WO2010101209A1 - 表面増強ラマン散乱活性測定基板 - Google Patents
表面増強ラマン散乱活性測定基板 Download PDFInfo
- Publication number
- WO2010101209A1 WO2010101209A1 PCT/JP2010/053509 JP2010053509W WO2010101209A1 WO 2010101209 A1 WO2010101209 A1 WO 2010101209A1 JP 2010053509 W JP2010053509 W JP 2010053509W WO 2010101209 A1 WO2010101209 A1 WO 2010101209A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- substrate
- enhanced raman
- nanoparticles
- aggregation
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54346—Nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/551—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
- G01N33/553—Metal or metal coated
Definitions
- the present invention relates to a measurement substrate having highly reproducible surface-enhanced Raman scattering (hereinafter abbreviated as SERS) activity and a surface-enhanced Raman light measurement method using the same.
- SERS surface-enhanced Raman scattering
- Raman spectroscopy Surface Enhanced Raman s Spectroscopy
- the Raman effect is a phenomenon (inelastic scattering) in which light having a wavelength different from the wavelength of incident light is included in the scattered light when light is incident on a substance.
- the scattered light at this time is called Raman scattered light.
- the difference between the energy of the light scattered by the Raman effect and the incident light corresponds to the energy of the vibration level, rotation level, or electron level of the molecule or crystal in the material.
- plasmons a phenomenon in which free electrons existing on the metal surface oscillate collectively, exist on the metal surface, and this surface plasmon is coupled with a photoelectric field in the visible to near-infrared region. , Significantly enhance the electric field at the surface of the metal nanoparticles.
- the laser light is irradiated to the molecules adsorbed on the surface of the metal nanoparticles and the Raman scattered light generated from the adsorbed molecules is greatly enhanced. It has been attracting attention.
- SERS measurement is performed by utilizing the fact that a substance is adsorbed on the surface of a noble metal electrode such as gold or silver or the surface of a colloid and the vibration spectrum is enhanced as compared with a molecule alone (Patent Document 1).
- This SERS measurement is a useful technique for structural analysis of trace substances.
- this technique uses fine particles of precious metals such as silver and gold having a size of several tens to several hundreds of nanometers on a glass substrate. It is said that it is necessary to accumulate, and conventionally, it is necessary to synthesize silver or gold colloidal particles in a solution and fix them on a substrate modified with lysine or cyan (Non-Patent Documents 1, 2, 3, and Patent Document 2). ).
- Patent Document 2 employs a so-called drop & dry method in which a colloid that has prevented aggregation is gelled, coated and dried to form a substrate, and has become the mainstream.
- the drop & dry method requires time, and in order to detect the specimen quickly and accurately, it is necessary to detect the specimen in a non-dry state (drop in situ) after dropping the specimen. It can be said that it is still inadequate for analysis of a very small amount of chemical species in the gas phase such as diagnosis.
- the inventors of the present invention have been made by paying attention to the fact that the silver nanoparticles or the cluster dispersion liquid starts to be immediately agglomerated on the copper or copper alloy substrate and is fixed, so that the surface enhanced Raman scattering light can be measured immediately.
- a dispersion liquid containing 100 to 5000 ppm of nanoparticles having a particle size of 100 nm or less (including clusters) of a metal having SERS activity is aggregated on a metal substrate having an electrode potential lower (higher) than the electrode potential of the metal,
- the surface-enhanced Raman scattering light measurement substrate is characterized in that aggregation is stopped in a desired aggregation state and the aggregation region forms a hot site for surface-enhanced Raman scattering (SERS) measurement.
- the metal nanoparticle or cluster is fixed on the metal substrate in the aggregation process from the metal nanoparticle or cluster dispersion liquid, and the adhesion strength is strong. It does not peel off easily, and aggregation can be almost stopped at that time. Therefore, the sample to be detected may be dispersed in the metal nanoparticle dispersion, and irradiated with laser light while dropping and aggregating the sample on the metal substrate, but only the metal nanoparticle dispersion is dropped on the metal substrate and agglomerating in a timely manner.
- the measurement substrate has a plurality of hot sites per unit area in which two or more metal nanoparticles or clusters are chained and adjusted to an interparticle distance of at least 10 nm.
- the metal nanoparticles are metal particles having a particle size of 100 nm or less, and can be produced by physically pulverizing them, but can also be produced by reducing metal ions or complexing metal ions and aggregating them as they are. be able to.
- the term “metal nanoparticles” refers to metal particles or clusters having a particle size of 100 nm or less, and includes not only those obtained by reducing and aggregating metal ions, but also clusters obtained by aggregating metal ions via a dispersant.
- a chemical method in which metal ions are reduced and adjusted to nanoparticles via metal atoms and metal clusters written by Torigoe Mikijiro et al., Catalyst 41521 (1999)
- other physical methods JP-A-3-342211, JP-A-5-98195
- the metal electrode is electrolyzed to form ions, which are aggregated to be produced as a cluster.
- a “nanocluster” is an aggregate made up of several to several hundred atoms / molecules, and its size ranges from several nanometers to several tens of nanometers.
- the metal nanoparticles or clusters are selected from the group consisting of metals having SERS activity, gold, silver and alloys thereof, and in order to form hot spots, the particle or cluster diameter is preferably 50 to 5 nm, preferably 20 to 5 nm. .
- the shape of a nanoparticle or a cluster is a spherical shape normally, you may deform
- a coordination compound that supplies a ligand that forms a metal complex with a metal ion in the dispersion of metal ions because the cluster agglomeration size can be easily adjusted.
- a metal cluster of an appropriate size can be formed to form a dispersion.
- a particularly preferred coordination compound is an amphoteric surfactant containing an amino acid surfactant having an amino group and a carboxyl group.
- L-alanine which is an amino acid surfactant, is 0.001 to 0.002 wt.
- the metal substrate is determined by the type of metal nanoparticles, and is selected from gold, silver, copper and alloys thereof so that the electrode potential is lower.
- the entire substrate is not necessarily made of metal, but may have at least a metal surface that exhibits a potential in the dispersion. Therefore, for example, as shown in FIG. 7 (a), it can be manufactured by punching a glass or plastic plate 1 and pasting a thin metal plate 2 having a plate shape of about 0.1 mm. Since the metal portion 2 of this substrate is formed in a dish shape, when the dispersion liquid is dropped, the substrate becomes a droplet 3 (see FIG. 7B).
- the aggregation region 4 of the metal nanoparticles is formed on the metal surface, and a measurement substrate is created.
- the potential of the metal substrate can also be adjusted by using an alloying technique such as a gold alloy, a silver alloy, or a copper alloy and adjusting the composition ratio. Further, it can be adjusted by applying an appropriate voltage.
- the speed of aggregation is important because it affects the timing of detection and the degree of aggregation affects the distance between particles.
- the resonance phenomenon caused by surface plasmons occurs at a particle interval of 10 nm or less and can be increased by a decrease in the interval to 1 nm.
- the detection sensitivity increases with time in the aggregation of silver nanoparticles, and then decreases, so the optimal aggregation interval due to the resonance phenomenon between the surface plasmons appears in the transition period from the start of aggregation to the end of complete aggregation. This is because a peak appears.
- the metal surface of the substrate used in the present invention is oxidized because the aggregation rate of the metal nanoparticles can be adjusted.
- the metal substrate is selected in consideration of the electrode potential in relation to the metal nanoparticles or clusters to be aggregated, but in order to aggregate the silver nanoparticles or clusters, a copper plate, a brass plate, a phosphor bronze plate, etc.
- the copper alloy plate is preferably selected.
- the content of the metal nanoparticles or clusters is preferably 5000 to 100 ppm, particularly preferably 3000 to 500 ppm.
- concentration is high, the density between particles is high, so that hot sites are formed faster (if the dispersion contains 0.001 to 0.002 wt% L-alanine, 6 minutes at 1000 ppm, 3 minutes at 2000 ppm)
- the aggregation time of about 1 minute at 3000 ppm was appropriate), so that the stop of the aggregation is accelerated, and when the concentration is low, the formation of hot sites is delayed, so the stop of the aggregation is delayed.
- an appropriate time is usually set after the start of aggregation, but the aggregation condition that becomes a hot site is affected by the content of metal nanoparticles or clusters in the dispersion, the dispersant, the electrode potential difference with the substrate metal, etc. It is important to determine in advance.
- the present invention provides a surface-enhanced Raman-scattered light measurement method characterized by measuring various types of Raman-scattered light using the measurement substrate, and has a particle diameter of 100 nm or less of a metal having a surface-enhanced Raman-active function.
- the dispersion containing the nanoparticles (including clusters) is agglomerated and stopped on a substrate having a metal surface having a lower (higher) electrode potential than the metal electrode potential of the metal having the surface enhanced Raman activity function.
- a step of providing an optimal aggregation region, a step of attaching a sample to be detected to the metal aggregation region, and a target laser beam irradiated to the detection sample adsorbed on the surface of the metal nanoparticles in a non-dried state from the sample to be detected The present invention provides a method for measuring surface-enhanced Raman scattered light, comprising a step of measuring generated Raman scattered light.
- Various disease markers and various viruses are protein molecules, and it is a condition that surface plasmon resonance (Surface IV) can be utilized by adsorbing protein molecules to an optimal hot site.
- Surface IV surface plasmon resonance
- the present inventors use an amino acid-based surfactant to form a dispersion of silver nanoparticles or clusters, the silver nanoparticles aggregate on the metal substrate via the amino acid, resulting in an amino acid at or above the isoelectric point.
- the amino acid on the substrate can be charged to a charge that easily adsorbs protein molecules.
- the present invention disperses an amphoteric electrolyte having at least an amino group and a carbonyl group in a colloidal solution containing gold or silver nanoparticles having a particle size of 5 to 100 nm and 100 to 5000 ppm, and the colloidal solution containing the amphoteric electrolyte is used as a metal substrate.
- Dropping onto the electrode starting aggregation by the electrode potential difference between the metal substrate and the nanometal, stopping the aggregation in the optimal aggregation state, and then treating the amphoteric electrolyte with a pH solution at or below its isoelectric point plus or minus Surface-enhanced Raman scattered light characterized by adsorbing a protein sample to be detected by charging, irradiating gold or silver nanoparticles with laser light, and measuring Raman scattered light generated from the adsorbed protein sample to be detected It also provides a measurement method.
- the electrolyte is an amino acid-based surfactant or a protein-based surfactant, and particularly an amino acid system having one or more amino groups with respect to a carboxyl group of an amino acid-based electrolyte, glycine, L-alanine, lysine or the like.
- An electrolyte is preferred. This is because amino groups are advantageous for adsorption of silver nanoparticles.
- amino acids are positively charged by treatment with a pH solution having an isoelectric point or higher, and are negatively charged with a pH solution having an isoelectric point or lower. Therefore, the amino acid is easily selectively adsorbed with protein molecules that are negatively or positively charged. .
- the metal nanoparticle dispersion used in the present invention is preferably a protein-based surfactant containing an amino acid-based amphoteric surfactant as a surfactant, and the surfactant is aggregated. It seems to play a role of inducing an antibody component or an antigen component between the metal nanoparticles by interposing between the metal nanoparticles. It is preferable to select from antibody components and add them alone or in combination with an amino acid electrolyte and antibody components.
- the amphoteric electrolyte in the dispersion can be used to form an optimal aggregated form on the metal substrate, and the charge necessary for protein adsorption can be selectively formed using the properties of the amphoteric electrolyte. Therefore, protein adsorption can be performed reliably.
- the adjustment of the interval between the metal nanoparticles or clusters can be controlled by the aggregation time, so that protein molecules can be adsorbed to the optimum hot spot. Therefore, SERS detection of various protein molecules can be detected with high reproducibility, and each disease marker and various viruses can be detected.
- the present invention is a dispersion used for the above-described measurement method, wherein a metal complex cluster is prepared by adding a coordination compound that supplies a ligand to a metal ion in the dispersion of a metal ion having a surface enhanced Raman activity function. It also provides a metal nanoparticle dispersion having a surface enhanced Raman activity function.
- the coordination compound is preferably an amphoteric surfactant containing an amino group and a carboxyl group.
- an antigen-antibody reaction the antibody component of the antigen-antibody reaction is used alone or the amphoteric The dispersion should be added with the surfactant.
- the amphoteric surfactant is a protein surfactant containing an amino acid surfactant, it has a function of inducing antibody components or antigen components between metal nanoparticles or clusters.
- substrate with the aggregation time of 6 minutes is shown.
- substrate with an aggregation time of 7 minutes is shown.
- substrate with an aggregation time of 6 minutes is shown.
- substrate with an aggregation time of 7 minutes is shown.
- substrate. 3 is a CERS SERS spectrum measured in Example 2.
- silver nanoclusters having an average particle diameter of 7 to 10 nm prepared by a method of aggregating silver ions by a chemical method are dispersed in an aqueous solution containing an amino acid-based dispersant composed of L-alanine, and 2000 ppm. , 1000 ppm and 100 ppm silver nanocluster dispersions (colorless and transparent).
- Drops were dropped on a clean surface silver substrate, copper plate and brass substrate at 1000 ppm drop (10 ⁇ L) at intervals, and the aggregation process was observed. On the silver substrate, it took almost one night to agglomerate, whereas a black deposit was formed in several minutes on the copper substrate and in several tens of seconds to several minutes on the brass substrate.
- FIGS. 1 and 2 show SERS spectrum diagrams when 1 nM of 4,4′-bipyridine was dropped on a 6-minute and 7-minute aggregated substrate.
- a 100 nM SERS spectrum of 4,4′-bipyridine could be instantaneously detected by dropping a predetermined sample into the aggregation region on the substrate.
- the silver nanoparticles or clusters having an average particle diameter of 7 to 10 nm used in Example 1 were dispersed in an aqueous solution containing an amino acid surfactant (L-alanine 0.001 to 0.002%), and 2000 ppm , 1000 ppm and 100 ppm silver nano-dispersions (colorless and transparent).
- an amino acid surfactant L-alanine 0.001 to 0.002%
- 2000 ppm , 1000 ppm and 100 ppm silver nano-dispersions colorless and transparent.
- One drop (10 ⁇ L) of a 1000 ppm dispersion was dropped at intervals on a clean surface silver substrate, copper plate and brass substrate, and the aggregation process was observed. On the copper substrate, it took almost one night to aggregate, whereas a black deposit was formed in several minutes on the brass substrate and in minutes to tens of minutes on the phosphor bronze substrate.
- substrate which can measure SERS light immediately after dropping a to-be-detected sample can be provided. And if this measurement board
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Nanotechnology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Biophysics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
上述したように、金属基板は凝集対象の金属ナノ粒子又はクラスタとの関係で電極電位を考慮して選択されるが、銀ナノ粒子またはクラスタを凝集させるには銅板、真鍮板又はリン青銅板等の銅合金板が選択されるのが好ましい。この銀ナノクラスタ分散液を金属基板上で凝集させると、金属基板上にSERS活性を有するクラスタが配位子とともに結晶を形成するものと思われ(図5)、ホットサイトの作成に適する凝集領域となる。
Claims (11)
- SERS活性を有する金属の粒径100nm以下のナノ粒子(クラスタを含む)100~5000ppmを含む分散液をその金属の電極電位より卑なる(高い)電極電位を有する金属基板上で凝集させ、所望の凝集状態で凝集停止させてなり、凝集領域が表面増強ラマン散乱(SERS)測定のためのホットサイトを形成していることを特徴とする表面増強ラマン散乱光測定用基板。
- 前記分散液中のSERS活性を有する金属が銀であって、分散液中に銀イオンと金属錯体を形成する配位子を供給する配位化合物を含む請求項1記載の表面増強ラマン散乱光測定用基板。
- 前記配位化合物が銀とのアンミン錯体を形成するアミノ基を有する請求項2記載の表面増強ラマン散乱光測定用基板。
- 前記配位化合物がアミノ基とカルボキシル基とを有する両性界面活性剤である請求項3記載の表面増強ラマン散乱光測定用基板。
- 金属基板が銅板又は銅合金である請求項2記載の表面増強ラマン散乱光測定用基板。
- 表面増強ラマン活性機能を有する金属の100nm以下の粒子径のナノ粒子(クラスタを含む)を含む分散液を表面増強ラマン活性機能を有する金属の金属電極電位より卑なる(高い)電極電位を有する金属表面を有する基板上で凝集開始後適時凝集停止させて最適凝集領域を提供する工程と、該金属凝集域に被検出試料を付着させる工程と、被検出試料の非乾燥状態で金属ナノ粒子表面に吸着させた被検出試料に所定のレーザ光を照射し被検出試料から発生するラマン散乱光を測定する工程を含むことを特徴とする表面増強ラマン散乱光測定方法。
- 粒径5~100nmの金または銀ナノ粒子又はクラスタ100~5000ppmを含む分散液中に少なくともアミノ基とカルボニル基を有する両性電解質を分散させ、該両性電解質を含む分散液を金属基板上に滴下し、金属基板とナノ金属との電極電位差で凝集を開始させ、最適凝集状態で凝集を停止させた後両性電解質をその等電点以上または以下のpH溶液で処理してプラスまたはマイナス帯電させることにより、被検出タンパク試料を吸着させ、金または銀ナノ粒子にレーザ光を照射し、吸着した被検出タンパク試料から発生するラマン散乱光を測定することを特徴とする表面増強ラマン散乱光測定方法。
- 請求項6又は7に記載の測定方法に用いられる分散液であって、表面増強ラマン活性機能を有する金属イオンの分散液中に金属イオンに配位子を供給する配位化合物を添加して金属錯体クラスタを形成してなる表面増強ラマン活性機能を有する金属ナノ粒子分散液。
- 前記配位化合物がアミノ基とカルボキシル基を含む両性界面活性剤である請求項8記載のタンパク検出用分散液。
- 抗原抗体反応の抗体成分を単独で又は前記両性界面活性剤とともに添加した請求項8記載の抗原抗体反応用分散液。
- 前記両性界面活性剤がアミノ酸系界面活性剤を含むタンパク系界面活性剤であり、抗体成分又は抗原成分を金属ナノ粒子又はクラスタ間に誘導する機能を有する請求項10に記載の分散液。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080019304.2A CN102428359B (zh) | 2009-03-04 | 2010-03-04 | 表面增强拉曼散射活性测定基板 |
US13/255,071 US9658163B2 (en) | 2009-03-04 | 2010-03-04 | Assaying substrate with surface-enhanced raman scattering activity |
JP2011502794A JP5466226B2 (ja) | 2009-03-04 | 2010-03-04 | 表面増強ラマン散乱活性測定基板 |
EP10748802.5A EP2405257A4 (en) | 2009-03-04 | 2010-03-04 | Assaying substrate with surface-enhanced raman scattering activity |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-051105 | 2009-03-02 | ||
JP2009051105 | 2009-03-04 | ||
JP2009-171354 | 2009-07-22 | ||
JP2009171354 | 2009-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010101209A1 true WO2010101209A1 (ja) | 2010-09-10 |
Family
ID=42709763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053509 WO2010101209A1 (ja) | 2009-03-04 | 2010-03-04 | 表面増強ラマン散乱活性測定基板 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9658163B2 (ja) |
EP (1) | EP2405257A4 (ja) |
JP (1) | JP5466226B2 (ja) |
KR (1) | KR20120022754A (ja) |
CN (1) | CN102428359B (ja) |
WO (1) | WO2010101209A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013065747A1 (ja) * | 2011-10-31 | 2013-05-10 | 有限会社マイテック | 金属錯体量子結晶及びそれを用いる生化学物質の表面増強ラマン散乱(sers)分析法 |
US20140034235A1 (en) * | 2011-03-31 | 2014-02-06 | Fujifilm Corporation | Method for producing optical electrical field enhancing device |
CN103968946A (zh) * | 2014-05-19 | 2014-08-06 | 中国人民解放军第二军医大学 | 一种表面增强拉曼二维相关光谱的采集方法 |
WO2014181814A1 (ja) * | 2013-05-08 | 2014-11-13 | 有限会社マイテック | 生体試料のラマン定量分析用バイオチップ |
WO2015170711A1 (ja) * | 2014-05-08 | 2015-11-12 | 有限会社マイテック | プラズモニックチップおよびそれを用いるがん疾病の蛍光画像ならびにラマン分光による診断方法 |
JP2016530395A (ja) * | 2013-04-29 | 2016-09-29 | アイシン精機株式会社 | 貴金属ナノ粒子の粒度が制御された懸濁液 |
CN111830004A (zh) * | 2019-04-18 | 2020-10-27 | 中国科学院微电子研究所 | 一种检测拉曼信号的方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2615059B1 (en) * | 2010-09-06 | 2017-11-08 | Mytech Co., Ltd. | Method for producing metal complex quantum crystals |
KR101538218B1 (ko) * | 2012-08-24 | 2015-07-22 | 한양대학교 에리카산학협력단 | 표면―증강 라만 산란에 기초한 고속 및 고감도 미량 분석용 유무기 나노섬유 복합체 기판 및 이의 제조방법 |
CN102818800A (zh) * | 2012-09-07 | 2012-12-12 | 天津大学 | 一种基于芯片级试纸的人血尿蛋白检测方法 |
CN103901247B (zh) * | 2012-12-28 | 2016-08-31 | 清华大学 | 电势差测量方法 |
CN103604796A (zh) * | 2013-11-29 | 2014-02-26 | 苏州大学 | 一种硅基表面增强拉曼散射(sers)基底的制备方法 |
KR101765387B1 (ko) * | 2015-06-24 | 2017-08-23 | 서강대학교산학협력단 | 금속 코아 간 초미세 보이드를 가지는 나노 갭 구조체 및 이를 이용한 분자 검출 장치 및 방법, 선택적 에칭을 통한 상기 나노 갭 구조체의 제조 방법 |
CN106814059B (zh) * | 2017-01-16 | 2019-06-14 | 北京芯创睿胜科技有限公司 | Sers活性液滴、制备方法及分子检测方法 |
CN107262168B (zh) * | 2017-06-12 | 2019-04-30 | 重庆大学 | 一种pdms自吸进样的微流控sers芯片及其制备方法 |
JP7307917B2 (ja) * | 2019-04-26 | 2023-07-13 | 国立大学法人群馬大学 | 生体高分子の濃縮化方法、結晶化方法およびナノ構造基板 |
CN113092443B (zh) * | 2021-04-12 | 2022-09-20 | 华北电力大学 | 一种粘性Cu-Au贵金属复合基底、制备方法及其应用 |
CN113275583B (zh) * | 2021-05-11 | 2022-07-01 | 安徽大学 | 面向农药残留的sers基底制备方法及检测方法 |
US20230035300A1 (en) * | 2021-07-28 | 2023-02-02 | National Cheng Kung University | Method for detecting viruses |
CN114184592B (zh) * | 2021-11-24 | 2023-12-05 | 厦门大学 | 一种基于负电性sers基底的负电性分子sers检测方法 |
WO2023123069A1 (zh) * | 2021-12-29 | 2023-07-06 | 陆一平 | 一种可调整材料表面对电磁波反应的方法和其组合构造 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0334211A (ja) | 1989-03-30 | 1991-02-14 | Shinku Yakin Kk | 金属ペースト及びその製造方法 |
JPH0598195A (ja) | 1991-10-09 | 1993-04-20 | Mitsuboshi Belting Ltd | 微粒子分散ぺースト及びこれを用いた金属膜の製造方法 |
JPH07146295A (ja) | 1993-11-19 | 1995-06-06 | Kyoto Daiichi Kagaku:Kk | ラマン分光測定による免疫分析方法及び装置 |
JPH10160737A (ja) * | 1996-12-03 | 1998-06-19 | Dainippon Printing Co Ltd | 光学的分析装置用測定チップ及びその製造方法 |
JPH1161209A (ja) | 1997-08-15 | 1999-03-05 | Kdk Corp | 貴金属微粒子の分散体及びその製造方法、並びに分散体を利用した構造体デバイス及びその製造方法 |
WO2007060989A1 (ja) * | 2005-11-22 | 2007-05-31 | Intellectual Property Bank Corp. | 表面増強ラマン散乱(sers)による微量物質の検知方法ならびに装置、微量アナライト検知用マイクロ流路チップ |
JP2007198933A (ja) * | 2006-01-27 | 2007-08-09 | Keio Gijuku | 表面増強ラマン分光分析用基板の作成方法及び表面増強ラマン分光分析用基板 |
WO2008010442A1 (fr) * | 2006-07-20 | 2008-01-24 | Fujifilm Corporation | microstructure et procédé pour sa fabrication, dispositif de détection et dispositif de spectroscopie Raman |
JP2008096189A (ja) * | 2006-10-10 | 2008-04-24 | Fujirebio Inc | 蛍光測定法と、蛍光測定のための測定用チップ及びその製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5376556A (en) * | 1989-10-27 | 1994-12-27 | Abbott Laboratories | Surface-enhanced Raman spectroscopy immunoassay |
US6989897B2 (en) * | 2002-06-12 | 2006-01-24 | Intel Corporation | Metal coated nanocrystalline silicon as an active surface enhanced Raman spectroscopy (SERS) substrate |
US7400395B2 (en) * | 2002-06-12 | 2008-07-15 | Intel Corporation | Metal coated nanocrystalline silicon as an active surface enhanced raman spectroscopy (SERS) substrate |
US7019828B2 (en) * | 2003-03-12 | 2006-03-28 | Intel Corporation | Chemical enhancement in surface enhanced raman scattering using lithium salts |
US20050077184A1 (en) * | 2003-10-09 | 2005-04-14 | Organotek Defense System Corporation | Method for preparing surface for obtaining surface-enhanced Raman scattering spectra of organic compounds |
EP1825269A4 (en) * | 2004-12-13 | 2012-06-06 | Univ South Carolina | SURFACE-REINFORCED RAMAN SPECTROSCOPY USING SHAPED GOLDNANOPARTICLE |
US20080003576A1 (en) * | 2006-06-30 | 2008-01-03 | Jingwu Zhang | Assay platforms and detection methodology using surface enhanced Raman scattering (SERS) upon specific biochemical interactions |
JP2009031023A (ja) * | 2007-07-25 | 2009-02-12 | Keio Gijuku | 表面増強ラマン分光分析用基板の作成方法、マイクロtasの製造方法、及び、マイクロtas |
US20090201496A1 (en) * | 2008-02-11 | 2009-08-13 | Shuit-Tong Lee | Surface-enhanced raman scattering based on nanomaterials as substrate |
WO2009117646A2 (en) * | 2008-03-20 | 2009-09-24 | Drexel University | Method for the formation of sers substrates |
EP2615059B1 (en) * | 2010-09-06 | 2017-11-08 | Mytech Co., Ltd. | Method for producing metal complex quantum crystals |
-
2010
- 2010-03-04 JP JP2011502794A patent/JP5466226B2/ja not_active Expired - Fee Related
- 2010-03-04 US US13/255,071 patent/US9658163B2/en not_active Expired - Fee Related
- 2010-03-04 WO PCT/JP2010/053509 patent/WO2010101209A1/ja active Application Filing
- 2010-03-04 KR KR1020117023287A patent/KR20120022754A/ko not_active Application Discontinuation
- 2010-03-04 EP EP10748802.5A patent/EP2405257A4/en not_active Withdrawn
- 2010-03-04 CN CN201080019304.2A patent/CN102428359B/zh not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0334211A (ja) | 1989-03-30 | 1991-02-14 | Shinku Yakin Kk | 金属ペースト及びその製造方法 |
JPH0598195A (ja) | 1991-10-09 | 1993-04-20 | Mitsuboshi Belting Ltd | 微粒子分散ぺースト及びこれを用いた金属膜の製造方法 |
JPH07146295A (ja) | 1993-11-19 | 1995-06-06 | Kyoto Daiichi Kagaku:Kk | ラマン分光測定による免疫分析方法及び装置 |
JPH10160737A (ja) * | 1996-12-03 | 1998-06-19 | Dainippon Printing Co Ltd | 光学的分析装置用測定チップ及びその製造方法 |
JPH1161209A (ja) | 1997-08-15 | 1999-03-05 | Kdk Corp | 貴金属微粒子の分散体及びその製造方法、並びに分散体を利用した構造体デバイス及びその製造方法 |
WO2007060989A1 (ja) * | 2005-11-22 | 2007-05-31 | Intellectual Property Bank Corp. | 表面増強ラマン散乱(sers)による微量物質の検知方法ならびに装置、微量アナライト検知用マイクロ流路チップ |
JP2007198933A (ja) * | 2006-01-27 | 2007-08-09 | Keio Gijuku | 表面増強ラマン分光分析用基板の作成方法及び表面増強ラマン分光分析用基板 |
WO2008010442A1 (fr) * | 2006-07-20 | 2008-01-24 | Fujifilm Corporation | microstructure et procédé pour sa fabrication, dispositif de détection et dispositif de spectroscopie Raman |
JP2008096189A (ja) * | 2006-10-10 | 2008-04-24 | Fujirebio Inc | 蛍光測定法と、蛍光測定のための測定用チップ及びその製造方法 |
Non-Patent Citations (6)
Title |
---|
K. C. GRABAR, P. C. SMITH, M. D. MUSICK, J. A. DAVIS, D. G. WALTER, M. A. JACKSON, A. P. GUTHRIE, M. J. NATAN, J. AM. CHEM, SOC., vol. 118, 1996, pages 1148 |
KANJIRO TORIGOE, CATALYST, 1999, pages 41521 |
R. M. BRIGHT, M. D. MUSICK, M. H. NATAN, LANAMUIR, vol. 14, 1998, pages 5695 |
S. NIE, S. R. EMORY, SCIENCE, vol. 275, 1997, pages 1102 |
See also references of EP2405257A4 * |
WATABE ET AL.: "Kikinzoku Nano Ryushi Gosei Ho no Kaihatsu to Sono Oyo", ANNUAL REPORT OF RESEARCH INSTITUTE FOR SCIENCE AND TECHNOLOGY, vol. 14, 2006, pages 85 - 90, XP008162092 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140034235A1 (en) * | 2011-03-31 | 2014-02-06 | Fujifilm Corporation | Method for producing optical electrical field enhancing device |
JPWO2013065747A1 (ja) * | 2011-10-31 | 2015-04-02 | 有限会社マイテック | 金属錯体量子結晶及びそれを用いる生化学物質の表面増強ラマン散乱(sers)分析法 |
WO2013065747A1 (ja) * | 2011-10-31 | 2013-05-10 | 有限会社マイテック | 金属錯体量子結晶及びそれを用いる生化学物質の表面増強ラマン散乱(sers)分析法 |
JP2016530395A (ja) * | 2013-04-29 | 2016-09-29 | アイシン精機株式会社 | 貴金属ナノ粒子の粒度が制御された懸濁液 |
CN105452850A (zh) * | 2013-05-08 | 2016-03-30 | 米特奇有限公司 | 癌关联物质的拉曼定量方法 |
JPWO2014181816A1 (ja) * | 2013-05-08 | 2017-02-23 | 有限会社マイテック | 癌関連物質のラマン定量方法 |
JP2014238382A (ja) * | 2013-05-08 | 2014-12-18 | 有限会社マイテック | 癌関連物質の定量方法 |
WO2014181816A1 (ja) * | 2013-05-08 | 2014-11-13 | 有限会社マイテック | 癌関連物質のラマン定量方法 |
EA037886B1 (ru) * | 2013-05-08 | 2021-06-01 | Митек Ко., Лтд. | Способ измерения связанных с раком веществ посредством спектроскопии комбинационного рассеяния света и биочип, применяемый в указанном способе |
KR20160019419A (ko) * | 2013-05-08 | 2016-02-19 | 유겐가이샤 마이테크 | 암 관련 물질의 라만 정량 방법 |
WO2014181814A1 (ja) * | 2013-05-08 | 2014-11-13 | 有限会社マイテック | 生体試料のラマン定量分析用バイオチップ |
KR102162706B1 (ko) | 2013-05-08 | 2020-10-07 | 유겐가이샤 마이테크 | 암 관련 물질의 라만 정량 방법 |
US9535069B2 (en) | 2013-05-08 | 2017-01-03 | Mytech Co., Ltd. | Method of measuring cancer related substances by raman spectroscopy |
JP2014238384A (ja) * | 2013-05-08 | 2014-12-18 | 有限会社マイテック | ラマン定量用バイオチップ |
JPWO2014181814A1 (ja) * | 2013-05-08 | 2017-02-23 | 有限会社マイテック | 生体試料のラマン定量分析用バイオチップ |
JP2017223678A (ja) * | 2013-05-08 | 2017-12-21 | 有限会社マイテック | バイオチップ |
CN105452850B (zh) * | 2013-05-08 | 2018-12-28 | 米特奇有限公司 | 癌关联物质的拉曼定量方法 |
US10365222B2 (en) | 2013-05-08 | 2019-07-30 | Mytech Co., Ltd. | Biochip for Raman quantitative analysis of biological samples |
WO2015170711A1 (ja) * | 2014-05-08 | 2015-11-12 | 有限会社マイテック | プラズモニックチップおよびそれを用いるがん疾病の蛍光画像ならびにラマン分光による診断方法 |
CN103968946A (zh) * | 2014-05-19 | 2014-08-06 | 中国人民解放军第二军医大学 | 一种表面增强拉曼二维相关光谱的采集方法 |
US10215700B2 (en) | 2015-02-26 | 2019-02-26 | Mytech Co., Ltd. | Plasmonic chip for observing cancer related substances by localized surface plasmon resonace |
CN111830004A (zh) * | 2019-04-18 | 2020-10-27 | 中国科学院微电子研究所 | 一种检测拉曼信号的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102428359A (zh) | 2012-04-25 |
CN102428359B (zh) | 2014-12-31 |
EP2405257A4 (en) | 2017-08-02 |
EP2405257A1 (en) | 2012-01-11 |
US9658163B2 (en) | 2017-05-23 |
JP5466226B2 (ja) | 2014-04-09 |
JPWO2010101209A1 (ja) | 2012-09-10 |
KR20120022754A (ko) | 2012-03-12 |
US20120115245A1 (en) | 2012-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5466226B2 (ja) | 表面増強ラマン散乱活性測定基板 | |
Wu et al. | Colorimetric assay of l-cysteine based on peroxidase-mimicking DNA-Ag/Pt nanoclusters | |
Lim et al. | Interparticle interactions in glutathione mediated assembly of gold nanoparticles | |
JP2010203973A (ja) | 表面増強ラマン散乱の測定方法 | |
JP6294911B2 (ja) | 量子結晶基板 | |
Daniyal et al. | Development of Surface Plasmon Resonance Spectroscopy for Metal Ion Detection. | |
Güzel et al. | Effect of Au and Au@ Ag core–shell nanoparticles on the SERS of bridging organic molecules | |
Kim et al. | Surface-enhanced Raman scattering: a powerful tool for chemical identification | |
Kahraman et al. | Label-free and direct protein detection on 3D plasmonic nanovoid structures using surface-enhanced Raman scattering | |
WO2014181814A1 (ja) | 生体試料のラマン定量分析用バイオチップ | |
Lim et al. | Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy | |
Kołątaj et al. | Silver nanoparticles with many sharp apexes and edges as efficient nanoresonators for shell-isolated nanoparticle-enhanced Raman spectroscopy | |
Song et al. | Gold-modified silver nanorod arrays for SERS-based immunoassays with improved sensitivity | |
Dong et al. | Cu/Ag sphere segment void array as efficient surface enhanced Raman spectroscopy substrate for detecting individual atmospheric aerosol | |
Chen et al. | Highly sensitive and selective colorimetric sensing of histidine by NAC functionalized AuNPs in aqueous medium with real sample application | |
Eskandari et al. | A surface-enhanced Raman scattering (SERS) biosensor fabricated using the electrodeposition method for ultrasensitive detection of amino acid histidine | |
JP2007198933A (ja) | 表面増強ラマン分光分析用基板の作成方法及び表面増強ラマン分光分析用基板 | |
Yuan et al. | Machine learning-driven multi-level composite SERS platform for trace detection of chlorogenic acid as pharmacodynamic substance in honeysuckle | |
Panikkanvalappil et al. | Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen | |
Ge et al. | Real-time observation of dynamic heterogeneity of gold nanorods on plasma membrane with darkfield microscopy | |
JP3714671B2 (ja) | 表面増強ラマン散乱活性基板の作成方法 | |
US20170226560A1 (en) | Gold nanoparticle-based homogeneous colorimetric diagnostic assay for the detection of proteases and protease inhibitors | |
Geng et al. | Rapid and sensitive detection of amphetamine by SERS-based competitive immunoassay coupled with magnetic separation | |
Albini et al. | Glass supported SERS chips for emerging pollutant analyses | |
Jiang et al. | Halide ions sensing in water via silver nanoprism self-assembled chips |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080019304.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10748802 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011502794 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010748802 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117023287 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13255071 Country of ref document: US |