WO2010108464A2 - Verfahren und einrichtung zum betrieb einer antriebsmaschine für ein schiff zum transport von flüssiggas - Google Patents

Verfahren und einrichtung zum betrieb einer antriebsmaschine für ein schiff zum transport von flüssiggas Download PDF

Info

Publication number
WO2010108464A2
WO2010108464A2 PCT/DE2009/050037 DE2009050037W WO2010108464A2 WO 2010108464 A2 WO2010108464 A2 WO 2010108464A2 DE 2009050037 W DE2009050037 W DE 2009050037W WO 2010108464 A2 WO2010108464 A2 WO 2010108464A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
compressor
boil
guided
engine
Prior art date
Application number
PCT/DE2009/050037
Other languages
English (en)
French (fr)
Other versions
WO2010108464A3 (de
Inventor
Jochen SCHMIDT-LÜSSMANN
Original Assignee
Marine Service Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marine Service Gmbh filed Critical Marine Service Gmbh
Publication of WO2010108464A2 publication Critical patent/WO2010108464A2/de
Publication of WO2010108464A3 publication Critical patent/WO2010108464A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • B63H21/383Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like for handling cooling-water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Definitions

  • the invention relates to a method and a device for operating a drive machine for a ship for the transport of liquefied gas according to the preamble of claims 1 and 17.
  • boil-off gas a gas vapor inevitably forms, the so-called boil-off gas. This can either be burned or reliquefied under relatively great expense.
  • a preferred way to use the boil-off gas is to use this as fuel for the propulsion engine of the ship.
  • the boil-off gas is set to the appropriate for the engine operating parameters. This is done by means of compressors and heat exchangers.
  • Drive purpose is only partially usable, especially at low load of the drive machine. It is therefore desirable to be able to reliquefy the part which can not be used for driving without great effort.
  • a liquefaction or re-liquefaction of gases has long been known. Since the development of the Linde process, compressors and expansion valves have generally been used to liquefy gases, with the gradually cooled gas being returned to the compressors via counterflow heat exchangers and thus used to further cool the compressed gas prior to its expansion.
  • the expansion valve used can be designed in a simple form as a throttle or as an expansion turbine.
  • gas liquefaction plants can be found in US 6,751,984 B2, US 3,364,685 and US 3,593,535. These are in each case stationary systems, which are constructed in multiple stages and which the liquefaction of gases, starting from in the Substantial ambient temperature, suggest on an industrial scale. The use of such gas liquefaction on a ship to transport already liquid held at low temperature gas prohibits already due to the effort.
  • a method for transporting liquefied gas and a ship for carrying out the method are known, collected in the boil-off gas, compressed, heated as needed and used as an energy source for the ship propulsion. From the collected gas while a partial flow is derived, compressed and reliquefied after heat transfer to the gas stream to be supplied to the combustion process and relaxation and returned to the gas tank. The re-liquefaction takes place via an expansion valve. In this system, the compression of the gas flow supplied to the drive machine takes place only after heating via the heat exchanger of the recirculation path. The energy efficiency of this process is relatively low.
  • the invention has for its object to provide a method and a device for operating a drive machine for a ship for transporting recorded at low temperature in a gas container liquefied gas, which allows an economic use of Boil-off gas from the gas tank which provides the possibility of re-liquefaction of excess boil-off gas and which ensures effective energy utilization.
  • the invention relates to a method in which the boil-off gas of a gas container is compressed and heated by compressors, wherein a partial flow of the gas is supplied to the engine and a second partial stream is recycled back liquefied in the gas container. At least part of the second substream is also countercurrently passed along the second substream to improve the overall efficiency of the plant.
  • the dependent claims 2 and 8 show preferred embodiments of the invention for use in steam turbines, gas diesel / diesel Otto engines and gas turbines.
  • the turboexpander used as an expansion machine is at its shaft
  • a preferred use is to connect to the turboexpander a generator, which makes it possible to conduct electrical energy via a frequency converter in the electrical system.
  • Another way of using the energy obtained is to switch the turboexpander to a hydraulic brake circuit, via which heat can be generated, which can be used for heating purposes.
  • the recovered mechanical energy can also be used via a hydraulic link to increase the shaft power to drive the ship or other drive units, such as rudders or a compressor, are provided.
  • 1A is a system diagram for ships with a gas turbine as drive
  • Fig. IB is a state diagram associated with Fig. IA;
  • 2A is a system diagram for ships with a gas diesel engine with high-pressure injection as drive
  • FIG. 2B is a state diagram associated with FIG. 2A.
  • FIG. 2B is a state diagram associated with FIG. 2A.
  • 3A is a system diagram for ships with a steam turbine as drive
  • 3B is a state diagram associated with FIG. 3,
  • 4 is a system diagram for ships with a low-pressure gas-diesel or gasoline engine as drive
  • FIG. 5 is a block diagram for energy recovery with a generator
  • Fig. 6 is a block diagram for energy recovery with a hydraulic brake circuit
  • FIG. 7 shows a block diagram for energy recovery with a mechanical intermediate circuit.
  • the numerals denote 1 - 16 state large at the respective plant parts, which are marked with the numerals 20 - 78.
  • Fig. IA The system shown in Fig. IA is constructed on a ship and shows a gas tank 20, from which via a line 21 boil-off gas, hereinafter also referred to as medium, can be removed.
  • the line 21 leads to a compressor 22, z. B. a reciprocating compressor, which is constructed in multiple stages and has different intermediate and aftercooler.
  • the output of the compressor leads via a line 23 via a heat exchanger 24 and from there via a line 25 to a refrigerant cooler 26, which is cooled by an additional refrigeration system. From the refrigerant cooler 26, the medium is fed via a line 27 to a heat exchanger 28 and from there via a line 29 to a turboexpander 30.
  • the outlet of the turbo expander 30 leads to a Ausdampf varietyer 32.
  • the liquid formed in the Ausdampf materialser 32 is returned via a line 33 and an expansion valve 43 via a line 44 to an inlet 45 of the gas container 20.
  • the vaporous phase of the gas in the evaporation vessel 32 leads through a
  • a line 38 leads to the gas turbine 39. Furthermore, part of the gas is optionally transferred to a gas combustion unit 40 at the branch 41.
  • the boil-off gas is compressed and heated.
  • a portion of the gas exiting the compressor is supplied via line 38 directly to the gas turbine 39.
  • Another part is returned via the turboexpander 30 and the heat exchangers 28 and 24 in a circle back to the compressor. From this circle, a part in the evaporation tank 32 is separated as a liquid and returned to the gas tank 20. The lowering of the temperature of the recirculated part takes place essentially on the one hand by the refrigerant cooler 26 and on the other hand by the turboexpander 30.
  • FIG. 1B shows the log (p) / h state diagram with a vapor curve 46 associated with FIG. 1, in which the enthalpy is shown on the abscissa and the pressure on the ordinate.
  • the numbers 1 - 16 indicate the location and condition of the medium in the system according to FIG. 1, in which the same numbers are contained.
  • the rising to the right straight line show the compression stage, while the left leading horizontal lines each represent an intermediate cooling stage.
  • the medium is on the stage 7 at a pressure of about 55 bar and a temperature of about 40 0 C.
  • the medium From here it is partly introduced into the gas turbine.
  • the other part of the medium passes through a plurality of heat exchangers, namely the heat exchanger 24, the refrigerant cooler 26, behind which the medium has a temperature of about -40 ° C, and the heat exchanger 28, behind which it reaches the state 10, wherein the temperature at about -80 ° C is.
  • the gas is now expanded via the turboexpander 30, wherein the state line runs obliquely reversed to a compressor line.
  • the medium In the evaporation tank, the medium has a temperature of about -138 ° C at a pressure of about 6.6 bar.
  • the liquefied in the turbo expander medium runs on the one hand in vapor form over the Ausdampf matterser 32 back in a circle back to the inlet 42 of the compressor, which is defined by the level 3.
  • the liquid portion of the gas in Ausdampf matterser 32 exits in state 12 from the container 32 and is relaxed via the expansion valve 43 so that it reaches the state 13 in which it in the liquid phase at a temperature of -162 ° C in the gas tank 20 can be returned.
  • Fig. 2A shows a plant similar to that of Fig. IA.
  • a gas diesel engine 47 is used as a marine propulsion, which is operated at a higher pressure. Therefore, the compressor 22 includes an additional pressure stage in which the medium is compressed to about 250 bar, and behind the state 18 is reached via the line 50, as can be easily seen in Fig. 2B, the steam curve 52 and the various state points of the system of FIG. 2A shows.
  • excess gas is combusted in a gas combustion unit 51.
  • the gas to be recirculated is decoupled via the branch 49 and the line 48 from the compressor 22.
  • Fig. 3A shows a system with a steam boiler 62.
  • the recirculated from the evaporation tank 32 gas is passed through the heat exchanger 28 and then split.
  • One part leads via the heat exchanger 53 via the line 56 at a pressure of about 2 bar to the boiler 62 and another part via the line 59 to the input of the compressor 22 back, this part with the supplied from the gas tank 20 via the line 57
  • Boil-off gas is mixed in line 58.
  • the boil-off gas has previously been compressed via a turbocompressor 60.
  • the re-liquefaction part of the plant again corresponds to the plants shown in FIGS. 1A and 2A.
  • FIG. 3B shows the state diagram associated with FIG. 3A and FIG.
  • Fig. 4 shows a modification of Fig. 3A for use in low pressure Dual Fuel (DF) diesel engine or gasoline engine 65. A portion of the gas vapor is burned here via the gas combustion 64. Instead of a simple turbocompressor here a double turbocompressor 67 is used. The remaining parts of the system correspond to those of Fig. 3A, and the state diagram corresponds to Fig. 3B.
  • DF Dual Fuel
  • the temperature behind the heat exchanger 26 at about -20 ° C, which reduces the liquefaction of the device accordingly.
  • FIGS. 5-7 show variants of the energy recovery for the turboexpander 30.
  • a system in which the shaft 77 of the turbo expander leads to a generator 69, the electrical power is supplied via a frequency converter 70 in the ship's electrical system.
  • Fig. 6 it is shown how the energy obtained in the turbo expander 32 can be converted into heat.
  • a hydraulic brake circuit with a braking device 73 and a controller 76 is used, wherein the braking energy is passed through a fluid reservoir 72 and a heat exchanger 71, which emits the heat generated to consumers.
  • Fig. 7 shows a way of recovering mechanical energy by connecting the shaft 78 of the turboexpander with the braking device 73 and the controller 76.
  • the braking device 73 is part of a hydraulic intermediate circuit with a reservoir 75 and a hydraulic motor 74, which is driven by a medium circulating via the braking device 73 and the reservoir 75 and which can deliver the mechanical energy at the shaft 78 to mechanical consumers.
  • the invention is not limited to the embodiments specified in the examples.
  • a compressor and at least one other cooler can be turned on to increase energy efficiency.
  • the coolers, compressors, expanders and evaporation tanks used are standard products available from the relevant suppliers, which can be selected to suit the required operating parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Einrichtung zum Betrieb einer Antriebsmaschine für ein Schiff zum Transport von bei tiefer Temperatur in einem Gasbehälter (20) aufgenommenem Flüssiggas, bei dem ein erster Teilstrom des im Gasbehälter verdampfenden Boil-Off-Gases der Antriebsmaschine als Energiequelle zugeführt wird, und der erste Teilstrom vor dem Eintritt in die Antriebsmaschine über wenigstens einen Kompressor (22) auf erhöhten Druck und erhöhte Temperatur gebracht wird. Erfindungsgemäß wird ein zweiter Teilstrom des über den Kompressor (22) geführten Boil-Off-Gases durch Kühlung und Expansion rückverflüssigt und in den Gasbehälter (20) zurückgeführt, wobei die Expansion des zurückgeführten Boil-Off-Gases mittels eines Turboexpanders (30) erfolgt, dessen Abgabeenergie Schiffsbetriebszwecken zugeführt wird. Der dampfförmige Teil des den Turboexpander (30) verlassenden Gases wird im Gegenstrom an dem zweiten Teilstrom entlang geführt und in den Kompressor zurückgeführt. Das der Antriebsmaschine zugeführte Gas wird entweder unmittelbar hinter dem Kompressor (22) ausgekoppelt oder dem Rückführkreis entnommen.

Description

Beschreibung
Verfahren und Einrichtung zum Betrieb einer Antriebsmaschine für ein Schiff zum Transport von Flüssiggas
[0001]
Technisches Gebiet
[0002] Die Erfindung betrifft ein Verfahren und eine Einrichtung zum Betrieb einer Antriebsmaschine für ein Schiff zum Transport von Flüssiggas nach dem Oberbegriff der Ansprüche 1 und 17.
[0003] Üblicherweise erfolgt der Transport von Flüssiggasen, insbesondere verflüssigtem Erdgas oder Methan in einem Temperaturbereich von unter -1500C, wobei das Flüssiggas sich unter atmosphärischem Druck in einem isolierten Gasbehälter befindet. Oberhalb des Flüssigkeitsspiegels bildet sich unvermeidlich Gasdampf, das sogenannte Boil-Off-Gas. Dieses kann entweder abgebrannt werden oder unter relativ großem Aufwand rückverflüssigt werden. Eine bevorzugte Möglichkeit zur Nutzung des Boil- Off-Gases besteht darin, dieses als Treibstoff für die Antriebsmaschine des Schiffes zu verwenden.
[0004] Vor der Einleitung in die Antriebsmaschine ist das Boil-Off-Gas auf die für die Antriebsmaschine geeigneten Betriebsparameter einzustellen. Dies erfolgt mittels Kompressoren und Wärmetauscher.
[0005] Bei Transportschiffen entsteht jedoch eine große Menge an Boil-Off-Gas, das für
Antriebszwecke nur zum Teil verwendbar ist, insbesondere bei kleiner Last der Antriebsmaschine. Es besteht daher der Wunsch, den nicht zum Antrieb verwendbaren Teil ohne großen Aufwand wieder rückverflüssigen zu können.
[0006]
Stand der Technik
[0007] Eine Verflüssigung bzw. Rückverflüssigung von Gasen ist seit langem bekannt. Seit der Entwicklung des Linde- Verfahrens werden zur Verflüssigung von Gasen in der Regel Kompressoren und Entspannungsventile verwendet, wobei das schrittweise abgekühlte Gas über Gegenstromwärmeübertrager in die Kompressoren zurückgeleitet und damit zur weiteren Kühlung des komprimierten Gases vor dessen Entspannung verwendet wird. Das verwendete Expansionsventil kann in einfacher Form als Drossel ausgebildet sein oder auch als Entspannungsturbine.
[0008] Beispiele für Gasverflüssigungsanlagen finden sich in der US 6,751,984 B2, der US 3,364,685 und der US 3,593,535. Dabei handelt es sich jeweils um stationäre Anlagen, die mehrstufig aufgebaut sind und die die Verflüssigung von Gasen, ausgehend von im Wesentlichen Umgebungstemperatur, in großtechnischem Maßstab vorschlagen. [0009] Der Einsatz derartiger Gasverflüssigungsanlagen auf einem Schiff zum Transport bereits flüssigen auf tiefer Temperatur gehaltenen Gases verbietet sich bereits aufgrund des Aufwandes.
[0010] Aus der DE-AS 22 25 382 sind ein Verfahren zum Transport von Flüssiggas und ein Schiff zur Durchführung des Verfahrens bekannt, bei dem Boil-Off-Gas aufgefangen, verdichtet, nach Bedarf erwärmt und als Energiequelle für den Schiffsantrieb verwendet wird. Aus dem aufgefangenen Gas wird dabei ein Teilstrom abgeleitet, verdichtet und nach Wärmeabgabe an den dem Verbrennungsvorgang zuzuführenden Gasstrom und nach Entspannung rückverflüssigt und in den Gasbehälter zurückgeführt. Die Rückverflüssigung erfolgt dabei über ein Entspannungsventil. Bei diesem System erfolgt die Kompression des der Antriebsmaschine zugeführten Gasstroms erst im Anschluss an eine Erwärmung über Wärmetauscher des Rückver- flüssigungsweges. Die Energieeffizienz dieses Verfahrens ist relativ gering.
[0011]
Darstellung der Erfindung
[0012] Der Erfindung liegt eine Aufgabe zugrunde, ein Verfahren und eine Einrichtung zum Betrieb einer Antriebsmaschine für ein Schiff zum Transport von bei tiefer Temperatur in einem Gasbehälter aufgenommenem verflüssigtem Gas anzugeben, das eine ökonomische Verwendung des Boil-Off-Gases aus dem Gasbehälter erlaubt, das die Möglichkeit der Rückverflüssigung überschüssigen Boil-Off-Gases schafft und das eine effektive Energieausnutzung gewährleistet.
[0013] Diese Aufgabe wird durch die in den Ansprüchen 1 und 17 angegebene Erfindung gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
[0014] Die Erfindung geht aus von einem Verfahren, bei dem das Boil-Off-Gas eines Gasbehälters über Kompressoren verdichtet und erwärmt wird, wobei ein Teilstrom des Gases der Antriebsmaschine zugeführt wird und ein zweiter Teilstrom rückverflüssigt in den Gasbehälter zurückgeführt wird. Wenigstens ein Teil des zweiten Teilstroms wird außerdem im Gegenstrom am zweiten Teilstrom entlanggeführt, um die Gesamt- Effizienz der Anlage zu verbessern.
[0015] Erfindungsgemäß erfolgt die Expansion des zurück zu kühlenden Boil-Off-Gases mittels einer Expansionseinheit, nämlich einer Expansionsmaschine, die gleichzeitig zur Energiegewinnung verwendet wird.
[0016] Die Unteransprüche 2 und 8 zeigen bevorzugte Ausführungsbeispiele der Erfindung zur Verwendung bei Dampfturbinen, Gas-Diesel-/Diesel-Otto-Motoren und Gasturbinen. [0017] Der als Expansionsmaschine verwendete Turboexpander gibt an seiner Welle
Energie ab, die für unterschiedliche Schiffsbetriebszwecke verwendet werden kann. Eine bevorzugte Verwendung besteht darin, an den Turboexpander einen Generator anzuschließen, der es ermöglicht, elektrische Energie über einen Frequenzumrichter in das Bordnetz zu leiten. Eine andere Möglichkeit der Verwendung der gewonnenen Energie besteht darin, den Turboexpander auf einen hydraulischen Bremskreis zu schalten, über den Wärme erzeugbar ist, die zu Heizzwecken verwendet werden kann. Außerdem kann die gewonnene mechanische Energie auch über einen hydraulischen Zwischenkreis zur Erhöhung der Wellenleistung zum Antrieb des Schiffes verwendet werden oder anderen Antriebsaggregaten, wie Ruderanlagen oder einem Kompressor, zur Verfügung gestellt werden. [0018]
Kurze Beschreibung der Zeichnungen
[0019] Die Erfindung wird nachstehend anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen:
[0020] Fig. IA ein Systemdiagramm für Schiffe mit einer Gasturbine als Antrieb,
[0021] Fig. IB ein zu Figur IA gehöriges Zustandsdiagramm,
[0022] Fig. 2A ein Systemdiagramm für Schiffe mit einem Gasdieselmotor mit Hochdruckeinspritzung als Antrieb,
[0023] Fig. 2B ein zu Figur 2A gehöriges Zustandsdiagramm,
[0024] Fig. 3A ein Systemdiagramm für Schiffe mit einer Dampfturbine als Antrieb,
[0025] Fig. 3B ein zur Figur 3 gehöriges Zustandsdiagramm,
[0026] Fig. 4 ein Systemdiagramm für Schiffe mit einem Niederdruck-Gas-Diesel- oder Ottomotor als Antrieb,
[0027] Fig. 5 ein Prinzipschaltbild zur Energierückgewinnung mit einem Generator,
[0028] Fig. 6 ein Prinzipschaltbild zur Energierückgewinnung mit einem hydraulischen Bremskreis, und
[0029] Fig. 7 ein Prinzipschaltbild zur Energierückgewinnung mit einem mechanischen Zwischenkreis.
[0030]
Ausführungsbeispiele der Erfindung
[0031] In den Figuren bezeichnen die Ziffern 1 - 16 Zustands großen an den jeweiligen Anlageteilen, die mit den Ziffern 20 - 78 gekennzeichnet sind.
[0032] Die in Fig. IA dargestellte Anlage ist auf einem Schiff aufgebaut und zeigt einen Gasbehälter 20, aus dem über eine Leitung 21 Boil-Off-Gas, nachstehend auch Medium genannt, entnommen werden kann. Die Leitung 21 führt auf einen Kompressor 22, z. B. einem Kolbenkompressor, der mehrstufig aufgebaut ist und ver- schiedene Zwischen- und Nachkühler aufweist. Der Ausgang des Kompressors führt über eine Leitung 23 über einen Wärmetauscher 24 und von dort über eine Leitung 25 auf einen Kältemittelkühler 26, der durch eine zusätzliche Kälteanlage gekühlt wird. Aus dem Kältemittelkühler 26 wird das Medium über eine Leitung 27 einem Wärmetauscher 28 und von dort über eine Leitung 29 einem Turboexpander 30 zugeführt. Über eine Leitung 31 führt der Ausgang des Turboexpanders 30 auf eine Ausdampfbehälter 32. Die im Ausdampfbehälter 32 gebildete Flüssigkeit wird über eine Leitung 33 und ein Entspannungsventil 43 über eine Leitung 44 an einen Einlass 45 des Gasbehälters 20 zurückgeführt.
[0033] Die dampfförmige Phase des Gases im Ausdampfbehälter 32 führt durch eine
Leitung 34, über den Wärmetauscher 28, von dort über eine Leitung 35 zum Wärmetauscher 24 sowie eine Leitung 37 zurück zu einem Einlass 42 des Kompressors 22.
[0034] Vom Abzweig 36 der Leitung 23 führt eine Leitung 38 zur Gasturbine 39. Des Weiteren wird am Abzweig 41 optional ein Teil des Gases in eine Gasverbren- nungseinheit 40 überführt.
[0035] Die Anlage arbeitet wie folgt:
[0036] In dem mehrstufigen Kompressor 22 wird das Boil-Off-Gas verdichtet und erwärmt. Ein Teil des aus dem Kompressor austretenden Gases wird über die Leitung 38 unmittelbar der Gasturbine 39 zugeführt. Ein weiterer Teil wird über den Turboexpander 30 und die Wärmetauscher 28 und 24 im Kreis wieder zum Kompressor zurückgeführt. Aus diesem Kreis wird ein Teil im Ausdampfbehälter 32 als Flüssigkeit abgetrennt und zum Gasbehälter 20 zurückgeführt. Die Absenkung der Temperatur des zurückgeführten Teils erfolgt im Wesentlichen einerseits durch den Kältemittelkühler 26 und andererseits durch den Turboexpander 30.
[0037] Fig. IB zeigt das zu Fig. 1 zugehörige log (p)/h-Zustandsdiagramm mit Dampfkurve 46, bei dem auf der Abszisse die Enthalpie und auf der Ordinate der Druck dargestellt sind. Die Ziffern 1 - 16 kennzeichnen den Ort und Zustand des Mediums in der Anlage gemäß Fig. 1, in der die gleichen Ziffern enthalten sind. Ausgehend vom gasförmigen Zustand 1 im Gasbehälter erfolgt mittels des Kompressors 22 eine Erhöhung der Enthalpie und des Drucks im mehrstufigen Kompressor 22 mit den einzelnen Stufen 2, 3, 4, 5 und 6. Die nach rechts ansteigenden Geraden zeigen die Kompressionsstufe, während die nach links führenden horizontalen Linien jeweils eine Zwischenkühlstufe darstellen. Am Ausgang des Kompressors 22 befindet sich das Medium auf der Stufe 7 bei einem Druck von ca. 55 bar und einer Temperatur von ca. 400C. Von hier aus wird es zum Teil in die Gasturbine eingeleitet. Der andere Teil des Mediums läuft über mehrere Wärmetauscher, nämlich den Wärmetauscher 24, den Kältemittelkühler 26, hinter dem das Medium eine Temperatur von etwa -40° C hat, und den Wärmetauscher 28, hinter dem es den Zustand 10 erreicht, wobei die Temperatur bei ca. -80° C liegt. Das Gas wird nun über den Turboexpander 30 entspannt, wobei die Zustandslinie schräg umgekehrt zu einer Kompressorlinie verläuft. Im Ausdampfbehälter hat das Medium eine Temperatur von ca. -138° C bei einem Druck von ca. 6,6 bar. Das im Turboexpander 30 verflüssigte Medium läuft einerseits dampfförmig über den Ausdampfbehälter 32 wieder im Kreis zurück zum Einlass 42 des Kompressors, der durch die Stufe 3 definiert ist. Der Flüssiganteil des Gases im Ausdampfbehälter 32 tritt andererseits im Zustand 12 aus dem Behälter 32 aus und wird über das Entspannungsventil 43 entspannt, so dass es den Zustand 13 erreicht, in dem es in flüssiger Phase bei einer Temperatur von -162° C in den Gasbehälter 20 zurückgeführt werden kann.
[0038] Durch den Schrägverlauf der Zustandskurve zwischen den Punkten 10 und 11 im Zu- standsdiagramm wird deutlich, dass durch den Turboexpander Energie gewonnen werden kann, die an der Abtriebswelle des Turboexpanders abgegriffen werden kann. In einem ausgeführten Beispiel konnten bei einer 2 MW Antriebsmaschine ca. 350 KW Energie über den Turboexpander gewonnen werden. Dabei konnten 60% des Boil- Off-Gases rückverflüssigt werden.
[0039] Fig. 2A zeigt eine Anlage, die ähnlich der von Fig. IA aufgebaut ist. Statt einer Gasturbine wird jedoch ein Gasdieselmotor 47 als Schiffsantrieb verwendet, der mit höherem Druck betrieben wird. Daher enthält der Kompressor 22 eine zusätzliche Druckstufe, in der das Medium auf ca. 250 bar verdichtet wird, und hinter der der Zustand 18 über die Leitung 50 erreicht wird, wie es in Fig. 2B leicht erkennbar ist, die die Dampfkurve 52 und die verschiedenen Zustandspunkte der Anlage gemäß Fig. 2A zeigt. Auch hier erfolgt eine Verbrennung überschüssigen Gases in einer Gasverbrennungseinheit 51. Das zurückzuführende Gas wird über den Abzweig 49 und die Leitung 48 aus dem Kompressor 22 ausgekoppelt.
[0040] Fig. 3A zeigt eine Anlage mit einem Dampfkessel 62. Das vom Ausdampfbehälter 32 zurückgeführte Gas wird über den Wärmetauscher 28 geführt und danach aufgeteilt. Ein Teil führt über den Wärmetauscher 53 über die Leitung 56 bei einem Druck von ca. 2 bar zum Dampfkessel 62 und ein anderer Teil über die Leitung 59 zum Eingang des Kompressors 22 zurück, wobei dieser Teil mit dem vom Gasbehälter 20 über die Leitung 57 zugeführten Boil-Off-Gas in der Leitung 58 gemischt wird. Das Boil- Off-Gas ist zuvor über einen Turbokompressor 60 verdichtet worden.
[0041] Der Rückverflüssigungsteil der Anlage entspricht wiederum den in den Figuren IA und 2A dargestellten Anlagen.
[0042] Fig. 3B zeigt das zu Fig. 3A und Fig. 4 gehörige Zustandsdiagramm mit der
Dampfkurve 68 und den Zuständen 1 - 16, die den entsprechenden Ziffern in Fig. 3 A und Fig. 4 entsprechen.
[0043] Fig. 4 zeigt eine Abwandlung von Fig. 3A zur Verwendung für einen Niederdruck Dual Fuel (DF)-Dieselmotor oder Otto-Motor 65. Ein Teil des Gasdampfes wird hier über die Gasverbrennung 64 verbrannt. Anstelle eines einfachen Turbokompressors wird hier ein Doppel-Turbokompressor 67 verwendet. Die übrigen Anlagenteile entsprechen denen von Fig. 3 A, und das Zustandsdiagramm entspricht Fig. 3B.
[0044] In einer vereinfachten Variante entfällt der Wärmetauscher 53. Dadurch liegt in dieser Variante die Temperatur hinter dem Wärmetauscher 26 bei ca. -20° C, was die Verflüssigungsleistung der Einrichtung entsprechend verringert.
[0045] Die Figuren 5 - 7 zeigen Varianten der Energierückgewinnung für den Turboexpander 30.
[0046] In Fig. 5 ist ein System dargestellt, bei dem die Welle 77 des Turboexpanders auf einen Generator 69 führt, dessen elektrische Leistung über einen Frequenzumrichter 70 in das Schiffs-Bordnetz gegeben wird.
[0047] In Fig. 6 ist dargestellt, wie die im Turboexpander 32 gewonnene Energie in Wärme umgewandelt werden kann. Hierzu wird ein hydraulischer Bremskreis mit einer Bremseinrichtung 73 und einer Regelung 76 verwendet, wobei die Bremsenergie über einen Fluidspeicher 72 und einen Wärmetauscher 71 geführt wird, der die erzeugte Wärme an Verbraucher abgibt.
[0048] Schließlich zeigt Fig. 7 eine Möglichkeit der Gewinnung mechanischer Energie, indem die Welle 78 des Turboexpanders mit der Bremseinrichtung 73 und der Regelung 76 verbunden ist. Die Bremseinrichtung 73 ist Teil eines hydraulischen Zwischenkreises mit einem Speicher 75 und einem Hydromotor 74, der durch ein über die Bremseinrichtung 73 und den Speicher 75 umlaufendes Medium angetrieben wird und der die mechanische Energie an der Welle 78 an mechanische Verbraucher abgeben kann.
[0049] Die Erfindung ist nicht auf die in den Beispielen angegebenen Ausführungsformen beschränkt. Beispielsweise können bei Verwendung bei Niederdruck- Gas-Diesel-Motoren zwischen Kühler 26 und Wärmetauscher 28 noch ein Kompressor und wenigstens ein weiterer Kühler eingeschaltet werden um die Energieeffizienz zu erhöhen. Bei den verwendeten Kühlern, Kompressoren, Expandern und Ausdampfbehältern handelt es sich um standardmäßig bei entsprechenden Lieferanten erhältliche Produkte, die für die erforderlichen Betriebsparameter geeignet auszuwählen sind.
[0050]
[0051]
[0052] Bezugszeichenliste
[0053] 1-16 Zustandsgrößen
[0054] 20 Gasbehälter
[0055] 21 Leitung
[0056] 22 Kompressor [0057] 23 Leitung
[0058] 24 Wärmetauscher
[0059] 25 Leitung
[0060] 26 Kältemittelkühler
[0061] 27 Leitung
[0062] 28 Wärmetauscher
[0063] 29 Leitung
[0064] 30 Turboexpander
[0065] 31 Leitung
[0066] 32 Ausdampfbehälter
[0067] 33 Leitung
[0068] 34 Leitung
[0069] 35 Leitung
[0070] 36 Abzweig
[0071] 37 Leitung
[0072] 38 Leitung
[0073] 39 Gasturbine
[0074] 40 Verbrennungseinheit
[0075] 41 Abzweig
[0076] 42 Anschluss
[0077] 43 Expansionsventil
[0078] 44 Leitung
[0079] 45 Einlass
[0080] 46 Dampfkurve
[0081] 47 Gasdieselmotor
[0082] 48 Leitung
[0083] 49 Abzweig
[0084] 50 Leitung
[0085] 51 Gasverbrennung
[0086] 52 Dampfkurve
[0087] 53 Wärmetauscher
[0088] 54 Leitung
[0089] 55 Leitung
[0090] 56 Leitung
[0091] 57 Leitung
[0092] 58 Einlass
[0093] 59 Leitung
[0094] 60 Turbokompressor [0095] 61 Leitung
[0096] 62 Dampfkessel
[0097] 64 Gasverbrennung
[0098] 65 DF-Dieselmotor oder Otto-Motoi
[0099] 66 Leitung
[0100] 67 Turbokompressor
[0101] 68 Dampfkurve
[0102] 69 Generator
[0103] 70 Frequenzumrichter
[0104] 71 Wärmetauscher
[0105] 72 Speicher
[0106] 73 Bremseinrichtung
[0107] 74 Hydromotor
[0108] 75 Speicher
[0109] 76 Regelung
[0110] 77 Welle
[Ol l i] 78 Welle
[0112]

Claims

Ansprüche
[0001] Verfahren zum Betrieb einer Antriebsmaschine für ein Schiff zum Transport von bei tiefer Temperatur in einem Gasbehälter (20) aufgenommenem Flüssiggas, bei dem ein erster Teilstrom des im Gasbehälter (20) verdampfenden Boil-Off-Gases der Antriebsmaschine als Energiequelle zugeführt wird, und der erste Teilstrom vor dem Eintritt in die Antriebsmaschine über wenigstens einen Kompressor (22) auf erhöhten Druck und erhöhte Temperatur gebracht wird, dadurch gekennzeichnet, dass ein zweiter Teilstrom des über den Kompressor (22) geführten Boil-Off-Gases durch Kühlung und Expansion rückverflüssigt und in den Gasbehälter (20) zurückgeführt wird, wobei die Expansion des zurückgeführten Boil-Off-Gases mittels einer Expandermaschine (30) erfolgt, deren Abgabeenergie Schiffsbetriebszwecken zugeführt wird, und dass der dampfförmige Teil des den Turboexpander (30) verlassenden Gases im Gegenstrom an dem zweiten Teilstrom entlang geführt und in den Kompressor (22) zurückgeführt wird.
[0002] Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das aus dem Gasbehälter (20) entnommene Boil-Off-Gas einem mehrstufigen Kompressor (22) zugeführt wird, von dessen Ausgang der erste Teilstrom der Antriebsmaschine zugeführt wird, dass der zweite Teilstrom über die Expandermaschine (30) geführt und in einem Ausdampfbehälter (32) in einen Rückführstrom und einem Kreisstrom aufgeteilt wird, wobei der Rückführstrom über ein Entspannungsventil (43) in den Gasbehälter zurückgeführt und der Kreisstrom zum Kompressor zurückgeführt wird.
[0003] Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Kreisstrom über wenigstens einen Wärmetauscher (28, 24, 53) geführt ist, der vom zweiten Teilstrom erwärmt wird.
[0004] Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der zweite
Teilstrom über einen Wärmetauscher (26) durch ein Kühlmittel zwischengekühlt wird.
[0005] Verfahren nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass als Schiffsmaschine eine Gasturbine (39) verwendet ist.
[0006] Verfahren nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass der zweite
Teilstrom einer Zwischenstufe des mehrstufigen Kompressors (22) entnommen wird, und dass als Schiffsantriebsmaschine ein Gasdieselmotor mit Hochdruckeinspritzung (47) verwendet ist.
[0007] Verfahren nach einem der Ansprüche 2 - 6, dadurch gekennzeichnet, dass der
Kreisstrom an eine Zwischenstufe des mehrstufigen Kompressors (22) geführt wird.
[0008] Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Teil des im
Kreisstrom geführten dampfförmigen Teils des über den Turboexpander geführten Gases an die Antriebsmaschine geführt wird.
[0009] Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Antriebsmaschine ein Dampfkessel (62) ist, und dass das Boil-Off-Gas vor dem Eintritt in den Kompressor (22) über einen Turbokompressor (60) geführt ist.
[0010] Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Teil des
Kreisstromes, der der Antriebsmaschine zugeführt wird, über einen Wärmetauscher (53) geführt wird, in dem der Kreisstrom vom Ausgangsstrom des Kolbenkompressors (22) erwärmt wird.
[0011] Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Ausgangsstrom des Kolbenkompressors (22) über einen Kältemittelkühler (26) abgekühlt wird.
[0012] Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Turbokompressor ein zweistufiger Turbokompressor (67) ist, und dass als Antriebsmaschine ein Gas-Diesel-Motor / Gas-Otto-Motor (65) mit Niederdruckgaseinspritzung verwendet ist.
[0013] Verfahren nach einem oder mehrere der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mehrstufige Kompressor (22) mit Zwischen- und Nachkühlern versehen ist.
[0014] Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abgabeenergie der Expandermaschine auf einen Generator (69) zur Gewinnung elektrischer Energie geführt ist.
[0015] Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abgabeenergie auf einen hydraulischen Bremskreis (73) zur Erzeugung von Wärme geführt ist.
[0016] Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abgabeenergie auf eine mechanische Antriebseinheit (74) geführt ist.
[0017] Einrichtung zur Versorgung einer Antriebsmaschine für ein Schiff zum Transport von bei tiefer Temperatur in einem Gasbehälter (20) aufgenommenem Flüssiggas, zur Durchführung eines Verfahrens nach Anspruch 1, mit einem Kompressor (22) zur Verdichtung von aus dem Gasbehälter (20) entnommenem Boil-Off-Gas und einer Rückverflüssigungseinheit zur Rückverflüssigung eines Teils des Boil-Off-Gases, welche wenigstens einen Wärmetauscher (24, 28, 53) und eine Expansionseinheit (30) enthält, dadurch gekennzeichnet, dass die Expansionseinheit eine Expansionsmaschine in Form eines Turboexpanders (30) ist.
[0018] Einrichtung nach Anspruch 17, dadurch gekennzeichnet, dass der Ausgang des
Turboexpanders (30) mit dem Eingang eines Ausdampfbehälters (32) verbunden ist, aus dem die flüssige Phase des Gases über ein Expanderventil (43) in den Gasbehälter (20) zurückgeführt wird, und wenigstens ein Teil der aus dem Ausdampfbehälter (32) austretenden dampfförmigen Phase des Gases zum Eingang des Kompressors (22) zurückgeführt wird, wobei der zum Eingang des Kompressors (22) zurückgeführte Dampf im Gegenstrom über einen Wärmetauscher (28, 24, 53) mit dem vom Ausgang des Kompressors (22) zum Turboexpander (30) geführten Gas gekoppelt ist.
[0019] Einrichtung nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass das der
Antriebsmaschine zugeführte Gas aus dem den Kompressor (22) verlassenden Gas ausgekoppelt wird.
[0020] Einrichtung nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass das der
Antriebsmaschine zugeführte Gas aus dem zwischen Ausdampfbehälter (32) und Kompressor (22) zurückgeführten Gas ausgekoppelt wird.
PCT/DE2009/050037 2009-03-27 2009-07-14 Verfahren und einrichtung zum betrieb einer antriebsmaschine für ein schiff zum transport von flüssiggas WO2010108464A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009015411.6 2009-03-27
DE102009015411A DE102009015411A1 (de) 2009-03-27 2009-03-27 Verfahren und Einrichtung zum Betrieb einer Antriebsmaschine für ein Schiff zum Transport von Flüssiggas

Publications (2)

Publication Number Publication Date
WO2010108464A2 true WO2010108464A2 (de) 2010-09-30
WO2010108464A3 WO2010108464A3 (de) 2013-12-12

Family

ID=42674884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/050037 WO2010108464A2 (de) 2009-03-27 2009-07-14 Verfahren und einrichtung zum betrieb einer antriebsmaschine für ein schiff zum transport von flüssiggas

Country Status (2)

Country Link
DE (1) DE102009015411A1 (de)
WO (1) WO2010108464A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136991A1 (en) * 2011-04-06 2012-10-11 Liquid Gas Equipment Limited Method of cooling boil off gas and an apparatus therefor
WO2012143699A1 (en) * 2011-04-19 2012-10-26 Liquid Gas Equipment Limited Method of cooling boil off gas and an apparatus therefor
WO2013164069A3 (de) * 2012-05-03 2015-04-16 Linde Aktiengesellschaft Verfahren zum rückverflüssigen einer methan-reichen fraktion
EP2799797A3 (de) * 2013-05-02 2015-11-11 Ballast Nedam International Product Management B.v Verfahren und System zur zumindest teilweisen Verflüssigung von methanhaltigem Gas
WO2015036708A3 (fr) * 2013-09-12 2016-03-03 Cryostar Sas Dispositif de récupération de vapeurs issues d'un réservoir cryogénique
KR20160113535A (ko) * 2012-12-11 2016-09-29 대우조선해양 주식회사 증발가스 재액화 시스템 및 방법
JP2018066272A (ja) * 2016-10-17 2018-04-26 三井造船株式会社 燃料ガス供給システム、船舶、及び燃料ガス供給方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011011249A1 (de) * 2011-02-15 2012-08-16 TECHNOLOG GmbH Verfahren zum Antrieb von Schiffen und Antriebsvorrichtung
RU2719607C1 (ru) * 2016-03-31 2020-04-21 Дэу Шипбилдинг Энд Марин Инджиниринг Ко., Лтд. Судно

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2307384A1 (de) * 1972-06-21 1974-08-29 Sulzer Ag Verfahren zum seetransport von fluessiggas und schiff zur ausfuehrung des verfahrens
US3857245A (en) * 1973-06-27 1974-12-31 J Jones Reliquefaction of boil off gas
GB1401584A (en) * 1972-12-11 1975-07-16 Sulzer Ag Transportation of liquefied combustible gas by ship
WO2007011155A1 (en) * 2005-07-19 2007-01-25 Shinyoung Heavy Industries Co., Ltd. Lng bog reliquefaction apparatus
WO2008075882A1 (en) * 2006-12-18 2008-06-26 Samsung Heavy Ind. Co., Ltd. Fuel supply apparatus of liquefied gas carrier and fuel supply method thereof
DE102007008723A1 (de) * 2007-02-22 2008-08-28 Marine-Service Gmbh Verfahren und Einrichtung zur Versorgung eines Brennstoffverbrauchers, insbesondere einer Schiffantriebsmaschine, mit Kraftstoff

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364685A (en) 1965-03-31 1968-01-23 Cie Francaise D Etudes Et De C Method and apparatus for the cooling and low temperature liquefaction of gaseous mixtures
GB1135871A (en) 1965-06-29 1968-12-04 Air Prod & Chem Liquefaction of natural gas
NO312736B1 (no) 2000-02-10 2002-06-24 Sinvent As Framgangsmåte og anlegg for kjöling og eventuelt flytendegjöring av en produktgass
KR100835090B1 (ko) * 2007-05-08 2008-06-03 대우조선해양 주식회사 Lng 운반선의 연료가스 공급 시스템 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2307384A1 (de) * 1972-06-21 1974-08-29 Sulzer Ag Verfahren zum seetransport von fluessiggas und schiff zur ausfuehrung des verfahrens
GB1401584A (en) * 1972-12-11 1975-07-16 Sulzer Ag Transportation of liquefied combustible gas by ship
US3857245A (en) * 1973-06-27 1974-12-31 J Jones Reliquefaction of boil off gas
WO2007011155A1 (en) * 2005-07-19 2007-01-25 Shinyoung Heavy Industries Co., Ltd. Lng bog reliquefaction apparatus
WO2008075882A1 (en) * 2006-12-18 2008-06-26 Samsung Heavy Ind. Co., Ltd. Fuel supply apparatus of liquefied gas carrier and fuel supply method thereof
DE102007008723A1 (de) * 2007-02-22 2008-08-28 Marine-Service Gmbh Verfahren und Einrichtung zur Versorgung eines Brennstoffverbrauchers, insbesondere einer Schiffantriebsmaschine, mit Kraftstoff

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140049981A (ko) * 2011-04-06 2014-04-28 밥콕 인터그레이티드 테크놀로지 리미티드 증발 가스 냉각 방법 및 그 장치
WO2012136991A1 (en) * 2011-04-06 2012-10-11 Liquid Gas Equipment Limited Method of cooling boil off gas and an apparatus therefor
KR101710341B1 (ko) 2011-04-06 2017-02-27 밥콕 인터그레이티드 테크놀로지 리미티드 증발 가스 냉각 방법 및 그 장치
CN103703299A (zh) * 2011-04-06 2014-04-02 液化气设备有限公司 冷却蒸发气体的方法和用于其的设备
CN103703299B (zh) * 2011-04-06 2015-09-16 液化气设备有限公司 冷却蒸发气体的方法和用于其的设备
KR101590311B1 (ko) 2011-04-19 2016-02-18 밥콕 인터그레이티드 테크놀로지 리미티드 증발 가스 냉각 방법 및 이를 위한 장치
CN103717959A (zh) * 2011-04-19 2014-04-09 液化气设备有限公司 冷却蒸发气体的方法和用于其的设备
US9823014B2 (en) 2011-04-19 2017-11-21 Babcock Ip Management (Number One) Limited Method of cooling boil off gas and an apparatus therefor
KR20140027233A (ko) * 2011-04-19 2014-03-06 밥콕 인터그레이티드 테크놀로지 리미티드 증발 가스 냉각 방법 및 이를 위한 장치
WO2012143699A1 (en) * 2011-04-19 2012-10-26 Liquid Gas Equipment Limited Method of cooling boil off gas and an apparatus therefor
WO2013164069A3 (de) * 2012-05-03 2015-04-16 Linde Aktiengesellschaft Verfahren zum rückverflüssigen einer methan-reichen fraktion
RU2621572C2 (ru) * 2012-05-03 2017-06-06 Линде Акциенгезелльшафт Способ обратного сжижения богатой метаном фракции
AU2013257026B2 (en) * 2012-05-03 2017-04-13 Linde Aktiengesellschaft Process for reliquefying a methane-rich fraction
KR101699329B1 (ko) 2012-12-11 2017-01-24 대우조선해양 주식회사 증발가스 재액화 시스템 및 방법
KR20160113535A (ko) * 2012-12-11 2016-09-29 대우조선해양 주식회사 증발가스 재액화 시스템 및 방법
EP2799797A3 (de) * 2013-05-02 2015-11-11 Ballast Nedam International Product Management B.v Verfahren und System zur zumindest teilweisen Verflüssigung von methanhaltigem Gas
WO2015036708A3 (fr) * 2013-09-12 2016-03-03 Cryostar Sas Dispositif de récupération de vapeurs issues d'un réservoir cryogénique
JP2018066272A (ja) * 2016-10-17 2018-04-26 三井造船株式会社 燃料ガス供給システム、船舶、及び燃料ガス供給方法

Also Published As

Publication number Publication date
WO2010108464A3 (de) 2013-12-12
DE102009015411A1 (de) 2010-10-07

Similar Documents

Publication Publication Date Title
WO2010108464A2 (de) Verfahren und einrichtung zum betrieb einer antriebsmaschine für ein schiff zum transport von flüssiggas
KR102092313B1 (ko) 선박
DE2307390A1 (de) Verfahren zum behandeln bzw. verwerten des auf einem transportschiff fuer verfluessigtes brennbares gas durch verdampfung anfallenden gases, und anlage zur ausfuehrung des verfahrens
DE69627687T2 (de) Verflüssigungsapparat
DE60123143T2 (de) Vorrichtung zur Verflüssigung von Dampf unter Druck
DE69000702T2 (de) Erdgasverfluessigung mit hilfe einer prozessbelasteten expansionsmaschine.
DE102005032556B4 (de) Anlage und Verfahren zur Nutzung eines Gases
KR101459962B1 (ko) 액화가스 처리 시스템
KR102340478B1 (ko) 극저온 액체의 증발에 의해 생성된 가스를 처리하고 가스 엔진에 가압 가스를 공급하기 위한 시스템
DE69819366T2 (de) Verfahren und vorrichtung zur verflüssigung
EP1562013A1 (de) Verfahren zum Rückverflüssigen eines Gases
DE19937623A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
EP1892457B1 (de) Verfahren und Vorrichtung zur Speicherung von Brenngas, insbesondere von Erdgas
DE10119761A1 (de) Verfahren und Vorrichtung zur Verflüssigung von Erdgas
DE2434238A1 (de) Verfahren zur speicherung und rueckgewinnung von energie
KR101496577B1 (ko) 액화가스 처리 시스템
EP2381073B1 (de) Effizienzsteigerungsvorrichtung eines Antriebs eines Strom- und Wärmeerzeugers
DE102013208701A1 (de) System zur Verdampfung von verflüssigtem Erdgas (LNG)
DE102019216764A1 (de) Vorrichtung umfassend zwei Teilsysteme, Verfahren zum Betreiben dieser Vorrichtung sowie Verkehrsmittel umfassend zumindest eines der Teilsysteme
EP3527869A1 (de) Lng wiedervergasung
KR101480253B1 (ko) 액화가스 처리 시스템
EP3948122A1 (de) Verfahren und anlage zum verflüssigen eines gases
DE602004001004T2 (de) Verfahren zur Stickstoffverflüssigung durch Ausnutzung der Verdampfungskälte von flüssigem Methan
EP4227620A1 (de) Verfahren und vorrichtung zum wiederverflüssigen und rückführen von abdampfgas in einen lng-tank
DE102022205134B3 (de) Druckaufbausystem und Druckaufbauverfahren zum Entnehmen eines Druckgases aus einer Speichervorrichtung zur Aufbewahrung eines Flüssiggases

Legal Events

Date Code Title Description
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 112(1) EPUE (EPA FORM 1205A VOM 06.02.2012)

122 Ep: pct application non-entry in european phase

Ref document number: 09776132

Country of ref document: EP

Kind code of ref document: A2