TW201040673A - Exposure device, exposure method and device production method - Google Patents
Exposure device, exposure method and device production method Download PDFInfo
- Publication number
- TW201040673A TW201040673A TW099110135A TW99110135A TW201040673A TW 201040673 A TW201040673 A TW 201040673A TW 099110135 A TW099110135 A TW 099110135A TW 99110135 A TW99110135 A TW 99110135A TW 201040673 A TW201040673 A TW 201040673A
- Authority
- TW
- Taiwan
- Prior art keywords
- exposure
- substrate
- alignment
- area
- detection
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7003—Alignment type or strategy, e.g. leveling, global alignment
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
201040673 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種曝光裝置、曝光方法及元件製造 ' 方法。 【先前技術】 例如,在平板顯示器(f|atpanel display)等的電子元 件的製造步驟中,使用以曝光光束來對基板進行曝光的曝 光裝置。如下述專利文獻所揭示般,曝光裝置具備可導出 基板的位置的對準系統(alignment system),執行使用該 對準系統的對準處理’以對基板進行曝光。 [先行技術文獻] [專利文獻] [專利文獻1]日本專利特開2003-347184號公報 在曝光裝置中,若對準處理所需的時間變長,則有處 理量(throughput)會下降,且元件的生產性會下降的可能 性。 D 【發明内容】 本發明的技術方案的目的在於,提供一種可抑制處理 量的下降的曝光裝置及曝光方法。而且,本發明的技術方 • 案的目的在於,提供一種可抑制生產性的下降的元件製造 方法。 . 根據本發明的第1技術方案,提供一種曝光裝置,一 ^ $面絲板相騎曝絲束可騎的照純域❿沿掃描方 向移動’ -方面利用曝光光束來對上述基板的多個曝光對 201040673 象區域進行依序曝光,此曝光裝置包括:基板平台,可在 第1位置與第2位置之間以加速狀態2 述第2位置的附近以穩定狀態、及在上述第2位置盥第 二Ϊ之間以定速狀態,來相對於上述照射區域而保持上 二土’且關於上述掃描方向而向-側移動;以及對準夺 ^於相對於上述照射區域而關於上述掃描方側 Π;:上述第1位置與上述第2位置的距離的位置 二曝光對象區域中私受到曝光的第1 j對^域鄰接的上述基板上的對準標記(aiig_nt 光對象區測區域,且該對準系統導出上述第1曝 法2技術方案’提供-狀件製造方 使用第^術方案的曝光I置,對塗佈有感 m =㈣行曝光;對藉由上述基板的曝光而曝光 感光劑進行顯影,以形成曝光圖案(pattern)層; 及、、里由上述曝光圖案層,來對上述基板進行加工。 根據本發明的第3技術方案,提供一種曝光方法,一 =基板相對於曝光光束可照射的照射區域而沿掃描方 ^ 方面利㈣光光束來對上述基板的多個曝光對 ΐ ^行依序曝光,此曝光方法包括:執行第1曝光處 二弟1曝光處理是—方面對上述照射區域照射上述曝 “.批―方面對多個上述曝光對象區域進行依序曝光的 =,執行對準處理,該對準處理是將執行了上述第i曝 处理的上述基板上的對準標記配置於對準系統的檢測區 201040673 Ο201040673 VI. Description of the Invention: [Technical Field] The present invention relates to an exposure apparatus, an exposure method, and a device manufacturing method. [Prior Art] For example, in the manufacturing steps of an electronic component such as a flat panel display (f|atpanel display), an exposure device that exposes a substrate with an exposure beam is used. As disclosed in the following patent documents, the exposure apparatus includes an alignment system that can derive the position of the substrate, and performs alignment processing using the alignment system to expose the substrate. [Patent Document 1] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2003-347184 discloses that in the exposure apparatus, when the time required for the alignment process is long, the throughput is lowered, and The possibility that the productivity of the component will decrease. D. SUMMARY OF THE INVENTION An object of the present invention is to provide an exposure apparatus and an exposure method capable of suppressing a decrease in the amount of processing. Moreover, it is an object of the technical scope of the present invention to provide a method of manufacturing a component which can suppress a decrease in productivity. According to a first aspect of the present invention, an exposure apparatus is provided, in which a plurality of the above-mentioned substrates are exposed by an exposure beam Exposure sequentially exposes the image area of 201040673. The exposure apparatus includes a substrate platform that can be in a stable state in the vicinity of the second position in the acceleration state 2 between the first position and the second position, and in the second position. The second crucible is maintained at a constant speed state with respect to the illumination region and moves to the side with respect to the scanning direction; and the alignment is performed with respect to the scanning region with respect to the scanning region Π;: a distance between the first position and the second position, an alignment mark (aiig_nt light object area) on the substrate adjacent to the first j-pair field in the exposure target area; and The alignment system derives the above-mentioned first exposure method 2 technical solution 'providing the shape manufacturer to use the exposure I set of the first scheme, the coating has a sense of m = (four) line exposure; exposure exposure by exposure of the above substrate Agent Developing the substrate to form an exposure pattern layer; and, wherein the substrate is processed by the exposure pattern layer. According to the third aspect of the invention, an exposure method is provided, wherein the substrate is opposite to the exposure beam Illuminating the illuminating region and sequentially exposing the plurality of exposures of the substrate along the scanning side, and the exposing method comprises: performing the first exposure at the second exposure 1 The irradiation area is irradiated with the exposure of the plurality of exposure target areas in the exposure area, and an alignment process is performed, which is an alignment mark on the substrate on which the ith exposure process is performed. Detected in the detection area of the alignment system 201040673 Ο
域,導出上述曝光對象區域的位置的處理;以及執行第 2曝光處理’該第2曝光處理是—方面對上述照射區域照 射上述曝光光束,—方面對執行了上述第1曝光處理及上 述對準處_上述基板上的多個上述#光對祕域進行依 序曝光的處理,且,對多個上述曝光對象區域中在上述第 1曝光處財最先受解光的第1曝光對象區域進行曝光 時的關於上述掃描方向的移動方向、與對在上述第2曝光 處理中最先受到曝絲第i曝光對象輯 於上述掃财㈣義額為糊。 ^ 根據本發_第4技術方案,提供—種元件製造方 >,其包括:使用第3技術方案的曝光方法,對塗佈 ,劑的上述基板進行曝光;對藉由上述基板的曝光而曝光 的上述感光劑進行顯影,以形成曝光圖案層;以及經由上 述曝光圖案層,來對上述基板進行加工。 [發明的效果] 根據本發明的技術方案,可抑制處理量的下 抑制元件的生產性的下降。 =:文特舉 【實施方式】 以下…方Φ參關H面對本發明的實施形態 進行說明,但本發明並不眼定於+ 定3CV7 T六^ 在以下的說明中,設 疋XYZ正交座標糸,參照該χγζ正交座標系來說明各部 7 201040673 分的位置關係。將水平面内的規定方向設為χ轴方向,將 於水平面内與X轴方向正交的方向設為γ軸方向,將分別 與X軸方向及γ軸方向正交的方向(亦即錯垂方向)設為 ζ轴方向。而且’將繞χ轴、γ軸及 方向分別設為狀、奸及叹方向。 貝针) <第1實施形態> 對第1實施形態進行說明。圖i是表示第i實施形態 的曝光裝置EX的-例的概略構成圖,圖2是立體圖。於 圖1及圖2中,曝光農置EX具備:可保持遮罩(觀k)、 Μ·而移動的遮罩平台丨;可保持基板p而移動的基板平台 2,移動該遮罩平台1的驅動系統3 ;移動該基板平台2的 驅動系統4 ;以曝光光束EL來對遮罩M進行照明的照明 =統IS ;將由曝光光束EL所照明的遮罩M的圖案的像投 〜至基板p的投景彡系統pS ;以及控制曝光裝置的整體 動作的控制裝置5。 遮罩Μ包括形成有被投影至基板ρ的元件圖案的光罩 (reticle )。基板Ρ例如包括玻璃板(glass plate )等的基材、 及,成於該基材上的感光膜(所塗佈的感光劑)。於本實施 形態中,基板p包括被稱作母玻璃(motherglass)的大型 玻璃板,該基板P的一邊的尺寸例如大於等於5〇〇 mm。 於本實施形射’作為基板P的基材,使用—邊為約3_ mm的矩形的玻璃板。a process of deriving a position of the exposure target region; and performing a second exposure process of the second exposure process: the first exposure process is performed on the illumination region, and the first exposure process and the alignment are performed And performing a process of sequentially exposing a plurality of the light-to-secret regions on the substrate, and performing a first exposure target region in which the first exposure portion is first de-extracted at the first exposure target region among the plurality of exposure target regions The moving direction of the scanning direction at the time of exposure and the first exposure of the second exposure processing in the second exposure processing are compiled in the above-mentioned sweeping (four) scale. According to the fourth aspect of the present invention, there is provided a component manufacturing device, comprising: exposing the substrate of the coating agent by using an exposure method of the third aspect; and exposing the substrate by the exposure The exposed sensitizer is developed to form an exposure pattern layer, and the substrate is processed through the exposure pattern layer. [Effects of the Invention] According to the aspect of the invention, it is possible to suppress a decrease in the productivity of the lower suppression element of the treatment amount. =: MODE FOR CARRYING OUT THE INVENTION [Embodiment] The following is a description of an embodiment of the present invention. However, the present invention is not limited to +3CV7 T6. In the following description, 疋XYZ is set. For the coordinates, refer to the χγζ orthogonal coordinate system to explain the positional relationship of each part 7 201040673 points. The predetermined direction in the horizontal plane is the χ-axis direction, and the direction orthogonal to the X-axis direction in the horizontal plane is the γ-axis direction, and the direction orthogonal to the X-axis direction and the γ-axis direction (that is, the sag direction) ) Set to the x-axis direction. Moreover, the direction around the χ axis, the γ axis, and the direction are set to be traits, traits, and sighs. Bayer) <First Embodiment> The first embodiment will be described. Fig. 1 is a schematic configuration diagram showing an example of an exposure apparatus EX according to the i-th embodiment, and Fig. 2 is a perspective view. In FIG. 1 and FIG. 2, the exposure farm EX includes a mask platform that can move while maintaining a mask (k), and a substrate platform 2 that can move while holding the substrate p, and moves the mask platform 1 a driving system 3; a driving system 4 that moves the substrate platform 2; an illumination that illuminates the mask M with the exposure light beam EL; an image of the pattern of the mask M illuminated by the exposure light beam EL is applied to the substrate The projection system p of p; and the control device 5 for controlling the overall operation of the exposure device. The mask Μ includes a reticle formed with an element pattern projected onto the substrate ρ. The substrate Ρ includes, for example, a substrate such as a glass plate, and a photosensitive film (coated sensitizer) formed on the substrate. In the present embodiment, the substrate p includes a large glass plate called mother glass, and the size of one side of the substrate P is, for example, 5 〇〇 mm or more. In the present embodiment, as the substrate of the substrate P, a rectangular glass plate having a side of about 3 mm was used.
而且,本實施形態的曝光裝置EX具備:對遮罩平台 1及基板平台2的位置進行計測的干涉計系統6;對遮罩M 201040673 的表面(下表面、圖案形成面)的位置進行檢測的第【檢 . f系統7,對基板P的表面(曝光面、感光面)的位置進 行檢測的第2檢測系統8 ;以及對基板P上的對準標記進 v 行檢測的對準系統9。 而且,曝光裝置EX具備主體(b〇dy) 13。主體13例 士八有.級由防振台BL而配置於無塵室(ciean r〇〇m)内 的支持面(例如地板)FL上的底板(base piate) 1〇 ;配置 於底板10上的第1柱體(column) 11 ;以及配置於第1 柱體11上的第2柱體12。於本實施形態中,主體13支持 投,系統PS、遮罩平台i及基板平台2的各個。於本實施 升久4中,投影系統PS經由壓盤14而支持於第1柱體u。 遮f平台1相對於第2柱體12而可移動地受到支持。基板 平台2相對於底板1〇而可移動地受到支持。 於本實施形態中,投影系統PS具有多個投影光學系 統。照明系統IS具有與多個投影光學系統對應的多個照明 模組(module)。而且,本實施形態的曝光裝置Εχ 一方面 Ο 使遮罩Μ及基板Ρ於規定的掃描方向上同步移動,一方面 將遮罩IV[的圖案的像投影至基板ρ上。亦即,本實施形態 的曝光裂置ΕΧ疋所謂的多透鏡(muiti_iens)型掃描(scan) _ 曝光裝置^ 於本實施形態中,投影系統具有7個投影光學系 * 統PL1〜PL7,照明系統LS具有7個照明模組IL1〜IL7。 • 再者,投影光學系統及照明模組的數量並不限定於7個, 例如投影系統PS亦可具有丨丨個投影光學系統,且照明系 201040673 統IS亦可具有11個照明模組。 照明系統IS可對規定的照明區域來照射曝光光束 EL。照明區域是自各照明模組IL1〜江?射出的曝光光束 EL可照射的照射區域。於本實施形態中,照明系統is利 用曝光光束EL來對不同的7個照明區域的各個進行照 明。照明系統IS利用均勻的照度分布的曝光光束el,來 對遮罩Μ中被配置於照明區域的部分進行照明。於本實施 形悲中,作為自照明系統IS射出的曝光光束,使用自 汞燈(lamp) 17射出的明線(g線、h線、丨線)。 遮罩平台1可在保持有遮罩Μ的狀態下,相對於照明 區域而移動。遮罩平台1以遮罩訄的下表面(圖案形成面) 與ΧΥ平面大致平行的方式而保持遮罩Μ。驅動系統3例 如包括線性馬達(linearmotor),且於第2柱體12的導引 面12G士可移動該遮罩平台丄。於本實施形態中,該遮罩 平台1藉由驅動系統3的作動,而可在保持有遮罩M的狀 態下,於導引面12g上沿X軸、γ軸及θζ方向這3個方 向來移動。 投影系統PS可對規定的投影區域來照射曝光光束 EL技衫區域是自各投影光學系統PL1〜PL7射出的曝光 光束EL可照射的照射區域。於本實施形態中,投影系統 PS向不同的7個投影區域pR1〜pR7的各個,來投影圖案 =像投衫光學系統pS將遮罩Μ的圖案的像以規定的投 汾化率來投影至基板Ρ中被配置於投影區域pRi〜pR7 的部分。 201040673 基板平台2可麵持有絲ρ的狀態下,相對於投影 :/ PR1〜PR7而移動。基板平台2以基板ρ的表面(曝 光面)與ΧΥ平面大致平行的方絲保持基板ρ。驅動系 統4例如包括線性馬達,且於底板1〇的導引面聰切 f ?。於本實施形態中,基板平台2藉由驅動 ❹ Ο 、,而可在保持有基板P的狀態下,於導引面 =上沿X軸、γ軸、z軸、mez方向這= 向來移動。 於基板P的曝光時,控制裝置5控制遮罩平台!及美 ί平台2 ’使遮罩M及基板卩沿著與曝光光束EL的光ί 的ΧΥ平面内的規定的掃描方向來移動。於本實施形 2令,將基板Ρ的掃描方向(同步移動方向)設為x轴方 將遮罩Μ的掃描方向(同步移動方向)亦設為X轴 f向。控制裝置5 一方面使基板Ρ相對於投影系統PS的 又办區域PR1〜PR?而沿乂軸方向來移動並且與該基板 P朝向X軸方向的移動同步地,使遮罩Μ相對於照明系 n 而沿χ轴方向來移動,一方面經由投影系統 ,土板照射曝光光束EL。藉此,遮罩]^的圖案的 像被投影至基板Ρ上,基板ρ在曝光光束el下受到曝光。 圖3是表示本實施形態的投影系統ps、第i檢測系統 第2檢測系統8、對準系統9及投影區域PR1〜PR7上 所配置的基板平台2的一例的圖。 如圖2及圖3所示,於基板平台2的上表面,配置著 土準構件43。基準構件43的上表面糾,被配置在與由基 11 201040673 板平台2所保持的基板P的表面為大致同—平面内。而 且,於基準構件43的上表面44,配置著可透過曝光光束 EL的透過部45。於基準構件43的下方,配置著可接收透 過該透過部45後的光的受光裝置46。受光裝置46具有. 經由透過部45的光所入射的透鏡Uens)系統47;以'及接 收經由透鏡系統47的光的光感測器(sens〇r)仙。於本實 施形態中,光感測器48包括攝影元件(電荷耦合元件 (charge coupled device,CCD))。光感測器 48 將^所接 收之光相應的信號輸出至控制裝置5。 於本實施形態中,透過部45作為基準標記(mark) 而發揮功能。再者,亦可於基準構件43的上表面44,設 置相對於透過部45而配置於規定位置的標記,並 記來作為鲜標記。 接著,對干涉計系統6、第1檢測系統7、第2檢測系 統8及對準系統9進行說明。於圖1及圖2中,干涉計系 有.對遮罩平台1的位置進行計測的雷射(laser) 元(unit) 6A;以及對基板平台2的位置進行計 涉計單元6B。雷射干涉計單元6A可使用配置 ^番平台1上的計測鏡(mirror),來計測遮罩平台1的 計測夢雷射干涉計單元6B可使用配置於基板平台2上的 二來計測基板平台2的位置。於本實施形態中,干 二。=统6可使用雷射干涉計單^ 6A、6B,來對遮軍平 i訊進台2各自關於X軸、Y軸及ΘΧ方向的伋置 12 201040673 第1檢測系、统7對遮罩]^的下表面(圖案形成面)的 2軸方向的位置進行檢測。第1檢測系統 7是所謂的斜入 射方,的夕點聚焦权平(f〇cus leveling)檢測系統。第2 、檢測系統8對基板P的表面(曝光面)的Z軸方向的位置 進订檢測。第2檢測系統8是所謂的斜入射方式的多點聚 焦校平檢測系統。 對準系統9對基板P上所設的對準標記進行檢測。於 ❹本實施形中,對準系統9具有相對於投影系統ps,關於 X軸方向(掃描方向)而配置於_\側的第1對準系統91 及配置於+X側的第2對準系統92。 •第1對準系統9卜第2對準系統92是所謂的離軸(〇ff • axis)方式的對準系統。如圖3所示,第1對準系統91具 、 有.多個檢測器91A〜91F,與由基板平台2所保持的基板 P的表面相對配置;以及多個檢測區域SA1〜SA6,與該 些檢測器91A〜91F對應,且沿γ軸方向而配置。第2對 準系統92具有:多個檢測器92A、92B,與由基板平台2 Ο 所保持的基板P的表面相對配置;以及多個檢測區域 SB1、SB2,與該些檢測器92A、92B對應,且沿γ軸方向 配置。 檢測器91A〜91F、92A、92B的各個具有:投射部, 對檢測區域SA1〜SA6、SB1、SB2照射檢測光;以及受光 部’可獲取配置於檢測區域SA1〜SA6、SB1、SB2中的對 * 準標記的光學像。多個檢測器91A〜91F、92A、92B的各 個’可對配置於檢測區域SA1〜SA6、SB1、SB2中的基板 13 201040673 p上的對準標記進行檢測。 圖4是表示投影區域PR1〜PR7、檢測區域SA1〜 SAf、SB卜SB2及基板P的位置關係的一例的示意圖,其 表示包括基板P的表面的平面内的位置關係。如圖4所 不,於本實施形態中’基板P的表面具有遮罩Μ的圖案的 像所投影的多個曝光區域(曝光對象區域)ρΑ1〜ρΑ4。於 本實施形恶中,基板Ρ的表面具有4個曝光區域ΡΑ1〜 Ρ=°曝光區域ΡΑ卜ρΑ2沿著γ軸方向而大致等間隔地 隔開配置著,曝光區域ΡΑ3、ΡΑ4沿γ軸方向而大致等間 隔地隔開配置著。曝光區域ΡΑ丨相對於曝光區域ρΑ 2而配 置於-Υ侧。曝光區域ΡΑ3相對於曝光區域ρΑ4而配置於 +Υ側。曝光區域ΡΑ1、ΡΑ2相對於曝光區域ΡΑ3、ΡΑ4而 配置於+Χ側。 於本實施形態中,投影區域PR1〜PR7的各個於ΧΥ 平面内為梯形。於本實施形態中,投影光學系統pL1、PL3、 PL5、PL7的投影區域pm、pR3、PR5、PR7沿γ軸方向 而大致等間隔地配置著,投影光學系統pL2、pL4、pL6 的投影區域PR2、PR4、PR6沿Y軸方向而大致等間隔地 配置著。投影區域PR1、PR3、PR5、PR7相對於投影區域 PR2、PR4、PR6而配置於-X側。而且,關於γ軸方向, 投影區域PR2、PR4、PR6被配置於投影區域pri、pR3、 PR5、PR7 之間。 於本實施形態中,多個投影區域PR1〜PR7中,關於 Y軸方向而為外侧的2個投影區域PR1與投影區域pR7的 14 201040673 間隔’小於多個曝光區域PA1〜PA4中,關於γ軸方向而 為外側的2個曝光區域ΡΑ1 (ΡΑ4)的-Υ侧的邊緣(edge) 與曝光區域PA2 (PA3)的+Y側的邊緣的間隔。而且’關 於Y軸方向而為外側的2個投影區域PR1與投影區域PR7 的間隔,與曝光區域PA1的-Y側的邊緣與+γ侧的邊緣的 間隔大致相同,或者稍大於該間隔。再者,於本實施形態 中曝光區域ΡΑ1〜ΡΑ4各自的大小及形狀為大致相同。 於本實施形態中,第1對準系統91的檢測器91Α〜91F 的多個檢測區域SA1〜SAWY軸方向,以規定間隔而隔 開配置著。第2對準系統92的檢測器92A、灿的多働 測區域sm、SB2沿Y軸方向,以規定間隔而隔開配置著。 於本實崎恶中,第1對準系統91具有6個檢測區域SA1 SA6第2對準系 '统92具有2個檢測區域SB1、SB2。 ^^實知形態中第2對準系統92的檢測區域SB1、SB2 ^數量少於第1對準系統91的檢測區域SA1〜SA6的數 〇 財實施形態中,檢測區域SA1〜SA6相對於投影區 關於X軸方向(掃描方向)而配置於-X侧。 = =:、SB2相對於投影區域pRi〜肥,關於χ 轴方向(知描方向)而配置於+又側。Further, the exposure apparatus EX of the present embodiment includes an interferometer system 6 that measures the positions of the mask stage 1 and the substrate stage 2, and detects the position of the surface (lower surface, pattern forming surface) of the mask M 201040673. The second detecting system 8 for detecting the position of the surface (exposure surface, photosensitive surface) of the substrate P; and the alignment system 9 for detecting the alignment mark on the substrate P. Further, the exposure device EX includes a main body (b). The main body 13 has a base piate arranged on the support surface (for example, the floor) FL in the clean room (the floor) by the anti-vibration table BL; the base piate is disposed on the bottom plate 10 The first column 11 and the second column 12 disposed on the first column 11. In the present embodiment, the main body 13 supports each of the system PS, the mask platform i, and the substrate platform 2. In the present embodiment, the projection system PS is supported by the first cylinder u via the platen 14. The cover f platform 1 is movably supported with respect to the second cylinder 12. The substrate platform 2 is movably supported relative to the bottom plate 1 . In the present embodiment, the projection system PS has a plurality of projection optical systems. The illumination system IS has a plurality of illumination modules corresponding to a plurality of projection optical systems. Further, in the exposure apparatus of the present embodiment, the mask Μ and the substrate 同步 are moved in synchronization in a predetermined scanning direction, and the image of the mask IV is projected onto the substrate ρ. That is, the exposure cracking of the present embodiment is a so-called multi-lens scanning type scanning apparatus. In the present embodiment, the projection system has seven projection optical systems PL1 to PL7, and the illumination system. The LS has seven illumination modules IL1 to IL7. • Furthermore, the number of projection optical systems and illumination modules is not limited to seven. For example, the projection system PS may have one projection optical system, and the illumination system 201040673 IS may also have 11 illumination modules. The illumination system IS can illuminate the exposure beam EL for a prescribed illumination area. The lighting area is from the lighting module IL1~江? The exposed area of the emitted exposure beam EL can be illuminated. In the present embodiment, the illumination system is used to illuminate each of the seven different illumination areas by the exposure light beam EL. The illumination system IS illuminates the portion of the mask that is disposed in the illumination region by using the exposure beam el of the uniform illumination distribution. In the present embodiment, as the exposure light beam emitted from the illumination system IS, an open line (g line, h line, and 丨 line) emitted from a mercury lamp 17 is used. The mask platform 1 is movable relative to the illumination area while the mask Μ is held. The mask stage 1 holds the mask 以 in such a manner that the lower surface (pattern forming surface) of the mask 大致 is substantially parallel to the ΧΥ plane. The drive system 3, for example, includes a linear motor, and the mask platform 可 can be moved on the guide surface 12G of the second cylinder 12. In the present embodiment, the mask platform 1 can be moved in the three directions of the X-axis, the γ-axis, and the θ-direction on the guide surface 12g while the mask M is held by the operation of the drive system 3. Come to move. The projection system PS can illuminate the exposure beam with respect to a predetermined projection area. The EL jersey area is an irradiation area that can be irradiated by the exposure light beam EL emitted from each of the projection optical systems PL1 to PL7. In the present embodiment, the projection system PS projects a pattern to each of the seven different projection regions pR1 to pR7. The image of the pattern of the mask Μ is projected onto the image of the mask Μ by the projection optical system pS to a predetermined projection ratio. The substrate Ρ is disposed in a portion of the projection regions pRi to pR7. 201040673 The substrate platform 2 can be moved relative to the projections :/ PR1 to PR7 while the wire ρ is held. The substrate stage 2 holds the substrate ρ with a square wire whose surface (exposed surface) of the substrate ρ is substantially parallel to the pupil plane. The drive system 4 includes, for example, a linear motor, and is shielded from the guide surface of the bottom plate 1〇. In the present embodiment, the substrate stage 2 can be moved in the direction of the X-axis, the γ-axis, the z-axis, and the mez direction on the guide surface = by holding the substrate P while driving the substrate P. At the time of exposure of the substrate P, the control device 5 controls the mask platform! And the platform 2' moves the mask M and the substrate 规定 along a predetermined scanning direction in the pupil plane of the light ί of the exposure light beam EL. In the second embodiment, the scanning direction (synchronous moving direction) of the substrate 设为 is set to the x-axis direction. The scanning direction (synchronous moving direction) of the mask 亦 is also set to the X-axis f direction. On the one hand, the control device 5 moves the substrate Ρ in the x-axis direction with respect to the rest area PR1 to PR? of the projection system PS and synchronizes with the movement of the substrate P in the X-axis direction, so that the mask Μ is relative to the illumination system n moves along the x-axis direction, and on the other hand, the soil plate illuminates the exposure beam EL via the projection system. Thereby, the image of the pattern of the mask is projected onto the substrate, and the substrate ρ is exposed under the exposure beam el. Fig. 3 is a view showing an example of the substrate stage 2 disposed on the projection system ps, the i-th detection system second detecting system 8, the alignment system 9, and the projection areas PR1 to PR7 of the embodiment. As shown in FIGS. 2 and 3, a soil member 43 is disposed on the upper surface of the substrate stage 2. The upper surface of the reference member 43 is arranged to be substantially in the same plane as the surface of the substrate P held by the base plate 201040673. Further, a transmissive portion 45 through which the exposure light beam EL can be transmitted is disposed on the upper surface 44 of the reference member 43. Below the reference member 43, a light receiving device 46 that can receive light that has passed through the transmitting portion 45 is disposed. The light-receiving device 46 has a lens Uens that is incident on the light passing through the transmissive portion 45, and a light sensor (sensor) that receives light passing through the lens system 47. In the present embodiment, the photo sensor 48 includes a photographic element (charge coupled device (CCD)). The photo sensor 48 outputs a signal corresponding to the received light to the control device 5. In the present embodiment, the transmitting portion 45 functions as a reference mark. Further, a mark placed at a predetermined position with respect to the transmissive portion 45 may be provided on the upper surface 44 of the reference member 43, and may be referred to as a fresh mark. Next, the interferometer system 6, the first detection system 7, the second detection system 8, and the alignment system 9 will be described. In Figs. 1 and 2, an interferometer includes a laser unit 6A for measuring the position of the mask stage 1, and a calculation unit 6B for the position of the substrate stage 2. The laser interferometer unit 6A can measure the mask platform 1 using the measuring mirror on the platform 1 to measure the mating platform. The dream laser interferometer unit 6B can measure the substrate platform using the second disposed on the substrate platform 2. 2 location. In the present embodiment, it is dry. = System 6 can use the laser interferometer single ^ 6A, 6B, to cover the X-axis, Y-axis and ΘΧ direction of each of the 遮 平 i 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 The position of the lower surface (pattern forming surface) of the ^ in the two-axis direction is detected. The first detection system 7 is a so-called oblique entrance level detection system. Second, the detection system 8 determines the position of the surface (exposure surface) of the substrate P in the Z-axis direction. The second detecting system 8 is a so-called oblique incident multi-point focus leveling detecting system. The alignment system 9 detects the alignment marks provided on the substrate P. In the present embodiment, the alignment system 9 has a first alignment system 91 disposed on the _\ side with respect to the projection system ps in the X-axis direction (scanning direction) and a second alignment disposed on the +X side. System 92. • The first alignment system 9 and the second alignment system 92 are so-called off-axis (〇 ff • axis) alignment systems. As shown in FIG. 3, the first alignment system 91 has a plurality of detectors 91A to 91F disposed opposite to the surface of the substrate P held by the substrate stage 2, and a plurality of detection areas SA1 to SA6. The detectors 91A to 91F correspond to each other and are arranged along the γ-axis direction. The second alignment system 92 has a plurality of detectors 92A and 92B disposed opposite to the surface of the substrate P held by the substrate stage 2A, and a plurality of detection areas SB1 and SB2 corresponding to the detectors 92A and 92B. And arranged along the γ axis direction. Each of the detectors 91A to 91F, 92A, and 92B has a projection unit that emits detection light to the detection areas SA1 to SA6, SB1, and SB2, and a light receiving unit that can acquire pairs disposed in the detection areas SA1 to SA6, SB1, and SB2. * A quasi-marked optical image. Each of the plurality of detectors 91A to 91F, 92A, and 92B can detect an alignment mark on the substrate 13 201040673 p disposed in the detection areas SA1 to SA6, SB1, and SB2. 4 is a schematic diagram showing an example of the positional relationship between the projection areas PR1 to PR7, the detection areas SA1 to SAf, the SB SB2, and the substrate P, and shows the positional relationship in the plane including the surface of the substrate P. As shown in Fig. 4, in the present embodiment, the surface of the substrate P has a plurality of exposure regions (exposure target regions) ρΑ1 to ρ4 projected by the image of the mask pattern. In the present embodiment, the surface of the substrate has four exposure regions ΡΑ1 to Ρ=°, and the exposure regions are arranged at substantially equal intervals along the γ-axis direction, and the exposure regions ΡΑ3 and ΡΑ4 are along the γ-axis direction. They are arranged at substantially equal intervals. The exposure area 配 is placed on the -Υ side with respect to the exposure area ρ Α 2 . The exposure area ΡΑ3 is disposed on the +Υ side with respect to the exposure area ρΑ4. The exposure areas ΡΑ1 and ΡΑ2 are arranged on the +Χ side with respect to the exposure areas ΡΑ3 and ΡΑ4. In the present embodiment, each of the projection regions PR1 to PR7 has a trapezoidal shape in the pupil plane. In the present embodiment, the projection areas pm, pR3, PR5, and PR7 of the projection optical systems pL1, PL3, PL5, and PL7 are arranged at substantially equal intervals in the γ-axis direction, and the projection areas PR2 of the projection optical systems pL2, pL4, and pL6 are disposed. Further, PR4 and PR6 are arranged at substantially equal intervals along the Y-axis direction. The projection areas PR1, PR3, PR5, and PR7 are arranged on the -X side with respect to the projection areas PR2, PR4, and PR6. Further, regarding the γ-axis direction, the projection regions PR2, PR4, and PR6 are disposed between the projection regions pri, pR3, PR5, and PR7. In the present embodiment, among the plurality of projection regions PR1 to PR7, the distance between the two projection regions PR1 that are outside the Y-axis direction and the projection region pR7 is smaller than the plurality of exposure regions PA1 to PA4, and the γ-axis The direction of the outer side of the two exposure areas ΡΑ1 (ΡΑ4) is the interval between the edge of the Υ1 side and the edge of the exposure area PA2 (PA3) on the +Y side. Further, the interval between the two projection regions PR1 and the projection region PR7 which are outside the Y-axis direction is substantially the same as or slightly larger than the interval between the edge on the -Y side of the exposure region PA1 and the edge on the +γ side. Further, in the present embodiment, the sizes and shapes of the exposure regions ΡΑ1 to ΡΑ4 are substantially the same. In the present embodiment, the plurality of detection areas SA1 to SAWY of the detectors 91A to 91F of the first alignment system 91 are arranged at predetermined intervals. The detector 92A of the second alignment system 92 and the plurality of measurement regions sm and SB2 of the can be arranged are spaced apart at a predetermined interval in the Y-axis direction. In the present invention, the first alignment system 91 has six detection areas SA1 to SA6. The second alignment system 92 has two detection areas SB1 and SB2. In the embodiment, the number of detection areas SB1 and SB2^ of the second alignment system 92 is smaller than the number of detection areas SA1 to SA6 of the first alignment system 91, and the detection areas SA1 to SA6 are relative to the projection. The area is arranged on the -X side with respect to the X-axis direction (scanning direction). ==: SB2 is placed on the + side with respect to the projection area pRi to fat, with respect to the 轴 axis direction (the direction of the drawing).
多個檢測區域SA1〜SA6中,關於γ站方&么κ 的2個檢測區域SA1與檢 “ ° ”、、 ,J 光區域PA1〜PA4巾,關關隔,與多個曝 區域叫PA4)的卜觸2個曝光 遭緣與曝光區域ΡΑ2 (ΡΑ3)的 15 201040673 +Y侧的邊緣的間隔為大致相等。多個檢測區域s B丨、s B 2 中,關於Y軸方向而為外側的2個檢測區域SB1與檢測區 域SB2的間隔’與多個曝光區域pa 1〜pA4中,關於γ軸 方向而為外側的2個曝光區域PA1 (PA4)的1側的邊緣 與曝光區域PA2(PA3)的+Y側的邊緣的間隔為大致相等。 亦即,於本貫施形態中,關於γ軸方向的第1對準系 統91的兩端的檢測區域SA1與檢測區域SA6的距離,與 第2對準系統92的兩端的檢測區域SB1與檢測區域SB2 的距離為大致相同。 而且,於本實施形態中,關於Y軸方向的第1對準系 統91的兩端的檢測區域SA1、SA6的位置,與第2對準 系統92的兩端的檢測區域sm、SB2的位置為大致相同。 第1對準系統9卜第2鮮祕92可縣板p上所 設的多個對準標記ml〜㈣騎檢測。於本實施形態中, 於基板P上,沿Y軸方向隔開而配置著6個對準桿〜記 〜m6 ’該些對準標記ml〜m6的群組(gr〇up)被配置於 沿X軸方向隔開的四處。對準標記瓜卜m2、m3於曝光區 域PA1、PA4的各兩端部鄰接而設置著,對準桿記m4、 m5、m6於曝光區域PA2、PA3的各兩端部鄰接而設置著。 於以下的說明中,將被配置於沿χ轴方向隔開的四處 之對準標記ml〜m6的4個群組中,最#近基板ρ的_乂侧 的邊緣的對準標記ml〜m6的群地稱作第i群组 CH’緊次於第!群組G1而#近基板ρ^χ_邊緣的對 準標記ml〜m6的群組適當地稱作第2群組G2,緊次於第 16 201040673 2群組G2而靠近基板p的_χ側的邊緣的對準標記ml〜Among the plurality of detection areas SA1 to SA6, the two detection areas SA1 of the γ station side & κ are detected with "°", and the J light areas PA1 to PA4 are separated, and the plurality of exposure areas are called PA4. The exposure of the two touches is approximately equal to the interval between the edges of the 15 201040673 +Y side of the exposure area ΡΑ 2 (ΡΑ3). Among the plurality of detection regions s B 丨 and s B 2 , the interval ′ between the two detection regions SB1 and the detection region SB2 that are outside the Y-axis direction and the plurality of exposure regions pa 1 to pA4 are related to the γ-axis direction. The distance between the edge on the one side of the outer two exposure regions PA1 (PA4) and the edge on the +Y side of the exposure region PA2 (PA3) is substantially equal. That is, in the present embodiment, the distance between the detection area SA1 and the detection area SA6 at both ends of the first alignment system 91 in the γ-axis direction, and the detection area SB1 and the detection area at both ends of the second alignment system 92 are detected. The distance of SB2 is approximately the same. Further, in the present embodiment, the positions of the detection areas SA1 and SA6 at both ends of the first alignment system 91 in the Y-axis direction are substantially the same as the positions of the detection areas sm and SB2 at both ends of the second alignment system 92. . The first alignment system 9 is a second plurality of alignment marks ml to (4) riding detection provided on the county board p. In the present embodiment, six alignment bars are arranged on the substrate P so as to be spaced apart in the Y-axis direction, and the groups of the alignment marks ml to m6 are arranged on the edge. Four places separated by the X-axis direction. The alignment marks gulls m2 and m3 are provided adjacent to each end portion of the exposure regions PA1 and PA4, and the alignment bars m4, m5, and m6 are provided adjacent to each end portion of the exposure regions PA2 and PA3. In the following description, among the four groups of the alignment marks ml to m6 which are arranged at four positions spaced along the z-axis direction, the alignment marks of the edges of the _乂 side of the nearest substrate ρ are ml~m6. The group is called the i-th group CH' is next to the first! The group of the alignment marks ml to m6 of the group G1 and the near-substrate ρ^χ_ edge is appropriately referred to as the second group G2, and is close to the _χ side of the substrate p next to the group G2 of the 16th 201040673 2 Alignment mark of the edge ml~
m6的群組適當地稱作第3群組G3,最靠近基板p的+X 侧的邊緣的對準標記ml〜m6的群組適當地稱作第4群組 ' G4。 於本實施形態中,於基板p上,與沿γ軸方向而隔開 配置的6個對準標記mi〜m6對應地,配置著第丨對準系 統91的檢測區域SA1〜SA6 (檢測器91A〜91F)。檢測器 91A〜91F是以對準標記mi〜m6被同時配置於檢測區域 SA1〜SA6之方式而設置著。第1對準系統91可使用檢測 器91A〜91F’來同時對6個對準標記ml〜m6進行檢測。 而且,於基板P上,與沿γ軸方向而隔開配置的2個 對準標記ml、m6對應地,配置著第2對準系統92的檢 測區域SB卜SB2 (檢測器92A、92B )。檢測器92A、92B 是以對準標記ml、m6被同時配置於檢測區域sbi、SB2 之方式而設置著。第2對準系統92可使用檢測器92A、 92B ’來同時對多個對準標記〜m6中關於γ軸方向而 〇 為外侧的2個(兩端的)對準標記ml、m6進行檢測。 繼而’對本實施形態的基板p在曝光時的曝光裳置Εχ 的動作的一例進行說明。 於本實施形態中,曝光裝置ΕΧ的動作的至少—部 ‘分’是根據預定的曝光相關的控制資訊(曝光控制資訊) ’ 而執行。曝光控制資訊包括對曝光裝置ΕΧ的動作進行規 - 定的控制命令群,被稱作曝光處理程式(recipe)。於以下 的說明中,將曝光相關的控制資訊適當地稱作曝光處理程 17 201040673 式。 曝光處理程式被預先記憶於控制裝置5中。至少基板 P的曝光日$ (曝光光束EL針對遮罩Μ及基板p的照射動 作時)的曝光裝置ΕΧ的動作條件是㈣歧理程式而預 先决定。控制裝置5根據曝光處理程式,來控制曝光裝置 ΕΧ的動作。The group of m6 is appropriately referred to as the third group G3, and the group of the alignment marks ml to m6 closest to the edge of the +X side of the substrate p is appropriately referred to as the fourth group 'G4. In the present embodiment, the detection areas SA1 to SA6 of the second alignment system 91 are disposed on the substrate p in correspondence with the six alignment marks mi to m6 arranged along the γ-axis direction (detector 91A). ~91F). The detectors 91A to 91F are provided such that the alignment marks mi to m6 are simultaneously disposed in the detection areas SA1 to SA6. The first alignment system 91 can simultaneously detect the six alignment marks ml to m6 using the detectors 91A to 91F'. Further, on the substrate P, the detection areas SBb (SB2 (detectors 92A, 92B) of the second alignment system 92 are arranged corresponding to the two alignment marks ml, m6 arranged spaced apart in the γ-axis direction. The detectors 92A and 92B are provided such that the alignment marks ml and m6 are simultaneously disposed in the detection areas sbi and SB2. The second alignment system 92 can simultaneously detect the two (both ends) alignment marks ml, m6 of the plurality of alignment marks -m6 with respect to the γ-axis direction and using the detectors 92A, 92B'. Next, an example of the operation of the exposure of the substrate p of the present embodiment at the time of exposure will be described. In the present embodiment, at least the portion 'minute' of the operation of the exposure device 是 is executed based on predetermined exposure-related control information (exposure control information) ’. The exposure control information includes a control command group that regulates the operation of the exposure device ,, and is called an exposure processing program (recipe). In the following description, the exposure-related control information is appropriately referred to as an exposure processing procedure 17 201040673. The exposure processing program is previously memorized in the control device 5. The operating condition of the exposure device 至少 at least the exposure date of the substrate P (when the exposure light beam EL is irradiated to the mask Μ and the substrate p) is determined in advance by the (4) ambiguity program. The control device 5 controls the operation of the exposure device 根据 based on the exposure processing program.
、曝光處理程式包括基板ρ的曝光時的遮罩平台丨及基 板平台2的移動條件。基板Ρ的曝光時,控制裝置5根擄 曝光處理程式,來移動遮罩平台丨及基板平台2。本實施 形態的曝光裝置EX為多透鏡型掃描曝光裝置,於基板】 的曝光區域PA1〜PA4的曝光時,遮罩M及基板p沿X、 平面内的X軸方向而被移動。控制裝置5根據曝光處理卷 式,一方面使遮罩Μ及基板ρ沿X轴方向同步移動,一 方面對遮罩Μ照射曝光光束EL,經由該遮罩μ來對基相 Ρ的表面的曝光區域ΡΑ1〜;ΡΑ4分別照射曝光光束EL,uThe exposure processing program includes a mask stage 曝光 at the time of exposure of the substrate ρ and a moving condition of the substrate platform 2. When the substrate is exposed, the control device 5 moves the mask stage and the substrate stage 2 by the exposure processing program. The exposure apparatus EX of the present embodiment is a multi-lens type scanning exposure apparatus. When the exposure areas PA1 to PA4 of the substrate are exposed, the mask M and the substrate p are moved in the X-axis direction in the X and plane. The control device 5 synchronizes the mask Μ and the substrate ρ in the X-axis direction according to the exposure processing roll type, and irradiates the mask Μ with the exposure light beam EL on the one hand, and exposes the surface of the base phase 经由 through the mask μ. The area ΡΑ1~;ΡΑ4 respectively illuminate the exposure beam EL,u
對該些曝光區域ΡΑ1〜ΡΑ4進行曝光。於基板ρ的曝光時, 控制裝置5根據曝光處理程式,一方面使基板ρ相對於投 影區域PR1〜PR7而沿X軸方向(掃描方向)移動,一方 面對基板Ρ的多個曝光區域ΡΑ1〜ΡΑ4進行依序曝光。 於本實施形態中,針對基板Ρ上所設的多個曝光區域 ΡΑ1〜ΡΑ4的曝光處理,是一方面使曝光區域ρΑ1〜ρΑ4 相對於投影區域PR1〜PR7來沿著基板ρ的表面(χγ平 面)而沿X軸方向移動,一方面來執行。 例如,當對基板Ρ的曝光區域ΡΑ1進行曝光時,控制 18 201040673 裳置5 -方面使基板p的曝光區域PR1相對於投影區域 PR1〜PR7而沿X軸方向移動,並且與該基板?朝向X轴 方向的移動同步地,使遮罩]V[相對於照明區域而沿χ軸 ' 方向移動,一方面對照明區域照射曝光光束EL,使來自遮 罩Μ的曝光光束EL經由投影系統ps而照射至投影區域 PR1〜PR7。藉此,基板p的曝光區域pA1在照射至投影 區域PR1〜PR7的曝光光束EL下受到曝光,遮罩M的圖> 0 案的像被投影至基板P的曝光區域pA1。 繼而,對於使用具有上述構成的曝光裝置Εχ來對基 板ρ進行曝光的方法的一例,一方面參照圖5的流程圖及 圖6之(Α)〜圖6之(F)、圖7之(Α)〜圖7之(F)、 圖8之(A)〜圖8之(C)的示意圖,一方面進行說明。 . 如圖5所示,於本實施形態中,執行如下步驟:執行 第1曝光處理的步驟(步驟(step) SP1),該第1曝光處 理是一方面對投影區域PR1〜PR7照射曝光光束EL,一方 面對基板P上的多個曝光區域PA1〜PA4進行依序曝光, 〇 以用於在該基板P上形成第1圖案層(第一層(firstlayer)) 的處理;執行對準處理的步驟(步驟SP2),該對準處理是 使用對準系統9 ’對執行了第1曝光處理的基板P上的對 準標記ml〜m6進行檢測,並導出分別具有由第1曝光處 理所形成的第1圖案層的曝光區域PA1〜PA4的位置的處 ' 理;以及執行第2曝光處理的步驟(步驟SP3),該第2曝 ' 光處理是一方面對投影區域PR1〜PR7照射曝光光束EL, 一方面對執行了第1曝光處理及對準處理的基板P上的多 201040673 個曝光區域PA1〜PA4進行依序曝光,以麟在該基板p 上(第1圖案層上)形成第2圖案層(第二層(sec〇nd _ )) 的處理。 、々再者,於本實施形態中,為了簡便,以於基板p上形 成第1帛2 ®案層的情況為例*進行說明,但可於第2 圖案層上形成第3、第4、...、第,案層等任意的多個圖 ,層。例如,於製造薄膜電晶體(film t臓ist〇r)的情況 日π,於基板p上形成金屬(metal)層、透明電極層等5層 左右的層(layer )(圖案層)。 而且,於以下的說明中,將曝光區域pA1適當地稱作 第1曝光區域PA卜將曝光區域PA2i§t地稱作第2曝光 區域PA2’將曝光區域pA3適當地稱作第3曝光區域pA3, 將曝光區域PA4適當地稱作第4曝光區域PA4。 首先,對於第1曝光處理,參照圖6之(A)〜圖6 之(F)來進行說明。 控制裝置5將基板p搬入(裝載(1〇ad))至基板平台 2上。於基板P上,塗佈有感光劑。具有與基板p上所形 成的第1圖案層相應之圖案的遮罩M被搬入(裝載)至遮 罩平台1上’並被予以保持。 在由基板平台2來保持之後,如圖6之所示, 基板P相對於投影區域PR1〜PR7及檢測區域SA1〜 SA6、SB1、SB2而被配置於規定的位置。於以下的說明中, 將圖6之(A)所示的基板P的位置適當地稱作初始位置。 將遮罩Μ保持於遮罩平台丨上之後,根據曝光處理程 20The exposure areas ΡΑ1 to ΡΑ4 are exposed. At the time of exposure of the substrate ρ, the control device 5 moves the substrate ρ in the X-axis direction (scanning direction) with respect to the projection regions PR1 to PR7 in accordance with the exposure processing program, and on the other hand, a plurality of exposure regions Ρ1 to the substrate Ρ1. ΡΑ4 performs sequential exposure. In the present embodiment, the exposure processing of the plurality of exposure regions ΡΑ1 to ΡΑ4 provided on the substrate 是 is such that the exposure regions ρΑ1 to ρ4 are along the surface of the substrate ρ with respect to the projection regions PR1 to PR7 (χγ plane). ) and move along the X-axis direction, on the one hand. For example, when exposure is performed on the exposure region ΡΑ1 of the substrate ,, the control 18 201040673 causes the exposure region PR1 of the substrate p to move in the X-axis direction with respect to the projection regions PR1 to PR7, and with the substrate? Simultaneously with the movement in the X-axis direction, the mask]V [moves in the direction of the x-axis relative to the illumination region], on the one hand, the illumination region is illuminated by the exposure beam EL, so that the exposure beam EL from the mask pupil is transmitted via the projection system ps The illumination is applied to the projection areas PR1 to PR7. Thereby, the exposure region pA1 of the substrate p is exposed to the exposure light beam EL irradiated to the projection regions PR1 to PR7, and the image of the mask M of the mask M is projected onto the exposure region pA1 of the substrate P. Next, an example of a method of exposing the substrate ρ using the exposure apparatus 上述 having the above configuration is described with reference to the flowchart of FIG. 5 and FIG. 6 (F) to FIG. 6 (F) and FIG. 7 (Α). The schematic diagrams of (F) of FIG. 7 and (A) of FIG. 8 to (C) of FIG. 8 are described on the one hand. As shown in Fig. 5, in the present embodiment, the step of performing the first exposure processing (step SP1) for irradiating the projection areas PR1 to PR7 with the exposure light beam EL is performed. On the one hand, sequentially exposing a plurality of exposure regions PA1 to PA4 on the substrate P, for forming a first pattern layer (first layer) on the substrate P; performing alignment processing a step (step SP2) of detecting alignment marks ml to m6 on the substrate P on which the first exposure process has been performed using the alignment system 9', and deriving the respective exposure processes formed by the first exposure process a position of the exposure areas PA1 to PA4 of the first pattern layer; and a step of performing a second exposure process (step SP3) for irradiating the projection areas PR1 to PR7 with the exposure beam EL On the other hand, the 201040673 exposure areas PA1 to PA4 on the substrate P on which the first exposure processing and the alignment processing are performed are sequentially exposed, and the second pattern is formed on the substrate p (on the first pattern layer). Layer (second layer (sec〇nd _ )) Management. Further, in the present embodiment, for the sake of simplicity, the case where the first 帛2 ® layer is formed on the substrate p will be described as an example. However, the third and fourth layers may be formed on the second pattern layer. Any number of drawings, layers, etc. of ..., the first, the case layer, and the like. For example, in the case of producing a thin film transistor π, a layer of about five layers (a pattern layer) such as a metal layer or a transparent electrode layer is formed on the substrate p. Further, in the following description, the exposure region pA1 is appropriately referred to as a first exposure region PA, and the exposure region PA2i is referred to as a second exposure region PA2'. The exposure region pA3 is appropriately referred to as a third exposure region pA3. The exposure area PA4 is appropriately referred to as a fourth exposure area PA4. First, the first exposure processing will be described with reference to FIGS. 6(A) to 6(F). The control device 5 carries the substrate p (loaded) onto the substrate stage 2. A photosensitive agent is applied onto the substrate P. A mask M having a pattern corresponding to the first pattern layer formed on the substrate p is carried (loaded) onto the mask stage 1 and held. After being held by the substrate stage 2, as shown in FIG. 6, the substrate P is placed at a predetermined position with respect to the projection areas PR1 to PR7 and the detection areas SA1 to SA6, SB1, and SB2. In the following description, the position of the substrate P shown in FIG. 6(A) is appropriately referred to as an initial position. After the mask is held on the mask platform, according to the exposure process 20
❹ 201040673 式’來執行基線(base line)計測處理。基 =系rs所形成的遮罩M的圖案像的位置;影 SB Γ 9 S-: H f的位置關係(基線量)進行計測的處理。 里包括:利用干涉計系統6來計測基板平 由投料'統ps及制部45而利用受 ίίίΓ遮罩m上所配置的對準標記(未圖示) 位署、=理’以及利用干涉計系統6來計測基板平台2的 位置,並且利用對準系統9來檢測透過部45 (美準俨記) ^理。藉此,能夠對由干涉計系統6所規㈣座標 ,面内的座標系)上的投影區域PR1〜pR7的位置與檢測 區域SA1〜SA6、SB1、SB2的位置進行檢測,且控制裝置 5可導出基線量。 於本實施形態中,於第1曝光處理中,多個曝光區域 A1 PA4中,最先自第1曝光區域pA1開始曝光,繼而 第2曝光區域PA2受到曝光,繼而第3曝规域pA3受到 曝光,最後第4曝光區域PA4受到曝光。 第1曝光處理是用於形成第1圖案層的曝光處理,於 基板P上未設置對準標記(ml〜m6)。於執行第i曝光處 理時,並不執行使用對準系統9來檢測基板p的位置的處 理。 控制裝置5開始多個曝光區域pA1〜pA4的曝光。首 先,控制裝置5為了開始第1曝光區域PA1的曝光,而控 制保持有基板P的基板平台2,使基板p自初始位置移動 21 201040673 至第1曝光區域PA1的曝光開始位置,以使第丨曝光區域 PA1配置於曝光開始位置。再者,至少於基板?移動至第 1曝光區域PA1的曝光開始位置之前,第丨曝光區域pA1 配置於投影區域PR1〜PR7的外側。 圖6之(B)表示第1曝光區域PA1配置於曝光開始 位置的狀態。第1曝光區域PA1的曝光開始位置包括第i 曝光區域PA1的-X側的一端配置在投影區域pR2、pR4、 PR6的至少一部分内的位置。於本實施形態中,如圖6之 (B)所示,第1曝光區域PA1的曝光開始位置是第丄曝 光區域PA1的·Χ侧的一端配置在投影區域pR2、pR4、pR6 的+X側的一端的位置。 控制裝置5 —方面控制基板平台2而對投影區域PR1 〜PR7照射曝光光束EL’一方面使基板p的第丨曝光區域 PA1相對於投影區域PR1〜PR7而沿_χ方向移動。藉此, 第1曝光區域ΡΑ1受到曝光。 控制裝置5使基板Ρ沿-X方向移動,直至至少第1曝 光區域ΡΑ1配置於曝光結束位置為止。第1曝光區域ρΑΐ 的曝光結束位置包括第1曝光區域ΡΑ1的+χ側的一端西己 置在投影區域PR1、PR3、PR5、PR7的至少一部分内的位 置。於本實施形態中,第1曝光區域ΡΑ1的曝光結束位置 是第1曝光區域ΡΑ1的+Χ侧的一端配置在投影區域pR卜 PR3、PR5、PR7的-X侧的一端的位置。❹ 201040673 to perform a base line measurement process. Base = the position of the pattern image of the mask M formed by the system rs; the positional relationship (baseline amount) of the shadow SB Γ 9 S-: H f is measured. The method includes: using the interferometer system 6 to measure the substrate level by the feeding unit ps and the manufacturing unit 45, and using the alignment mark (not shown) disposed on the Γ Γ mask m, the location, the use of the interferometer The system 6 measures the position of the substrate platform 2, and uses the alignment system 9 to detect the transmission portion 45 (Mexico). Thereby, the positions of the projection areas PR1 to pR7 on the (4) coordinate, the in-plane coordinate system of the interferometer system 6 and the positions of the detection areas SA1 to SA6, SB1, and SB2 can be detected, and the control device 5 can be Export the baseline amount. In the first embodiment, in the first exposure processing, among the plurality of exposure regions A1 to PA4, exposure is first started from the first exposure region pA1, and then the second exposure region PA2 is exposed, and then the third exposure region pA3 is exposed. Finally, the fourth exposure area PA4 is exposed. The first exposure process is an exposure process for forming the first pattern layer, and alignment marks (ml to m6) are not provided on the substrate P. When the ith exposure processing is performed, the processing of detecting the position of the substrate p using the alignment system 9 is not performed. The control device 5 starts exposure of the plurality of exposure regions pA1 to pA4. First, the control device 5 controls the substrate stage 2 on which the substrate P is held in order to start exposure of the first exposure region PA1, and moves the substrate p from the initial position 21 201040673 to the exposure start position of the first exposure region PA1 to make the third The exposure area PA1 is disposed at the exposure start position. Furthermore, at least on the substrate? Before moving to the exposure start position of the first exposure area PA1, the second exposure area pA1 is disposed outside the projection areas PR1 to PR7. Fig. 6(B) shows a state in which the first exposure region PA1 is placed at the exposure start position. The exposure start position of the first exposure region PA1 includes a position at which the one end on the -X side of the i-th exposure region PA1 is disposed in at least a part of the projection regions pR2, pR4, and PR6. In the present embodiment, as shown in FIG. 6(B), the exposure start position of the first exposure region PA1 is one end of the second exposure region PA1 on the +X side of the projection regions pR2, pR4, and pR6. The position of one end. The control device 5 controls the substrate stage 2 to irradiate the projection areas PR1 to PR7 with the exposure light beam EL', and moves the third exposure area PA1 of the substrate p in the _χ direction with respect to the projection areas PR1 to PR7. Thereby, the first exposure area ΡΑ1 is exposed. The control device 5 moves the substrate Ρ in the -X direction until at least the first exposure region ΡΑ1 is placed at the exposure end position. The exposure end position of the first exposure region ρ 包括 includes a position at which the one end side of the first exposure region ΡΑ1 is placed in at least a part of the projection regions PR1, PR3, PR5, and PR7. In the present embodiment, the exposure end position of the first exposure region ΡΑ1 is one end of the first exposure region ΡΑ1 on the +Χ side, and is disposed at one end of the projection region pR, PR3, PR5, and PR7 on the -X side.
藉由以上動作,第1曝光區域PA1的曝光結束。在曝 光光束EL對第1曝光區域PA1的照射中,保持有基板P 22 201040673 的基板平台2沿-X方向而以大致固定的速度(定速)移動。 繼而’控制裝置5為了開始第2曝光區域PA2的曝光, 而控制保持有基板P的基板平台2,使基板p自第〗曝光 區域PA1的曝光結束位置移動至第2曝光區域pA2的曝光 開始位置,以使第2曝光區域PA2配置於曝光開始位置。 再者,至少在基板P移動至第2曝光區域pA2的曝光開始 位置之础,第2曝光區域PA2配置於投影區域pri〜pRj 的外侧。 ◎ 圖ό之(C)表示第2曝光區域PA2配置於曝光開始 位置的狀態。第2曝光區域ΡΑ2的曝光開始位置包括第2 曝光區域ΡΑ2的+Χ側的一端配置於投影區域pR1、pR3、 PR5、PR7的至少一部分内的位置。於本實施形態中,如 圖6之(C)所示,第2曝光區域pA2的曝光開始位置是 第2曝光區域PA2的+X側的一端配置於投影區域pR1、 PR3、PR5、PR7的-X側的一端的位置。 控制裝置5 —方面控制基板平台2而對投影區域pRi ❹ 〜PR7照射曝光光束EL’一方面使基板P的第2曝光區域 PA2相對於投影區域pri〜PR7而沿+χ方向移 第2曝光區域ΡΑ2受到曝光。 控制裝置5使基板Ρ沿+χ方向移動,直至至少第2 曝光區域ΡΑ2配置於曝光結束位置為止。第2曝光區域ρΑ2 . 的曝光結束位置包括第2曝光區域ΡΑ2的_χ側的一端配置 • 於投影區域PR2、PR4、PR6的至少一部分内的位置。於 本實施形態中,第2曝光區域PA2的曝光結束位置是第2 23 201040673 曝光區域PA2的-X側的—端配置於投影區域pR2、pR4、 PR6的+X侧的一端的位置。 藉由以上動作’第2曝光區域PA2的曝光結束。在曝 光光束EL對第2曝光區域pA2的照射中,保持有基板p 的基板平台2沿+X方向而以大致固定的速度(定速)移 動。 繼而’控制裝置5為了開始第3曝光區域PA3的曝光, 控制保持有基板P的基板平台2,使基板p自第2曝光區 域PA2的曝光結束位置移動至第3曝光區域伙)的曝光開 始位置,以使第3曝光區域PA3配置於曝光開始位置。再 者,至少在基板P移動至第3曝光區域PA3的曝光開始位 置之前,第3曝光區域伙3配置於投影區域pR1〜pR7的 外側。 圖6之(D)表示第3曝光區域PA3配置於曝光開始 位置的狀態。第3曝光區域PA3的曝光開始位置包括第3 曝光區域PA3的_χ側的一端配置於投影區域pR2、pR4、 PR6的至少一部分的位置。於本實施形態中,如圖6之(〇) 所不,第3曝光區域PA3的曝光開始位置是第3曝光區域 PA3的_X側的一端配置於投影區域PR2、PR4、PR6的+χ 側的一端的位置。 控制裝置5 —方面控制基板平台2而對投影區域pRi 〜PR7照射曝光光束EL,一方面使基板p的第3曝光區域 Ρ^3相對於投影區域pR1〜pR7而沿_又方向移動。藉此, 第3曝光區域PA3受到曝光。 24 201040673 控制裝置5使基板P沿-X方向移動,直至至少第3曝 光區域PA3配置於曝光結束位置為止。第3曝光區域pa3 的曝光結束位置包括第3曝光區域PA3的+X側的一端配 置於投影區域PR1、PR3、PR5、PR7的至少一部分的位置。 於本實施形態中,第3曝光區域PA3的曝光結束位置是第 3曝光區域PA3的+X側的一端配置於投影區域pR1、pR3、 PR5、PR7的-X側的一端的位置。 藉由以上動作,第3曝光區域PA3的曝光結束。在曝 光光束EL對第3曝光區域PA3的照射中,保持有基板p 的基板平台2沿-X方向而以大致固定的速度(定速)移動。 繼而,控制裝置5為了開始第4曝光區域PA4的曝光, 控制保持有基板P的基板平台2,使基板P自第3曝光區 域PA3的曝光結束位置移動至第4曝光區域pA4的曝光開 始位置,以使第4曝光區域PA4配置於曝光開始位置。再 者,至少在基板P移動至第4曝光區域PA4的曝光開始位 置之前,第4曝光區域PA4配置於投影區域PR1〜1>117的 Q 外侧。 圖6之(E)表示第4曝光區域PA4配置於曝光開始 位置的狀態。第4曝光區域PA4的曝光開始位置包括第4 曝光區域PA4的+X側的一端配置於投影區域piu、pR3、 PR5、PR7的至少一部分的位置。於本實施形態中,如圖6 • 之(E)所示,第4曝光區域PA4的曝光開始位置是第4 .曝光區域PA4的+X側的一端配置於投影區域pR1、pR3、 PR5 ' PR7的-X侧的一端的位置。 25 201040673 控制裝置5 —方面控制基板平台2而對投影區域pRl 〜PR7照射曝光光束EL’一方面使基板p的第4曝光區域 PA4相對於投影區域PR1〜pR7而沿+χ方向移動。藉此, 第4曝光區域ΡΑ4受到曝光。 控制裝置5使基板Ρ沿+Χ方向移動,直至至少第4 曝光區域ΡΑ4配置於曝光結束位置為止。第4曝光區域ρΑ4 的曝光結束位置包括第4曝光區側的一端配置 於投影區域PR2、PR4、PR6的至少—部分⑽位置。於 本實施形態中’如圖6之(F)所示,第4曝光區域PA4 的曝光結束位置是第4曝統域PA4的_χ_—端配置於 投影區域PR2、PR4、PR6的+χ侧的一端的位置。 藉由以上動作,第4曝光區域ρΑ4的曝光結束。在曝 光光束a對第4曝光區域ΡΜ的照射中,保持有基板ρ 的基板平台2沿+Χ方向而以大致固定的速度^速)移 動。 藉由=動作,第1曝光處理結束。第1曝光處理結 束之後,自基板平台2搬出(卸載)基板Ρ。自基板平台 2所卸被實施了包括顯影處理、姓刻㈣ing) 處理等=PTS)處理。藉此,於基板ρ上形 成第i0 且’藉由執行第1曝光處理及隨後的製 程處理,於基板Ρ上形成對準標記ml〜m6。 衫1圖案層及對準標記mi〜m6的 基板P’㈣感光劑,以便執行第2曝光處理。 繼而’對於對準處理,參照S7<u) 26 201040673 來進行說明。 - 於本實施形態中,準備有2㈣準模式(alignment de曝光處理程式具有第1對準模式及第2對準模式。 1制裂置5在對基板P的曝光區域PA1〜PA4進行曝光 選擇第1對準模式及第2對準模式的至少一者,以執 打導出曝光區域PA1〜PA4的位置的對準處理。 …第1對賴式是如下所述賴式:職餘p的曝光 〇 11域PA1〜PA4的各個鄰接的多個對準標記ml〜m6全部 進行檢測,並導出基板P的位置及基板p上的曝光區域_ 〜PA4各自的位置。亦即’第丨對準模式中,控制裝置$ 使用對準系統9,來對第i群組G1〜第4群組以的所有 • 對準標記ml〜m4進行檢測。 f 2對賴式是湘基於第丨對準模式的對準處理結 果的模式。第2對準模式是如下所述的模式:對基板 的多個對準標Bml〜m6中規定的對準標記進行檢測,並 根據該規定的對準標記的檢測結果與第i對準模式 〇結果,來導出基板P的位置及基板P上的曝光區域PA1〜 PA4各自的位置。f 2對準模式中,控制裝置5使用對準 系統9’來對基板P上的多個對準標記鹵〜㈣中的 分對準標記進行檢測。 卩下’縣於第1對準模柄料處理雜說明 2對準模式後述。 ' 控制裝置5將具有第1圖案層及對準標記ml〜的 基板P搬入(裝載)至基板平台2。於基板p上,塗佈有 27 201040673 感光劑。在由基板平台2來保持之後’基板P被配置於初 始位置。具有與基板P上所形成的第2圖案層相應之圖案 的遮罩Μ被搬入(裝載)至遮罩平台1上’並被予以保持。 控制裝置5使用對準系統9,對與曝光區域ΡΑ1〜ρΑ4 對應的對準標記ml〜m6來進行檢測,並導出曝光區域 PA1〜PA4的位置。 首先,如圖7之(A)所示,控制裝置5使用干涉計 系統6來計測基板平台2的位置,並且控制該基板平台2 來移動基板P ’以使第1群組G1的對準標記ml〜m6配 置於第1對準系統91的檢測區域SA1〜SA6内。第1對 準系統91對第1群組G1的對準標記ml〜m6進行檢測。 藉此丄控制裝置5可導出由干涉計系統6所規定的座標系 上的第1群組G1的對準標記^1〜m6的位置。 ^繼而,如圖7之(B)所示,控制裝置5使用干涉計 系統6來計測基板平台2的位置,並且控制基板平台2來 移,基板P,以使第3群組G3的對準標記㈤、m6配置 於第2對準系統92的檢測區域SB1、SB2内。第2對準系 統92對第3群組G3的對準標記心心進行檢測。藉此, 控制裝置5可導丨由干涉計系統6所規定的座標系上的第 3群組G3的對準標記w、灿的位置。 /繼而’如圖7之(C)所示’控制裝置5使用干涉計 糸統6來相基板平台2的位置,並且控制基板平台2來 移,基板P,以使第2群組G2㈣準標記mi〜m6配置 於第1對準系統91的檢測區域SA1〜SA6内。第1對準 28 201040673 系統91對第2群組G2的對準標記ml〜m6進行檢測。藉 此,控制裝置5可導出由干涉計系統6所規定的座標系上 的第2群組G2的對準標記ml〜m6的位置。 繼而,如圖7之(D)所示,控制裝置5使用干涉計 系統6來計測基板平台2的位置,並且控制基板平台2來 移動基板P,以使第3群組G3的對準標記ml〜m6配置 於第1對準系統91的檢測區域SA1〜SA6内。第1對準 ❺ 系統91對第3群組G3的對準標記011〜1116進行檢測。藉 此,控制裝置5可導出由干涉計系統6所規定的座標系上 的第3群組G3的對準標記ml〜m6的位置。 繼而,如圖7之(E)所示,控制裝置5使用干涉計 系統6來計測基板平台2的位置,並且控制基板平台2來 移動基板P,以使第4群組G4的對準標記ml〜m0配置 於第1對準系統91的檢測區域SA1〜SA6内。第1對準 系統91對第4群組G4的對準標記ml〜m6進行檢測。藉 此’控制聚置5可導出由干涉計系統6所規定的座標系上 〇 的第4群組G4的對準標記mi〜m6的位置。 於本實施形態中,如參照圖7之(B)及圖7之(D) 所說明,第1對準系統91與第2對準系統92使用各自的 兩端的檢測區域(SA1、SA6)、(SB1、SB2),來對基板P 上的相同的對準標記ml、m6進行檢測。 藉由上述基線計測處理,由干涉計系統6所規定的座 • 標系上的第1對準系統91的檢測區域SA1〜SA6的位置 為已知。因此,控制裝置5藉由干涉計系統6來計測基板 29By the above operation, the exposure of the first exposure region PA1 is completed. In the irradiation of the first exposure region PA1 by the exposure light beam EL, the substrate stage 2 holding the substrate P 22 201040673 moves at a substantially constant speed (fixed speed) in the -X direction. Then, the control device 5 controls the substrate stage 2 holding the substrate P to start the exposure of the second exposure region PA2, and moves the substrate p from the exposure end position of the first exposure region PA1 to the exposure start position of the second exposure region pA2. The second exposure area PA2 is placed at the exposure start position. Further, at least the substrate P is moved to the exposure start position of the second exposure region pA2, and the second exposure region PA2 is disposed outside the projection regions pri to pRj. (C) shows a state in which the second exposure region PA2 is disposed at the exposure start position. The exposure start position of the second exposure region ΡΑ2 includes a position on the +Χ side of the second exposure region ΡΑ2 that is disposed at at least a portion of the projection regions pR1, pR3, PR5, and PR7. In the present embodiment, as shown in FIG. 6(C), the exposure start position of the second exposure region pA2 is one end of the second exposure region PA2 on the +X side of the projection regions pR1, PR3, PR5, and PR7. The position of one end of the X side. The control device 5 controls the substrate stage 2 to irradiate the projection areas pRi ❹ to PR7 with the exposure light beam EL', and shifts the second exposure area PA2 of the substrate P in the +χ direction with respect to the projection areas pri to PR7. ΡΑ 2 is exposed. The control device 5 moves the substrate Ρ in the +χ direction until at least the second exposure region ΡΑ2 is disposed at the exposure end position. The exposure end position of the second exposure region ρΑ2 . includes one end of the second exposure region ΡΑ2 on the _χ side, and is disposed at at least a portion of the projection regions PR2, PR4, and PR6. In the present embodiment, the exposure end position of the second exposure region PA2 is at the position on the +X side of the projection regions pR2, pR4, and PR6 on the -X side of the second 23 201040673 exposure region PA2. By the above operation, the exposure of the second exposure region PA2 is completed. In the irradiation of the second exposure region pA2 by the exposure light beam EL, the substrate stage 2 holding the substrate p is moved at a substantially constant speed (fixed speed) in the +X direction. Then, the control device 5 controls the substrate stage 2 on which the substrate P is held in order to start exposure of the third exposure region PA3, and moves the exposure start position of the substrate p from the exposure end position of the second exposure region PA2 to the third exposure region. The third exposure area PA3 is placed at the exposure start position. Further, the third exposure area 3 is disposed outside the projection areas pR1 to pR7 at least until the substrate P moves to the exposure start position of the third exposure area PA3. (D) of Fig. 6 shows a state in which the third exposure region PA3 is disposed at the exposure start position. The exposure start position of the third exposure region PA3 includes a position at which the one end of the third exposure region PA3 is disposed on at least a part of the projection regions pR2, pR4, and PR6. In the present embodiment, as shown in FIG. 6, the exposure start position of the third exposure region PA3 is one end of the third exposure region PA3 on the _X side, and is disposed on the +χ side of the projection regions PR2, PR4, and PR6. The position of one end. The control device 5 controls the substrate stage 2 to irradiate the projection areas pRi to PR7 with the exposure light beam EL, and moves the third exposure area Ρ3 of the substrate p in the _ direction with respect to the projection areas pR1 to pR7. Thereby, the third exposure area PA3 is exposed. 24 201040673 The control device 5 moves the substrate P in the -X direction until at least the third exposure region PA3 is disposed at the exposure end position. The exposure end position of the third exposure region pa3 includes a position on the +X side of the third exposure region PA3 at a position where at least a part of the projection regions PR1, PR3, PR5, and PR7 are disposed. In the present embodiment, the exposure end position of the third exposure region PA3 is one end of the third exposure region PA3 on the +X side, which is disposed at one end of the projection regions pR1, pR3, PR5, and PR7 on the -X side. By the above operation, the exposure of the third exposure region PA3 is ended. In the irradiation of the third exposure region PA3 by the exposure light beam EL, the substrate stage 2 holding the substrate p moves at a substantially constant speed (fixed speed) in the -X direction. Then, the control device 5 controls the substrate stage 2 holding the substrate P to start the exposure of the fourth exposure region PA4, and moves the substrate P from the exposure end position of the third exposure region PA3 to the exposure start position of the fourth exposure region pA4. The fourth exposure region PA4 is placed at the exposure start position. Further, the fourth exposure region PA4 is disposed outside the Q of the projection regions PR1 to 1 > 117 at least before the substrate P moves to the exposure start position of the fourth exposure region PA4. (E) of Fig. 6 shows a state in which the fourth exposure region PA4 is disposed at the exposure start position. The exposure start position of the fourth exposure region PA4 includes a position on the +X side of the fourth exposure region PA4 at a position of at least a part of the projection regions piu, pR3, PR5, and PR7. In the present embodiment, as shown in FIG. 6(E), the exposure start position of the fourth exposure region PA4 is fourth. One end of the exposure region PA4 on the +X side is disposed on the projection regions pR1, pR3, and PR5' PR7. The position of the end of the -X side. 25 201040673 The control device 5 controls the substrate stage 2 to irradiate the projection areas pR1 to PR7 with the exposure light beam EL', and moves the fourth exposure area PA4 of the substrate p in the +χ direction with respect to the projection areas PR1 to pR7. Thereby, the fourth exposure area ΡΑ4 is exposed. The control device 5 moves the substrate Ρ in the +Χ direction until at least the fourth exposure region ΡΑ4 is disposed at the exposure end position. The exposure end position of the fourth exposure region ρ4 includes the one end on the fourth exposure region side disposed at at least a portion (10) of the projection regions PR2, PR4, and PR6. In the present embodiment, as shown in FIG. 6(F), the exposure end position of the fourth exposure region PA4 is the _χ_-end of the fourth exposure region PA4 and is disposed on the +χ side of the projection regions PR2, PR4, and PR6. The position of one end. By the above operation, the exposure of the fourth exposure region ρΑ4 is ended. In the irradiation of the fourth exposure region ΡΜ by the exposure light beam a, the substrate stage 2 holding the substrate ρ is moved at a substantially constant speed in the +Χ direction. The first exposure process ends by the = action. After the first exposure process is completed, the substrate 搬 is carried out (unloaded) from the substrate stage 2. The unloading from the substrate platform 2 is performed including development processing, surname (four) processing, etc. = PTS) processing. Thereby, the i-th is formed on the substrate p and the alignment marks ml to m6 are formed on the substrate by performing the first exposure process and the subsequent process. The pattern 1 of the shirt 1 and the substrate P' (four) sensitizers of the marks mi to m6 are aligned to perform the second exposure process. Then, for the alignment processing, description will be made with reference to S7 <u) 26 201040673. - In the present embodiment, the 2 (four) quasi-mode is prepared (the alignment de-exposure processing program has the first alignment mode and the second alignment mode. The 1st split 5 is used to expose the exposure areas PA1 to PA4 of the substrate P. At least one of the alignment mode and the second alignment mode performs an alignment process of deriving the positions of the exposure areas PA1 to PA4. The first pair of Lai is the following: the exposure of the occupation p: All of the plurality of adjacent alignment marks ml to m6 in the 11 fields PA1 to PA4 are detected, and the positions of the substrate P and the positions of the exposure areas _ to PA4 on the substrate p are derived. That is, in the 'second alignment mode' The control device $ uses the alignment system 9 to detect all the alignment marks ml~m4 of the i-th group G1 to the fourth group. The f 2 pair is the pair based on the second alignment mode. The mode of the quasi-processing result. The second alignment mode is a mode in which the alignment marks specified in the plurality of alignment marks Bml to m6 of the substrate are detected, and based on the detection results of the predetermined alignment marks The i-th alignment mode 〇 results to derive the position of the substrate P and the substrate P The respective positions of the light areas PA1 to PA4. In the f 2 alignment mode, the control device 5 detects the minute alignment marks in the plurality of alignment marks halogen to (4) on the substrate P using the alignment system 9'. In the first alignment mold processing, the alignment pattern will be described later. The control device 5 carries (loads) the substrate P having the first pattern layer and the alignment mark ml to the substrate stage 2. On the substrate p The sensitizer is coated with 27 201040673. After being held by the substrate stage 2, the substrate P is placed at the initial position. The mask 具有 having the pattern corresponding to the second pattern layer formed on the substrate P is carried in (loading) ) is held on the mask platform 1 and held. The control device 5 detects the alignment marks ml to m6 corresponding to the exposure regions ΡΑ1 to ρ4 using the alignment system 9, and derives the positions of the exposure regions PA1 to PA4. First, as shown in FIG. 7(A), the control device 5 measures the position of the substrate platform 2 using the interferometer system 6, and controls the substrate platform 2 to move the substrate P' to align the first group G1. Detection of the markers ml~m6 in the first alignment system 91 In the areas SA1 to SA6, the first alignment system 91 detects the alignment marks ml to m6 of the first group G1. Thereby, the UI control device 5 can derive the first on the coordinate system defined by the interferometer system 6. The position of the alignment mark ^1 to m6 of the group G1. Then, as shown in FIG. 7(B), the control device 5 measures the position of the substrate platform 2 using the interferometer system 6, and controls the substrate platform 2 to move. The substrate P is disposed such that the alignment marks (5) and m6 of the third group G3 are disposed in the detection areas SB1 and SB2 of the second alignment system 92. The alignment marks of the third group G3 by the second alignment system 92 Heart test. Thereby, the control device 5 can guide the position of the alignment mark w and the can of the third group G3 on the coordinate system defined by the interferometer system 6. / then 'as shown in FIG. 7(C) 'the control device 5 uses the interferometer system 6 to position the substrate platform 2, and controls the substrate platform 2 to move the substrate P so that the second group G2 (four) is marked Mi to m6 are disposed in the detection areas SA1 to SA6 of the first alignment system 91. First alignment 28 201040673 The system 91 detects the alignment marks ml to m6 of the second group G2. Thereby, the control device 5 can derive the positions of the alignment marks ml to m6 of the second group G2 on the coordinate system defined by the interferometer system 6. Then, as shown in (D) of FIG. 7, the control device 5 measures the position of the substrate stage 2 using the interferometer system 6, and controls the substrate stage 2 to move the substrate P so that the alignment mark of the third group G3 is ml. The ~m6 is disposed in the detection areas SA1 to SA6 of the first alignment system 91. The first alignment ❺ system 91 detects the alignment marks 011 to 1116 of the third group G3. Thereby, the control device 5 can derive the positions of the alignment marks ml to m6 of the third group G3 on the coordinate system defined by the interferometer system 6. Then, as shown in FIG. 7(E), the control device 5 measures the position of the substrate stage 2 using the interferometer system 6, and controls the substrate stage 2 to move the substrate P so that the alignment mark of the fourth group G4 is ml. The ~m0 is disposed in the detection areas SA1 to SA6 of the first alignment system 91. The first alignment system 91 detects the alignment marks ml to m6 of the fourth group G4. By this control aggregation 5, the positions of the alignment marks mi to m6 of the fourth group G4 on the coordinate system defined by the interferometer system 6 can be derived. In the present embodiment, as described with reference to FIG. 7(B) and FIG. 7(D), the first alignment system 91 and the second alignment system 92 use detection regions (SA1, SA6) at both ends, (SB1, SB2), the same alignment marks ml, m6 on the substrate P are detected. The position of the detection areas SA1 to SA6 of the first alignment system 91 on the coordinate system defined by the interferometer system 6 is known by the above-described baseline measurement processing. Therefore, the control device 5 measures the substrate 29 by the interferometer system 6.
201040673 1 A 平台2的位置,且將對準標記mi、配置於第l對準系 統91的檢測區域SA1、SA6内,並且,將與檢測區域SA1、 SA6内所配置的對準標記mi、相同的對準標記、 m6配置於第2對準系統92的檢測區域SB1、SB2内,藉 此’可求出由干涉計系統6所規定的座標系上的第2對準 系統92的檢測區域SB1、SB2的位置。而且,控制裝置5 可根據第1對準系統91對基板P上的對準標記ml、m6 進行檢測的結果與第2對準系統92對基板p上的對準標 記ml、m6進行檢測的結果,來導出第i對準系統91的 檢測區域SA1〜SA6與第2對準系統92的檢測區域SB1、 SB2的位置關係。 再者’在導出第1對準系統91的檢測區域SA1〜SA6 與第2對準系統92的檢測區域SB卜SB2的位置關係時, 亦可不使用基板P上的對準標記,而使用基板平台2上的 基準標記(透過部45)。控制裝置5藉由干涉計系統6來 計測基板平台2的位置,且將基準標記(透過部45)配置 於第1對準系統91的檢測區域SA1、SA6内,並且,將 與檢測區域SA1、SA6内所配置的基準標記相同的基準標 记配置於第2對準系統92的檢測區域SB1、SB2,藉此可 求出由干涉計系統6所規定的座標系上的第2對準系"統% 的檢測區域SB1、SB2的位置。控制裝置5可根據第丄對 準系統91對該基板平台2上的基準標記進行檢 盥 第2對準纽92對基板平W上的鱗標料行 果,來導出第i對準系統9丨的檢測區域SA1〜SA6H; 30 201040673 對準系統92的檢測區域SBl、SB2的位置關係。 再者,在導出第1對準系統91的檢測區域sai〜SA6 與第2對準系統92的檢測區域SB卜SB2的位置關係時, 第1對準系統91所檢測的標記(對準標記、基準標記)與 第2對準系統92所檢測的標記(對準標記、基準標記)亦 可不同。 ’201040673 1 A The position of the platform 2 is aligned with the mark mi, disposed in the detection areas SA1, SA6 of the first alignment system 91, and will be the same as the alignment mark mi disposed in the detection areas SA1, SA6. The alignment marks m6 are disposed in the detection areas SB1 and SB2 of the second alignment system 92, whereby the detection area SB1 of the second alignment system 92 on the coordinate system defined by the interferometer system 6 can be obtained. , the location of SB2. Further, the control device 5 can detect the alignment marks ml and m6 on the substrate P by the first alignment system 91 and the alignment marks ml and m6 on the substrate p by the second alignment system 92. The positional relationship between the detection areas SA1 to SA6 of the i-th alignment system 91 and the detection areas SB1 and SB2 of the second alignment system 92 is derived. Further, when the positional relationship between the detection areas SA1 to SA6 of the first alignment system 91 and the detection area SB SB2 of the second alignment system 92 is derived, the substrate platform may be used without using the alignment marks on the substrate P. Reference mark on 2 (transmission portion 45). The control device 5 measures the position of the substrate stage 2 by the interferometer system 6, and arranges the reference mark (transmission portion 45) in the detection areas SA1, SA6 of the first alignment system 91, and the detection area SA1. The reference marks having the same reference marks arranged in the SA 6 are disposed in the detection areas SB1 and SB2 of the second alignment system 92, whereby the second alignment system on the coordinate system defined by the interferometer system 6 can be obtained. The position of the detection areas SB1, SB2 of the system %. The control device 5 can check the reference mark on the substrate platform 2 according to the second alignment system 91 to check the scale of the second alignment button 92 on the substrate flat W to derive the i-th alignment system. Detection areas SA1 to SA6H; 30 201040673 The positional relationship of the detection areas SB1 and SB2 of the alignment system 92. Further, when the positional relationship between the detection areas sai to SA6 of the first alignment system 91 and the detection area SB SB2 of the second alignment system 92 is derived, the mark (alignment mark, The reference mark) may be different from the mark (alignment mark, reference mark) detected by the second alignment system 92. ’
藉由以上動作,控制裝置5使用對準系統9,來對與 多個曝光區域PA1〜PA4的各個對應而設的對準標記mi 〜全部進行檢測。 於本實施形態中,與第1曝光區域PA1對應的對準標 記是第3群組G3的對準標記ml〜m3以及第4群組^ 的對準標記ml〜m3。與第2曝光區域PA2對應的對準標 記是第3群組G3的對準標記m4〜m6以及第4群組^ 的對準標記m4〜m6。與第3曝光區域PA3對應的對準標 記是第1群組G1的對準標記m4〜m6以及第2群組^ 的對準標記m4〜m6。與第4曝光區域PA4對應的對準標 記是第1群組G1的對準標記ml〜m3以及第2群組^ 的對準標記ml〜m3。 控制裝置5可根據使用第i對準系統91所檢測出的第 1群組G1〜第4群組G4各自的對準標記1111〜1116的位置、 以及使用第2對準系統92所檢測出的第3群組G3的對準 標記ml、m6的位置,來導出由干涉計系統6所規定的座 標系上的基板P的位置以及多個曝光區域PA1〜pA4各自 的位置。 31 201040673 繼而,對於第2曝光處理,參照圖7之(A)〜圖7 之(F)來進行說明。 在藉由對準處理的執行而導出曝光區域pAi〜pA4的 位置=後’控制裝置5開始用於在基板p上形成第2圖案 層的第2曝光處理。 於本實施形態中’於第2曝光處理中,多個曝光區域 PA1〜PA4 + ’最先自第(曝光區域pA1開始曝光,繼而 第2曝光區域伙2受到曝光’繼而第3曝光區域PA3受到 曝光,最後第4曝光區域PA4受到曝光。 控制裝置5為了開始第1曝光區域pA1的曝光,而控 制保持有基板P的基板平台2移動至第丨曝光區域PA1的 曝光開始位置,以使第丨曝光區域pA1配置於曝光開始位 置。再者,至少在基板P移動至第丨曝光區域pA1的曝光 開始位置之前,第1曝光區域pA1配置於投影區域pR1〜 PR7的外侧。 圖7之(F)表示第i曝光區域PA1配置於曝光開始 位置的狀態。控制裝置5 —方面控制基板平台2而對投影 區域PR1〜PR7照射曝光光束EL,一方面使基板P的第1 曝光區域PA1相對於投影區域PR1〜PR7而沿_χ方向移 動。藉此,第1曝光區域ΡΑ1受到曝光。控制裝置5使基 板Ρ沿-X方向移動’直至至少第1曝光區域ΡΑ1配置於 曝光結束位置為止。藉由以上動作,第1曝光區域PA1的 曝光結束。 如此,於本實施形態中,對多個曝光區域ΡΑ1〜ΡΑ4 32 201040673 =行中最先受到曝光的第1曝光區域PA1 =板。關於X軸方向的移動; 域P」1本IaH態中,於第2曝光處理中’對多個曝光區By the above operation, the control device 5 uses the alignment system 9 to detect the alignment marks mi to all of the plurality of exposure areas PA1 to PA4. In the present embodiment, the alignment marks corresponding to the first exposure region PA1 are the alignment marks ml to m3 of the third group G3 and the alignment marks ml to m3 of the fourth group ^. The alignment marks corresponding to the second exposure area PA2 are the alignment marks m4 to m6 of the third group G3 and the alignment marks m4 to m6 of the fourth group ^. The alignment marks corresponding to the third exposure area PA3 are the alignment marks m4 to m6 of the first group G1 and the alignment marks m4 to m6 of the second group ^. The alignment marks corresponding to the fourth exposure region PA4 are the alignment marks ml to m3 of the first group G1 and the alignment marks ml to m3 of the second group ^. The control device 5 can detect the positions of the alignment marks 1111 to 1116 of the first group G1 to the fourth group G4 detected by the ith alignment system 91 and the position detected by the second alignment system 92. The positions of the alignment marks ml and m6 of the third group G3 derive the position of the substrate P on the coordinate system defined by the interferometer system 6 and the positions of the plurality of exposure regions PA1 to pA4. 31 201040673 Next, the second exposure processing will be described with reference to FIGS. 7(A) to 7(F). The position at which the exposure regions pAi to pA4 are derived by the execution of the alignment processing = the rear control unit 5 starts the second exposure processing for forming the second pattern layer on the substrate p. In the second embodiment, in the second exposure processing, the plurality of exposure areas PA1 to PA4 + ' are first (the exposure is started in the exposure area pA1, and then the second exposure area is exposed), and then the third exposure area PA3 is received. After the exposure, the fourth exposure region PA4 is exposed to light. The control device 5 controls the exposure of the substrate stage 2 holding the substrate P to the exposure start position of the second exposure region PA1 in order to start the exposure of the first exposure region pA1. The exposure region pA1 is disposed at the exposure start position. Further, the first exposure region pA1 is disposed outside the projection regions pR1 to PR7 at least before the substrate P moves to the exposure start position of the second exposure region pA1. The control unit 5 controls the substrate stage 2 to irradiate the projection areas PR1 to PR7 with the exposure light beam EL, and the first exposure area PA1 of the substrate P with respect to the projection area. PR1 to PR7 move in the _χ direction. Thereby, the first exposure region ΡΑ1 is exposed. The control device 5 moves the substrate Ρ in the −X direction until at least the first exposure region Ρ 1 is disposed at the exposure end position. By the above operation, the exposure of the first exposure region PA1 is completed. Thus, in the present embodiment, the plurality of exposure regions ΡΑ1 to ΡΑ4 32 201040673 = the first of the lines to be exposed first Exposure area PA1 = plate. Movement in the X-axis direction; Field P"1 in the IaH state, in the second exposure process 'on multiple exposure areas
行曝光的順序以及料曝光㈣pa卜 ^处理大致相同。亦即,於第2曝 先處理中^制裝置5-方面使基板?以與參 2執跡Π的基板P的軌道執跡(移動路徑)相同的 —細㈣ 1 光於Γ施形態中,於第1曝光處理中對多個曝 : 依序曝光時的基板Ρ相對於投影區 動執跡(移動路徑)、與於第2曝光處理 中對多個曝光區域ΡΑ1〜ΡΑ4進行依序曝光時的基板Ρ相 對於投影區域PR1〜PR7的移動軌跡(移動路径)為大致 :流==帽_域—進行曝 以上,對在基板P上職第1 _層的第i曝光處理、 在該第1圖案層上形成第2圖案層時所執行的對準處理、 以及在基板Pji形成第2 _相第2曝光處理進行了說 日月0 ^ 33 201040673 繼而,對第2曝光處理的一例進行說明。於第2曝光 處理中,形成有第1圖案層的多個基板P被依序曝光:例 如,使用來自規定的遮罩Μ的圖案的曝光光束EL,來對 以規定片數為1個群組(批次(1〇t))的多個基板p進行 依序曝光。再者,該1個批次的多個基板U於第!曝光 處理中被依序曝光,以形成第i圖案層,並經過顯影 等的各種製程處理的基板P。 ★如上所述,於本實施形態中,準備有第1對準模式及 第2對準模式’於執行第2曝光處理之前,選擇第 模式及第2對準模式的至少—者,根據該選擇的對 來執行對準處理。 、飞 於本實施形態中,作為對由規定片數的(例如 ί ί Γ1批次的多個基板p中,自第—片基板p(批 的基板P)至規定片數的(例如5片) 曝光時的對準處理,選擇第丨對準模式。如參照圖7之=丁 〜圖7之⑺等所卿’ f丨對準模式是軸 域PA1〜PA4的各個鄰接的多個對準標二6 =進碰測’並㈣絲P的妓及絲 域PA1〜PA4各自的位置的模式。 叫紅 於本實施形態中,根據第i對準模式,來對 — 個美Γΐ先頭至規定片數的基板p進行對準處理。該此ί 爾光之後,控制裝置5根據 ; 的結果來對基板ρ進行曝先丰處理並根據該對準處理 34The order of line exposure and material exposure (4) pa Bu ^ processing are roughly the same. That is, in the second exposure processing device 5 - the substrate is made? The same as the track (moving path) of the substrate P that is performed by the reference 2, the thin (four) 1 light is applied to the plurality of exposures in the first exposure process: the substrate Ρ in the sequential exposure is relatively The movement path (moving path) of the substrate Ρ with respect to the projection regions PR1 to PR7 when the plurality of exposure regions ΡΑ1 to ΡΑ4 are sequentially exposed in the second exposure process is substantially : flow == cap_domain - performing the ir exposure process on the first _ layer of the substrate P, the alignment process performed when the second pattern layer is formed on the first pattern layer, and The substrate Pji forms the second _ phase and the second exposure process is performed. The day and month 0 ^ 33 201040673 Next, an example of the second exposure process will be described. In the second exposure processing, the plurality of substrates P on which the first pattern layer is formed are sequentially exposed. For example, the exposure light beam EL from the pattern of the predetermined mask 使用 is used to set the number of sheets to one group. The plurality of substrates p (batch (1 〇t)) are sequentially exposed. Furthermore, the plurality of substrates U of the one batch are in the first! The substrate P which is sequentially exposed in the exposure process to form the i-th pattern layer and subjected to various processes such as development. As described above, in the present embodiment, the first alignment mode and the second alignment mode are prepared, and at least the first mode and the second alignment mode are selected before the second exposure process is performed, and the selection is based on the selection. The pair performs the alignment process. In the present embodiment, as a predetermined number of sheets (for example, a plurality of substrates p of one batch, one from the first substrate p (batch substrate P) to a predetermined number of sheets (for example, five sheets) In the alignment processing during exposure, the second alignment mode is selected. As shown in FIG. 7 = 〜 〜 7 (7), etc., the 'f丨 alignment mode is a plurality of adjacent alignments of the axes PA1 to PA4. 2:6 = the pattern of the impact detection 'and (4) the P of the filament P and the position of the silk domain PA1~PA4. In the present embodiment, according to the ith alignment mode, the first 至 至 至 至The number of sheets of the substrate p is subjected to alignment processing. After the light is applied, the control device 5 performs exposure processing on the substrate ρ according to the result of the ray and according to the alignment processing 34.
201040673 ' ---Γ -- 第2對準模式是利用基於第J對準模式的對準處理社 果的模式。於本實施形態t,第2鮮模式是如 = 模式:對基板p上的多個對準標記ml〜m6中規定的 標記進行_ ’並根據魏定的料標記的檢漸果 1對準模式的導出結果,⑽出練P的位置及該基板p 上的曝光區域PA1〜PA4各自的位置。 以下’雜基於第2卿模式_準處理以及根據該 對準處理的結果而執行的基板P的曝域理(第2曝光产 理)的-例,參照圖8之⑷〜圖8之(c)進行說明= 控制農置5將基板平台2搬入(裝載)至具有第工圖 案層及對準標記ml〜m6的基板p。於基板p上,塗佈有 感光劑。在由基板平台2來保持之後,基板p被配置於初 始位置。具有與基板P上所形成的第2圖案層相應的圖案 的遮罩Μ被搬入(裝载)至遮罩平台丨上,並被予以保持: 控制裝置5使用對準系統9,來對基板ρ上的規定的 對準標記ml〜m6進行檢測,並導出曝光區域pA1〜ρΑ4 的位置。 首先,如圖8之(Α)所示,控制裝置5使用干涉計 系統6來計測基板平台2的位置,並且控制基板平台2來 使基板Ρ移動’以使第1群組G1的對準標記ml〜m6配 置於第1對準系統91的檢測區域SA1〜SA6内。第1對 準系統91對第i群組G1的對準標記…〜⑽進行檢測。 藉此’控雜置5可導出由干料祕6賴定的座標系 上的第1群組G1的對準標記ml〜m6的位置。 35 201040673 繼而,如圖8之(B)所示,控制裝置5使用干涉計 系統6來計測基板平台2的位置,並且控制基板平台2來 使基,P移動’以使第3群組G3的對準標記w、m6配 置於第2對準系統92的檢測區域SB 1、SB2内。第2對準 系統92對第3群組G3的對準標記ml、πι6進行檢測。藉 此,控制裳置5可導&由干涉計纟統6所規定的座標系上 的第3群組G3的對準標記ml、m6的位置。 控制裝置5根據使用第丨對準系統91來對第丨群組 G1的對準標記mi〜m6進行檢測的結果以及使用第2對準 系統92來對第3群組G3的對準標記mb m6進行檢測的 結果,而導出由干涉計系統6所規定的座標系上的基板p 的位置。 如上所述,藉由基於第1對準模式的對準處理,已求 出由干涉計系統6所規定的座標系上的基板p的位置(以 下適當地稱作位置資料(data) n以及該基板p上的曝光 區域PA1〜PA4各自的位置(以下適當地稱作位置資料 2)。位置^料1是與基板p整體的位置相關的資料,包括 例如基板P的外形(邊緣)的位置等基板p上的規定的基 準位置。位置資料2是曝光區域pA1〜PA4各自相對於該 基板P上的規定基準位置的位置。 再者,位置資料1既可為根據在第i對準模式下進行 對準處理的批次先頭至規定片數的基板p中任意丨個基板 P而求出的資料,亦可為根據該規定片數的基板p的各個 而求出的資料的平均值。同樣地,位置資料2既可為根據 36 Ο ❹ 201040673 式下進行對準處理的批次先頭至規定片數的 二片勒Γ 1個基❹而求出的資料,亦可為根據該規 疋片數的基板Ρ的各個而求出的資料的平均值。 而且’藉由基於第2對準模式的對準處理,而求出由 干涉計系統6所規定的座標系上的基板ρ的位置(以下適 立置資料3) °因此’控制裝置5可根據基於第1 對準桓式的對準處理的導出結果即位置資料ι及位置資料 2以及基於第2對準模式的對準處理的導出結果即位置資 料3 ’而求出由干涉計系統6所規定的座標系上的基板ρ 上的曝光區域PA1〜PA4各自的位置(以下適當地稱作位 置資料4)。於本實施形態中,考慮到,曝光區域PA1〜PA4 各土相對於基板P上的規定基準位置的位置(基板p上的 規疋的基準位置與曝光區域pA1〜pA4的位置關係),在基 於第1對準模式的對準處理的執行時與基於第2對準模式 的對準處理的執行時大致不會變動。因此,控制裝置5可 根據使用第1對準系統9卜第2對準系統92並基於第2 對準模式來檢測對準標記ml〜m6的結果以及第丨對準模 式=導出結果(位置資料卜2),來導出基板P的位置(位 置資料3)以及基板ρ上的曝光區域pA1〜pA4各自的位 置(位置資料4)。 而且,如上所述,控制裴置5在基於第丨對準模式的 對準處理中,於第i對準系統9 i的兩端的檢測區域s A i、 SA6與第2對準系統92的兩端的檢測區域SB1、SB2的各 個上,配置基板P上的相同的對準標記ml、m6,並對該 201040673 相同的對準標記ml、m6進行制,以求出第丨對準系統 91的檢測區域SA1〜SA6與第2對準系统%的檢測區域 SB1、SB2的位置關係。因此,控制裝置$於基於第2對 準模式的對準處理巾,可根據使用第1對準线91來對第 1群組G1的對準標記ml〜m6進行檢測的結果以及使用第 2對準系、统92來對第3群組G3的對準標記a、m6進行 檢測的結果,而精度良好地求出位置f料3及位置資料4。 在求出各曝光區域PA1〜;PA4各自的位置(位置資料 4)之後’控制裝置5開始該些曝光區域pA1〜pA4的曝光。 、於本實施形態中,控制裝置5在執行基於第2對準模 式的對準處理之後,最先對多個曝光區域pA1〜pA4中的 第1曝光區域PA1進行曝光,繼而對第2曝光區域pA2進 行曝光’繼而對第3曝光區域PA3進行曝光,最後對第4 曝光區域PA4進行曝光。 控制裝置5為了開始第i曝光區域pA1的曝光,而控 制保持有基板p的基板平台2移動至第丨曝統域pA1的 曝光開始位置,以使第1曝光區域PA1配置於曝光開始位 置。再者,至少在基板p移動至第J曝光區域PA1的曝光 開始位置之前’第1曝光區域PA1配置於投影區域PR1〜 PR7的外側。 圖8之(C)表示第1曝光區域pA1配置於曝光開始 位置的狀態。控職置5 -方面控制基板平台2而對投影 區域PR1〜PR7照射曝光縣EL,—方面使基板p的第i 曝光區域PA1相對於投影區域PR1〜pR7而沿_χ方向移 38201040673 ' ---Γ -- The second alignment mode is a mode that uses the alignment processing based on the J-alignment mode. In the t-th embodiment, the second fresh mode is a = mode: _ ' is performed on the mark specified in the plurality of alignment marks ml to m6 on the substrate p, and the alignment pattern is determined according to the material mark of Wei Ding. As a result of the derivation, (10) the position of the P and the positions of the exposure areas PA1 to PA4 on the substrate p. In the following, the example of the second aspect mode _ quasi-processing and the exposure area (second exposure production) of the substrate P performed based on the result of the alignment process will be described with reference to FIG. 8 (4) to FIG. 8 (c). Description of Embodiments = Control of the farm 5 The substrate platform 2 is carried (loaded) to the substrate p having the pattern layer and the alignment marks ml to m6. On the substrate p, a sensitizer is applied. After being held by the substrate stage 2, the substrate p is placed at the initial position. A mask 具有 having a pattern corresponding to the second pattern layer formed on the substrate P is carried (loaded) onto the mask stage , and held: the control device 5 uses the alignment system 9 to align the substrate ρ The predetermined alignment marks ml to m6 are detected, and the positions of the exposure regions pA1 to ρ4 are derived. First, as shown in (8) of FIG. 8, the control device 5 measures the position of the substrate stage 2 using the interferometer system 6, and controls the substrate stage 2 to move the substrate ' to make the alignment mark of the first group G1. The ml to m6 are disposed in the detection areas SA1 to SA6 of the first alignment system 91. The first alignment system 91 detects the alignment marks ... to (10) of the i-th group G1. By this, the position of the alignment marks ml to m6 of the first group G1 on the coordinate system determined by the dry material 6 can be derived. 35 201040673 Then, as shown in FIG. 8(B), the control device 5 uses the interferometer system 6 to measure the position of the substrate platform 2, and controls the substrate platform 2 to move the base, P to make the third group G3 The alignment marks w and m6 are disposed in the detection areas SB 1 and SB2 of the second alignment system 92. The second alignment system 92 detects the alignment marks ml and πι6 of the third group G3. Thereby, the position of the alignment marks ml and m6 of the third group G3 on the coordinate system defined by the interferometer system 6 can be controlled. The control device 5 detects the alignment marks mi to m6 of the second group G1 based on the use of the second alignment system 91 and the alignment mark mb m6 for the third group G3 using the second alignment system 92. As a result of the detection, the position of the substrate p on the coordinate system defined by the interferometer system 6 is derived. As described above, the position of the substrate p on the coordinate system defined by the interferometer system 6 is obtained by the alignment processing based on the first alignment mode (hereinafter referred to as position data (data) n and The respective positions of the exposure regions PA1 to PA4 on the substrate p (hereinafter referred to as position data 2 as appropriate). The position material 1 is information relating to the position of the entire substrate p, and includes, for example, the position (edge) of the substrate P, and the like. a predetermined reference position on the substrate p. The position data 2 is a position of each of the exposure regions pA1 to PA4 with respect to a predetermined reference position on the substrate P. Further, the positional data 1 may be performed according to the ith alignment mode. The data obtained by aligning the batch of the processing to the predetermined number of the substrates P in the predetermined number of substrates may be the average value of the data obtained from each of the predetermined number of substrates p. The position data 2 can be obtained from the batch of the first batch to the predetermined number of pieces in accordance with the method of 36 Ο ❹ 201040673, or the number of pieces according to the number of sheets. Obtained from each of the substrate defects The average value of the material is obtained. The position of the substrate ρ on the coordinate system defined by the interferometer system 6 is obtained by the alignment process based on the second alignment mode (the following is suitable for the vertical data 3). The control device 5 can obtain the position data 3' based on the derivation result of the alignment processing based on the first alignment pattern, that is, the position data 1 and the position data 2, and the result of the alignment processing based on the second alignment mode. The position of each of the exposure areas PA1 to PA4 on the substrate ρ on the coordinate system defined by the interferometer system 6 (hereinafter referred to as position data 4 as appropriate). In the present embodiment, it is considered that the exposure areas PA1 to PA4 are soiled. The position of the predetermined reference position on the substrate P (the positional relationship between the reference position on the substrate p and the exposure regions pA1 to pA4) is based on the execution of the alignment process based on the first alignment mode and based on the second The execution of the alignment process of the alignment mode does not substantially change. Therefore, the control device 5 can detect the alignment mark ml based on the second alignment system 92 using the first alignment system 9 and the second alignment mode. The result of m6 and the third Quasi mode = derivation result (position data 2), to derive the position of the substrate P (position data 3) and the position of each of the exposure areas pA1 to pA4 on the substrate ρ (position data 4). Moreover, as described above, control 裴In the alignment processing based on the second alignment mode, each of the detection regions s A i and SA6 at both ends of the i-th alignment system 9 i and the detection regions SB1 and SB 2 at both ends of the second alignment system 92 The same alignment marks ml and m6 on the substrate P are disposed, and the same alignment marks ml and m6 of 201040673 are formed to obtain the detection areas SA1 to SA6 and the second pair of the second alignment system 91. The positional relationship of the detection areas SB1, SB2 of the quasi-system%. Therefore, the control device $ can detect the alignment marks ml to m6 of the first group G1 and use the second pair based on the alignment processing towel based on the second alignment mode. The quasi-system 92 detects the alignment marks a and m6 of the third group G3, and obtains the position f material 3 and the position data 4 with high precision. After the respective positions (position data 4) of the respective exposure areas PA1 to PA4 are obtained, the control device 5 starts exposure of the exposure areas pA1 to pA4. In the present embodiment, after the alignment processing by the second alignment mode is performed, the control device 5 first exposes the first exposure region PA1 among the plurality of exposure regions pA1 to pA4, and then the second exposure region. The exposure is performed by pA2. Then, the third exposure area PA3 is exposed, and finally the fourth exposure area PA4 is exposed. In order to start exposure of the i-th exposure region pA1, the control device 5 controls the substrate stage 2 holding the substrate p to move to the exposure start position of the second exposure region pA1 so that the first exposure region PA1 is placed at the exposure start position. Further, at least the first exposure region PA1 is disposed outside the projection regions PR1 to PR7 before the substrate p moves to the exposure start position of the J-th exposure region PA1. (C) of Fig. 8 shows a state in which the first exposure region pA1 is placed at the exposure start position. The control unit 5 controls the substrate stage 2 and irradiates the projection areas PR1 to PR7 with the exposure area EL, so that the i-th exposure area PA1 of the substrate p is moved in the _χ direction with respect to the projection areas PR1 to pR7.
201040673 動。藉此,第1曝光區域PA1受到曝光。控制裝置5使美 板P沿-χ方向移動,直至至少第i曝光區域PA1配置ς 位置為止。藉由以上動作,第1曝光區域ΡΑ1的 曝光結束。 如此’於本實施形態中,對多個曝光區域ρΑι〜ρΑ4 ^ ί基於第1對準模式的鮮處理後所執行的曝光處理 曝光的第1曝光區域PA1進行曝光時的基板Ρ 關於X軸方向的移動方向、與對在基於第2對準 =處理後所執行的曝光處理中最先受到曝光的第ι曝光區 進行曝光時的基板p關於χ軸方㈣移動方向為相 同的方向(_χ方向)。 於本實施形態中’於基於第2對準模式的對準處理後 所執行的曝光處理中,對多個曝光區域PA1〜ΡΑ4進行曝 ,的順序以及對各曝光區域PA1〜ΡΑ4進行曝光時的基^ 的移動方向、曝糾始位置及曝綠束位置,與基於第 1對準模式的對準處理後職行㈣光處理為大致相同。 =’於基於第2脾料輯轉理後所執行的曝光處 理中,一方面使基板Ρ以與參照圖6之(入)〜圖6之(F) 所說明的基板P的執道執跡(移動路徑)相同的移動軌跡 (移動路徑)而移動’一方面對多個曝光區域PM〜㈤ 進行依序曝光。 亦即,於本實施形態中,在基於第丨對準模式的對準 處理後所執行的曝光處理中對多個曝光區域pA1〜pA4進 行依序曝光時的基板P相對於投影區域PR1〜PR7的移動 39 201040673 軌跡(移祕徑)、與在基於第2對準模式的料處 執行的曝光處理中對多個曝光區域PA1〜PA4進行依= 光時的基板p相對於投㈣域PR1〜PR7的移動軌跡爲 動路徑)為大致相同。 於本實施形態中,相對於投影區域PR1〜PR7而於 側配置有第2對準纽92,控繼置5在基於第2對準 式的對準處理巾第2對準系統92來檢測對準標記 ml m6之後’可使第丨曝光區域pA1立即移動至曝光 始位置。 ' §從由基板平σ 2所保持的基板p上的對準標記、 m6配置於第2對準系、统92的檢測區域側、SB2内的基 板平台2的位置(以下適當地稱作對準位置),移動至第1 曝光區域PA1的-χ侧的—端配置於投影區域pR2、pR4、 PR6的+X側的_端的基板平台2的曝光開始位置為止時, 基板平台2關於X轴方向而在對準位置與曝光開始位置之 間以加速狀態沿_χ方向移動。而且,於曝光開始位置的附 近’基板平台2的移動狀態為穩定狀態及定速狀態的至少 一種。而且’當從第i曝光區域pA1的_Χ側的一端配置於 投影區域PR2、PR4、PR6的+χ _ —端的基板平台2的 曝光開始位4,移動至第1曝光輯ΡΑ1的+Χ側的-端 配置於投影區域PIU、pR3、pR5、pR7的—X側的一端的 ,板平台2的曝光結束位置為止時,基板平台2以定速狀 態而沿-X方向移動。 於本Λ施形態中,於相對於投影區域PR1〜PR7而關 201040673 於X軸方向為+χ側且至少隔開基板平台2的必要最小限 度的助走距離的位置處,配置著可對與第丨曝光區域pA1 鄰接的第3群組G3的對準標記ml、m2進行檢測的第2 對準系統92的檢測區域SB1、SB2。藉此,控制裝置5使 用第2對準系統92來對第3群組G3的對準標記1卜m6 進行檢測之後,可立即轉變至第1曝光區域PA1的曝光處 理。 所謂基板平台2的必要最小限度的助走距離,是指於 Ο 第1位置處,靜止狀態的基板平台2從第1位置向規定方 向的一側(例如-X側)開始移動,直至可達到規定的目標 速度的第2位置為止的距離。助走距離包括基板平台2^ 行加速的加速距離以及基板平台2進行穩定的穩定距離。 ’ 在第1位置與第2位置之間,基板平台2以加速狀態來移 • 動,於第2位置的附近,基板平台2以穩定狀態來移動。 基板平台2的必要最小限度的助走距離,例如是與基 板爭台2的移動性能相應的距離,該助走距離基於驅^系 統4的性能以及基板平台2的重量等。直至到達第2位置 為土而達到目標速度的基板平台2,在第2位置與相對於 該第2位置而為規定方向的一侧(_χ方向)的第3位置之 間,能夠以目標速度而以定速狀態進行移動。 於在對準位置,大致靜止狀態的基板平台2從對準位 ϊ開始移動,直至到達曝光開始位置為止的期間内,為了 達到目標掃描速度,對準位置與曝光開始位置的距離賴 ' 比基板平台2的必要最小限度的助走距離更長。 、 201040673 圖9是表示投影光學系統PL2、第2對準系統92及基 板P (基板平台2)的關係的示意圖。在相對於投影區域 PR2而關於X軸方向(掃描方向)為+χ侧且至少隔開必 要最小限度的助走距離LJ的位置處,配置著第2對準系統 92的檢測區域SB1、SB2,該第2對準系統92可對與多個 曝光區域ΡΑ1〜ΡΑ4中最先受到曝光的第1曝光區域pAl 鄰接的基板P上的第3群組G3的對準標記ml、m6進行 檢測。藉此,可使對準位置與曝光開始位置的距離LA, 長於基板平台2的必要最小限度的助走距離u。 田田隹對準位置以大致靜止狀態而配置的基板 平台2所保持的基板P上的第3群組G3的對準標記瓜卜 m6配置於第2對準系統%的檢測區域 SB1、SB2 ’ 而由 第2對準系統92所檢測出之後,基板平台2開始朝向_又 方向的移動’藉此可在直至到達曝光開始位置為止的期間 達到目標掃描速度。到達曝光開始位置的基板平台2沿-X ^向以目標掃贿度,在定速狀態下移動至曝光結束位置 二止’藉此’第1曝光區域PA1 一方面相對於投影區域 PR7而沿方向移動’—方面受到曝光。 再者,對準位置^^丨曝光區域pAi配置於投影區域 /二而的外觸位置。而且,於本實施形齡,對準 光㈣位置的㈣LA,與必要最小限度的助走 致一致。亦即,於本實施形態中,必要最小限度 的—端的第1位置與對準位置—致,必要最 义又白、助走距離LJ的另一端的第2位置與曝光開始位置 42 201040673 一致 - 再者,對準位置與曝光開始位置的距離LA亦可長於 必要最小限度=助走距離u。此時,基板平台2在到達曝 光開始位置之前便可達到目標掃描速度。 如以上所說明,根據本實施形態,在相對於投影區域 PR1〜PR7為+X側且隔開大於等於必要最小限度的助走距 離的位置處’具有與多個曝光區域PA1〜PA4中最先受到 〇 曝光的第1曝光區域PA1鄰接的基板p上的第3群組⑺ 的對準標記ml、m6可配置的檢測區域SB1、SB6,且設 有導出第1曝光區域PA1的位置的第2對準系統92,因 制裝置5在將基板平台2配置於對準位置並使用第 &準线92來進行解標記w、㈣的檢狀後可使 .2沿_X方向移動,從而立即開始第1曝光區域 」光。因此,可縮短對準處理所需的時間。因此, 可抑制處理量的下降,且可抑制元件的生產性的下降。 〇〜於本實施形態中,亦可在相對於投影區域PR1 位J , 2隔開大於等於必要最小限度的助走距離的 置^配置第i對準系統91的檢測區域如〜认6。藉 後,可對準系統91來檢測對準標記mi〜m6 ‘ 對於該對i二:台了方向移動,而立即開始針對相 m6而於_Χ側鄰接的曝光區域PA1〜 Α4的至少一者的曝光處理。 中在^二ίί本實施形態’對多個曝光區域PA1〜ΡΑ4 弟1曝光處理中最先受到曝光的第!曝光區域㈤進 43 201040673 灯曝先時的·掃福方 在第2曝光處財最先受二,=)的移動方向、與對 時的闕於掃描方向Γ !曝先的弟1曝光區域進行曝光 ^方向),因向)的移動方向為相同的方向 至自該基板平台L:=,p搬入基板平台2後直 離變長。因此,可抑制處理量的=基板平台2的移動距 光區第】曝光處財對多個曝 影區域PIU〜PR7的移動^跡板平台2相對於投 個曝光區域PA1〜PA4進行依序處理中對多 於投爹Fi^PT?1 nr» 曝光寺的基板平台2相對 =又1域PR1〜PR7的移動執跡為大致相同,因 牛曝光處理卜㈣在大致_的裝置條 進行曝光。例如,即使在主體13等對應 移if::2的移動(位置)而發生變形的情況時,藉由 ,基板平口 2的移動軌跡在第!曝光處理與第2曝光處理 中為相同’從而在第1曝光處理與第2曝光處理中,可在 大致相同的裝置條件(主體13的變形條件等)下而對各曝 光區域PA1〜PA4進行曝光。 而且,於本實施形態中,第2對準系統92沿¥轴方 向配置的多個對準標記ml〜m6中兩端的對準標記ml、 m6進行檢測,因此,控制裝置5可根據該第2對準系統 92的檢測結果,而精度良好地導出基板p的位置以及曝光 區域PA1〜PA4的位置。 而且,於本實施形態中,第1對準系統91與第2對準 44 201040673 系統92使用各自的兩端的檢測區域,來檢測基板ρ上的 對準標記ml、m6,因此,控制裝置5可根據該檢測結果 來精度良好地導出基板P的位置以及曝光區域PA1〜PA4 的位置。201040673 moving. Thereby, the first exposure area PA1 is exposed. The control device 5 moves the tablet P in the -χ direction until at least the ith exposure region PA1 is disposed at the ς position. By the above operation, the exposure of the first exposure region ΡΑ1 is ended. In the present embodiment, the substrate Ρ at the time of exposure of the first exposure region PA1 exposed by the exposure processing performed after the fresh processing in the first alignment mode is performed on the plurality of exposure regions ρΑι to ρΑ4 ί. The direction of movement is the same as the direction in which the substrate p is moved in the direction of the x-axis (four) when the exposure is performed on the first exposure region that is first exposed in the exposure process performed after the second alignment = processing (_χ direction) ). In the exposure processing executed after the alignment processing by the second alignment mode in the present embodiment, the order of exposure of the plurality of exposure areas PA1 to ΡΑ4 and the exposure of each of the exposure areas PA1 to ΡΑ4 are performed. The movement direction of the base ^, the exposure correction position, and the exposure green beam position are substantially the same as the alignment processing based on the first alignment mode (4). = 'In the exposure process performed after the second spleen-based grading, on the one hand, the substrate is etched with the substrate P described with reference to FIG. 6 (in) to (F) (Moving path) The same moving trajectory (moving path) and moving 'on the other hand, sequentially exposing a plurality of exposure areas PM to (five). In other words, in the present embodiment, the substrate P is sequentially exposed to the plurality of exposure regions pA1 to pA4 in the exposure processing performed after the alignment processing by the second alignment mode with respect to the projection regions PR1 to PR7. Movement 39 201040673 trajectory (migration path) and substrate p with respect to the projection (four) domain PR1 to the plurality of exposure regions PA1 to PA4 in the exposure processing performed at the material based on the second alignment mode The moving path of PR7 is the same as the moving path). In the present embodiment, the second alignment button 92 is disposed on the side with respect to the projection regions PR1 to PR7, and the control relay 5 detects the pair in the second alignment system 92 based on the alignment pattern of the second alignment pattern. After the mark m6, the first exposure area pA1 can be immediately moved to the exposure start position. § The alignment mark on the substrate p held by the substrate flat σ 2, m6 is disposed on the detection region side of the second alignment system 92, and the position of the substrate platform 2 in the SB 2 (hereinafter referred to as a pair as appropriate) When the end to the side of the first exposure area PA1 is disposed at the exposure start position of the substrate stage 2 on the +X side of the projection areas pR2, pR4, and PR6, the substrate stage 2 is about the X axis. The direction moves in the _χ direction between the alignment position and the exposure start position in an acceleration state. Further, the moving state of the substrate stage 2 near the exposure start position is at least one of a steady state and a constant speed state. Further, 'the end of the ith side of the i-th exposure region pA1 is disposed at the exposure start position 4 of the substrate stage 2 at the +χ _ end of the projection regions PR2, PR4, and PR6, and moves to the +Χ side of the first exposure frame 1 When the end is disposed at one end on the -X side of the projection areas PIU, pR3, pR5, and pR7, and the exposure end position of the plate stage 2 is reached, the substrate stage 2 moves in the -X direction at a constant speed state. In the present embodiment, the position is set to the +χ side in the X-axis direction with respect to the projection regions PR1 to PR7, and at least the distance necessary for the minimum distance of the substrate platform 2 is separated. The detection marks SB1 and SB2 of the second alignment system 92 for detecting the alignment marks ml and m2 of the third group G3 adjacent to the exposure area pA1. Thereby, the control device 5 detects the alignment mark 1 m6 of the third group G3 using the second alignment system 92, and immediately shifts to the exposure processing of the first exposure area PA1. The minimum required assist distance of the substrate stage 2 means that the substrate stage 2 in the stationary state moves from the first position to the side in the predetermined direction (for example, the -X side) at the first position until the regulation is reached. The distance from the second position of the target speed. The assist distance includes the acceleration distance of the substrate platform 2 and the substrate platform 2 for stable stable distance. Between the first position and the second position, the substrate stage 2 is moved in an accelerated state, and the substrate stage 2 is moved in a stable state in the vicinity of the second position. The necessary minimum walking distance of the substrate platform 2 is, for example, a distance corresponding to the moving performance of the substrate competing table 2, which is based on the performance of the driving system 4 and the weight of the substrate platform 2. The substrate stage 2 that reaches the target speed until the second position is soil can be at the target speed between the second position and the third position in the predetermined direction (_χ direction) with respect to the second position. Move at a constant speed. In the aligned position, the substrate platform 2 in a substantially stationary state moves from the alignment position , until the exposure start position is reached, and the distance between the alignment position and the exposure start position is greater than the substrate in order to reach the target scanning speed. The necessary minimum walking distance for platform 2 is longer. 201040673 FIG. 9 is a schematic diagram showing the relationship between the projection optical system PL2, the second alignment system 92, and the substrate P (substrate platform 2). The detection areas SB1 and SB2 of the second alignment system 92 are disposed at a position on the X-axis direction (scanning direction) with respect to the projection area PR2 on the +χ side and at least the minimum required assist distance LJ. The second alignment system 92 can detect the alignment marks ml and m6 of the third group G3 on the substrate P adjacent to the first exposure region pAl that is first exposed among the plurality of exposure regions ΡΑ1 to ΡΑ4. Thereby, the distance LA between the alignment position and the exposure start position can be made longer than the necessary minimum assist distance u of the substrate platform 2. The alignment mark of the third group G3 on the substrate P held by the substrate platform 2 in which the field alignment position is arranged in a substantially stationary state is arranged in the detection areas SB1 and SB2 of the second alignment system %. On the other hand, after the second alignment system 92 detects the substrate platform 2, the movement toward the _reverse direction is started, whereby the target scanning speed can be reached until the exposure start position is reached. The substrate platform 2 that has reached the exposure start position moves toward the target in the -X^ direction, and moves to the exposure end position at the constant speed state. The first exposure area PA1 is on the one hand with respect to the projection area PR7. Mobile '- aspects are exposed. Further, the alignment position ^^丨 exposure area pAi is disposed at the external touch position of the projection area /2. Moreover, in the present embodiment, the (4) LA at the position of the light (4) is consistent with the minimum necessary assist. That is, in the present embodiment, it is necessary that the minimum position of the first end and the alignment position are the same, and the second position of the other end of the assist distance GJ is the same as the exposure start position 42 201040673 - again The distance LA between the alignment position and the exposure start position may be longer than the necessary minimum value = the assist distance u. At this time, the substrate stage 2 can reach the target scanning speed before reaching the exposure start position. As described above, according to the present embodiment, at the position which is on the +X side with respect to the projection areas PR1 to PR7 and spaced apart by the minimum necessary assist distance, the first one of the plurality of exposure areas PA1 to PA4 is received. The detection regions SB1 and SB6 in which the alignment marks ml and m6 of the third group (7) adjacent to the first exposure region PA1 adjacent to the first exposure region PA1 exposed by the first exposure region PA1 are exposed, and the second pair of the positions for deriving the first exposure region PA1 are provided. The quasi-system 92 allows the device 5 to move in the _X direction after the substrate platform 2 is placed at the aligned position and the first & alignment line 92 is used to perform the de-marking w and (4). The first exposure area is "light." Therefore, the time required for the alignment process can be shortened. Therefore, the decrease in the amount of processing can be suppressed, and the decrease in the productivity of the element can be suppressed. In the present embodiment, the detection area of the i-th alignment system 91 may be arranged such that the detection area of the i-th alignment system 91 is spaced apart from the projection area PR1 by J, 2 by a distance equal to or smaller than the minimum necessary assist distance. After the borrowing, the alignment index mi~m6' can be detected by the alignment system 91. For the pair i: the direction movement is started, and at least one of the exposure areas PA1 Α 邻接4 adjacent to the _Χ side for the phase m6 is immediately started. Exposure processing. In the present embodiment, the first exposure of the plurality of exposure areas PA1 to ΡΑ4 is the first exposure process! Exposure area (5) into 43 201040673 Light exposure first time · sweeping side in the second exposure at the first profit of the second, =) moving direction, and the right time in the scanning direction Γ! exposed the first brother 1 exposure area The exposure direction is the same direction as the direction of movement to the substrate platform L:=, p is moved straight into the substrate platform 2 and becomes longer. Therefore, it is possible to suppress the amount of processing = the moving distance of the substrate platform 2 from the exposure area. The movement of the plurality of exposure areas PIU to PR7 is sequentially processed with respect to the shot exposure areas PA1 to PA4. In the case of more than 爹Fi^PT?1 nr» exposure of the substrate platform 2 relative = 1 field PR1 ~ PR7 movements are substantially the same, because the cattle exposure processing (four) in the approximate _ device strip exposure. For example, even when the main body 13 or the like is displaced corresponding to the movement (position) of if:: 2, the movement trajectory of the substrate flat opening 2 is at the first! The exposure process is the same as in the second exposure process. Thus, in the first exposure process and the second exposure process, the exposure areas PA1 to PA4 can be exposed under substantially the same device conditions (deformation conditions of the main body 13 and the like). . Further, in the present embodiment, the second alignment system 92 detects the alignment marks ml and m6 at both ends of the plurality of alignment marks ml to m6 arranged in the axis direction, so that the control device 5 can be based on the second By aligning the detection results of the system 92, the position of the substrate p and the positions of the exposure areas PA1 to PA4 are accurately extracted. Further, in the present embodiment, the first alignment system 91 and the second alignment 44 201040673 system 92 detect the alignment marks ml and m6 on the substrate ρ using the detection regions at both ends, so that the control device 5 can Based on the detection result, the position of the substrate P and the positions of the exposure regions PA1 to PA4 are accurately extracted.
Ο 而且,於本實施形態中,第2對準系統92的檢測區域 (檢測器)的數量少於第1對準系統91的檢測區域(檢測 器)的數量。藉此,可確保第2對準系統92與基板平台2 之間(基板平台2的上方)的空間(space)。於本實施形 態中,可相對於投影系統PS,而自+X側順利地進行基板 P相對於基板平台2的搬入動作以及基板P自基板平台2 的搬出動作。 再者,於本實施形態中,對於在對丨個批次内的多個 基板P進行依序曝光的情況時,於對批次先頭至規定片數 (例如5片左右)的基板ρ進行曝光時選擇第丨對準模式, 而=對批次内的剩餘基板P進行曝光時選擇第2對準模式 的情況進行了說明,但例如於在基板p上積層多個圖案層 (例如5個圖案層)的情況時,亦可根據所要求的圖案層 =疊精度’來選擇第丨對準模式及第2對準模式的至少 例如亦可當要求高重疊精度日寺,選擇^對準模式, 2 ^淮目ί較粗略(rCmgh)的重疊精度亦被允許時,選擇第 -對=所藉需=2彳對=2行對準處理,可縮 所而的時間,攸而可抑制處理量的下降。 <第2實施形態> 、、而對第2實施形進行說明。於以下的說明中, 45 201040673 對於與上述實施形態相同或同等的構成部分標註相同的符 號,並簡化或省略其說明。 圖10是表示第2實施形態的投影區域PR丨〜pR7、檢 測區域SA1〜SA6、SB卜SB2及基板p的位置關係的一例 的示意圖。如圖10所示,於本實施形態中,基板p的表 面具有遮罩Μ的圖案的像所投影的6個曝光區域PA1〜 ΡΑ6 〇 繼而,對於本實施形態的第1曝光處理,參照圖η 之(Α)〜圖11之(F)來進行說明。 於本實施形態中,於第1曝光處理中,自多個曝光區 域PA1〜PA6中的第2曝光區域PA2最先開始曝光,繼而 第1曝光區域PA1受到曝光,繼而第3曝光區域PA3受到 曝光,繼而第4曝光區域PA4受到曝光,繼而第5曝光區 域PA5受到曝光,最後第6曝光區域pA6受到曝光。 圖11之(A)表示第2曝光區域PA2配置於曝光開始 位置的狀態。控制裝置5 —方面控制基板平台2而對投影 區域PR1〜PR7照射曝光光束el’ 一方面使基板p的第2 曝光區域PA2相對於投影區域pR1〜pR7而沿_χ方向移 動。藉此’第2曝光區域ΡΑ2受到曝光。 繼而,控制裝置5開始第1曝光區域ΡΑ1的曝光。圖 11之(Β)表示第1曝光區域ρΑΐ配置於曝光開始位置的 狀態。控制裝置5—方面控制基板平台2而對投影區域pR1 〜PR7照射曝光光束EL,一方面使基板P的第1曝光區域 PA1相對於投影區域pR1〜pR7而沿+χ方向移動。藉此, 46 201040673 第2曝光區域PA2受到曝光。 繼而,控制裝置5開始第3曝光區域pA3的曝光。圖 11之(C)表示第3曝光區域PA3配置於曝光開始位置的 狀態。控制裝置5 —方面控制基板平台2而對投影區域pR1 〜PR7照射曝光光束EL’ 一方面使基板p的第3曝光區域 PA3相對於投影區域PR1〜PR7而沿-X方向移動。藉此, 第3曝光區域PA3受到曝光。 繼而,控制裝置5開始第4曝光區域PA4的曝光。圖 11之(D)表示第4曝光區域PA4配置於曝光開始位置的 狀態。控制裝置5 —方面控制基板平台2而對投影區域pRi 〜PR7照射曝光光束EL’ 一方面使基板P的第4曝光區域 PA4相對於投影區域PR1〜PR7而沿+χ方向移動。藉此, 第4曝光區域ΡΑ4受到曝光。 繼而,控制裝置5開始第5曝光區域ΡΑ5的曝光。圖 11,(Ε)表示第5曝光區域ΡΑ5 S2*置於曝朗始位置的 狀態。控制裝置5 -方面控制基板平台2而對投影區域pRl ❹〜PR7歸曝絲束此,—方面使基板?的第5曝光區域 PA5相對於投影區域PR1〜PR7而沿_χ方向移動。藉此, 第5曝光區域ΡΑ5受到曝光。 繼而 役制褒置5開始第6曝光區域ρΑ6的曝光。圖 U之⑺表示第6曝光區域腸配置於曝光開始位置试 狀態。控制裝置5-方面控制基板平台2而對投影區域pR] 〜服7照射曝光光束EL,-方面使基板p的第6曝光區滅 PA6相對於投影區域PR1〜pR7而沿+χ方向移動。藉此, 47 201040673 第6曝光區域PA6受到曝光。 藉由以上動作,第1曝光處理結 繼而,對於基於第!對準模式二二 之(A)〜圖12之⑺來進行^明。士準處理,參照圖12 第2群組G2的對準=it: C標記,、 記π^〜Γη6以及第4群組G4的對準標的對準標 91 1 5 ^ ^ ^ ^ W不杈測第1群組G1的對準標記ml〜m6。 繼而,如圖12之⑻所示,控制裝 準系統92來檢測第3群組G3的對準標記的、心。 :而’如圖U之(C)所示,控制裝置5利用 準系統9i來檢測第2群组G2的對準標記…〜心。 /繼而’如圖12之(D)所示,控制裝置5利用第i對 準系統91來檢測第3群組G3的對準標記加〜⑽。 /繼而’如圖12之(E)所示,控制裝置5利用第i對 準系統91來檢測第4群組G4的對準標記ml〜m6。 於本實施形態中,亦如參照圖12之(B)及圖12之 (D)所說明般,第1對準系統91與第2對準系統%使 用各自的兩端的檢測區域(SA卜SA6)、(SB卜SB2),來 檢測基板P上的相同的對準標記ml、m6。 於本實施形態中,與第1曝光區域PA1對應的對準找 記是第3群組G3的對準標記m卜m2以及第4群組G4 的對準標記ml、m2。與第2曝光區域PA2對應的對準棹 48 201040673 ΟFurther, in the present embodiment, the number of detection areas (detectors) of the second alignment system 92 is smaller than the number of detection areas (detectors) of the first alignment system 91. Thereby, a space between the second alignment system 92 and the substrate stage 2 (above the substrate stage 2) can be secured. In the present embodiment, the loading operation of the substrate P with respect to the substrate stage 2 and the removal operation of the substrate P from the substrate platform 2 can be smoothly performed from the +X side with respect to the projection system PS. Further, in the present embodiment, when the plurality of substrates P in the plurality of substrates are sequentially exposed, the substrate ρ is exposed from the beginning of the batch to the predetermined number of sheets (for example, about 5 sheets). The case where the second alignment mode is selected when the remaining substrate P in the batch is exposed is described, but for example, a plurality of pattern layers (for example, five patterns) are laminated on the substrate p. In the case of the layer), the second alignment mode and the second alignment mode may be selected according to at least the required pattern layer=stacking precision', for example, if a high overlap accuracy day temple is required, and the ^ alignment mode is selected, 2 ^Waheye ί coarser (rCmgh) overlap accuracy is also allowed, select the first - pair = borrowed = 2 彳 pair = 2 rows alignment processing, can shrink the time, and can suppress the processing Decline. <Second embodiment> The second embodiment will be described. In the following description, the same or equivalent components as those in the above embodiment are denoted by the same reference numerals, and the description thereof will be simplified or omitted. Fig. 10 is a schematic diagram showing an example of the positional relationship between the projection areas PR 丨 to pR7, the detection areas SA1 to SA6, SB SB2, and the substrate p in the second embodiment. As shown in FIG. 10, in the present embodiment, the surface of the substrate p has six exposure regions PA1 to ΡΑ6 projected by the image of the mask pattern, and the first exposure processing of the present embodiment is referred to FIG. (Α) to (F) of Fig. 11 will be explained. In the first embodiment, in the first exposure processing, the exposure is first started from the second exposure region PA2 among the plurality of exposure regions PA1 to PA6, and then the first exposure region PA1 is exposed, and then the third exposure region PA3 is exposed. Then, the fourth exposure area PA4 is exposed, and then the fifth exposure area PA5 is exposed, and finally the sixth exposure area pA6 is exposed. (A) of Fig. 11 shows a state in which the second exposure region PA2 is placed at the exposure start position. The control device 5 controls the substrate stage 2 to irradiate the projection areas PR1 to PR7 with the exposure light beam el', and moves the second exposure area PA2 of the substrate p in the _χ direction with respect to the projection areas pR1 to pR7. Thereby, the second exposure area ΡΑ2 is exposed. Then, the control device 5 starts exposure of the first exposure region ΡΑ1. (Β) of Fig. 11 indicates a state in which the first exposure region ρ Αΐ is disposed at the exposure start position. The control device 5 controls the substrate stage 2 to irradiate the projection regions pR1 to PR7 with the exposure light beam EL, and moves the first exposure region PA1 of the substrate P in the +χ direction with respect to the projection regions pR1 to pR7. Thereby, 46 201040673 The second exposure area PA2 is exposed. Then, the control device 5 starts exposure of the third exposure region pA3. (C) of Fig. 11 shows a state in which the third exposure region PA3 is disposed at the exposure start position. The control device 5 controls the substrate stage 2 to irradiate the projection areas pR1 to PR7 with the exposure light beam EL'. On the other hand, the third exposure area PA3 of the substrate p is moved in the -X direction with respect to the projection areas PR1 to PR7. Thereby, the third exposure area PA3 is exposed. Then, the control device 5 starts exposure of the fourth exposure region PA4. (D) of Fig. 11 shows a state in which the fourth exposure region PA4 is disposed at the exposure start position. The control device 5 controls the substrate stage 2 to irradiate the projection areas pRi to PR7 with the exposure light beam EL'. On the other hand, the fourth exposure area PA4 of the substrate P is moved in the +? direction with respect to the projection areas PR1 to PR7. Thereby, the fourth exposure area ΡΑ4 is exposed. Then, the control device 5 starts exposure of the fifth exposure region ΡΑ5. Fig. 11, (Ε) shows the state in which the fifth exposure region ΡΑ5 S2* is placed at the exposure start position. The control device 5 - controls the substrate platform 2 and exposes the projection regions pR1 ❹ PR PR7 to the tow, thereby making the substrate? The fifth exposure region PA5 moves in the _χ direction with respect to the projection regions PR1 to PR7. Thereby, the fifth exposure area ΡΑ5 is exposed. Then, the operation system 5 starts the exposure of the sixth exposure region ρΑ6. (7) of Fig. U indicates that the intestine of the sixth exposure region is placed at the exposure start position test state. The control device 5 controls the substrate stage 2 to irradiate the projection areas pR] to 7 with the exposure light beam EL, and moves the sixth exposure area OFF PA6 of the substrate p in the +? direction with respect to the projection areas PR1 to pR7. Thereby, 47 201040673 The sixth exposure area PA6 is exposed. With the above actions, the first exposure processing is continued, and based on the first! Alignment mode 2 (A) ~ Figure 12 (7) is performed. Refer to Figure 12 for the alignment of the second group G2 =it: C mark, π^~Γη6, and the alignment mark of the fourth group G4. 91 1 5 ^ ^ ^ ^ W The alignment marks ml to m6 of the first group G1 are measured. Then, as shown in (8) of Fig. 12, the control system 92 is controlled to detect the center of the alignment mark of the third group G3. Further, as shown in Fig. U (C), the control device 5 detects the alignment mark ... - heart of the second group G2 by the bare system 9i. Then, as shown in (D) of Fig. 12, the control device 5 detects the alignment mark of the third group G3 by adding the "0" (1) by the i-th alignment system 91. Then, as shown in Fig. 12(E), the control device 5 detects the alignment marks ml to m6 of the fourth group G4 by the i-th alignment system 91. In the present embodiment, as described with reference to FIG. 12(B) and FIG. 12(D), the first alignment system 91 and the second alignment system % use detection regions at both ends (SA BU SA6). And (SB SB2), to detect the same alignment marks ml, m6 on the substrate P. In the present embodiment, the alignment corresponding to the first exposure region PA1 is the alignment marks m to m2 of the third group G3 and the alignment marks ml and m2 of the fourth group G4. Alignment corresponding to the second exposure area PA2 棹 48 201040673 Ο
記是第3群組G3的對準標記m3、m4以及第4群組G4 的對準標記m3、m4。與第3曝光區域PA3對應的對準標 記是第3群組G3的對準標記m5、m6以及第4群組G4 的對準標記m5、m6。與第4曝光區域PA4對應的對準標 記是第1群組G1的對準標記m5、m6以及第2群組G2 的對準標記m5、m6 ^與第5曝光區域PA5對應的對準標 記是第1群組G1的對準標記m3、m4以及第2群組G2 的對準標記m3、m4。與第6曝光區域ΡΑό對應的對準標 記是第1群組G1的對準標記mi、m2以及第2群組G2 的對準標記ml、m2。 控制裝置5可根據使用第1對準系統91而檢測出的第 1群組G1〜第4群組G4各自的對準標記ml〜m6的位置 以及使用第2對準系統%而檢測出的第3群組G3的對準 ,記ml、m6的位置,來導出由干涉計系統6所規定的座 標系上的基板P的位置以及多個曝光區域pA1〜pA4各 的位置。 7 ·執行第2曝光處理。於第2曝光處理中,對多 個曝光區域PA1〜PA6進行曝光的順序以及對各曝光區域 Ml〜PA6進行曝光時的基板p的移動方向、曝光開始位 置及曝光結束位置’與第丨曝光處理大致相同。亦即,於 第2曝光處理中一方面使基板p以與參_ n之⑷ 圖11之(F)職明的基板p的執道執跡(移動路 =1動執跡(移動路徑)而移動,-方面對多個ΐ光 £域PA1〜;PA4進行依序曝光。 49 201040673 以上,對於本實施形態的於基板P上形成第1圖案層 的第1曝光處理、於該第1圖案層上形成第2圖案層時所 執行的對準處理以及於基板P上形成第2圖案層的第2曝 光處理進行了說明。 繼而,對於本實施形態的基於第2對準模式的對準處 理,參照圖13之(A)〜圖13之(D)來進行說明。 如圖13之(A)所示’基板P被配置於初始位置。繼 而,如圖13之(B)所示,控制裝置5利用第1對準系統 91來檢測第1群組G1的對準標記ml〜m6。 繼而,如圖13之(C)所示,控制裝置5利用第2對 準系統92來檢測第3群組G3的對準標記ml、m6。 控制裝置5根據使用第1對準系統91來對第丨群組 G1的對準標記ml〜m6進行檢測的結果、使用第2對準系 統92來對第3群組G3的對準標記m卜m6進行檢測的結 果以及第1對準模式的導出結果’來檢測基板p的位置以 及曝光區域PA1〜PA6各自的位置。 在求出各曝光區域PA1〜PA6各自的位置(位置資料 4)之後’控制裝置5開始該些曝光區域PA1〜PA6的曝光。 如圖13之(D)所示,第2曝光區域PA2配置於曝光開始 位置。 於本實施形態中,在基於第2對準模式的對準處理後 所執行的曝光處理中,對多個曝光區域PA1〜PA6進行曝 光的順序以及對各曝光區域PA1〜PA6進行曝光時的基板 p的移動方向、曝光開始位置及曝光結束位置,亦與基於 50 201040673 的曝光處理為大致相 第1對準模式的對準處理後所執行 同。 如以上所說明,於本實施形離 下降,並且可對基板1>良好地進行曝光。、可抑制處理量的 以及:U使f對圖14所示的具有曝光區域PA1〜PA6 以及對準W ml〜m6的基板p進行曝 執行上述第1曝光處理、包括第 ^况下,糟由These are the alignment marks m3 and m4 of the third group G3 and the alignment marks m3 and m4 of the fourth group G4. The alignment marks corresponding to the third exposure region PA3 are the alignment marks m5 and m6 of the third group G3 and the alignment marks m5 and m6 of the fourth group G4. The alignment marks corresponding to the fourth exposure region PA4 are the alignment marks m5 and m6 of the first group G1 and the alignment marks m5 and m6 of the second group G2. The alignment marks corresponding to the fifth exposure region PA5 are The alignment marks m3 and m4 of the first group G1 and the alignment marks m3 and m4 of the second group G2. The alignment marks corresponding to the sixth exposure area ΡΑό are the alignment marks mi and m2 of the first group G1 and the alignment marks ml and m2 of the second group G2. The control device 5 can detect the positions of the alignment marks ml to m6 of the first group G1 to the fourth group G4 detected by the first alignment system 91 and the second detection system %. The alignment of the group G3 is recorded with the positions of ml and m6, and the position of the substrate P on the coordinate system defined by the interferometer system 6 and the positions of the plurality of exposure regions pA1 to pA4 are derived. 7 • Perform the second exposure process. In the second exposure processing, the order of exposure of the plurality of exposure areas PA1 to PA6 and the movement direction, the exposure start position, and the exposure end position ' and the third exposure processing of the substrate p when the exposure areas M1 to PA6 are exposed are exposed. Roughly the same. In other words, in the second exposure processing, on the one hand, the substrate p is instructed by the substrate p of the reference (f) of FIG. 11 (F), and the moving path = the moving path (moving path) In the above, the first exposure process for forming the first pattern layer on the substrate P in the first embodiment is performed on the substrate P. The alignment process performed when the second pattern layer is formed and the second exposure process for forming the second pattern layer on the substrate P have been described. Then, in the alignment process based on the second alignment mode of the present embodiment, Referring to Fig. 13 (A) to Fig. 13 (D), the substrate P is placed at the initial position as shown in Fig. 13 (A). Then, as shown in Fig. 13 (B), the control device The first alignment system 91 detects the alignment marks ml to m6 of the first group G1. Then, as shown in FIG. 13(C), the control device 5 detects the third group by the second alignment system 92. The alignment marks ml, m6 of the group G3. The control device 5 detects the alignment marks ml to m6 of the second group G1 based on the use of the first alignment system 91. The second alignment system 92 detects the position of the substrate p and the exposure areas PA1 to PA6 by using the second alignment system 92 to detect the alignment mark m m6 of the third group G3 and the result of derivation of the first alignment mode. After the position (position data 4) of each of the exposure areas PA1 to PA6 is obtained, the control device 5 starts exposure of the exposure areas PA1 to PA6. As shown in (D) of Fig. 13, the second exposure area The PA2 is disposed at the exposure start position. In the exposure processing executed after the alignment processing by the second alignment mode, the exposure of the plurality of exposure areas PA1 to PA6 and the exposure area PA1 are performed on the exposure area PA1. The movement direction, the exposure start position, and the exposure end position of the substrate p during the exposure to the PA6 are also performed after the alignment processing based on the exposure processing of 50 201040673 is substantially the first alignment mode. As explained above, In the present embodiment, the substrate is lowered, and the substrate 1 can be exposed well. The amount of processing can be suppressed. U: f is the substrate having the exposed regions PA1 to PA6 and the aligned W ml to m6 shown in FIG. p Execution of the above first exposure process, including the fourth case,
卢採上老m匕栝第1弟2對準模式的對準 處理以及¥ 2曝核理,村抑做理量的 對基板P良好地進行曝光。 牛並且了 於圔14中,基板 叼衣面具有6個曝光區域PA1〜Lu Cai on the old m匕栝 first brother 2 alignment mode alignment processing and ¥ 2 exposure, the village to suppress the substrate P is well exposed. In the 圔14, the substrate has six exposure areas PA1~
PA6。曝光區域PA1、PA2沿γ舳古a二L 2〜Y軸方向而大致等間隔地隔 ^己置者’曝光區域PA3、PA4H軸方向而大致等間隔 地隔開配置著,曝光區域伙5、舰沿¥軸方向而大致等 間隔地隔開配置著。曝光區域PA1相對於曝规域pA2而 配置於-γ侧。曝光區域PA3相對於曝光區域pA4而配置 於+Y侧。曝光區域PA5相對於曝光區域PA5而配置於_¥ 侧。曝光區域PA1、PA2相對於曝光區域pA3、pA4而配 置於+X側。曝光區域PA5、PA6相對於曝光區域pA3、pA4 而配置於·Χ側。而且,基板P的表面具有第i群組⑴ 第6群組G6各自的對準標記ml〜m6。 <第3實施形態> 繼而,對第3實施形態進行說明。於以下的說明中, 對於與上述實施形態相同或同等的構成部分標註相同的符 號’並簡化或省略其說明。 51 201040673 圖15之(A)〜圖15之(D)是表示第3實施形態的 對準系統9的一例的圖。於本實施形態中,關於γ軸方向 的、第1對準系統91的兩端的檢測區域(sAl、SA6)的 位置與第2對準系統92的兩端的檢測區域(sbi、SB2) 的位置不同。 繼而,對基於第2對準模式的對準處理的一例進行說 明。如圖15之(A)所示’基板p被配置於初始位置。繼 而,如圖15之(B)所示’控制裝置5利用第1對準系統 91來檢測第1群組G1的對準標記m 1〜m6。 繼而’如圖15之(C)所示,控制裝置5利用第2對 準糸統92來檢測苐3群組G3的對準標記ml、m6。 控制裝置5根據對準系統9的檢測結果,導出基板P 的位置以及曝光區域PA1〜PA6各自的位置,並開始曝光 區域PA1〜PA6的曝光。 於本實施形態中’多個曝光區域PA1〜PA6中的第1 曝光區域PA1最先受到曝光。如圖15之(D)所示,第1 曝光區域PA1配置於曝光開始位置,開始該第1曝光區域 PA1的曝光。 於本實施形態中,關於Y轴方向的、第1對準系統91 的兩端的檢測區域(SA1、SA6)的位置與第2對準系統 92的兩端的檢測區域(SB1、SB2)的位置不同,因此可 縮短從由基板平台2所保持的基板P上的對準標記瓜卜 m6配置於第2對準系統92的檢測區域SB1、SB2的基板 平台2的位置(對準位置)’直至第i曝光區域pAi的_χ 52 201040673 侧的一端配置於投影區域PR2、PR4、PR6的+X側的一端 的基板平台2的曝光開始位置為止的距離。亦即,可縮短 由圖15之(C)所示的狀態向圖15之(D)所示的狀態變 化時的基板平台2的移動距離。於本實施形態中,如圖15 之(C)所示’當基板平台2配置於對準位置時,關於γ 軸方向,投影區域PR1〜PR7與最先受到曝光的第1曝光 區域PA1的位置為大致相同。如此,可縮短基板平台2的 移動距離,因此可抑制處理量的下降。 ^ 〈第4實施形態〉 繼而,對第4實施形態進行說明。於以下的說明中, 對於與上述實施形態相同或同等的構成部分標註相同的符 號,並簡化或省略其說明。 圖16是表不第4實施形態的對準系統9的—例的圖。 ' 於本實施形態中,關於X轴方向,第丨對準系統91的檢 測區域SA1〜SA6與第2對準系統92的檢測區域測、 SB2的距離LX1,與基板p上的第!群組⑴的對準標記 〇 ml〜m6與第3群組G3的對準標記的距離LX2 為大致相同。 於本實施形態中,在以第2對準模式來檢測對準標吃 ml〜„^時,可同時進行使用第!對準系統“的第丄群组 G1的對準標記mi〜m6的檢測與使用第2對準系統%的 第3群組G3的對準標記ml、灿的檢測。因此 、 處理量的下降。 再者,作為上述第1〜第4實施形態的基板P,不僅 53 201040673 可適用顯示器(display)元件用的玻璃基板,而且可適用 半導體元件製造用的半導體晶圓(wafer)、薄膜磁頭(thin film magnetic head )用的陶究晶圓(ceramic wafer)、或者 曝光裝置中所用的遮罩或光罩的母版(合成石英、矽晶圓 (silicon wafer))等。 再者,作為曝光裝置EX,除了使遮罩μ與基板P同 步移動並利用經由遮罩]V[的圖案的曝光光束EL來對基板 P進行掃描曝光的步進掃描(step and scan)方式的掃描型 曝光裝置(掃描步進機(scanning stepper))以外,亦可適 用於在使遮罩Μ與基板p靜止的狀態下對遮罩M的圖案 進行統一曝光並使基板P依序步進移動的步進重複(step andrepeat)方式的投影曝光裝置(步進機(stepper))。 而且,本發明亦可適用於如美國專利第6341〇〇7號說 明書、美國專利第6208407號說明書、美國專利第6262796 號說明書等中揭示的、具備多個基板平台的雙(―)平 台型的曝光裝置。 本&明亦可適用於如美國專利第6897963號說 二、歐州專利申請案公開第1713113號說明書等中揭示 裝置’該曝光裝置具備:基板平台,保持基板;以 禮2平纟料基板,而搭細彡成有基準標記的基準 a 各種光電感㈣。而且,可_具舒個基板平 °及叶測平台的曝光裝置。 >田,為曝光裝置EX的種類’並不限於液晶表示器件製 3顯不②製造用的曝光裝置,亦可廣泛適用於在基板 54 201040673 Ρ上對半導體器件圖案進行曝光的半導體器件製造用的曝 光裝置,用於製造薄膜磁頭、攝影元件(CCD)、微機器 (micromachine )、微機電系統(micr〇eiectr〇mechanicai system MEMS)、去氧核糖核酸(deoXyrib〇nucieic acid, DNA)晶片(Chip)或者光罩或遮罩等的曝光裝置等。PA6. The exposure areas PA1 and PA2 are arranged at substantially equal intervals along the axial direction of the γ舳古 a2 L 2 to the Y-axis direction at substantially equal intervals, and the exposure area is arranged at substantially equal intervals. The ships are arranged at substantially equal intervals along the direction of the ¥ axis. The exposure area PA1 is disposed on the -γ side with respect to the exposure gauge field pA2. The exposure area PA3 is disposed on the +Y side with respect to the exposure area pA4. The exposure area PA5 is disposed on the _¥ side with respect to the exposure area PA5. The exposure areas PA1, PA2 are arranged on the +X side with respect to the exposure areas pA3, pA4. The exposure areas PA5 and PA6 are arranged on the side of the exposure areas pA3 and pA4. Further, the surface of the substrate P has the alignment marks ml to m6 of the sixth group G6 of the i-th group (1). <Third Embodiment> Next, a third embodiment will be described. In the following description, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof will be simplified or omitted. 51 (2010) (A) to (D) of FIG. 15 are views showing an example of the alignment system 9 of the third embodiment. In the present embodiment, the positions of the detection regions (sAl, SA6) at both ends of the first alignment system 91 in the γ-axis direction are different from the positions of the detection regions (sbi, SB2) at both ends of the second alignment system 92. . Next, an example of the alignment processing based on the second alignment mode will be described. As shown in Fig. 15 (A), the substrate p is placed at the initial position. Then, as shown in Fig. 15 (B), the control device 5 detects the alignment marks m1 to m6 of the first group G1 by the first alignment system 91. Then, as shown in Fig. 15 (C), the control device 5 detects the alignment marks ml, m6 of the 苐3 group G3 by the second alignment system 92. The control device 5 derives the position of the substrate P and the respective positions of the exposure regions PA1 to PA6 based on the detection result of the alignment system 9, and starts exposure of the exposure regions PA1 to PA6. In the present embodiment, the first exposure area PA1 among the plurality of exposure areas PA1 to PA6 is first exposed. As shown in Fig. 15 (D), the first exposure region PA1 is disposed at the exposure start position, and exposure of the first exposure region PA1 is started. In the present embodiment, the positions of the detection regions (SA1, SA6) at both ends of the first alignment system 91 in the Y-axis direction are different from the positions of the detection regions (SB1, SB2) at both ends of the second alignment system 92. Therefore, the position (alignment position) of the substrate platform 2 in which the alignment marks on the substrate P held by the substrate stage 2 are disposed on the detection areas SB1 and SB2 of the second alignment system 92 can be shortened until the The distance from the exposure start position of the substrate stage 2 at one end on the +X side of the projection regions PR2, PR4, and PR6 is disposed at one end of the exposure area pAi. That is, the moving distance of the substrate stage 2 when the state shown in Fig. 15 (C) is changed to the state shown in Fig. 15 (D) can be shortened. In the present embodiment, as shown in FIG. 15(C), when the substrate stage 2 is placed at the aligned position, the positions of the projection areas PR1 to PR7 and the first exposure area PA1 which is first exposed are described with respect to the γ-axis direction. To be roughly the same. Thus, the moving distance of the substrate stage 2 can be shortened, so that the decrease in the amount of processing can be suppressed. ^ Fourth Embodiment Next, a fourth embodiment will be described. In the following description, the same or equivalent components as those in the above embodiment are denoted by the same reference numerals, and the description thereof will be simplified or omitted. Fig. 16 is a view showing an example of the alignment system 9 of the fourth embodiment. In the present embodiment, with respect to the X-axis direction, the detection areas SA1 to SA6 of the second alignment system 91 and the detection area of the second alignment system 92, the distance LX1 of SB2, and the first on the substrate p! The alignment marks 〇 ml to m6 of the group (1) are substantially the same as the distance LX2 of the alignment marks of the third group G3. In the present embodiment, when the alignment mark is detected in the second alignment mode, the alignment marks mi to m6 of the third group G1 using the "alignment system" can be simultaneously detected. Detection of the alignment marks ml and smear with the third group G3 using the second alignment system %. Therefore, the amount of processing decreases. Further, as the substrate P of the above-described first to fourth embodiments, not only 53 201040673 can be applied to a glass substrate for a display element, but also a semiconductor wafer or a thin film magnetic head for manufacturing a semiconductor element (thin) Film magnetic head) A ceramic wafer used for a film or a mask or a mask used in an exposure apparatus (synthetic quartz, silicon wafer). Further, as the exposure apparatus EX, in addition to the step-and-scan method in which the mask μ is moved in synchronization with the substrate P and the substrate P is scanned and exposed by the exposure light beam EL of the pattern of the mask [V] In addition to the scanning type exposure device (scanning stepper), the pattern of the mask M may be uniformly exposed and the substrate P may be sequentially stepped in a state where the mask Μ and the substrate p are stationary. A step-and-repeat type of projection exposure apparatus (stepper). Moreover, the present invention is also applicable to a double (-) platform type having a plurality of substrate platforms as disclosed in the specification of US Pat. No. 6,431, No. 7, the specification of US Pat. No. 6,208,407, and the specification of US Pat. No. 6,262,796. Exposure device. The present invention can also be applied to a device disclosed in the specification of the European Patent Application Publication No. 1713113, etc., which has a substrate platform for holding the substrate and a flat substrate for the gift. And finely smashed into a benchmark with a reference mark a various optical inductance (four). Moreover, it is possible to have an exposure device with a substrate flat and a leaf measuring platform. > Field, the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a liquid crystal display device, and can be widely applied to semiconductor device manufacturing for exposing a semiconductor device pattern on a substrate 54 201040673 Ρ Exposure device for manufacturing thin film magnetic heads, photographic elements (CCD), micromachines, microelectromechanical systems (MEMS), deoxyribonucleic acid (DNA) wafers (Chip) ) or an exposure device such as a mask or a mask.
〇 再者,於上述各實施形態中,是使用包含雷射干涉計 的干涉计系統來計測各平台的位置資訊,但並不限於此, 例如亦可使用對各平台上所設的標度(sede)(繞射光桃) 進行檢測的編碼器(enc〇der)系統。 再者,於上述實施形態中,使用了在透過性的基板上 形成有規定的遮光圖案(或相位圖案、消光圖案)的透光 型遮罩,但亦可取代該遮罩,而使用例如美國專利第 6778257號說明書所揭示般,根據欲曝光的圖案的電子資 料而形成透過圖案或反射圖案或者發光圖案的可變成形遮 罩(亦被稱作電子遮罩、主動式遮罩(active mask)或影 像產生器(image generat〇r))。而且,亦可具備包含自發 光型圖像顯示器件的圖案形成裝置,以取代具備非發光型 圖像顯示器件的可變成形遮罩。 上述實施形態的曝光裝置EX,是藉由以確保規定的 機械精度、電氣精度、光學精度的方式,將包含本案申& =範圍中·舉的各構成要素的各種子(sub)系統力^ 、,且褒而製造。為了確保該等各種精度,在該組裝前後,對 於各種光料、行祕達成光學精度的輕,對於各種 機械系統進行用於達成機械精度的調整,對於各種電氣 55 201040673 統進打用於達成電氣精度的調整。由各種子系統 置的組裝步驟,包括各種子系統相互的機械連接、電= 路的配線連接、氣壓迴路的崎連接等。在由該各種= 統向曝光裝置的組裝步驟之前,當然還有各 = 組裝步驟。在各種子純向曝林置的組裝步束Ϊ的 須進订‘合·,w確保作為曝光裝置整體的各種精度。 再者’較為理㈣是,曝光裝置的製造是在溫度及$ (clean)度等得到管理的無塵室中進行。 办 如圖17所示,半導體元件等的微元件是經由步爾 加、步驟2〇2、步驟2〇3、基板處理步驟旭、元件 步驟(包括切割(dicing)步驟、接合(b〇nding)步驟: ,裝(package)步驟等的加工製程)2〇5以及檢查步驟2〇6 等而製造’上述步驟2〇1進行微元件的魏、性能設計, 上述步驟202製作基於該設計步驟的遮罩(光罩),上述步 驟203製作元件的基材即基板,上述基板處理步驟2〇4包 括基板處理(曝光處理)’該基板處理包括:根據上述實施 形恕,使用遮罩的圖案並利用曝光光束來對基板進行曝 光,以及對經過曝光的基板(感光劑)進行顯影。再者, 步驟204中包括:藉由對感光劑進行顯影,而形成與遮罩 的圖案對應的曝光圖案層(經過顯影的感光劑的層),並經 由該曝光圖案層來對基板進行加工。 再者’上述實施形態及變形例的要件可適當地進行組 合。而且’亦有時會不使用一部分構成要素。而且,在法 令所允許的範圍内,引用上述實施形態及變形例中所引用 56 201040673 == ==有公開公報及糊的揭示, 雖然本發明已以較佳實施例揭露如上,然其 發明壬何熟習此技藝者’在不脫離本發明之精神 二靶,内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 ΟFurther, in each of the above embodiments, the position information of each platform is measured using an interferometer system including a laser interferometer. However, the present invention is not limited thereto, and for example, a scale set on each platform may be used ( Sede) (diffraction light) The encoder (enc〇der) system for detection. Further, in the above embodiment, a light-transmitting type mask in which a predetermined light-shielding pattern (or a phase pattern or a matte pattern) is formed on a transparent substrate is used, but instead of the mask, for example, the United States may be used. A variable shaped mask (also referred to as an electronic mask, active mask) that transmits a pattern or a reflective pattern or an illuminating pattern is formed according to the electronic material of the pattern to be exposed, as disclosed in the specification of Japanese Patent No. 6778257. Or image generator (image gene〇〇r)). Further, a pattern forming device including a self-luminous image display device may be provided instead of a variable-shaped mask having a non-light-emitting image display device. In the exposure apparatus EX of the above-described embodiment, various sub-systems including the respective constituent elements of the present application and the range of the present invention are ensured by ensuring predetermined mechanical precision, electrical precision, and optical precision. , and made in a hurry. In order to ensure these various precisions, optical precision is achieved for various materials and secrets before and after the assembly, and adjustments for mechanical precision are performed for various mechanical systems, and various electrical functions are used for electrical purposes. Accuracy adjustment. The assembly steps set by various subsystems include mechanical connection of various subsystems, wiring connection of electric=circuit, and connection of pneumatic circuit. Before the assembly steps by the various = directional exposure devices, of course, there are also various assembly steps. In the assembly step of the various sub-pure-in-the-spots, it is necessary to make a reservation, and to ensure various precisions as the entire exposure device. Furthermore, it is more reasonable (4) that the exposure apparatus is manufactured in a clean room in which temperature and $cleanness are managed. As shown in FIG. 17, the micro components of the semiconductor element and the like are via the step, step 2〇2, step 2〇3, substrate processing step, element step (including dicing step, bonding (b〇nding). Step: a processing process such as a package step, 2〇5, and an inspection step 2〇6, etc., to manufacture 'the above-mentioned step 2〇1 to perform the Wei and performance design of the micro-component, and the above-described step 202 creates a mask based on the design step. a mask (photomask), in the above step 203, a substrate which is a substrate of the element is produced, and the substrate processing step 2〇4 includes a substrate processing (exposure processing). The substrate processing includes: using the pattern of the mask according to the above-described implementation, and using the pattern of the mask The light beam is exposed to expose the substrate, and the exposed substrate (sensitizer) is developed. Furthermore, the step 204 includes forming an exposure pattern layer (a layer of the developed sensitizer) corresponding to the pattern of the mask by developing the sensitizer, and processing the substrate through the exposure pattern layer. Further, the requirements of the above-described embodiments and modifications can be combined as appropriate. Moreover, some components are sometimes not used. Further, within the scope permitted by the statute, reference is made to the above-mentioned embodiments and modifications. 56 201040673 == == There is a disclosure of the publication and the paste, although the present invention has been disclosed in the preferred embodiment as above, but the invention 壬Those skilled in the art will be able to make some modifications and refinements without departing from the spirit and scope of the invention, and the scope of the present invention is defined by the scope of the appended claims. [Simple description of the diagram] Ο
圖1是表示第1實施形態的曝光裝置的一例的概略構 成圖。 圖2是表示第1實施形態的曝光裝置的一例的立體圖。 圖3是表示第1實施形態的投影系統及基板平台的一 例的圖。 圖4是表示第1實施形態的投影區域、檢測區域與基 板的位置關係的一例的示意圖。 圖5是表示第1實施形態的曝光方法的一例的流程圖。 一圖6之(A)〜圖6之(F)是表示第1實施形態的曝 光裝置的動作的一例的圖。 一 圖7之(A)〜圖7之(F)是表示第1實施形態的曝 光裝置的動作的一例的圖。 圖8之(A)〜圖8之(C)是表示第1實施形態的曝 光裝置的動作的—例的圖。 圖9是用於說明第1實施形態的投影區域與檢測區域 的關係的示意圖。 圖10是表示第2實施形態的投影區域、檢測區域與基 57 201040673 板的位置關係的一例的示意圖。 圖11之(A)〜圖11之(F)是表示第2實施形態的 曝光裝置的動作的一例的圖。 圖12之(A)〜圖12之(F)是表示第2實施形態的 曝光裝置的動作的一例的圖。 圖13之(A)〜圖13之(D)是表示第2實施形態的 曝光裝置的動作的一例的圖。 圖14是表示第2實施形態的投影區域、檢測區域與基 板的位置關係的一例的示意圖。 圖15之(A)〜圖15之(D)是表示第3實施形態的 曝光裝置的動作的一例的圖。 圖16是表示第4實施形態的曝光裝置的動作的一例的 圖。 圖17是用於說明微(micro)元件的製造步驟的一例 的流程圖。 【主要元件符號說明】 1 :遮罩平台 2:基板平台 3、4 :驅動系統 5:控制裝置 6:干涉計系統 όΑ、0B :雷射干涉計單元 7:第1檢測系統 8 :第2檢測系統 58 201040673 9:對準系統 10 :底板 ' 10G :導引面 11 :第1柱體 12 :第2柱體 12G :導引面 13 :主體 14 :壓盤 Ο 17 :汞燈 43 :基準構件 44 :上表面 45 :透過部 46:受光裝置 • 47:透鏡系統 48 :光感測器 91 :第1對準系統 ^ 91A〜91F、92A、92B :檢測器 92 :第2對準系統 201 〜206、SP1、SP2、SP3 :步驟 BL :防振台 EL :曝光光束 EX:曝光裝置 FL :支持面 G1 :第1群組 59 201040673 G2 :第2群組 G3 :第3群組 G4 :第4群組 G5 :第5群組 G6 :第6群組 IL1〜IL7 :照明模組 IR1〜IR7 :照明區域 IS :照明系統 LA、LX1、LX2 :距離 LJ:必要最小限度的助走距離 Μ :遮罩 ml〜m6 :對準標記 P :基板 PA1〜PA6 :曝光區域 PL1〜PL7 :投影光學系統 PR1〜PR7 :投影區域 PS :投影系統 SA1〜SA6、SB1、SB2 :檢測區域 60Fig. 1 is a schematic configuration view showing an example of an exposure apparatus according to a first embodiment. Fig. 2 is a perspective view showing an example of an exposure apparatus according to the first embodiment. Fig. 3 is a view showing an example of a projection system and a substrate stage according to the first embodiment. Fig. 4 is a schematic diagram showing an example of a positional relationship between a projection area, a detection area, and a substrate in the first embodiment. Fig. 5 is a flowchart showing an example of an exposure method according to the first embodiment. (A) to (F) of Fig. 6 are views showing an example of the operation of the exposure apparatus according to the first embodiment. (A) to (F) of FIG. 7 are views showing an example of the operation of the exposure apparatus according to the first embodiment. (A) to (C) of FIG. 8 are diagrams showing an example of the operation of the exposure apparatus according to the first embodiment. Fig. 9 is a schematic view for explaining a relationship between a projection area and a detection area in the first embodiment. Fig. 10 is a schematic diagram showing an example of the positional relationship between the projection area and the detection area and the base 57 201040673 in the second embodiment. (A) to (F) of Fig. 11 are views showing an example of the operation of the exposure apparatus of the second embodiment. (A) to (F) of Fig. 12 are views showing an example of the operation of the exposure apparatus of the second embodiment. (A) to (D) of Fig. 13 are views showing an example of the operation of the exposure apparatus of the second embodiment. Fig. 14 is a schematic diagram showing an example of a positional relationship between a projection area, a detection area, and a substrate in the second embodiment. (A) to (D) of Fig. 15 are views showing an example of the operation of the exposure apparatus of the third embodiment. Fig. 16 is a view showing an example of the operation of the exposure apparatus of the fourth embodiment. Fig. 17 is a flow chart for explaining an example of a manufacturing procedure of a micro element. [Main component symbol description] 1 : Mask platform 2: Substrate platform 3, 4: Drive system 5: Control device 6: Interferometer system όΑ, 0B: Laser interferometer unit 7: First detection system 8: Second detection System 58 201040673 9: Alignment system 10: Base plate '10G: Guide surface 11: 1st cylinder 12: 2nd cylinder 12G: Guide surface 13: Main body 14: Platen Ο 17: Mercury lamp 43: Reference member 44: upper surface 45: transmissive portion 46: light receiving device • 47: lens system 48: photo sensor 91: first alignment system ^ 91A to 91F, 92A, 92B: detector 92: second alignment system 201 ~ 206, SP1, SP2, SP3: Step BL: Anti-vibration table EL: Exposure beam EX: Exposure device FL: Support surface G1: Group 1 59 201040673 G2: Group 2 G3: Group 3 G4: 4th Group G5: Group 5 G6: Group 6 IL1 to IL7: Lighting modules IR1 to IR7: Lighting area IS: Lighting system LA, LX1, LX2: Distance LJ: Minimum necessary walking distance Μ: Mask Ml~m6 : alignment mark P: substrates PA1 to PA6 : exposure areas PL1 to PL7 : projection optical systems PR1 to PR7 : projection area PS : projection systems SA1 to SA6, SB1, SB2 : detection area 6 0
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009091185 | 2009-04-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201040673A true TW201040673A (en) | 2010-11-16 |
TWI502283B TWI502283B (en) | 2015-10-01 |
Family
ID=42827832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099110135A TWI502283B (en) | 2009-04-03 | 2010-04-01 | Exposure device, exposure method and device production method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5429283B2 (en) |
KR (1) | KR20120006988A (en) |
TW (1) | TWI502283B (en) |
WO (1) | WO2010113525A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI449951B (en) * | 2011-01-01 | 2014-08-21 | Canon Kk | Illumination optical system, exposure apparatus, and method of manufacturing device |
CN107966881A (en) * | 2017-03-15 | 2018-04-27 | 上海微电子装备(集团)股份有限公司 | Lithographic equipment and method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014213402A1 (en) | 2014-07-10 | 2016-01-14 | Robert Bosch Gmbh | Brake disk for a motor vehicle, braking device |
JP6575796B2 (en) * | 2015-03-31 | 2019-09-18 | 株式会社ニコン | Exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3309927B2 (en) * | 1993-03-03 | 2002-07-29 | 株式会社ニコン | Exposure method, scanning type exposure apparatus, and device manufacturing method |
JPH1063011A (en) * | 1996-08-14 | 1998-03-06 | Nikon Corp | Scanning type exposure device and method therefor |
JP3961707B2 (en) * | 1999-02-22 | 2007-08-22 | 株式会社東芝 | Exposure method |
JP2002110526A (en) * | 2000-10-03 | 2002-04-12 | Canon Inc | Method and system for scanning alignment |
JP4168665B2 (en) * | 2002-05-22 | 2008-10-22 | 株式会社ニコン | Exposure method, exposure apparatus, and device manufacturing method |
WO2006101086A1 (en) * | 2005-03-22 | 2006-09-28 | Nikon Corporation | Exposure apparatus, exposure method and method for manufacturing microdevice |
JP2007108559A (en) * | 2005-10-17 | 2007-04-26 | Nikon Corp | Scanning exposure apparatus and method for manufacturing device |
JP2008124194A (en) * | 2006-11-10 | 2008-05-29 | Canon Inc | Liquid-immersion exposure method and liquid-immersion exposure apparatus |
JP4953923B2 (en) * | 2007-05-30 | 2012-06-13 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JP2009302344A (en) * | 2008-06-13 | 2009-12-24 | Canon Inc | Exposure apparatus, and device manufacturing method |
-
2010
- 2010-04-01 TW TW099110135A patent/TWI502283B/en active
- 2010-04-02 JP JP2011507044A patent/JP5429283B2/en active Active
- 2010-04-02 WO PCT/JP2010/002432 patent/WO2010113525A1/en active Application Filing
- 2010-04-02 KR KR1020117022875A patent/KR20120006988A/en not_active Application Discontinuation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI449951B (en) * | 2011-01-01 | 2014-08-21 | Canon Kk | Illumination optical system, exposure apparatus, and method of manufacturing device |
US8891062B2 (en) | 2011-01-01 | 2014-11-18 | Canon Kabushiki Kaisha | Illumination optical system, exposure apparatus, and method of manufacturing device |
CN107966881A (en) * | 2017-03-15 | 2018-04-27 | 上海微电子装备(集团)股份有限公司 | Lithographic equipment and method |
US11042099B2 (en) | 2017-03-15 | 2021-06-22 | Shanghai Micro Electronics Equipment (Group) Co., Ltd. | Photoetching apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
TWI502283B (en) | 2015-10-01 |
JPWO2010113525A1 (en) | 2012-10-04 |
KR20120006988A (en) | 2012-01-19 |
WO2010113525A1 (en) | 2010-10-07 |
JP5429283B2 (en) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI497224B (en) | Exposure apparatus, exposure method, and device manufacturing method | |
TW200841130A (en) | Exposure method, pattern forming method, exposure device, and device manufacturing method | |
JP2009135166A (en) | Exposure method and exposure device, exposure unit, and device manufacturing method | |
TW201007373A (en) | Exposure apparatus and method of manufacturing device | |
US9639008B2 (en) | Lithography apparatus, and article manufacturing method | |
JP6791154B2 (en) | Exposure equipment, flat panel display manufacturing method, and device manufacturing method | |
US7495771B2 (en) | Exposure apparatus | |
JP2009124118A (en) | Exposure method, exposure apparatus, and method for manufacturing device | |
TWI457718B (en) | An alignment method, an exposure method, a manufacturing method of an electronic component, an alignment device, and an exposure device | |
JP2022017264A (en) | Exposure apparatus, method for manufacturing flat panel display, device manufacturing method, and exposure method | |
JPWO2007046430A1 (en) | Object loading / unloading method and loading / unloading apparatus, exposure method and exposure apparatus, and device manufacturing method | |
TW201040673A (en) | Exposure device, exposure method and device production method | |
JP2009200122A (en) | Exposure system and process for fabricating device | |
TW200908090A (en) | Exposure apparatus and device manufacturing method | |
JP2006195353A (en) | Exposure unit and manufacturing method of display device | |
TW200915016A (en) | Maskless exposure device | |
JP2020134587A (en) | Measurement apparatus, exposure apparatus, method of manufacturing article | |
JP6727554B2 (en) | Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method | |
TW201245905A (en) | Exposure method, exposure apparatus and device manufacturing method | |
TWI846603B (en) | Exposure apparatus, manufacturing method of flat panel display, device manufacturing method, and exposure method | |
JP4609167B2 (en) | Exposure system, exposure method, and microdevice manufacturing method | |
JP2015023233A (en) | Mark detection method and device, and exposure method and device | |
JP2015207645A (en) | Detection method and device and exposure method and apparatus | |
JP6744588B2 (en) | Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method | |
JP6575796B2 (en) | Exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method |