WO2010101209A1 - 表面増強ラマン散乱活性測定基板 - Google Patents

表面増強ラマン散乱活性測定基板 Download PDF

Info

Publication number
WO2010101209A1
WO2010101209A1 PCT/JP2010/053509 JP2010053509W WO2010101209A1 WO 2010101209 A1 WO2010101209 A1 WO 2010101209A1 JP 2010053509 W JP2010053509 W JP 2010053509W WO 2010101209 A1 WO2010101209 A1 WO 2010101209A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
substrate
enhanced raman
nanoparticles
aggregation
Prior art date
Application number
PCT/JP2010/053509
Other languages
English (en)
French (fr)
Inventor
裕起 長谷川
長谷川 克之
Original Assignee
有限会社マイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社マイテック filed Critical 有限会社マイテック
Priority to CN201080019304.2A priority Critical patent/CN102428359B/zh
Priority to US13/255,071 priority patent/US9658163B2/en
Priority to JP2011502794A priority patent/JP5466226B2/ja
Priority to EP10748802.5A priority patent/EP2405257A4/en
Publication of WO2010101209A1 publication Critical patent/WO2010101209A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Definitions

  • the present invention relates to a measurement substrate having highly reproducible surface-enhanced Raman scattering (hereinafter abbreviated as SERS) activity and a surface-enhanced Raman light measurement method using the same.
  • SERS surface-enhanced Raman scattering
  • Raman spectroscopy Surface Enhanced Raman s Spectroscopy
  • the Raman effect is a phenomenon (inelastic scattering) in which light having a wavelength different from the wavelength of incident light is included in the scattered light when light is incident on a substance.
  • the scattered light at this time is called Raman scattered light.
  • the difference between the energy of the light scattered by the Raman effect and the incident light corresponds to the energy of the vibration level, rotation level, or electron level of the molecule or crystal in the material.
  • plasmons a phenomenon in which free electrons existing on the metal surface oscillate collectively, exist on the metal surface, and this surface plasmon is coupled with a photoelectric field in the visible to near-infrared region. , Significantly enhance the electric field at the surface of the metal nanoparticles.
  • the laser light is irradiated to the molecules adsorbed on the surface of the metal nanoparticles and the Raman scattered light generated from the adsorbed molecules is greatly enhanced. It has been attracting attention.
  • SERS measurement is performed by utilizing the fact that a substance is adsorbed on the surface of a noble metal electrode such as gold or silver or the surface of a colloid and the vibration spectrum is enhanced as compared with a molecule alone (Patent Document 1).
  • This SERS measurement is a useful technique for structural analysis of trace substances.
  • this technique uses fine particles of precious metals such as silver and gold having a size of several tens to several hundreds of nanometers on a glass substrate. It is said that it is necessary to accumulate, and conventionally, it is necessary to synthesize silver or gold colloidal particles in a solution and fix them on a substrate modified with lysine or cyan (Non-Patent Documents 1, 2, 3, and Patent Document 2). ).
  • Patent Document 2 employs a so-called drop & dry method in which a colloid that has prevented aggregation is gelled, coated and dried to form a substrate, and has become the mainstream.
  • the drop & dry method requires time, and in order to detect the specimen quickly and accurately, it is necessary to detect the specimen in a non-dry state (drop in situ) after dropping the specimen. It can be said that it is still inadequate for analysis of a very small amount of chemical species in the gas phase such as diagnosis.
  • the inventors of the present invention have been made by paying attention to the fact that the silver nanoparticles or the cluster dispersion liquid starts to be immediately agglomerated on the copper or copper alloy substrate and is fixed, so that the surface enhanced Raman scattering light can be measured immediately.
  • a dispersion liquid containing 100 to 5000 ppm of nanoparticles having a particle size of 100 nm or less (including clusters) of a metal having SERS activity is aggregated on a metal substrate having an electrode potential lower (higher) than the electrode potential of the metal,
  • the surface-enhanced Raman scattering light measurement substrate is characterized in that aggregation is stopped in a desired aggregation state and the aggregation region forms a hot site for surface-enhanced Raman scattering (SERS) measurement.
  • the metal nanoparticle or cluster is fixed on the metal substrate in the aggregation process from the metal nanoparticle or cluster dispersion liquid, and the adhesion strength is strong. It does not peel off easily, and aggregation can be almost stopped at that time. Therefore, the sample to be detected may be dispersed in the metal nanoparticle dispersion, and irradiated with laser light while dropping and aggregating the sample on the metal substrate, but only the metal nanoparticle dispersion is dropped on the metal substrate and agglomerating in a timely manner.
  • the measurement substrate has a plurality of hot sites per unit area in which two or more metal nanoparticles or clusters are chained and adjusted to an interparticle distance of at least 10 nm.
  • the metal nanoparticles are metal particles having a particle size of 100 nm or less, and can be produced by physically pulverizing them, but can also be produced by reducing metal ions or complexing metal ions and aggregating them as they are. be able to.
  • the term “metal nanoparticles” refers to metal particles or clusters having a particle size of 100 nm or less, and includes not only those obtained by reducing and aggregating metal ions, but also clusters obtained by aggregating metal ions via a dispersant.
  • a chemical method in which metal ions are reduced and adjusted to nanoparticles via metal atoms and metal clusters written by Torigoe Mikijiro et al., Catalyst 41521 (1999)
  • other physical methods JP-A-3-342211, JP-A-5-98195
  • the metal electrode is electrolyzed to form ions, which are aggregated to be produced as a cluster.
  • a “nanocluster” is an aggregate made up of several to several hundred atoms / molecules, and its size ranges from several nanometers to several tens of nanometers.
  • the metal nanoparticles or clusters are selected from the group consisting of metals having SERS activity, gold, silver and alloys thereof, and in order to form hot spots, the particle or cluster diameter is preferably 50 to 5 nm, preferably 20 to 5 nm. .
  • the shape of a nanoparticle or a cluster is a spherical shape normally, you may deform
  • a coordination compound that supplies a ligand that forms a metal complex with a metal ion in the dispersion of metal ions because the cluster agglomeration size can be easily adjusted.
  • a metal cluster of an appropriate size can be formed to form a dispersion.
  • a particularly preferred coordination compound is an amphoteric surfactant containing an amino acid surfactant having an amino group and a carboxyl group.
  • L-alanine which is an amino acid surfactant, is 0.001 to 0.002 wt.
  • the metal substrate is determined by the type of metal nanoparticles, and is selected from gold, silver, copper and alloys thereof so that the electrode potential is lower.
  • the entire substrate is not necessarily made of metal, but may have at least a metal surface that exhibits a potential in the dispersion. Therefore, for example, as shown in FIG. 7 (a), it can be manufactured by punching a glass or plastic plate 1 and pasting a thin metal plate 2 having a plate shape of about 0.1 mm. Since the metal portion 2 of this substrate is formed in a dish shape, when the dispersion liquid is dropped, the substrate becomes a droplet 3 (see FIG. 7B).
  • the aggregation region 4 of the metal nanoparticles is formed on the metal surface, and a measurement substrate is created.
  • the potential of the metal substrate can also be adjusted by using an alloying technique such as a gold alloy, a silver alloy, or a copper alloy and adjusting the composition ratio. Further, it can be adjusted by applying an appropriate voltage.
  • the speed of aggregation is important because it affects the timing of detection and the degree of aggregation affects the distance between particles.
  • the resonance phenomenon caused by surface plasmons occurs at a particle interval of 10 nm or less and can be increased by a decrease in the interval to 1 nm.
  • the detection sensitivity increases with time in the aggregation of silver nanoparticles, and then decreases, so the optimal aggregation interval due to the resonance phenomenon between the surface plasmons appears in the transition period from the start of aggregation to the end of complete aggregation. This is because a peak appears.
  • the metal surface of the substrate used in the present invention is oxidized because the aggregation rate of the metal nanoparticles can be adjusted.
  • the metal substrate is selected in consideration of the electrode potential in relation to the metal nanoparticles or clusters to be aggregated, but in order to aggregate the silver nanoparticles or clusters, a copper plate, a brass plate, a phosphor bronze plate, etc.
  • the copper alloy plate is preferably selected.
  • the content of the metal nanoparticles or clusters is preferably 5000 to 100 ppm, particularly preferably 3000 to 500 ppm.
  • concentration is high, the density between particles is high, so that hot sites are formed faster (if the dispersion contains 0.001 to 0.002 wt% L-alanine, 6 minutes at 1000 ppm, 3 minutes at 2000 ppm)
  • the aggregation time of about 1 minute at 3000 ppm was appropriate), so that the stop of the aggregation is accelerated, and when the concentration is low, the formation of hot sites is delayed, so the stop of the aggregation is delayed.
  • an appropriate time is usually set after the start of aggregation, but the aggregation condition that becomes a hot site is affected by the content of metal nanoparticles or clusters in the dispersion, the dispersant, the electrode potential difference with the substrate metal, etc. It is important to determine in advance.
  • the present invention provides a surface-enhanced Raman-scattered light measurement method characterized by measuring various types of Raman-scattered light using the measurement substrate, and has a particle diameter of 100 nm or less of a metal having a surface-enhanced Raman-active function.
  • the dispersion containing the nanoparticles (including clusters) is agglomerated and stopped on a substrate having a metal surface having a lower (higher) electrode potential than the metal electrode potential of the metal having the surface enhanced Raman activity function.
  • a step of providing an optimal aggregation region, a step of attaching a sample to be detected to the metal aggregation region, and a target laser beam irradiated to the detection sample adsorbed on the surface of the metal nanoparticles in a non-dried state from the sample to be detected The present invention provides a method for measuring surface-enhanced Raman scattered light, comprising a step of measuring generated Raman scattered light.
  • Various disease markers and various viruses are protein molecules, and it is a condition that surface plasmon resonance (Surface IV) can be utilized by adsorbing protein molecules to an optimal hot site.
  • Surface IV surface plasmon resonance
  • the present inventors use an amino acid-based surfactant to form a dispersion of silver nanoparticles or clusters, the silver nanoparticles aggregate on the metal substrate via the amino acid, resulting in an amino acid at or above the isoelectric point.
  • the amino acid on the substrate can be charged to a charge that easily adsorbs protein molecules.
  • the present invention disperses an amphoteric electrolyte having at least an amino group and a carbonyl group in a colloidal solution containing gold or silver nanoparticles having a particle size of 5 to 100 nm and 100 to 5000 ppm, and the colloidal solution containing the amphoteric electrolyte is used as a metal substrate.
  • Dropping onto the electrode starting aggregation by the electrode potential difference between the metal substrate and the nanometal, stopping the aggregation in the optimal aggregation state, and then treating the amphoteric electrolyte with a pH solution at or below its isoelectric point plus or minus Surface-enhanced Raman scattered light characterized by adsorbing a protein sample to be detected by charging, irradiating gold or silver nanoparticles with laser light, and measuring Raman scattered light generated from the adsorbed protein sample to be detected It also provides a measurement method.
  • the electrolyte is an amino acid-based surfactant or a protein-based surfactant, and particularly an amino acid system having one or more amino groups with respect to a carboxyl group of an amino acid-based electrolyte, glycine, L-alanine, lysine or the like.
  • An electrolyte is preferred. This is because amino groups are advantageous for adsorption of silver nanoparticles.
  • amino acids are positively charged by treatment with a pH solution having an isoelectric point or higher, and are negatively charged with a pH solution having an isoelectric point or lower. Therefore, the amino acid is easily selectively adsorbed with protein molecules that are negatively or positively charged. .
  • the metal nanoparticle dispersion used in the present invention is preferably a protein-based surfactant containing an amino acid-based amphoteric surfactant as a surfactant, and the surfactant is aggregated. It seems to play a role of inducing an antibody component or an antigen component between the metal nanoparticles by interposing between the metal nanoparticles. It is preferable to select from antibody components and add them alone or in combination with an amino acid electrolyte and antibody components.
  • the amphoteric electrolyte in the dispersion can be used to form an optimal aggregated form on the metal substrate, and the charge necessary for protein adsorption can be selectively formed using the properties of the amphoteric electrolyte. Therefore, protein adsorption can be performed reliably.
  • the adjustment of the interval between the metal nanoparticles or clusters can be controlled by the aggregation time, so that protein molecules can be adsorbed to the optimum hot spot. Therefore, SERS detection of various protein molecules can be detected with high reproducibility, and each disease marker and various viruses can be detected.
  • the present invention is a dispersion used for the above-described measurement method, wherein a metal complex cluster is prepared by adding a coordination compound that supplies a ligand to a metal ion in the dispersion of a metal ion having a surface enhanced Raman activity function. It also provides a metal nanoparticle dispersion having a surface enhanced Raman activity function.
  • the coordination compound is preferably an amphoteric surfactant containing an amino group and a carboxyl group.
  • an antigen-antibody reaction the antibody component of the antigen-antibody reaction is used alone or the amphoteric The dispersion should be added with the surfactant.
  • the amphoteric surfactant is a protein surfactant containing an amino acid surfactant, it has a function of inducing antibody components or antigen components between metal nanoparticles or clusters.
  • substrate with the aggregation time of 6 minutes is shown.
  • substrate with an aggregation time of 7 minutes is shown.
  • substrate with an aggregation time of 6 minutes is shown.
  • substrate with an aggregation time of 7 minutes is shown.
  • substrate. 3 is a CERS SERS spectrum measured in Example 2.
  • silver nanoclusters having an average particle diameter of 7 to 10 nm prepared by a method of aggregating silver ions by a chemical method are dispersed in an aqueous solution containing an amino acid-based dispersant composed of L-alanine, and 2000 ppm. , 1000 ppm and 100 ppm silver nanocluster dispersions (colorless and transparent).
  • Drops were dropped on a clean surface silver substrate, copper plate and brass substrate at 1000 ppm drop (10 ⁇ L) at intervals, and the aggregation process was observed. On the silver substrate, it took almost one night to agglomerate, whereas a black deposit was formed in several minutes on the copper substrate and in several tens of seconds to several minutes on the brass substrate.
  • FIGS. 1 and 2 show SERS spectrum diagrams when 1 nM of 4,4′-bipyridine was dropped on a 6-minute and 7-minute aggregated substrate.
  • a 100 nM SERS spectrum of 4,4′-bipyridine could be instantaneously detected by dropping a predetermined sample into the aggregation region on the substrate.
  • the silver nanoparticles or clusters having an average particle diameter of 7 to 10 nm used in Example 1 were dispersed in an aqueous solution containing an amino acid surfactant (L-alanine 0.001 to 0.002%), and 2000 ppm , 1000 ppm and 100 ppm silver nano-dispersions (colorless and transparent).
  • an amino acid surfactant L-alanine 0.001 to 0.002%
  • 2000 ppm , 1000 ppm and 100 ppm silver nano-dispersions colorless and transparent.
  • One drop (10 ⁇ L) of a 1000 ppm dispersion was dropped at intervals on a clean surface silver substrate, copper plate and brass substrate, and the aggregation process was observed. On the copper substrate, it took almost one night to aggregate, whereas a black deposit was formed in several minutes on the brass substrate and in minutes to tens of minutes on the phosphor bronze substrate.
  • substrate which can measure SERS light immediately after dropping a to-be-detected sample can be provided. And if this measurement board

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Nanotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】高いSERS活性を有する測定基板及びそれを用いる測定方法を提案する。 【解決手段】SERS活性を有する5~100nmの金属ナノ粒子(クラスタを含む)をその電極電位より卑なる(高い)電極電位を有する金属基板上に凝集させてホットサイトとなる最適凝集状態で定着させてなる金属基板であって、該基板上ではSERS活性を有する金属ナノ粒子の最適凝集域が形成されているので被検出試料を吸着させて、所定のレーザ光を照射すると、最適凝集状態では表面プラズモン共鳴によって被検出抗原試料の表面増強ラマン散乱(SERS)光を検出することができる。

Description

表面増強ラマン散乱活性測定基板
本発明は、再現性の高い表面増強ラマン散乱(以下、SERSと略す)活性を有する測定基板及びそれを用いる表面増強ラマン光測定方法に関する。
近年、ライフサイエンスを中心とするバイオの分野において、細胞上の単一分子(例えばタンパク質)の計測を行い、病気のメカニズムや生命現象を解明したいという需要が高まってきている。それらの需要を満たすためには、細胞を生きたまま、非標識で観察可能な超高感度分析技術が必要不可欠となっている。
現在、バイオの分野の検出法として、表面増強ラマン分光法(Surface Enhanced Raman Spectroscopy)が「ラマン効果による分光法」と「金属表面における光の増強効果」を組み合わせた物質の同定などに用いる超高感度分析方法として注目されている。ラマン効果とは、物質に光が入射したとき、散乱した光の中に入射した光の波長とは異なる波長の光が含まれる現象(非弾性散乱)である。このときの散乱光をラマン散乱光と呼ぶ。ラマン効果により散乱した光と入射光のエネルギーの差は物質内の分子や結晶の振動純位や回転準位、もしくは電子準位のエネルギーに対応しているので、分子や結晶はその構造に応じた特有の振動エネルギーをもつため、単色光であるレーザを入射光として用い、その分子固有のエネルギー状態を反映した光に変調される現象を利用して、スペクトルから化学種を同定し、その散乱光強度から目的物質の定量を行うラマン分光法が知られている。しかしながら、ラマン分光法の感度は本質的に低いため、微少量の試料分析には適していない。
他方、金属ナノ粒子においては金属表面に存在する自由電子が集合的に振動する現象であるプラズモンが金属表面に存在し、この表面プラズモンは可視~近赤外領域の光電場とカップリングさせることによって、金属ナノ粒子表面において著しく電場を増強させる。この表面プラズモン共鳴(Surface )を利用することによって、金属ナノ粒子表面に吸着させた分子にレーザ光を照射し吸着分子から発生するラマン散乱光を飛躍的に増強させるので、表面増強ラマン分光法が注目されるに至っている。その一つとして金、銀等の貴金属電極やコロイドの表面に物質が吸着させ、分子単独に比べ振動スペクトルが増強されることを利用したSERS測定が行われている(特許文献1)。
このSERS測定は、微量物質の構造解析に有用な手法であるが、現在、その手法は、数十~数百nm程度の大きさを持った銀や金等の貴金属の微粒子をガラス基板上に蓄積する必要があるといわれ、従来は溶液中で銀あるいは金のコロイド粒子を合成し、リジンやシアンで修飾した基板上に固定する必要がある(非特許文献1、2、3、特許文献2)。特に、特許文献2では、凝集防止をしたコロイドをゲル化し、塗布乾燥して基板とするいわゆるdrop&dry法が採用され、主流となっている。
特開平7-146295号公報 特開平11-61209号公報
S.Nie and S.R.Emory,Science.275,1102(1997) K.C.Grabar,P.C.Smith,M.D.Musick,J.A.Davis,D.G.Walter,M.A.Jackson,A.P.Guthrie and M.J.Natan,J.Am.Chem,Soc.,118,1148(1996) R.M.Bright,M.D.Musick and M.H.Natan,Langmuir,14,5695(1998)
しかしながら、drop&dry法は測定に時間を要し、被検体を迅速にかつ正確に検出するには、被検体を滴下後即時非乾燥状態(drop in situ)で検出することが必要であり、病気の診断等、気相中の極微量の化学種の分析を行うには現在未だ不十分であるといえる。
なぜなら、例えば、銀のナノ粒子は溶液中では強い活性を持つが、乾燥させるとナノ粒子の大きさが変化して、活性が下がってしまうためであり、又、金のナノ粒子は、大気中でも安定であるが、銀と比べて元々のSERS活性が低い上に、ナノ粒子分散液ではガラス基板の上に固定できる密度が非常に小さいからである。
 本発明は、表面プラズモン共鳴による電場増強効果が顕著に発生する場所(ホットサイト)は主に近接した金属ナノ粒子又はクラスタ間やエッジ形状の先端などで顕著に発生していることに鑑み、かかるホットサイトとなる金属ナノ粒子の凝集状態を制御しながら形成し、試料の滴下後即時検出できる測定基板及びそれを用いる測定方法を提供することを課題とする。
 本発明者らは、銀ナノ粒子またはクラスタ分散液が銅又は銅合金基板上で即時凝集を開始し始めて定着し、即時表面増強ラマン散乱光測定可能な状態となることに着目してなされたもので、SERS活性を有する金属の粒径100nm以下のナノ粒子(クラスタを含む)100~5000ppmを含む分散液をその金属の電極電位より卑なる(高い)電極電位を有する金属基板上で凝集させ、所望の凝集状態で凝集停止させて凝集領域が表面増強ラマン散乱(SERS)測定のためのホットサイトを形成していることを特徴とする表面増強ラマン散乱光測定用基板にある。
本発明によれば、金属ナノ粒子又はクラスタ分散液からの凝集過程で金属ナノ粒子又はクラスタは金属基板上に定着し付着強度が強固で凝集過程で分散液を拭い去っても、この凝集膜は容易に剥離せず、その時点で凝集はほぼ停止させることができる。したがって、金属ナノ粒子分散液に被検出試料を分散させ、これを金属基板上に滴下凝集させつつレーザ光を照射してもよいが、金属ナノ粒子分散液のみを金属基板上に滴下し適時凝集過程で拭い去って乾燥させ、ラマン散乱光検出に有効な金属ナノ粒子のホットサイトのための凝集域を形成した測定基板を用意することで、これに被検出溶液を滴下することにより最適化されたラマン散乱光の測定が可能となる。
 金属ナノ粒子又はクラスタが2個以上連鎖し、少なくとも10nm以下の粒子間距離に調整されたホットサイトを単位面積当たり複数個有する測定基板であるのが好ましい。ここで、金属ナノ粒子とは粒径が100nm以下の金属粒子をいい、物理的に粉砕して製造することができるが、金属イオンを還元又は金属イオンを錯体化してそのまま凝集させても製造することができる。以下、金属ナノ粒子というときは粒径が100nm以下の金属粒子またはクラスタをいい、金属イオンを還元して凝集させたものだけでなく、金属イオンを分散剤を介して凝集させたクラスタを含む。金属ナノ粒子の調整法としては金属イオンを還元して、金属原子、金属クラスタを経てナノ粒子に調整する化学的方法(鳥越幹二郎等著、触媒、41521(1999))、その他物理的方法(特開3-34211号、特開5-98195号)が知られている。特に数十ナノメータ以下のナノ粒子を物理的に製造するのが難しい。そのため、金属電極を電解してイオンを形成し、これを凝集させてクラスタとして製造されるのが好ましい。特に「ナノクラスタ」とは、数個から数百個の原子・分子が集まってできる集合体で、その大きさは数ナノメータから数十ナノメータに至る。
前記金属ナノ粒子又はクラスタはSERS活性を有する金属、金、銀及びその合金からなる群より選ばれ、ホットスポットを形成するには粒子又はクラスタ径が50~5nm、20~5nmであるのが好ましい。銀ナノ粒子の2連球では粒子径が大きくなるに従ってピークの位置が高くなる現象も見られるが、単位面積当たりのホットサイト数を粒子間やエッジ形状の先端を形成する意味では粒子径の小さい方が有利であると考えられる。また、ナノ粒子又はクラスタの形状は通常球形状であるが、粒子寸法に応じて結果的に単位面積当たりのホットサイト数を増大させることができるように変形させてもよい。
金属イオンの分散液中に、金属イオンと金属錯体を形成する配位子を供給する配位化合物を添加するのがクラスタ凝集サイズを調整しやすいので好ましい。配位化合物種とその濃度の調整によって適切なサイズの金属クラスタを形成して分散液を形成することができる。因みに、配位化合物として銀イオンの場合はアンモニア、脂肪族アミン、アミノ酸等のアミノ基を有する配位化合物が知られている。特に好ましい配位化合物としてアミノ基とカルボキシル基とを有するアミノ酸系界面活性剤を含む両性界面活性剤が挙げられ、その中でもアミノ酸系界面活性剤であるL-アラニンは0.001~0.002重量%を添加することにより銀イオン溶液は銀イオンの凝集が5~20nmに至るナノクラスタを形成することができる。
他方、上記金属基板は金属ナノ粒子の種類によって決定され、それより電極電位が卑なるように金、銀、銅およびその合金から選ばれる。基板全体が全て金属である必要はなく、少なくとも分散液中で電位を示す金属表面を有すればよい。したがって、例えば、図7(a)に示すように、ガラス又はプラスチック板1上に円形打ち抜き成形して皿状の0.1mm程度の薄い金属板2を張りつけて製造することができる。この基板は金属部分2が皿状に形成されるので、上記分散液を滴下すると液滴3となって盛り上がる(図7(b)参照)。その後液滴を窒素ブロー等で吹き飛ばすと、金属ナノ粒子の凝集域4が金属表面上に形成されて測定基板が作成される。金属基板の電位は金合金、銀合金、銅合金など合金化技術を使用し、その組成比を調整することにより調製することもできる。また、適度の電圧を負荷して調整することもできる。なお、凝集の速度は検出のタイミング、凝集の程度は粒子間距離に影響を与えるので重要である。なぜなら、40nm径の金粒子の2連球での実験によれば、表面プラズモン同士による共鳴現象が粒子間隔10nm以下で起こり、1nmまでの間隔の減少により増大し得るからである。また、銀ナノ粒子の凝集では時間とともに検出感度が増大し、その後減少することから凝集が始まってから完全に凝集し終わるまでの過渡期に表面プラズモン同士による共鳴現象による最適凝集間隔が現れ、検出ピークが現れるからである。なお、本発明で使用する基板は金属表面が酸化されているのが金属ナノ粒子の凝集速度を調整することができるので好ましい場合がある。そこで、金属表面を有する基板上に試料を含む金属ナノ粒子分散液を滴下するにあたり、金属表面に酸化物を形成するのが好ましい場合もある。
 上述したように、金属基板は凝集対象の金属ナノ粒子又はクラスタとの関係で電極電位を考慮して選択されるが、銀ナノ粒子またはクラスタを凝集させるには銅板、真鍮板又はリン青銅板等の銅合金板が選択されるのが好ましい。この銀ナノクラスタ分散液を金属基板上で凝集させると、金属基板上にSERS活性を有するクラスタが配位子とともに結晶を形成するものと思われ(図5)、ホットサイトの作成に適する凝集領域となる。
前記金属ナノ粒子又はクラスタの含有量は5000から100ppmで、特に3000から500ppmが好ましい。高濃度の場合は粒子間密度が高いのでホットサイトを形成するのが速くなる(分散液中に0.001~0.002重量%のL-アラニンを含む場合1000ppmで6分、2000ppmで3分、3000ppmで1分程度の凝集時間が適当であった)ので凝集の停止を早くし、低濃度の場合はホットサイトを形成するのが遅くなるので凝集の停止を遅らせる。したがって、通常凝集開始後適切な時間を設定するが、ホットサイトとなる凝集状態は分散液中の金属ナノ粒子又はクラスタの含有量、分散剤、基板金属との電極電位差等が影響するので最適条件を予め決定しておくことが重要である。
本発明は、上記測定基板を使用して各種ラマン散乱光を測定することを特徴とする表面増強ラマン散乱光測定方法を提供するもので、表面増強ラマン活性機能を有する金属の100nm以下の粒子径のナノ粒子(クラスタを含む)を含む分散液を表面増強ラマン活性機能を有する金属の金属電極電位より卑なる(高い)電極電位を有する金属表面を有する基板上で凝集開始後適時凝集停止させて最適凝集領域を提供する工程と、該金属凝集域に被検出試料を付着させる工程と、非乾燥状態で金属ナノ粒子表面に吸着させた被検出試料に所定のレーザ光を照射し被検出試料から発生するラマン散乱光を測定する工程を含むことを特徴とする表面増強ラマン散乱光測定方法を提供するものである。
各種疾病マーカーや各種ウイルスはタンパク分子であり、最適なホットサイトにタンパク分子を吸着させることが表面プラズモン共鳴(Surface )を活用できる条件となる。本発明者らは、アミノ酸系界面活性剤を使用して銀ナノ粒子又はクラスタの分散液とすると、アミノ酸を介して銀ナノ粒子が金属基板上に凝集する結果、アミノ酸を等電点以上または以下のpH溶液で処理すると、基板上のアミノ酸がたんぱく分子を吸着しやすい電荷に帯電させることができる。したがって、本発明は、粒径5~100nmの金または銀ナノ粒子100~5000ppmを含むコロイド溶液中に少なくともアミノ基とカルボニル基を有する両性電解質を分散させ、該両性電解質を含むコロイド溶液を金属基板上に滴下し、金属基板とナノ金属との電極電位差で凝集を開始させ、最適凝集状態で凝集を停止させた後両性電解質をその等電点以上または以下のpH溶液で処理してプラスまたはマイナス帯電させることにより、被検出タンパク試料を吸着させ、金または銀ナノ粒子にレーザ光を照射し、吸着した被検出タンパク試料から発生するラマン散乱光を測定することを特徴とする表面増強ラマン散乱光測定方法を提供するものでもある。
本発明において、前記電解質はアミノ酸系界面活性剤またはタンパク系界面活性剤であって、特にアミノ酸系電解質、グリシン、L-アラ二ン、リシンなどのカルボキシル基に対しアミノ基が1以上のアミノ酸系電解質が好ましい。アミノ基が銀ナノ粒子の吸着に有利であるからである。また、アミノ酸は等電点以上のpH溶液の処理によりプラス帯電し、等電点以下のpH溶液でマイナス帯電するので、マイナス或いはプラスに帯電するタンパク分子と選択的に電荷吸着しやすいからである。
特に抗原抗体反応を利用する場合、本発明で使用する金属ナノ粒子分散液は界面活性剤としてアミノ酸系両性界面活性剤を含むタンパク系界面活性剤であるのが好ましく、該界面活性剤は凝集した金属ナノ粒子間に介在して抗体成分又は抗原成分を金属ナノ粒子間に誘導する役目を果たすと思われる。抗体成分から選択して単独で添加するかアミノ酸系電解質と抗体成分とを併用して添加するのが好ましい。
 本発明によれば、分散液中での両性電解質を利用して金属基板上に最適な凝集形態を形成することができるとともに、両性電解質の性質を利用してタンパク吸着に必要な電荷を選択形成することができるので、タンパク吸着を確実に行うことができる。しかも本発明では金属ナノ粒子又はクラスタの間隔の調整が凝集時間でコントロールできるので、最適なホットスポットにタンパク分子を吸着させるようにすることができる。したがって、各種タンパク分子のSERS検出が再現性よく、検出することができ、各疾病マーカー、各種ウイルスの検出が可能となる。
本発明において、前記金属ナノ粒子分散液は通常各種分散剤が利用できるが、被検出試料のノイズを形成しないように選択する必要がある。分散剤濃度等の凝集防止効果はコロイド金属、金属基板の電極電位との関係を考慮して最適検出タイミングを設定することができるように考慮すべきである。したがって、本発明は上記測定方法に用いられる分散液であって、表面増強ラマン活性機能を有する金属イオンの分散液中に金属イオンに配位子を供給する配位化合物を添加して金属錯体クラスタを形成してなる表面増強ラマン活性機能を有する金属ナノ粒子分散液を提供するものでもある。
前記配位化合物は、タンパク検出の場合は、アミノ基とカルボキシル基を含む両性界面活性剤であるのが好ましく、抗原抗体反応を利用するときは、抗原抗体反応の抗体成分を単独で又は前記両性界面活性剤とともに添加した分散液とすべきである。前記両性界面活性剤がアミノ酸系界面活性剤を含むタンパク系界面活性剤であると、抗体成分又は抗原成分を金属ナノ粒子又はクラスタ間に誘導する機能を有する。
凝集時間6分の基板における4,4‘-ビピリジンなしの基板のバックグランドスペクトル図を示す。 凝集時間7分の基板における4,4‘-ビピリジン1μMのSERSスペクトル図を示す。 凝集時間6分の基板における4,4‘-ビピリジン1nMのSERSスペクトル図を示す。 凝集時間7分の基板における4,4‘-ビピリジン1nMのSERSスペクトル図を示す。 リン青銅基板上に電解質を含む銀ナノ粒子分散液を凝集させた状態の二万倍SEM写真である。 実施例2で測定されたCRPのSERSスペクトルである。 本発明に係る測定基板の製造工程を示す工程図である。
以下図面を参照して、本発明の実施形態を詳細に説明する。
本実施形態においては、銀イオンを化学的方法で凝集させる方法で作成された平均粒径7~10nmの銀ナノクラスタを、L-アラニンからなるアミノ酸系分散剤を含む水溶液中に分散させ、2000ppm、1000ppm及び100ppmの銀ナノクラスタ分散液(無色透明)を作成する。表面清浄な銀基板、銅板および黄銅基板上に、1000ppm1滴(10μL)ずつ間隔を置いて滴下し、その凝集過程を観察した。銀基板の上ではほぼ凝集に1夜要したのに対し、銅基板上では数分から、黄銅基板上では数十秒から数分で黒い堆積物が形成された。ここでは凝集の停止は滴下後6分と7分に窒素ブローして水滴を飛散乾燥させることにより行われた。このようにして作成した6分凝集と7分凝集の黄銅基板上での堆積域に4,4-ビピリジンを1μM、100nMに純水で希釈して滴下し、株式会社ラマダビジョン測定器を用い、最大出力で波長825nmのレーザを励起光として用いてSERSスペクトルを測定した。その結果を図1から図4に示す。図1は6分間凝集の基板上に純水を滴下した場合のスペクトルである。図2は7分間凝集の基板上に4,4‘-ビピリジン1mMを滴下したときのSERSスペクトル図を示す。図3及び図4は6分凝集と7分間凝集の基板上に4,4‘-ビピリジン1nMを滴下したときのSERSスペクトル図を示す。
図1と図2~図4のスペクトルを比較すると、1μM及び100nMの濃度の試料の測定が可能であることがわかる。そして、図3と図4の比較から6分凝集が7分凝集より優れ、最適凝集時間が存在することが理解できる。
かかる測定基板によれば、レーザ光の焦点合わせを完了させておけば、基板上の凝集域に所定の試料を滴化することにより4,4‘-ビピリジンの100nMSERSスペクトルを瞬時に検出できた。
実施例1で使用した、平均粒径7~10nmの銀ナノ粒子又はクラスタを、アミノ酸系界面活性剤(L-アラ二ン0.001~0.002%)を含む水溶液中に分散させ、2000ppm、1000ppm及び100ppmの銀ナノ分散液(無色透明)を作成する。表面清浄な銀基板、銅板および黄銅基板上に、1000ppmの分散液1滴(10μL)ずつ間隔を置いて滴下し、その凝集過程を観察した。銅基板の上ではほぼ凝集に1夜要したのに対し、黄銅基板上では数分から、リン青銅基板上では数分から十数分で黒い堆積物が形成された。ここでは凝集の停止は滴下後窒素ブローして水滴を飛散乾燥させることにより行われた。このようにして作成した6分凝集のリン青銅板(図5に示すSEM写真)上での堆積域にCRP(通常濃度の1000倍)を10倍、100倍に純水で希釈して滴下し、株式会社ラムダビジョン測定器を用い、最大出力で825nmの波長のレーザを励起光として用いてSERSスペクトルを測定した。その結果を図6に示す。
本発明によれば、被検出試料を滴下後即時SERS光を測定できる測定基板を提供できる。そして、かかる測定基板を利用すれば、ホットサイトとなる最適凝集域の荷電状態を調整することができるので、タンパク検出に必要なナノ粒子へのタンパクの吸着が容易となる。また、抗原抗体反応を利用して、癌マーカーおよびウイルスの検出による病気の診断等を行う測定も可能となる。

Claims (11)

  1.  SERS活性を有する金属の粒径100nm以下のナノ粒子(クラスタを含む)100~5000ppmを含む分散液をその金属の電極電位より卑なる(高い)電極電位を有する金属基板上で凝集させ、所望の凝集状態で凝集停止させてなり、凝集領域が表面増強ラマン散乱(SERS)測定のためのホットサイトを形成していることを特徴とする表面増強ラマン散乱光測定用基板。
  2.  前記分散液中のSERS活性を有する金属が銀であって、分散液中に銀イオンと金属錯体を形成する配位子を供給する配位化合物を含む請求項1記載の表面増強ラマン散乱光測定用基板。
  3.  前記配位化合物が銀とのアンミン錯体を形成するアミノ基を有する請求項2記載の表面増強ラマン散乱光測定用基板。
  4.  前記配位化合物がアミノ基とカルボキシル基とを有する両性界面活性剤である請求項3記載の表面増強ラマン散乱光測定用基板。
  5.  金属基板が銅板又は銅合金である請求項2記載の表面増強ラマン散乱光測定用基板。
  6.  表面増強ラマン活性機能を有する金属の100nm以下の粒子径のナノ粒子(クラスタを含む)を含む分散液を表面増強ラマン活性機能を有する金属の金属電極電位より卑なる(高い)電極電位を有する金属表面を有する基板上で凝集開始後適時凝集停止させて最適凝集領域を提供する工程と、該金属凝集域に被検出試料を付着させる工程と、被検出試料の非乾燥状態で金属ナノ粒子表面に吸着させた被検出試料に所定のレーザ光を照射し被検出試料から発生するラマン散乱光を測定する工程を含むことを特徴とする表面増強ラマン散乱光測定方法。
  7.  粒径5~100nmの金または銀ナノ粒子又はクラスタ100~5000ppmを含む分散液中に少なくともアミノ基とカルボニル基を有する両性電解質を分散させ、該両性電解質を含む分散液を金属基板上に滴下し、金属基板とナノ金属との電極電位差で凝集を開始させ、最適凝集状態で凝集を停止させた後両性電解質をその等電点以上または以下のpH溶液で処理してプラスまたはマイナス帯電させることにより、被検出タンパク試料を吸着させ、金または銀ナノ粒子にレーザ光を照射し、吸着した被検出タンパク試料から発生するラマン散乱光を測定することを特徴とする表面増強ラマン散乱光測定方法。
  8.  請求項6又は7に記載の測定方法に用いられる分散液であって、表面増強ラマン活性機能を有する金属イオンの分散液中に金属イオンに配位子を供給する配位化合物を添加して金属錯体クラスタを形成してなる表面増強ラマン活性機能を有する金属ナノ粒子分散液。
  9.  前記配位化合物がアミノ基とカルボキシル基を含む両性界面活性剤である請求項8記載のタンパク検出用分散液。
  10.  抗原抗体反応の抗体成分を単独で又は前記両性界面活性剤とともに添加した請求項8記載の抗原抗体反応用分散液。
  11.  前記両性界面活性剤がアミノ酸系界面活性剤を含むタンパク系界面活性剤であり、抗体成分又は抗原成分を金属ナノ粒子又はクラスタ間に誘導する機能を有する請求項10に記載の分散液。
     
PCT/JP2010/053509 2009-03-04 2010-03-04 表面増強ラマン散乱活性測定基板 WO2010101209A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080019304.2A CN102428359B (zh) 2009-03-04 2010-03-04 表面增强拉曼散射活性测定基板
US13/255,071 US9658163B2 (en) 2009-03-04 2010-03-04 Assaying substrate with surface-enhanced raman scattering activity
JP2011502794A JP5466226B2 (ja) 2009-03-04 2010-03-04 表面増強ラマン散乱活性測定基板
EP10748802.5A EP2405257A4 (en) 2009-03-04 2010-03-04 Assaying substrate with surface-enhanced raman scattering activity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-051105 2009-03-02
JP2009051105 2009-03-04
JP2009-171354 2009-07-22
JP2009171354 2009-07-22

Publications (1)

Publication Number Publication Date
WO2010101209A1 true WO2010101209A1 (ja) 2010-09-10

Family

ID=42709763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053509 WO2010101209A1 (ja) 2009-03-04 2010-03-04 表面増強ラマン散乱活性測定基板

Country Status (6)

Country Link
US (1) US9658163B2 (ja)
EP (1) EP2405257A4 (ja)
JP (1) JP5466226B2 (ja)
KR (1) KR20120022754A (ja)
CN (1) CN102428359B (ja)
WO (1) WO2010101209A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065747A1 (ja) * 2011-10-31 2013-05-10 有限会社マイテック 金属錯体量子結晶及びそれを用いる生化学物質の表面増強ラマン散乱(sers)分析法
US20140034235A1 (en) * 2011-03-31 2014-02-06 Fujifilm Corporation Method for producing optical electrical field enhancing device
CN103968946A (zh) * 2014-05-19 2014-08-06 中国人民解放军第二军医大学 一种表面增强拉曼二维相关光谱的采集方法
WO2014181814A1 (ja) * 2013-05-08 2014-11-13 有限会社マイテック 生体試料のラマン定量分析用バイオチップ
WO2015170711A1 (ja) * 2014-05-08 2015-11-12 有限会社マイテック プラズモニックチップおよびそれを用いるがん疾病の蛍光画像ならびにラマン分光による診断方法
JP2016530395A (ja) * 2013-04-29 2016-09-29 アイシン精機株式会社 貴金属ナノ粒子の粒度が制御された懸濁液
CN111830004A (zh) * 2019-04-18 2020-10-27 中国科学院微电子研究所 一种检测拉曼信号的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615059B1 (en) * 2010-09-06 2017-11-08 Mytech Co., Ltd. Method for producing metal complex quantum crystals
KR101538218B1 (ko) * 2012-08-24 2015-07-22 한양대학교 에리카산학협력단 표면―증강 라만 산란에 기초한 고속 및 고감도 미량 분석용 유무기 나노섬유 복합체 기판 및 이의 제조방법
CN102818800A (zh) * 2012-09-07 2012-12-12 天津大学 一种基于芯片级试纸的人血尿蛋白检测方法
CN103901247B (zh) * 2012-12-28 2016-08-31 清华大学 电势差测量方法
CN103604796A (zh) * 2013-11-29 2014-02-26 苏州大学 一种硅基表面增强拉曼散射(sers)基底的制备方法
KR101765387B1 (ko) * 2015-06-24 2017-08-23 서강대학교산학협력단 금속 코아 간 초미세 보이드를 가지는 나노 갭 구조체 및 이를 이용한 분자 검출 장치 및 방법, 선택적 에칭을 통한 상기 나노 갭 구조체의 제조 방법
CN106814059B (zh) * 2017-01-16 2019-06-14 北京芯创睿胜科技有限公司 Sers活性液滴、制备方法及分子检测方法
CN107262168B (zh) * 2017-06-12 2019-04-30 重庆大学 一种pdms自吸进样的微流控sers芯片及其制备方法
JP7307917B2 (ja) * 2019-04-26 2023-07-13 国立大学法人群馬大学 生体高分子の濃縮化方法、結晶化方法およびナノ構造基板
CN113092443B (zh) * 2021-04-12 2022-09-20 华北电力大学 一种粘性Cu-Au贵金属复合基底、制备方法及其应用
CN113275583B (zh) * 2021-05-11 2022-07-01 安徽大学 面向农药残留的sers基底制备方法及检测方法
US20230035300A1 (en) * 2021-07-28 2023-02-02 National Cheng Kung University Method for detecting viruses
CN114184592B (zh) * 2021-11-24 2023-12-05 厦门大学 一种基于负电性sers基底的负电性分子sers检测方法
WO2023123069A1 (zh) * 2021-12-29 2023-07-06 陆一平 一种可调整材料表面对电磁波反应的方法和其组合构造

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334211A (ja) 1989-03-30 1991-02-14 Shinku Yakin Kk 金属ペースト及びその製造方法
JPH0598195A (ja) 1991-10-09 1993-04-20 Mitsuboshi Belting Ltd 微粒子分散ぺースト及びこれを用いた金属膜の製造方法
JPH07146295A (ja) 1993-11-19 1995-06-06 Kyoto Daiichi Kagaku:Kk ラマン分光測定による免疫分析方法及び装置
JPH10160737A (ja) * 1996-12-03 1998-06-19 Dainippon Printing Co Ltd 光学的分析装置用測定チップ及びその製造方法
JPH1161209A (ja) 1997-08-15 1999-03-05 Kdk Corp 貴金属微粒子の分散体及びその製造方法、並びに分散体を利用した構造体デバイス及びその製造方法
WO2007060989A1 (ja) * 2005-11-22 2007-05-31 Intellectual Property Bank Corp. 表面増強ラマン散乱(sers)による微量物質の検知方法ならびに装置、微量アナライト検知用マイクロ流路チップ
JP2007198933A (ja) * 2006-01-27 2007-08-09 Keio Gijuku 表面増強ラマン分光分析用基板の作成方法及び表面増強ラマン分光分析用基板
WO2008010442A1 (fr) * 2006-07-20 2008-01-24 Fujifilm Corporation microstructure et procédé pour sa fabrication, dispositif de détection et dispositif de spectroscopie Raman
JP2008096189A (ja) * 2006-10-10 2008-04-24 Fujirebio Inc 蛍光測定法と、蛍光測定のための測定用チップ及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376556A (en) * 1989-10-27 1994-12-27 Abbott Laboratories Surface-enhanced Raman spectroscopy immunoassay
US6989897B2 (en) * 2002-06-12 2006-01-24 Intel Corporation Metal coated nanocrystalline silicon as an active surface enhanced Raman spectroscopy (SERS) substrate
US7400395B2 (en) * 2002-06-12 2008-07-15 Intel Corporation Metal coated nanocrystalline silicon as an active surface enhanced raman spectroscopy (SERS) substrate
US7019828B2 (en) * 2003-03-12 2006-03-28 Intel Corporation Chemical enhancement in surface enhanced raman scattering using lithium salts
US20050077184A1 (en) * 2003-10-09 2005-04-14 Organotek Defense System Corporation Method for preparing surface for obtaining surface-enhanced Raman scattering spectra of organic compounds
EP1825269A4 (en) * 2004-12-13 2012-06-06 Univ South Carolina SURFACE-REINFORCED RAMAN SPECTROSCOPY USING SHAPED GOLDNANOPARTICLE
US20080003576A1 (en) * 2006-06-30 2008-01-03 Jingwu Zhang Assay platforms and detection methodology using surface enhanced Raman scattering (SERS) upon specific biochemical interactions
JP2009031023A (ja) * 2007-07-25 2009-02-12 Keio Gijuku 表面増強ラマン分光分析用基板の作成方法、マイクロtasの製造方法、及び、マイクロtas
US20090201496A1 (en) * 2008-02-11 2009-08-13 Shuit-Tong Lee Surface-enhanced raman scattering based on nanomaterials as substrate
WO2009117646A2 (en) * 2008-03-20 2009-09-24 Drexel University Method for the formation of sers substrates
EP2615059B1 (en) * 2010-09-06 2017-11-08 Mytech Co., Ltd. Method for producing metal complex quantum crystals

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334211A (ja) 1989-03-30 1991-02-14 Shinku Yakin Kk 金属ペースト及びその製造方法
JPH0598195A (ja) 1991-10-09 1993-04-20 Mitsuboshi Belting Ltd 微粒子分散ぺースト及びこれを用いた金属膜の製造方法
JPH07146295A (ja) 1993-11-19 1995-06-06 Kyoto Daiichi Kagaku:Kk ラマン分光測定による免疫分析方法及び装置
JPH10160737A (ja) * 1996-12-03 1998-06-19 Dainippon Printing Co Ltd 光学的分析装置用測定チップ及びその製造方法
JPH1161209A (ja) 1997-08-15 1999-03-05 Kdk Corp 貴金属微粒子の分散体及びその製造方法、並びに分散体を利用した構造体デバイス及びその製造方法
WO2007060989A1 (ja) * 2005-11-22 2007-05-31 Intellectual Property Bank Corp. 表面増強ラマン散乱(sers)による微量物質の検知方法ならびに装置、微量アナライト検知用マイクロ流路チップ
JP2007198933A (ja) * 2006-01-27 2007-08-09 Keio Gijuku 表面増強ラマン分光分析用基板の作成方法及び表面増強ラマン分光分析用基板
WO2008010442A1 (fr) * 2006-07-20 2008-01-24 Fujifilm Corporation microstructure et procédé pour sa fabrication, dispositif de détection et dispositif de spectroscopie Raman
JP2008096189A (ja) * 2006-10-10 2008-04-24 Fujirebio Inc 蛍光測定法と、蛍光測定のための測定用チップ及びその製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
K. C. GRABAR, P. C. SMITH, M. D. MUSICK, J. A. DAVIS, D. G. WALTER, M. A. JACKSON, A. P. GUTHRIE, M. J. NATAN, J. AM. CHEM, SOC., vol. 118, 1996, pages 1148
KANJIRO TORIGOE, CATALYST, 1999, pages 41521
R. M. BRIGHT, M. D. MUSICK, M. H. NATAN, LANAMUIR, vol. 14, 1998, pages 5695
S. NIE, S. R. EMORY, SCIENCE, vol. 275, 1997, pages 1102
See also references of EP2405257A4 *
WATABE ET AL.: "Kikinzoku Nano Ryushi Gosei Ho no Kaihatsu to Sono Oyo", ANNUAL REPORT OF RESEARCH INSTITUTE FOR SCIENCE AND TECHNOLOGY, vol. 14, 2006, pages 85 - 90, XP008162092 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140034235A1 (en) * 2011-03-31 2014-02-06 Fujifilm Corporation Method for producing optical electrical field enhancing device
JPWO2013065747A1 (ja) * 2011-10-31 2015-04-02 有限会社マイテック 金属錯体量子結晶及びそれを用いる生化学物質の表面増強ラマン散乱(sers)分析法
WO2013065747A1 (ja) * 2011-10-31 2013-05-10 有限会社マイテック 金属錯体量子結晶及びそれを用いる生化学物質の表面増強ラマン散乱(sers)分析法
JP2016530395A (ja) * 2013-04-29 2016-09-29 アイシン精機株式会社 貴金属ナノ粒子の粒度が制御された懸濁液
CN105452850A (zh) * 2013-05-08 2016-03-30 米特奇有限公司 癌关联物质的拉曼定量方法
JPWO2014181816A1 (ja) * 2013-05-08 2017-02-23 有限会社マイテック 癌関連物質のラマン定量方法
JP2014238382A (ja) * 2013-05-08 2014-12-18 有限会社マイテック 癌関連物質の定量方法
WO2014181816A1 (ja) * 2013-05-08 2014-11-13 有限会社マイテック 癌関連物質のラマン定量方法
EA037886B1 (ru) * 2013-05-08 2021-06-01 Митек Ко., Лтд. Способ измерения связанных с раком веществ посредством спектроскопии комбинационного рассеяния света и биочип, применяемый в указанном способе
KR20160019419A (ko) * 2013-05-08 2016-02-19 유겐가이샤 마이테크 암 관련 물질의 라만 정량 방법
WO2014181814A1 (ja) * 2013-05-08 2014-11-13 有限会社マイテック 生体試料のラマン定量分析用バイオチップ
KR102162706B1 (ko) 2013-05-08 2020-10-07 유겐가이샤 마이테크 암 관련 물질의 라만 정량 방법
US9535069B2 (en) 2013-05-08 2017-01-03 Mytech Co., Ltd. Method of measuring cancer related substances by raman spectroscopy
JP2014238384A (ja) * 2013-05-08 2014-12-18 有限会社マイテック ラマン定量用バイオチップ
JPWO2014181814A1 (ja) * 2013-05-08 2017-02-23 有限会社マイテック 生体試料のラマン定量分析用バイオチップ
JP2017223678A (ja) * 2013-05-08 2017-12-21 有限会社マイテック バイオチップ
CN105452850B (zh) * 2013-05-08 2018-12-28 米特奇有限公司 癌关联物质的拉曼定量方法
US10365222B2 (en) 2013-05-08 2019-07-30 Mytech Co., Ltd. Biochip for Raman quantitative analysis of biological samples
WO2015170711A1 (ja) * 2014-05-08 2015-11-12 有限会社マイテック プラズモニックチップおよびそれを用いるがん疾病の蛍光画像ならびにラマン分光による診断方法
CN103968946A (zh) * 2014-05-19 2014-08-06 中国人民解放军第二军医大学 一种表面增强拉曼二维相关光谱的采集方法
US10215700B2 (en) 2015-02-26 2019-02-26 Mytech Co., Ltd. Plasmonic chip for observing cancer related substances by localized surface plasmon resonace
CN111830004A (zh) * 2019-04-18 2020-10-27 中国科学院微电子研究所 一种检测拉曼信号的方法

Also Published As

Publication number Publication date
CN102428359A (zh) 2012-04-25
CN102428359B (zh) 2014-12-31
EP2405257A4 (en) 2017-08-02
EP2405257A1 (en) 2012-01-11
US9658163B2 (en) 2017-05-23
JP5466226B2 (ja) 2014-04-09
JPWO2010101209A1 (ja) 2012-09-10
KR20120022754A (ko) 2012-03-12
US20120115245A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5466226B2 (ja) 表面増強ラマン散乱活性測定基板
Wu et al. Colorimetric assay of l-cysteine based on peroxidase-mimicking DNA-Ag/Pt nanoclusters
Lim et al. Interparticle interactions in glutathione mediated assembly of gold nanoparticles
JP2010203973A (ja) 表面増強ラマン散乱の測定方法
JP6294911B2 (ja) 量子結晶基板
Daniyal et al. Development of Surface Plasmon Resonance Spectroscopy for Metal Ion Detection.
Güzel et al. Effect of Au and Au@ Ag core–shell nanoparticles on the SERS of bridging organic molecules
Kim et al. Surface-enhanced Raman scattering: a powerful tool for chemical identification
Kahraman et al. Label-free and direct protein detection on 3D plasmonic nanovoid structures using surface-enhanced Raman scattering
WO2014181814A1 (ja) 生体試料のラマン定量分析用バイオチップ
Lim et al. Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy
Kołątaj et al. Silver nanoparticles with many sharp apexes and edges as efficient nanoresonators for shell-isolated nanoparticle-enhanced Raman spectroscopy
Song et al. Gold-modified silver nanorod arrays for SERS-based immunoassays with improved sensitivity
Dong et al. Cu/Ag sphere segment void array as efficient surface enhanced Raman spectroscopy substrate for detecting individual atmospheric aerosol
Chen et al. Highly sensitive and selective colorimetric sensing of histidine by NAC functionalized AuNPs in aqueous medium with real sample application
Eskandari et al. A surface-enhanced Raman scattering (SERS) biosensor fabricated using the electrodeposition method for ultrasensitive detection of amino acid histidine
JP2007198933A (ja) 表面増強ラマン分光分析用基板の作成方法及び表面増強ラマン分光分析用基板
Yuan et al. Machine learning-driven multi-level composite SERS platform for trace detection of chlorogenic acid as pharmacodynamic substance in honeysuckle
Panikkanvalappil et al. Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen
Ge et al. Real-time observation of dynamic heterogeneity of gold nanorods on plasma membrane with darkfield microscopy
JP3714671B2 (ja) 表面増強ラマン散乱活性基板の作成方法
US20170226560A1 (en) Gold nanoparticle-based homogeneous colorimetric diagnostic assay for the detection of proteases and protease inhibitors
Geng et al. Rapid and sensitive detection of amphetamine by SERS-based competitive immunoassay coupled with magnetic separation
Albini et al. Glass supported SERS chips for emerging pollutant analyses
Jiang et al. Halide ions sensing in water via silver nanoprism self-assembled chips

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019304.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748802

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502794

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010748802

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117023287

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13255071

Country of ref document: US