WO2010105577A1 - 活塞式层流冷却装置 - Google Patents

活塞式层流冷却装置 Download PDF

Info

Publication number
WO2010105577A1
WO2010105577A1 PCT/CN2010/071150 CN2010071150W WO2010105577A1 WO 2010105577 A1 WO2010105577 A1 WO 2010105577A1 CN 2010071150 W CN2010071150 W CN 2010071150W WO 2010105577 A1 WO2010105577 A1 WO 2010105577A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
piston
screw
disposed
cooling device
Prior art date
Application number
PCT/CN2010/071150
Other languages
English (en)
French (fr)
Inventor
王军
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to RU2011142291/02A priority Critical patent/RU2491142C2/ru
Priority to JP2012500056A priority patent/JP5497147B2/ja
Priority to BRPI1009321-4A priority patent/BRPI1009321B1/pt
Priority to KR1020117024599A priority patent/KR101319389B1/ko
Publication of WO2010105577A1 publication Critical patent/WO2010105577A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates

Definitions

  • the present invention relates to a hot-rolled laminar cooling technique in the metallurgical field, and more particularly to a cooling device having an adjustable laminar flow width suitable for use in a metallurgical rolling steel production line.
  • the hot-rolled strip shape has always been a quality issue that users pay special attention to.
  • the quality of the plate shape directly affects the use of the product.
  • the application field of strip steel products continues to expand, and users are on its board.
  • the quality requirements are also increasing.
  • the hot rolling mill production line of the iron and steel enterprises must use a laminar cooling device. Its main function is to rapidly cool the strip at the exit of the finishing roll according to the target temperature set by the coiling to ensure the cooling. Strip product performance.
  • Laminar flow cooling devices typically have several sets of cooling headers (one set of upper and lower headers). Strip cooling is generally divided into several cooling zones. Each cooling zone is formed by connecting the main cooling section and the cooling section in series. The main cooling section of the cooling zone is composed of several sets of strong cooling headers and several groups of masters. Cold manifold assembly. Control PLC According to the laminar cooling model, when calculating the valve group that needs to open the header, set according to the rules of the main cold section from the back to the rear and the cold section from the back to the front. The position of each set of headers has data in the control PLC, and the control PLC also tracks the position of the strip on the laminar flow path.
  • the cooling control method of the laminar cooling device is as follows:
  • the process machine calculates the number of open groups of the cooling section of the main cooling section and the cooling section according to the set final rolling temperature and the coiling temperature, and issues instructions to the finishing rolling basic automation equipment. Control the water valve.
  • the actual finish rolling temperature of the strip is measured by the post-rolling thermometer, and the number of open sets of the cooling header is adjusted accordingly.
  • the number of laminar cooling header opening groups is dynamically adjusted according to the set coiling target value to ensure the strip steel.
  • the coiling temperature is within the set range.
  • the amount of cooling water per valve block controls the strip temperature to 5 degrees.
  • the existing laminar cooling system can not meet the needs of some steel production, especially some strength steels containing alloying elements (such as : BS600, BS700, B510L, S45C, SS400, etc.).
  • the existing laminar cooling system has problems such as unstable water pressure and uneven water flow distribution, resulting in uneven cooling of the strip, which leads to a series of plate shape quality problems, such as belt
  • the steel is c-warped due to uneven cooling; while the strip is unevenly cooled in the width direction, especially when the temperature of the edge is lowered, the internal stress which causes the bilateral wave trend is generated in the subsequent cooling process, thereby giving the strip shape of the strip.
  • Mechanical properties, temperature and phase change have a great influence on the uniformity in the width direction.
  • Kawasaki Steel Co., Ltd. discloses a laminar flow cooling device in the Chinese patent entitled “Cleaning Method and Apparatus for Metal Strips", published on December 16, 1987, with the publication number CN87100594.
  • the device employs a laminar flow nozzle composed of a pair of plate members defining slits through which the cooling water flows to form a cooling water screen.
  • the flat plate parts of the laminar flow nozzle are at least One can be deformed in a direction perpendicular to the flow of the cooling water, and at least one of the plates is better responsive to the cooling water pressure, causing a change in the passage area to adjust the cooling water passage area.
  • This method adopts a method of shielding the edge of the laminar cooling header, and provides a solution for solving the large temperature drop of the strip edge.
  • the biggest disadvantage of this method is: When producing narrow strips, a large amount of waste water resources are wasted, which is not suitable for modern intensive industrial production.
  • Japanese Mitsubishi Heavy Industries Co., Ltd. also discloses a laminar flow cooling device in Japanese Patent Publication No. JP2002361316, entitled “Strip Cooling Device", which is disclosed in Japanese Patent Publication No. JP-A-2002-316316.
  • the cooling water at the edge of the strip is collected through the water storage tank to increase the temperature of the edge of the strip, and the cooling water collected by the storage tank is discharged through a dedicated drain.
  • this technique has the same drawbacks: When producing narrower strips, a lot of waste water is wasted.
  • the applicant wishes to invent another laminar flow cooling device which is capable of establishing a laminar laminar flow corresponding to the width of the strip passage according to the cooling process requirements of different widths of the strip to achieve a corresponding width of the laminar cooling region.
  • the change thereby adjusting the area of the cooling water in the width direction of the channel, to reduce the temperature drop of the strip edge, and to ensure the uniformity of the strip shape, mechanical properties, temperature and phase change in the width direction.
  • This device and control method unlike existing edge occlusion techniques, can greatly reduce the amount of cooling water used. Summary of the invention
  • the object of the present invention is to provide a piston type laminar flow cooling device for the existing laminar cooling system in which the cooling distribution in the width direction of the strip is uneven, and the device can utilize less cooling water according to different widths of the strip.
  • the cooling process requires that a laminar laminar flow corresponding to the width of the strip channel is established to achieve a corresponding change in the width of the laminar cooling zone, and the area of the cooling water in the channel width direction is adjusted to reduce
  • the temperature drop of the strip side of the strip ensures the uniformity of the strip shape, mechanical properties, temperature and phase change in the width direction.
  • the present invention provides a piston type laminar flow cooling device comprising a plurality of sets of nozzle devices, each set of nozzle devices comprising: a header, fixedly disposed in a laminar flow cooling along a vertical strip running direction a working pipe; an inlet pipe is disposed on the header, and is connected to the header; a plurality of nozzles connected to the header are uniformly distributed on the header along the axial direction of the header; and, each set of nozzle devices Also includes:
  • Two pistons are respectively disposed in the two ends of the header, the outer diameter of the piston is matched with the inner diameter of the header; the driving device is respectively connected with the two pistons to drive the two pistons to move in opposite or opposite directions in the header.
  • the piston comprises a piston body and at least one grinding layer having the same outer diameter as the piston body, and the grinding layer is fixedly disposed on a radial end surface of the piston body.
  • the piston body material is ultra high molecular weight polyethylene.
  • the abrasive layer comprises a layer of high tenacity fibrous substrate and a layer of ground ore applied to the outer surface of the substrate.
  • the piston including the abrasive layer by means of a combination of a soft seal and a hard seal, satisfies both the sealing property and the strength.
  • the ultra-high molecular weight polyethylene piston body is a hard seal, and the ultra-high molecular weight polyethylene material can ensure the mechanical strength of the piston, and because the hardness is lower than that of the stainless steel, the inner hole of the header is not pulled, thereby avoiding the inner wall of the header. Wear and tear.
  • the grinding layer with the grinding function can effectively prevent the laminar cooling water from forming scale on the inner wall of the header by brushing and grinding the inner wall of the header, thereby preventing damage and jamming of the sealing piston caused by the particles existing in the cooling water.
  • the driving device comprises:
  • the two pistons are respectively disposed at two ends of the screw rod, and are screwed to the reverse screw by an internal thread disposed thereon, and the piston and the inner wall of the header are correspondingly provided with at least one The axial guiding keyway; a motor connected to the reverse screw to drive the screw to rotate.
  • the driving device drives the reverse screw through a motor to drive the two pistons connected to the reverse screw thread to linearly or reversely move linearly in the header along the guiding groove.
  • the driving device comprises:
  • the two motors respectively drive the two screw rods.
  • each set of nozzle devices further comprises: two flanges respectively disposed at two ends of the header And a guiding rod is disposed on the center hole of the flange, and a corresponding guiding groove is disposed on each of the screw rods in the axial direction thereof, and the guiding block is disposed in the guiding slot Inside, slide along the guide groove.
  • each set of nozzle devices further comprises:
  • Two flanges are respectively disposed at both ends of the header and sleeved with the screw;
  • each guiding mechanism comprises: a base fixedly disposed at the end of the header; a guiding slot along the screw shaft The guiding direction is disposed on each of the screw rods; a guiding plate having an outer end surface fixedly connected to the base, and an inner end surface thereof is provided with a protrusion, wherein the protrusion is correspondingly disposed in the guiding groove and slides along the guiding groove.
  • the purpose of the above two guiding mechanisms is to provide a guiding effect for the linear reciprocating motion of the screw rod, thereby ensuring the stability of the screw movement.
  • each set of nozzle devices further comprises:
  • Two large gears are respectively arranged on the output shaft of each motor;
  • the two pinion gears respectively mesh with the large gears, and the two pinion gears are provided with internal threaded holes, which are connected with the external threads of the screw rods.
  • each set of nozzle devices further comprises:
  • Two large gears are respectively arranged on the output shaft of each motor;
  • Two screw nuts are fixedly disposed in the central holes of the two pinions, and the two screw nuts are respectively screwed to the respective screw rods.
  • the gap between the piston and the header is 0.02 to 0.10 mm.
  • the piston laminar flow cooling device further comprises:
  • a horizontal tube which is arranged at a cross with the respective headers, and is fixedly connected to each of the headers through a connecting device; since the header is filled with cooling water, the load is too heavy, so the horizontal tubes fixed with the cross may be
  • the header provides support;
  • a hydraulic cylinder has a hydraulic rod fixedly coupled to the horizontal tube for pushing each nozzle device to a laminar cooling station.
  • FIG. 1 is a schematic view showing the structure of a group of nozzle devices in a piston type laminar flow cooling device according to the present invention.
  • FIG. 2 is a structural arrangement diagram of a piston type laminar flow cooling device according to the present invention.
  • Figure 3 is a schematic view showing the structure of the guiding mechanism in the first and second embodiments of the present invention.
  • Figure 4 is a schematic view showing the structure of a guiding mechanism in Embodiments 3 and 4 of the present invention.
  • Figure 5 is a view taken along line A of Figure 4 .
  • Figure 6 is a schematic view showing the structure of a piston in Embodiment 1 of the present invention.
  • Figure 7 is a schematic view showing the structure of a piston in Embodiment 2 of the present invention.
  • Figure 8 is a schematic view showing the structure of a piston in Embodiment 3 of the present invention.
  • Figure 9 is a schematic view showing the structure of a piston in Embodiment 4 of the present invention.
  • the piston type laminar flow cooling device of the present invention comprises a plurality of sets of nozzle devices, and the headers 1 in each nozzle device are arranged in parallel with each other, in order to prevent the header 1 from being overloaded by being filled with cooling water.
  • the device is provided with a horizontal tube 12 under each manifold, which is fixedly connected with the header 1 to provide support for the header 1.
  • the hydraulic cylinder 6 is fixedly connected with the horizontal tube 12, and is driven by driving the hydraulic rod thereof. The tube 12 thereby pushes the entire laminar flow cooling device to the cooling station.
  • each set of nozzle assemblies includes a set that is vertically disposed along the direction of strip movement.
  • the pipe 1, the inlet pipe 2 is arranged in the middle of the header 1, the cooling water enters the header 1 through the inlet pipe 2, and a plurality of nozzles 3 are evenly distributed along the axial direction of the header 1, and the two screws 4 respectively pass
  • Two bearing blocks 41 are disposed at both ends of the header 1, and can move linearly in the header along the central axis of the header 1, the two pistons 5 are fixed to the inner end of the screw rod 4, and the outer diameter and the header of the piston 5
  • the inner diameters of 1 are matched, and the gap between the two is 0.02 to 0.06 mm.
  • the two motors 10 are respectively disposed at the two ends of the header 1, providing driving force for the screw 4, and the connection between the screw 4 and the motor 10. It is realized by a pair of meshing gears, wherein the large gear 9 is sleeved on the output shaft of the motor 10, the pinion 11 is meshed with the large gear 9, and the screw nut 42 is fixed in the center hole of the pinion 11 and the screw nut 42 is sleeved. At the outer end of the lead screw 4, it is screwed to the screw shaft 4.
  • Two axial positioning keys are arranged on the side of the piston 5.
  • the inner wall of the header 1 is provided with two axial positioning slots, and the positioning keys are matched with the positioning slots to prevent the piston 5 from rotating relative to the header 1.
  • the two flanges 7 are respectively disposed at two ends of the header and sleeved with the screw rod 4.
  • the central hole of the flange 7 is axially provided with a guiding block 82.
  • the screw rod 4 is axially provided with a guiding groove 81 for guiding
  • the block 82 is slidable along the guide groove 81 to guide the screw shaft 4.
  • the lead screw 4 is fixedly connected to one end of the piston body 51 through a coupling plate 55 and a screw, and the other end of the piston body 51 is fixed with an abrasive piece 52 through a pressing plate 53 and a screw 54.
  • the size of the pressing plate 53 Slightly smaller than the abrasive sheet 9.
  • the piston body 51 is an ultra high molecular weight polyethylene material, and the abrasive sheet comprises a layer of high toughness fibrous substrate and a layer of ground ore coated on the outer surface of the substrate.
  • the motor 10 drives the large gear 9 to rotate, thereby driving the pinion 11 meshing with the large gear 9 to rotate, and the screw nut 42 fixedly connected with the pinion 11 is rotated, so that the screw 4 is guided by the guiding mechanism.
  • the linear reciprocating motion is performed along the central axis of the header 1, thereby driving the piston 5 to reciprocate in the header 1, and adjusting the width of the cooling water.
  • each set of nozzle devices includes a header 1 vertically disposed along the direction of movement of the strip, the inlet pipe 2 is disposed in the middle of the header 1, and the cooling water enters the set through the inlet pipe 2.
  • a pipe 1 a plurality of nozzles 3 are evenly distributed along the axial direction of the header 1, and two screw rods 4 are respectively disposed at two ends of the header 1 through the two bearing seats 41, and can be along the central axis of the header 1.
  • the screw hole nut 42 is fixed in the center hole of the pinion gear 11, and the screw nut 42 is sleeved on the outer end of the screw rod 4, and the screw rod 4 threaded connection.
  • the two flanges 7 are respectively disposed at two ends of the header and sleeved with the screw rod 4.
  • the central hole of the flange 7 is axially provided with a guiding block 82. Accordingly, the screw rod 4 is axially provided with a guiding groove 81 for guiding The block 82 is slidable along the guide groove 81 to guide the screw 4.
  • the lead screw 4 is fixedly connected to one end of the piston body 51 via a coupling plate 55 and a screw.
  • the other end of the piston body 51 is provided with a boss, and the grinding ring 52 is sleeved on the boss through the pressure plate. 53 and screw 54 are fixed.
  • the piston body 51 is an ultra high molecular weight polyethylene material, and the abrasive sheet comprises a high tenacity fiber substrate layer and a ground ore layer coated on the outer surface of the substrate.
  • the motor 10 drives the large gear 9 to rotate, thereby driving the pinion 11 meshing with the large gear 9 to rotate, and the screw nut 42 fixedly connected with the pinion 11 is rotated, so that the screw 4 is guided by the guiding mechanism.
  • the linear reciprocating motion is performed along the central axis of the header 1, thereby driving the piston 5 to reciprocate in the header 1, and adjusting the width of the cooling water.
  • each set of nozzle devices includes a header 1 vertically disposed along the direction of movement of the strip, the inlet pipe 2 is disposed in the middle of the header 1, and the cooling water enters the set through the inlet pipe 2.
  • a pipe 1 a plurality of nozzles 3 are evenly distributed along the axial direction of the header 1, and two screw rods 4 are respectively disposed at two ends of the header 1 through the two bearing seats 41, and can be along the central axis of the header 1.
  • the linear motion is performed in the header, the two pistons 5 are fixed to the inner end of the screw rod 4, and the outer diameter of the piston 5 is matched with the inner diameter of the header 1, and the gap between the two is 0.06 to 0.08 mm, and the two motors 10 They are respectively disposed at two ends of the header 1 to provide a driving force for the screw rod 4.
  • the connection between the screw rod 4 and the motor 10 is realized by a pair of meshing gears, wherein the large gear 9 is sleeved on the output shaft of the motor 10, small The gear 11 meshes with the large gear 9.
  • the screw hole nut 42 is fixed in the center hole of the pinion gear 11.
  • the screw nut 42 is sleeved on the outer end of the screw shaft 4 and screwed to the screw shaft 4.
  • the lead nut can also be replaced by an internal thread in the center hole of the pinion (this structure is not shown in Figure 4).
  • Two axial positioning keys are arranged on the side of the piston 5.
  • the inner wall of the header 1 is provided with two axial positioning slots, and the positioning keys are matched with the positioning slots to prevent the piston 5 from rotating relative to the header 1.
  • Two flanges 7 are respectively disposed at both ends of the header and are sleeved with the lead screw 4.
  • the structure of the guiding mechanism 8 is as shown in FIG. 5.
  • the base 81 is fixedly disposed at the end of the header 1.
  • the guiding plate is fixedly connected to the base 84 by screws.
  • the end surface of the guiding plate is provided with a protrusion 83, which can be disposed along the wire.
  • the axial guide groove 81 of the rod 4 slides to guide the linear motion of the screw shaft 4.
  • the both ends of the piston body 51 are provided with an abrasive sheet 52.
  • the screw rod 4 is fixedly connected to the piston body 51 through a coupling plate 55 and a screw.
  • the abrasive sheet 52 at the other end of the piston body 51 passes through the pressing plate 53 and the screw 54. fixed.
  • the piston body 51 is an ultra-high molecular weight polyethylene material, and the abrasive sheet comprises a high-toughness fibrous substrate layer and a ground ore layer coated on the outer surface of the substrate.
  • the motor 10 drives the large gear 9 to rotate, thereby driving the pinion 11 meshing with the large gear 9 to rotate, and the screw nut 42 fixedly connected with the pinion 11 is rotated, so that the screw 4 is correspondingly disposed on the header.
  • the linear reciprocating motion is performed along the central axis of the header 1, thereby driving the piston 5 to reciprocate in the header 1, and adjusting the width of the cooling water.
  • each set of nozzle devices includes a header 1 vertically disposed along the direction of movement of the strip, the inlet pipe 2 is disposed in the middle of the header 1, and the cooling water enters the set through the inlet pipe 2.
  • a pipe 1 a plurality of nozzles 3 are evenly distributed along the axial direction of the header 1, and two screw rods 4 are respectively disposed at two ends of the header 1 through the two bearing seats 41, and can be along the central axis of the header 1.
  • Two axial positioning keys are arranged on the side of the piston 5.
  • the inner wall of the header 1 is provided with two axial positioning slots, and the positioning keys are matched with the positioning slots to prevent relative rotation of the piston 5 and the header 1.
  • Two flanges 7 are respectively disposed at both ends of the header and are sleeved with the screw 4.
  • the structure of the guiding mechanism 8 is as shown in FIG. 5.
  • the base 84 is fixedly disposed at the end of the header 1.
  • the guiding plate is fixedly connected to the base 84 by screws.
  • the end surface of the guiding plate is provided with a protrusion 83, which can be disposed along the wire.
  • the axial guide groove 81 of the rod 4 slides to guide the linear motion of the screw shaft 4.
  • the two ends of the piston body 51 are respectively provided with bosses, and the two grinding rings 52 are respectively sleeved on the two bosses, and are respectively fixed by the coupling plate 55 and the pressing plate 53, and the screw rod 4 passes through the coupling plate 55 and The screw is fixedly coupled to the piston body 51.
  • the piston body 51 is an ultra high molecular weight polyethylene material, and the abrasive sheet comprises a high tenacity fiber substrate layer and a ground ore layer coated on the outer surface of the substrate.
  • the motor 10 drives the large gear 9 to rotate, thereby driving the pinion 11 meshing with the large gear 9 to rotate, and the screw nut 42 fixedly connected with the pinion 11 is rotated, so that the screw 4 is correspondingly disposed on the header.
  • the linear reciprocating motion is performed along the central axis of the header 1, thereby driving the piston 5 to reciprocate in the header 1, and adjusting the width of the cooling water.
  • the matching gap between the outer diameter of the piston and the inner diameter of the header can be selected within the range of 0.02 to 0.10 mm according to the actual situation of the production site such as temperature;
  • the grinding layer on the piston body can also be selected according to different requirements
  • the guiding mechanism for guiding the screw is also available in two options as described in Embodiment 1 and Embodiment 3.
  • the present invention can establish a slit laminar flow corresponding to the width of the strip passage according to the cooling process requirements of different widths of the strip steel, thereby realizing corresponding changes in the width of the laminar cooling region, thereby adjusting the cooling water in the channel width direction.
  • the upper area reduces the temperature drop of the strip edge, ensuring the uniformity of the strip shape, mechanical properties, temperature and phase change of the strip in the width direction; in addition, the present invention differs from the existing edge occlusion technique in While achieving the same effect, waste of cooling water resources can be avoided; in addition, the invention not only ensures the sealing property of the piston and the header matching gap by using the grinding piston, but also can effectively avoid the laminar cooling water by brushing and grinding the inner wall of the header. Scale is formed on the inner wall of the header to prevent damage and jamming of the sealing piston caused by particles present in the cooling water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

活塞式层流冷却装置 技术领域
本发明涉及一种冶金领域的热轧层流冷却技术, 尤其涉及一种适用于冶金轧 钢生产线的层流宽度可调的冷却装置。 背景技术
热轧带钢板形一直是用户们特别关注的质量问题, 板形质量优劣直接影响产 品的使用, 尤其是近年来随着钢铁工业的迅猛发展, 带钢产品应用领域不断拓 展, 用户对其板形质量的要求也日益提高。
为了保证带钢板形质量, 钢铁企业的热轧连轧机生产线都要使用到层流冷却 装置, 其主要功能就是将精轧出口的带钢, 根据卷取设定的目标温度进行快速冷 却, 以保证带钢的产品性能。
层流冷却装置一般有若干组冷却集管 (上下对应的集管为一组) 。 带钢冷却 一般分为若干个冷却区, 每个冷却区都由各自的主冷段和精冷段串接而成, 冷却 区的主冷段又由若干组强冷集管组和若干组主冷集管组构成。 控制 PLC根据层流 冷却模型在计算所需打开集管的阀组时, 按照主冷段从前往后、 精冷段从后往前 的规则进行设定。 每组集管的位置在控制 PLC中都有数据, 同时控制 PLC还对于带 钢在层流辊道上的位置进行跟踪。 层流冷却装置的冷却控制方法如下:
首先, 过程机根据设定的终轧温度和卷取温度, 通过层流冷却模型计算, 确 定主冷段和精冷段冷却集管的打开组数, 并下发指令给精轧基础自动化设备, 对 水阀进行控制。
其次, 当带钢出精轧最后机架后, 由精轧后测温仪测出带钢实际的终轧温 度, 再对冷却集管的打开组数进行相应的调节。
最后, 当层流冷却后的卷取测温仪测出带钢的实际卷取温度后, 根据设定的 卷取目标值, 对层流冷却集管打开组数进行动态调节, 以保证带钢的卷取温度在 设定范围内。 每个阀组的冷却水量可控制带钢温度为 5度。
然而, 随着轧线轧制规格的不断拓展和用户对产品质量要求的不断提高, 现 有的层流冷却系统已经不能满足部分钢种生产的需要, 尤其是一些含有合金元素 的强度钢 (如: BS600、 BS700、 B510L、 S45C、 SS400等) 。 这些强度钢在经过 层流冷却区域以后, 由于现有的层流冷却系统存在着水压不稳、 水流分布不均匀 等问题, 造成带钢的冷却不均, 从而导致带钢出现一系列板形质量问题, 如带钢 由于冷却不均而产生 C翘; 而带钢在宽度方向冷却不均, 尤其是边部温度降低较 大会在后续冷却过程中产生带来双边浪趋势的内应力, 从而给带钢的板形、 机械 性能、 温度及相变在宽度方向的均匀性都带来很大影响。
为此, 川崎制铁有限公司在公开日为 1987年 12月 16日, 公开号为 CN87100594, 名称为 《金属带材的冷却方法和装置》 的中国专利中公开了一种层 流冷却装置, 该装置采用了由一对限定狭缝的平板部件组成的层流喷管,冷却水流 过此狭缝形成一冷却水屏栅, 为调节该喷管内的通道区域,该层流喷管的平板部件 至少有一个在垂直于冷却水流动的方向上可以变形,至少有一个平板较好地响应冷 却水压力,引起通道区域变化,从而调节冷却水通道区域。 此方法采用对层流冷却集 管边部进行遮挡的方法, 为解决带钢边部温度降低较大提供了一个解决办法。 但 是, 显而易见, 该方法最大的缺点是: 在生产较窄带钢时, 大量浪费冷却水资 源, 不适于现代集约化工业生产。
此外, 日本三菱重工业株式会社在公开日为 2002年 12月 17日, 专利号为 JP2002361316 , 名称为 《带材冷却装置》 的日本专利文献中也公开了一种层流冷 却装置, 其方案是在层流冷却时将带钢边部的冷却水通过储水槽收集起来用以提 高带钢边部的温度, 储水槽收集的冷却水则通过专用排水管排出。 显而易见, 这 种技术存在同样的缺点: 在生产较窄带钢时, 大量浪费冷却水资源。
因此, 申请人希望发明另外一种层流冷却装置, 该装置能够根据带钢不同宽 度的冷却工艺要求, 对应建立相应于带材通道宽度的缝隙层流, 实现层流冷却区 域在宽度上的相应变化,从而调节冷却水在通道宽度方向上的区域, 以减少带钢边 部的温降, 确保带钢的板形、 机械性能、 温度及相变在宽度方向的均匀性。 该装 置和控制方法与现有的边部遮挡技术不同, 能够大大节约冷却水的用量。 发明内容
本发明的目的是针对现有层流冷却系统存在带钢宽度方向冷却分布不均匀的 现象, 提供一种活塞式层流冷却装置, 该装置能够利用较少的冷却水, 根据带钢 不同宽度的冷却工艺要求, 对应建立相应于带材通道宽度的缝隙层流, 实现根据 层流冷却区域在宽度上的相应变化,调节冷却水在通道宽度方向上的区域, 用以减 少带钢边部的温降, 确保带钢的板形、 机械性能、 温度及相变在宽度方向的均匀 性。
为实现上述目的, 本发明提供了一种活塞式层流冷却装置, 包括若干组喷管 装置, 每一组喷管装置均包括: 一集管, 沿垂直带钢运行方向固定设置在层流冷 却工位; 所述集管上设有一进水管, 与集管导通; 若干与集管导通的喷管, 沿集 管轴向方向均布于集管上; 此外, 每一组喷管装置还包括:
两活塞, 分别设置于集管两端部内, 所述活塞的外径与集管的内径相匹配; 驱动装置, 分别与两活塞连接, 驱动两活塞在集管内相向或反向运动。
优选地, 所述活塞包括一活塞本体, 以及至少一层外径与活塞本体相同的研 磨层, 所述研磨层固定设于活塞本体的径向端面上。
优选地, 所述活塞本体材料为超高分子量聚乙烯。
优选地, 所述研磨层包括高靭性纤维基材层和涂覆于基材外表面的研磨矿砂 层。
所述包括研磨层的活塞, 通过软密封与硬密封结合的方式, 既满足了密封性 又保证了强度。 所述超高分子量聚乙烯活塞本体即为硬密封, 超高分子量聚乙烯 材料既能够确保活塞的机械强度, 同时因为其硬度比不锈钢低, 因此不会拉毛集 管内孔, 从而避免了集管内壁的磨损。 而具备研磨功能的研磨层能够通过刷洗研 磨集管内壁来有效避免层流冷却水在集管内壁形成水垢, 防止冷却水中存在的颗 粒对密封活塞造成的损坏和卡堵。
优选地, 所述驱动装置包括:
一反向丝杆, 所述两活塞分别设于丝杆的两端部, 并通过设于其上的内螺纹 与反向丝杆螺纹连接, 所述活塞和集管内壁上对应设有至少一对轴向导向键槽; 一电机, 与反向丝杆连接, 驱动丝杆转动。
上述驱动装置通过一台电机驱动反向丝杆转动, 进而驱动与反向丝杆螺纹连 接的两活塞沿着导向槽在集管内做直线相向或反向直线运动。
优选地, 所述驱动装置包括:
两丝杆, 所述两活塞分别固定设于各丝杆的内端部;
两电机, 分别对应驱动两丝杆。
优选地, 所述每一组喷管装置还包括: 两法兰, 分别设置在所述集管的两端 且套接丝杆, 所述各法兰的中心孔轴向对应固定设有一导向块, 所述各丝杆上沿 其轴向方向均设有一对应的导向槽, 所述导向块设于导向槽内, 沿导向槽滑动。
优选地, 所述每一组喷管装置还包括:
两法兰, 分别设置在所述集管两端且套接丝杆;
两导向机构, 对应设于所述集管两端的法兰外侧, 所述每一导向机构均包 括: 一基座, 固定设于所述集管端部; 一导向槽, 沿所述丝杆轴向方向设于各丝 杆上; 一导向板, 其外端面与所述基座固定连接, 其内端面上设有一凸起, 所述 凸起对应设于导向槽内, 沿导向槽滑动。
上述两种导向机构的设置, 目的均为为丝杆的直线往复运动提供一导向作 用, 从而保证丝杆运动的稳定性。
优选地, 所述每一组喷管装置还包括:
两大齿轮, 分别对应套于各电机的输出轴上;
两小齿轮, 分别对应与各大齿轮啮合, 所述两小齿轮上设有内螺纹孔, 与各 丝杆的外螺纹连接。
优选地, 所述每一组喷管装置还包括:
两大齿轮, 分别对应套于各电机的输出轴上;
两小齿轮, 分别对应与各大齿轮啮合;
两丝杆螺母, 对应固定设于两小齿轮的中心孔内, 所述两丝杆螺母分别对应 与各丝杆螺纹连接。
优选地, 所述活塞与集管之间的间隙为 0.02〜0.10mm。
优选地, 所述活塞式层流冷却装置还包括:
一卧管, 与所述各集管十字交叉设置, 并通过连接装置与各集管固定连接; 由于集管中充满冷却水时, 其负载过重, 故与其十字交叉固定的卧管可以为各集 管提供支撑作用;
一液压缸, 其液压杆与所述卧管固定连接, 用以推动各喷管装置至层流冷却 工位。
本发明由于采用了以上技术方案, 使之与现有技术相比, 具有以下优点和积 极效果:
1.通过调节活塞在集管中的位置, 间接调整带钢宽度方向上的层流冷却水宽 度, 从而使得该装置能够根据带钢不同宽度的冷却工艺要求, 对应建立相应于带 材通道宽度的缝隙层流, 实现层流冷却区域在宽度上的相应变化,减少带钢边部的 温降, 确保带钢的板形、 机械性能、 温度及相变在宽度方向的均匀性;
2.由于冷却水集中在喷管内, 由活塞调整其宽度, 故有效避免了冷却水的浪 费。 附图概述
本发明的具体特征、 性能由以下的实施例及其附图进一步给出。
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限 定。
图 1为本发明一种活塞式层流冷却装置中一组喷管装置的结构示意图。
图 2为本发明一种活塞式层流冷却装置的结构设置图。
图 3为本发明实施例 1和 2中导向机构的结构示意图。
图 4为本发明实施例 3和 4中导向机构的结构示意图。
图 5为图 4的 A向视图。
图 6为本发明实施例 1中的活塞结构示意图。
图 7为本发明实施例 2中的活塞结构示意图。
图 8为本发明实施例 3中的活塞结构示意图。
图 9为本发明实施例 4中的活塞结构示意图。 本发明的最佳实施方式
下面结合附图 1一 9来具体介绍本发明的较佳实施例。
如图 2所示, 本发明所述的活塞式层流冷却装置包括若干组喷管装置, 各喷 管装置中的集管 1彼此平行设置, 为了防止集管 1因充满冷却水而负载过重, 本装 置在各集管下方设置了一根卧管 12, 与集管 1十字交叉固定连接, 为集管 1提供支 撑, 液压缸 6与卧管 12固定连接, 通过驱动其液压杆来推动卧管 12, 从而将整个层 流冷却装置推至冷却工位。
实施例 1
如图 1和图 3所示, 每一组喷管装置均包括一根沿带钢运动方向垂直设置的集 管 1, 进水管 2设于集管 1的中部, 冷却水通过进水管 2进入集管 1, 若干喷管 3沿集 管 1的轴向方向均布于其上, 两根丝杆 4分别通过两个轴承座 41设于集管 1的两端, 可沿集管 1的中心轴线在集管内做直线运动, 两个活塞 5固定于丝杆 4的内端, 活塞 5的外径与集管 1的内径相匹配, 二者之间的间隙为 0.02〜0.06mm, 两台电机 10分 别设于集管 1的两端, 为丝杆 4提供驱动力, 丝杆 4与电机 10之间的连接通过一对啮 合的齿轮实现, 其中大齿轮 9套于电机 10的输出轴上, 小齿轮 11与大齿轮 9啮合, 小齿轮 11的中心孔内固定设有丝杆螺母 42, 丝杆螺母 42套于丝杆 4的外端, 与丝杆 4螺纹连接。 活塞 5侧面设有两条轴向的定位键, 集管 1内壁设有两条轴向的定位 槽, 定位键与定位槽相匹配, 用以防止活塞 5与集管 1发生相对转动。 两个法兰 7分 别设置在集管内的两端且套接丝杆 4, 法兰 7的中心孔轴向设有一导向块 82, 相应 地, 丝杆 4上轴向设有导向槽 81, 导向块 82可沿导向槽 81滑动, 对丝杆 4起导向作 用。
如图 6所示, 本实施例中丝杆 4通过联接板 55以及螺钉与活塞本体 51的一端固 定连接, 活塞本体 51的另一端通过压板 53和螺钉 54固定有研磨片 52, 压板 53的尺 寸略小于研磨片 9。 其中活塞本体 51为超高分子量聚乙烯材料, 研磨片包括高靭性 纤维基材层和涂覆于基材外表面的研磨矿砂层。
本实施例中, 电机 10驱动大齿轮 9转动, 进而带动与大齿轮 9啮合的小齿轮 11 转动, 与小齿轮 11固定连接的丝杆螺母 42转动, 使得丝杆 4在导向机构的导向作用 下, 沿集管 1的中心轴线做直线往复运动, 从而带动活塞 5在集管 1内往复移动, 对 冷却水宽度进行调节。
实施例 2
如图 1和图 3所示, 每一组喷管装置均包括一根沿带钢运动方向垂直设置的集 管 1, 进水管 2设于集管 1的中部, 冷却水通过进水管 2进入集管 1, 若干喷管 3沿集 管 1的轴向方向均布于其上, 两根丝杆 4分别通过两个轴承座 41设于集管 1的两端, 可沿集管 1的中心轴线在集管内做直线运动, 两个活塞 5固定于丝杆 4的内端, 活塞 5的外径与集管 1的内径相匹配, 二者之间的间隙为 0.04〜0.06mm, 两台电机 10分 别设于集管 1的两端, 为丝杆 4提供驱动力, 丝杆 4与电机 10之间的连接通过一对啮 合的齿轮实现, 其中大齿轮 9套于电机 10的输出轴上, 小齿轮 11与大齿轮 9啮合, 小齿轮 11的中心孔内固定设有丝杆螺母 42, 丝杆螺母 42套于丝杆 4的外端, 与丝杆 4螺纹连接。 两个法兰 7分别设置在集管内的两端且套接丝杆 4, 法兰 7的中心孔轴 向设有一导向块 82, 相应地, 丝杆 4上轴向设有导向槽 81, 导向块 82可沿导向槽 81 滑动, 对丝杆 4起导向作用。
如图 7所示, 本实施例中丝杆 4通过联接板 55以及螺钉与活塞本体 51的一端固 定连接, 活塞本体 51的另一端设有一凸台, 研磨圈 52套于凸台上, 通过压板 53和 螺钉 54固定。 其中活塞本体 51为超高分子量聚乙烯材料, 研磨片包括高靭性纤维 基材层和涂覆于基材外表面的研磨矿砂层。
本实施例中, 电机 10驱动大齿轮 9转动, 进而带动与大齿轮 9啮合的小齿轮 11 转动, 与小齿轮 11固定连接的丝杆螺母 42转动, 使得丝杆 4在导向机构的导向作用 下, 沿集管 1的中心轴线做直线往复运动, 从而带动活塞 5在集管 1内往复移动, 对 冷却水宽度进行调节。
实施例 3
如图 1和图 4所示, 每一组喷管装置均包括一根沿带钢运动方向垂直设置的集 管 1, 进水管 2设于集管 1的中部, 冷却水通过进水管 2进入集管 1, 若干喷管 3沿集 管 1的轴向方向均布于其上, 两根丝杆 4分别通过两个轴承座 41设于集管 1的两端, 可沿集管 1的中心轴线在集管内做直线运动, 两个活塞 5固定于丝杆 4的内端, 活塞 5的外径与集管 1的内径相匹配, 二者之间的间隙为 0.06〜0.08mm, 两台电机 10分 别设于集管 1的两端, 为丝杆 4提供驱动力, 丝杆 4与电机 10之间的连接通过一对啮 合的齿轮实现, 其中大齿轮 9套于电机 10的输出轴上, 小齿轮 11与大齿轮 9啮合, 小齿轮 11的中心孔内固定设有丝杆螺母 42, 丝杆螺母 42套于丝杆 4的外端, 与丝杆 4螺纹连接。 该丝杆螺母也可以通过在小齿轮中心孔内设内螺纹 (该结构在图 4中 未示出) 来替代。 活塞 5侧面设有两条轴向的定位键, 集管 1内壁设有两条轴向的 定位槽, 定位键与定位槽相匹配, 用以防止活塞 5与集管 1发生相对转动。 两个法 兰 7分别设置在集管内的两端且套接丝杆 4。 两个导向机构 8, 对应设于集管两端的 法兰 7外侧。 导向机构 8的结构如图 5所示, 基座 81固定设于集管 1端部, 导向板通 过螺钉与基座 84固定连接, 导向板端面上设有凸起 83, 其可沿设于丝杆 4的轴向导 向槽 81滑动, 对丝杆 4的直线运动起导向作用。
如图 8所示, 活塞本体 51的两端面均设有研磨片 52, 丝杆 4通过联接板 55以及 螺钉与活塞本体 51固定连接, 活塞本体 51另一端的研磨片 52通过压板 53和螺钉 54 固定。 其中活塞本体 51为超高分子量聚乙烯材料, 研磨片包括高靭性纤维基材层 和涂覆于基材外表面的研磨矿砂层。
本实施例中, 电机 10驱动大齿轮 9转动, 进而带动与大齿轮 9啮合的小齿轮 11 转动, 与小齿轮 11固定连接的丝杆螺母 42转动, 使得丝杆 4在对应设于集管两端法 兰 7外侧的两个导向机构 8的导向作用下, 沿集管 1的中心轴线做直线往复运动, 从 而带动活塞 5在集管 1内往复移动, 对冷却水宽度进行调节。
实施例 4
如图 1和图 4所示, 每一组喷管装置均包括一根沿带钢运动方向垂直设置的集 管 1, 进水管 2设于集管 1的中部, 冷却水通过进水管 2进入集管 1, 若干喷管 3沿集 管 1的轴向方向均布于其上, 两根丝杆 4分别通过两个轴承座 41设于集管 1的两端, 可沿集管 1的中心轴线在集管内做直线运动, 两个活塞 5固定于丝杆 4的内端, 活塞 5的外径与集管 1的内径相匹配, 二者之间的间隙为 0.08〜0.10mm, 两台电机 10分 别设于集管 1的两端, 为丝杆 4提供驱动力, 丝杆 4与电机 10之间的连接通过一对啮 合的齿轮实现, 其中大齿轮 9套于电机 10的输出轴上, 小齿轮 11与大齿轮 9啮合, 小齿轮 11的中心孔设有内螺纹 (该结构未在图 4中示出) , 小齿轮 11通过内螺纹与 丝杆 4螺纹连接。 活塞 5侧面设有两条轴向的定位键, 集管 1内壁设有两条轴向的定 位槽, 定位键与定位槽相匹配, 用以防止活塞 5与集管 1发生相对转动。 两个法兰 7 分别设置在集管内的两端且套接丝杆 4。 两个导向机构 8, 对应设于集管两端的法 兰 7外侧。 导向机构 8的结构如图 5所示, 基座 84固定设于集管 1端部, 导向板通过 螺钉与基座 84固定连接, 导向板端面上设有凸起 83, 其可沿设于丝杆 4的轴向导向 槽 81滑动, 对丝杆 4的直线运动起导向作用。
如图 9所示, 活塞本体 51的两端面均设有凸台, 两个研磨圈 52分别套于两凸 台上, 并通过联接板 55和压板 53分别固定, 丝杆 4通过联接板 55以及螺钉与活塞本 体 51固定连接。 其中活塞本体 51为超高分子量聚乙烯材料, 研磨片包括高靭性纤 维基材层和涂覆于基材外表面的研磨矿砂层。
本实施例中, 电机 10驱动大齿轮 9转动, 进而带动与大齿轮 9啮合的小齿轮 11 转动, 与小齿轮 11固定连接的丝杆螺母 42转动, 使得丝杆 4在对应设于集管两端法 兰 7外侧的两个导向机构 8的导向作用下, 沿集管 1的中心轴线做直线往复运动, 从 而带动活塞 5在集管 1内往复移动, 对冷却水宽度进行调节。 本发明在上述四个实施例中提示了若干种选择供组合, 可归纳为:
1 . 活塞外径与集管内径的配合间隙可以根据温度等生产现场实际情况在所 述 0.02〜0.10mm范围内进行选择;
2.活塞本体上设置研磨层也可根据不同的要求进行相应选择;
3 . 对丝杆进行导向作用的的导向机构也有如实施例 1和实施例 3所述的两种 方案供选择。
综上可知, 本发明能够根据带钢不同宽度的冷却工艺要求, 对应建立相应于 带材通道宽度的缝隙层流, 实现层流冷却区域在宽度上的相应变化,从而调节冷却 水在通道宽度方向上的区域, 减少带钢边部的温降, 确保带钢的板形、 机械性 能、 温度及相变在宽度方向的均匀性; 另外, 本发明技术与现有的边部遮挡技术 不同, 在达到同样效果的同时, 能够避免冷却水资源的浪费; 此外, 本发明通过 采用研磨活塞不仅保证了活塞与集管配合间隙的密封性, 还能够通过刷洗研磨集 管内壁来有效避免层流冷却水在集管内壁形成水垢, 防止冷却水中存在的颗粒对 密封活塞造成的损坏和卡堵。
最后应当说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限 制; 尽管参照较佳实施例对本发明进行了详细的说明, 所属领域的普通技术人员 应当理解: 依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行 等同替换; 而不脱离本发明技术方案的精神, 其均应涵盖在本发明请求保护的技 术方案范围当中。

Claims

权利要求
1. 一种活塞式层流冷却装置, 包括若干组喷管装置, 每一组喷管装置均包 括: 一集管 (1) , 沿垂直带钢运行方向固定设置在层流冷却工位; 所述集管
(1) 上设有一进水管 (2) , 与集管 (1) 导通; 若干与集管 (1) 导通的喷管 (3) , 沿集管轴向方向均布于集管 (1) 上; 其特征在于所述每一组喷管装置还 包括:
两活塞 (5) , 分别设置于集管 (1) 两端部内, 所述活塞 (5) 的外径与集 管 (1) 的内径相匹配; 以及
驱动装置, 与两活塞 (5) 连接, 驱动两活塞 (5) 在集管 (1) 内相向或反 向运动。
2.如权利要求 1所述的活塞式层流冷却装置, 其特征在于: 所述活塞 (5) 包 括一活塞本体 (51) , 以及至少一层外径与活塞本体相同的研磨层 (52) , 所述 研磨层 (52) 固定设于活塞本体 (51) 的径向端面上。
3.如权利要求 2所述的活塞式层流冷却装置, 其特征在于: 所述活塞本体材 料为超高分子量聚乙烯。
4.如权利要求 2所述的活塞式层流冷却装置, 其特征在于: 所述研磨层包括 高靭性纤维基材层和涂覆于基材外表面的研磨矿砂层。
5.如权利要求 1所述的活塞式层流冷却装置, 其特征在于: 所述驱动装置 包 括:
一反向丝杆, 所述两活塞 (5) 分别设于丝杆的两端部, 通过设于其上的内 螺纹与丝杆螺纹连接, 所述活塞 (5) 和集管 (1) 内壁上对应设有至少一对轴向 导向键槽; 以及
一电机, 与反向丝杆连接, 驱动丝杆转动。
6.如权利要求 1或 4所述的活塞式层流冷却装置, 其特征在于: 所述驱动装置 包括:
两丝杆 (4) , 所述两活塞 (5) 分别对应固定设于两丝杆 (4) 的内端部; 以及
两电机 (10) , 分别对应驱动两丝杆 (4) 。
7.如权利要求 6所述的活塞式层流冷却装置, 其特征在于所述每一组喷管装 置还包括:
两法兰 (7) , 分别设置在所述集管 (1) 的两端且套接丝杆 (4) ; 两导向机构, 所述每一导向机构均包括: 一导向槽 (81) , 沿丝杆轴向方向 设于丝杆 (4) 上沿; 一导向块 (82) , 固定设于所述法兰的中心孔内, 所述导向 块 (82) 与导向槽 (81) 啮合, 沿导向槽 (81) 滑动。
8.如权利要求 6所述的活塞式层流冷却装置, 其特征在于所述每一组喷管装 置还包括:
两法兰 (7) , 分别设置在所述集管 (1) 的两端且套接丝杆 (4) ; 两导向机构, 对应设于所述集管 (1) 两端的法兰外侧, 所述每一导向机构 均包括: 一基座, 固定设于所述集管 (1) 端部; 一导向槽 (81) , 沿所述丝杆轴 向方向设于各丝杆 (4) 上; 一导向板, 其外端面与所述基座固定连接, 其内端面 上设有一凸起 (83) , 所述凸起 (83) 对应设于导向槽 (81) 内, 沿导向槽 (81) 滑动。
9.如权利要求 7或 8所述的活塞式层流冷却装置, 其特征在于所述每一组喷管 装置还包括:
两大齿轮 (9) , 分别对应套于各电机 (10) 的输出轴上;
两小齿轮 (11) , 分别对应与各大齿轮 (9) 啮合, 所述两小齿轮中心孔上 设有内螺纹, 与各丝杆对应螺纹连接。
10.如权利要求 7或 8所述的活塞式层流冷却装置, 其特征在于所述每一组喷 管装置还包括:
两大齿轮 (9) , 分别对应套于各电机 (10) 的输出轴上;
两小齿轮 (11) , 分别对应与各大齿轮 (9) 啮合;
两丝杆螺母 (42) , 对应固定设于两小齿轮 (11) 的中心孔内, 所述两丝杆 螺母 (42) 与对应的丝杆 (4) 螺纹连接。
11.如权利要求 10所述的活塞式层流冷却装置, 其特征在于: 所述活塞 (5) 与集管 (1) 之间的间隙为 0.02〜0.10mm。
12.如权利要求 11所述的活塞式层流冷却装置, 其特征在于还包括: 一卧管 (12) , 与所述各集管 (1) 十字交叉设置, 并通过连接装置与各集 管 (1) 固定连接; 一液压缸 (6) , 其液压杆与所述卧管 (12) 固定连接, 用以推动各喷管装 置至层流冷却工位。
PCT/CN2010/071150 2009-03-20 2010-03-19 活塞式层流冷却装置 WO2010105577A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2011142291/02A RU2491142C2 (ru) 2009-03-20 2010-03-19 Устройство поршневого типа для ламинарного охлаждения
JP2012500056A JP5497147B2 (ja) 2009-03-20 2010-03-19 ピストン型層流冷却装置
BRPI1009321-4A BRPI1009321B1 (pt) 2009-03-20 2010-03-19 Dispositivo de resfriamento de fluxo laminar tipo pistão
KR1020117024599A KR101319389B1 (ko) 2009-03-20 2010-03-19 피스톤 유형 라미나 플로 냉각 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910047958.5 2009-03-20
CN2009100479585A CN101837379B (zh) 2009-03-20 2009-03-20 一种层流宽度可偏调式冷却装置及控制方法

Publications (1)

Publication Number Publication Date
WO2010105577A1 true WO2010105577A1 (zh) 2010-09-23

Family

ID=42739220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071150 WO2010105577A1 (zh) 2009-03-20 2010-03-19 活塞式层流冷却装置

Country Status (6)

Country Link
JP (1) JP5497147B2 (zh)
KR (1) KR101319389B1 (zh)
CN (1) CN101837379B (zh)
BR (1) BRPI1009321B1 (zh)
RU (1) RU2491142C2 (zh)
WO (1) WO2010105577A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482661A (zh) * 2018-11-29 2019-03-19 太原科技大学 一种层流冷却设备中下集管转角调整装置
CN112474837A (zh) * 2020-11-16 2021-03-12 云南玉溪仙福钢铁(集团)有限公司 一种炼钢生产用线材控冷装置
CN114151411A (zh) * 2021-12-11 2022-03-08 合肥合锻智能制造股份有限公司 一种带冷却功能的方形锁模油缸装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480659B (zh) * 2012-06-14 2015-07-22 宝山钢铁股份有限公司 一种连轧机架间冷却水装置
CN106180214B (zh) * 2016-09-08 2019-03-19 中冶赛迪工程技术股份有限公司 一种板带冷却宽向均匀性可控的冷却装置
CN108723104B (zh) * 2017-04-17 2019-12-17 上海梅山钢铁股份有限公司 一种层流集管冷却水量控制装置
CN110125192B (zh) * 2018-02-09 2020-07-28 宝山钢铁股份有限公司 一种带内驱动柱塞的热轧层流冷却装置及其内驱动方法
DE102018205684A1 (de) * 2018-04-13 2019-10-17 Sms Group Gmbh Kühleinrichtung und Verfahren zu deren Betrieb
DE102018205685A1 (de) * 2018-04-13 2019-10-17 Sms Group Gmbh Kühleinrichtung und Verfahren zu deren Betrieb
CN108672139A (zh) * 2018-06-15 2018-10-19 安徽枫帆轨道装备有限公司 一种新型喷漆机构
CN111283000A (zh) * 2018-12-07 2020-06-16 宝山钢铁股份有限公司 一种节能型分段式机架水集管装置及其控制方法
CN113604766B (zh) * 2021-07-21 2023-03-28 浙江协和薄钢科技有限公司 带钢热镀锌机的冷却装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3146656A1 (de) * 1981-11-25 1983-06-01 SMS Schloemann-Siemag AG, 4000 Düsseldorf Vorrichtung zum kuehlen von flachem walzgut
EP0080086A1 (de) * 1981-11-25 1983-06-01 Sms Schloemann-Siemag Aktiengesellschaft Vorrichtung zum Kühlen von flachem Walzgut
DE3147878A1 (de) * 1981-12-03 1983-06-16 SMS Schloemann-Siemag AG, 4000 Düsseldorf Vorrichtung zum kuehlen von flachem walzgut
JPS59197312A (ja) * 1983-04-21 1984-11-08 Mitsubishi Heavy Ind Ltd 熱延鋼板の冷却装置
JP2003220406A (ja) * 2002-01-29 2003-08-05 Nippon Steel Corp 板材の冷却装置
CN1547517A (zh) * 2001-08-27 2004-11-17 通过产生一种扁平喷射流对材料进行冷却的装置
CN2796874Y (zh) * 2004-12-02 2006-07-19 宝山钢铁股份有限公司 柔性板式开口度可调水幕式冷却装置
CN201127959Y (zh) * 2007-11-22 2008-10-08 中国第一重型机械集团公司 中宽钢带轧机的层流冷却装置
CN201396425Y (zh) * 2009-03-20 2010-02-03 宝山钢铁股份有限公司 一种层流冷却集管用研磨活塞装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604696A (en) * 1968-12-10 1971-09-14 Dorn Co The Van Continuous quench apparatus
SU1035073A1 (ru) * 1980-04-07 1983-08-15 Украинский Ордена Трудового Красного Знамени Научно-Исследовательский Институт Металлов Роликова закалочна машина
JPS57110493U (zh) * 1980-12-26 1982-07-08
JPS5916711U (ja) * 1982-07-21 1984-02-01 住友金属工業株式会社 鋼板の冷却装置
SU1639820A1 (ru) * 1988-12-28 1991-04-07 Новосибирский Филиал Головного Производственного Конструкторско-Технологического Бюро "Оргприминструмент" Устройство дл очистки прутков круглого проката
JP2001073041A (ja) 1999-09-07 2001-03-21 Kawasaki Steel Corp 鋼板の温度制御方法及び温度制御装置
DE10215229A1 (de) * 2002-04-06 2003-10-16 Sms Demag Ag Vorrichtung zum Kühlen von Walzgut innerhalb der Kühlstrecke einer Walzanlage
JP4603510B2 (ja) * 2006-06-05 2010-12-22 株式会社神戸製鋼所 マスキング装置
CN201044926Y (zh) * 2007-04-03 2008-04-09 北京埃德尔博珂工程技术有限公司 轧机的在线调整润滑宽度及清洗喷嘴装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3146656A1 (de) * 1981-11-25 1983-06-01 SMS Schloemann-Siemag AG, 4000 Düsseldorf Vorrichtung zum kuehlen von flachem walzgut
EP0080086A1 (de) * 1981-11-25 1983-06-01 Sms Schloemann-Siemag Aktiengesellschaft Vorrichtung zum Kühlen von flachem Walzgut
DE3147878A1 (de) * 1981-12-03 1983-06-16 SMS Schloemann-Siemag AG, 4000 Düsseldorf Vorrichtung zum kuehlen von flachem walzgut
JPS59197312A (ja) * 1983-04-21 1984-11-08 Mitsubishi Heavy Ind Ltd 熱延鋼板の冷却装置
CN1547517A (zh) * 2001-08-27 2004-11-17 通过产生一种扁平喷射流对材料进行冷却的装置
JP2003220406A (ja) * 2002-01-29 2003-08-05 Nippon Steel Corp 板材の冷却装置
CN2796874Y (zh) * 2004-12-02 2006-07-19 宝山钢铁股份有限公司 柔性板式开口度可调水幕式冷却装置
CN201127959Y (zh) * 2007-11-22 2008-10-08 中国第一重型机械集团公司 中宽钢带轧机的层流冷却装置
CN201396425Y (zh) * 2009-03-20 2010-02-03 宝山钢铁股份有限公司 一种层流冷却集管用研磨活塞装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482661A (zh) * 2018-11-29 2019-03-19 太原科技大学 一种层流冷却设备中下集管转角调整装置
CN112474837A (zh) * 2020-11-16 2021-03-12 云南玉溪仙福钢铁(集团)有限公司 一种炼钢生产用线材控冷装置
CN112474837B (zh) * 2020-11-16 2024-04-05 云南玉溪仙福钢铁(集团)有限公司 一种轧钢用线材控冷装置
CN114151411A (zh) * 2021-12-11 2022-03-08 合肥合锻智能制造股份有限公司 一种带冷却功能的方形锁模油缸装置
CN114151411B (zh) * 2021-12-11 2023-12-26 合肥合锻智能制造股份有限公司 一种带冷却功能的方形锁模油缸装置

Also Published As

Publication number Publication date
JP5497147B2 (ja) 2014-05-21
CN101837379B (zh) 2013-04-24
BRPI1009321B1 (pt) 2020-10-06
RU2011142291A (ru) 2013-04-27
BRPI1009321A2 (pt) 2016-03-08
CN101837379A (zh) 2010-09-22
KR20110128354A (ko) 2011-11-29
JP2012520769A (ja) 2012-09-10
RU2491142C2 (ru) 2013-08-27
KR101319389B1 (ko) 2013-10-17

Similar Documents

Publication Publication Date Title
WO2010105577A1 (zh) 活塞式层流冷却装置
JP5678026B2 (ja) プランジャー型層流冷却装置
CN1883833A (zh) 多辊多机架可逆式冷轧机及其轧制方法
CN106269921B (zh) 一种开卷、对中、夹送一体机
CN206763595U (zh) 一种可逆冷轧机组
CN109927264A (zh) 一种导光板热辊压生产线及热辊压工艺
CN114515823A (zh) 一种双辊薄带连铸辊面清理方法和装置
CN114015842A (zh) 一种薄壁方管连续约束淬火装置
CN210497646U (zh) 一种降低金属材料各向异性的精加工系统
CN203750993U (zh) 一种斜纵轧一体式锚杆轧机
CN109772950B (zh) 一种具有公用辊的金属焊管成型装置及其操作方法
CN101812697B (zh) 提高推拉式酸洗机组穿带钢的方法
AU2019305746A1 (en) Corner-thickened cold/hot composite formation square/rectangular pipe forming system
CN210547005U (zh) 一种降低金属材料各向异性的精加工装置
CN201664706U (zh) 一种上喷层流冷却装置
CN102189131A (zh) 一种下喷层流冷却装置
CN208303505U (zh) 一种黄铜生产用新型轧机
WO2012120526A1 (en) A cold rolling system
CN202638906U (zh) 热轧产品表面吹扫装置
CN203817121U (zh) 一种盘圆卷取机前用预弯机
JP3498953B2 (ja) カーテンウォール冷却装置
WO2020015554A1 (zh) 一种复合锻轧金属管成形机
CN102189130B (zh) 一种自平衡柱塞式上喷层流冷却装置
CN111744955A (zh) 一种异形线材连续滚轧生产线
JPS5916617A (ja) 厚鋼板のオンライン冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753144

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6849/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012500056

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117024599

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011142291

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10753144

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1009321

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1009321

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110919