1, PR3, PR5, PR7.
  • the exposure start position of the fourth exposure area PA4 is such that the + X side end of the fourth exposure area PA4 is ⁇ of the projection areas PR1, PR3, PR5, PR7. This is the position at the end on the X side.
  • the control device 5 controls the substrate stage 2 to move the fourth exposure area PA4 of the substrate P in the + X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. . Thereby, the fourth exposure area PA4 is exposed.
  • the control device 5 moves the substrate P in the + X direction until at least the fourth exposure area PA4 is arranged at the exposure end position.
  • the exposure end position of the fourth exposure area PA4 includes a position where the ⁇ X side end of the fourth exposure area PA4 is disposed in at least a part of the projection areas PR2, PR4, PR6.
  • the exposure end position of the fourth exposure area PA4 is such that the ⁇ X side end of the fourth exposure area PA4 is at the + X side of the projection areas PR2, PR4, PR6. It is a position arrange
  • the exposure of the fourth exposure area PA4 is completed.
  • the substrate stage 2 holding the substrate P moves at a substantially constant speed (constant speed) in the + X direction.
  • the first exposure process is completed.
  • the substrate P is unloaded from the substrate stage 2.
  • the substrate P unloaded from the substrate stage 2 is subjected to various process processes including a development process and an etching process. Thereby, the first pattern layer is formed on the substrate P. Further, alignment marks m1 to m6 are formed on the substrate P by executing the first exposure process and the subsequent process process.
  • a photosensitive agent is applied to the substrate P on which the first pattern layer and the alignment marks m1 to m6 are formed in order to perform the second exposure process.
  • the exposure recipe has a first alignment mode and a second alignment mode.
  • the control device 5 selects at least one of the first alignment mode and the second alignment mode and executes an alignment process for deriving the positions of the exposure areas PA1 to PA4. .
  • the control device 5 detects all the alignment marks m1 to m4 of the first to fourth groups G1 to G4 using the alignment system 9.
  • the second alignment mode is a mode that uses the result of the alignment process based on the first alignment mode.
  • a predetermined alignment mark is detected from the plurality of alignment marks m1 to m6 on the substrate P, and the detection result of the predetermined alignment mark and the derived result of the first alignment mode are used.
  • the position of the substrate P and the positions of the exposure areas PA1 to PA4 on the substrate P are derived.
  • the control device 5 uses the alignment system 9 to detect some of the alignment marks m1 to m6 on the substrate P.
  • the control device 5 loads (loads) the substrate P having the first pattern layer and the alignment marks m1 to m6 onto the substrate stage 2.
  • a photosensitive agent is applied to the substrate P.
  • the substrate P is placed at the initial position.
  • a mask M having a pattern corresponding to the second pattern layer formed on the substrate P is loaded (loaded) and held on the mask stage 1.
  • the controller 5 uses the alignment system 9 to detect the alignment marks m1 to m6 corresponding to the exposure areas PA1 to PA4, and derives the positions of the exposure areas PA1 to PA4.
  • the control device 5 uses the interferometer system 6 to measure the position of the substrate stage 2 and control the substrate stage 2 to detect the first alignment system 91.
  • the substrate P is moved so that the alignment marks m1 to m6 of the first group G1 are arranged in the areas SA1 to SA6.
  • the first alignment system 91 detects the alignment marks m1 to m6 of the first group G1.
  • the control device 5 can derive the positions of the alignment marks m1 to m6 of the first group G1 in the coordinate system defined by the interferometer system 6.
  • the control device 5 controls the substrate stage 2 while measuring the position of the substrate stage 2 using the interferometer system 6, and controls the second alignment system 92.
  • the substrate P is moved so that the alignment marks m1 and m6 of the third group G3 are arranged in the detection areas SB1 and SB2.
  • the second alignment system 92 detects the alignment marks m1 and m6 of the third group G3.
  • the control apparatus 5 can derive
  • the control device 5 controls the substrate stage 2 while measuring the position of the substrate stage 2 using the interferometer system 6, and controls the first alignment system 91.
  • the substrate P is moved so that the alignment marks m1 to m6 of the second group G2 are arranged in the detection areas SA1 to SA6.
  • the first alignment system 91 detects the alignment marks m1 to m6 of the second group G2. Thereby, the control device 5 can derive the positions of the alignment marks m1 to m6 of the second group G2 in the coordinate system defined by the interferometer system 6.
  • the control device 5 controls the substrate stage 2 while measuring the position of the substrate stage 2 using the interferometer system 6, and controls the first alignment system 91.
  • the substrate P is moved so that the alignment marks m1 to m6 of the third group G3 are arranged in the detection areas SA1 to SA6.
  • the first alignment system 91 detects the alignment marks m1 to m6 of the third group G3. Thereby, the control device 5 can derive the positions of the alignment marks m1 to m6 of the third group G3 in the coordinate system defined by the interferometer system 6.
  • the control device 5 controls the substrate stage 2 while measuring the position of the substrate stage 2 using the interferometer system 6, and controls the first alignment system 91.
  • the substrate P is moved so that the alignment marks m1 to m6 of the fourth group G4 are arranged in the detection areas SA1 to SA6.
  • the first alignment system 91 detects the alignment marks m1 to m6 of the fourth group G4. Thereby, the control device 5 can derive the positions of the alignment marks m1 to m6 of the fourth group G4 in the coordinate system defined by the interferometer system 6.
  • the first alignment system 91 and the second alignment system 92 have detection regions (SA1, SA6) at both ends. ), (SB1, SB2) are used to detect the same alignment marks m1, m6 on the substrate P.
  • the position of the detection areas SA1 to SA6 of the first alignment system 91 in the coordinate system defined by the interferometer system 6 is known by the above-described baseline measurement process. Therefore, the control device 5 arranges the alignment marks m1 and m6 in the detection areas SA1 and SA6 of the first alignment system 91 while measuring the position of the substrate stage 2 by the interferometer system 6, and the second alignment system 92.
  • the second alignment system in the coordinate system defined by the interferometer system 6 by arranging the alignment marks m1, m6 identical to the alignment marks m1, m6 arranged in the detection areas SA1, SA6 in the detection areas SB1, SB2.
  • the positions of the 92 detection areas SB1 and SB2 can be obtained.
  • control device 5 is based on the result of detection of the alignment marks m1 and m6 on the substrate P by the first alignment system 91 and the result of detection of the alignment marks m1 and m6 on the substrate P by the second alignment system 92.
  • the positional relationship between the detection areas SA1 to SA6 of the first alignment system 91 and the detection areas SB1 and SB2 of the second alignment system 92 can be derived.
  • the substrate stage 2 When deriving the positional relationship between the detection areas SA1 to SA6 of the first alignment system 91 and the detection areas SB1 and SB2 of the second alignment system 92, the substrate stage 2 is used without using the alignment marks on the substrate P.
  • the upper reference mark (transmission portion 45) may be used.
  • the controller 5 measures the position of the substrate stage 2 with the interferometer system 6 and arranges reference marks (transmission portions 45) in the detection areas SA1 and SA6 of the first alignment system 91, and By arranging the same reference marks as the reference marks arranged in the detection areas SA1 and SA6 in the detection areas SB1 and SB2, the detection areas SB1 and SB1 of the second alignment system 92 in the coordinate system defined by the interferometer system 6 are arranged. The position of SB2 can be obtained.
  • the control device 5 performs the first alignment based on the result of detecting the reference mark on the substrate stage 2 by the first alignment system 91 and the result of detecting the reference mark on the substrate stage 2 by the second alignment system 92.
  • the positional relationship between the detection areas SA1 to SA6 of the system 91 and the detection areas SB1 and SB2 of the second alignment system 92 can be derived.
  • marks (alignment marks, reference marks) detected by the first alignment system 91 are derived.
  • a mark (alignment mark, reference mark) detected by the second alignment system 92 may be different.
  • control device 5 uses the alignment system 9 to detect all of the alignment marks m1 to m6 provided corresponding to each of the plurality of exposure areas PA1 to PA4.
  • the alignment marks corresponding to the first exposure area PA1 are the alignment marks m1 to m3 of the third group G3 and the alignment marks m1 to m3 of the fourth group G4.
  • the alignment marks corresponding to the second exposure area PA2 are the alignment marks m4 to m6 of the third group G3 and the alignment marks m4 to m6 of the fourth group G4.
  • the alignment marks corresponding to the third exposure area PA3 are the alignment marks m4 to m6 of the first group G1 and the alignment marks m4 to m6 of the second group G2.
  • the alignment marks corresponding to the fourth exposure area PA4 are the alignment marks m1 to m3 of the first group G1 and the alignment marks m1 to m3 of the second group G2.
  • the control device 5 detects the positions of the alignment marks m1 to m6 of the first to fourth groups G1 to G4 detected using the first alignment system 91 and the third group G3 detected using the second alignment system 92. Based on the positions of the alignment marks m1 and m6, the position of the substrate P in the coordinate system defined by the interferometer system 6 and the positions of the plurality of exposure areas PA1 to PA4 can be derived.
  • the control device 5 After the positions of the exposure areas PA1 to PA4 are derived by executing the alignment process, the control device 5 starts the second exposure process for forming the second pattern layer on the substrate P.
  • the first exposure area PA1 is first exposed, then the second exposure area PA2 is exposed, and then the third exposure area PA3 is set. Finally, the fourth exposure area PA4 is exposed.
  • the control device 5 controls the substrate stage 2 holding the substrate P in order to start the exposure of the first exposure area PA1, so that the first exposure area PA1 is arranged at the exposure start position. It moves to the exposure start position in the area PA1. Note that the first exposure area PA1 is arranged outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the first exposure area PA1.
  • FIG. 7F shows a state where the first exposure area PA1 is arranged at the exposure start position.
  • the control device 5 controls the substrate stage 2 to move the first exposure area PA1 of the substrate P in the ⁇ X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the first exposure area PA1 is exposed.
  • the control device 5 moves the substrate P in the ⁇ X direction until at least the first exposure area PA1 is arranged at the exposure end position. Thus, the exposure of the first exposure area PA1 is completed.
  • the movement direction of the substrate P with respect to the X-axis direction when the first exposure area PA1 that is first exposed in the first exposure process is exposed.
  • the moving direction of the substrate P with respect to the X-axis direction when exposing the first exposure area PA1 exposed first in the second exposure process is the same direction ( ⁇ X direction).
  • the order of exposing the plurality of exposure areas PA1 to PA4, the moving direction of the substrate P when exposing each of the exposure areas PA1 to PA4, the exposure start position, and the exposure end position Is substantially the same as the first exposure process. That is, in the second exposure process, the control device 5 moves the substrate P along the same movement trajectory (movement path) as the trajectory (movement path) of the substrate P described with reference to FIG. PA1 to PA4 are sequentially exposed.
  • the movement trajectory (movement path) of the substrate P with respect to the projection areas PR1 to PR7 when the plurality of exposure areas PA1 to PA4 are sequentially exposed in the first exposure process, and the second exposure process The movement trajectory (movement path) of the substrate P with respect to the projection areas PR1 to PR7 when the plurality of exposure areas PA1 to PA4 are sequentially exposed is substantially the same.
  • the description of the procedure for exposing the exposure areas PA2 to PA4 in the second exposure process is omitted.
  • the first exposure process for forming the first pattern layer on the substrate P, the alignment process performed when forming the second pattern layer on the first pattern layer, and the second pattern layer on the substrate P are performed.
  • the second exposure process to be formed has been described.
  • the plurality of substrates P on which the first pattern layer is formed are sequentially exposed.
  • a plurality of substrates P having a predetermined number of groups as one group (lot) are sequentially exposed using exposure light EL from a pattern of a predetermined mask M.
  • the plurality of substrates P in the one lot are substrates P that are sequentially exposed to form the first pattern layer in the first exposure process and have undergone various process processes such as a development process.
  • the first alignment mode and the second alignment mode are prepared, and at least one of the first alignment mode and the second alignment mode is performed before the second exposure process is executed. Is selected, and the alignment process is executed based on the selected alignment mode.
  • the first alignment mode is selected as the alignment process when the substrate P is exposed. As described with reference to FIG. 7 and the like, the first alignment mode detects all of the plurality of alignment marks m1 to m6 adjacent to the exposure areas PA1 to PA4 of the substrate P, and determines the position of the substrate P and the substrate. In this mode, the positions of the exposure areas PA1 to PA4 on P are derived.
  • the control device 5 performs alignment processing on the remaining substrates P in the lot based on the second alignment mode, and exposes the substrates P based on the result of the alignment processing.
  • the second alignment mode is a mode that uses the result of the alignment process based on the first alignment mode.
  • a predetermined alignment mark is detected from the plurality of alignment marks m1 to m6 on the substrate P, and the detection result of the predetermined alignment mark and the derivation of the first alignment mode are performed.
  • the position of the substrate P and the positions of the exposure areas PA1 to PA4 on the substrate P are derived based on the result.
  • the control device 5 loads (loads) the substrate P having the first pattern layer and the alignment marks m1 to m6 onto the substrate stage 2.
  • a photosensitive agent is applied to the substrate P.
  • the substrate P is placed at the initial position.
  • a mask M having a pattern corresponding to the second pattern layer formed on the substrate P is loaded (loaded) and held on the mask stage 1.
  • the controller 5 uses the alignment system 9 to detect predetermined alignment marks m1 to m6 on the substrate P, and derives the positions of the exposure areas PA1 to PA4.
  • the control device 5 uses the interferometer system 6 to measure the position of the substrate stage 2 and control the substrate stage 2 to detect the first alignment system 91.
  • the substrate P is moved so that the alignment marks m1 to m6 of the first group G1 are arranged in the areas SA1 to SA6.
  • the first alignment system 91 detects the alignment marks m1 to m6 of the first group G1.
  • the control device 5 can derive the positions of the alignment marks m1 to m6 of the first group G1 in the coordinate system defined by the interferometer system 6.
  • the control device 5 controls the substrate stage 2 while measuring the position of the substrate stage 2 using the interferometer system 6, and controls the second alignment system 92.
  • the substrate P is moved so that the alignment marks m1 and m6 of the third group G3 are arranged in the detection areas SB1 and SB2.
  • the second alignment system 92 detects the alignment marks m1 and m6 of the third group G3.
  • the control apparatus 5 can derive
  • the control device 5 detects the alignment marks m1 to m6 of the first group G1 using the first alignment system 91 and the alignment marks m1 and m6 of the third group G3 using the second alignment system 92. Based on the result, the position of the substrate P in the coordinate system defined by the interferometer system 6 is derived.
  • the position data 1 is data relating to the position of the entire substrate P, and includes a predetermined reference position on the substrate P such as the position of the outer shape (edge) of the substrate P, for example.
  • the position data 2 is the position of each of the exposure areas PA1 to PA4 with respect to a predetermined reference position on the substrate P.
  • the position data 1 may be data obtained from any one substrate P among the predetermined number of substrates P from the lot head aligned in the first alignment mode, or each of the predetermined number of substrates P.
  • the position data 2 may be data obtained from any one substrate P among the predetermined number of substrates P from the lot head aligned in the first alignment mode, or the predetermined number of substrates P The average value of the data obtained from each may be used.
  • the position of the substrate P in the coordinate system defined by the interferometer system 6 (hereinafter referred to as position data 3 as appropriate) is obtained by the alignment process based on the second alignment mode. Therefore, the control device 5 is based on the position data 1 and the position data 2 that are the derivation results of the alignment process based on the first alignment mode, and the position data 3 that is the derivation result of the alignment process based on the second alignment mode.
  • the positions of the exposure areas PA1 to PA4 on the substrate P in the coordinate system defined by the interferometer system 6 (hereinafter referred to as position data 4 as appropriate) can be obtained.
  • the positions of the exposure areas PA1 to PA4 (the positional relationship between the predetermined reference position on the substrate P and the exposure areas PA1 to PA4) with respect to the predetermined reference position on the substrate P are aligned based on the first alignment mode. It is considered that there is almost no variation between the time of executing and the time of executing the alignment process based on the second alignment mode. Therefore, the control device 5 detects the alignment marks m1 to m6 using the first and second alignment systems 91 and 92 based on the second alignment mode, and the derivation result (position data 1, 1) of the first alignment mode. 2), the position of the substrate P (position data 3) and the positions of the exposure areas PA1 to PA4 on the substrate P (position data 4) can be derived.
  • the control device 5 detects the detection areas SA1 and SA6 at both ends of the first alignment system 91 and the detection areas SB1 and SB1 at both ends of the second alignment system 92 in the alignment process based on the first alignment mode.
  • the same alignment marks m1 and m6 on the substrate P are arranged on each of the SB2, and the same alignment marks m1 and m6 are detected to detect the detection areas SA1 to SA6 of the first alignment system 91 and the second The positional relationship with the detection areas SB1 and SB2 of the alignment system 92 is obtained.
  • the control device 5 uses the first alignment system 91 to detect the alignment marks m1 to m6 of the first group G1, and the second alignment system 92 Based on the detection result of the alignment marks m1 and m6 of the three groups G3, the position data 3 and the position data 4 can be obtained with high accuracy.
  • control device 5 After obtaining the positions (position data 4) of the exposure areas PA1 to PA4, the control device 5 starts exposure of the exposure areas PA1 to PA4.
  • the control device 5 after executing the alignment process based on the second alignment mode, the control device 5 first exposes the first exposure area PA1 among the plurality of exposure areas PA1 to PA4, and then the second exposure area. PA2 is exposed, then the third exposure area PA3 is exposed, and finally the fourth exposure area PA4 is exposed.
  • the control device 5 controls the substrate stage 2 holding the substrate P in order to start the exposure of the first exposure area PA1, so that the first exposure area PA1 is arranged at the exposure start position. It moves to the exposure start position in the area PA1. Note that the first exposure area PA1 is arranged outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the first exposure area PA1.
  • FIG. 8C shows a state in which the first exposure area PA1 is arranged at the exposure start position.
  • the control device 5 controls the substrate stage 2 to move the first exposure area PA1 of the substrate P in the ⁇ X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the first exposure area PA1 is exposed.
  • the control device 5 moves the substrate P in the ⁇ X direction until at least the first exposure area PA1 is arranged at the exposure end position. Thus, the exposure of the first exposure area PA1 is completed.
  • the first exposure area PA1 that is first exposed in the exposure process executed after the alignment process based on the first alignment mode is exposed.
  • the movement direction of the substrate P with respect to the X-axis direction and the movement direction of the substrate P with respect to the X-axis direction when exposing the first exposure area PA1 that is first exposed in the exposure process performed after the alignment process based on the second alignment mode. Is the same direction ( ⁇ X direction).
  • the order of exposing the plurality of exposure areas PA1 to PA4 and the movement of the substrate P when exposing each of the exposure areas PA1 to PA4 The direction, the exposure start position, and the exposure end position are substantially the same as the exposure process executed after the alignment process based on the first alignment mode. That is, in the exposure process executed after the alignment process based on the second alignment mode, the substrate P is moved along the same movement locus (movement path) as that of the substrate P described with reference to FIG. However, the plurality of exposure areas PA1 to PA4 are sequentially exposed.
  • the movement trajectory (movement path) of the substrate P with respect to the projection areas PR1 to PR7 when the plurality of exposure areas PA1 to PA4 are sequentially exposed in the exposure process performed after the alignment process based on the second alignment mode is approximately The same.
  • the second alignment system 92 is arranged on the + X side with respect to the projection regions PR1 to PR7, and the control device 5 performs alignment with the second alignment system 92 in the alignment process based on the second alignment mode. After detecting the marks m1 and m6, the first exposure area PA1 can be immediately moved to the exposure start position.
  • the substrate stage 2 From the position of the substrate stage 2 where the alignment marks m1 and m6 on the substrate P held by the substrate stage 2 are arranged in the detection regions SB1 and SB2 of the second alignment system 92 (hereinafter referred to as alignment positions as appropriate)
  • the substrate stage 2 is aligned with respect to the X-axis direction. It moves in the ⁇ X direction in an accelerated state between the position and the exposure start position.
  • the movement state of the substrate stage 2 In the vicinity of the exposure start position, the movement state of the substrate stage 2 is at least one of a settling state and a constant speed state.
  • the ⁇ X side end of the first exposure area PA1 extends from the exposure start position of the substrate stage 2 arranged at the + X side end of the projection areas PR2, PR4, PR6, and the + X side end of the first exposure area PA1
  • the substrate stage 2 moves in the ⁇ X direction at a constant speed.
  • a third position adjacent to the first exposure area PA1 is located on the + X side in the X-axis direction with respect to the projection areas PR1 to PR7 and at least at a position away from the minimum necessary running distance of the substrate stage 2.
  • Detection areas SB1 and SB2 of the second alignment system 92 capable of detecting the alignment marks m1 and m2 of the group G3 are arranged. Thereby, the control apparatus 5 can transfer to the exposure process of 1st exposure area
  • the minimum required running distance of the substrate stage 2 is that the substrate stage 2 in a stationary state at the first position starts moving from the first position to one side in a predetermined direction (for example, ⁇ X side), and a predetermined target speed Is the distance to the second position that can be reached.
  • the approaching distance includes an acceleration distance at which the substrate stage 2 accelerates and a settling distance at which the substrate stage 2 settles. Between the first position and the second position, the substrate stage 2 moves in an accelerated state, and moves in a settling state in the vicinity of the second position.
  • the minimum required traveling distance of the substrate stage 2 is a distance according to the movement performance of the substrate stage 2, for example, and is based on the performance of the drive system 4, the weight of the substrate stage 2, and the like.
  • the substrate stage 2 that has reached the target speed before reaching the second position has a target speed between the second position and the third position on one side of the predetermined direction ( ⁇ X direction) with respect to the second position. Can move at a constant speed.
  • FIG. 9 is a schematic diagram showing the relationship among the projection optical system PL2, the second alignment system 92, and the substrate P (substrate stage 2).
  • the first exposure of the plurality of exposure areas PA1 to PA4 is first performed at a position on the + X side with respect to the projection area PR2 in the X-axis direction (scanning direction) and at least a minimum required run-up distance LJ.
  • Detection areas SB1 and SB2 of the second alignment system 92 capable of detecting the alignment marks m1 and m6 of the third group G3 on the substrate P adjacent to the one exposure area PA1 are arranged. Thereby, the distance LA between the alignment position and the exposure start position can be made longer than the minimum necessary run-up distance LJ of the substrate stage 2.
  • the alignment marks m1 and m6 of the third group G3 on the substrate P held by the substrate stage 2 that is arranged in a substantially stationary state at the alignment position are arranged in the detection regions SB1 and SB2 of the second alignment system 92.
  • the substrate stage 2 After the detection by the second alignment system 92, the substrate stage 2 starts moving in the ⁇ X direction, so that the target scanning speed can be reached before reaching the exposure start position.
  • the substrate stage 2 that has reached the exposure start position moves to the exposure end position at a constant scanning speed in the ⁇ X direction at the target scan speed, so that the first exposure area PA1 is ⁇ X relative to the projection areas PR1 to PR7. Exposure while moving in the direction.
  • the alignment position is a position where the first exposure area PA1 is disposed outside the projection areas PR1 to PR7.
  • the distance LA between the alignment position and the exposure start position is substantially the same as the minimum required approach distance LJ. That is, in the present embodiment, the first position at one end of the minimum required approach distance LJ matches the alignment position, and the second position at the other end of the minimum required approach distance LJ matches the exposure start position. To do.
  • the distance LA between the alignment position and the exposure start position may be longer than the minimum required approach distance LJ.
  • the substrate stage 2 can reach the target scan speed before reaching the exposure start position.
  • the detection marks SB1 and SB6 in which the alignment marks m1 and m6 of the third group G3 on the substrate P adjacent to the first exposure area PA1 to be exposed first can be arranged, and the position of the first exposure area PA1 is derived. Since the second alignment system 92 is provided, the control device 5 places the substrate stage 2 in the alignment position, detects the alignment marks m1 and m6 using the second alignment system 92, and then moves the substrate stage 2 to ⁇ By moving in the X direction, exposure of the first exposure area PA1 can be started immediately. Therefore, the time required for the alignment process can be shortened. Therefore, a decrease in throughput can be suppressed, and a decrease in device productivity can be suppressed.
  • the detection areas SA1 to SA6 of the first alignment system 91 are arranged at positions on the ⁇ X side with respect to the projection areas PR1 to PR7 and at least a minimum running distance. You can also.
  • the substrate stage 2 is moved in the + X direction, and the exposure area PA1 adjacent to the ⁇ X side with respect to the alignment marks m1 to m6.
  • the exposure process for at least one of PA4 can be started immediately.
  • the movement direction with respect to the scanning direction (X-axis direction) when the first exposure area PA1 that is first exposed in the first exposure process is exposed. Since the moving direction with respect to the scanning direction (X-axis direction) when exposing the first exposure region exposed first in the second exposure process is the same direction ( ⁇ X direction), the substrate P is carried into the substrate stage 2. It is possible to prevent the movement distance of the substrate stage 2 from being extended until the substrate P is unloaded from the substrate stage 2. Therefore, a decrease in throughput can be suppressed.
  • the movement locus of the substrate stage 2 with respect to the projection areas PR1 to PR7 when the plurality of exposure areas PA1 to PA4 are sequentially exposed in the first exposure process, and the plurality of exposure areas in the second exposure process Since the movement trajectory of the substrate stage 2 with respect to the projection regions PR1 to PR7 when sequentially exposing PA1 to PA4 is substantially the same, the substrate P is exposed under substantially the same apparatus conditions in the first exposure process and the second exposure process. be able to. For example, even when the body 13 or the like is deformed according to the movement (position) of the substrate stage 2, the first exposure process is performed by making the movement locus of the substrate stage 2 the same in the first exposure process and the second exposure process. In the second exposure process, the exposure areas PA1 to PA4 can be exposed under substantially the same apparatus conditions (deformation conditions of the body 13, etc.).
  • the second alignment system 92 detects the alignment marks m1 and m6 at both ends among the plurality of alignment marks m1 to m6 arranged in the Y-axis direction. Based on the detection result of the second alignment system 92, the position of the substrate P and the positions of the exposure areas PA1 to PA4 can be accurately derived.
  • the first alignment system 91 and the second alignment system 92 detect the alignment marks m1 and m6 on the substrate P using the detection areas at both ends, so the control device 5 Based on the detection result, the position of the substrate P and the positions of the exposure areas PA1 to PA4 can be derived with high accuracy.
  • the number of detection areas (detectors) of the second alignment system 92 is smaller than the number of detection areas (detectors) of the first alignment system 91. Thereby, a space between the second alignment system 92 and the substrate stage 2 (above the substrate stage 2) can be secured.
  • the operation of loading the substrate P into the substrate stage 2 and the operation of unloading the substrate P from the substrate stage 2 can be smoothly executed from the + X side with respect to the projection system PS.
  • the first alignment mode when a plurality of substrates P in one lot are sequentially exposed, the first alignment mode is set when exposing a predetermined number (for example, about 5) of substrates P from the lot head.
  • the case where the second alignment mode is selected when exposing the remaining substrate P in the lot has been described.
  • a plurality of pattern layers for example, five pattern layers
  • the first alignment mode and the second alignment mode may be selected according to the required overlay accuracy of the pattern layer.
  • the first alignment mode may be selected when high overlay accuracy is required
  • the second alignment mode may be selected when relatively rough overlay accuracy is allowed.
  • FIG. 10 is a schematic diagram showing an example of the positional relationship between the projection areas PR1 to PR7, the detection areas SA1 to SA6, SB1 and SB2, and the substrate P according to the second embodiment.
  • the surface of the substrate P has six exposure areas PA1 to PA6 onto which an image of the pattern of the mask M is projected.
  • the first exposure process among the plurality of exposure areas PA1 to PA6, exposure is first performed from the second exposure area PA2, then the first exposure area PA1 is exposed, and then the third exposure area PA3 is determined. Then, the fourth exposure area PA4 is exposed, then the fifth exposure area PA5 is exposed, and finally the sixth exposure area PA6 is exposed.
  • FIG. 11A shows a state in which the second exposure area PA2 is arranged at the exposure start position.
  • the control device 5 controls the substrate stage 2 to move the second exposure area PA2 of the substrate P in the ⁇ X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the second exposure area PA2 is exposed.
  • FIG. 11B shows a state in which the first exposure area PA1 is arranged at the exposure start position.
  • the control device 5 controls the substrate stage 2 to move the first exposure area PA1 of the substrate P in the + X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. .
  • the second exposure area PA2 is exposed.
  • FIG. 11C shows a state in which the third exposure area PA3 is arranged at the exposure start position.
  • the control device 5 controls the substrate stage 2 to move the third exposure area PA3 of the substrate P in the ⁇ X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the third exposure area PA3 is exposed.
  • FIG. 11D shows a state where the fourth exposure area PA4 is arranged at the exposure start position.
  • the control device 5 controls the substrate stage 2 to move the fourth exposure area PA4 of the substrate P in the + X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. . Thereby, the fourth exposure area PA4 is exposed.
  • FIG. 11E shows a state where the fifth exposure area PA5 is arranged at the exposure start position.
  • the control device 5 controls the substrate stage 2 to move the fifth exposure area PA5 of the substrate P in the ⁇ X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the fifth exposure area PA5 is exposed.
  • FIG. 11F shows a state where the sixth exposure area PA6 is arranged at the exposure start position.
  • the control device 5 controls the substrate stage 2 to move the sixth exposure area PA6 of the substrate P in the + X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. . Thereby, the sixth exposure area PA6 is exposed.
  • alignment marks m1 to m6 of the first group G1, alignment marks m1 to m6 of the second group G2, alignment marks m1 to m6 of the third group G3, and alignment marks m1 of the fourth group G4 are arranged. To m6.
  • control device 5 detects the alignment marks m1 to m6 of the first group G1 with the first alignment system 91.
  • control device 5 detects the alignment marks m1 and m6 of the third group G3 with the second alignment system 92.
  • control device 5 uses the first alignment system 91 to detect the alignment marks m1 to m6 of the second group G2.
  • control device 5 uses the first alignment system 91 to detect the alignment marks m1 to m6 of the third group G3.
  • control device 5 detects the alignment marks m1 to m6 of the fourth group G4 by the first alignment system 91.
  • the first alignment system 91 and the second alignment system 92 have the detection regions (SA1, SA6) at both ends. ), (SB1, SB2) are used to detect the same alignment marks m1, m6 on the substrate P.
  • the alignment marks corresponding to the first exposure area PA1 are the alignment marks m1 and m2 of the third group G3 and the alignment marks m1 and m2 of the fourth group G4.
  • the alignment marks corresponding to the second exposure area PA2 are the alignment marks m3 and m4 of the third group G3 and the alignment marks m3 and m4 of the fourth group G4.
  • the alignment marks corresponding to the third exposure area PA3 are the alignment marks m5 and m6 of the third group G3 and the alignment marks m5 and m6 of the fourth group G4.
  • the alignment marks corresponding to the fourth exposure area PA4 are the alignment marks m5 and m6 of the first group G1 and the alignment marks m5 and m6 of the second group G2.
  • the alignment marks corresponding to the fifth exposure area PA5 are the alignment marks m3 and m4 of the first group G1 and the alignment marks m3 and m4 of the second group G2.
  • the alignment marks corresponding to the sixth exposure area PA6 are the alignment marks m1 and m2 of the first group G1 and the alignment marks m1 and m2 of the second group G2.
  • the control device 5 detects the positions of the alignment marks m1 to m6 of the first to fourth groups G1 to G4 detected using the first alignment system 91 and the third group G3 detected using the second alignment system 92. Based on the positions of the alignment marks m1 and m6, the position of the substrate P in the coordinate system defined by the interferometer system 6 and the positions of the plurality of exposure areas PA1 to PA6 can be derived.
  • the second exposure process is executed.
  • the order in which the plurality of exposure areas PA1 to PA6 are exposed, the moving direction of the substrate P when exposing each of the exposure areas PA1 to PA6, the exposure start position, and the exposure end position are the first exposure process. Is almost the same. That is, in the second exposure process, a plurality of exposure areas PA1 to PA6 are moved while moving the substrate P along the same movement trajectory (movement path) as that of the substrate P described with reference to FIG. Sequential exposure.
  • the first exposure process for forming the first pattern layer on the substrate P the alignment process performed when the second pattern layer is formed on the first pattern layer, and the substrate P
  • the second exposure process for forming the second pattern layer has been described.
  • the substrate P is placed at the initial position.
  • the control device 5 detects the alignment marks m1 to m6 of the first group G1 with the first alignment system 91.
  • control device 5 detects the alignment marks m1 and m6 of the third group G3 by the second alignment system 92.
  • the control device 5 detects the alignment marks m1 to m6 of the first group G1 using the first alignment system 91 and the alignment marks m1 and m6 of the third group G3 using the second alignment system 92. Based on the result and the derived result of the first alignment mode, the position of the substrate P and the positions of the exposure areas PA1 to PA6 are detected.
  • the control device 5 After obtaining the positions (position data 4) of the exposure areas PA1 to PA6, the control device 5 starts exposure of the exposure areas PA1 to PA6. As shown in FIG. 13D, the second exposure area PA2 is arranged at the exposure start position.
  • the order of exposing the plurality of exposure areas PA1 to PA6 and the movement of the substrate P when exposing each of the exposure areas PA1 to PA6 are substantially the same as the exposure process executed after the alignment process based on the first alignment mode.
  • the substrate P can be satisfactorily exposed while suppressing a decrease in throughput.
  • the first exposure process and the first and second alignment modes described above are included. By executing the alignment process and the second exposure process, the substrate P can be satisfactorily exposed while suppressing a decrease in throughput.
  • the surface of the substrate P has six exposure areas PA1 to PA6.
  • the exposure areas PA1 and PA2 are arranged at substantially equal intervals in the Y axis direction
  • the exposure areas PA3 and PA4 are arranged at substantially equal intervals in the Y axis direction
  • the exposure areas PA5 and PA6 are arranged in the Y axis direction.
  • the exposure area PA1 is arranged on the ⁇ Y side with respect to the exposure area PA2.
  • the exposure area PA3 is arranged on the + Y side with respect to the exposure area PA4.
  • the exposure area PA5 is arranged on the ⁇ Y side with respect to the exposure area PA5.
  • the exposure areas PA1 and PA2 are arranged on the + X side with respect to the exposure areas PA3 and PA4.
  • the exposure areas PA5 and PA6 are arranged on the ⁇ X side with respect to the exposure areas PA3 and PA4.
  • the surface of the substrate P has alignment marks m1 to m6 for the first to sixth groups G1 to G6, respectively.
  • FIG. 15 is a diagram illustrating an example of the alignment system 9 according to the third embodiment.
  • the positions of the detection areas (SA1, SA6) at both ends of the first alignment system 91 in the Y-axis direction are different from the positions of the detection areas (SB1, SB2) at both ends of the second alignment system 92.
  • the substrate P is disposed at the initial position.
  • the control device 5 detects the alignment marks m1 to m6 of the first group G1 with the first alignment system 91.
  • control device 5 detects the alignment marks m1 and m6 of the third group G3 with the second alignment system 92.
  • the control device 5 derives the position of the substrate P and the positions of the exposure areas PA1 to PA6 based on the detection result of the alignment system 9, and starts exposure of the exposure areas PA1 to PA6.
  • the first exposure area PA1 is first exposed among the plurality of exposure areas PA1 to PA6. As shown in FIG. 15D, the first exposure area PA1 is arranged at the exposure start position, and the exposure of the first exposure area PA1 is started.
  • the positions of the detection areas (SA1, SA6) at both ends of the first alignment system 91 in the Y-axis direction are different from the positions of the detection areas (SB1, SB2) at both ends of the second alignment system 92.
  • the first exposure area PA1 From the position (alignment position) of the substrate stage 2 where the alignment marks m1, m6 on the substrate P held by the substrate stage 2 are arranged in the detection areas SB1, SB2 of the second alignment system 92, the first exposure area PA1.
  • the distance to the exposure start position of the substrate stage 2 arranged at the ⁇ X side end of the projection regions PR2, PR4, PR6 can be shortened. That is, the movement distance of the substrate stage 2 when changing from the state shown in FIG. 15C to the state shown in FIG. 15D can be shortened.
  • FIG. 16 is a diagram illustrating an example of the alignment system 9 according to the fourth embodiment.
  • the distances LX2 between the marks m1 to m6 and the alignment marks m1 to m6 of the third group G3 are substantially the same.
  • the detection of the alignment marks m1 to m6 of the first group G1 using the first alignment system 91 and the second alignment system 92 using the second alignment system 92 are performed.
  • the detection of the alignment marks m1 and m6 of the three groups G3 can be performed simultaneously. Therefore, a decrease in throughput can be suppressed.
  • the substrate P in the first to fourth embodiments is not limited to a glass substrate for a display device, but also a semiconductor wafer for manufacturing a semiconductor device, a ceramic wafer for a thin film magnetic head, or a mask used in an exposure apparatus. Alternatively, a reticle original (synthetic quartz, silicon wafer) or the like is applied.
  • a step-and-scan type scanning exposure apparatus that scans and exposes the substrate P with the exposure light EL through the pattern of the mask M by moving the mask M and the substrate P synchronously.
  • the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and is applied to a step-and-repeat type projection exposure apparatus (stepper) that sequentially moves the substrate P stepwise.
  • the present invention also relates to a twin-stage type exposure having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796, and the like. It can also be applied to devices.
  • the present invention relates to a substrate stage for holding a substrate as disclosed in US Pat. No. 6,897,963, European Patent Application No. 1713113, etc., and a reference mark without holding the substrate.
  • the present invention can also be applied to an exposure apparatus that includes a formed reference member and / or a measurement stage on which various photoelectric sensors are mounted.
  • An exposure apparatus including a plurality of substrate stages and measurement stages can be employed.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a liquid crystal display element or a display, but an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P, a thin film magnetic head, an image sensor (CCD)
  • the present invention can be widely applied to an exposure apparatus for manufacturing a micromachine, MEMS, DNA chip, reticle, mask, or the like.
  • the position information of each stage is measured using an interferometer system including a laser interferometer.
  • an interferometer system including a laser interferometer.
  • the present invention is not limited to this.
  • a scale diffiffraction grating provided in each stage You may use the encoder system which detects this.
  • a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • a variable shaped mask also called an electronic mask, an active mask, or an image generator
  • a pattern forming apparatus including a self-luminous image display element may be provided instead of the variable molding mask including the non-luminous image display element.
  • the exposure apparatus EX of the above-described embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus.
  • comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • a microdevice such as a semiconductor device includes a step 201 for designing a function / performance of the microdevice, a step 202 for manufacturing a mask (reticle) based on the design step, and a substrate which is a base material of the device.
  • Manufacturing step 203 including substrate processing (exposure processing) including exposing the substrate with exposure light using a mask pattern and developing the exposed substrate (photosensitive agent) according to the above-described embodiment
  • the substrate is manufactured through a substrate processing step 204, a device assembly step (including processing processes such as a dicing process, a bonding process, and a packaging process) 205, an inspection step 206, and the like.
  • the photosensitive agent is developed to form an exposure pattern layer (developed photosensitive agent layer) corresponding to the mask pattern, and the substrate is processed through the exposure pattern layer. It is.

Abstract

Provided is an exposure apparatus wherein a plurality of substrate regions to be exposed are sequentially exposed to exposure light, while moving the substrate in the scanning direction with respect to the radiation region where exposure light can be radiated. The exposure apparatus is provided with: a substrate stage, which holds the substrate to the radiation region and can move to one side in the scanning direction in an accelerating state between a first position and a second position in the scanning direction, in a stabilized state in the vicinity of the second position, and in a constant-speed state between the second position and a third position; and an alignment system which has a detection region where an alignment mark, which is on the substrate and is adjacent to a first exposure target region to be exposed first among a plurality of exposure regions to be exposed, can be placed on the other side with respect to the radiation region in the scanning direction, at a position at least at a distance between the first position and the second position, and derives the position of the first exposure target region.

Description

露光装置、露光方法、及びデバイス製造方法Exposure apparatus, exposure method, and device manufacturing method
 本発明は、露光装置、露光方法、及びデバイス製造方法に関する。 The present invention relates to an exposure apparatus, an exposure method, and a device manufacturing method.
 例えばフラットパネルディスプレイ等の電子デバイスの製造工程において、露光光で基板を露光する露光装置が使用される。下記特許文献に開示されているように、露光装置は、基板の位置を導出可能なアライメントシステムを備え、そのアライメントシステムを用いるアライメント処理を実行して、基板を露光する。 For example, in an electronic device manufacturing process such as a flat panel display, an exposure apparatus that exposes a substrate with exposure light is used. As disclosed in the following patent document, the exposure apparatus includes an alignment system capable of deriving the position of the substrate, performs an alignment process using the alignment system, and exposes the substrate.
特開2003-347184号公報JP 2003-347184 A
 露光装置において、アライメント処理に要する時間が長くなると、スループットが低下して、デバイスの生産性が低下する可能性がある。 In the exposure apparatus, if the time required for the alignment process becomes long, the throughput may decrease and the productivity of the device may decrease.
 本発明の態様は、スループットの低下を抑制できる露光装置、及び露光方法を提供することを目的とする。また本発明の態様は、生産性の低下を抑制できるデバイス製造方法を提供することを目的とする。 An object of an aspect of the present invention is to provide an exposure apparatus and an exposure method that can suppress a decrease in throughput. Moreover, the aspect of this invention aims at providing the device manufacturing method which can suppress the fall of productivity.
 本発明の第1の態様に従えば、露光光が照射可能な照射領域に対して基板を走査方向に移動しながら前記基板の複数の露光対象領域を露光光で順次露光する露光装置であって、前記走査方向における第1位置と第2位置との間において加速状態、前記第2位置の近傍において整定状態、及び前記第2位置と第3位置との間において定速状態で、前記照射領域に対して前記基板を保持して前記走査方向に関して一方側に移動可能な基板ステージと、前記照射領域に対して前記走査方向に関して他方側であって、少なくとも前記第1位置と前記第2位置との距離を隔てた位置に、複数の前記露光対象領域のうち、最初に露光される第1露光対象領域に隣接する前記基板上のアライメントマークが配置可能な検出領域を有し、前記第1露光対象領域の位置を導出するアライメントシステムと、を備える露光装置が提供される。 According to a first aspect of the present invention, there is provided an exposure apparatus that sequentially exposes a plurality of exposure target areas of the substrate with exposure light while moving the substrate in a scanning direction with respect to an irradiation area that can be irradiated with exposure light. The irradiation region in an acceleration state between the first position and the second position in the scanning direction, in a settling state in the vicinity of the second position, and in a constant speed state between the second position and the third position. A substrate stage that can move to one side with respect to the scanning direction while holding the substrate, and at least the first position and the second position on the other side with respect to the irradiation region with respect to the scanning direction. Of the plurality of exposure target areas, the detection area in which the alignment mark on the substrate adjacent to the first exposure target area to be exposed can be arranged, and the first exposure. Territory An alignment system for deriving a position, an exposure apparatus equipped with is provided.
 本発明の第2の態様に従えば、第1の態様の露光装置を用いて、感光剤が塗布された前記基板の露光をすることと、前記基板の露光によって露光された前記感光剤を現像して露光パターン層を形成することと、前記露光パターン層を介して前記基板を加工することと、を含むデバイス製造方法が提供される。 According to the second aspect of the present invention, the exposure apparatus of the first aspect is used to expose the substrate coated with a photosensitive agent and to develop the photosensitive agent exposed by the exposure of the substrate. Then, there is provided a device manufacturing method including forming an exposure pattern layer and processing the substrate through the exposure pattern layer.
 本発明の第3の態様に従えば、露光光が照射可能な照射領域に対して基板を走査方向に移動しながら前記基板の複数の露光対象領域を露光光で順次露光する露光方法であって、前記照射領域に前記露光光を照射しながら、複数の前記露光対象領域を順次露光する第1露光処理を実行することと、アライメントシステムの検出領域に、前記第1露光処理が実行された前記基板上のアライメントマークを配置して、前記露光対象領域の位置を導出するアライメント処理を実行することと、前記照射領域に前記露光光を照射しながら、前記第1露光処理及び前記アライメント処理が実行された前記基板上の複数の前記露光対象領域を順次露光する第2露光処理を実行することと、を含み、複数の前記露光対象領域のうち、前記第1露光処理において最初に露光される第1露光対象領域を露光するときの前記走査方向に関する移動方向と、前記第2露光処理において最初に露光される第1露光対象領域を露光するときの前記走査方向に関する移動方向とが、同じである露光方法が提供される。 According to a third aspect of the present invention, there is provided an exposure method for sequentially exposing a plurality of exposure target regions of the substrate with exposure light while moving the substrate in a scanning direction with respect to an irradiation region that can be irradiated with exposure light. , Executing a first exposure process for sequentially exposing a plurality of exposure target areas while irradiating the irradiation area with the exposure light, and performing the first exposure process on a detection area of an alignment system Alignment marks are arranged on the substrate to perform alignment processing for deriving the position of the exposure target region, and the first exposure processing and the alignment processing are performed while irradiating the irradiation light with the exposure light. Performing a second exposure process that sequentially exposes the plurality of exposure target areas on the substrate that has been subjected to the first exposure process among the plurality of exposure target areas. A moving direction related to the scanning direction when exposing the first exposure target area to be exposed first, and a moving direction related to the scanning direction when exposing the first exposure target area exposed first in the second exposure process. Are provided that are the same.
 本発明の第4の態様に従えば、第3の態様の露光方法を用いて、感光剤が塗布された前記基板の露光をすることと、前記基板の露光によって露光された前記感光剤を現像して露光パターン層を形成することと、前記露光パターン層を介して前記基板を加工することと、を含むデバイス製造方法が提供される。 According to the fourth aspect of the present invention, the exposure method of the third aspect is used to expose the substrate coated with a photosensitive agent, and to develop the photosensitive agent exposed by the exposure of the substrate. Then, there is provided a device manufacturing method including forming an exposure pattern layer and processing the substrate through the exposure pattern layer.
 本発明の態様によれば、スループットの低下を抑制でき、デバイスの生産性の低下を抑制できる。 According to the aspect of the present invention, it is possible to suppress a decrease in throughput and suppress a decrease in device productivity.
第1実施形態に係る露光装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the exposure apparatus which concerns on 1st Embodiment. 第1実施形態に係る露光装置の一例を示す斜視図である。It is a perspective view which shows an example of the exposure apparatus which concerns on 1st Embodiment. 第1実施形態に係る投影システム及び基板ステージの一例を示す図である。It is a figure which shows an example of the projection system and substrate stage which concern on 1st Embodiment. 第1実施形態に係る投影領域と、検出領域と、基板との位置関係の一例を示す模式図である。It is a schematic diagram which shows an example of the positional relationship between the projection area | region which concerns on 1st Embodiment, a detection area | region, and a board | substrate. 第1実施形態に係る露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of the exposure method which concerns on 1st Embodiment. 第1実施形態に係る露光装置の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the exposure apparatus which concerns on 1st Embodiment. 第1実施形態に係る露光装置の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the exposure apparatus which concerns on 1st Embodiment. 第1実施形態に係る露光装置の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the exposure apparatus which concerns on 1st Embodiment. 第1実施形態に係る投影領域と検出領域との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the projection area | region and detection area which concern on 1st Embodiment. 第2実施形態に係る投影領域と、検出領域と、基板との位置関係の一例を示す模式図である。It is a schematic diagram which shows an example of the positional relationship between the projection area | region which concerns on 2nd Embodiment, a detection area | region, and a board | substrate. 第2実施形態に係る露光装置の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the exposure apparatus which concerns on 2nd Embodiment. 第2実施形態に係る露光装置の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the exposure apparatus which concerns on 2nd Embodiment. 第2実施形態に係る露光装置の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the exposure apparatus which concerns on 2nd Embodiment. 第2実施形態に係る投影領域と、検出領域と、基板との位置関係の一例を示す模式図である。It is a schematic diagram which shows an example of the positional relationship between the projection area | region which concerns on 2nd Embodiment, a detection area | region, and a board | substrate. 第3実施形態に係る露光装置の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the exposure apparatus which concerns on 3rd Embodiment. 第4実施形態に係る露光装置の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the exposure apparatus which concerns on 4th Embodiment. マイクロデバイスの製造工程の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the manufacturing process of a microdevice.
 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。水平面内の所定方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれと直交する方向(すなわち鉛直方向)をZ軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. In the following description, an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be described with reference to this XYZ orthogonal coordinate system. A predetermined direction in the horizontal plane is defined as an X-axis direction, a direction orthogonal to the X-axis direction in the horizontal plane is defined as a Y-axis direction, and a direction orthogonal to each of the X-axis direction and the Y-axis direction (that is, a vertical direction) is defined as a Z-axis direction. Further, the rotation (inclination) directions around the X axis, Y axis, and Z axis are the θX, θY, and θZ directions, respectively.
<第1実施形態>
 第1実施形態について説明する。図1は、第1実施形態に係る露光装置EXの一例を示す概略構成図、図2は、斜視図である。図1及び図2において、露光装置EXは、マスクMを保持して移動可能なマスクステージ1と、基板Pを保持して移動可能な基板ステージ2と、マスクステージ1を移動する駆動システム3と、基板ステージ2を移動する駆動システム4と、マスクMを露光光ELで照明する照明システムISと、露光光ELで照明されたマスクMのパターンの像を基板Pに投影する投影システムPSと、露光装置EX全体の動作を制御する制御装置5とを備えている。
<First Embodiment>
A first embodiment will be described. FIG. 1 is a schematic block diagram showing an example of an exposure apparatus EX according to the first embodiment, and FIG. 2 is a perspective view. 1 and 2, an exposure apparatus EX includes a mask stage 1 that can move while holding a mask M, a substrate stage 2 that can move while holding a substrate P, and a drive system 3 that moves the mask stage 1. A driving system 4 that moves the substrate stage 2, an illumination system IS that illuminates the mask M with the exposure light EL, a projection system PS that projects an image of the pattern of the mask M illuminated by the exposure light EL onto the substrate P, And a control device 5 for controlling the overall operation of the exposure apparatus EX.
 マスクMは、基板Pに投影されるデバイスパターンが形成されたレチクルを含む。基板Pは、例えばガラスプレート等の基材と、その基材上に形成された感光膜(塗布された感光剤)とを含む。本実施形態において、基板Pは、マザーガラスと呼ばれる大型のガラスプレートを含み、その基板Pの一辺のサイズは、例えば500mm以上である。本実施形態においては、基板Pの基材として、一辺が約3000mmの矩形のガラスプレートを用いる。 The mask M includes a reticle on which a device pattern projected onto the substrate P is formed. The substrate P includes, for example, a base material such as a glass plate and a photosensitive film (coated photosensitizer) formed on the base material. In the present embodiment, the substrate P includes a large glass plate called mother glass, and the size of one side of the substrate P is, for example, 500 mm or more. In the present embodiment, a rectangular glass plate having a side of about 3000 mm is used as the base material of the substrate P.
 また、本実施形態の露光装置EXは、マスクステージ1及び基板ステージ2の位置を計測する干渉計システム6と、マスクMの表面(下面、パターン形成面)の位置を検出する第1検出システム7と、基板Pの表面(露光面、感光面)の位置を検出する第2検出システム8と、基板P上のアライメントマークを検出するアライメントシステム9とを備えている。 Further, the exposure apparatus EX of the present embodiment includes an interferometer system 6 that measures the positions of the mask stage 1 and the substrate stage 2, and a first detection system 7 that detects the position of the surface (lower surface, pattern formation surface) of the mask M. And a second detection system 8 that detects the position of the surface (exposed surface, photosensitive surface) of the substrate P, and an alignment system 9 that detects an alignment mark on the substrate P.
 また、露光装置EXは、ボディ13を備えている。ボディ13は、例えばクリーンルーム内の支持面(例えば床面)FL上に防振台BLを介して配置されたベースプレート10と、ベースプレート10上に配置された第1コラム11と、第1コラム11上に配置された第2コラム12とを有する。本実施形態において、ボディ13は、投影システムPS、マスクステージ1、及び基板ステージ2のそれぞれを支持する。本実施形態において、投影システムPSは、定盤14を介して、第1コラム11に支持される。マスクステージ1は、第2コラム12に対して移動可能に支持される。基板ステージ2は、ベースプレート10に対して移動可能に支持される。 Further, the exposure apparatus EX includes a body 13. The body 13 includes, for example, a base plate 10 disposed on a support surface (for example, floor surface) FL in a clean room via a vibration isolation table BL, a first column 11 disposed on the base plate 10, and a first column 11 And a second column 12 disposed on the surface. In the present embodiment, the body 13 supports each of the projection system PS, the mask stage 1 and the substrate stage 2. In the present embodiment, the projection system PS is supported by the first column 11 via the surface plate 14. The mask stage 1 is supported so as to be movable with respect to the second column 12. The substrate stage 2 is supported so as to be movable with respect to the base plate 10.
 本実施形態において、投影システムPSは、複数の投影光学系を有する。照明システムISは、複数の投影光学系に対応する複数の照明モジュールを有する。また、本実施形態の露光装置EXは、マスクMと基板Pとを所定の走査方向に同期移動しながら、マスクMのパターンの像を基板Pに投影する。すなわち、本実施形態の露光装置EXは、所謂、マルチレンズ型スキャン露光装置である。 In the present embodiment, the projection system PS has a plurality of projection optical systems. The illumination system IS has a plurality of illumination modules corresponding to a plurality of projection optical systems. Further, the exposure apparatus EX of the present embodiment projects an image of the pattern of the mask M onto the substrate P while moving the mask M and the substrate P synchronously in a predetermined scanning direction. That is, the exposure apparatus EX of the present embodiment is a so-called multi-lens scan exposure apparatus.
 本実施形態において、投影システムPSは、7つの投影光学系PL1~PL7を有し、照明システムLSは、7つの照明モジュールIL1~IL7を有する。なお、投影光学系及び照明モジュールの数は7つに限定されず、例えば投影システムPSが、投影光学系を11個有し、照明システムISが、照明モジュールを11個有してもよい。 In the present embodiment, the projection system PS has seven projection optical systems PL1 to PL7, and the illumination system LS has seven illumination modules IL1 to IL7. The number of projection optical systems and illumination modules is not limited to seven. For example, the projection system PS may have 11 projection optical systems, and the illumination system IS may have 11 illumination modules.
 照明システムISは、所定の照明領域に露光光ELを照射可能である。照明領域は、各照明モジュールIL1~IL7から射出される露光光ELが照射可能な照射領域である。本実施形態において、照明システムISは、異なる7つの照明領域のそれぞれを露光光ELで照明する。照明システムISは、マスクMのうち照明領域に配置された部分を、均一な照度分布の露光光ELで照明する。本実施形態においては、照明システムISから射出される露光光ELとして、水銀ランプ17から射出される輝線(g線、h線、i線)を用いる。 The illumination system IS can irradiate the exposure light EL to a predetermined illumination area. The illumination area is an irradiation area where the exposure light EL emitted from each of the illumination modules IL1 to IL7 can be irradiated. In the present embodiment, the illumination system IS illuminates each of the seven different illumination areas with the exposure light EL. The illumination system IS illuminates a portion of the mask M arranged in the illumination area with the exposure light EL having a uniform illuminance distribution. In the present embodiment, bright lines (g line, h line, i line) emitted from the mercury lamp 17 are used as the exposure light EL emitted from the illumination system IS.
 マスクステージ1は、マスクMを保持した状態で、照明領域に対して移動可能である。マスクステージ1は、マスクMの下面(パターン形成面)とXY平面とがほぼ平行となるように、マスクMを保持する。駆動システム3は、例えばリニアモータを含み、第2コラム12のガイド面12G上においてマスクステージ1を移動可能である。本実施形態において、マスクステージ1は、駆動システム3の作動により、マスクMを保持した状態で、ガイド面12G上を、X軸、Y軸、及びθZ方向の3つの方向に移動可能である。 The mask stage 1 is movable with respect to the illumination area while holding the mask M. The mask stage 1 holds the mask M so that the lower surface (pattern formation surface) of the mask M and the XY plane are substantially parallel. The drive system 3 includes, for example, a linear motor, and can move the mask stage 1 on the guide surface 12G of the second column 12. In the present embodiment, the mask stage 1 can be moved in the three directions of the X axis, the Y axis, and the θZ direction on the guide surface 12G while holding the mask M by the operation of the drive system 3.
 投影システムPSは、所定の投影領域に露光光ELを照射可能である。投影領域は、各投影光学系PL1~PL7から射出される露光光ELが照射可能な照射領域である。本実施形態において、投影システムPSは、異なる7つの投影領域PR1~PR7のそれぞれにパターンの像を投影する。投影光学システムPSは、基板Pのうち投影領域PR1~PR7に配置された部分に、マスクMのパターンの像を所定の投影倍率で投影する。 Projection system PS can irradiate exposure light EL to a predetermined projection area. The projection area is an irradiation area where the exposure light EL emitted from each of the projection optical systems PL1 to PL7 can be irradiated. In the present embodiment, the projection system PS projects a pattern image on each of seven different projection regions PR1 to PR7. The projection optical system PS projects an image of the pattern of the mask M on the portion of the substrate P arranged in the projection areas PR1 to PR7 with a predetermined projection magnification.
 基板ステージ2は、基板Pを保持した状態で、投影領域PR1~PR7に対して移動可能である。基板ステージ2は、基板Pの表面(露光面)とXY平面とがほぼ平行となるように、基板Pを保持する。駆動システム4は、例えばリニアモータを含み、ベースプレート10のガイド面10G上において基板ステージ2を移動可能である。本実施形態において、基板ステージ2は、駆動システム4の作動により、基板Pを保持した状態で、ガイド面10G上を、X軸、Y軸、Z軸、θX、θY、及びθZ方向の6つの方向に移動可能である。 The substrate stage 2 is movable with respect to the projection regions PR1 to PR7 while holding the substrate P. The substrate stage 2 holds the substrate P so that the surface (exposure surface) of the substrate P and the XY plane are substantially parallel. The drive system 4 includes, for example, a linear motor, and can move the substrate stage 2 on the guide surface 10 </ b> G of the base plate 10. In the present embodiment, the substrate stage 2 has six substrates in the X axis, Y axis, Z axis, θX, θY, and θZ directions on the guide surface 10G while holding the substrate P by the operation of the drive system 4. It can move in the direction.
 基板Pの露光時、制御装置5は、マスクステージ1及び基板ステージ2を制御して、マスクM及び基板Pを、露光光ELの光路と交差するXY平面内の所定の走査方向に移動する。本実施形態においては、基板Pの走査方向(同期移動方向)をX軸方向とし、マスクMの走査方向(同期移動方向)もX軸方向とする。制御装置5は、投影システムPSの投影領域PR1~PR7に対して基板PをX軸方向に移動するとともに、その基板PのX軸方向への移動と同期して、照明システムISの照明領域に対してマスクMをX軸方向に移動しながら、投影システムPSを介して基板Pに露光光ELを照射する。これにより、マスクMのパターンの像が基板Pに投影され、基板Pは露光光ELで露光される。 During the exposure of the substrate P, the control device 5 controls the mask stage 1 and the substrate stage 2 to move the mask M and the substrate P in a predetermined scanning direction in the XY plane intersecting the optical path of the exposure light EL. In the present embodiment, the scanning direction (synchronous movement direction) of the substrate P is the X-axis direction, and the scanning direction (synchronous movement direction) of the mask M is also the X-axis direction. The control device 5 moves the substrate P in the X-axis direction relative to the projection regions PR1 to PR7 of the projection system PS, and in the illumination region of the illumination system IS in synchronization with the movement of the substrate P in the X-axis direction. On the other hand, the substrate P is irradiated with the exposure light EL through the projection system PS while moving the mask M in the X-axis direction. Thereby, the pattern image of the mask M is projected onto the substrate P, and the substrate P is exposed with the exposure light EL.
 図3は、本実施形態に係る投影システムPS、第1検出システム7、第2検出システム8、アライメントシステム9、及び投影領域PR1~PR7に配置された基板ステージ2の一例を示す図である。 FIG. 3 is a diagram showing an example of the projection system PS, the first detection system 7, the second detection system 8, the alignment system 9, and the substrate stage 2 arranged in the projection regions PR1 to PR7 according to the present embodiment.
 図2及び図3に示すように、基板ステージ2の上面には、基準部材43が配置されている。基準部材43の上面44は、基板ステージ2に保持された基板Pの表面とほぼ同一平面内に配置される。また、基準部材43の上面44に、露光光ELを透過可能な透過部45が配置されている。基準部材43の下方には、透過部45を透過した光を受光可能な受光装置46が配置されている。受光装置46は、透過部45を介した光が入射するレンズ系47と、レンズ系47を介した光を受光する光センサ48とを有する。本実施形態において、光センサ48は、撮像素子(CCD)を含む。光センサ48は、受光した光に応じた信号を制御装置5に出力する。 As shown in FIGS. 2 and 3, a reference member 43 is arranged on the upper surface of the substrate stage 2. The upper surface 44 of the reference member 43 is disposed in substantially the same plane as the surface of the substrate P held on the substrate stage 2. Further, a transmissive portion 45 that can transmit the exposure light EL is disposed on the upper surface 44 of the reference member 43. Below the reference member 43, a light receiving device 46 capable of receiving the light transmitted through the transmitting portion 45 is disposed. The light receiving device 46 includes a lens system 47 on which light that has passed through the transmission unit 45 enters, and an optical sensor 48 that receives the light that has passed through the lens system 47. In the present embodiment, the optical sensor 48 includes an image sensor (CCD). The optical sensor 48 outputs a signal corresponding to the received light to the control device 5.
 本実施形態において、透過部45は、基準マークとして機能する。なお、基準部材43の上面44に、透過部45に対して所定位置に配置されたマークを設け、そのマークを基準マークとして用いてもよい。 In the present embodiment, the transmission part 45 functions as a reference mark. Note that a mark disposed at a predetermined position with respect to the transmission portion 45 may be provided on the upper surface 44 of the reference member 43, and the mark may be used as the reference mark.
 次に、干渉計システム6、第1,第2検出システム7,8、及びアライメントシステム9について説明する。図1及び図2において、干渉計システム6は、マスクステージ1の位置を計測するレーザ干渉計ユニット6Aと、基板ステージ2の位置を計測するレーザ干渉計ユニット6Bとを有する。レーザ干渉計ユニット6Aは、マスクステージ1に配置された計測ミラーを用いて、マスクステージ1の位置を計測可能である。レーザ干渉計ユニット6Bは、基板ステージ2に配置された計測ミラーを用いて、基板ステージ2の位置を計測可能である。本実施形態において、干渉計システム6は、レーザ干渉計ユニット6A,6Bを用いて、X軸、Y軸、及びθX方向に関するマスクステージ1及び基板ステージ2それぞれの位置情報を計測可能である。 Next, the interferometer system 6, the first and second detection systems 7, 8 and the alignment system 9 will be described. 1 and 2, the interferometer system 6 includes a laser interferometer unit 6 </ b> A that measures the position of the mask stage 1 and a laser interferometer unit 6 </ b> B that measures the position of the substrate stage 2. The laser interferometer unit 6 </ b> A can measure the position of the mask stage 1 using a measurement mirror arranged on the mask stage 1. The laser interferometer unit 6 </ b> B can measure the position of the substrate stage 2 using a measurement mirror arranged on the substrate stage 2. In the present embodiment, the interferometer system 6 can measure position information of the mask stage 1 and the substrate stage 2 with respect to the X axis, Y axis, and θX directions using the laser interferometer units 6A and 6B.
 第1検出システム7は、マスクMの下面(パターン形成面)のZ軸方向の位置を検出する。第1検出システム7は、所謂、斜入射方式の多点フォーカス・レベリング検出システムである。第2検出システム8は、基板Pの表面(露光面)のZ軸方向の位置を検出する。第2検出システム8は、所謂、斜入射方式の多点フォーカス・レベリング検出システムである。 The first detection system 7 detects the position of the lower surface (pattern formation surface) of the mask M in the Z-axis direction. The first detection system 7 is a so-called oblique incidence type multi-point focus / leveling detection system. The second detection system 8 detects the position of the surface (exposure surface) of the substrate P in the Z-axis direction. The second detection system 8 is a so-called oblique incidence type multi-point focus / leveling detection system.
 アライメントシステム9は、基板P上に設けられているアライメントマークを検出する。本実施形態において、アライメントシステム9は、投影システムPSに対してX軸方向(走査方向)に関して-X側に配置された第1アライメントシステム91と、+X側に配置された第2アライメントシステム92とを有する。 The alignment system 9 detects an alignment mark provided on the substrate P. In the present embodiment, the alignment system 9 includes a first alignment system 91 disposed on the −X side with respect to the X-axis direction (scanning direction) with respect to the projection system PS, and a second alignment system 92 disposed on the + X side. Have
 第1,第2アライメントシステム91,92は、所謂、オフアクシス方式のアライメントシステムである。図3に示すように、第1アライメントシステム91は、基板ステージ2に保持された基板Pの表面と対向配置される複数の検出器91A~91Fと、それら検出器91A~91Fに対応し、Y軸方向に配置される複数の検出領域SA1~SA6とを有する。第2アライメントシステム92は、基板ステージ2に保持された基板Pの表面と対向配置される複数の検出器92A,92Bと、それら検出器92A,92Bに対応し、Y軸方向に配置される複数の検出領域SB1,SB2とを有する。 The first and second alignment systems 91 and 92 are so-called off-axis type alignment systems. As shown in FIG. 3, the first alignment system 91 corresponds to a plurality of detectors 91A to 91F arranged to face the surface of the substrate P held on the substrate stage 2, and to the detectors 91A to 91F. It has a plurality of detection areas SA1 to SA6 arranged in the axial direction. The second alignment system 92 includes a plurality of detectors 92A and 92B arranged to face the surface of the substrate P held on the substrate stage 2, and a plurality of detectors 92A and 92B arranged in the Y-axis direction. Detection areas SB1 and SB2.
 検出器91A~91F、92A,92Bのそれぞれは、検出領域SA1~SA6、SB1,SB2に検出光を照射する投射部と、検出領域SA1~SA6、SB1,SB2に配置されたアライメントマークの光学像を取得可能な受光部とを有する。複数の検出器91A~91F、92A,92Bのそれぞれは、検出領域SA1~SA6、SB1,SB2に配置された基板P上のアライメントマークを検出可能である。 Each of detectors 91A to 91F, 92A and 92B includes a projection unit for irradiating detection light to detection areas SA1 to SA6, SB1 and SB2, and an optical image of alignment marks arranged in detection areas SA1 to SA6, SB1 and SB2. And a light receiving unit capable of acquiring Each of the plurality of detectors 91A to 91F, 92A and 92B can detect alignment marks on the substrate P arranged in the detection areas SA1 to SA6, SB1 and SB2.
 図4は、投影領域PR1~PR7と、検出領域SA1~SA6、SB1,SB2と、基板Pとの位置関係の一例を示す模式図であり、基板Pの表面を含む平面内の位置関係を示している。図4に示すように、本実施形態おいて、基板Pの表面は、マスクMのパターンの像が投影される複数の露光領域(露光対象領域)PA1~PA4を有する。本実施形態において、基板Pの表面は、4つの露光領域PA1~PA4を有する。露光領域PA1、PA2が、Y軸方向にほぼ等間隔で離れて配置され、露光領域PA3、PA4が、Y軸方向にほぼ等間隔で離れて配置されている。露光領域PA1は、露光領域PA2に対して-Y側に配置されている。露光領域PA3は、露光領域PA4に対して+Y側に配置されている。露光領域PA1、PA2は、露光領域PA3、PA4に対して+X側に配置されている。 FIG. 4 is a schematic diagram showing an example of the positional relationship between the projection regions PR1 to PR7, the detection regions SA1 to SA6, SB1 and SB2, and the substrate P. The positional relationship in a plane including the surface of the substrate P is shown. ing. As shown in FIG. 4, in the present embodiment, the surface of the substrate P has a plurality of exposure areas (exposure target areas) PA1 to PA4 onto which an image of the pattern of the mask M is projected. In the present embodiment, the surface of the substrate P has four exposure areas PA1 to PA4. The exposure areas PA1 and PA2 are arranged at substantially equal intervals in the Y axis direction, and the exposure areas PA3 and PA4 are arranged at substantially equal intervals in the Y axis direction. The exposure area PA1 is arranged on the −Y side with respect to the exposure area PA2. The exposure area PA3 is arranged on the + Y side with respect to the exposure area PA4. The exposure areas PA1 and PA2 are arranged on the + X side with respect to the exposure areas PA3 and PA4.
 本実施形態において、投影領域PR1~PR7のそれぞれは、XY平面内において台形である。本実施形態において、投影光学系PL1、PL3、PL5、PL7による投影領域PR1、PR3、PR5、PR7が、Y軸方向にほぼ等間隔で配置され、投影光学系PL2、PL4、PL6による投影領域PR2、PR4、PR6が、Y軸方向にほぼ等間隔で配置されている。投影領域PR1、PR3、PR5、PR7は、投影領域PR2、PR4、PR6に対して-X側に配置されている。また、Y軸方向に関して、投影領域PR1、PR3、PR5、PR7の間に、投影領域PR2、PR4、PR6が配置される。 In the present embodiment, each of the projection areas PR1 to PR7 is a trapezoid in the XY plane. In the present embodiment, projection regions PR1, PR3, PR5, PR7 by the projection optical systems PL1, PL3, PL5, PL7 are arranged at substantially equal intervals in the Y-axis direction, and projection regions PR2 by the projection optical systems PL2, PL4, PL6 are arranged. , PR4, PR6 are arranged at substantially equal intervals in the Y-axis direction. The projection areas PR1, PR3, PR5, PR7 are arranged on the −X side with respect to the projection areas PR2, PR4, PR6. Further, the projection areas PR2, PR4, and PR6 are arranged between the projection areas PR1, PR3, PR5, and PR7 with respect to the Y-axis direction.
 本実施形態において、複数の投影領域PR1~PR7のうち、Y軸方向に関して外側2つの投影領域PR1と投影領域PR7との間隔は、複数の露光領域PA1~PA4のうち、Y軸方向に関して外側2つの露光領域PA1(PA4)の-Y側のエッジと露光領域PA2(PA3)の+Y側のエッジとの間隔より小さい。また、Y軸方向に関して外側2つの投影領域PR1と投影領域PR7との間隔は、露光領域PA1の-Y側のエッジと+Y側のエッジとの間隔とほぼ同じ、あるいはその間隔より僅かに大きい。なお、本実施形態において、露光領域PA1~PA4それぞれの大きさ及び形状は、ほぼ同じである。 In the present embodiment, among the plurality of projection areas PR1 to PR7, the distance between the two outer projection areas PR1 and the projection area PR7 with respect to the Y-axis direction is set to be two outside the plurality of exposure areas PA1 to PA4 with respect to the Y-axis direction. It is smaller than the interval between the −Y side edge of the two exposure areas PA1 (PA4) and the + Y side edge of the exposure area PA2 (PA3). Further, the distance between the two outer projection areas PR1 and PR7 in the Y-axis direction is substantially the same as or slightly larger than the distance between the −Y side edge and the + Y side edge of the exposure area PA1. In the present embodiment, the sizes and shapes of the exposure areas PA1 to PA4 are substantially the same.
 本実施形態において、第1アライメントシステム91の検出器91A~91Fによる複数の検出領域SA1~SA6は、Y軸方向に所定間隔で離れて配置される。第2アライメントシステム92の検出器92A,92Bによる複数の検出領域SB1,SB2は、Y軸方向に所定間隔で離れて配置される。本実施形態において、第1アライメントシステム91は、6つの検出領域SA1~SA6を有し、第2アライメントシステム92は、2つの検出領域SB1,SB2を有する。本実施形態においては、第2アライメントシステム92の検出領域SB1,SB2の数は、第1アライメントシステム91の検出領域SA1~SA6の数より少ない。 In the present embodiment, the plurality of detection areas SA1 to SA6 by the detectors 91A to 91F of the first alignment system 91 are arranged at predetermined intervals in the Y-axis direction. The plurality of detection regions SB1 and SB2 by the detectors 92A and 92B of the second alignment system 92 are arranged at predetermined intervals in the Y-axis direction. In the present embodiment, the first alignment system 91 has six detection areas SA1 to SA6, and the second alignment system 92 has two detection areas SB1 and SB2. In the present embodiment, the number of detection areas SB1 and SB2 of the second alignment system 92 is smaller than the number of detection areas SA1 to SA6 of the first alignment system 91.
 本実施形態において、検出領域SA1~SA6は、投影領域PR1~PR7に対してX軸方向(走査方向)に関して-X側に配置されている。検出領域SB1,SB2は、投影領域PR1~PR7に対してX軸方向(走査方向)に関して+X側に配置されている。 In the present embodiment, the detection areas SA1 to SA6 are arranged on the −X side with respect to the X-axis direction (scanning direction) with respect to the projection areas PR1 to PR7. The detection areas SB1 and SB2 are arranged on the + X side with respect to the X-axis direction (scanning direction) with respect to the projection areas PR1 to PR7.
 複数の検出領域SA1~SA6のうち、Y軸方向に関して外側2つの検出領域SA1と検出領域SA6との間隔は、複数の露光領域PA1~PA4のうち、Y軸方向に関して外側2つの露光領域PA1(PA4)の-Y側のエッジと露光領域PA2(PA3)の+Y側のエッジとの間隔とほぼ等しい。複数の検出領域SB1,SB2のうち、Y軸方向に関して外側2つの検出領域SB1と検出領域SB2との間隔は、複数の露光領域PA1~PA4のうち、Y軸方向に関して外側2つの露光領域PA1(PA4)の-Y側のエッジと露光領域PA2(PA3)の+Y側のエッジとの間隔とほぼ等しい。 Among the plurality of detection areas SA1 to SA6, the distance between the two outer detection areas SA1 and SA6 in the Y-axis direction is set so that the two outer exposure areas PA1 ( The distance between the −Y side edge of PA4) and the + Y side edge of exposure area PA2 (PA3) is substantially equal. Among the plurality of detection areas SB1 and SB2, the distance between the two outer detection areas SB1 and the detection area SB2 with respect to the Y-axis direction is the two outer exposure areas PA1 ( The distance between the −Y side edge of PA4) and the + Y side edge of exposure area PA2 (PA3) is substantially equal.
 すなわち、本実施形態においては、Y軸方向に関する第1アライメントシステム91の両端の検出領域SA1と検出領域SA6との距離と、第2アライメントシステム92の両端の検出領域SB1と検出領域SB2との距離とは、ほぼ同じである。 That is, in the present embodiment, the distance between the detection area SA1 and the detection area SA6 at both ends of the first alignment system 91 in the Y-axis direction, and the distance between the detection area SB1 and the detection area SB2 at both ends of the second alignment system 92. Is almost the same.
 また、本実施形態においては、Y軸方向に関する第1アライメントシステム91の両端の検出領域SA1,SA6の位置と、第2アライメントシステム92の両端の検出領域SB1,SB2の位置とは、ほぼ同じである。 In the present embodiment, the positions of the detection areas SA1 and SA6 at both ends of the first alignment system 91 in the Y-axis direction are substantially the same as the positions of the detection areas SB1 and SB2 at both ends of the second alignment system 92. is there.
 第1,第2アライメントシステム91,92は、基板Pに設けられている複数のアライメントマークm1~m6を検出可能である。本実施形態において、基板P上にはY軸方向に離れて6つのアライメントマークm1~m6が配置され、それらアライメントマークm1~m6のグループが、X軸方向に離れた4箇所に配置される。アライメントマークm1,m2,m3は、露光領域PA1,PA4の各両端部に隣接して設けられ、アライメントマークm4,m5,m6は、露光領域PA2,PA3の各両端部に隣接して設けられる。 The first and second alignment systems 91 and 92 can detect a plurality of alignment marks m1 to m6 provided on the substrate P. In this embodiment, six alignment marks m1 to m6 are arranged on the substrate P so as to be separated in the Y-axis direction, and groups of these alignment marks m1 to m6 are arranged at four places separated in the X-axis direction. Alignment marks m1, m2, and m3 are provided adjacent to both ends of exposure areas PA1 and PA4, and alignment marks m4, m5, and m6 are provided adjacent to both ends of exposure areas PA2, PA3.
 以下の説明において、X軸方向に離れた4箇所に配置されるアライメントマークm1~m6の4つのグループのうち、基板Pの-X側のエッジに最も近いアライメントマークm1~m6のグループを適宜、第1グループG1、と称し、第1グループG1に次いで基板Pの-X側のエッジに近いアライメントマークm1~m6のグループを適宜、第2グループG2、と称し、第2グループG2に次いで基板Pの-X側のエッジに近いアライメントマークm1~m6のグループを適宜、第3グループG3、と称し、基板Pの+X側のエッジに最も近いアライメントマークm1~m6のグループを適宜、第4グループG4、と称する。 In the following description, among the four groups of alignment marks m1 to m6 arranged at four positions separated in the X-axis direction, the group of alignment marks m1 to m6 that is closest to the −X side edge of the substrate P is appropriately selected. The group of alignment marks m1 to m6 near the −X side edge of the substrate P after the first group G1 is referred to as the first group G1, and is appropriately referred to as the second group G2, and the substrate P is next after the second group G2. A group of alignment marks m1 to m6 close to the −X side edge of the substrate P is appropriately referred to as a third group G3, and a group of alignment marks m1 to m6 closest to the + X side edge of the substrate P is appropriately referred to as a fourth group G4. .
 本実施形態においては、基板P上においてY軸方向に離れて配置された6つのアライメントマークm1~m6に対応して、第1アライメントシステム91の検出領域SA1~SA6(検出器91A~91F)が配置されている。検出器91A~91Fは、アライメントマークm1~m6が検出領域SA1~SA6に同時に配置されるように設けられている。第1アライメントシステム91は、検出器91A~91Fを用いて、6つのアライメントマークm1~m6を同時に検出可能である。 In the present embodiment, the detection areas SA1 to SA6 (detectors 91A to 91F) of the first alignment system 91 correspond to the six alignment marks m1 to m6 that are arranged apart from each other in the Y-axis direction on the substrate P. Has been placed. The detectors 91A to 91F are provided so that the alignment marks m1 to m6 are simultaneously arranged in the detection areas SA1 to SA6. The first alignment system 91 can simultaneously detect the six alignment marks m1 to m6 using the detectors 91A to 91F.
 また、基板P上においてY軸方向に離れて配置された2つのアライメントマークm1,m6に対応して、第2アライメントシステム92の検出領域SB1,SB2(検出器92A,92B)が配置されている。検出器92A,92Bは、アライメントマークm1,m6が検出領域SB1,SB2に同時に配置されるように設けられている。第2アライメントシステム92は、検出器92A,92Bを用いて、複数のアライメントマークm1~m6のうち、Y軸方向に関して外側2つ(両端)のアライメントマークm1,m6を同時に検出可能である。 In addition, detection areas SB1 and SB2 ( detectors 92A and 92B) of the second alignment system 92 are arranged corresponding to the two alignment marks m1 and m6 that are arranged apart from each other in the Y-axis direction on the substrate P. . Detectors 92A and 92B are provided such that alignment marks m1 and m6 are simultaneously arranged in detection areas SB1 and SB2. The second alignment system 92 can simultaneously detect the two outer alignment marks m1 and m6 in the Y-axis direction among the plurality of alignment marks m1 to m6 using the detectors 92A and 92B.
 次に、本実施形態に係る、基板Pの露光時における露光装置EXの動作の一例について説明する。 Next, an example of the operation of the exposure apparatus EX during exposure of the substrate P according to the present embodiment will be described.
 本実施形態において、露光装置EXの動作の少なくとも一部は、予め定められている露光に関する制御情報(露光制御情報)に基づいて実行される。露光制御情報は、露光装置EXの動作を規定する制御命令群を含み、露光レシピとも呼ばれる。以下の説明において、露光に関する制御情報を適宜、露光レシピ、と称する。 In the present embodiment, at least a part of the operation of the exposure apparatus EX is executed based on predetermined control information (exposure control information) related to exposure. The exposure control information includes a control command group that defines the operation of the exposure apparatus EX, and is also called an exposure recipe. In the following description, the control information related to exposure is appropriately referred to as an exposure recipe.
 露光レシピは、制御装置5に予め記憶されている。少なくとも基板Pの露光時(マスクM及び基板Pに対する露光光ELの照射動作時)における露光装置EXの動作条件は、露光レシピによって予め決定されている。制御装置5は、露光レシピに基づいて、露光装置EXの動作を制御する。 The exposure recipe is stored in the control device 5 in advance. The operating conditions of the exposure apparatus EX at least during exposure of the substrate P (during the irradiation operation of the exposure light EL on the mask M and the substrate P) are determined in advance by the exposure recipe. The control device 5 controls the operation of the exposure apparatus EX based on the exposure recipe.
 露光レシピは、基板Pの露光時におけるマスクステージ1及び基板ステージ2の移動条件を含む。基板Pの露光時、制御装置5は、露光レシピに基づいて、マスクステージ1及び基板ステージ2を移動する。本実施形態の露光装置EXは、マルチレンズ型スキャン露光装置であり、基板Pの露光領域PA1~PA4の露光時において、マスクM及び基板Pは、XY平面内のX軸方向に移動される。制御装置5は、露光レシピに基づいて、マスクMと基板PとをX軸方向に同期移動しながらマスクMに露光光ELを照射して、そのマスクMを介して基板Pの表面の露光領域PA1~PA4のそれぞれに露光光ELを照射して、それら露光領域PA1~PA4を露光する。基板Pの露光時においては、制御装置5は、露光レシピに基づいて、投影領域PR1~PR7に対して基板PをX軸方向(走査方向)に移動しながら、基板Pの複数の露光領域PA1~PA4を順次露光する。 The exposure recipe includes conditions for moving the mask stage 1 and the substrate stage 2 when the substrate P is exposed. When the substrate P is exposed, the control device 5 moves the mask stage 1 and the substrate stage 2 based on the exposure recipe. The exposure apparatus EX of the present embodiment is a multi-lens scan exposure apparatus, and the mask M and the substrate P are moved in the X-axis direction in the XY plane when the exposure areas PA1 to PA4 of the substrate P are exposed. Based on the exposure recipe, the control device 5 irradiates the mask M with the exposure light EL while moving the mask M and the substrate P synchronously in the X-axis direction, and exposes the exposure area on the surface of the substrate P through the mask M. Exposure light EL is irradiated to each of PA1 to PA4 to expose these exposure areas PA1 to PA4. At the time of exposure of the substrate P, the control device 5 moves the substrate P in the X-axis direction (scanning direction) relative to the projection regions PR1 to PR7 based on the exposure recipe, while the plurality of exposure regions PA1 of the substrate P. ˜PA4 is sequentially exposed.
 本実施形態において、基板P上に設けられた複数の露光領域PA1~PA4に対する露光処理は、露光領域PA1~PA4を投影領域PR1~PR7に対して基板Pの表面(XY平面)に沿ってX軸方向に移動させながら実行される。 In the present embodiment, the exposure processing for the plurality of exposure areas PA1 to PA4 provided on the substrate P is performed by changing the exposure areas PA1 to PA4 from the projection areas PR1 to PR7 along the surface (XY plane) of the substrate P. It is executed while moving in the axial direction.
 例えば基板Pの露光領域PA1を露光する場合、制御装置5は、投影領域PR1~PR7に対して基板Pの露光領域PR1をX軸方向に移動するとともに、その基板PのX軸方向への移動と同期して、照明領域に対してマスクMをX軸方向に移動しながら、照明領域に露光光ELを照射して、マスクMからの露光光ELを投影システムPSを介して投影領域PR1~PR7に照射する。これにより、基板Pの露光領域PA1は、投影領域PR1~PR7に照射された露光光ELで露光され、マスクMのパターンの像が基板Pの露光領域PA1に投影される。 For example, when exposing the exposure area PA1 of the substrate P, the control device 5 moves the exposure area PR1 of the substrate P in the X-axis direction with respect to the projection areas PR1 to PR7, and moves the substrate P in the X-axis direction. In synchronization with the illumination area, the mask M is moved in the X-axis direction while irradiating the illumination area with the exposure light EL, and the exposure light EL from the mask M is projected through the projection system PS to the projection areas PR1˜PR. Irradiate PR7. Thus, the exposure area PA1 of the substrate P is exposed with the exposure light EL irradiated to the projection areas PR1 to PR7, and the pattern image of the mask M is projected onto the exposure area PA1 of the substrate P.
 次に、上述の構成を有する露光装置EXを用いて基板Pを露光する方法の一例について、図5のフローチャート、及び図6,図7,図8の模式図を参照しながら説明する。 Next, an example of a method for exposing the substrate P using the exposure apparatus EX having the above-described configuration will be described with reference to the flowchart of FIG. 5 and the schematic diagrams of FIGS.
 図5に示すように、本実施形態においては、投影領域PR1~PR7に露光光ELを照射しながら、基板P上の複数の露光領域PA1~PA4を順次露光して、その基板P上に第1パターン層(ファーストレイヤ)を形成するための第1露光処理を実行する工程(ステップSP1)と、アライメントシステム9を用いて、第1露光処理が実行された基板P上のアライメントマークm1~m6を検出して、第1露光処理で形成された第1パターン層をそれぞれ有する露光領域PA1~PA4の位置を導出するアライメント処理を実行する工程(ステップSP2)と、投影領域PR1~PR7に露光光ELを照射しながら、第1露光処理及びアライメント処理が実行された基板P上の複数の露光領域PA1~PA4を順次露光して、その基板P上(第1パターン層上)に第2パターン層(セカンドレイヤ)を形成するための第2露光処理を実行する工程(ステップSP3)とが実行される。 As shown in FIG. 5, in the present embodiment, a plurality of exposure regions PA1 to PA4 on the substrate P are sequentially exposed while irradiating the projection regions PR1 to PR7 with the exposure light EL, and the substrate P is subjected to the first exposure. A step (step SP1) of executing a first exposure process for forming one pattern layer (first layer) and alignment marks m1 to m6 on the substrate P on which the first exposure process has been performed using the alignment system 9 , And performing an alignment process for deriving the positions of the exposure areas PA1 to PA4 each having the first pattern layer formed by the first exposure process (step SP2), and exposing light to the projection areas PR1 to PR7 While irradiating EL, a plurality of exposure regions PA1 to PA4 on the substrate P on which the first exposure process and the alignment process have been performed are sequentially exposed, and the substrate P The second pattern layer performing a second exposure process to form a (second layer) (step SP3) is performed (the first pattern layer).
 なお、本実施形態においては、簡単のため、基板P上に第1,第2パターン層が形成される場合を例にして説明するが、第2パターン層上に、第3、第4、…、第nパターン層等、任意の複数のパターン層を形成することができる。例えば、薄膜トランジスタを製造する場合、メタル層、透明電極層等、5層程度のレイヤ(パターン層)が基板P上に形成される。 In the present embodiment, for the sake of simplicity, the case where the first and second pattern layers are formed on the substrate P will be described as an example. However, the third, fourth,... A plurality of arbitrary pattern layers such as the nth pattern layer can be formed. For example, when manufacturing a thin film transistor, about five layers (pattern layers), such as a metal layer and a transparent electrode layer, are formed on the substrate P.
 また、以下の説明においては、露光領域PA1を適宜、第1露光領域PA1、と称し、露光領域PA2を適宜、第2露光領域PA2、と称し、露光領域PA3を適宜、第3露光領域PA3、と称し、露光領域PA4を適宜、第4露光領域PA4、と称する。 In the following description, the exposure area PA1 is appropriately referred to as a first exposure area PA1, the exposure area PA2 is appropriately referred to as a second exposure area PA2, and the exposure area PA3 is appropriately referred to as a third exposure area PA3. The exposure area PA4 is appropriately referred to as a fourth exposure area PA4.
 まず、第1露光処理について、図6を参照して説明する。 First, the first exposure process will be described with reference to FIG.
 制御装置5は、基板Pを基板ステージ2に搬入(ロード)する。基板Pには、感光剤が塗布されている。マスクステージ1には、基板P上に形成される第1パターン層に応じたパターンを有するマスクMが搬入(ロード)され、保持されている。 The control device 5 loads (loads) the substrate P onto the substrate stage 2. A photosensitive agent is applied to the substrate P. A mask M having a pattern corresponding to the first pattern layer formed on the substrate P is loaded (loaded) and held on the mask stage 1.
 基板ステージ2に保持された直後において、図6(A)に示すように、基板Pは、投影領域PR1~PR7及び検出領域SA1~SA6,SB1,SB2に対して、所定の位置に配置される。以下の説明において、図6(A)に示す基板Pの位置を適宜、初期位置、と称する。 Immediately after being held on the substrate stage 2, as shown in FIG. 6A, the substrate P is disposed at a predetermined position with respect to the projection regions PR1 to PR7 and the detection regions SA1 to SA6, SB1 and SB2. . In the following description, the position of the substrate P shown in FIG. 6A is appropriately referred to as an initial position.
 マスクMがマスクステージ1に保持された後、露光レシピに基づいて、ベースライン計測処理が実行される。ベースライン計測処理は、投影システムPSによるマスクMのパターン像の位置(投影領域PR1~PR7の位置)とアライメントシステム9の検出領域SA1~SA6,SB1,SB2との位置関係(ベースライン量)を計測する処理である。 After the mask M is held on the mask stage 1, a baseline measurement process is executed based on the exposure recipe. In the baseline measurement process, the positional relationship (baseline amount) between the position of the pattern image of the mask M by the projection system PS (the positions of the projection areas PR1 to PR7) and the detection areas SA1 to SA6, SB1, and SB2 of the alignment system 9 is calculated. It is a process to measure.
 ベースライン計測処理は、干渉計システム6で基板ステージ2の位置を計測しつつ、マスクMに配置されたアライメントマーク(不図示)の像を投影システムPS及び透過部45を介して受光装置46で受光する処理と、干渉計システム6で基板ステージ2の位置を計測しつつ、アライメントシステム9で透過部45(基準マーク)を検出する処理とを含む。これにより、干渉計システム6によって規定される座標系(XY平面内の座標系)における投影領域PR1~PR7の位置と、検出領域SA1~SA6,SB1,SB2の位置とが検出され、制御装置5は、ベースライン量を導出することができる。 In the baseline measurement process, the position of the substrate stage 2 is measured by the interferometer system 6, and an image of an alignment mark (not shown) arranged on the mask M is received by the light receiving device 46 via the projection system PS and the transmission unit 45. A process of receiving light and a process of detecting the transmitting portion 45 (reference mark) by the alignment system 9 while measuring the position of the substrate stage 2 by the interferometer system 6. As a result, the positions of the projection areas PR1 to PR7 and the positions of the detection areas SA1 to SA6, SB1 and SB2 in the coordinate system defined by the interferometer system 6 (the coordinate system in the XY plane) are detected, and the control device 5 Can derive the baseline amount.
 本実施形態においては、第1露光処理において、複数の露光領域PA1~PA4のうち、最初に第1露光領域PA1から露光され、次いで第2露光領域PA2が露光され、次いで第3露光領域PA3が露光され、最後に第4露光領域PA4が露光される。 In the present embodiment, in the first exposure process, among the plurality of exposure areas PA1 to PA4, the first exposure area PA1 is first exposed, then the second exposure area PA2 is exposed, and then the third exposure area PA3 is set. Finally, the fourth exposure area PA4 is exposed.
 第1露光処理は、第1パターン層を形成するための露光処理であり、基板P上にはアライメントマーク(m1~m6)は設けられていない。第1露光処理を実行するに際し、アライメントシステム9を用いる基板Pの位置を検出する処理は実行されない。 The first exposure process is an exposure process for forming the first pattern layer, and the alignment marks (m1 to m6) are not provided on the substrate P. When executing the first exposure process, the process of detecting the position of the substrate P using the alignment system 9 is not executed.
 制御装置5は、複数の露光領域PA1~PA4の露光を開始する。まず、制御装置5は、第1露光領域PA1の露光を開始するために、基板Pを保持した基板ステージ2を制御して、第1露光領域PA1が露光開始位置に配置されるように、基板Pを初期位置から第1露光領域PA1の露光開始位置に移動する。なお、基板Pが第1露光領域PA1の露光開始位置に移動する少なくとも直前において、第1露光領域PA1は、投影領域PR1~PR7の外側に配置される。 The control device 5 starts exposure of the plurality of exposure areas PA1 to PA4. First, the control device 5 controls the substrate stage 2 holding the substrate P in order to start the exposure of the first exposure area PA1, and the substrate is arranged so that the first exposure area PA1 is arranged at the exposure start position. P is moved from the initial position to the exposure start position of the first exposure area PA1. Note that the first exposure area PA1 is arranged outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the first exposure area PA1.
 図6(B)は、第1露光領域PA1が露光開始位置に配置されている状態を示す。第1露光領域PA1の露光開始位置は、第1露光領域PA1の-X側の端が、投影領域PR2,PR4,PR6の少なくとも一部に配置される位置を含む。本実施形態においては、図6(B)に示すように、第1露光領域PA1の露光開始位置は、第1露光領域PA1の-X側の端が、投影領域PR2,PR4,PR6の+X側の端に配置される位置である。 FIG. 6B shows a state where the first exposure area PA1 is arranged at the exposure start position. The exposure start position of the first exposure area PA1 includes a position where the −X side end of the first exposure area PA1 is disposed at least in a part of the projection areas PR2, PR4, PR6. In the present embodiment, as shown in FIG. 6B, the exposure start position of the first exposure area PA1 is such that the −X side end of the first exposure area PA1 is at the + X side of the projection areas PR2, PR4, PR6. It is a position arrange | positioned at the edge.
 制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第1露光領域PA1を-X方向に移動する。これにより、第1露光領域PA1が露光される。 The control device 5 controls the substrate stage 2 to move the first exposure area PA1 of the substrate P in the −X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the first exposure area PA1 is exposed.
 制御装置5は、少なくとも第1露光領域PA1が露光終了位置に配置されるまで、基板Pを-X方向に移動する。第1露光領域PA1の露光終了位置は、第1露光領域PA1の+X側の端が、投影領域PR1,PR3,PR5,PR7の少なくとも一部に配置される位置を含む。本実施形態においては、第1露光領域PA1の露光終了位置は、第1露光領域PA1の+X側の端が、投影領域PR1,PR3,PR5,PR7の-X側の端に配置される位置である。 The control device 5 moves the substrate P in the −X direction until at least the first exposure area PA1 is arranged at the exposure end position. The exposure end position of the first exposure area PA1 includes a position where the + X side end of the first exposure area PA1 is arranged at least in a part of the projection areas PR1, PR3, PR5, PR7. In the present embodiment, the exposure end position of the first exposure area PA1 is a position where the + X side end of the first exposure area PA1 is arranged at the −X side end of the projection areas PR1, PR3, PR5, PR7. is there.
 以上により、第1露光領域PA1の露光が終了する。第1露光領域PA1に対する露光光ELの照射中、基板Pを保持した基板ステージ2は、-X方向にほぼ一定の速度(定速)で移動する。 Thus, the exposure of the first exposure area PA1 is completed. During the irradiation of the exposure light EL with respect to the first exposure area PA1, the substrate stage 2 holding the substrate P moves at a substantially constant speed (constant speed) in the −X direction.
 次に、制御装置5は、第2露光領域PA2の露光を開始するために、基板Pを保持した基板ステージ2を制御して、第2露光領域PA2が露光開始位置に配置されるように、基板Pを第1露光領域PA1の露光終了位置から第2露光領域PA2の露光開始位置に移動する。なお、基板Pが第2露光領域PA2の露光開始位置に移動する少なくとも直前において、第2露光領域PA2は、投影領域PR1~PR7の外側に配置される。 Next, in order to start the exposure of the second exposure area PA2, the control device 5 controls the substrate stage 2 holding the substrate P so that the second exposure area PA2 is arranged at the exposure start position. The substrate P is moved from the exposure end position of the first exposure area PA1 to the exposure start position of the second exposure area PA2. Note that the second exposure area PA2 is arranged outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the second exposure area PA2.
 図6(C)は、第2露光領域PA2が露光開始位置に配置されている状態を示す。第2露光領域PA2の露光開始位置は、第2露光領域PA2の+X側の端が、投影領域PR1,PR3,PR5,PR7の少なくとも一部に配置される位置を含む。本実施形態においては、図6(C)に示すように、第2露光領域PA2の露光開始位置は、第2露光領域PA2の+X側の端が、投影領域PR1,PR3,PR5,PR7の-X側の端に配置される位置である。 FIG. 6C shows a state in which the second exposure area PA2 is arranged at the exposure start position. The exposure start position of the second exposure area PA2 includes a position where the + X side end of the second exposure area PA2 is disposed at least in a part of the projection areas PR1, PR3, PR5, PR7. In the present embodiment, as shown in FIG. 6C, the exposure start position of the second exposure area PA2 is such that the + X side end of the second exposure area PA2 is −− of the projection areas PR1, PR3, PR5, PR7. This is the position at the end on the X side.
 制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第2露光領域PA2を+X方向に移動する。これにより、第2露光領域PA2が露光される。 The control device 5 controls the substrate stage 2 to move the second exposure area PA2 of the substrate P in the + X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. . Thereby, the second exposure area PA2 is exposed.
 制御装置5は、少なくとも第2露光領域PA2が露光終了位置に配置されるまで、基板Pを+X方向に移動する。第2露光領域PA2の露光終了位置は、第2露光領域PA2の-X側の端が、投影領域PR2,PR4,PR6の少なくとも一部に配置される位置を含む。本実施形態においては、第2露光領域PA2の露光終了位置は、第2露光領域PA2の-X側の端が、投影領域PR2,PR4,PR6の+X側の端に配置される位置である。 The control device 5 moves the substrate P in the + X direction until at least the second exposure area PA2 is arranged at the exposure end position. The exposure end position of the second exposure area PA2 includes a position where the −X side end of the second exposure area PA2 is disposed at least in a part of the projection areas PR2, PR4, PR6. In the present embodiment, the exposure end position of the second exposure area PA2 is a position where the −X side end of the second exposure area PA2 is disposed at the + X side end of the projection areas PR2, PR4, and PR6.
 以上により、第2露光領域PA2の露光が終了する。第2露光領域PA2に対する露光光ELの照射中、基板Pを保持した基板ステージ2は、+X方向にほぼ一定の速度(定速)で移動する。 Thus, the exposure of the second exposure area PA2 is completed. During the irradiation of the exposure light EL with respect to the second exposure area PA2, the substrate stage 2 holding the substrate P moves at a substantially constant speed (constant speed) in the + X direction.
 次に、制御装置5は、第3露光領域PA3の露光を開始するために、基板Pを保持した基板ステージ2を制御して、第3露光領域PA3が露光開始位置に配置されるように、基板Pを第2露光領域PA2の露光終了位置から第3露光領域PA3の露光開始位置に移動する。なお、基板Pが第3露光領域PA3の露光開始位置に移動する少なくとも直前において、第3露光領域PA3は、投影領域PR1~PR7の外側に配置される。 Next, in order to start the exposure of the third exposure area PA3, the control device 5 controls the substrate stage 2 holding the substrate P so that the third exposure area PA3 is arranged at the exposure start position. The substrate P is moved from the exposure end position of the second exposure area PA2 to the exposure start position of the third exposure area PA3. Note that the third exposure area PA3 is arranged outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the third exposure area PA3.
 図6(D)は、第3露光領域PA3が露光開始位置に配置されている状態を示す。第3露光領域PA3の露光開始位置は、第3露光領域PA3の-X側の端が、投影領域PR2,PR4,PR6の少なくとも一部に配置される位置を含む。本実施形態においては、図6(D)に示すように、第3露光領域PA3の露光開始位置は、第3露光領域PA3の-X側の端が、投影領域PR2,PR4,PR6の+X側の端に配置される位置である。 FIG. 6D shows a state in which the third exposure area PA3 is arranged at the exposure start position. The exposure start position of the third exposure area PA3 includes a position at which the −X side end of the third exposure area PA3 is disposed in at least a part of the projection areas PR2, PR4, PR6. In the present embodiment, as shown in FIG. 6D, the exposure start position of the third exposure area PA3 is such that the −X side end of the third exposure area PA3 is at the + X side of the projection areas PR2, PR4, PR6. It is a position arrange | positioned at the edge.
 制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第3露光領域PA3を-X方向に移動する。これにより、第3露光領域PA3が露光される。 The control device 5 controls the substrate stage 2 to move the third exposure area PA3 of the substrate P in the −X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the third exposure area PA3 is exposed.
 制御装置5は、少なくとも第3露光領域PA3が露光終了位置に配置されるまで、基板Pを-X方向に移動する。第3露光領域PA3の露光終了位置は、第3露光領域PA3の+X側の端が、投影領域PR1,PR3,PR5,PR7の少なくとも一部に配置される位置を含む。本実施形態においては、第3露光領域PA3の露光終了位置は、第3露光領域PA3の+X側の端が、投影領域PR1,PR3,PR5,PR7の-X側の端に配置される位置である。 The control device 5 moves the substrate P in the −X direction until at least the third exposure area PA3 is arranged at the exposure end position. The exposure end position of the third exposure area PA3 includes a position where the + X side end of the third exposure area PA3 is arranged at least in a part of the projection areas PR1, PR3, PR5, PR7. In the present embodiment, the exposure end position of the third exposure area PA3 is a position where the + X side end of the third exposure area PA3 is arranged at the −X side end of the projection areas PR1, PR3, PR5, PR7. is there.
 以上により、第3露光領域PA3の露光が終了する。第3露光領域PA3に対する露光光ELの照射中、基板Pを保持した基板ステージ2は、-X方向にほぼ一定の速度(定速)で移動する。 Thus, the exposure of the third exposure area PA3 is completed. During the irradiation of the exposure light EL with respect to the third exposure area PA3, the substrate stage 2 holding the substrate P moves at a substantially constant speed (constant speed) in the −X direction.
 次に、制御装置5は、第4露光領域PA4の露光を開始するために、基板Pを保持した基板ステージ2を制御して、第4露光領域PA4が露光開始位置に配置されるように、基板Pを第3露光領域PA3の露光終了位置から第4露光領域PA4の露光開始位置に移動する。なお、基板Pが第4露光領域PA4の露光開始位置に移動する少なくとも直前において、第4露光領域PA4は、投影領域PR1~PR7の外側に配置される。 Next, in order to start the exposure of the fourth exposure area PA4, the control device 5 controls the substrate stage 2 holding the substrate P so that the fourth exposure area PA4 is arranged at the exposure start position. The substrate P is moved from the exposure end position of the third exposure area PA3 to the exposure start position of the fourth exposure area PA4. Note that the fourth exposure area PA4 is disposed outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the fourth exposure area PA4.
 図6(E)は、第4露光領域PA4が露光開始位置に配置されている状態を示す。第4露光領域PA4の露光開始位置は、第4露光領域PA4の+X側の端が、投影領域PR1,PR3,PR5,PR7の少なくとも一部に配置される位置を含む。本実施形態においては、図6(E)に示すように、第4露光領域PA4の露光開始位置は、第4露光領域PA4の+X側の端が、投影領域PR1,PR3,PR5,PR7の-X側の端に配置される位置である。 FIG. 6E shows a state where the fourth exposure area PA4 is arranged at the exposure start position. The exposure start position of the fourth exposure area PA4 includes a position where the + X side end of the fourth exposure area PA4 is arranged at least in a part of the projection areas PR1, PR3, PR5, PR7. In the present embodiment, as shown in FIG. 6 (E), the exposure start position of the fourth exposure area PA4 is such that the + X side end of the fourth exposure area PA4 is −− of the projection areas PR1, PR3, PR5, PR7. This is the position at the end on the X side.
 制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第4露光領域PA4を+X方向に移動する。これにより、第4露光領域PA4が露光される。 The control device 5 controls the substrate stage 2 to move the fourth exposure area PA4 of the substrate P in the + X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. . Thereby, the fourth exposure area PA4 is exposed.
 制御装置5は、少なくとも第4露光領域PA4が露光終了位置に配置されるまで、基板Pを+X方向に移動する。第4露光領域PA4の露光終了位置は、第4露光領域PA4の-X側の端が、投影領域PR2,PR4,PR6の少なくとも一部に配置される位置を含む。本実施形態においては、第4露光領域PA4の露光終了位置は、図6(F)に示すように、第4露光領域PA4の-X側の端が、投影領域PR2,PR4,PR6の+X側の端に配置される位置である。 The control device 5 moves the substrate P in the + X direction until at least the fourth exposure area PA4 is arranged at the exposure end position. The exposure end position of the fourth exposure area PA4 includes a position where the −X side end of the fourth exposure area PA4 is disposed in at least a part of the projection areas PR2, PR4, PR6. In the present embodiment, as shown in FIG. 6F, the exposure end position of the fourth exposure area PA4 is such that the −X side end of the fourth exposure area PA4 is at the + X side of the projection areas PR2, PR4, PR6. It is a position arrange | positioned at the edge.
 以上により、第4露光領域PA4の露光が終了する。第4露光領域PA4に対する露光光ELの照射中、基板Pを保持した基板ステージ2は、+X方向にほぼ一定の速度(定速)で移動する。 Thus, the exposure of the fourth exposure area PA4 is completed. During the irradiation of the exposure light EL to the fourth exposure area PA4, the substrate stage 2 holding the substrate P moves at a substantially constant speed (constant speed) in the + X direction.
 以上により、第1露光処理が終了する。第1露光処理が終了した後、基板Pが基板ステージ2より搬出(アンロード)される。基板ステージ2からアンロードされた基板Pは、現像処理、エッチング処理等を含む各種のプロセス処理を施される。これにより、基板P上に第1パターン層が形成される。また、第1露光処理及びその後のプロセス処理が実行されることによって、基板P上に、アライメントマークm1~m6が形成される。 Thus, the first exposure process is completed. After the first exposure process is completed, the substrate P is unloaded from the substrate stage 2. The substrate P unloaded from the substrate stage 2 is subjected to various process processes including a development process and an etching process. Thereby, the first pattern layer is formed on the substrate P. Further, alignment marks m1 to m6 are formed on the substrate P by executing the first exposure process and the subsequent process process.
 その後、第1パターン層及びアライメントマークm1~m6が形成された基板Pに対して、第2露光処理を実行するために、感光剤が塗布される。 Thereafter, a photosensitive agent is applied to the substrate P on which the first pattern layer and the alignment marks m1 to m6 are formed in order to perform the second exposure process.
 次に、アライメント処理について、図7を参照して説明する。 Next, the alignment process will be described with reference to FIG.
 本実施形態においては、2つのアライメントモードが用意されている。露光レシピは、第1アライメントモードと、第2アライメントモードとを有する。制御装置5は、基板Pの露光領域PA1~PA4を露光するに際し、第1アライメントモード及び第2アライメントモードの少なくとも一方を選択して、露光領域PA1~PA4の位置を導出するアライメント処理を実行する。 In this embodiment, two alignment modes are prepared. The exposure recipe has a first alignment mode and a second alignment mode. When exposing the exposure areas PA1 to PA4 of the substrate P, the control device 5 selects at least one of the first alignment mode and the second alignment mode and executes an alignment process for deriving the positions of the exposure areas PA1 to PA4. .
 第1アライメントモードは、基板Pの露光領域PA1~PA4のそれぞれに隣接する複数のアライメントマークm1~m6を全て検出して、基板Pの位置及び基板P上の露光領域PA1~PA4それぞれの位置を導出するモードである。すなわち、第1アライメントモードでは、制御装置5は、第1~第4グループG1~G4の全てのアライメントマークm1~m4を、アライメントシステム9を用いて検出する。 In the first alignment mode, all of the plurality of alignment marks m1 to m6 adjacent to the exposure areas PA1 to PA4 on the substrate P are detected, and the position of the substrate P and the positions of the exposure areas PA1 to PA4 on the substrate P are determined. This is the mode to derive. That is, in the first alignment mode, the control device 5 detects all the alignment marks m1 to m4 of the first to fourth groups G1 to G4 using the alignment system 9.
 第2アライメントモードは、第1アライメントモードに基づくアライメント処理の結果を利用するモードである。第2アライメントモードは、基板P上の複数のアライメントマークm1~m6のうち、所定のアライメントマークを検出して、その所定のアライメントマークの検出結果と、第1アライメントモードの導出結果とに基づいて、基板Pの位置及び基板P上の露光領域PA1~PA4それぞれの位置を導出するモードである。第2アライメントモードでは、制御装置5は、基板P上の複数のアライメントマークm1~m6のうち、一部のアライメントマークを、アライメントシステム9を用いて検出する。 The second alignment mode is a mode that uses the result of the alignment process based on the first alignment mode. In the second alignment mode, a predetermined alignment mark is detected from the plurality of alignment marks m1 to m6 on the substrate P, and the detection result of the predetermined alignment mark and the derived result of the first alignment mode are used. In this mode, the position of the substrate P and the positions of the exposure areas PA1 to PA4 on the substrate P are derived. In the second alignment mode, the control device 5 uses the alignment system 9 to detect some of the alignment marks m1 to m6 on the substrate P.
 以下、第1アライメントモードに基づくアライメント処理について説明する。第2アライメントモードについては後述する。 Hereinafter, an alignment process based on the first alignment mode will be described. The second alignment mode will be described later.
 制御装置5は、第1パターン層及びアライメントマークm1~m6を有する基板Pを基板ステージ2に搬入(ロード)する。基板Pには、感光剤が塗布されている。基板ステージ2に保持された直後において、基板Pは、初期位置に配置される。マスクステージ1には、基板P上に形成される第2パターン層に応じたパターンを有するマスクMが搬入(ロード)され、保持されている。 The control device 5 loads (loads) the substrate P having the first pattern layer and the alignment marks m1 to m6 onto the substrate stage 2. A photosensitive agent is applied to the substrate P. Immediately after being held on the substrate stage 2, the substrate P is placed at the initial position. A mask M having a pattern corresponding to the second pattern layer formed on the substrate P is loaded (loaded) and held on the mask stage 1.
 制御装置5は、アライメントシステム9を用いて、露光領域PA1~PA4に対応したアライメントマークm1~m6を検出して、露光領域PA1~PA4の位置を導出する。 The controller 5 uses the alignment system 9 to detect the alignment marks m1 to m6 corresponding to the exposure areas PA1 to PA4, and derives the positions of the exposure areas PA1 to PA4.
 まず、図7(A)に示すように、制御装置5は、干渉計システム6を用いて、基板ステージ2の位置を計測しつつ、基板ステージ2を制御して、第1アライメントシステム91の検出領域SA1~SA6に、第1グループG1のアライメントマークm1~m6が配置されるように、基板Pを移動する。第1アライメントシステム91は、第1グループG1のアライメントマークm1~m6を検出する。これにより、制御装置5は、干渉計システム6によって規定される座標系における第1グループG1のアライメントマークm1~m6の位置を導出することができる。 First, as shown in FIG. 7A, the control device 5 uses the interferometer system 6 to measure the position of the substrate stage 2 and control the substrate stage 2 to detect the first alignment system 91. The substrate P is moved so that the alignment marks m1 to m6 of the first group G1 are arranged in the areas SA1 to SA6. The first alignment system 91 detects the alignment marks m1 to m6 of the first group G1. Thereby, the control device 5 can derive the positions of the alignment marks m1 to m6 of the first group G1 in the coordinate system defined by the interferometer system 6.
 次に、図7(B)に示すように、制御装置5は、干渉計システム6を用いて、基板ステージ2の位置を計測しつつ、基板ステージ2を制御して、第2アライメントシステム92の検出領域SB1,SB2に、第3グループG3のアライメントマークm1,m6が配置されるように、基板Pを移動する。第2アライメントシステム92は、第3グループG3のアライメントマークm1,m6を検出する。これにより、制御装置5は、干渉計システム6によって規定される座標系における第3グループG3のアライメントマークm1,m6の位置を導出することができる。 Next, as illustrated in FIG. 7B, the control device 5 controls the substrate stage 2 while measuring the position of the substrate stage 2 using the interferometer system 6, and controls the second alignment system 92. The substrate P is moved so that the alignment marks m1 and m6 of the third group G3 are arranged in the detection areas SB1 and SB2. The second alignment system 92 detects the alignment marks m1 and m6 of the third group G3. Thereby, the control apparatus 5 can derive | lead-out the position of alignment mark m1, m6 of the 3rd group G3 in the coordinate system prescribed | regulated by the interferometer system 6. FIG.
 次に、図7(C)に示すように、制御装置5は、干渉計システム6を用いて、基板ステージ2の位置を計測しつつ、基板ステージ2を制御して、第1アライメントシステム91の検出領域SA1~SA6に、第2グループG2のアライメントマークm1~m6が配置されるように、基板Pを移動する。第1アライメントシステム91は、第2グループG2のアライメントマークm1~m6を検出する。これにより、制御装置5は、干渉計システム6によって規定される座標系における第2グループG2のアライメントマークm1~m6の位置を導出することができる。 Next, as shown in FIG. 7C, the control device 5 controls the substrate stage 2 while measuring the position of the substrate stage 2 using the interferometer system 6, and controls the first alignment system 91. The substrate P is moved so that the alignment marks m1 to m6 of the second group G2 are arranged in the detection areas SA1 to SA6. The first alignment system 91 detects the alignment marks m1 to m6 of the second group G2. Thereby, the control device 5 can derive the positions of the alignment marks m1 to m6 of the second group G2 in the coordinate system defined by the interferometer system 6.
 次に、図7(D)に示すように、制御装置5は、干渉計システム6を用いて、基板ステージ2の位置を計測しつつ、基板ステージ2を制御して、第1アライメントシステム91の検出領域SA1~SA6に、第3グループG3のアライメントマークm1~m6が配置されるように、基板Pを移動する。第1アライメントシステム91は、第3グループG3のアライメントマークm1~m6を検出する。これにより、制御装置5は、干渉計システム6によって規定される座標系における第3グループG3のアライメントマークm1~m6の位置を導出することができる。 Next, as shown in FIG. 7D, the control device 5 controls the substrate stage 2 while measuring the position of the substrate stage 2 using the interferometer system 6, and controls the first alignment system 91. The substrate P is moved so that the alignment marks m1 to m6 of the third group G3 are arranged in the detection areas SA1 to SA6. The first alignment system 91 detects the alignment marks m1 to m6 of the third group G3. Thereby, the control device 5 can derive the positions of the alignment marks m1 to m6 of the third group G3 in the coordinate system defined by the interferometer system 6.
 次に、図7(E)に示すように、制御装置5は、干渉計システム6を用いて、基板ステージ2の位置を計測しつつ、基板ステージ2を制御して、第1アライメントシステム91の検出領域SA1~SA6に、第4グループG4のアライメントマークm1~m6が配置されるように、基板Pを移動する。第1アライメントシステム91は、第4グループG4のアライメントマークm1~m6を検出する。これにより、制御装置5は、干渉計システム6によって規定される座標系における第4グループG4のアライメントマークm1~m6の位置を導出することができる。 Next, as illustrated in FIG. 7E, the control device 5 controls the substrate stage 2 while measuring the position of the substrate stage 2 using the interferometer system 6, and controls the first alignment system 91. The substrate P is moved so that the alignment marks m1 to m6 of the fourth group G4 are arranged in the detection areas SA1 to SA6. The first alignment system 91 detects the alignment marks m1 to m6 of the fourth group G4. Thereby, the control device 5 can derive the positions of the alignment marks m1 to m6 of the fourth group G4 in the coordinate system defined by the interferometer system 6.
 本実施形態においては、図7(B)及び図7(D)を参照して説明したように、第1アライメントシステム91と第2アライメントシステム92とは、それぞれの両端の検出領域(SA1,SA6)、(SB1,SB2)を用いて、基板P上の同一のアライメントマークm1,m6を検出する。 In the present embodiment, as described with reference to FIGS. 7B and 7D, the first alignment system 91 and the second alignment system 92 have detection regions (SA1, SA6) at both ends. ), (SB1, SB2) are used to detect the same alignment marks m1, m6 on the substrate P.
 上述のベースライン計測処理によって、干渉計システム6によって規定される座標系における第1アライメントシステム91の検出領域SA1~SA6の位置は、既知である。したがって、制御装置5は、干渉計システム6によって基板ステージ2の位置を計測しつつ、第1アライメントシステム91の検出領域SA1,SA6にアライメントマークm1,m6を配置するとともに、第2アライメントシステム92の検出領域SB1,SB2に、検出領域SA1,SA6に配置されたアライメントマークm1,m6と同一のアライメントマークm1,m6を配置することによって、干渉計システム6によって規定される座標系における第2アライメントシステム92の検出領域SB1,SB2の位置を求めることができる。また、制御装置5は、基板P上のアライメントマークm1,m6を第1アライメントシステム91が検出した結果と、基板P上のアライメントマークm1,m6を第2アライメントシステム92が検出した結果とに基づいて、第1アライメントシステム91の検出領域SA1~SA6と、第2アライメントシステム92の検出領域SB1,SB2との位置関係を導出することができる。 The position of the detection areas SA1 to SA6 of the first alignment system 91 in the coordinate system defined by the interferometer system 6 is known by the above-described baseline measurement process. Therefore, the control device 5 arranges the alignment marks m1 and m6 in the detection areas SA1 and SA6 of the first alignment system 91 while measuring the position of the substrate stage 2 by the interferometer system 6, and the second alignment system 92. The second alignment system in the coordinate system defined by the interferometer system 6 by arranging the alignment marks m1, m6 identical to the alignment marks m1, m6 arranged in the detection areas SA1, SA6 in the detection areas SB1, SB2. The positions of the 92 detection areas SB1 and SB2 can be obtained. Further, the control device 5 is based on the result of detection of the alignment marks m1 and m6 on the substrate P by the first alignment system 91 and the result of detection of the alignment marks m1 and m6 on the substrate P by the second alignment system 92. Thus, the positional relationship between the detection areas SA1 to SA6 of the first alignment system 91 and the detection areas SB1 and SB2 of the second alignment system 92 can be derived.
 なお、第1アライメントシステム91の検出領域SA1~SA6と、第2アライメントシステム92の検出領域SB1,SB2との位置関係を導出する際、基板P上のアライメントマークを使用せずに、基板ステージ2上の基準マーク(透過部45)を用いてもよい。制御装置5は、干渉計システム6によって基板ステージ2の位置を計測しつつ、第1アライメントシステム91の検出領域SA1,SA6に基準マーク(透過部45)を配置するとともに、第2アライメントシステム92の検出領域SB1,SB2に、検出領域SA1,SA6に配置された基準マークと同一の基準マークを配置することによって、干渉計システム6によって規定される座標系における第2アライメントシステム92の検出領域SB1,SB2の位置を求めることができる。制御装置5は、その基板ステージ2上の基準マークを第1アライメントシステム91で検出した結果と、基板ステージ2上の基準マークを第2アライメントシステム92で検出した結果とに基づいて、第1アライメントシステム91の検出領域SA1~SA6と、第2アライメントシステム92の検出領域SB1,SB2との位置関係を導出することができる。 When deriving the positional relationship between the detection areas SA1 to SA6 of the first alignment system 91 and the detection areas SB1 and SB2 of the second alignment system 92, the substrate stage 2 is used without using the alignment marks on the substrate P. The upper reference mark (transmission portion 45) may be used. The controller 5 measures the position of the substrate stage 2 with the interferometer system 6 and arranges reference marks (transmission portions 45) in the detection areas SA1 and SA6 of the first alignment system 91, and By arranging the same reference marks as the reference marks arranged in the detection areas SA1 and SA6 in the detection areas SB1 and SB2, the detection areas SB1 and SB1 of the second alignment system 92 in the coordinate system defined by the interferometer system 6 are arranged. The position of SB2 can be obtained. The control device 5 performs the first alignment based on the result of detecting the reference mark on the substrate stage 2 by the first alignment system 91 and the result of detecting the reference mark on the substrate stage 2 by the second alignment system 92. The positional relationship between the detection areas SA1 to SA6 of the system 91 and the detection areas SB1 and SB2 of the second alignment system 92 can be derived.
 なお、第1アライメントシステム91の検出領域SA1~SA6と、第2アライメントシステム92の検出領域SB1,SB2との位置関係を導出する際、第1アライメントシステム91が検出するマーク(アライメントマーク、基準マーク)と、第2アライメントシステム92が検出するマーク(アライメントマーク、基準マーク)とが異なってもよい。 When deriving the positional relationship between the detection areas SA1 to SA6 of the first alignment system 91 and the detection areas SB1 and SB2 of the second alignment system 92, marks (alignment marks, reference marks) detected by the first alignment system 91 are derived. ) And a mark (alignment mark, reference mark) detected by the second alignment system 92 may be different.
 以上により、制御装置5は、アライメントシステム9を用いて、複数の露光領域PA1~PA4のそれぞれに対応して設けられたアライメントマークm1~m6の全てを検出する。 As described above, the control device 5 uses the alignment system 9 to detect all of the alignment marks m1 to m6 provided corresponding to each of the plurality of exposure areas PA1 to PA4.
 本実施形態において、第1露光領域PA1に対応するアライメントマークは、第3グループG3のアライメントマークm1~m3、及び第4グループG4のアライメントマークm1~m3である。第2露光領域PA2に対応するアライメントマークは、第3グループG3のアライメントマークm4~m6、及び第4グループG4のアライメントマークm4~m6である。第3露光領域PA3に対応するアライメントマークは、第1グループG1のアライメントマークm4~m6、及び第2グループG2のアライメントマークm4~m6である。第4露光領域PA4に対応するアライメントマークは、第1グループG1のアライメントマークm1~m3、及び第2グループG2のアライメントマークm1~m3である。 In the present embodiment, the alignment marks corresponding to the first exposure area PA1 are the alignment marks m1 to m3 of the third group G3 and the alignment marks m1 to m3 of the fourth group G4. The alignment marks corresponding to the second exposure area PA2 are the alignment marks m4 to m6 of the third group G3 and the alignment marks m4 to m6 of the fourth group G4. The alignment marks corresponding to the third exposure area PA3 are the alignment marks m4 to m6 of the first group G1 and the alignment marks m4 to m6 of the second group G2. The alignment marks corresponding to the fourth exposure area PA4 are the alignment marks m1 to m3 of the first group G1 and the alignment marks m1 to m3 of the second group G2.
 制御装置5は、第1アライメントシステム91を用いて検出した第1~第4グループG1~G4それぞれのアライメントマークm1~m6の位置、及び第2アライメントシステム92を用いて検出した第3グループG3のアライメントマークm1,m6の位置に基づいて、干渉計システム6によって規定される座標系における基板Pの位置、及び複数の露光領域PA1~PA4それぞれの位置を導出することができる。 The control device 5 detects the positions of the alignment marks m1 to m6 of the first to fourth groups G1 to G4 detected using the first alignment system 91 and the third group G3 detected using the second alignment system 92. Based on the positions of the alignment marks m1 and m6, the position of the substrate P in the coordinate system defined by the interferometer system 6 and the positions of the plurality of exposure areas PA1 to PA4 can be derived.
 次に、第2露光処理について、図7を参照して説明する。 Next, the second exposure process will be described with reference to FIG.
 アライメント処理の実行により露光領域PA1~PA4の位置が導出された後、制御装置5は、基板P上に第2パターン層を形成するための第2露光処理を開始する。 After the positions of the exposure areas PA1 to PA4 are derived by executing the alignment process, the control device 5 starts the second exposure process for forming the second pattern layer on the substrate P.
 本実施形態においては、第2露光処理において、複数の露光領域PA1~PA4のうち、最初に第1露光領域PA1から露光され、次いで第2露光領域PA2が露光され、次いで第3露光領域PA3が露光され、最後に第4露光領域PA4が露光される。 In the present embodiment, in the second exposure process, among the plurality of exposure areas PA1 to PA4, the first exposure area PA1 is first exposed, then the second exposure area PA2 is exposed, and then the third exposure area PA3 is set. Finally, the fourth exposure area PA4 is exposed.
 制御装置5は、第1露光領域PA1の露光を開始するために、基板Pを保持した基板ステージ2を制御して、第1露光領域PA1が露光開始位置に配置されるように、第1露光領域PA1の露光開始位置に移動する。なお、基板Pが第1露光領域PA1の露光開始位置に移動する少なくとも直前において、第1露光領域PA1は、投影領域PR1~PR7の外側に配置される。 The control device 5 controls the substrate stage 2 holding the substrate P in order to start the exposure of the first exposure area PA1, so that the first exposure area PA1 is arranged at the exposure start position. It moves to the exposure start position in the area PA1. Note that the first exposure area PA1 is arranged outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the first exposure area PA1.
 図7(F)は、第1露光領域PA1が露光開始位置に配置されている状態を示す。制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第1露光領域PA1を-X方向に移動する。これにより、第1露光領域PA1が露光される。制御装置5は、少なくとも第1露光領域PA1が露光終了位置に配置されるまで、基板Pを-X方向に移動する。以上により、第1露光領域PA1の露光が終了する。 FIG. 7F shows a state where the first exposure area PA1 is arranged at the exposure start position. The control device 5 controls the substrate stage 2 to move the first exposure area PA1 of the substrate P in the −X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the first exposure area PA1 is exposed. The control device 5 moves the substrate P in the −X direction until at least the first exposure area PA1 is arranged at the exposure end position. Thus, the exposure of the first exposure area PA1 is completed.
 このように、本実施形態においては、複数の露光領域PA1~PA4のうち、第1露光処理において最初に露光される第1露光領域PA1を露光するときのX軸方向に関する基板Pの移動方向と、第2露光処理において最初に露光される第1露光領域PA1を露光するときのX軸方向に関する基板Pの移動方向とは、同じ方向(-X方向)である。 Thus, in the present embodiment, among the plurality of exposure areas PA1 to PA4, the movement direction of the substrate P with respect to the X-axis direction when the first exposure area PA1 that is first exposed in the first exposure process is exposed. The moving direction of the substrate P with respect to the X-axis direction when exposing the first exposure area PA1 exposed first in the second exposure process is the same direction (−X direction).
 本実施形態においては、第2露光処理において、複数の露光領域PA1~PA4を露光する順序、及び各露光領域PA1~PA4を露光するときの基板Pの移動方向、露光開始位置、及び露光終了位置は、第1露光処理とほぼ同じである。すなわち、第2露光処理において、制御装置5は、図6を参照して説明した基板Pの軌道軌跡(移動経路)と同じ移動軌跡(移動経路)で基板Pを移動しながら、複数の露光領域PA1~PA4を順次露光する。 In the present embodiment, in the second exposure process, the order of exposing the plurality of exposure areas PA1 to PA4, the moving direction of the substrate P when exposing each of the exposure areas PA1 to PA4, the exposure start position, and the exposure end position Is substantially the same as the first exposure process. That is, in the second exposure process, the control device 5 moves the substrate P along the same movement trajectory (movement path) as the trajectory (movement path) of the substrate P described with reference to FIG. PA1 to PA4 are sequentially exposed.
 このように、本実施形態においては、第1露光処理において複数の露光領域PA1~PA4を順次露光するときの投影領域PR1~PR7に対する基板Pの移動軌跡(移動経路)と、第2露光処理において複数の露光領域PA1~PA4を順次露光するときの投影領域PR1~PR7に対する基板Pの移動軌跡(移動経路)とが、ほぼ同じである。第2露光処理において露光領域PA2~PA4を露光する手順の説明は省略する。 As described above, in the present embodiment, the movement trajectory (movement path) of the substrate P with respect to the projection areas PR1 to PR7 when the plurality of exposure areas PA1 to PA4 are sequentially exposed in the first exposure process, and the second exposure process The movement trajectory (movement path) of the substrate P with respect to the projection areas PR1 to PR7 when the plurality of exposure areas PA1 to PA4 are sequentially exposed is substantially the same. The description of the procedure for exposing the exposure areas PA2 to PA4 in the second exposure process is omitted.
 以上、基板P上に第1パターン層を形成する第1露光処理と、その第1パターン層上に第2パターン層を形成するに際し実行されるアライメント処理と、基板P上に第2パターン層を形成する第2露光処理とについて説明した。 As described above, the first exposure process for forming the first pattern layer on the substrate P, the alignment process performed when forming the second pattern layer on the first pattern layer, and the second pattern layer on the substrate P are performed. The second exposure process to be formed has been described.
 次に、第2露光処理の一例について説明する。第2露光処理においては、第1パターン層が形成されている複数の基板Pが、順次露光される。例えば、所定のマスクMのパターンからの露光光ELを用いて、所定枚数を1つのグループ(ロット)とする複数の基板Pが順次露光される。なお、その1つのロットの複数の基板Pは、第1露光処理において第1パターン層を形成するために順次露光され、現像処理等の各種プロセス処理を経た基板Pである。 Next, an example of the second exposure process will be described. In the second exposure process, the plurality of substrates P on which the first pattern layer is formed are sequentially exposed. For example, a plurality of substrates P having a predetermined number of groups as one group (lot) are sequentially exposed using exposure light EL from a pattern of a predetermined mask M. The plurality of substrates P in the one lot are substrates P that are sequentially exposed to form the first pattern layer in the first exposure process and have undergone various process processes such as a development process.
 上述のように、本実施形態においては、第1アライメントモードと第2アライメントモードとが用意されており、第2露光処理が実行される前に、第1アライメントモード及び第2アライメントモードの少なくとも一方が選択され、その選択されたアライメントモードに基づいて、アライメント処理が実行される。 As described above, in the present embodiment, the first alignment mode and the second alignment mode are prepared, and at least one of the first alignment mode and the second alignment mode is performed before the second exposure process is executed. Is selected, and the alignment process is executed based on the selected alignment mode.
 本実施形態においては、所定枚数(例えば50枚)の基板Pで構成される1ロットの複数の基板Pのうち、一枚目の基板P(ロット先頭の基板P)から所定枚数(例えば5枚)の基板Pを露光する際のアライメント処理として、第1アライメントモードが選択される。図7等を参照して説明したように、第1アライメントモードは、基板Pの露光領域PA1~PA4のそれぞれに隣接する複数のアライメントマークm1~m6を全て検出して、基板Pの位置及び基板P上の露光領域PA1~PA4それぞれの位置を導出するモードである。 In the present embodiment, among a plurality of substrates P in one lot composed of a predetermined number (for example, 50) of substrates P, a predetermined number (for example, 5) from the first substrate P (the first substrate P of the lot). The first alignment mode is selected as the alignment process when the substrate P is exposed. As described with reference to FIG. 7 and the like, the first alignment mode detects all of the plurality of alignment marks m1 to m6 adjacent to the exposure areas PA1 to PA4 of the substrate P, and determines the position of the substrate P and the substrate. In this mode, the positions of the exposure areas PA1 to PA4 on P are derived.
 本実施形態においては、1つのロットのうち、ロット先頭から所定枚数の基板Pが第1アライメントモードに基づいてアライメント処理される。それら複数の基板Pが露光された後、制御装置5は、ロット内の残りの基板Pを、第2アライメントモードに基づいてアライメント処理し、そのアライメント処理の結果に基づいて、基板Pを露光する。 In the present embodiment, among a lot, a predetermined number of substrates P from the top of the lot are aligned based on the first alignment mode. After the plurality of substrates P are exposed, the control device 5 performs alignment processing on the remaining substrates P in the lot based on the second alignment mode, and exposes the substrates P based on the result of the alignment processing. .
 第2アライメントモードは、第1アライメントモードに基づくアライメント処理の結果を利用するモードである。本実施形態において、第2アライメントモードは、基板P上の複数のアライメントマークm1~m6のうち、所定のアライメントマークを検出して、その所定のアライメントマークの検出結果と、第1アライメントモードの導出結果とに基づいて、基板Pの位置、及びその基板P上の露光領域PA1~PA4それぞれの位置を導出するモードである。 The second alignment mode is a mode that uses the result of the alignment process based on the first alignment mode. In the present embodiment, in the second alignment mode, a predetermined alignment mark is detected from the plurality of alignment marks m1 to m6 on the substrate P, and the detection result of the predetermined alignment mark and the derivation of the first alignment mode are performed. In this mode, the position of the substrate P and the positions of the exposure areas PA1 to PA4 on the substrate P are derived based on the result.
 以下、第2アライメントモードに基づくアライメント処理、及びそのアライメント処理の結果に基づいて実行される基板Pの露光処理(第2露光処理)の一例について、図8を参照して説明する。 Hereinafter, an example of the alignment process based on the second alignment mode and the exposure process (second exposure process) of the substrate P executed based on the result of the alignment process will be described with reference to FIG.
 制御装置5は、第1パターン層及びアライメントマークm1~m6を有する基板Pを基板ステージ2に搬入(ロード)する。基板Pには、感光剤が塗布されている。基板ステージ2に保持された直後において、基板Pは、初期位置に配置される。マスクステージ1には、基板P上に形成される第2パターン層に応じたパターンを有するマスクMが搬入(ロード)され、保持されている。 The control device 5 loads (loads) the substrate P having the first pattern layer and the alignment marks m1 to m6 onto the substrate stage 2. A photosensitive agent is applied to the substrate P. Immediately after being held on the substrate stage 2, the substrate P is placed at the initial position. A mask M having a pattern corresponding to the second pattern layer formed on the substrate P is loaded (loaded) and held on the mask stage 1.
 制御装置5は、アライメントシステム9を用いて、基板P上の所定のアライメントマークm1~m6を検出して、露光領域PA1~PA4の位置を導出する。 The controller 5 uses the alignment system 9 to detect predetermined alignment marks m1 to m6 on the substrate P, and derives the positions of the exposure areas PA1 to PA4.
 まず、図8(A)に示すように、制御装置5は、干渉計システム6を用いて、基板ステージ2の位置を計測しつつ、基板ステージ2を制御して、第1アライメントシステム91の検出領域SA1~SA6に、第1グループG1のアライメントマークm1~m6が配置されるように、基板Pを移動する。第1アライメントシステム91は、第1グループG1のアライメントマークm1~m6を検出する。これにより、制御装置5は、干渉計システム6によって規定される座標系における第1グループG1のアライメントマークm1~m6の位置を導出することができる。 First, as shown in FIG. 8A, the control device 5 uses the interferometer system 6 to measure the position of the substrate stage 2 and control the substrate stage 2 to detect the first alignment system 91. The substrate P is moved so that the alignment marks m1 to m6 of the first group G1 are arranged in the areas SA1 to SA6. The first alignment system 91 detects the alignment marks m1 to m6 of the first group G1. Thereby, the control device 5 can derive the positions of the alignment marks m1 to m6 of the first group G1 in the coordinate system defined by the interferometer system 6.
 次に、図8(B)に示すように、制御装置5は、干渉計システム6を用いて、基板ステージ2の位置を計測しつつ、基板ステージ2を制御して、第2アライメントシステム92の検出領域SB1,SB2に、第3グループG3のアライメントマークm1,m6が配置されるように、基板Pを移動する。第2アライメントシステム92は、第3グループG3のアライメントマークm1,m6を検出する。これにより、制御装置5は、干渉計システム6によって規定される座標系における第3グループG3のアライメントマークm1,m6の位置を導出することができる。 Next, as shown in FIG. 8B, the control device 5 controls the substrate stage 2 while measuring the position of the substrate stage 2 using the interferometer system 6, and controls the second alignment system 92. The substrate P is moved so that the alignment marks m1 and m6 of the third group G3 are arranged in the detection areas SB1 and SB2. The second alignment system 92 detects the alignment marks m1 and m6 of the third group G3. Thereby, the control apparatus 5 can derive | lead-out the position of alignment mark m1, m6 of the 3rd group G3 in the coordinate system prescribed | regulated by the interferometer system 6. FIG.
 制御装置5は、第1アライメントシステム91を用いて第1グループG1のアライメントマークm1~m6を検出した結果と、第2アライメントシステム92を用いて第3グループG3のアライメントマークm1,m6を検出した結果とに基づいて、干渉計システム6によって規定される座標系における基板Pの位置の導出する。 The control device 5 detects the alignment marks m1 to m6 of the first group G1 using the first alignment system 91 and the alignment marks m1 and m6 of the third group G3 using the second alignment system 92. Based on the result, the position of the substrate P in the coordinate system defined by the interferometer system 6 is derived.
 上述のように、第1アライメントモードに基づくアライメント処理によって、干渉計システム6によって規定される座標系における基板Pの位置(以下適宜、位置データ1、と称する)と、その基板P上の露光領域PA1~PA4それぞれの位置(以下適宜、位置データ2、と称する)とが、既に求められている。位置データ1は、基板P全体の位置に関するデータであって、例えば基板Pの外形(エッジ)の位置など、基板Pにおける所定の基準位置を含む。位置データ2は、その基板Pにおける所定の基準位置に対する露光領域PA1~PA4それぞれの位置である。 As described above, by the alignment process based on the first alignment mode, the position of the substrate P in the coordinate system defined by the interferometer system 6 (hereinafter referred to as position data 1 as appropriate) and the exposure area on the substrate P. The positions of PA1 to PA4 (hereinafter referred to as position data 2 as appropriate) have already been obtained. The position data 1 is data relating to the position of the entire substrate P, and includes a predetermined reference position on the substrate P such as the position of the outer shape (edge) of the substrate P, for example. The position data 2 is the position of each of the exposure areas PA1 to PA4 with respect to a predetermined reference position on the substrate P.
 なお、位置データ1は、第1アライメントモードでアライメント処理されたロット先頭から所定枚数の基板Pのうち、任意の1つの基板Pから求められたデータでもよいし、その所定枚数の基板Pのそれぞれから求められたデータの平均値でもよい。同様に、位置データ2は、第1アライメントモードでアライメント処理されたロット先頭から所定枚数の基板Pのうち、任意の1つの基板Pから求められたデータでもよいし、その所定枚数の基板Pのそれぞれから求められたデータの平均値でもよい。 Note that the position data 1 may be data obtained from any one substrate P among the predetermined number of substrates P from the lot head aligned in the first alignment mode, or each of the predetermined number of substrates P. The average value of the data obtained from Similarly, the position data 2 may be data obtained from any one substrate P among the predetermined number of substrates P from the lot head aligned in the first alignment mode, or the predetermined number of substrates P The average value of the data obtained from each may be used.
 また、第2アライメントモードに基づくアライメント処理によって、干渉計システム6によって規定される座標系における基板Pの位置(以下適宜、位置データ3、と称する)が求められる。したがって、制御装置5は、第1アライメントモードに基づくアライメント処理の導出結果である位置データ1及び位置データ2と、第2アライメントモードに基づくアライメント処理の導出結果である位置データ3とに基づいて、干渉計システム6によって規定される座標系における基板P上の露光領域PA1~PA4それぞれの位置(以下適宜、位置データ4、と称する)を求めることができる。本実施形態において、基板Pにおける所定の基準位置に対する露光領域PA1~PA4それぞれの位置(基板Pにおける所定の基準位置と露光領域PA1~PA4との位置関係)は、第1アライメントモードに基づくアライメント処理の実行時と、第2アライメントモードに基づくアライメント処理の実行時とで、ほぼ変動しないと考えられる。したがって、制御装置5は、第2アライメントモードに基づいて第1、第2アライメントシステム91,92を用いてアライメントマークm1~m6を検出した結果と、第1アライメントモードの導出結果(位置データ1,2)とに基づいて、基板Pの位置(位置データ3)、及び基板P上の露光領域PA1~PA4それぞれの位置(位置データ4)を導出することができる。 Also, the position of the substrate P in the coordinate system defined by the interferometer system 6 (hereinafter referred to as position data 3 as appropriate) is obtained by the alignment process based on the second alignment mode. Therefore, the control device 5 is based on the position data 1 and the position data 2 that are the derivation results of the alignment process based on the first alignment mode, and the position data 3 that is the derivation result of the alignment process based on the second alignment mode. The positions of the exposure areas PA1 to PA4 on the substrate P in the coordinate system defined by the interferometer system 6 (hereinafter referred to as position data 4 as appropriate) can be obtained. In the present embodiment, the positions of the exposure areas PA1 to PA4 (the positional relationship between the predetermined reference position on the substrate P and the exposure areas PA1 to PA4) with respect to the predetermined reference position on the substrate P are aligned based on the first alignment mode. It is considered that there is almost no variation between the time of executing and the time of executing the alignment process based on the second alignment mode. Therefore, the control device 5 detects the alignment marks m1 to m6 using the first and second alignment systems 91 and 92 based on the second alignment mode, and the derivation result (position data 1, 1) of the first alignment mode. 2), the position of the substrate P (position data 3) and the positions of the exposure areas PA1 to PA4 on the substrate P (position data 4) can be derived.
 また、上述のように、制御装置5は、第1アライメントモードに基づくアライメント処理において、第1アライメントシステム91の両端の検出領域SA1,SA6と、第2アライメントシステム92との両端の検出領域SB1,SB2とのそれぞれに、基板P上の同一のアライメントマークm1,m6を配置して、その同一のアライメントマークm1,m6を検出して、第1アライメントシステム91の検出領域SA1~SA6と、第2アライメントシステム92の検出領域SB1,SB2との位置関係を求めている。したがって、制御装置5は、第2アライメントモードに基づくアライメント処理において、第1アライメントシステム91を用いて第1グループG1のアライメントマークm1~m6を検出した結果と、第2アライメントシステム92を用いて第3グループG3のアライメントマークm1,m6を検出した結果とに基づいて、位置データ3及び位置データ4を精度良く求めることができる。 Further, as described above, the control device 5 detects the detection areas SA1 and SA6 at both ends of the first alignment system 91 and the detection areas SB1 and SB1 at both ends of the second alignment system 92 in the alignment process based on the first alignment mode. The same alignment marks m1 and m6 on the substrate P are arranged on each of the SB2, and the same alignment marks m1 and m6 are detected to detect the detection areas SA1 to SA6 of the first alignment system 91 and the second The positional relationship with the detection areas SB1 and SB2 of the alignment system 92 is obtained. Therefore, in the alignment process based on the second alignment mode, the control device 5 uses the first alignment system 91 to detect the alignment marks m1 to m6 of the first group G1, and the second alignment system 92 Based on the detection result of the alignment marks m1 and m6 of the three groups G3, the position data 3 and the position data 4 can be obtained with high accuracy.
 各露光領域PA1~PA4それぞれの位置(位置データ4)を求めた後、制御装置5は、それら露光領域PA1~PA4の露光を開始する。 After obtaining the positions (position data 4) of the exposure areas PA1 to PA4, the control device 5 starts exposure of the exposure areas PA1 to PA4.
 本実施形態においては、制御装置5は、第2アライメントモードに基づくアライメント処理を実行した後、複数の露光領域PA1~PA4のうち、最初に第1露光領域PA1を露光し、次いで第2露光領域PA2を露光し、次いで第3露光領域PA3を露光し、最後に第4露光領域PA4を露光する。 In the present embodiment, after executing the alignment process based on the second alignment mode, the control device 5 first exposes the first exposure area PA1 among the plurality of exposure areas PA1 to PA4, and then the second exposure area. PA2 is exposed, then the third exposure area PA3 is exposed, and finally the fourth exposure area PA4 is exposed.
 制御装置5は、第1露光領域PA1の露光を開始するために、基板Pを保持した基板ステージ2を制御して、第1露光領域PA1が露光開始位置に配置されるように、第1露光領域PA1の露光開始位置に移動する。なお、基板Pが第1露光領域PA1の露光開始位置に移動する少なくとも直前において、第1露光領域PA1は、投影領域PR1~PR7の外側に配置される。 The control device 5 controls the substrate stage 2 holding the substrate P in order to start the exposure of the first exposure area PA1, so that the first exposure area PA1 is arranged at the exposure start position. It moves to the exposure start position in the area PA1. Note that the first exposure area PA1 is arranged outside the projection areas PR1 to PR7 at least immediately before the substrate P moves to the exposure start position of the first exposure area PA1.
 図8(C)は、第1露光領域PA1が露光開始位置に配置されている状態を示す。制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第1露光領域PA1を-X方向に移動する。これにより、第1露光領域PA1が露光される。制御装置5は、少なくとも第1露光領域PA1が露光終了位置に配置されるまで、基板Pを-X方向に移動する。以上により、第1露光領域PA1の露光が終了する。 FIG. 8C shows a state in which the first exposure area PA1 is arranged at the exposure start position. The control device 5 controls the substrate stage 2 to move the first exposure area PA1 of the substrate P in the −X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the first exposure area PA1 is exposed. The control device 5 moves the substrate P in the −X direction until at least the first exposure area PA1 is arranged at the exposure end position. Thus, the exposure of the first exposure area PA1 is completed.
 このように、本実施形態においては、複数の露光領域PA1~PA4のうち、第1アライメントモードに基づくアライメント処理後に実行される露光処理において最初に露光される第1露光領域PA1を露光するときのX軸方向に関する基板Pの移動方向と、第2アライメントモードに基づくアライメント処理後に実行される露光処理において最初に露光される第1露光領域PA1を露光するときのX軸方向に関する基板Pの移動方向とは、同じ方向(-X方向)である。 As described above, in the present embodiment, among the plurality of exposure areas PA1 to PA4, the first exposure area PA1 that is first exposed in the exposure process executed after the alignment process based on the first alignment mode is exposed. The movement direction of the substrate P with respect to the X-axis direction and the movement direction of the substrate P with respect to the X-axis direction when exposing the first exposure area PA1 that is first exposed in the exposure process performed after the alignment process based on the second alignment mode. Is the same direction (−X direction).
 本実施形態においては、第2アライメントモードに基づくアライメント処理後に実行される露光処理において、複数の露光領域PA1~PA4を露光する順序、及び各露光領域PA1~PA4を露光するときの基板Pの移動方向、露光開始位置、及び露光終了位置は、第1アライメントモードに基づくアライメント処理後に実行される露光処理とほぼ同じである。すなわち、第2アライメントモードに基づくアライメント処理後に実行される露光処理においては、図6を参照して説明した基板Pの軌道軌跡(移動経路)と同じ移動軌跡(移動経路)で基板Pを移動しながら、複数の露光領域PA1~PA4を順次露光する。 In the present embodiment, in the exposure process executed after the alignment process based on the second alignment mode, the order of exposing the plurality of exposure areas PA1 to PA4 and the movement of the substrate P when exposing each of the exposure areas PA1 to PA4 The direction, the exposure start position, and the exposure end position are substantially the same as the exposure process executed after the alignment process based on the first alignment mode. That is, in the exposure process executed after the alignment process based on the second alignment mode, the substrate P is moved along the same movement locus (movement path) as that of the substrate P described with reference to FIG. However, the plurality of exposure areas PA1 to PA4 are sequentially exposed.
 すなわち、本実施形態においては、第1アライメントモードに基づくアライメント処理後に実行される露光処理において複数の露光領域PA1~PA4を順次露光するときの投影領域PR1~PR7に対する基板Pの移動軌跡(移動経路)と、第2アライメントモードに基づくアライメント処理後に実行される露光処理において複数の露光領域PA1~PA4を順次露光するときの投影領域PR1~PR7に対する基板Pの移動軌跡(移動経路)とが、ほぼ同じである。 That is, in the present embodiment, the movement trajectory (movement path) of the substrate P with respect to the projection areas PR1 to PR7 when the plurality of exposure areas PA1 to PA4 are sequentially exposed in the exposure process performed after the alignment process based on the first alignment mode. ) And the movement trajectory (movement path) of the substrate P with respect to the projection areas PR1 to PR7 when the plurality of exposure areas PA1 to PA4 are sequentially exposed in the exposure process performed after the alignment process based on the second alignment mode is approximately The same.
 本実施形態においては、投影領域PR1~PR7に対して+X側に第2アライメントシステム92が配置されており、制御装置5は、第2アライメントモードに基づくアライメント処理において、第2アライメントシステム92でアライメントマークm1,m6を検出した後、第1露光領域PA1を露光開始位置に直ちに移動することができる。 In the present embodiment, the second alignment system 92 is arranged on the + X side with respect to the projection regions PR1 to PR7, and the control device 5 performs alignment with the second alignment system 92 in the alignment process based on the second alignment mode. After detecting the marks m1 and m6, the first exposure area PA1 can be immediately moved to the exposure start position.
 基板ステージ2に保持されている基板P上のアライメントマークm1,m6が第2アライメントシステム92の検出領域SB1,SB2に配置される基板ステージ2の位置(以下適宜、アライメント位置、と称する)から、第1露光領域PA1の-X側の端が投影領域PR2,PR4,PR6の+X側の端に配置される基板ステージ2の露光開始位置まで移動する際、基板ステージ2は、X軸方向に関してアライメント位置と露光開始位置との間において加速状態で-X方向に移動する。また、露光開始位置の近傍において、基板ステージ2の移動状態は、整定状態及び定速状態の少なくとも一方である。また、第1露光領域PA1の-X側の端が投影領域PR2,PR4,PR6の+X側の端に配置される基板ステージ2の露光開始位置から、第1露光領域PA1の+X側の端が投影領域PR1,PR3,PR5,PR7の-X側の端に配置される基板ステージ2の露光終了位置まで移動する際、基板ステージ2は、定速状態で-X方向に移動する。 From the position of the substrate stage 2 where the alignment marks m1 and m6 on the substrate P held by the substrate stage 2 are arranged in the detection regions SB1 and SB2 of the second alignment system 92 (hereinafter referred to as alignment positions as appropriate) When the −X side end of the first exposure area PA1 moves to the exposure start position of the substrate stage 2 disposed at the + X side end of the projection areas PR2, PR4, PR6, the substrate stage 2 is aligned with respect to the X-axis direction. It moves in the −X direction in an accelerated state between the position and the exposure start position. In the vicinity of the exposure start position, the movement state of the substrate stage 2 is at least one of a settling state and a constant speed state. Further, the −X side end of the first exposure area PA1 extends from the exposure start position of the substrate stage 2 arranged at the + X side end of the projection areas PR2, PR4, PR6, and the + X side end of the first exposure area PA1 When moving to the exposure end position of the substrate stage 2 arranged at the −X side end of the projection areas PR1, PR3, PR5, PR7, the substrate stage 2 moves in the −X direction at a constant speed.
 本実施形態において、投影領域PR1~PR7に対してX軸方向に関して+X側であって、少なくとも基板ステージ2の必要最小限の助走距離を隔てた位置に、第1露光領域PA1に隣接する第3グループG3のアライメントマークm1,m2を検出可能な第2アライメントシステム92の検出領域SB1,SB2が配置されている。これにより、制御装置5は、第2アライメントシステム92を用いて第3グループG3のアライメントマークm1,m6を検出した後、第1露光領域PA1の露光処理に直ちに移行することができる。 In the present embodiment, a third position adjacent to the first exposure area PA1 is located on the + X side in the X-axis direction with respect to the projection areas PR1 to PR7 and at least at a position away from the minimum necessary running distance of the substrate stage 2. Detection areas SB1 and SB2 of the second alignment system 92 capable of detecting the alignment marks m1 and m2 of the group G3 are arranged. Thereby, the control apparatus 5 can transfer to the exposure process of 1st exposure area | region PA1 immediately after detecting the alignment marks m1 and m6 of the 3rd group G3 using the 2nd alignment system 92. FIG.
 基板ステージ2の必要最小限の助走距離とは、第1位置において静止状態の基板ステージ2が第1位置から所定方向の一方側(例えば-X側)に移動を開始して、所定の目標速度に到達することができる第2位置までの距離である。助走距離は、基板ステージ2が加速する加速距離、及び基板ステージ2が整定する整定距離を含む。第1位置と第2位置との間においては、基板ステージ2は、加速状態で移動し、第2位置の近傍において、整定状態で移動する。 The minimum required running distance of the substrate stage 2 is that the substrate stage 2 in a stationary state at the first position starts moving from the first position to one side in a predetermined direction (for example, −X side), and a predetermined target speed Is the distance to the second position that can be reached. The approaching distance includes an acceleration distance at which the substrate stage 2 accelerates and a settling distance at which the substrate stage 2 settles. Between the first position and the second position, the substrate stage 2 moves in an accelerated state, and moves in a settling state in the vicinity of the second position.
 基板ステージ2の必要最小限の助走距離は、例えば基板ステージ2の移動性能に応じた距離であり、駆動システム4の性能、及び基板ステージ2の重量等に基づく。第2位置に到達するまでに目標速度に到達した基板ステージ2は、第2位置とその第2位置に対して所定方向の一方側(-X方向)の第3位置との間において、目標速度で定速状態で移動することができる。 The minimum required traveling distance of the substrate stage 2 is a distance according to the movement performance of the substrate stage 2, for example, and is based on the performance of the drive system 4, the weight of the substrate stage 2, and the like. The substrate stage 2 that has reached the target speed before reaching the second position has a target speed between the second position and the third position on one side of the predetermined direction (−X direction) with respect to the second position. Can move at a constant speed.
 アライメント位置においてほぼ静止状態の基板ステージ2がアライメント位置から移動を開始して、露光開始位置に到達するまでの間に目標のスキャン速度に到達するためには、アライメント位置と露光開始位置との距離は、基板ステージ2の必要最小限の助走距離より長い必要がある。 The distance between the alignment position and the exposure start position in order to reach the target scan speed from the time when the substrate stage 2 in a substantially stationary state at the alignment position starts moving from the alignment position to the exposure start position. Needs to be longer than the minimum required run-up distance of the substrate stage 2.
 図9は、投影光学系PL2と、第2アライメントシステム92と、基板P(基板ステージ2)との関係を示す模式図である。投影領域PR2に対してX軸方向(走査方向)に関して+X側であって、少なくとも必要最小限の助走距離LJを隔てた位置に、複数の露光領域PA1~PA4のうち、最初に露光される第1露光領域PA1に隣接する基板P上の第3グループG3のアライメントマークm1,m6を検出可能な第2アライメントシステム92の検出領域SB1,SB2が配置されている。これにより、アライメント位置と露光開始位置との距離LAを、基板ステージ2の必要最小限の助走距離LJより長くすることができる。 FIG. 9 is a schematic diagram showing the relationship among the projection optical system PL2, the second alignment system 92, and the substrate P (substrate stage 2). The first exposure of the plurality of exposure areas PA1 to PA4 is first performed at a position on the + X side with respect to the projection area PR2 in the X-axis direction (scanning direction) and at least a minimum required run-up distance LJ. Detection areas SB1 and SB2 of the second alignment system 92 capable of detecting the alignment marks m1 and m6 of the third group G3 on the substrate P adjacent to the one exposure area PA1 are arranged. Thereby, the distance LA between the alignment position and the exposure start position can be made longer than the minimum necessary run-up distance LJ of the substrate stage 2.
 したがって、アライメント位置にほぼ静止状態で配置されている基板ステージ2に保持されている基板P上の第3グループG3のアライメントマークm1,m6が第2アライメントシステム92の検出領域SB1,SB2に配置されて第2アライメントシステム92によって検出された後、基板ステージ2が-X方向への移動を開始することによって、露光開始位置に到達するまでの間に、目標のスキャン速度に到達することができる。露光開始位置に到達した基板ステージ2が、-X方向に目標のスキャン速度で定速状態で露光終了位置まで移動することによって、第1露光領域PA1は、投影領域PR1~PR7に対して-X方向に移動しながら露光される。 Therefore, the alignment marks m1 and m6 of the third group G3 on the substrate P held by the substrate stage 2 that is arranged in a substantially stationary state at the alignment position are arranged in the detection regions SB1 and SB2 of the second alignment system 92. After the detection by the second alignment system 92, the substrate stage 2 starts moving in the −X direction, so that the target scanning speed can be reached before reaching the exposure start position. The substrate stage 2 that has reached the exposure start position moves to the exposure end position at a constant scanning speed in the −X direction at the target scan speed, so that the first exposure area PA1 is −X relative to the projection areas PR1 to PR7. Exposure while moving in the direction.
 なお、アライメント位置は、第1露光領域PA1が投影領域PR1~PR7の外側に配置される位置である。また、本実施形態においては、アライメント位置と露光開始位置との距離LAは、必要最小限の助走距離LJとほぼ一致している。すなわち、本実施形態においては、必要最小限の助走距離LJの一端の第1位置とアライメント位置とが一致し、必要最小限の助走距離LJの他端の第2位置と露光開始位置とが一致する。 Note that the alignment position is a position where the first exposure area PA1 is disposed outside the projection areas PR1 to PR7. In the present embodiment, the distance LA between the alignment position and the exposure start position is substantially the same as the minimum required approach distance LJ. That is, in the present embodiment, the first position at one end of the minimum required approach distance LJ matches the alignment position, and the second position at the other end of the minimum required approach distance LJ matches the exposure start position. To do.
 なお、アライメント位置と露光開始位置との距離LAが、必要最小限の助走距離LJより長くてもよい。その場合、基板ステージ2は、露光開始位置に到達する前に、目標のスキャン速度に到達することができる。 It should be noted that the distance LA between the alignment position and the exposure start position may be longer than the minimum required approach distance LJ. In this case, the substrate stage 2 can reach the target scan speed before reaching the exposure start position.
 以上説明したように、本実施形態によれば、投影領域PR1~PR7に対して+X側であって、必要最小限の助走距離以上を隔てた位置に、複数の露光領域PA1~PA4のうち、最初に露光される第1露光領域PA1に隣接する基板P上の第3グループG3のアライメントマークm1,m6が配置可能な検出領域SB1,SB6を有し、第1露光領域PA1の位置を導出する第2アライメントシステム92を設けたので、制御装置5は、基板ステージ2をアライメント位置に配置して第2アライメントシステム92を用いてアライメントマークm1,m6の検出を行った後、基板ステージ2を-X方向に移動して、第1露光領域PA1の露光を直ちに開始することができる。したがって、アライメント処理に要する時間を短くすることができる。そのため、スループットの低下を抑制でき、デバイスの生産性の低下を抑制できる。 As described above, according to the present embodiment, among the plurality of exposure areas PA1 to PA4, on the + X side with respect to the projection areas PR1 to PR7 and at a position separated by a minimum running distance or more, The detection marks SB1 and SB6 in which the alignment marks m1 and m6 of the third group G3 on the substrate P adjacent to the first exposure area PA1 to be exposed first can be arranged, and the position of the first exposure area PA1 is derived. Since the second alignment system 92 is provided, the control device 5 places the substrate stage 2 in the alignment position, detects the alignment marks m1 and m6 using the second alignment system 92, and then moves the substrate stage 2 to − By moving in the X direction, exposure of the first exposure area PA1 can be started immediately. Therefore, the time required for the alignment process can be shortened. Therefore, a decrease in throughput can be suppressed, and a decrease in device productivity can be suppressed.
 また、本実施形態において、投影領域PR1~PR7に対して-X側であって、必要最小限の助走距離以上を隔てた位置に、第1アライメントシステム91の検出領域SA1~SA6を配置することもできる。こうすることにより、第1アライメントシステム91でアライメントマークm1~m6を検出した後、基板ステージ2を+X方向に移動して、そのアライメントマークm1~m6に対して-X側に隣接する露光領域PA1~PA4の少なくとも一つに対する露光処理を直ちに開始することができる。 Further, in the present embodiment, the detection areas SA1 to SA6 of the first alignment system 91 are arranged at positions on the −X side with respect to the projection areas PR1 to PR7 and at least a minimum running distance. You can also. Thus, after the alignment marks m1 to m6 are detected by the first alignment system 91, the substrate stage 2 is moved in the + X direction, and the exposure area PA1 adjacent to the −X side with respect to the alignment marks m1 to m6. The exposure process for at least one of PA4 can be started immediately.
 また、本実施形態によれば、複数の露光領域PA1~PA4のうち、第1露光処理において最初に露光される第1露光領域PA1を露光するときの走査方向(X軸方向)に関する移動方向と、第2露光処理において最初に露光される第1露光領域を露光するときの走査方向(X軸方向)に関する移動方向とが同じ方向(-X方向)なので、基板ステージ2に基板Pが搬入されてからその基板ステージ2から基板Pが搬出されるまでの基板ステージ2の移動距離が長くなることを抑制できる。したがって、スループットの低下を抑制できる。 Further, according to the present embodiment, of the plurality of exposure areas PA1 to PA4, the movement direction with respect to the scanning direction (X-axis direction) when the first exposure area PA1 that is first exposed in the first exposure process is exposed. Since the moving direction with respect to the scanning direction (X-axis direction) when exposing the first exposure region exposed first in the second exposure process is the same direction (−X direction), the substrate P is carried into the substrate stage 2. It is possible to prevent the movement distance of the substrate stage 2 from being extended until the substrate P is unloaded from the substrate stage 2. Therefore, a decrease in throughput can be suppressed.
 また、本実施形態によれば、第1露光処理において複数の露光領域PA1~PA4を順次露光するときの投影領域PR1~PR7に対する基板ステージ2の移動軌跡と、第2露光処理において複数の露光領域PA1~PA4を順次露光するときの投影領域PR1~PR7に対する基板ステージ2の移動軌跡とがほぼ同じなので、第1露光処理と第2露光処理とにおいて、ほぼ同じ装置の条件で基板Pを露光することができる。例えば、基板ステージ2の移動(位置)に応じてボディ13等が変形する場合でも、第1露光処理と第2露光処理とにおいて基板ステージ2の移動軌跡を同じにすることによって、第1露光処理と第2露光処理とにおいて、各露光領域PA1~PA4をほぼ同じ装置の条件(ボディ13の変形条件など)で露光することができる。 Further, according to the present embodiment, the movement locus of the substrate stage 2 with respect to the projection areas PR1 to PR7 when the plurality of exposure areas PA1 to PA4 are sequentially exposed in the first exposure process, and the plurality of exposure areas in the second exposure process. Since the movement trajectory of the substrate stage 2 with respect to the projection regions PR1 to PR7 when sequentially exposing PA1 to PA4 is substantially the same, the substrate P is exposed under substantially the same apparatus conditions in the first exposure process and the second exposure process. be able to. For example, even when the body 13 or the like is deformed according to the movement (position) of the substrate stage 2, the first exposure process is performed by making the movement locus of the substrate stage 2 the same in the first exposure process and the second exposure process. In the second exposure process, the exposure areas PA1 to PA4 can be exposed under substantially the same apparatus conditions (deformation conditions of the body 13, etc.).
 また、本実施形態においては、第2アライメントシステム92は、Y軸方向に配置される複数のアライメントマークm1~m6のうち、両端のアライメントマークm1,m6を検出するので、制御装置5は、その第2アライメントシステム92の検出結果に基づいて、基板Pの位置、及び露光領域PA1~PA4の位置を精度良く導出することができる。 In the present embodiment, the second alignment system 92 detects the alignment marks m1 and m6 at both ends among the plurality of alignment marks m1 to m6 arranged in the Y-axis direction. Based on the detection result of the second alignment system 92, the position of the substrate P and the positions of the exposure areas PA1 to PA4 can be accurately derived.
 また、本実施形態においては、第1アライメントシステム91と第2アライメントシステム92とは、それぞれの両端の検出領域を用いて、基板P上のアライメントマークm1,m6を検出するので、制御装置5は、その検出結果に基づいて、基板Pの位置、及び露光領域PA1~PA4の位置を精度良く導出することができる。 Further, in the present embodiment, the first alignment system 91 and the second alignment system 92 detect the alignment marks m1 and m6 on the substrate P using the detection areas at both ends, so the control device 5 Based on the detection result, the position of the substrate P and the positions of the exposure areas PA1 to PA4 can be derived with high accuracy.
 また、本実施形態においては、第2アライメントシステム92の検出領域(検出器)の数は、第1アライメントシステム91の検出領域(検出器)の数より少ない。これにより、第2アライメントシステム92と基板ステージ2との間(基板ステージ2の上方)のスペースを確保することができる。本実施形態においては、投影システムPSに対して+X側から、基板ステージ2に対する基板Pの搬入動作、及び基板ステージ2からの基板Pの搬出動作を円滑に実行することができる。 In the present embodiment, the number of detection areas (detectors) of the second alignment system 92 is smaller than the number of detection areas (detectors) of the first alignment system 91. Thereby, a space between the second alignment system 92 and the substrate stage 2 (above the substrate stage 2) can be secured. In the present embodiment, the operation of loading the substrate P into the substrate stage 2 and the operation of unloading the substrate P from the substrate stage 2 can be smoothly executed from the + X side with respect to the projection system PS.
 なお、本実施形態においては、1つのロット内の複数の基板Pが順次露光される場合において、ロット先頭からの所定枚数(例えば5枚程度)の基板Pを露光する際に第1アライメントモードが選択され、ロット内の残りの基板Pを露光する際に第2アライメントモードが選択される場合について説明したが、例えば、基板P上に複数のパターン層(例えば5つのパターン層)を積層する場合において、要求されるパターン層の重ね合わせ精度に応じて、第1アライメントモード及び第2アライメントモードの少なくとも一方が選択されてもよい。例えば、高い重ね合わせ精度が要求される場合には、第1アライメントモードを選択し、比較的ラフな重ね合わせ精度でも許容される場合には、第2アライメントモードを選択してもよい。第2アライメントモードでアライメント処理を実行することによって、アライメント処理に要する時間を短縮することができ、スループットの低下を抑制することができる。 In the present embodiment, when a plurality of substrates P in one lot are sequentially exposed, the first alignment mode is set when exposing a predetermined number (for example, about 5) of substrates P from the lot head. The case where the second alignment mode is selected when exposing the remaining substrate P in the lot has been described. For example, a plurality of pattern layers (for example, five pattern layers) are stacked on the substrate P. In the above, at least one of the first alignment mode and the second alignment mode may be selected according to the required overlay accuracy of the pattern layer. For example, the first alignment mode may be selected when high overlay accuracy is required, and the second alignment mode may be selected when relatively rough overlay accuracy is allowed. By executing the alignment process in the second alignment mode, the time required for the alignment process can be shortened, and a decrease in throughput can be suppressed.
<第2実施形態>
 次に、第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
Second Embodiment
Next, a second embodiment will be described. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
 図10は、第2実施形態に係る投影領域PR1~PR7と、検出領域SA1~SA6、SB1,SB2と、基板Pとの位置関係の一例を示す模式図である。図10に示すように、本実施形態おいて、基板Pの表面は、マスクMのパターンの像が投影される6つの露光領域PA1~PA6を有する。 FIG. 10 is a schematic diagram showing an example of the positional relationship between the projection areas PR1 to PR7, the detection areas SA1 to SA6, SB1 and SB2, and the substrate P according to the second embodiment. As shown in FIG. 10, in the present embodiment, the surface of the substrate P has six exposure areas PA1 to PA6 onto which an image of the pattern of the mask M is projected.
 次に、本実施形態に係る第1露光処理について、図11を参照して説明する。 Next, the first exposure process according to the present embodiment will be described with reference to FIG.
 本実施形態においては、第1露光処理において、複数の露光領域PA1~PA6のうち、最初に第2露光領域PA2から露光され、次いで第1露光領域PA1が露光され、次いで第3露光領域PA3が露光され、次いで第4露光領域PA4が露光され、次いで第5露光領域PA5が露光され、最後に第6露光領域PA6が露光される。 In the present embodiment, in the first exposure process, among the plurality of exposure areas PA1 to PA6, exposure is first performed from the second exposure area PA2, then the first exposure area PA1 is exposed, and then the third exposure area PA3 is determined. Then, the fourth exposure area PA4 is exposed, then the fifth exposure area PA5 is exposed, and finally the sixth exposure area PA6 is exposed.
 図11(A)は、第2露光領域PA2が露光開始位置に配置されている状態を示す。制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第2露光領域PA2を-X方向に移動する。これにより、第2露光領域PA2が露光される。 FIG. 11A shows a state in which the second exposure area PA2 is arranged at the exposure start position. The control device 5 controls the substrate stage 2 to move the second exposure area PA2 of the substrate P in the −X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the second exposure area PA2 is exposed.
 次に、制御装置5は、第1露光領域PA1の露光を開始する。図11(B)は、第1露光領域PA1が露光開始位置に配置されている状態を示す。制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第1露光領域PA1を+X方向に移動する。これにより、第2露光領域PA2が露光される。 Next, the control device 5 starts exposure of the first exposure area PA1. FIG. 11B shows a state in which the first exposure area PA1 is arranged at the exposure start position. The control device 5 controls the substrate stage 2 to move the first exposure area PA1 of the substrate P in the + X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. . Thereby, the second exposure area PA2 is exposed.
 次に、制御装置5は、第3露光領域PA3の露光を開始する。図11(C)は、第3露光領域PA3が露光開始位置に配置されている状態を示す。制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第3露光領域PA3を-X方向に移動する。これにより、第3露光領域PA3が露光される。 Next, the control device 5 starts exposure of the third exposure area PA3. FIG. 11C shows a state in which the third exposure area PA3 is arranged at the exposure start position. The control device 5 controls the substrate stage 2 to move the third exposure area PA3 of the substrate P in the −X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the third exposure area PA3 is exposed.
 次に、制御装置5は、第4露光領域PA4の露光を開始する。図11(D)は、第4露光領域PA4が露光開始位置に配置されている状態を示す。制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第4露光領域PA4を+X方向に移動する。これにより、第4露光領域PA4が露光される。 Next, the control device 5 starts exposure of the fourth exposure area PA4. FIG. 11D shows a state where the fourth exposure area PA4 is arranged at the exposure start position. The control device 5 controls the substrate stage 2 to move the fourth exposure area PA4 of the substrate P in the + X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. . Thereby, the fourth exposure area PA4 is exposed.
 次に、制御装置5は、第5露光領域PA5の露光を開始する。図11(E)は、第5露光領域PA5が露光開始位置に配置されている状態を示す。制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第5露光領域PA5を-X方向に移動する。これにより、第5露光領域PA5が露光される。 Next, the control device 5 starts exposure of the fifth exposure area PA5. FIG. 11E shows a state where the fifth exposure area PA5 is arranged at the exposure start position. The control device 5 controls the substrate stage 2 to move the fifth exposure area PA5 of the substrate P in the −X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. To do. Thereby, the fifth exposure area PA5 is exposed.
 次に、制御装置5は、第6露光領域PA6の露光を開始する。図11(F)は、第6露光領域PA6が露光開始位置に配置されている状態を示す。制御装置5は、基板ステージ2を制御して、投影領域PR1~PR7に露光光ELを照射しながら、投影領域PR1~PR7に対して、基板Pの第6露光領域PA6を+X方向に移動する。これにより、第6露光領域PA6が露光される。 Next, the control device 5 starts exposure of the sixth exposure area PA6. FIG. 11F shows a state where the sixth exposure area PA6 is arranged at the exposure start position. The control device 5 controls the substrate stage 2 to move the sixth exposure area PA6 of the substrate P in the + X direction with respect to the projection areas PR1 to PR7 while irradiating the projection areas PR1 to PR7 with the exposure light EL. . Thereby, the sixth exposure area PA6 is exposed.
 以上により、第1露光処理が終了する。 Thus, the first exposure process is completed.
 次に、第1アライメントモードに基づくアライメント処理について、図12を参照して説明する。 Next, an alignment process based on the first alignment mode will be described with reference to FIG.
 基板P上には、第1グループG1のアライメントマークm1~m6と、第2グループG2のアライメントマークm1~m6と、第3グループG3のアライメントマークm1~m6と、第4グループG4のアライメントマークm1~m6とが設けられる。 On the substrate P, alignment marks m1 to m6 of the first group G1, alignment marks m1 to m6 of the second group G2, alignment marks m1 to m6 of the third group G3, and alignment marks m1 of the fourth group G4 are arranged. To m6.
 図12(A)に示すように、制御装置5は、第1アライメントシステム91で、第1グループG1のアライメントマークm1~m6を検出する。 As shown in FIG. 12A, the control device 5 detects the alignment marks m1 to m6 of the first group G1 with the first alignment system 91.
 次に、図12(B)に示すように、制御装置5は、第2アライメントシステム92で、第3グループG3のアライメントマークm1,m6を検出する。 Next, as shown in FIG. 12B, the control device 5 detects the alignment marks m1 and m6 of the third group G3 with the second alignment system 92.
 次に、図12(C)に示すように、制御装置5は、第1アライメントシステム91で、第2グループG2のアライメントマークm1~m6を検出する。 Next, as shown in FIG. 12C, the control device 5 uses the first alignment system 91 to detect the alignment marks m1 to m6 of the second group G2.
 次に、図12(D)に示すように、制御装置5は、第1アライメントシステム91で、第3グループG3のアライメントマークm1~m6を検出する。 Next, as shown in FIG. 12D, the control device 5 uses the first alignment system 91 to detect the alignment marks m1 to m6 of the third group G3.
 次に、図12(E)に示すように、制御装置5は、第1アライメントシステム91で、第4グループG4のアライメントマークm1~m6を検出する。 Next, as shown in FIG. 12E, the control device 5 detects the alignment marks m1 to m6 of the fourth group G4 by the first alignment system 91.
 本実施形態においても、図12(B)及び図12(D)を参照して説明したように、第1アライメントシステム91と第2アライメントシステム92とは、それぞれの両端の検出領域(SA1,SA6)、(SB1,SB2)を用いて、基板P上の同一のアライメントマークm1,m6を検出する。 Also in the present embodiment, as described with reference to FIGS. 12B and 12D, the first alignment system 91 and the second alignment system 92 have the detection regions (SA1, SA6) at both ends. ), (SB1, SB2) are used to detect the same alignment marks m1, m6 on the substrate P.
 本実施形態において、第1露光領域PA1に対応するアライメントマークは、第3グループG3のアライメントマークm1,m2、及び第4グループG4のアライメントマークm1,m2である。第2露光領域PA2に対応するアライメントマークは、第3グループG3のアライメントマークm3,m4、及び第4グループG4のアライメントマークm3,m4である。第3露光領域PA3に対応するアライメントマークは、第3グループG3のアライメントマークm5,m6、及び第4グループG4のアライメントマークm5,m6である。第4露光領域PA4に対応するアライメントマークは、第1グループG1のアライメントマークm5,m6、及び第2グループG2のアライメントマークm5,m6である。第5露光領域PA5に対応するアライメントマークは、第1グループG1のアライメントマークm3,m4、及び第2グループG2のアライメントマークm3,m4である。第6露光領域PA6に対応するアライメントマークは、第1グループG1のアライメントマークm1,m2、及び第2グループG2のアライメントマークm1,m2である。 In the present embodiment, the alignment marks corresponding to the first exposure area PA1 are the alignment marks m1 and m2 of the third group G3 and the alignment marks m1 and m2 of the fourth group G4. The alignment marks corresponding to the second exposure area PA2 are the alignment marks m3 and m4 of the third group G3 and the alignment marks m3 and m4 of the fourth group G4. The alignment marks corresponding to the third exposure area PA3 are the alignment marks m5 and m6 of the third group G3 and the alignment marks m5 and m6 of the fourth group G4. The alignment marks corresponding to the fourth exposure area PA4 are the alignment marks m5 and m6 of the first group G1 and the alignment marks m5 and m6 of the second group G2. The alignment marks corresponding to the fifth exposure area PA5 are the alignment marks m3 and m4 of the first group G1 and the alignment marks m3 and m4 of the second group G2. The alignment marks corresponding to the sixth exposure area PA6 are the alignment marks m1 and m2 of the first group G1 and the alignment marks m1 and m2 of the second group G2.
 制御装置5は、第1アライメントシステム91を用いて検出した第1~第4グループG1~G4それぞれのアライメントマークm1~m6の位置、及び第2アライメントシステム92を用いて検出した第3グループG3のアライメントマークm1,m6の位置に基づいて、干渉計システム6によって規定される座標系における基板Pの位置、及び複数の露光領域PA1~PA6それぞれの位置を導出することができる。 The control device 5 detects the positions of the alignment marks m1 to m6 of the first to fourth groups G1 to G4 detected using the first alignment system 91 and the third group G3 detected using the second alignment system 92. Based on the positions of the alignment marks m1 and m6, the position of the substrate P in the coordinate system defined by the interferometer system 6 and the positions of the plurality of exposure areas PA1 to PA6 can be derived.
 次に、第2露光処理が実行される。第2露光処理において、複数の露光領域PA1~PA6を露光する順序、及び各露光領域PA1~PA6を露光するときの基板Pの移動方向、露光開始位置、及び露光終了位置は、第1露光処理とほぼ同じである。すなわち、第2露光処理においては、図11を参照して説明した基板Pの軌道軌跡(移動経路)と同じ移動軌跡(移動経路)で基板Pを移動しながら、複数の露光領域PA1~PA6を順次露光する。 Next, the second exposure process is executed. In the second exposure process, the order in which the plurality of exposure areas PA1 to PA6 are exposed, the moving direction of the substrate P when exposing each of the exposure areas PA1 to PA6, the exposure start position, and the exposure end position are the first exposure process. Is almost the same. That is, in the second exposure process, a plurality of exposure areas PA1 to PA6 are moved while moving the substrate P along the same movement trajectory (movement path) as that of the substrate P described with reference to FIG. Sequential exposure.
 以上、本実施形態に係る、基板P上に第1パターン層を形成する第1露光処理と、その第1パターン層上に第2パターン層を形成するに際し実行されるアライメント処理と、基板P上に第2パターン層を形成する第2露光処理とについて説明した。 As described above, according to the present embodiment, the first exposure process for forming the first pattern layer on the substrate P, the alignment process performed when the second pattern layer is formed on the first pattern layer, and the substrate P The second exposure process for forming the second pattern layer has been described.
 次に、本実施形態に係る第2アライメントモードに基づくアライメント処理について、図13を参照して説明する。 Next, an alignment process based on the second alignment mode according to the present embodiment will be described with reference to FIG.
 図13(A)に示すように、基板Pが初期位置に配置される。次いで、図13(B)に示すように、制御装置5は、第1アライメントシステム91で、第1グループG1のアライメントマークm1~m6を検出する。 As shown in FIG. 13A, the substrate P is placed at the initial position. Next, as shown in FIG. 13B, the control device 5 detects the alignment marks m1 to m6 of the first group G1 with the first alignment system 91.
 次に、図13(C)に示すように、制御装置5は、第2アライメントシステム92で、第3グループG3のアライメントマークm1,m6を検出する。 Next, as shown in FIG. 13C, the control device 5 detects the alignment marks m1 and m6 of the third group G3 by the second alignment system 92.
 制御装置5は、第1アライメントシステム91を用いて第1グループG1のアライメントマークm1~m6を検出した結果と、第2アライメントシステム92を用いて第3グループG3のアライメントマークm1,m6を検出した結果と、第1アライメントモードの導出結果とに基づいて、基板Pの位置、及び露光領域PA1~PA6それぞれの位置を検出する。 The control device 5 detects the alignment marks m1 to m6 of the first group G1 using the first alignment system 91 and the alignment marks m1 and m6 of the third group G3 using the second alignment system 92. Based on the result and the derived result of the first alignment mode, the position of the substrate P and the positions of the exposure areas PA1 to PA6 are detected.
 各露光領域PA1~PA6それぞれの位置(位置データ4)を求めた後、制御装置5は、それら露光領域PA1~PA6の露光を開始する。図13(D)に示すように、第2露光領域PA2が露光開始位置に配置される。 After obtaining the positions (position data 4) of the exposure areas PA1 to PA6, the control device 5 starts exposure of the exposure areas PA1 to PA6. As shown in FIG. 13D, the second exposure area PA2 is arranged at the exposure start position.
 本実施形態においても、第2アライメントモードに基づくアライメント処理後に実行される露光処理において、複数の露光領域PA1~PA6を露光する順序、及び各露光領域PA1~PA6を露光するときの基板Pの移動方向、露光開始位置、及び露光終了位置は、第1アライメントモードに基づくアライメント処理後に実行される露光処理とほぼ同じである。 Also in this embodiment, in the exposure process executed after the alignment process based on the second alignment mode, the order of exposing the plurality of exposure areas PA1 to PA6 and the movement of the substrate P when exposing each of the exposure areas PA1 to PA6 The direction, the exposure start position, and the exposure end position are substantially the same as the exposure process executed after the alignment process based on the first alignment mode.
 以上説明したように、本実施形態においても、スループットの低下を抑制しつつ、基板Pを良好に露光できる。 As described above, also in this embodiment, the substrate P can be satisfactorily exposed while suppressing a decrease in throughput.
 なお、図14に示すような、露光領域PA1~PA6、及びアライメントマークm1~m6を有する基板Pを露光する場合であっても、上述の第1露光処理、第1,第2アライメントモードを含むアライメント処理、及び第2露光処理を実行することによって、スループットの低下を抑制しつつ、基板Pを良好に露光できる。 Note that even when the substrate P having the exposure areas PA1 to PA6 and the alignment marks m1 to m6 as shown in FIG. 14 is exposed, the first exposure process and the first and second alignment modes described above are included. By executing the alignment process and the second exposure process, the substrate P can be satisfactorily exposed while suppressing a decrease in throughput.
 図14において、基板Pの表面は、6つの露光領域PA1~PA6を有する。露光領域PA1、PA2が、Y軸方向にほぼ等間隔で離れて配置され、露光領域PA3、PA4が、Y軸方向にほぼ等間隔で離れて配置され、露光領域PA5,PA6が、Y軸方向にほぼ等間隔で離れて配置されている。露光領域PA1は、露光領域PA2に対して-Y側に配置されている。露光領域PA3は、露光領域PA4に対して+Y側に配置されている。露光領域PA5は、露光領域PA5に対して-Y側に配置されている。露光領域PA1、PA2は、露光領域PA3、PA4に対して+X側に配置されている。露光領域PA5、PA6は、露光領域PA3、PA4に対して-X側に配置されている。また、基板Pの表面は、第1~第6グループG1~G6それぞれのアライメントマークm1~m6を有する。 In FIG. 14, the surface of the substrate P has six exposure areas PA1 to PA6. The exposure areas PA1 and PA2 are arranged at substantially equal intervals in the Y axis direction, the exposure areas PA3 and PA4 are arranged at substantially equal intervals in the Y axis direction, and the exposure areas PA5 and PA6 are arranged in the Y axis direction. Are spaced apart at approximately equal intervals. The exposure area PA1 is arranged on the −Y side with respect to the exposure area PA2. The exposure area PA3 is arranged on the + Y side with respect to the exposure area PA4. The exposure area PA5 is arranged on the −Y side with respect to the exposure area PA5. The exposure areas PA1 and PA2 are arranged on the + X side with respect to the exposure areas PA3 and PA4. The exposure areas PA5 and PA6 are arranged on the −X side with respect to the exposure areas PA3 and PA4. The surface of the substrate P has alignment marks m1 to m6 for the first to sixth groups G1 to G6, respectively.
<第3実施形態>
 次に、第3実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
<Third Embodiment>
Next, a third embodiment will be described. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
 図15は、第3実施形態に係るアライメントシステム9の一例を示す図である。本実施形態においては、Y軸方向に関する第1アライメントシステム91の両端の検出領域(SA1,SA6)の位置と、第2アライメントシステム92の両端の検出領域(SB1,SB2)の位置とが異なる。 FIG. 15 is a diagram illustrating an example of the alignment system 9 according to the third embodiment. In the present embodiment, the positions of the detection areas (SA1, SA6) at both ends of the first alignment system 91 in the Y-axis direction are different from the positions of the detection areas (SB1, SB2) at both ends of the second alignment system 92.
 次に、第2アライメントモードに基づくアライメント処理の一例について説明する。図15(A)に示すように、基板Pが初期位置に配置される。次いで、図15(B)に示すように、制御装置5は、第1アライメントシステム91で、第1グループG1のアライメントマークm1~m6を検出する。 Next, an example of alignment processing based on the second alignment mode will be described. As shown in FIG. 15A, the substrate P is disposed at the initial position. Next, as shown in FIG. 15B, the control device 5 detects the alignment marks m1 to m6 of the first group G1 with the first alignment system 91.
 次に、図15(C)に示すように、制御装置5は、第2アライメントシステム92で、第3グループG3のアライメントマークm1,m6を検出する。 Next, as shown in FIG. 15C, the control device 5 detects the alignment marks m1 and m6 of the third group G3 with the second alignment system 92.
 制御装置5は、アライメントシステム9の検出結果に基づいて、基板Pの位置、及び露光領域PA1~PA6それぞれの位置を導出し、露光領域PA1~PA6の露光を開始する。 The control device 5 derives the position of the substrate P and the positions of the exposure areas PA1 to PA6 based on the detection result of the alignment system 9, and starts exposure of the exposure areas PA1 to PA6.
 本実施形態においては、複数の露光領域PA1~PA6のうち、最初に第1露光領域PA1が露光される。図15(D)に示すように、第1露光領域PA1が露光開始位置に配置され、その第1露光領域PA1の露光が開始される。 In the present embodiment, the first exposure area PA1 is first exposed among the plurality of exposure areas PA1 to PA6. As shown in FIG. 15D, the first exposure area PA1 is arranged at the exposure start position, and the exposure of the first exposure area PA1 is started.
 本実施形態においては、Y軸方向に関する第1アライメントシステム91の両端の検出領域(SA1,SA6)の位置と、第2アライメントシステム92の両端の検出領域(SB1,SB2)の位置とが異なるので、基板ステージ2に保持されている基板P上のアライメントマークm1,m6が第2アライメントシステム92の検出領域SB1,SB2に配置される基板ステージ2の位置(アライメント位置)から、第1露光領域PA1の-X側の端が投影領域PR2,PR4,PR6の+X側の端に配置される基板ステージ2の露光開始位置までの距離を短くすることができる。すなわち、図15(C)に示す状態から図15(D)に示す状態へ変化するときの基板ステージ2の移動距離を短くすることができる。本実施形態においては、図15(C)に示すように、基板ステージ2がアライメント位置に配置されるとき、Y軸方向に関して、投影領域PR1~PR7と、最初に露光される第1露光領域PA1との位置はほぼ同じになる。このように、基板ステージ2の移動距離を短くすることができるので、スループットの低下を抑制することができる。 In the present embodiment, the positions of the detection areas (SA1, SA6) at both ends of the first alignment system 91 in the Y-axis direction are different from the positions of the detection areas (SB1, SB2) at both ends of the second alignment system 92. From the position (alignment position) of the substrate stage 2 where the alignment marks m1, m6 on the substrate P held by the substrate stage 2 are arranged in the detection areas SB1, SB2 of the second alignment system 92, the first exposure area PA1. The distance to the exposure start position of the substrate stage 2 arranged at the −X side end of the projection regions PR2, PR4, PR6 can be shortened. That is, the movement distance of the substrate stage 2 when changing from the state shown in FIG. 15C to the state shown in FIG. 15D can be shortened. In the present embodiment, as shown in FIG. 15C, when the substrate stage 2 is arranged at the alignment position, the projection areas PR1 to PR7 and the first exposure area PA1 that is first exposed with respect to the Y-axis direction. The position of is almost the same. Thus, since the moving distance of the substrate stage 2 can be shortened, a decrease in throughput can be suppressed.
<第4実施形態>
 次に、第4実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
<Fourth embodiment>
Next, a fourth embodiment will be described. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
 図16は、第4実施形態に係るアライメントシステム9の一例を示す図である。本実施形態においては、X軸方向に関して、第1アライメントシステム91の検出領域SA1~SA6と第2アライメントシステム92の検出領域SB1,SB2との距離LX1と、基板P上の第1グループG1のアライメントマークm1~m6と第3グループG3のアライメントマークm1~m6との距離LX2とが、ほぼ同じである。 FIG. 16 is a diagram illustrating an example of the alignment system 9 according to the fourth embodiment. In the present embodiment, the distance LX1 between the detection areas SA1 to SA6 of the first alignment system 91 and the detection areas SB1 and SB2 of the second alignment system 92 and the alignment of the first group G1 on the substrate P in the X-axis direction. The distances LX2 between the marks m1 to m6 and the alignment marks m1 to m6 of the third group G3 are substantially the same.
 本実施形態においては、第2アライメントモードでアライメントマークm1~m6を検出する際、第1アライメントシステム91を用いる第1グループG1のアライメントマークm1~m6の検出と、第2アライメントシステム92を用いる第3グループG3のアライメントマークm1,m6の検出とを、同時に行うことができる。したがって、スループットの低下を抑制できる。 In the present embodiment, when the alignment marks m1 to m6 are detected in the second alignment mode, the detection of the alignment marks m1 to m6 of the first group G1 using the first alignment system 91 and the second alignment system 92 using the second alignment system 92 are performed. The detection of the alignment marks m1 and m6 of the three groups G3 can be performed simultaneously. Therefore, a decrease in throughput can be suppressed.
 なお、上述の第1~第4実施形態の基板Pとしては、ディスプレイデバイス用のガラス基板のみならず、半導体デバイス製造用の半導体ウエハ、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。 The substrate P in the first to fourth embodiments is not limited to a glass substrate for a display device, but also a semiconductor wafer for manufacturing a semiconductor device, a ceramic wafer for a thin film magnetic head, or a mask used in an exposure apparatus. Alternatively, a reticle original (synthetic quartz, silicon wafer) or the like is applied.
 なお、露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを介した露光光ELで基板Pを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。 As the exposure apparatus EX, a step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the substrate P with the exposure light EL through the pattern of the mask M by moving the mask M and the substrate P synchronously. In addition, the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and is applied to a step-and-repeat type projection exposure apparatus (stepper) that sequentially moves the substrate P stepwise. Can do.
 また、本発明は、米国特許第6341007号明細書、米国特許第6208407号明細書、米国特許第6262796号明細書等に開示されているような、複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。 The present invention also relates to a twin-stage type exposure having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796, and the like. It can also be applied to devices.
 また、本発明は、米国特許第6897963号明細書、欧州特許出願公開第1713113号明細書等に開示されているような、基板を保持する基板ステージと、基板を保持せずに、基準マークが形成された基準部材及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも適用することができる。また、複数の基板ステージと計測ステージとを備えた露光装置を採用することができる。 Further, the present invention relates to a substrate stage for holding a substrate as disclosed in US Pat. No. 6,897,963, European Patent Application No. 1713113, etc., and a reference mark without holding the substrate. The present invention can also be applied to an exposure apparatus that includes a formed reference member and / or a measurement stage on which various photoelectric sensors are mounted. An exposure apparatus including a plurality of substrate stages and measurement stages can be employed.
 露光装置EXの種類としては、液晶表示素子製造用又はディスプレイ製造用の露光装置に限られず、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。 The type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a liquid crystal display element or a display, but an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P, a thin film magnetic head, an image sensor (CCD) In addition, the present invention can be widely applied to an exposure apparatus for manufacturing a micromachine, MEMS, DNA chip, reticle, mask, or the like.
 なお、上述の各実施形態においては、レーザ干渉計を含む干渉計システムを用いて各ステージの位置情報を計測するものとしたが、これに限らず、例えば各ステージに設けられるスケール(回折格子)を検出するエンコーダシステムを用いてもよい。 In each of the above-described embodiments, the position information of each stage is measured using an interferometer system including a laser interferometer. However, the present invention is not limited to this. For example, a scale (diffraction grating) provided in each stage You may use the encoder system which detects this.
 なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6778257号明細書に開示されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する可変成形マスク(電子マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれる)を用いてもよい。また、非発光型画像表示素子を備える可変成形マスクに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしても良い。 In the above-described embodiment, a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used. As disclosed in US Pat. No. 6,778,257, a variable shaped mask (also called an electronic mask, an active mask, or an image generator) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed. ) May be used. Further, a pattern forming apparatus including a self-luminous image display element may be provided instead of the variable molding mask including the non-luminous image display element.
 上述の実施形態の露光装置EXは、各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。 The exposure apparatus EX of the above-described embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
 半導体デバイス等のマイクロデバイスは、図17に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、上述の実施形態に従って、マスクのパターンを用いて露光光で基板を露光すること、及び露光された基板(感光剤)を現像することを含む基板処理(露光処理)を含む基板処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)205、検査ステップ206等を経て製造される。なお、ステップ204では、感光剤を現像することで、マスクのパターンに対応する露光パターン層(現像された感光剤の層)を形成し、この露光パターン層を介して基板を加工することが含まれる。 As shown in FIG. 17, a microdevice such as a semiconductor device includes a step 201 for designing a function / performance of the microdevice, a step 202 for manufacturing a mask (reticle) based on the design step, and a substrate which is a base material of the device. Manufacturing step 203, including substrate processing (exposure processing) including exposing the substrate with exposure light using a mask pattern and developing the exposed substrate (photosensitive agent) according to the above-described embodiment The substrate is manufactured through a substrate processing step 204, a device assembly step (including processing processes such as a dicing process, a bonding process, and a packaging process) 205, an inspection step 206, and the like. In step 204, the photosensitive agent is developed to form an exposure pattern layer (developed photosensitive agent layer) corresponding to the mask pattern, and the substrate is processed through the exposure pattern layer. It is.
 なお、上述の実施形態及び変形例の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の実施形態及び変形例で引用した露光装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 It should be noted that the requirements of the above-described embodiments and modifications can be combined as appropriate. Some components may not be used. In addition, as long as it is permitted by law, the disclosure of all published publications and US patents related to the exposure apparatus and the like cited in the above-described embodiments and modifications are incorporated herein by reference.
 1…マスクステージ、2…基板ステージ、5…制御装置、9…アライメントシステム、91…第1アライメントシステム、92…第2アライメントシステム、EL…露光光、IL1~IL7…照明モジュール、IR1~IR7…照明領域、IS…照明システム、M…マスク、m1~m6…アライメントマーク、P…基板、PA1~PA6…露光領域、PL1~PL7…投影光学系、PR1~PR7…投影領域、PS…投影システム、SA1~SA6…検出領域、SB1,SB2…検出領域 DESCRIPTION OF SYMBOLS 1 ... Mask stage, 2 ... Substrate stage, 5 ... Control apparatus, 9 ... Alignment system, 91 ... 1st alignment system, 92 ... 2nd alignment system, EL ... Exposure light, IL1-IL7 ... Illumination module, IR1-IR7 ... Illumination area, IS ... illumination system, M ... mask, m1-m6 ... alignment mark, P ... substrate, PA1-PA6 ... exposure area, PL1-PL7 ... projection optical system, PR1-PR7 ... projection area, PS ... projection system, SA1 to SA6 ... detection area, SB1, SB2 ... detection area

Claims (21)

  1.  露光光が照射可能な照射領域に対して基板を走査方向に移動しながら前記基板の複数の露光対象領域を露光光で順次露光する露光装置であって、
     前記走査方向における第1位置と第2位置との間において加速状態、前記第2位置の近傍において整定状態、及び前記第2位置と第3位置との間において定速状態で、前記照射領域に対して前記基板を保持して前記走査方向に関して一方側に移動可能な基板ステージと、
     前記照射領域に対して前記走査方向に関して他方側であって、少なくとも前記第1位置と前記第2位置との距離を隔てた位置に、複数の前記露光対象領域のうち、最初に露光される第1露光対象領域に隣接する前記基板上のアライメントマークが配置可能な検出領域を有し、前記第1露光対象領域の位置を導出するアライメントシステムと、
     を備える露光装置。
    An exposure apparatus that sequentially exposes a plurality of exposure target areas of the substrate with exposure light while moving the substrate in a scanning direction with respect to an irradiation area that can be irradiated with exposure light,
    In the irradiation state in the acceleration state between the first position and the second position in the scanning direction, in the settling state in the vicinity of the second position, and in the constant speed state between the second position and the third position. A substrate stage that holds the substrate and is movable to one side with respect to the scanning direction;
    The first exposure of the plurality of exposure target regions is performed at a position on the other side with respect to the scanning direction with respect to the irradiation region and at least at a distance between the first position and the second position. An alignment system having a detection region in which an alignment mark on the substrate adjacent to one exposure target region can be arranged, and deriving a position of the first exposure target region;
    An exposure apparatus comprising:
  2.  前記第1位置は、前記第1露光対象領域が前記照射領域の外側に配置される位置である請求項1記載の露光装置。 2. The exposure apparatus according to claim 1, wherein the first position is a position where the first exposure target area is disposed outside the irradiation area.
  3.  前記第1位置に配置された前記基板ステージに保持されている前記基板上の前記アライメントマークが、前記検出領域に配置される請求項1又は2記載の露光装置。 3. The exposure apparatus according to claim 1, wherein the alignment mark on the substrate held by the substrate stage disposed at the first position is disposed in the detection region.
  4.  前記第2位置、及び第2位置と前記第3位置との間の所定位置の少なくとも一方は、前記露光対象領域の一端が前記照射領域の少なくとも一部に配置される露光開始位置を含む請求項1~3のいずれか一項記載の露光装置。 The at least one of the second position and a predetermined position between the second position and the third position includes an exposure start position at which one end of the exposure target area is arranged in at least a part of the irradiation area. The exposure apparatus according to any one of claims 1 to 3.
  5.  前記第1露光対象領域は、前記照射領域に対して前記走査方向に関して一方側に移動しながら露光される請求項1~4のいずれか一項記載の露光装置。 5. The exposure apparatus according to claim 1, wherein the first exposure target area is exposed while moving to one side with respect to the scanning direction with respect to the irradiation area.
  6.  前記検出領域は、前記走査方向とほぼ直交する第2方向に複数配置される請求項1~5のいずれか一項記載の露光装置。 The exposure apparatus according to any one of claims 1 to 5, wherein a plurality of the detection areas are arranged in a second direction substantially orthogonal to the scanning direction.
  7.  前記アライメントシステムは、前記検出領域が前記照射領域に対して前記走査方向に関して一方側に配置された第1アライメントシステムと、他方側に配置された第2アライメントシステムとを含む請求項1~6のいずれか一項記載の露光装置。 The alignment system includes: a first alignment system in which the detection region is disposed on one side with respect to the irradiation direction with respect to the irradiation region; and a second alignment system disposed on the other side. The exposure apparatus according to any one of the above.
  8.  前記基板上の所定のアライメントマークを前記第1アライメントシステムが検出した結果と、前記所定のアライメントマークを前記第2アライメントシステムが検出した結果とに基づいて、前記第1アライメントシステムの検出領域と前記第2アライメントシステムの検出領域との位置関係を導出する処理装置を備える請求項7記載の露光装置。 Based on the result of detection of the predetermined alignment mark on the substrate by the first alignment system and the result of detection of the predetermined alignment mark by the second alignment system, the detection region of the first alignment system and the The exposure apparatus according to claim 7, further comprising a processing device that derives a positional relationship with the detection region of the second alignment system.
  9.  前記基板ステージ上の基準マークを前記第1アライメントシステムが検出した結果と、前記基準マークを前記第2アライメントシステムが検出した結果とに基づいて、前記第1アライメントシステムの検出領域と前記第2アライメントシステムの検出領域との位置関係を導出する処理装置を備える請求項7記載の露光装置。 Based on the result of detection of the reference mark on the substrate stage by the first alignment system and the result of detection of the reference mark by the second alignment system, the detection area of the first alignment system and the second alignment 8. The exposure apparatus according to claim 7, further comprising a processing device for deriving a positional relationship with the detection area of the system.
  10.  前記第1,第2アライメントシステムのそれぞれは、前記走査方向とほぼ直交する第2方向に複数の検出領域を有し、
     前記第2アライメントシステムの検出領域の数は、前記第1アライメントシステムの検出領域の数より少ない請求項7~9のいずれか一項記載の露光装置。
    Each of the first and second alignment systems has a plurality of detection regions in a second direction substantially orthogonal to the scanning direction,
    The exposure apparatus according to claim 7, wherein the number of detection areas of the second alignment system is smaller than the number of detection areas of the first alignment system.
  11.  前記第2方向に関する前記第1アライメントシステムの両端の検出領域の距離と、前記第2アライメントシステムの両端の検出領域の距離とはほぼ同じである請求項10記載の露光装置。 11. The exposure apparatus according to claim 10, wherein a distance between detection areas at both ends of the first alignment system in the second direction is substantially the same as a distance between detection areas at both ends of the second alignment system.
  12.  前記第2方向に関する前記第1アライメントシステムの両端の検出領域の位置と、前記第2アライメントシステムの両端の検出領域の位置とはほぼ同じである請求項11記載の露光装置。 12. The exposure apparatus according to claim 11, wherein the positions of the detection areas at both ends of the first alignment system in the second direction are substantially the same as the positions of the detection areas at both ends of the second alignment system.
  13.  前記第2方向に関する前記第1アライメントシステムの両端の検出領域の位置と、前記第2アライメントシステムの両端の検出領域の位置とは異なる請求項11記載の露光装置。 12. The exposure apparatus according to claim 11, wherein the positions of the detection areas at both ends of the first alignment system in the second direction are different from the positions of the detection areas at both ends of the second alignment system.
  14.  前記第1アライメントシステムと前記第2アライメントシステムとは、それぞれの両端の検出領域を用いて、前記基板上の同一のアライメントマークを検出する請求項11~13のいずれか一項記載の露光装置。 The exposure apparatus according to any one of claims 11 to 13, wherein the first alignment system and the second alignment system detect the same alignment mark on the substrate using detection regions at both ends.
  15.  請求項1~14のいずれか一項記載の露光装置を用いて、感光剤が塗布された前記基板の露光をすることと、
     前記基板の露光によって露光された前記感光剤を現像して露光パターン層を形成することと、
     前記露光パターン層を介して前記基板を加工することと、
     を含むデバイス製造方法。
    Using the exposure apparatus according to any one of claims 1 to 14, exposing the substrate coated with a photosensitive agent;
    Developing the photosensitive agent exposed by exposure of the substrate to form an exposure pattern layer;
    Processing the substrate through the exposed pattern layer;
    A device manufacturing method including:
  16.  露光光が照射可能な照射領域に対して基板を走査方向に移動しながら前記基板の複数の露光対象領域を露光光で順次露光する露光方法であって、
     前記照射領域に前記露光光を照射しながら、複数の前記露光対象領域を順次露光する第1露光処理を実行することと、
     アライメントシステムの検出領域に、前記第1露光処理が実行された前記基板上のアライメントマークを配置して、前記露光対象領域の位置を導出するアライメント処理を実行することと、
     前記照射領域に前記露光光を照射しながら、前記第1露光処理及び前記アライメント処理が実行された前記基板上の複数の前記露光対象領域を順次露光する第2露光処理を実行することと、
     を含み、
     複数の前記露光対象領域のうち、前記第1露光処理において最初に露光される第1露光対象領域を露光するときの前記走査方向に関する移動方向と、前記第2露光処理において最初に露光される第1露光対象領域を露光するときの前記走査方向に関する移動方向とが、同じである露光方法。
    An exposure method that sequentially exposes a plurality of exposure target regions of the substrate with exposure light while moving the substrate in a scanning direction with respect to an irradiation region that can be irradiated with exposure light,
    Performing a first exposure process for sequentially exposing a plurality of exposure target areas while irradiating the irradiation area with the exposure light;
    Arranging an alignment mark on the substrate on which the first exposure process has been performed in a detection area of an alignment system, and performing an alignment process for deriving a position of the exposure target area;
    Performing a second exposure process of sequentially exposing the plurality of exposure target areas on the substrate on which the first exposure process and the alignment process have been performed while irradiating the irradiation area with the exposure light;
    Including
    Among the plurality of exposure target areas, a moving direction with respect to the scanning direction when exposing a first exposure target area that is first exposed in the first exposure process, and a first exposure time in the second exposure process. An exposure method in which the moving direction with respect to the scanning direction when exposing one exposure target area is the same.
  17.  前記第1露光処理において複数の前記露光対象領域を順次露光するときの前記照射領域に対する前記基板の移動軌跡と、
     前記第2露光処理において複数の前記露光対象領域を順次露光するときの前記照射領域に対する前記基板の移動軌跡とが、ほぼ同じである請求項16記載の露光方法。
    A movement trajectory of the substrate with respect to the irradiation region when sequentially exposing a plurality of the exposure target regions in the first exposure process;
    17. The exposure method according to claim 16, wherein movement trajectories of the substrate with respect to the irradiation region when the plurality of exposure target regions are sequentially exposed in the second exposure processing are substantially the same.
  18.  前記基板は、前記走査方向における第1位置と第2位置との間において加速状態、前記第2位置の近傍において整定状態、及び前記第2位置と第3位置との間において定速状態で、前記走査方向に関して一方側に移動され、
     前記第1位置は、前記第1露光対象領域が前記照射領域の外側に配置される位置であり、
     前記第2位置、及び第2位置と前記第3位置との間の所定位置の少なくとも一方は、前記第1露光対象領域の一端が前記照射領域の少なくとも一部に配置される露光開始位置であり、
     前記検出領域は、前記照射領域に対して前記走査方向に関して他方側であって、少なくとも前記第1位置と前記第2位置との距離を隔てた位置に配置されて、前記第1露光対象領域に隣接する前記基板上のアライメントマークを検出する請求項16又は17記載の露光方法。
    The substrate is in an accelerated state between the first position and the second position in the scanning direction, in a settling state in the vicinity of the second position, and in a constant speed state between the second position and the third position, Moved to one side with respect to the scanning direction,
    The first position is a position where the first exposure target area is disposed outside the irradiation area,
    At least one of the second position and the predetermined position between the second position and the third position is an exposure start position at which one end of the first exposure target area is arranged in at least a part of the irradiation area. ,
    The detection area is located on the other side with respect to the irradiation direction with respect to the irradiation area and at least at a distance between the first position and the second position. The exposure method according to claim 16 or 17, wherein an alignment mark on the adjacent substrate is detected.
  19.  前記アライメントマークの検出の後、
     前記第1露光対象領域が、前記照射領域に対して前記走査方向に関して一方側に移動しながら露光される請求項18記載の露光方法。
    After detection of the alignment mark,
    The exposure method according to claim 18, wherein the first exposure target area is exposed while moving to one side with respect to the scanning direction with respect to the irradiation area.
  20.  複数の基板が順次露光され、
     前記複数の基板のうち、第1基板の露光対象領域のそれぞれに隣接する複数のアライメントマークを全て検出して、前記第1基板の位置及び前記第1基板上の露光対象領域それぞれの位置を導出する第1アライメントモードを実行することと、
     前記複数の基板のうち、第2基板上の所定のアライメントマークを検出して、前記所定のアライメントマークの検出結果と、前記第1アライメントモードの導出結果とに基づいて、前記第2基板の位置及び前記第2基板上の露光対象領域それぞれの位置を導出する第2アライメントモードを実行することと、を含み、
     前記第2アライメントモードを実行した後、前記第1露光対象領域の露光が開始される請求項19記載の露光方法。
    Multiple substrates are exposed sequentially,
    Of the plurality of substrates, all of the plurality of alignment marks adjacent to the exposure target regions of the first substrate are detected, and the position of the first substrate and the position of each exposure target region on the first substrate are derived. Performing a first alignment mode,
    A position of the second substrate is detected based on a detection result of the predetermined alignment mark and a derived result of the first alignment mode by detecting a predetermined alignment mark on the second substrate among the plurality of substrates. And performing a second alignment mode for deriving the position of each exposure target area on the second substrate,
    The exposure method according to claim 19, wherein exposure of the first exposure target area is started after executing the second alignment mode.
  21.  請求項16~20のいずれか一項記載の露光方法を用いて、感光剤が塗布された前記基板の露光をすることと、
     前記基板の露光によって露光された前記感光剤を現像して露光パターン層を形成することと、
     前記露光パターン層を介して前記基板を加工することと、
     を含むデバイス製造方法。
    Using the exposure method according to any one of claims 16 to 20, exposing the substrate coated with a photosensitive agent;
    Developing the photosensitive agent exposed by exposure of the substrate to form an exposure pattern layer;
    Processing the substrate through the exposed pattern layer;
    A device manufacturing method including:
PCT/JP2010/002432 2009-04-03 2010-04-02 Exposure apparatus, exposure method and device manufacturing method WO2010113525A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011507044A JP5429283B2 (en) 2009-04-03 2010-04-02 Exposure apparatus and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009091185 2009-04-03
JP2009-091185 2009-04-03

Publications (1)

Publication Number Publication Date
WO2010113525A1 true WO2010113525A1 (en) 2010-10-07

Family

ID=42827832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002432 WO2010113525A1 (en) 2009-04-03 2010-04-02 Exposure apparatus, exposure method and device manufacturing method

Country Status (4)

Country Link
JP (1) JP5429283B2 (en)
KR (1) KR20120006988A (en)
TW (1) TWI502283B (en)
WO (1) WO2010113525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191867A (en) * 2015-03-31 2016-11-10 株式会社ニコン Exposure apparatus, exposure method, flat panel display production method, and device production method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220136B2 (en) 2011-01-01 2013-06-26 キヤノン株式会社 Illumination optical system, exposure apparatus, and device manufacturing method
DE102014213402A1 (en) 2014-07-10 2016-01-14 Robert Bosch Gmbh Brake disk for a motor vehicle, braking device
CN107966881B (en) * 2017-03-15 2018-11-23 上海微电子装备(集团)股份有限公司 Lithographic equipment and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260391A (en) * 1993-03-03 1994-09-16 Nikon Corp Exposure method
JPH1063011A (en) * 1996-08-14 1998-03-06 Nikon Corp Scanning type exposure device and method therefor
JP2000243691A (en) * 1999-02-22 2000-09-08 Toshiba Corp Exposure method
JP2002110526A (en) * 2000-10-03 2002-04-12 Canon Inc Method and system for scanning alignment
JP2003347184A (en) * 2002-05-22 2003-12-05 Nikon Corp Exposure method, exposure device, and method of manufacturing device
WO2006101086A1 (en) * 2005-03-22 2006-09-28 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing microdevice
JP2007108559A (en) * 2005-10-17 2007-04-26 Nikon Corp Scanning exposure apparatus and method for manufacturing device
JP2008124194A (en) * 2006-11-10 2008-05-29 Canon Inc Liquid-immersion exposure method and liquid-immersion exposure apparatus
JP2008300579A (en) * 2007-05-30 2008-12-11 Canon Inc Exposure apparatus and device manufacturing method
JP2009302344A (en) * 2008-06-13 2009-12-24 Canon Inc Exposure apparatus, and device manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260391A (en) * 1993-03-03 1994-09-16 Nikon Corp Exposure method
JPH1063011A (en) * 1996-08-14 1998-03-06 Nikon Corp Scanning type exposure device and method therefor
JP2000243691A (en) * 1999-02-22 2000-09-08 Toshiba Corp Exposure method
JP2002110526A (en) * 2000-10-03 2002-04-12 Canon Inc Method and system for scanning alignment
JP2003347184A (en) * 2002-05-22 2003-12-05 Nikon Corp Exposure method, exposure device, and method of manufacturing device
WO2006101086A1 (en) * 2005-03-22 2006-09-28 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing microdevice
JP2007108559A (en) * 2005-10-17 2007-04-26 Nikon Corp Scanning exposure apparatus and method for manufacturing device
JP2008124194A (en) * 2006-11-10 2008-05-29 Canon Inc Liquid-immersion exposure method and liquid-immersion exposure apparatus
JP2008300579A (en) * 2007-05-30 2008-12-11 Canon Inc Exposure apparatus and device manufacturing method
JP2009302344A (en) * 2008-06-13 2009-12-24 Canon Inc Exposure apparatus, and device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191867A (en) * 2015-03-31 2016-11-10 株式会社ニコン Exposure apparatus, exposure method, flat panel display production method, and device production method

Also Published As

Publication number Publication date
TWI502283B (en) 2015-10-01
JP5429283B2 (en) 2014-02-26
KR20120006988A (en) 2012-01-19
JPWO2010113525A1 (en) 2012-10-04
TW201040673A (en) 2010-11-16

Similar Documents

Publication Publication Date Title
US11126094B2 (en) Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
JP7060059B2 (en) Exposure equipment, flat panel display manufacturing method, and device manufacturing method
KR101581083B1 (en) Exposure method, exposure device, and manufacturing method for device
JPWO2017057583A1 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JP5429283B2 (en) Exposure apparatus and device manufacturing method
TWI721023B (en) Exposure apparatus and exposure method, and manufacturing method of flat panel display
JP5692076B2 (en) Exposure apparatus, exposure method, and device manufacturing method
TWI579649B (en) Exposure method, exposure apparatus and device manufacturing method
JP6855008B2 (en) Exposure equipment, flat panel display manufacturing method, device manufacturing method, and exposure method
JP6727554B2 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JP2008103425A (en) Exposure apparatus, exposure method, and method of manufacturing device
JP2010217389A (en) Exposure apparatus, exposure method, and method for manufacturing device
JP6744588B2 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JP2010097129A (en) Exposure device, exposing method, and method of manufacturing device
JP2008300770A (en) Exposure device, exposure method, lithography system, device manufacturing system, manufacturing method of device and substrate processing method
JP5251367B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US20030128345A1 (en) Scanning type exposure apparatus and a device manufacturing method using the same
JP5304959B2 (en) Exposure apparatus and device manufacturing method
JP5109805B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2012242811A (en) Mask, exposure apparatus, exposure method and device manufacturing method
JP2010050223A (en) Substrate processing method, exposure device, and device manufacturing method
JP6701596B2 (en) Exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method
JP6701597B2 (en) Exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method
JP2010251409A (en) Exposure method, exposure apparatus, and device manufacturing method
KR20200049538A (en) Stage apparatus, lithography apparatus, and article manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117022875

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011507044

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758304

Country of ref document: EP

Kind code of ref document: A1