WO2010113504A1 - 光源モジュールおよび該モジュールを備えた電子機器 - Google Patents

光源モジュールおよび該モジュールを備えた電子機器 Download PDF

Info

Publication number
WO2010113504A1
WO2010113504A1 PCT/JP2010/002374 JP2010002374W WO2010113504A1 WO 2010113504 A1 WO2010113504 A1 WO 2010113504A1 JP 2010002374 W JP2010002374 W JP 2010002374W WO 2010113504 A1 WO2010113504 A1 WO 2010113504A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
semiconductor
source module
semiconductor light
Prior art date
Application number
PCT/JP2010/002374
Other languages
English (en)
French (fr)
Inventor
栗本英治
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010113504A1 publication Critical patent/WO2010113504A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Definitions

  • the present invention relates to a light source module used as a flash light source for electronic equipment such as a camera.
  • a flash light source mounted on a general camera such as a digital still camera generally uses a xenon tube. While this xenon tube can obtain a high light quantity, it is relatively large in size and power consumption. In recent years, it has been common for mobile phones to be equipped with a camera function. However, xenon tubes have the above-mentioned problems and are not suitable for applications such as mobile phones that require miniaturization and low power consumption. Yes, there is no progress in installing flash light sources on mobile phones.
  • LED lamp using a light emitting diode (LED) that is small and easy to mount has been proposed. Since LEDs do not produce as much output as a xenon lamp, multiple LEDs are mounted on the circuit board to obtain the necessary light intensity. However, since multiple LEDs are mounted, there is a problem that the power consumption of the flash light source increases. It was.
  • the LED lamp described in Patent Document 1 is designed to cope with the following configuration.
  • a reflection frame having a recess is formed on a circuit board on which an electrode pattern is formed, and the recess has a shape in which an inner peripheral surface which is a reflection surface expands toward an upper surface, and a central portion thereof LED is mounted as a light emitter.
  • an air layer is provided on the light emitter, and a lens body is provided on the reflection frame via the air layer.
  • a reflective frame body having a reflective recess disposed so as to surround a light emitting body composed of LEDs is formed on a circuit board, and the lens body is attached to the reflective frame body.
  • the present invention has been made in view of the above-described problems with respect to a light source module that uses a small semiconductor light source such as an LED by flashing light.
  • An object of the present invention is to provide a light source module that is uniform without causing unevenness in luminance and illuminance of emitted light caused by a light source, and has no eye-safe problem.
  • a light source module is: A semiconductor light source having a divergent light distribution characteristic is disposed on a substrate such as a printed circuit board for mounting a semiconductor light source or an optical member.
  • the semiconductor light source mainly refers to an LED, but may be an LD (Laser Diode) or the like, which is a small light source having a divergent light distribution characteristic and meeting the object of the present invention.
  • the divergent property means that, for example, the full angle at half maximum of the light distribution angle is 60 ° or more and the radiation angle is large, that is, the irradiation area increases as the distance from the light source increases.
  • a reflection frame is installed on the base body so as to surround the semiconductor light source with a reflection surface extending in the light emission direction.
  • the reflecting frame secures a distance that allows the light emitted from the divergent semiconductor light source to spread to a size that does not damage the eye, and the light emitted from the semiconductor light source having a large divergence angle is used outside the imaging region. Prevents over-expanding angular ranges.
  • a condensing member which is mainly a lens, is disposed on the reflection frame so as to cover the light emission direction.
  • the said condensing member condenses the light scattered by the light-diffusion member mentioned later in the area
  • a light diffusing member that is a member that scatters light is provided between the reflecting frame and the light collecting member.
  • a light diffusing member is a member in which light-transmitting micro beads having a slightly different refractive index from that of the member are dispersed in the light-transmitting member, and the light scattering property on the front or back of the light-transmitting member or one of them. This is a member to which a coating having minute irregularities is applied, and is called a diffusion sheet or a diffusion film.
  • the diffusing member scatters the emitted light from the semiconductor light source that has reached through the reflecting frame, and forms a kind of virtual light source called an apparent light source when viewed from an observer or a subject.
  • a small light source of sub-milli-order or less can easily form an image on a retina at the time of observation even if it is a light source having a divergent light distribution characteristic, and the energy density of the imaging part is increased. As a result, the probability that the retina is thermally damaged is also increased.
  • the luminance and illuminance unevenness of the emitted light caused by the semiconductor light source is uniform, and the eye is not condensed on a specific part on the retina. Can be secured.
  • the light condensing member has a function of condensing light
  • the light diffusing member has a function of improving unevenness in luminance and illuminance caused by the submillimeter semiconductor light source.
  • the reflection frame allows the light to be diffused over a large area by setting the distance between the semiconductor light source and the light diffusing member to be a certain distance or more, and the effect of expanding the small light source area to an area equivalent to the light source module can be obtained.
  • Embodiments of the present invention will be described.
  • the present invention is applied to a semiconductor light source having a divergent light distribution characteristic and is mainly intended for an LED.
  • a LD or the like is a small light source having a divergent light distribution characteristic and meets the object of the present invention. I just need it. Therefore, in the following description, a case where an LED is used as a light source will be described, but the present invention can be applied as long as a similar effect can be achieved with an LD or the like, and is limited to the configurations of the following embodiments. Not.
  • FIG. 1 is a cross-sectional view for explaining the light source module 10 of the first embodiment.
  • FIG. 2A is a perspective view when the light diffusion member 20 and the light collecting member 22 described below are removed from the light source module 10.
  • FIG. 2B is a plan view when the light diffusion member 20 and the light collecting member 22 described below are removed from the light source module 10.
  • the semiconductor light source 12 is a plurality of LED chips, and the size per chip is, for example, 0.24 mm long, 0.6 mm wide, and 0.12 mm thick.
  • the LED chip which is the semiconductor light source 12 is a blue LED having a wavelength of, for example, 405 nm, and a phosphor (not shown) is provided so as to cover the periphery and the light emission direction.
  • the phosphor receives blue light emitted from the LED chip, excites yellow light, and mixes with the blue light to act as a white light source.
  • ten LED chips as the semiconductor light source 12 are arranged on a printed circuit board which is a base 26 on which a power source and a driver circuit are formed.
  • the arrangement form may be an evenly aligned form at a predetermined interval, but as shown in FIG. 2, a staggered arrangement is preferable so that the emitted light does not interfere with other LED chips.
  • the substrate 26 is a printed board in this embodiment, but may be a submount member such as a silicon substrate, or a resin, metal, or ceramic substrate.
  • electrical wiring for performing power supply to the semiconductor light source 12 and on / off control of the semiconductor light source 12 needs to be provided.
  • a reflection frame body 14 having a reflection surface 18 that spreads upward in the light emission direction surrounds the semiconductor light source 12 in a recess 16 formed by the reflection surface 18. Be placed.
  • the material of the reflection frame 14 may be resin or the like, but since the surface on the concave portion 16 side acts as the reflection surface 18, it is preferable to coat a film having a high reflectance such as Al.
  • the shape of the concave portion 16 of the reflection frame 14 may be any shape that extends upward, such as a truncated cone or a truncated pyramid.
  • the region to be photographed is rectangular.
  • the shape and the illumination area are preferably rectangular areas from the viewpoint of light utilization efficiency. Therefore, in FIGS. 2A and 2B, the concave portion 16 has a shape like a regular quadrangular pyramid cut, but the short side direction and the long side as shown in FIG. When there is a difference in the side direction, it is preferable that the ratio of the length of the short side and the long side of the truncated pyramid matches the ratio of the length of the short side and the long side of the imaging region. Moreover, although it is the said rectangular shape, chamfering of the corner
  • a light collecting member 22 is installed on the upper surface of the reflecting frame 14 in the light emitting direction so as to sandwich the light diffusing member 20.
  • the light diffusing member 20 is a member in which translucent micro beads having a refractive index slightly different from that of the resin are dispersed in the translucent resin, or on the front or back of the translucent member or one of them. It is a member provided with a coating provided with minute scattering irregularities.
  • the thickness of the light diffusing member 20 was 100 ⁇ m. If the thickness is increased, the light diffusibility is increased, but the thickness of the light source module 10 is increased, which is not preferable for parts that are desired to be thin, such as a camera-equipped mobile phone. Moreover, absorption loss etc. cannot be ignored when the thickness is increased. In the experiment, the best results were obtained with a thickness of 100 ⁇ m.
  • the light condensing member 22 is in a state close to a substantially flat plate having a weak power for bending light having a curvature of 1/100 mm ⁇ 1 or less on the light emitting surface 34 side, and the light incident surface 32 is a convex surface having a curvature of 1/50 mm ⁇ 1 or more.
  • the light emitting surface 34 side can be easily followed by a casing of a device such as a mobile phone equipped with a flash light source. Further, the light emitting surface 34 side is close to a flat surface and is easy to remove even if dirt or the like adheres.
  • a convex surface having a function of condensing light is provided on the light incident surface 32 side.
  • a space 24 is secured between the convex surface and the light diffusion member 20. If the space 24 is not secured, it is difficult to obtain a refractive index difference between the light diffusing member and the light collecting member. For this reason, the light collecting function of the light collecting member 22 may be hindered.
  • the convex surface provided on the light incident surface 32 side is preferably a Fresnel lens surface. With a normal convex surface, it is difficult to secure a space between the light diffusing member 20, but by using a Fresnel lens surface, the light condensing member can be applied even when a tension is applied to the light diffusing member 20 as shown in FIG. 1. Therefore, the space 24 for refraction can be secured.
  • Specs required for a light source module used for a flash light source for a camera increase the uniformity of illuminance in addition to obtaining necessary illuminance with low power consumption.
  • the flash light source emits strong visible light toward the human body, it is required to take measures against eye safety, that is, eye safety.
  • FIG. 3A shows the distribution of light energy on the retina when the light source is large and small.
  • 40 is a distributed light source
  • 44 is an eyeball
  • 46 is a retina
  • 48 is a light source image on the retina.
  • the dispersed light source is a surface light source that is divergent and has a viewing angle of a certain level or more when viewed from the illuminated side.
  • the viewing angle is defined as 1.5 mrad. As described below, the larger the size of the dispersed light source, the safer the light source.
  • P1 indicates the distribution of light energy on the retina when the dispersed light source 40 is large
  • P2 indicates the distribution of light power on the retina when the dispersed light source 40 is small. It is difficult for the dispersed light source 40 to condense the total luminous flux below the light source size, and the image formed on the retina 46 increases as the light source size increases. If the light energy emitted from the distributed light source 40 is constant, P1 has a low energy density, but P2 has a high energy density. Since the dispersed light source 40 forms an image on the retina 46, the possibility of burning the retina 46 decreases as the size of the dispersed light source 40 having a high energy density increases. That is, the larger the light source size, the greater the light output allowed.
  • Table 1 shows the light source size dependency of the maximum permissible exposure MPE (maximum permissible perexposure).
  • the light source was a square.
  • the MPE in Table 1 is calculated based on the above JIS C 6802 assuming a case where light is emitted for 0.1 second.
  • the exposure amount on the retina needs to be equal to or less than the MPE in Table 1 in order not to damage the eyes even if the light is emitted toward the person.
  • the light energy density increases when the light source is small.
  • the allowable exposure amount becomes smaller when the light source is small due to the two actions.
  • the chip in the left column of Table 1 indicates the size of the light emitting part of a typical LED, and is assumed to be a square for simplification. Since the LED of 0.24 mm and width 0.6 mm in this embodiment emits light from the entire chip, the area of the LED is assumed to be square and the area is matched with the rectangular LED chip. The unit of the light source size is mm.
  • FIG. 3 (b) shows the measurement conditions of radiation exposure and irradiance defined in JIS C-6802, and the opening 7mm is defined by the pupil diameter.
  • the distance 100 mm between the light source and the pupil is defined by the shortest distance at which the eye is focused. If the distance is less than 100 mm, the image does not form an image on the retina 46 even when the distance to the light source is short, so the eye-safe problem is reduced. When it is larger than 100 mm, the amount of light coupled into the pupil which is an aperture of ⁇ 7 mm is reduced, and the eye-safety problem is reduced.
  • FIG. 3B shows a case where an LED is used as the distributed light source 40.
  • the radiation pattern of the distributed light source 40 has a Lambertian distribution.
  • the coupling efficiency to an opening of ⁇ 7 mm corresponding to the pupil of the eye 44 that is 100 mm away from the distributed light source 40 is obtained by 1 ⁇ cos ⁇ .
  • is about 2 °, and a coupling efficiency of about 0.06% is obtained.
  • the LED light source is provided with a reflector as shown in FIG. 2, the coupling efficiency is increased by about 10% in the simulation by the non-sequential ray tracing method, and a coupling efficiency of 0.066% is obtained.
  • FIG. 2A and FIG. 2B ten LEDs having a light emitting portion of 0.38 mm square and a rated output of 0.026 W are used.
  • a light output of 0.017 mW per unit forms an image on the retina through the ⁇ 7 mm aperture.
  • the output of the LED fluctuates during actual use, it is necessary to estimate about 33% of the fluctuation. Therefore, it is necessary to consider the case where a 0.023 mW light output forms an image on the retina through the ⁇ 7 mm aperture.
  • the MPE of the 0.38 mm square light source is 0.012 mW, and the light output of each LED exceeds the MPE.
  • the MPE of the 0.19 mm square LED of the light emitting unit is 0.0015 mW, and the amount of light 0.023 mW that forms an image on the retina through the opening of ⁇ 7 mm is 10 times or more the MPE value 0.0015 mW.
  • the flash time is set to 0.1 msec as a flash light source this time, it is necessary to assume a case where the system does not have a safety lock and does not turn off in 0.1 msec due to a system failure or the like. Since the target wavelength region is the visible light region, eye protection is performed by an aversive reaction such as “blink”, but it is necessary to consider the exposure time until 0.25 msec. That is, it is necessary to consider 2.5 times the amount of imaged light on the retina as the amount of exposure, which is a more severe value for the 0.0015 mW MPE.
  • the present invention addresses the above problems, and by taking a distance h between the upper surface, which is the light emission surface of the semiconductor light source 12, and the lower surface, which is the light incident surface, of the light diffusing member 20, is a certain value or more.
  • the divergent light emitted from the semiconductor light source 12 is expanded to a large area.
  • the reflection frame body 14 provided with the reflection surface 18 that extends upward in the light emission direction so as to surround the semiconductor light source 12 also functions as a spacer for securing the distance h.
  • the divergent light generally has a Lambertian light distribution characteristic. As shown in FIG. 2B, when the maximum distance between adjacent semiconductor light sources 12 is d, a plurality of semiconductor light sources 12 are emitted when h ⁇ d due to the Lambertian light distribution. Light mixes.
  • part of the light incident on the light diffusing member 20 is uniformly diffused as if it were one light source due to the diffusion effect of the light diffusing member 20.
  • the virtual light source is called an apparent light source in JISC6082.
  • FIG. 4A is a diagram for explaining an illumination area.
  • a light flux of about 100 lm is desired in the 1 m ⁇ 1.4 m illumination area 50 1 m ahead of the flash light source 10 shown in FIG. It is wasteful to obtain a 100 lumen light flux in the illumination area 50. Therefore, the light condensing member 22 condenses the light beam that is emitted from the light diffusing member 20 and shows a light distribution close to the Lambert type, in the illumination area 50, and reduces the light flux that illuminates the outside of the illumination area.
  • the effect of expanding a smaller light source area to an area equivalent to the light source module is obtained, and the function of concentrating in the imaging region is obtained while ensuring safety to the eyes. Uniformity necessary for imaging illumination and prevention of eye damage can be realized at the same time.
  • FIG. 4B is a diagram showing the relationship between the light diffusing member 20 having a different haze rate and total light transmittance and the illuminance distribution of the illumination region 50 in the structure of FIG.
  • the light diffusing member 20 is not used, when the light diffusing member 20 is a type having a haze ratio of 89.5% and a total line transmittance of 87%, when using a type having a haze ratio of 84% and a total line transmittance of 98%, the haze is This is a result of performing an illuminance comparison experiment in the case of using a type having a rate of 29% and a total line transmittance of 90%.
  • the illuminance at the central portion of the illumination area 50 having a width of about 800 mm is high. At the outer periphery, the illuminance decreases rapidly.
  • the introduction of the light diffusing member 20 serves to reduce the difference in illuminance between the central portion and the outer peripheral portion, but the overall illuminance also decreases to some extent due to scattering and Fresnel reflection.
  • the haze rate of 84% and the total line transmittance of 98% were low in illuminance and good illuminance uniformity was obtained.
  • FIG. 4 shows the result of a comparative experiment for determining the illuminance of the illumination region 50 with respect to the structure of only the light diffusing member 20 and the structure of the reflecting frame 14, the light diffusing member 20, and the light collecting member 22, which is the structure of FIG. Shown in (c).
  • the difference in illuminance is large between the central portion and the outer peripheral portion of the illumination region 50.
  • the light spreads beyond the illumination area 50, and the light use efficiency is not good. It is not suitable for mounting on mobile phones, etc. where low power consumption is important.
  • the reflection frame 14 alone shows an excellent illuminance distribution with no problem in terms of light distribution.
  • each semiconductor light source 12 forms an image on the retina as an individual small light source and does not become an independent light source.
  • the energy density of light on the retina is higher than that of the apparent light source, the MPE value becomes lower, the output is limited, and it becomes difficult to use as a flash light source.
  • the diffusion effect of the reflecting frame body 14 and the light diffusing member 20 makes it uniform as if it were one light source.
  • a plurality of small light sources that are diffused can be regarded as one uniform virtual light source equivalent to the light source module 10, that is, a so-called apparatusive light source.
  • the light condensing action of the light condensing member 22 can also provide a light distribution, that is, an illuminance uniformity substantially the same as that of the case of the reflecting frame 14 alone.
  • the light source module of the present invention can effectively collect and utilize the light flux in the illumination area, a flash light source can be realized with low power consumption using a divergent semiconductor light source such as an LED. Therefore, the light source module of the present invention is suitable as a flash light source for electronic devices that require low power consumption and small size and thickness, such as camera-equipped mobile phones.
  • FIG. 5A is a cross-sectional view for explaining the light source module of the second embodiment
  • FIG. 5B is a plan view in which the light collecting member 22 is removed from the light source module 10.
  • each member is basically the same, but the method of defining the distance h between the upper surface, which is the light emitting surface of the semiconductor light source 12, and the lower surface, which is the light incident surface of the light diffusing member 20, is the semiconductor light source. It differs depending on whether 12 is changed from one to plural.
  • FIG. 5A and FIG. 5B which is the second embodiment, one LED having a light emitting portion of 1.2 mm square, a rated output of 0.26 W, and a maximum output of 0.35 W is used.
  • the amount of light that forms an image on the retina through the ⁇ 7 mm aperture in FIG. 3B is 0.17 mW at the rated output and 0.23 mW at the maximum output. Since it is a 1.2 mm square light source, the MPE is 0.37 mW from Table 1, and the light output does not exceed the MPE with one LED.
  • the 1.2 mm square LED has poor yield and high cost, so it is necessary to assume a case where the luminous efficiency of the LED will increase in the future and almost the same output can be obtained even with a 1/4 chip size. There is. In other words, it is necessary to expect a maximum output of 0.35 W with an LED having a light emitting portion of 0.6 mm square.
  • the MPE of the 0.6 mm square light source is 0.046 mW from Table 1, and the light output of 0.23 mW at the maximum output exceeds the MPE.
  • the MPE can be tolerated to 0.37 mW from Table 1, and there is no problem.
  • Increasing the area of the light emitting section of the LED increases the cost as described above. Therefore, it is important from the viewpoint of eye safety to increase the size of the light source as an independent light source by an optical member.
  • the light diffusing member 20 when the light source area is expanded as an apparent light source, the fact that the light diffusing member 20 is effective has been described in the first embodiment. However, if the light diffusing member 20 is thick, the loss of light amount increases. A thin light diffusing member of about 100 ⁇ m has little loss, but a region corresponding to the size x of the light emitting portion of the semiconductor light source 12 shown in FIG. 5B becomes particularly bright and uneven in illuminance.
  • the light emitted from the semiconductor light source 12 is divergent before reaching the light diffusing member 20, and the reflective frame shown in FIG. The mixture is sufficiently mixed with w2 which is the size of the exit portion of the body, and further scattered by the light diffusing member 20.
  • a near-field image that determines the size of an apparent light source and a far-field image that determines light distribution characteristics are made uniform, and an appropriate light source suitable as a flash light source can be obtained.
  • FIG. 6 shows a case where the size w1 of the lower part of the reflection frame 14 is substantially the same as the size of the semiconductor light source 12.
  • the size x of the light emitting part of the semiconductor light source 12 is a square of 0.6 mm square, and is assumed to be expanded to w2 which is the size of the exit part of the reflective frame body 14 by the reflective frame body 14, that is, 1.2 mm square. is doing.
  • (A) in FIG. 6 is a spot diagram of the 1.2 mm square region that is the incident surface of the light diffusing member 20, and the result is that the density of the light beam, that is, the portion where a large amount of light flux is gathered is high.
  • (B) in FIG. 6 is a surface plot of the degree of collection of light rays in the 1.2 mm square region, and shows that light rays, that is, light fluxes, gather as the height increases. Both the density of the spot diagram and the height of the surface plot indicate that a lot of light flux is collected.
  • Both (a) and (b) in FIG. 6 show the degree of light flux collection when h is 0.5 times, 0.75 times, 1 time, and 1.25 times the light emitting portion size x from the left. It will be.
  • FIG. 7 shows a spot diagram in the exit region of the reflective frame 14 when the lower size w1 of the reflective frame 14 is about 10% smaller than the exit side size w2 of the reflective frame 14.
  • (B) in FIG. 7 shows a surface plot of the degree of collection of rays in the exit area of the reflection frame 14.
  • the distance h from the light emitting surface of the semiconductor light source 12 to the incident surface of the light diffusing member 20 is set to be equal to or larger than the size of the light emitting portion of the semiconductor light source 12.
  • a light source module includes a base, a semiconductor light source having a divergent radiation characteristic disposed on the base, and the semiconductor light source surrounded by a reflecting surface that spreads in the light emission direction.
  • a reflection frame disposed; a light collecting member disposed on the reflection frame so as to cover a light emitting direction; and a light diffusing member disposed between the reflection frame and the light collecting member.
  • the light collecting member has a light exit surface with a curvature of 1/100 mm ⁇ 1 or less, and the light incident surface is a Fresnel lens with a curvature of 1/50 mm ⁇ 1 or more. It is preferable to be configured.
  • the light condensing member has a light exit surface 34 having a curvature of 1/100 mm ⁇ 1 or less and a nearly flat plate having a weak power for bending light, and the light incident surface has a curvature of 1/50 mm ⁇ 1 or more.
  • the light emission side can easily follow the casing of a device that is equipped with a flash light source such as a mobile phone. Moreover, it is easy to remove even if dirt etc. adheres near a plane.
  • a convex surface having a function of condensing light is provided on the light incident side.
  • the convex surface is formed as a Fresnel lens and can be arranged so as not to interfere with the light diffusion member, so that the flash light source can be thinned.
  • the light source module of one embodiment of the present invention is set to the following values or more with respect to the distance between the semiconductor light source and the light diffusion member.
  • the pitch is equal to or greater than the maximum pitch between adjacent semiconductor light sources.
  • the distance between the semiconductor light source and the light diffusing member satisfies the following formulas (1) and (2).
  • S1 is the area of the opening on the light diffusing member side of the reflection frame
  • s is the area of the light emitting part of the semiconductor light source
  • x is the representative length of the light emitting part of the semiconductor light source
  • h is the light emission of the semiconductor light source. The distance between the surface and the light diffusing member.
  • the representative length of the light emitting part is the length of one side when the light emitting part is substantially square, the average value of the length of the long side and the short side when the light emitting part is rectangular, and the diameter when it is almost circular. is there.
  • the light diffusing member is mixed in the reflection frame before the light is coupled to the light diffusing member, and the light diffusing effect can be obtained even with a light diffusing film having a thickness of 100 ⁇ m. Further, it is possible to prevent the light source module from becoming thick due to the introduction of the light diffusing member.
  • an electronic apparatus is characterized by including the light source module of the present invention.
  • the light source module of the present invention is uniform without unevenness in luminance and illuminance of the emitted light caused by the semiconductor light source, and the light is not condensed on a specific part on the retina. Can be secured. Therefore, by mounting the light source module of the present invention on an electronic device such as a camera, in particular, a mobile phone or a personal digital assistant, it is possible to mount a low power consumption flash light source and to capture high-quality images even in a dark place. .
  • the light source module according to the present invention can be widely used as a flash light source for electronic devices such as cameras.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Stroboscope Apparatuses (AREA)

Abstract

 この光源モジュールは、基体(26)の上に、発散性の放射特性を持つ半導体光源(12)が設けられ、前記半導体光源(12)を光の出射方向に広がる反射面で囲む形で、前記基体(26)上に配置された反射枠体(14)が配置される。前記反射枠体(14)上に光出射方向を覆う形で集光部材(22)と、前記反射枠体(14)と前記集光部材(22)に挟まれる形で光拡散部材(20)が配置される。これにより、LED等の半導体光源を使用して、携帯電話機等小型で消費電力にも制限がある電子機器に搭載可能なフラッシュ光源用の光源モジュールを得ることができる。

Description

光源モジュールおよび該モジュールを備えた電子機器
 本発明は、カメラ等電子機器のフラッシュ光源として利用される光源モジュールに関するものである。
 従来、デジタルスチルカメラ等一般的なカメラに搭載されているフラッシュ光源にはキセノン管を使用しているものが一般的である。このキセノン管は、高い光量を得ることができる反面、サイズが比較的大きく消費電力も大きい。近年、携帯電話機にもカメラ機能が搭載されるのが普通であるが、キセノン管には、前記課題があり、小型化及び低消費電力化が要求される携帯電話機のような用途には不向きであり、携帯電話機へのフラッシュ光源の搭載は進んでいない。
 このため、小型で実装が容易なLED(Light Emitting Diode)を応用したLEDランプが提案されている。LEDはキセノンランプほどの出力が得られないため、回路基板上に複数LEDを実装し、必要な光量を得ているが、複数のLEDを搭載するためフラッシュ光源の消費電力が大きくなる課題があった。
 このため特許文献1に掲載されているLEDランプは、以下の構成により対応を図っている。前記LEDランプは、電極パターンが形成された回路基板上に凹部を有する反射枠が形成され、前記凹部は、反射面である内周面が上面に向かって広がる形状をしており、その中央部には発光体であるLEDが実装されている。また、前記発光体の上には空気層が設けられ、前記空気層を介して前記反射枠の上にレンズ体が設けられた構造となっている。
 この技術では、LEDで構成された発光体の周囲を取り囲むようにして配設された反射用の凹部を備えた反射枠体を回路基板上に形成し、反射枠体にレンズ体を装着することで、LED数や消費電流を増加させることなく、カメラのフラッシュ光源として十分な光量を得ることができる。
 しかしながら、上記従来のLEDを利用したフラッシュ光源においては、特定の角度範囲で見た場合、光源に起因するムラが発生し、撮像用照明として課題があった。また、人に向けて光が出射されるものでありアイセーフの観点からも課題があった。
日本国公開特許公報「特開2004-327955号公報(2004年11月18日公開)」
 本発明は、LED等の小型の半導体光源をフラッシュ発光させて使用する光源モジュールに関して、上記課題を鑑みてなされたものである。本発明の目的は、光源に起因した出射光の輝度および照度のムラが生ずることなく均一であり、アイセーフの課題のない光源モジュールを提供することである。
 上記課題を解決するため、本発明に係る光源モジュールは、
 半導体光源や光学部材を搭載するためのプリント基板等の基体上に、発散性の配光特性を持つ半導体光源が配置されている。前記半導体光源とは、主にLEDを指すが、LD(Laser Diode)等でも発散性の配光特性を有する小型の光源で本発明の目的に合致するものであれば良い。ここで言う発散性とは、例えば配光角の半値全角が60°以上と放射角が大きいこと、即ち光源から遠ざかるほど照射面積が広がることを言う。
 また、前記基体上には、前記半導体光源を光の出射方向に広がる反射面で囲む形で反射枠体が設置される。前記反射枠体は、前記発散性の半導体光源からの出射光が眼に対して障害を与えない大きさまで広がる距離を確保するとともに、発散角の大きい半導体光源からの出射光が撮像領域外の利用されない角度範囲へ広がりすぎるのを防止する。
 また、前記反射枠体上に光出射方向を覆う形で主にレンズである集光部材が配置されている。前記集光部材は、後記する光拡散部材で散乱された光線を撮影等に好適な領域内に集光する。
 また、前記反射枠体と前記集光部材に挟まれる形で、光を散乱させる部材である光拡散部材が設けられている。光拡散部材とは、透光性の部材中に前記部材とはわずかに屈折率の異なる透光性の微小ビーズを分散させた部材や、透光性の部材の表裏若しくはその一方に光散乱性の微小な凹凸を有したコーティングが施された部材であり、拡散シートや拡散フィルムと呼ばれるものである。前記拡散部材は、前記反射枠体を介して到達した前記半導体光源からの出射光を散乱させ、観察者や被写体から見てアパーレント光源と呼ばれる一種の仮想光源を形成する。
 サブミリオーダ以下に小型の光源は、例え発散性の配光特性を持つ光源であっても観察時に網膜上に小さい面積で結像しやすく、結像部のエネルギー密度が高くなる。その結果網膜が熱的に損傷を受ける確率も高くなる。
 本第1実施形態の構成とすることで、半導体光源に起因した出射光の輝度および照度のムラが生ずることなく均一であり、網膜上の特定の部位に光が集光されることなく、眼に対する安全性も確保できる。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
 この発明の光源モジュールによれば、光を集光する機能を集光部材が担い、サブミリオーダの半導体光源に起因する輝度や照度の不均一性を改善する機能を光拡散部材が担う。また、反射枠体により、半導体光源と光拡散部材間の距離を一定以上とることで光が大きい面積に拡散され、小さい光源面積を本光源モジュール相当の面積に拡大した効果が得られる。上記構成により、眼への安全性を確保しながらも、撮影領域等所定の領域に集光する機能が得られる。撮像用照明に必要な均一性と、眼への障害防止を同時に実現できる。
本発明の第1実施形態の光源モジュールを説明するための断面図である。 本発明の第1実施形態の光源モジュールを説明するための斜視図である。 本発明の第1実施形態の光源モジュールを説明するための平面図である。 光源の眼への安全性に関して説明するための図である。 光源の眼への安全性に関して説明するための図である。 本発明の第1実施形態の光源モジュールの配光分布を説明するための断面図である。 図1の構造において、ヘーズ率と全光線透過率が異なる光拡散部材と、照明領域の照度分布の関係を示す図である。 比較実験を行った結果を示す図である。 本発明の第2実施形態の光源モジュールを説明するための断面図である。 本発明の第2実施形態の光源モジュールを説明するための平面図である。 本発明の第2実施形態の光源モジュールの反射枠体の作用に関して説明するための図である。 本発明の第2実施形態の光源モジュールの反射枠体の作用に関して説明するための図である。
 本発明の実施の形態について説明する。本発明は発散性の配光特性を持つ半導体光源に適用され、主にLEDを対象とするが、LD等でも発散性の配光特性を有する小型の光源で本発明の目的に合致するものであれば良い。よって以下の説明では、光源としてLEDを用いた場合について説明するが、LD等でも同様の効果を成すものであれば本発明の適用は可能であり、以下の実施の形態の構成に限定されるもではない。
 なお、以下の実施の形態の説明においては、同一の機能および作用を示す部材については、同一の符号を付し、説明を省略する。
 (第1実施形態)
 図1は第1実施形態の光源モジュール10の説明用の断面図である。また、図2(a)は、光源モジュール10から、下記する光拡散部材20と集光部材22を取り除いた場合の斜視図である。また、図2(b)は、光源モジュール10から、下記する光拡散部材20と集光部材22を取り除いた場合の平面図である。
 本第1実施形態においては、半導体光源12は複数設けられる。半導体光源12は、複数のLEDチップであり、1チップあたりのサイズは、例えば縦0.24mm、幅0.6mm、厚み0.12mmである。
 カメラのフラッシュ光源等、カメラの撮像に係るような用途では、波長は可視域でブロードな白色光源が好適である。よって前記半導体光源12であるLEDチップは、波長が例えば405nm等の青色LEDとし、その周りや光の出射方向を覆う形で図示されない蛍光体が設けられている。前記蛍光体は、LEDチップからの青色の出射光を受けて黄色の光が励起され、前記青色の光と混ざり合うことで白色の光源として作用する仕組みとなっている。
 本実施形態では半導体光源12であるLEDチップは、1つの光源モジュールに10個が、電源やドライバ回路が形成された基体26であるプリント基板上に配置される。配置形態は、均等に所定間隔で整列する形態でも良いが、図2に示すように出射光が他のLEDチップと干渉しないよう千鳥配置とするのが良い。
 基体26は本実施形態においては、プリント基板であるが、シリコン基板等のサブマウント部材や、樹脂や金属若しくはセラミックスの基板でも良い。ただし、半導体光源12への電源供給と半導体光源12のon/off制御を行う電気的配線が施されている必要がある。
 前記基体26の上には、光の出射方向である上方に向かって広がる反射面18を持つ反射枠体14が、前記反射面18で形成された凹部16内に前記半導体光源12を取り囲む形で配置される。反射枠体14の材料は樹脂等で良いが、凹部16側の表面は反射面18として作用させるためAl等の高反射率の膜のコーティングを施すのが良い。
 前記反射枠体14の凹部16の形状であるが、円錐台や角錐台等上方に向かって広がる形状であれば良いが、カメラのフラッシュ光源として撮影用途に使用する場合、撮影される領域は矩形状であり、照明領域も矩形領域であることが光の利用効率の観点から好ましい。よって、図2(a)および図2(b)では、凹部16は正四角錐を切断したような形状であるが、撮像領域が後記する図4(a)で示すような、短辺方向と長辺方向で差がある場合は、前記角錘台の短辺と長辺の長さの比を、撮像領域の短辺と長辺の長さの比と一致させるのが良い。また、前記矩形形状であるが、角部分の面取りを行い、適度なRが設けられていても特に構わない。
 前記反射枠体14の光出射方向である上面には、光拡散部材20を挟むように、集光部材22が設置されている。
 前記光拡散部材20は、透光性の樹脂中に、前記樹脂とはわずかに屈折率の異なる透光性の微小ビーズを分散させた部材や、透光性の部材の表裏若しくはその一方に光散乱性の微小な凹凸が設けられたコーティングが施された部材である。
 光拡散部材20の厚みは100μmのものを使用した。厚みが厚くなれば光拡散性は増すが、光源モジュール10の厚みが増すことになり、カメラ付携帯電話等薄型化が望まれる部品には好ましくない。また、厚みを増すと吸収損失等も無視できなくなってくる。実験では100μm厚のものが最も良い結果が得られた。
 集光部材22は、光出射面34側が曲率1/100mm-1以下の光を曲げるパワーの弱いほぼ平板に近い状態であり、光入射面32が曲率1/50mm-1以上の凸面とすることで、光出射面34側は、携帯電話機等フラッシュ光源を搭載する機器の筐体に倣わせやすい。また、光出射面34側は、平面に近く汚れ等が付着しても除去しやすい。一方、光入射面32側は、光を集光する機能を有する凸面が設けられているが、前記凸面は、前記光拡散部材20との間に空間24が確保されているのが好ましい。前記空間24が確保されていないと、光拡散部材と集光部材間に屈折率差が得にくい。そのため、集光部材22の集光機能に支障が出る場合がある。前記空間24を確保するためには、前記光入射面32側に設けられた前記凸面はフレネルレンズ面とするのが良い。通常の凸面では、光拡散部材20との間に空間を確保するのは難しいが、フレネルレンズ面とすることで、図1に示すごとく光拡散部材20にテンションをかけても、前記集光部材20とは干渉せず、屈折のための空間24を確保できる。
 カメラ用フラッシュ光源に使用される光源モジュールに要求される仕様は、必要な照度を低消費電力で得ることに加え、照度の均一性が上げられる。また、フラッシュ光源は人体に向けて強い可視光を発光するため、眼に対する安全性、即ちアイセーフに対する対策も要求される。
 図3(a)~図3(c)は分散光源のアイセーフに関して説明するための図である。このうち図3(a)は、光源が大きい場合と小さい場合に関して網膜上の光エネルギーの分布を示す。図3(a)内の40は分散光源、44は眼球、46は網膜、48は網膜上の光源像である。
 前記分散光源とは、発散性で、かつ照明される側からみて、一定以上の視角を持つ面光源である。光源の眼に対する安全性であるアイセーフを定義するJIS C 6802の規格では、前記視角は1.5mradと規定されている。下記するように、分散光源の大きさが大きいほど安全な光源となる。
 点光源から放射された波長が約400-1400nmの光は、角膜を透過し網膜46上に集光されて密度増加が起こるため、放射角が大きくても目に対して危険度が高い。一方、点光源ではなくある面積以上の発光面積を持つ分散光源の場合は、網膜46上に広がりを持った像として照射されるので、点光源より安全である。
 P1は分散光源40が大きいときの網膜上の光エネルギーの分布、P2は分散光源40が小さいときの網膜上の光パワーの分布を示す。分散光源40は、全光束を光源サイズ以下に集光することは困難で、光源サイズが大きくなるに伴い網膜46上に結像される像も大きくなる。分散光源40が出す光エネルギーが一定とすると、前記P1はエネルギー密度が低いが、P2はエネルギー密度が高い。分散光源40が網膜46上に結像することで、網膜46を焼損する可能性は、エネルギー密度の高い分散光源40のサイズが大きいほど小さくなる。即ち光源サイズが大きいほど、大きい光出力まで許容されるようになる。
 表1に、最大許容露光量MPE(maximum permissible exposure)の光源サイズ依存性を示す。表-1では、光源は正方形とした。
 本実施形態はフラッシュ光源へ適用することから、表-1のMPEは前記JIS C 6802より、0.1秒間発光した場合を想定して算出している。人に向けて発光されても眼に障害を与えないためには、網膜上の露光量は表-1のMPE以下である必要がある。1光源あたり同一光量を発光する場合で換算すると、光源が小さいと光エネルギー密度が上がる。また、図3(a)を用いて説明したように、仮に同一光エネルギー密度の場合でも、光源が小さいと網膜上に結像した際のエネルギー密度が上がる。よって前記2つの作用で、光源が小さいとより許容露光量は小さくなる。
 表1の左列のchipは、代表的なLEDの発光部の大きさを示し、簡略化のため正方形と仮定している。本実施形態の0.24mm、幅0.6mmのLEDは、チップ全体で発光するタイプのため、光源は正方形と仮定して、前記長方形のLEDチップと面積を整合させた。なお、光源サイズの単位はmmである。
 図3(b)は、JIS C 6802に規定された放射露光・放射照度の測定条件であり、開口7mmは瞳孔径より規定される。また、光源と瞳孔との距離100mmは、眼が焦点を結ぶ最も短い距離より規定される。100mm未満では、光源との距離が近くても網膜46上に結像しないためアイセーフの問題は小さくなる。100mmより大きいときは、φ7mmの開口である瞳孔内に結合する光線は少なくなりアイセーフの問題は小さくなる。
Figure JPOXMLDOC01-appb-T000001
 分散光源40としてLEDを用いた場合に関して、図3(b)に示す。分散光源40の放射パターンはランバート分布であることが一般的である。分散光源40から100mm離れた、眼44の瞳孔に相当するφ7mmの開口への結合効率は、1-cosαで求められる。αは約2°であり、約0.06%の結合効率が得られる。一般にLED光源は、図2のようなリフレクタが設けられるため、非遂次光線追跡法によるシミュレーションでは結合効率は約10%上がり0.066%の結合効率が得られた。
 図2(a)および図2(b)のケースでは、発光部0.38mm角、定格出力0.026WのLEDを10個使用しているが、前記約0.06%の結合効率より、LED1個あたり0.017mWの光出力が、前記φ7mmの開口を介して網膜に結像する。また、実際の使用時にはLEDの出力は変動するため、その変動分として約33%見込む必要がある。よって、0.023mWの光出力が前記φ7mmの開口を介して網膜に結像する場合を考慮しておく必要がある。
 表1より0.38mm角の光源のMPEは0.012mWであり、個々のLEDでは光出力がMPEを超えてしまうことになる。
 さらに、将来的には、LEDの発光効率が上がり、1/4のチップサイズでもほぼ同じ出力が得られるようになる場合も想定する必要がある。即ち、発光部0.19mm角のLEDで、0.026Wの最大出力を見込んでおく必要がある。この場合も、0.023mWの光出力が前記φ7mmの開口を介して網膜に結像することに変わりは無いが、光源が小さくなった分、図3(a)で説明したように、網膜上での光エネルギーの密度は上がることになり、MPEは小さくなる。発光部0.19mm角のLEDのMPEは0.0015mWであり、前記φ7mmの開口を介して網膜に結像する光量0.023mWはMPE値0.0015mWの10倍以上の値となる。
 また、今回フラッシュ光源として発光時間を0.1msecとしたが、セーフティロックの設けられていないシステムでは、システムの故障等で0.1msecでオフ状態にならないケースも想定する必要がある。対象となる波長域が可視光域であるため、「まばたき」などの嫌悪反応により眼の保護が行われるが、0.25msecまでは、被爆時間を考慮する必要がある。つまり被爆量として、2.5倍の網膜への結像光量を考慮する必要があり、前記0.0015mWのMPEに対してさらに厳しい値となる。
 本発明は、以上の課題に対応するものであり、前記半導体光源12の光の出射面である上面と光拡散部材20の光の入射面である下面間の距離hを一定以上とることで、半導体光源12から発した発散光は大きい面積に拡大される。前記半導体光源12を囲む形で光の出射方向である上方へ広がる反射面18が設けられた反射枠体14は、前記距離hを確保するためのスペーサとしての作用も成す。
 前記発散光は、一般にランバート型の配光特性をもっている。図2(b)に示すように、隣接する半導体光源12間の最大距離をdとすると、前記ランバート型の配光分布に起因してh≧dとなるとき、複数の半導体光源12を発した光は混じり合う。
 次に、光拡散部材20に入射した光の一部は、光拡散部材20の拡散効果により、あたかも1つの光源であるかのように均一に拡散される。以上の作用により、複数の小さい光源を、光源モジュール10相当の均一な一つの仮想光源として拡大した効果が得られる。前記仮想光源は前記JISC6082では、アパーレント光源と呼ばれる。
 以上の光拡散作用においては、光拡散部材20を出射する光は、指向性無くランバート型に近い拡散状態を示す。図4(a)は、照明領域の説明をするための図である。フラッシュ光源として使用するためには、図4(a)に示すフラッシュ光源10の1m先の1m×1.4mの照明領域50において、約100lmの光束が望まれるが、ランバート型に近い分布のまま前記照明領域50に100ルーメンの光束を得る場合無駄が多い。よって、集光部材22により、光拡散部材20を出射したランバート型に近い配光を示す光線を、照明領域50に集光し、無駄に照明領域外を照明する光束を少なくする。
 以上の作用により小さい光源面積を本光源モジュール相当の面積に拡大した効果が得られ、眼への安全性を確保するとともに、撮像領域内へ集光する機能が得られる。撮像用照明に必要な均一性と、眼への障害防止を同時に実現できる。
 次に、前記光拡散部材20の具体的な作用と効果に関して述べる。図4(b)は図1の構造において、ヘーズ率と全光線透過率が異なる光拡散部材20と、照明領域50の照度分布の関係を示す図である。光拡散部材20を使用しない場合、光拡散部材20として、ヘーズ率89.5%全線透過率87%のタイプを使用した場合、ヘーズ率84%全線透過率98%のタイプを使用した場合、ヘーズ率29%全線透過率90%のタイプを使用した場合、で照度の比較実験を行った結果である。
 光拡散部材20を導入しない場合、照明領域50の中央部分約800mm幅の部分の照度が高い。その外周部では照度は急激に低下する。一方、光拡散部材20の導入により、中央部と外周部の照度差を低減する作用を成すが、散乱やフレネル反射により全体の照度もある程度低下する。実験では、ヘーズ率84%、全線透過率98%のタイプが、照度の低下も低く、良好な照度均一性が得られた。
 次に、光源モジュール10から下記する光拡散部材20と集光部材22を取り除いた光学部材として反射枠体14のみの構造、反射枠体14と集光部材22のみの構造、反射枠体14と光拡散部材20のみの構造、図1の構造である反射枠体14と光拡散部材20と集光部材22全て設けた構造に関して、照明領域50の照度を求める比較実験を行った結果を図4(c)に示す。
 図4(b)を用いて説明したように、反射枠体14と集光部材22のみの組合せでは照明領域50の中央部と外周部で照度の差が大きい。
 反射枠体14と光拡散部材20のみの組合せでは、光が照明領域50以外にも広がり、光の利用効率が良くない。低消費電力化が重要である携帯電話機等への搭載には適さない。
 反射枠体14のみでは、配光分布的には問題なく、優れた照度分布を示す。但し、各半導体光源12が個々の小さい光源として網膜に結像し、アパーレント光源とはならない場合がある。その場合、網膜上での光のエネルギー密度がアパーレント光源と比べて高く、MPE値は低くなり出力が制限され、フラッシュ光源として用いるのが困難となる。
 反射枠体14、光拡散部材20および集光部材22全てを設けた本発明の構造では、反射枠体14と光拡散部材20の拡散効果により、あたかも1つの光源であるかのように均一に拡散され、複数の小さい光源を、光源モジュール10相当の均一な一つの仮想光源、いわゆるアパーレント光源と見なすことができる。また、集光部材22の集光作用により、反射枠体14のみの場合とほぼ同程度の配光分布即ち照度均一性も得られる。
 上記の構成により、配光特性である遠視野像の強度分布均一性と、光源サイズとしてアイセーフに係る近視野像の拡大とその強度分布均一性が成された光源モジュールが得られる。本発明の光源モジュールは、光束を照明領域に有効に集光し活用できるため、LED等の発散性の半導体光源を用いて、少ない消費電力でフラッシュ光源を実現できる。よって、本発明の光源モジュールは、カメラ付き携帯電話機等、低消費電力化と小型薄型化が望まれる電子機器のフラッシュ光源として好適である。
 (第2実施形態)
 次に本発明の第2実施形態について説明する。第1実施形態と異なる点は、半導体光源12が1つであることである。
 図5(a)は、第2実施形態の光源モジュールを説明するための断面図であり、図5(b)は、光源モジュール10から集光部材22を取り除いた平面図である。
 各部材の作用は基本的に同じであるが、前記半導体光源12の光の出射面である上面と光拡散部材20の光の入射面である下面間の距離hの定義方法が、前記半導体光源12が複数から1つになったことにより異なる。
 第2実施形態である図5(a)および図5(b)のケースでは、発光部1.2mm角、定格出力0.26W、最大出力0.35WのLEDを1個使用することになる。図3(b)のφ7mmの開口を介して網膜に結像する光量は、定格出力時で0.17mW、最大出力時で0.23mWとなる。1.2mm角の光源であるためMPEは、表-1より0.37mWであり、1個のLEDでは光出力がMPEを超えることはない。
 1.2mm角のLEDでは、歩留まり等も悪くなり高コストになるため、将来的にLEDの発光効率が上がり、1/4のチップサイズでもほぼ同じ出力が得られるようになる場合を想定する必要がある。即ち、発光部0.6mm角のLEDで、最大0.35Wの出力を見込んでおく必要がある。0.6mm角の光源のMPEは、表-1より0.046mWであり、前記最大出力時0.23mWの光出力はMPEを超えてしまうことになる。
 光源面積を約4倍、即ち1.2mmのアパーレント光源とすると、表-1よりMPEは0.37mWまで許容できて問題なくなる。LEDの発光部自体の面積を大きくすることは前述のようにコストアップとなるため、光学部材により、アパーレント光源として光源サイズを拡大することは眼の安全性の観点から重要となる。
 光源面積をアパーレント光源として拡大する場合、光拡散部材20が有効であることは、第1実施形態で述べたが、光拡散部材20が厚いと光量の損失が大きくなる。100μm程度の薄い光拡散部材では損失が少ない反面、図5(b)に示す半導体光源12の発光部の大きさxに相当する領域が特に明るくなり照度むらとなる。本発明は、半導体光源12を発した光を、光拡散部材20に到達するまでに、半導体光源12が発散性であることと反射枠体を利用して、図5(b)に示す反射枠体の出口部のサイズであるw2で充分混合し、さらに光拡散部材20により散乱させるものである。本発明により、100μm程度の薄い光拡散部材でも、アパーレント光源のサイズを決める近視野像と、配光特性を決める遠視野像において均一化が成され、フラッシュ光源として好適なアパーレント光源が得られる。
 図6と図7は、半導体光源12が1つの場合、前記距離h、即ち光拡散部材20に光が入射するまでの距離により、半導体光源12の近視野像の状態の変化を非遂次光線追跡法で解析した結果である。
 図6は、反射枠体14の下部のサイズw1が、半導体光源12のサイズとほぼ同一の場合である。半導体光源12の発光部のサイズxは、0.6mm角の正方形であり、反射枠体14により、反射枠体14の出口部のサイズであるw2、即ち1.2mm角に拡大することを想定している。
 図6中の(a)は、光拡散部材20の入射面である前記1.2mm角の領域のスポットダイヤグラムで、光線即ち光束が多く集まった部分の濃度が濃くなる結果となっている。図6中の(b)は、前記1.2mm角の領域の光線の集まり度合いのサーフェイスプロットであり、高さが高い程、光線即ち光束が集まることを示している。スポットダイヤグラムの濃度とサーフェイスプロットの高さはともに光束がたくさん集まることを示している。
 図6中の(a)、(b)ともに左から、前記hが発光部サイズxの、0.5倍、0.75倍、1倍、1.25倍のときの光束の集まり度合いを示すことになる。図6の例では、h=0.75倍では反射枠体14の出口領域であるw2内で光束の集まり度合いに、中心部に偏りがみられるが、h=x以上でほぼ光束は均一分布となっているのが判る。
 図7中の(a)は反射枠体14の下部サイズw1が、反射枠体14の出口側サイズw2より約10%小さい場合の、反射枠体14の出口領域でのスポットダイヤグラムを示し、図7中の(b)は反射枠体14の出口領域での光線の集まり度合いのサーフェイスプロットを示す。
 図7中の(a)、(b)ともに図6と同じく、左から、前記hが発光部サイズxの、0.5倍、0.75倍、1倍、1.25倍のときの光束の集まり度合いを示すことになるが、本結果も図6と同じ傾向にあることが判明した。即ち、h=0.75倍では反射枠体14の出口領域であるw2内で光束の集まり度合いに、中心部に偏りがみられるが、h=x以上でほぼ光束は均一となっている結果となった。
 以上より、半導体光源12が1つの場合では、半導体光源12の光の出射面から、光拡散部材20の入射面までの距離hは、半導体光源12の発光部のサイズ以上とすることで、アイセーフ上問題のない、前記半導体光源12の発光部の面積の4倍以上の面積に、均一な光束分布で拡大されることになる。
 なお、本発明は上述した各実施形態に限定されるものではない。当業者は、請求項に示した範囲内において、本発明をいろいろと変更できる。すなわち、請求項に示した範囲内において、適宜変更された技術的手段を組み合わせれば、新たな実施形態が得られる。
 (本発明の総括)
 本発明に係る光源モジュールは、基体と、前記基体上に配置された発散性の放射特性を持つ半導体光源と、前記半導体光源を光の出射方向に広がる反射面で囲む形で、前記基体上に配置された反射枠体と、前記反射枠体上に光出射方向を覆う形で配置された集光部材と、前記反射枠体と前記集光部材に挟まれる形で配置された光拡散部材とで構成されていることを特徴としており、更に、前記集光部材は、光出射面の曲率が1/100mm-1以下であり、光入射面は、曲率1/50mm-1以上のフレネルレンズで構成されていることが好ましい。
 このように、前記集光部材は光出射面34の曲率が1/100mm-1以下で光を曲げるパワーの弱いほぼ平板に近い状態であり、光入射面は曲率が1/50mm-1以上のフレネルレンズである構成とすることで、光出射側は、携帯電話等フラッシュ光源を搭載する機器の筐体に倣わせやすい。また、平面に近く汚れ等が付着しても除去しやすい。光入射側は、光を集光する機能を有する凸面が設けられているが、前記凸面は、フレネルレンズ化され、前記光拡散部材と干渉しない配置ができ、フラッシュ光源の薄型化が実現できる。
 また、本発明の一実施形態の光源モジュールは、前記半導体光源と、前記光拡散部材との距離に関して以下の値以上とする。
 前記半導体光源が複数で使用される場合は、隣接する半導体光源間の最大ピッチ以上とする。
 一方、前記半導体光源が1つで使用される場合は、前記半導体光源と、前記光拡散部材との距離は、以下の式(1)、(2)を満たすことを特徴とする。
 S1≧4×s ・・・(1)
 h≧x ・・・(2)
 但し、S1は反射枠体の光拡散部材側の開口部の面積、sは前記半導体光源の発光部の面積、xは前記半導体光源の発光部の代表長、hは前記半導体光源の光の出射面と前記光拡散部材との距離である。
 発光部の代表長とは、発光部が、ほぼ正方形の場合は一辺の長さであり、長方形の場合は、長辺と短辺の長さの平均値であり、ほぼ円形の場合は直径である。
 以上の構成とすることで、光拡散部材に光が結合する前に、反射枠体内で混ざり合い、光拡散部材が100μm厚の薄い光拡散フィルム等でも光拡散効果が得られる。また、光拡散部材の導入が原因となり光源モジュールが厚くなることを防止できる。
 また、本発明の一実施形態の電子機器は、本発明の光源モジュールを備えたことを特徴とする。
 本発明の光源モジュールは、上記したように、半導体光源に起因した出射光の輝度および照度のムラが生ずることなく均一であり、網膜上の特定の部位に光が集光されることなく、眼に対する安全性も確保できる。ゆえに、カメラ等の電子機器、特に携帯電話や携帯情報端末に本発明の光源モジュールを搭載することで、低消費電力のフラッシュ光源の搭載が実現でき、暗いところでも高画質の撮影が可能となる。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。
 本発明に係る光源モジュールは、カメラ等の電子機器のフラッシュ光源として広く利用することができる。
 10 光源モジュール
 12 半導体光源
 14 反射枠体
 16 凹部
 18 反射面
 20 光拡散部材
 22 集光部材
 24 空間
 32 光入射面
 34 光出射面

Claims (5)

  1.  基体と、
     前記基体上に配置された発散性の放射特性を持つ半導体光源と、
     前記半導体光源を光の出射方向に広がる反射面で囲む形で、前記基体上に配置された反射枠体と、
     前記反射枠体上に光出射方向を覆う形で配置された集光部材と、
     前記反射枠体と前記集光部材に挟まれる形で配置された光拡散部材とで構成されていることを特徴とする光源モジュール。
  2.  前記集光部材は、光出射面の曲率が1/100mm-1以下であり、
     光入射面は、曲率1/50mm-1以上のフレネルレンズで構成されていることを特徴とする請求項1記載の光源モジュール。
  3.  前記半導体光源の個数は1つであり、
     前記半導体光源と、前記光拡散部材との距離は、以下の式(1)、(2)を満たすことを特徴とする請求項1記載の光源モジュール。
     S1≧4×s ・・・(1)
     h≧x ・・・(2)
    (但し、S1は前記反射枠体の光拡散部材側の開口面の面積、sは前記半導体光源の発光
    部の面積、xは前記半導体光源の発光部の代表長、hは前記半導体光源の光の出射面と前記光拡散部材との距離)
  4.  前記半導体光源の個数は複数であり、
     前記半導体光源と前記光拡散部材との距離は、
    隣接する半導体光源間の最大ピッチ以上であることを特徴とする請求項1記載の光源モジュール。
  5.  請求項1から4のいずれかに記載の光源モジュールを備えたことを特徴とする電子機器。
PCT/JP2010/002374 2009-03-31 2010-03-31 光源モジュールおよび該モジュールを備えた電子機器 WO2010113504A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-083933 2009-03-31
JP2009083933A JP4604123B2 (ja) 2009-03-31 2009-03-31 光源モジュールおよび該モジュールを備えた電子機器

Publications (1)

Publication Number Publication Date
WO2010113504A1 true WO2010113504A1 (ja) 2010-10-07

Family

ID=42827812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002374 WO2010113504A1 (ja) 2009-03-31 2010-03-31 光源モジュールおよび該モジュールを備えた電子機器

Country Status (2)

Country Link
JP (1) JP4604123B2 (ja)
WO (1) WO2010113504A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018507445A (ja) * 2015-02-15 2018-03-15 北京▲環▼宇▲藍▼博科技有限公司 Ledディスプレイスクリーン・カバー及びledディスプレイ
US10323819B2 (en) 2015-02-15 2019-06-18 Beijing Universal Lanbo Technology Co., Ltd. LED display screen covers and LED displays

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024371A1 (ja) * 2012-08-10 2014-02-13 パナソニック株式会社 半導体発光装置
US8941130B2 (en) 2012-08-10 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Semiconductor light-emitting device
WO2014024372A1 (ja) * 2012-08-10 2014-02-13 パナソニック株式会社 半導体発光装置
JP6054701B2 (ja) * 2012-10-18 2016-12-27 シチズン電子株式会社 発光装置
JP6181377B2 (ja) * 2012-11-07 2017-08-16 株式会社エンプラス 光束制御部材、発光装置、照明装置および成形型
JP2015111626A (ja) * 2013-12-06 2015-06-18 シャープ株式会社 発光装置およびその製造方法
JP2017503352A (ja) * 2014-01-06 2017-01-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. カメラのための薄いledフラッシュ
WO2015114477A1 (en) * 2014-01-29 2015-08-06 Koninklijke Philips N.V. Shallow reflector cup for phosphor-converted led filled with encapsulant
JP2016114659A (ja) 2014-12-11 2016-06-23 ソニー株式会社 照明レンズ、撮像モジュール及び電子機器
JP7206475B2 (ja) * 2018-08-31 2023-01-18 日亜化学工業株式会社 レンズ及び発光装置並びにそれらの製造方法
JP7148813B2 (ja) 2019-10-30 2022-10-06 日亜化学工業株式会社 光源装置
JP7231831B2 (ja) 2019-10-30 2023-03-02 日亜化学工業株式会社 光源装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135983A (ja) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd 発光装置
JP2006179494A (ja) * 2004-12-23 2006-07-06 Samsung Electronics Co Ltd バックライトシステム及びそれを採用した液晶表示装置
JP2007059378A (ja) * 2005-07-25 2007-03-08 Toyoda Gosei Co Ltd 光源装置
JP2007116138A (ja) * 2005-09-22 2007-05-10 Lexedis Lighting Gmbh 発光装置
JP2007180288A (ja) * 2005-12-28 2007-07-12 Toshiba Lighting & Technology Corp 発光装置及び照明装置
JP2008135701A (ja) * 2006-09-01 2008-06-12 Cree Inc 発光ダイオードのための封入体外形
JP2009016093A (ja) * 2007-07-02 2009-01-22 Sharp Corp Ledモジュール及び照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135983A (ja) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd 発光装置
JP2006179494A (ja) * 2004-12-23 2006-07-06 Samsung Electronics Co Ltd バックライトシステム及びそれを採用した液晶表示装置
JP2007059378A (ja) * 2005-07-25 2007-03-08 Toyoda Gosei Co Ltd 光源装置
JP2007116138A (ja) * 2005-09-22 2007-05-10 Lexedis Lighting Gmbh 発光装置
JP2007180288A (ja) * 2005-12-28 2007-07-12 Toshiba Lighting & Technology Corp 発光装置及び照明装置
JP2008135701A (ja) * 2006-09-01 2008-06-12 Cree Inc 発光ダイオードのための封入体外形
JP2009016093A (ja) * 2007-07-02 2009-01-22 Sharp Corp Ledモジュール及び照明装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018507445A (ja) * 2015-02-15 2018-03-15 北京▲環▼宇▲藍▼博科技有限公司 Ledディスプレイスクリーン・カバー及びledディスプレイ
US10323819B2 (en) 2015-02-15 2019-06-18 Beijing Universal Lanbo Technology Co., Ltd. LED display screen covers and LED displays

Also Published As

Publication number Publication date
JP4604123B2 (ja) 2010-12-22
JP2010238837A (ja) 2010-10-21

Similar Documents

Publication Publication Date Title
JP4604123B2 (ja) 光源モジュールおよび該モジュールを備えた電子機器
JP4601709B1 (ja) 光源モジュールおよび該モジュールを備えた電子機器
US8858048B2 (en) Vehicle lighting unit
JP5649047B2 (ja) レンズ部材及び光学ユニット
JP4671117B2 (ja) 照明装置及びそれを用いた光源ユニット
JP5266605B2 (ja) 車両用灯具
JP5606137B2 (ja) 光学ユニット
TWI312895B (en) Backlight module structure for led chip holder
JP5506408B2 (ja) 光学ユニット
CN108363266B (zh) 照明装置和投影仪
JP2005236299A (ja) Ledを用いた照明システム
WO2010146905A1 (ja) 発光モジュール、照明装置、表示装置、およびテレビ受像装置
JP2008509551A (ja) Ledランプシステム
US20120217519A1 (en) Method and structure for encapsulating solid-state light emitting chip and light sources using the encapsulation structure
JP5180269B2 (ja) 照明装置
JP2011014434A5 (ja)
JP2013130835A (ja) ホモジナイザ、ホモジナイザ装置および照明装置
US20200271297A1 (en) Lens and lamp having a lens
TWM503531U (zh) 透鏡與光源模組
JP2010186142A (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP2010086661A (ja) 光学部材、面状光源、表示装置及び光学部材の製造方法
WO2012164791A1 (ja) 面光源および液晶ディスプレイ装置
JP6748424B2 (ja) 発光装置、面光源装置および表示装置
JP2007311731A (ja) Ledを用いた発光装置
JP2010146986A (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758283

Country of ref document: EP

Kind code of ref document: A1