WO2010111898A1 - 一种可环境降解的复合材料及其制备方法 - Google Patents

一种可环境降解的复合材料及其制备方法 Download PDF

Info

Publication number
WO2010111898A1
WO2010111898A1 PCT/CN2010/070169 CN2010070169W WO2010111898A1 WO 2010111898 A1 WO2010111898 A1 WO 2010111898A1 CN 2010070169 W CN2010070169 W CN 2010070169W WO 2010111898 A1 WO2010111898 A1 WO 2010111898A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
integer
polymer composite
degradable polymer
environmentally degradable
Prior art date
Application number
PCT/CN2010/070169
Other languages
English (en)
French (fr)
Inventor
白娟
张立斌
Original Assignee
武汉华丽生物材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华丽生物材料有限公司 filed Critical 武汉华丽生物材料有限公司
Priority to JP2011506565A priority Critical patent/JP2011516719A/ja
Priority to AU2010230796A priority patent/AU2010230796B2/en
Priority to EP10739827A priority patent/EP2351794A4/en
Priority to US12/839,431 priority patent/US8431628B2/en
Publication of WO2010111898A1 publication Critical patent/WO2010111898A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2886Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse

Definitions

  • the invention relates to an environmentally degradable polymer composite material, in particular to an environmentally degradable composite material prepared by using a recyclable raw material and a moderately crosslinked aliphatic polyester amide, and a preparation method thereof.
  • Natural polymer materials such as starch, cellulose (such as bamboo powder, straw powder, bagasse, etc.), lignin (such as wood flour), etc., rich in natural resources, low in price, renewable, can be used to prepare biodegradable materials .
  • Some synthetic environmentally degradable materials such as aliphatic polyesters, fat-aromatic copolyesters, aliphatic polyester amides, etc., generally have excellent mechanical properties and performance properties, but are expensive. Therefore, the use of inexpensive renewable raw materials and synthetic materials with excellent properties to prepare composite materials capable of environmental degradation has become an important method for solving the contradiction between performance and cost of environmentally degradable plastics, and has become an important research direction in the field of environmentally degradable materials. .
  • Mater-Bi series from Novamont, Italy is made from starch and polycaprolactone (Catia B. Polymer Degradation and Stability, 1998, 59( 1-3 ): 263 ⁇ 272 )
  • the melting point of polycaprolactone is only 60 ° C, it cannot be used in a low temperature, high temperature and high humidity environment other than 0 ° C to 50 ° C and relative humidity of 30 ° C to 80 ° C.
  • the price of Mater-Bi products is more than 7,000 US dollars / ton, and the price is too expensive.
  • the higher melting point of the aliphatic polyester is polylactic acid, which has excellent properties.
  • Sun XZ et al. of Kansas State University studied the blending of natural starch and polylactic acid, but the compatibility was poor and the performance was unstable (Sun X Z. Applied Polymer Science, 2002, 84: 1257-1262).
  • the aliphatic polyester amide is a copolymer of an aliphatic, aromatic copolyester and an aliphatic polyamide, which has superior strength and mechanical properties than a simple polyester, and the simultaneous presence of an ester bond and an amide bond imparts
  • the amphiphilicity of the polyester amide is better than that of the polyester. Further, as long as the degree of polymerization of the polyamide block segment in the copolymer is 20 or less, the polyester amide can be completely degraded by the environment.
  • the combination of starch and polyester amide is mentioned in the patents of the publications CN1242032A and CN1222171A, but the properties of the composite are not described in detail. Summary of the invention
  • the object of the present invention is to provide an environmentally degradable composite material which is excellent in mechanical properties and environmental degradation properties and low in price, and is a random block aliphatic polyester which is moderately crosslinked from renewable raw materials and environmentally degradable.
  • Another object of the present invention is to provide a process for the preparation of the above composite material which is effective in a single cylinder and has a high yield and is suitable for industrial production.
  • m is an integer of 2 to 10
  • n is an integer of 2 to 12
  • p, q, and r are integers of 2 to 12
  • m, n, and p may be the same or different
  • X is an integer of 1 to 10
  • y is An integer from 1 to 10 with a molecular weight of 4 to 150,000.
  • the moderately crosslinked aliphatic polyester amide random block copolymer may also be a copolymer of the following structural formula:
  • m is an integer from 2 to 10
  • n is an integer from 2 to 12
  • p, q, and r are integers from 2 to 12
  • m, n, p may be the same or different
  • x is an integer from 1 to 10
  • y is An integer from 1 to 10, with a sub-quantity of 4 to 150,000.
  • the moderately crosslinked aliphatic polyester amide random block copolymer may also be a copolymer of the following structural formula: Oc H
  • m is an integer of 2 to 10
  • n is an integer of 2 to 12
  • p, q, and r are integers of 2 to 12
  • m, n, p may be the same or different
  • x is an integer of 1 to 10
  • y is An integer from 1 to 10 with a molecular weight of 4 to 150,000.
  • the renewable raw material is one or more of starch, cellulose (such as bamboo powder, straw powder, bagasse, etc.), lignin (wood flour, etc.), chitin, chitosan;
  • the additive is one or more of a plasticizer, a heat stabilizer, a lubricant or an antioxidant; the filler is one or more of carbonic acid 4, talc, wollastonite or silica. .
  • the plasticizer is one or more of glycerin, ethylene glycol, sorbitol, xylitol, maltitol, diethylene glycol, polyethylene glycol, fatty acid monoglyceride or urea.
  • the heat stabilizer is one or more of calcium stearate, stearic acid, barium stearate, dibutyltin dilaurate, di-n-octyl dilaurate or calcium complex stabilizer.
  • the lubricant is one or more of ethylene bis stearamide, polyethylene wax, oxidized polyethylene wax, polypropylene wax or liquid paraffin; the antioxidant is antioxidant 1010, anti-oxidation One or more of the agent 1076, the antioxidant 2246, or the antioxidant 245.
  • the preparation method of the invention comprises the following steps:
  • the ester structural unit and the amide structural unit in the moderately crosslinked aliphatic polyester amide copolymer are formed into a polyester segment and a polyamide segment, and are distributed in a random block sequence. Further, these polyester amide macromolecules obtained by copolymerizing a polyester segment and a polyamide segment which are distributed by a random block sequence are appropriately crosslinked with a small amount of a trifunctional compound to form a flowable polymer having an appropriate degree of branching.
  • the cross-linking bond may be an ester bond, an amide bond, a carbon-carbon bond or a combination of these.
  • the degree of crosslinking of the polymerization product is controlled to be 5% - 0.1% to ensure that the synthesized polymer still has melt processable fluidity.
  • the aromatic acid (or a derivative thereof) accounts for not more than 40% by mole of the total carboxylic acid (or a derivative thereof).
  • the renewable raw material is one or more of starch, cellulose (e.g., bamboo powder, straw powder, bagasse, etc.), lignin (wood flour, etc.), chitin, chitosan, and the like.
  • cellulose e.g., bamboo powder, straw powder, bagasse, etc.
  • lignin wood flour, etc.
  • chitin chitosan
  • the additive consists of the following components (total weight of the additive is 100 parts):
  • a plasticizer such as glycerin, ethylene glycol, sorbitol, xylitol, maltitol, diethylene glycol, polyethylene glycol, fatty acid monoglyceride, urea, etc.
  • heat stabilizer such as stearic acid 4 bow, stearic acid, barium stearate, dibutyl tin dilaurate, di-n-octyl dilaurate, calcium complex stabilizer, etc. kind or more.
  • a lubricant such as one or more of ethylene bis stearamide (EBS), polyethylene wax, oxidized polyethylene wax, polypropylene wax, liquid paraffin, and the like;
  • EBS ethylene bis stearamide
  • an antioxidant such as one or more of an antioxidant 1010, an antioxidant 1076, an antioxidant 2246, and an antioxidant 245.
  • the invention has the following characteristics:
  • the composite material of the renewable raw material prepared by the invention and the moderately crosslinked polyester amide is white or light yellow solid, has good mechanical properties, and has tensile strength of 15-30 MPa and elongation at break of 300-1000%. .
  • the bending strength is 10 ⁇ 25MPa, and the notched impact strength is 20 ⁇ 90 kJ/m 2 .
  • the use of the composite material is good, and by adjusting the ratio of the starting materials, the structure and properties of the product can be controlled over a wide range.
  • the composite material prepared by the invention has excellent environmental degradation performance, and can be completely decomposed by microorganisms under composting conditions, and the biodegradation rate is more than 90% after 12 weeks of composting.
  • the environmentally degradable composite material prepared by the invention has a melting point of 120-180 ° C, a melt flow rate of 5-20 g/10 min, good molding processing performance, and can be extruded, injection molded, and processed on ordinary plastic processing equipment. Blow molding, plastic molding, hot pressing and other methods are formed into various products.
  • Example 2 60 kg of moderately crosslinked polyesteramide, 20 kg of corn starch, 7 kg of glycerin, 2 kg of calcium stearate, 1 kg of ethylene bis stearamide, 1 kg of antioxidant 1010, 10 kg of calcium carbonate are added to the high-speed mixer at room temperature. Stir at 50 ⁇ 150°C for 5 ⁇ 30min, mix evenly, cool down and discharge. Then, the above materials were added to a twin-screw extruder and reacted and extruded at 120 to 230 ° C to obtain a composite tensile strength of 28 MPa and an elongation at break of 1000%. The bending strength was 25 MPa, and the notched impact strength was 90 kJ/m 2 .
  • Example 2 60 kg of moderately crosslinked polyesteramide, 20 kg of corn starch, 7 kg of glycerin, 2 kg of calcium stearate, 1 kg of ethylene bis stearamide, 1 kg of antioxidant 1010, 10 kg of calcium carbonate are added to the high-speed mixer at room
  • 60 kg of moderately crosslinked polyester amide, 20 kg of lignin (wood flour), 8 kg of xylitol, 2 kg of di-n-octyl dilaurate, 1 kg of polyethylene wax, 1 kg of antioxidant 1076, 8 kg of talc are added to the high speed at room temperature.
  • the mixer stir at 50 ⁇ 150 °C for 5 ⁇ 30min, mix evenly, cool down and discharge.
  • the above materials were added to a twin-screw extruder and reacted and extruded at 120 to 230 ° C to obtain a composite tensile strength of 18 MPa and an elongation at break of 400%.
  • the bending strength is 19 MPa and the notched impact strength is 48 kJ/m 2 .
  • 50kg moderately crosslinked polyester amide, 30kg lignin (wood flour), 8kg diethylene glycol, 2kg calcium complex stabilizer, 1kg polyethylene wax, 1kg antioxidant 1076, 8kg talc powder are added to high speed mixing at room temperature.
  • the above materials were added to a twin-screw extruder and reacted and extruded at 120 to 230 ° C to obtain a composite tensile strength of 15 MPa and an elongation at break of 300%.
  • the bending strength was 18 MPa
  • the notched impact strength was 40 kJ/m 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明涉及一种可环境降解的高分子复合材料,它由以下组分的原料按重量份数混合制备而成:20~80份的适度交联的脂肪族聚酯酰胺无规嵌段共聚物、10~70份的可再生原料、5~20份的添加剂和0~30份的填料。 本发明产物具有优异的力学性能, 其拉伸强度15~30MPa, 断裂伸长率300~1000 %。 弯曲强度10~25MPa, 缺口冲击强度20~90 kJ/m 2 。 同时又有良好的环境降解性能,12周堆肥后生物分解率为90%以上。并且成型加工性能良好,可在普通塑料的加工设备上通过挤出、 注塑、吹塑、 热压等方法成型为各种各样的制品。

Description

一种可环境降解的复合材料及其制备方法
技术领域
本发明涉及一种可环境降解的高分子复合材料,具体地说是一种用可再 生原料与适度交联的脂肪族聚酯酰胺制备成的可环境降解的复合材料及其 制备方法。 背景技术
目前, 大量性能优异、 价格低廉的普通石化塑料制品, 已经严重污染了 人类的生存环境, 同时全球石油资源日益枯竭, 利用可再生资源制备能够完 全可环境降解的材料是解决环境和能源问题的必然选择。
天然高分子材料, 如淀粉、 纤维素 (如竹粉、 秸秆粉、 甘蔗渣等)、 木 质素(如木粉)等, 在自然界中资源丰富、 价格低廉、 可再生, 可用于制备 生物降解材料。但是如果单独使用这些原料,所制得的环境降解塑料使用性 能都比较差。 一些合成的可环境降解材料, 如脂肪族聚酯、 脂肪-芳香共聚 酯、 脂肪族聚酯酰胺等, 一般都具有优异的机械性能和使用性能, 但价格昂 贵。 因此, 利用廉价的可再生原料与性能优异的合成材料来制备能够环境降 解的复合材料, 成为解决可环境降解塑料的性能和成本矛盾的重要方法,也 成为可环境降解材料领域的一个重要研究方向。
关于用可再生资源与合成高分子材料制备可环境降解复合材料,国内外 也多有报道。意大利 Novamont公司的 Mater-Bi系列产品是用淀粉和聚己内 酯制备而得( Catia B. Polymer Degradation and Stability, 1998, 59( 1-3 ): 263 ~ 272 ), 但是由于聚己内酯的熔点只有 60°C , 不能在 0°C ~ 50°C以外, 相对湿 度在 30°C ~ 80°C以外的低温、 高温及高湿的环境中使用。 同时 Mater-Bi产 品的价格高达 7000多美元 /吨, 价格也嫌较贵。 脂肪族聚酯中熔点较高的 是聚乳酸, 具有优异的性能。 堪萨斯州立大学的 Sun X Z等人研究了天然淀 粉和聚乳酸共混, 但是相容性较差, 性能不稳定(Sun X Z. Applied Polymer Science, 2002, 84: 1257-1262 )。
脂肪族聚酯酰胺是脂肪族、芳香族共聚酯与脂肪族聚酰胺的共聚物, 它 具有比单纯的聚酯更优异的强度和力学性能, 并且酯键和酰胺键的同时存 在, 赋予了聚酯酰胺的双亲性, 所以与天然高分子材料的相容性比聚酯好。 并且只要共聚物中聚酰胺嵌段片段的聚合度在 20以下, 聚酯酰胺就能够完 全被环境降解。 公开号为 CN1242032A、 CN1222171A的专利中提到了淀粉 与聚酯酰胺的组合物, 但是关于复合材料的性能, 并没有详细的说明。 发明内容
本发明的目的是提供一种力学性能和环境降解性能优异且价格较低的 可环境降解的复合材料,它是由可再生原料与可环境降解的适度交联的无规 嵌段脂肪族聚酯酰胺共聚物制备成的复合材料。
本发明的另一目的在于提供上述复合材料的制备方法, 该方法筒单有 效, 产率高, 适合工业化生产。
本发明的技术方案是这样实现的:它由以下组分的原料按重量份数混合 制备而成:
20 ~ 80份的适度交联的脂肪族聚酯酰胺无规嵌段共聚物、 10 ~ 70份的 可再生原料、 5 ~ 20份的添加剂和 0 ~ 30份的填料。
其中所述的适度交联的脂肪族聚酯酰胺无规嵌段共聚物的结构式为:
Figure imgf000004_0001
结构式中 m为 2 ~ 10的整数, n为 2 ~ 12的整数, p、 q、 r为 2 ~ 12 的整数, m, n, p可相同或不同, X为 1~10的整数, y为 1 ~ 10的整数, 分子量为 4 ~ 15万。 所述的适度交联的脂肪族聚酯酰胺无规嵌段共聚物也可以是下述结构 式的共聚物:
HOOCCH2 r, ^ ^
I 0 0 0 0 0
CH- Ci H- CH2-¾NH -C-+C H 2"¾(¾〇+C H2 OC+C H ^C^ HOOC CH
HOOC
Figure imgf000004_0002
结构式中 m为 2~ 10的整数, n为 2~12的整数, p、 q、 r为 2 ~ 12的 整数, m, n, p可相同或不同, x为 1~10的整数, y为 1 ~ 10的整数, ^ 子量为 4 ~ 15万。 所述的适度交联的脂肪族聚酯酰胺无规嵌段共聚物还可以是下述结构 式的共聚物: o c H
C H
O
-½(ϋ ¾
C H
Figure imgf000005_0001
结构式中 m为 2 ~ 10的整数, n为 2 ~ 12的整数, p、 q、 r为 2 ~ 12的 整数, m, n, p可相同或不同, x为 1 ~ 10的整数, y为 1 ~ 10的整数, 分 子量为 4 ~ 15万。
其中所述的可再生原料为淀粉、 纤维素(如竹粉、 秸秆粉、 甘蔗渣等)、 木质素 (木粉等)、 甲壳素、 壳聚糖中的一种或多种; 所述的添加剂为增塑 剂、 热稳定剂、 润滑剂或抗氧剂中的一种或多种; 所述的填料为碳酸 4弓、 滑 石粉、 硅灰石或二氧化硅中的一种或多种。
所述的增塑剂为甘油、 乙二醇、 山梨醇、 木糖醇、 麦芽糖醇、 二甘醇、 聚乙二醇、 脂肪酸单甘酯或尿素中的一种或多种。
所述的热稳定剂为硬脂酸钙、硬脂酸辞、硬脂酸钡、二月桂酸二丁基锡、 二月桂酸二正辛基锡或钙辞复合稳定剂中的一种或多种。
所述的润滑剂为乙撑双硬脂酰胺、 聚乙烯蜡、 氧化聚乙烯蜡、 聚丙烯蜡 或液体石蜡中的一种或多种; 所述的抗氧剂为抗氧剂 1010、 抗氧剂 1076、 抗氧剂 2246或抗氧剂 245中的一种或多种。
本发明的制备方法包括以下步骤:
1 )将 20 ~ 80份的适度交联的脂肪族聚酯酰胺无规嵌段共聚物、 10 ~ 70 份的可再生原料、 5 ~ 20份的添加剂和 0 ~ 30份的填料按配比加入到高速混 合机中, 在 50 ~ 150°C搅拌 5 ~ 30min, 混合均匀, 降温出料。
2)将上述物料加入到螺杆挤出机中, 在 120~230°C反应挤出, 得到粒 料或者片材。
适度交联的脂肪族聚酯酰胺共聚物中酯类结构单元和酰胺类结构单元 是形成聚酯片段和聚酰胺片段, 并呈无规嵌段序列分布的。再将这些由无规 嵌段序列分布的聚酯片段和聚酰胺片段共聚合而成的聚酯酰胺大分子,用少 量三官能团化合物适当交联, 成为含有适当支化度的可流动聚合物。 交联键 可为酯键、 酰胺键、碳-碳键或这几种键的综合使用。 聚合产物的交联度要 控制在 5% - 0.1%, 以保证合成的聚合物仍具有可熔融加工的流动性。 其 中, 芳香族酸(或其衍生物)所占总羧酸(或其衍生物) 的份额不多于 40 % (摩尔)。
所述的可再生原料为淀粉、 纤维素 (如竹粉、 秸秆粉、 甘蔗渣等)、 木 质素 (木粉等)、 甲壳素、 壳聚糖等其中的一种或多种。
所述的添加剂由以下成分组成(以添加剂的总重为 100份计):
1 ) 5~80份的增塑剂, 如甘油、 乙二醇、 山梨醇、 木糖醇、 麦芽糖醇、 二甘醇、 聚乙二醇、 脂肪酸单甘酯、 尿素等其中的一种或多种;
2) 5~50份的热稳定剂, 如硬脂酸 4弓、 硬脂酸辞、 硬脂酸钡、 二月桂 酸二丁基锡、 二月桂酸二正辛基锡、 钙辞复合稳定剂等其中的一种或多种。
3) 0~20份的润滑剂, 如乙撑双硬脂酰胺 (EBS)、 聚乙烯蜡、 氧化聚乙 烯蜡、 聚丙烯蜡、 液体石蜡等中的一种或多种;
4) 1~ 20份的抗氧剂, 如抗氧剂 1010、 抗氧剂 1076、 抗氧剂 2246、 抗 氧剂 245等其中的一种或多种。 本发明具有下列特点:
1)采用本发明制备的可再生原料与适度交联聚酯酰胺的复合材料, 为 白色或淡黄色固体, 具有良好的力学性能, 其拉伸强度 15~30MPa, 断裂 伸长率 300 ~ 1000%。 弯曲强度 10~25MPa, 缺口沖击强度 20 ~ 90 kJ/m2。 复合材料的使用性能良好, 而且通过调节起始原料的配比,可以在很大范围 内控制产物的结构和性能。
2)本发明制备的复合材料, 具有优异的可环境降解性能, 堆肥条件下 可完全被微生物分解, 12周堆肥后生物分解率为 90%以上。
3)本发明制备的可环境降解复合材料, 熔点在 120~180°C, 熔体流动 速率为 5~20g/10min,成型加工性能良好,可在普通塑料的加工设备上通过 挤出、 注塑、 吹塑、 吸塑、 热压等方法成型为各种各样的制品。
4)本发明的可再生原料与聚酯酰胺复合材料的制备方法, 通过混合和 挤出两步完成, 反应产率高, 方法筒单有效, 适合工业化生产。 具体实施方式
以下结合实施例对本发明作进一步描述:
实施例 1:
室温下将 60kg适度交联的聚酯酰胺、 20kg玉米淀粉、 7kg甘油、 2kg 硬脂酸钙、 lkg乙撑双硬脂酰胺、 1kg抗氧剂 1010、 10kg碳酸钙加入到高速 混合机中, 在 50~150°C搅拌 5~30min, 混合均匀, 降温出料。 然后将上述 物料加入到双螺杆挤出机中, 在 120~230°C反应挤出, 得到的复合材料拉 伸强度 28MPa,断裂伸长率 1000%。弯曲强度 25MPa,缺口沖击强度 90kJ/m2。 实施例 2:
室温下将 50kg适度交联的聚酯酰胺、 30kg玉米淀粉、 7kg山梨醇、 2kg 硬脂酸钙、 lkg乙撑双硬脂酰胺、 1kg抗氧剂 1010、 10kg碳酸钙加入到高速 混合机中, 在 50 ~ 150°C搅拌 5 ~ 30min, 混合均匀, 降温出料。 然后将上述 物料加入到双螺杆挤出机中, 在 120 ~ 230°C反应挤出, 得到的复合材料拉 伸强度 22MPa,断裂伸长率 800%。弯曲强度 19MPa,缺口沖击强度 77kJ/m2
实施例 3:
室温下将 40kg适度交联的聚酯酰胺、 40kg玉米淀粉、 8kg聚乙二醇、 lkg硬脂酸辞、 0.5kg乙撑双硬脂酰胺、 0.5kg抗氧剂 1010、 10kg硅灰石加 入到高速混合机中, 在 50 ~ 150°C搅拌 5 ~ 30min, 混合均匀, 降温出料。 然 后将上述物料加入到双螺杆挤出机中, 在 120 ~ 230°C反应挤出, 得到的复 合材料拉伸强度 16MPa, 断裂伸长率 600%。 弯曲强度 15MPa, 缺口沖击强 度 40kJ/m2
实施例 4:
室温下将 60kg适度交联的聚酯酰胺、 20kg纤维素(竹子粉)、 8kg脂肪 酸单甘酯、 2kg硬脂酸钡、 lkg氧化聚乙烯蜡、 lkg抗氧剂 2246、 8kg硅灰 石加入到高速混合机中,在 50 ~ 150°C搅拌 5 ~ 30min,混合均匀,降温出料。 然后将上述物料加入到双螺杆挤出机中, 在 120 ~ 230°C反应挤出, 得到的 复合材料拉伸强度 20 MPa, 断裂伸长率 600 %。 弯曲强度 18MPa, 缺口沖 击强度 50kJ/m2
实施例 5:
室温下将 50kg适度交联的聚酯酰胺、 30kg纤维素(竹子粉)、 8kg乙二 醇、 2kg二月桂酸二丁基锡、 lkg 乙撑双硬脂酰胺、 1kg抗氧剂 2246、 8kg 碳酸 4丐加入到高速混合机中, 在 50~150°C搅拌 5~30min, 混合均匀, 降温 出料。 然后将上述物料加入到双螺杆挤出机中, 在 120~230°C反应挤出, 得到的复合材料拉伸强度 17 MPa, 断裂伸长率 400 %。 弯曲强度 15 MPa, 缺口沖击强度 46kJ/m2
实施例 6:
室温下将 60kg适度交联的聚酯酰胺、 20kg木质素(木粉)、 8kg木糖醇、 2kg二月桂酸二正辛基锡、 lkg聚乙烯蜡、 lkg抗氧剂 1076、 8kg滑石粉加 入到高速混合机中, 在 50~150°C搅拌 5~30min, 混合均匀, 降温出料。 然 后将上述物料加入到双螺杆挤出机中, 在 120~230°C反应挤出, 得到的复 合材料拉伸强度 18MPa , 断裂伸长率 400 %。 弯曲强度 19 MPa , 缺口沖击 强度 48kJ/m2
实施例 7:
室温下将 50kg适度交联的聚酯酰胺、 30kg木质素(木粉)、 8kg二甘醇、 2kg钙辞复合稳定剂、 lkg聚乙烯蜡、 lkg抗氧剂 1076、 8kg滑石粉加入到 高速混合机中, 在 50~150°C搅拌 5~30min, 混合均匀, 降温出料。 然后将 上述物料加入到双螺杆挤出机中, 在 120~230°C反应挤出, 得到的复合材 料拉伸强度 15MPa, 断裂伸长率 300%。 弯曲强度 18MPa, 缺口沖击强度 40kJ/m2
实施例 8:
室温下将 60kg适度交联的聚酯酰胺、 20kg甲壳素、 8kg麦芽糖醇、 2kg 钙辞复合稳定剂、 lkg聚丙烯蜡、 lkg抗氧剂 245、 8kg超细二氧化硅加入到 高速混合机中, 在 50~150°C搅拌 5~30min, 混合均匀, 降温出料。 然后将 上述物料加入到双螺杆挤出机中, 在 120~230°C反应挤出, 得到的复合材 料拉伸强度 22MPa, 断裂伸长率 600%。 弯曲强度 20MPa, 缺口沖击强度 48kJ/m2
实施例 9:
室温下将 50kg适度交联的聚酯酰胺、 30kg甲壳素、 8kg尿素、 2kg钙 辞复合稳定剂、 1kg聚丙烯蜡、 1kg抗氧剂 245、 8kg超细二氧化硅加入到高 速混合机中, 在 50~150°C搅拌 5~30min, 混合均匀, 降温出料。 然后将上 述物料加入到双螺杆挤出机中, 在 120~230°C反应挤出, 得到的复合材料 拉伸强度 16MPa, 断裂伸长率 350%。 弯曲强度 22MPa, 缺口沖击强度 50 kJ/m2

Claims

权 利 要 求 书
1、 一种可环境降解的高分子复合材料, 它由以下组分的原料按重量份 数混合制备而成: 20 ~ 80份的适度交联的脂肪族聚酯酰胺无规嵌段共聚物、 10 ~ 70份的可再生原料、 5 ~ 20份的添加剂和 0 ~ 30份的填料。
2、 根据权利要求 1所述的一种可环境降解的高分子复合材料, 其中所 述的适度交联的聚酯酰胺无规嵌段共聚物的结构式为:
Figure imgf000011_0001
结构式中 m为 2~ 10的整数, n为 2~ 12的整数, p、 q、 r为 2~ 12的整数, m, n, p可相同或不同, X为 1 ~ 10的整数, y为 1 ~ 10的整数, 分子量为 4~ 15万。
3、 根据权利要求 1所述的一种可环境降解的高分子复合材料, 其中所 述的适度交联的聚酯酰胺无规嵌段共聚物的结构式为:
H〇〇CCH2 ^ ^ ^
I 0 0 0 0 0
C H— 0÷N H+ C H 2 N H X H 2"¾(¾〇十 C h¾ C- C H 2"^C t HOOC CH
Figure imgf000011_0002
HOOCCH
I 0 0 0
Π II II
C H 2— C +0 "f C H2qC ¾f N H十 C H2 C ^ 结构式中 m为 2~ 10的整数, n为 2~12的整数, p、 q、 r r数, m, n, p可相同或不同, x为 1 ~ 10的整数, y为 1 ~ 10 子量为 4 ~ 15万。
4、 根据权利要求 1所述的一种可环境降解的高分子复合材料, 其中所 述的适度交联的聚酯酰胺无规嵌段共聚物的结构式为:
Figure imgf000012_0001
结构式中 m为 2 ~ 10的整数, n为 2 ~ 12的整数, p、 q、 r为 2 ~ 12的 整数, m, n, p可相同或不同, X为 1 ~ 10的整数, y为 1 ~ 10的整数, 分 子量为 4 ~ 15万。
5、 根据权利要求 1所述的一种可环境降解的高分子复合材料, 其中所 述的可再生原料为淀粉、纤维素、木质素、 甲壳素、 壳聚糖中的一种或多种。
6、 根据权利要求 1所述的一种可环境降解的高分子复合材料, 其中所 述的添加剂为增塑剂、 热稳定剂、 润滑剂或抗氧剂中的一种或多种。
7、 根据权利要求 1所述的一种可环境降解的高分子复合材料, 其中所 述的增塑剂为甘油、 乙二醇、 山梨醇、 木糖醇、 麦芽糖醇、 二甘醇、 聚乙二 醇、 脂肪酸单甘酯或尿素中的一种或多种; 所述的热稳定剂为硬脂酸 4弓、硬 脂酸辞、 硬脂酸钡、 二月桂酸二丁基锡、 二月桂酸二正辛基锡、 钙辞复合稳 定剂中的一种或多种; 所述的润滑剂为乙撑双硬脂酰胺、 聚乙烯蜡、 氧化聚 乙烯蜡、 聚丙烯蜡或液体石蜡中的一种或多种; 所述的抗氧剂为抗氧剂 1010、 抗氧剂 1076、 抗氧剂 2246或抗氧剂 245中的一种或多种。
8、 根据权利要求 1所述的一种可环境降解的高分子复合材料, 其中所 述的填料为碳酸 4弓、 滑石粉、 硅灰石或二氧化硅中的一种或多种。
9、 一种可环境降解的高分子复合材料的制备方法, 它包括以下步骤:
1 )将 20 ~ 80份的适度交联的聚酯酰胺无规嵌段共聚物、 10 ~ 70份的 可再生原料、 5~20份的添加剂和 0 ~ 30份的填料按配比加入到高速混合机 中, 在 50~150°〇搅拌5~301^11, 混合均匀, 降温出料。
2)将上述物料加入到双螺杆挤出机中, 在 120~230°C反应挤出, 得到 粒料或者片材。
PCT/CN2010/070169 2009-03-31 2010-01-14 一种可环境降解的复合材料及其制备方法 WO2010111898A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011506565A JP2011516719A (ja) 2009-03-31 2010-01-14 環境分解性高分子複合材料及びその製造方法
AU2010230796A AU2010230796B2 (en) 2009-03-31 2010-01-14 Environmentally degradable polymer composite
EP10739827A EP2351794A4 (en) 2009-03-31 2010-01-14 POLYMER COMPOSITE DEGRADABLE IN THE ENVIRONMENT
US12/839,431 US8431628B2 (en) 2009-03-31 2010-07-20 Environmentally degradable composite material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910061362.0 2009-03-31
CN2009100613620A CN101525487B (zh) 2009-03-31 2009-03-31 一种可环境降解的复合材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/839,431 Continuation US8431628B2 (en) 2009-03-31 2010-07-20 Environmentally degradable composite material and method for producing the same

Publications (1)

Publication Number Publication Date
WO2010111898A1 true WO2010111898A1 (zh) 2010-10-07

Family

ID=41093563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070169 WO2010111898A1 (zh) 2009-03-31 2010-01-14 一种可环境降解的复合材料及其制备方法

Country Status (6)

Country Link
US (1) US8431628B2 (zh)
EP (1) EP2351794A4 (zh)
JP (1) JP2011516719A (zh)
CN (1) CN101525487B (zh)
AU (1) AU2010230796B2 (zh)
WO (1) WO2010111898A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525487B (zh) * 2009-03-31 2012-01-11 武汉华丽生物材料有限公司 一种可环境降解的复合材料及其制备方法
AT509621B1 (de) * 2010-03-23 2012-04-15 Univ Innsbruck Verfahren zur herstellung eines stickstoffenthaltenden polysaccharids
CN101851429B (zh) * 2010-06-11 2012-09-05 奇瑞汽车股份有限公司 一种木质素复合材料的制备方法
CN101973174A (zh) * 2010-09-21 2011-02-16 浙江大学 一种生物可降解塑料笔杆的加工工艺
WO2012125101A1 (en) * 2011-03-14 2012-09-20 Esp Solutions Ltd. A package made of a polymer comprising pro-oxidant filler material
CN103351615B (zh) * 2013-07-09 2015-08-12 宁波伊德尔新材料有限公司 一种易降解环保尼龙的制备方法
CN104804455A (zh) * 2014-01-28 2015-07-29 深圳齐心集团股份有限公司 塑料降解材料及其制备方法
US10888926B2 (en) * 2014-11-26 2021-01-12 Schlumberger Technology Corporation Shaping degradable material
CN108164931A (zh) * 2016-12-07 2018-06-15 黑龙江鑫达企业集团有限公司 一种环保型3d打印木塑复合材料
CN109503739A (zh) * 2018-11-19 2019-03-22 李开民 一种固体降解剂及其制备方法
CN111205583B (zh) * 2020-03-17 2022-12-27 宁波利安科技股份有限公司 一种易降解环保塑料及其制备方法
CN111409344A (zh) * 2020-04-14 2020-07-14 四川汇利实业有限公司 一种药品包装膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222171A (zh) 1996-06-20 1999-07-07 生物技术生物学自然包装有限公司 基本上由热塑性淀粉组成的或为基础的生物可降解材料
CN1242032A (zh) 1996-11-05 2000-01-19 诺瓦蒙特股份公司 生物可降解的包含淀粉和热塑性聚合物的聚合组合物
US6096809A (en) * 1995-04-07 2000-08-01 Bio-Tec Biologische Naturverpackungen Gmbh & Co. Kg Biologically degradable polymer mixture
CN101293956A (zh) * 2008-06-19 2008-10-29 湖北华丽生物产业园有限公司 一种适度交联的可生物降解聚酯酰胺无规嵌段共聚物及其合成方法
CN101293958A (zh) * 2008-06-19 2008-10-29 湖北华丽生物产业园有限公司 一种适度交联的可生物降解聚酯酰胺无规嵌段共聚物
CN101293957A (zh) * 2008-06-19 2008-10-29 湖北华丽生物产业园有限公司 适度交联的可生物降解聚酯酰胺无规嵌段共聚物及其合成方法
CN101525487A (zh) * 2009-03-31 2009-09-09 武汉华丽生物材料有限公司 一种可环境降解的复合材料及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474942A (en) * 1982-06-28 1984-10-02 Takeda Chemical Industries, Ltd. Cross-linked polyesteramide from bis(2-oxazoline)
DE19500756A1 (de) * 1995-01-13 1996-07-18 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
DE19548323A1 (de) * 1995-12-22 1997-06-26 Bayer Ag Thermoplastische verarbeitbare, biologisch abbaubare Formmassen
DE19645842A1 (de) * 1996-11-07 1998-05-14 Bayer Ag Pflanzenbehandlungsmittel
JP2002511896A (ja) * 1997-06-20 2002-04-16 ビオ−テック ビオロギッシェ ナトゥーアフェアパックンゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 生物分解性材料から成る、軍事又は火工工業用の使い捨て製品、非折り畳み式道路、仮設車道及び仮設歩道
DE19754418A1 (de) * 1997-12-09 1999-06-10 Bayer Ag Stabilisierte Formmassen biologisch abbaubarer Materialien
US6573340B1 (en) * 2000-08-23 2003-06-03 Biotec Biologische Naturverpackungen Gmbh & Co. Kg Biodegradable polymer films and sheets suitable for use as laminate coatings as well as wraps and other packaging materials
WO2002078944A1 (en) * 2001-03-28 2002-10-10 E. Khashoggi Industries, Llc Biodegradable polymer blends for use in making films, sheets and other articles of manufacture
JP2005162842A (ja) * 2003-12-01 2005-06-23 Daicel Chem Ind Ltd 有機固体粒子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096809A (en) * 1995-04-07 2000-08-01 Bio-Tec Biologische Naturverpackungen Gmbh & Co. Kg Biologically degradable polymer mixture
CN1222171A (zh) 1996-06-20 1999-07-07 生物技术生物学自然包装有限公司 基本上由热塑性淀粉组成的或为基础的生物可降解材料
CN1242032A (zh) 1996-11-05 2000-01-19 诺瓦蒙特股份公司 生物可降解的包含淀粉和热塑性聚合物的聚合组合物
CN101293956A (zh) * 2008-06-19 2008-10-29 湖北华丽生物产业园有限公司 一种适度交联的可生物降解聚酯酰胺无规嵌段共聚物及其合成方法
CN101293958A (zh) * 2008-06-19 2008-10-29 湖北华丽生物产业园有限公司 一种适度交联的可生物降解聚酯酰胺无规嵌段共聚物
CN101293957A (zh) * 2008-06-19 2008-10-29 湖北华丽生物产业园有限公司 适度交联的可生物降解聚酯酰胺无规嵌段共聚物及其合成方法
CN101525487A (zh) * 2009-03-31 2009-09-09 武汉华丽生物材料有限公司 一种可环境降解的复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATIA B, POLYMER DEGRADATION AND STABILITY, vol. 59, no. 1-3, 1998, pages 263 - 272
See also references of EP2351794A4
SUN X Z, APPLIED POLYMER SCIENCE, vol. 84, 2002, pages 1257 - 1262

Also Published As

Publication number Publication date
EP2351794A1 (en) 2011-08-03
CN101525487A (zh) 2009-09-09
AU2010230796B2 (en) 2013-08-29
AU2010230796A1 (en) 2010-10-07
US20110028592A1 (en) 2011-02-03
EP2351794A4 (en) 2012-08-01
JP2011516719A (ja) 2011-05-26
US8431628B2 (en) 2013-04-30
CN101525487B (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2010111898A1 (zh) 一种可环境降解的复合材料及其制备方法
JP5233105B2 (ja) ポリ乳酸系樹脂成形品
CN101235156B (zh) 一种聚乳酸/热塑性淀粉挤出吹塑薄膜及其生产方法与应用
CN101475735B (zh) 可完全生物降解聚羟基烷酸酯/聚丁二酸丁二醇酯共混合金
KR101022786B1 (ko) 폴리락트산-함유 생분해성 수지 조성물
JP5469321B2 (ja) 難燃性環境配慮型熱可塑性樹脂組成物
AU2007218990A1 (en) Environmentally degradable polymeric blend and process for obtaining an environmentally degradable polymeric blend
CN110628185B (zh) 一种聚对苯二甲酸-己二酸丁二酯/聚甲基乙撑碳酸酯全生物降解薄膜及其制备方法
JP5469322B2 (ja) 環境配慮型熱可塑性樹脂組成物
KR100642289B1 (ko) 생분해성 수지조성물, 그의 제조방법 및 그로부터 제조되는생분해성 필름
US20100041835A1 (en) Polyester mixture comprising biodiesel
CN114213817B (zh) 一种PBAT/PLA/CaCO3全生物降解复合材料的制备方法
AU2007218992A1 (en) Environmentally degradable polymeric blend and process for obtaining an environmentally degradable polymeric blend
CN113631657A (zh) 聚羟基烷酸酯系树脂组合物、其成型体及膜或片
CN113956630A (zh) 一种完全生物降解薄膜及其制备方法
CN113429754A (zh) 一种复合填充的全降解材料组合物、薄膜及其制备方法
CN103131149A (zh) 一种聚乳酸复合材料、其制品制备方法及其应用
KR100758221B1 (ko) 생분해성 수지조성물 및 그 제조방법과 이를 이용해 제조된그물
KR101082486B1 (ko) 생분해성 수지 조성물
JP4953597B2 (ja) ポリブチレンサクシネート樹脂組成物、その製造方法、それからなる成形体
CN114269852A (zh) 生物聚合物组合物,其制备方法以及使用所述生物聚合物组合物的生物塑料
KR20010100067A (ko) 전분이 결합된 생분해성 수지 조성물
CN103030955A (zh) 综合改性的聚乳酸树脂及其制备方法
KR20000006774A (ko) 생붕괴성 수지 조성물 및 이의 제조방법
EP4393978A1 (en) Marine biodegradable polymer blend

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011506565

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010739827

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10739827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010230796

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010230796

Country of ref document: AU

Date of ref document: 20100114

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE