WO2010101071A1 - 距離測定装置 - Google Patents

距離測定装置 Download PDF

Info

Publication number
WO2010101071A1
WO2010101071A1 PCT/JP2010/052970 JP2010052970W WO2010101071A1 WO 2010101071 A1 WO2010101071 A1 WO 2010101071A1 JP 2010052970 W JP2010052970 W JP 2010052970W WO 2010101071 A1 WO2010101071 A1 WO 2010101071A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
filter
frequency component
mixer
oscillator
Prior art date
Application number
PCT/JP2010/052970
Other languages
English (en)
French (fr)
Inventor
功 峯岸
政裕 大石
直人 神酒
雄一 吉村
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to EP10748666.4A priority Critical patent/EP2405286B1/en
Priority to CN201080010167.6A priority patent/CN102341725B/zh
Publication of WO2010101071A1 publication Critical patent/WO2010101071A1/ja
Priority to US13/223,888 priority patent/US8179522B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Definitions

  • the present invention relates to a distance measuring device that measures a distance from a phase difference between two or more periodic signals using an optical frequency comb, and particularly, fluctuations in the frequency of an oscillator used to beat down the frequency of the periodic signal occur. Also relates to a distance measuring device capable of measuring the distance.
  • a distance measuring device using a femtosecond mode synchronous pulse laser device is known (for example, Patent Document 1).
  • the frequency spectrum of the mode-locked pulse laser is composed of a large number of discrete spectra (longitudinal modes) that are arranged at regular intervals with the repetition frequency of the optical pulse and that have the same phase between modes.
  • This optical pulse is called an optical frequency comb because there are many longitudinal modes with precise intervals like comb teeth.
  • a distance measurement device using an optical frequency comb irradiates an object with a laser, receives the reflected light with a light receiving element, and selects a frequency component with a high distance measurement resolution from a frequency component with a wide spectral width. Is used as a ruler.
  • FIG. 9 shows a distance measuring device described in Patent Document 1.
  • the distance measuring device includes a dividing unit 2 that divides the laser beam from the laser device 1 into reference light and distance measuring light, a reference light receiving unit 3 that receives the reference light and outputs a number of beat signals, and a distance measuring light. And a measurement light receiving unit 6 that receives light and outputs a number of beat signals.
  • the first filter 14 extracts components including frequency components for distance measurement from the light reception signal of the measurement light receiving unit 6.
  • the second filter 11 extracts a component including a reference frequency component from the light reception signal of the reference light receiving unit 3.
  • the frequency component (for example, around 40 GHz) from the first filter 14 and the second filter 11 is multiplied by the frequency (40 GHz + 10 MHz) from the oscillator 30 having a slight difference from the frequency component by the first mixer 31 and the second mixer 32, and is low. Beat down to the frequency component (10 MHz) (local oscillator method).
  • the low frequency component is input to the phase difference measurement circuit 12 as a distance measurement signal and a reference signal.
  • the oscillator 30 may generate a frequency having temporal fluctuation, and when the temporal fluctuation occurs, fluctuations also occur in the frequencies of the beat-down distance measurement signal and the reference signal.
  • the frequency of the oscillator 30 has a fluctuation of ⁇ 100 ppm
  • the amount of fluctuation in the frequency reaches ⁇ 4 MHz, so that the processing signal frequency beat down by the first mixer 31 and the second mixer 32 varies from 6 MHz to 14 MHz. Resulting in.
  • the beat-down signal is ⁇ 400 kHz for 10 MHz.
  • the present invention can reduce the distance from the phase difference between the beat-down processed signals even if the oscillator frequency fluctuates.
  • An object is to provide a measurable distance measuring device.
  • the invention according to claim 1 is a laser device that generates an optical frequency comb as a laser beam, a dividing unit that divides the laser beam into reference light and ranging light, and a plurality of beat signals that receive the reference light.
  • a reference light receiving unit that outputs the distance measuring light and outputs a number of beat signals, and an oscillator that oscillates a periodic signal having a frequency different from the frequency component extracted from the beat signal of the measurement light receiving unit.
  • a first mixer that generates a frequency component of the sum and difference of a beat signal from the measurement light receiving unit and a periodic signal oscillated by the oscillator; a beat signal from the reference light receiving unit and a periodic signal oscillated by the oscillator;
  • a second mixer that generates frequency components of the sum and difference, a fourth filter that extracts a beat signal of the difference frequency component from the frequency components generated by the first mixer, and generated by the second mixer
  • a fifth filter for extracting a beat signal having a frequency component different from the frequency component extracted by the fourth filter from the extracted frequency component, and a beat signal extracted by the fourth filter and the fifth filter.
  • a third mixer for generating a frequency component of the sum and difference with the beat signal, a sixth filter for extracting a beat signal of the difference frequency component from the frequency component generated by the third mixer, and a beat of the reference light receiving unit
  • a second filter for extracting a beat signal having the same frequency component as the frequency component extracted by the sixth filter from the signal, and a phase difference for measuring a phase difference between the two beat signals extracted by the sixth filter and the second filter
  • a distance measuring device comprising: a measuring unit; and a distance measuring unit that measures a distance based on the phase difference measured by the phase difference measuring unit. That.
  • the beat-down processed signal frequency does not change, so the distance can be measured from the phase difference between the processed signals.
  • the first mixer and the second mixer are configured so that the oscillator receives a large number of beat signals from the measurement light receiving unit and the reference light receiving unit, respectively.
  • the periodic signal is directly multiplied.
  • the second aspect of the present invention it is not necessary to prepare a filter for a large number of beat signals from the measurement light receiving unit and the reference light receiving unit, so that a simple configuration can be achieved.
  • the invention according to claim 3 is the invention according to claim 1, wherein the frequency of the oscillator is 1 / n (n ⁇ 1, n ⁇ 1, n) of the frequency interval of the optical frequency comb with respect to the beat signal of the measurement light receiving unit. 2) It is characterized by having a difference.
  • the frequency component to be extracted when the first mixer and the second mixer multiply the beat signal from the measurement light receiving unit and the reference light receiving unit by the periodic signal of the oscillator, the frequency component to be extracted is maintained. Signal components are generated. For this reason, the frequency component to be extracted is appropriately beat-down.
  • the frequency of the oscillator is different from the beat signal of the measurement light receiving unit by a quarter of the frequency interval of the optical frequency comb.
  • the frequency spectrum intervals are equal. A signal component is generated. For this reason, it becomes easy to extract the frequency component desired to be extracted from the signal component.
  • the frequency spectrum intervals in the signal components generated by the first mixer and the second mixer are equal intervals.
  • the fifth aspect of the present invention it is easy to extract a frequency component to be extracted from the signal components generated by the first mixer and the second mixer.
  • the first filter that extracts at least one beat signal from the measurement light receiving unit and the third filter that extracts at least one beat signal from the reference light receiving unit.
  • the first mixer generates a frequency component that is the sum and difference of a beat signal from the first filter and a periodic signal oscillated by the oscillator, and the second mixer is generated from the third filter. The frequency component of the sum and difference of the beat signal and the periodic signal oscillated by the oscillator is generated.
  • the beat-down processed signal frequency does not change, so the distance can be measured from the phase difference between the processed signals.
  • a seventh aspect of the invention is characterized in that, in the sixth aspect of the invention, the frequency of the oscillator is set outside a range of frequencies that pass through the first filter and the third filter. .
  • the frequency of the oscillator does not overlap with the frequency component of the beat signal extracted by the first filter and the third filter. For this reason, when the first mixer and the second mixer multiply the beat signal extracted by the first filter and the third filter, respectively, and the periodic signal of the oscillator, a signal component maintaining the frequency component to be extracted is generated. . Therefore, the frequency component to be extracted is appropriately beat down.
  • the distance can be measured from the phase difference between the beat-down processed signals even if the oscillator frequency fluctuates.
  • SYMBOLS 1 Femtosecond mode synchronous laser apparatus, 2 ... Dividing means, 3 ... Reference light-receiving part, 4 ... Half mirror, 5 ... Half mirror, 6 ... Measurement light-receiving part, 7 ... Lens, 8 ... Corner cube, 9 ... Lens, 10
  • FIG. 1 is a block diagram of a distance measuring apparatus according to the first embodiment.
  • the distance measuring device includes a femtosecond mode-locked laser device 1, a dividing unit 2, a reference light receiving unit 3, a half mirror 4, a half mirror 5, a measurement light receiving unit 6, a lens 7, a corner cube 8, a lens 9, a chopper 10, and a second.
  • a distance measuring unit 17 is provided.
  • the distance measuring device is a femtosecond comb distance meter using an optical frequency comb, and measures the distance from the distance measuring device to the corner cube 8 provided on the measurement object.
  • the femtosecond mode-locked laser device 1 outputs pulses with a very short pulse width of femtoseconds at regular intervals.
  • One pulse has a wide frequency spectrum.
  • the frequency spectrum is composed of a large number of discrete spectra (longitudinal modes) that are arranged at regular intervals at the repetition frequency of the optical pulse and that have the same phase between modes.
  • This optical pulse is called an optical frequency comb because there are many longitudinal modes with precise intervals like comb teeth.
  • the femtosecond mode-locked laser device 1 includes, for example, a pumping light source, an optical fiber, an optical isolator, a saturable absorber, and an optical coupler.
  • An excitation semiconductor laser such as a laser diode is used as the excitation light source, and a single mode optical fiber doped with rare earth ions such as erbium is used as the optical fiber.
  • the resonator is formed in a ring shape with an optical fiber.
  • An optical isolator, a saturable absorber, and an optical coupler are disposed in the ring resonator.
  • the light from the excitation light source enters the optical fiber.
  • the optical isolator prevents reflection of light incident on the resonator.
  • the saturable absorber absorbs light with low intensity and saturates with light with high intensity.
  • the phases between the modes are synchronized in time and the phase difference is constant (mode synchronization).
  • Light in each mode interferes with each other in the resonator, and ultrashort pulses in the femtosecond range oscillate in multiple modes.
  • the optical coupler extracts an optical pulse from the ring resonator.
  • forced mode locking by an optical modulator may be used in addition to passive mode locking in which a saturable absorber is inserted into a resonator.
  • the optical modulator modulates light in the resonator with a repetition frequency equal to a natural number multiple of the reciprocal of the optical circulation time in the resonator.
  • the resonator length L of the femtosecond mode-locked laser device 1 is 4 m
  • the refractive index n of the optical fiber is 1.5
  • the light velocity c in vacuum is 3 ⁇ 10 8 m / s
  • the optical circulation time T in the ring resonator is 20 ns
  • the optical pulse repetition frequency fr is 50 MHz.
  • the luminous flux from the femtosecond mode synchronous laser apparatus 1 is divided by the dividing means 2 into a reference light 27 directed to the reference light receiving unit 3 and a ranging light flux (ranging light 28 and internal reference light 29).
  • the reference light 27 is received by the reference light receiving unit 3 and becomes a reference signal for comparing the phase with a distance measuring light beam.
  • the light beam for ranging is divided into the ranging light 28 and the internal reference light 29 by the half mirror 4.
  • the internal reference light 29 is reflected by the half mirror 5 and enters the measurement light receiving unit 6.
  • the distance measuring light 28 passes through the lens 7 and is reflected by the corner cube 8 of the measurement object.
  • the reflected distance measuring light 28 passes through the lens 9, passes through the half mirror 5, is received by the measurement light receiving unit 6, and becomes a distance measurement signal.
  • the ranging light 28 and the internal reference light 29 are switched alternately by the chopper 10.
  • the distance between the internal reference optical path a and the external measurement optical path b is measured.
  • the second filter 11 extracts a frequency component used for phase difference measurement from the light reception signal of the reference light receiving unit 3.
  • a frequency component equal to the repetition frequency of the optical pulse (frequency interval of the optical frequency comb, for example, 50 MHz) is extracted.
  • the reference signal from the second filter 11 is input to the phase difference measurement circuit 12.
  • the first filter 14 extracts a frequency component (around 40 GHz) including a first high-frequency component for distance measurement (for example, 40 GHz) from the light reception signal of the measurement light receiving unit 6.
  • the third filter 13 extracts a frequency component (around 40 GHz + 50 MHz) including a second high frequency component (for example, 40 GHz + 50 MHz) slightly different from the frequency component extracted by the first filter 14 from the light reception signal of the reference light receiving unit 3. .
  • “Slightly different” means that there is a difference by the frequency interval (50 MHz) of the optical frequency comb.
  • the present invention is not limited to this, and the difference is the frequency of the component extracted by the second filter 11. It is good to turn on.
  • the oscillator 50 outputs a single high frequency component (39 GHz) sufficiently different from the first high frequency component (40 GHz) and the second high frequency component (40 GHz + 50 MHz) to the first mixer 31 and the second mixer 32.
  • “there is a sufficient difference” means that there is a difference (1 GHz) of 1/40 or more of the extracted frequency (for example, 40 GHz).
  • the first mixer 31 multiplies the high frequency component (around 40 GHz) that has passed through the first filter 14 and the high frequency component (39 GHz) of the oscillator 50 to generate a sum and difference frequency components.
  • the fourth filter 51 extracts the difference frequency component (1 GHz).
  • the first filter 14 is set so as not to pass an unnecessary high frequency component (38 GHz) that generates the same frequency as the frequency component (1 GHz) of the difference.
  • the second mixer 32 multiplies the high frequency component (around 40 GHz + 50 MHz) that has passed through the third filter 13 and the high frequency component (39 GHz) of the oscillator 50 to generate a sum and difference frequency component.
  • the fifth filter 52 extracts the difference frequency component (1 GHz + 50 MHz).
  • the third filter 13 is set so as not to pass an unnecessary high frequency component (38 GHz-50 MHz) that generates the same frequency as the frequency component (1 GHz + 50 MHz) of the difference.
  • the third mixer 53 multiplies the frequency component (1 GHz) from the fourth filter 51 and the frequency component (1 GHz + 50 MHz) from the fifth filter 52 to generate a sum and difference frequency components.
  • the sixth filter 54 extracts a distance measurement signal that is a difference frequency component (50 MHz). The distance measurement signal is input to the phase difference measurement circuit 12.
  • the frequency component (wavelength) extracted from the light reception signal of the measurement light receiving unit 6 may be made variable to perform distance measurement according to the measurement environment.
  • the refractive index of air changes due to changes in temperature, atmospheric pressure, suspended matter, fog, etc., distance measurement can be performed with high accuracy.
  • the phase difference measurement circuit 12 measures the phase difference between the reference signal and the distance measurement signal.
  • the phase difference data is output to the distance measuring unit 17.
  • the distance to the corner cube 8 is calculated as the difference between the internal reference optical path a and the external measurement optical path b.
  • FIG. 2 is an explanatory diagram for explaining the relationship between the optical frequency comb and the extracted frequency components
  • FIG. 3 is an explanatory diagram for explaining a method for setting the frequency of the oscillator.
  • a frequency component in the vicinity of 40 GHz + 50 MHz including a frequency component of 40 GHz + 50 MHz is extracted from the light reception signal of the reference light receiving unit 3 by the BPF (third filter 13).
  • the frequency component (40 GHz) from the first filter 14 and the frequency component (40 GHz + 50 MHz) from the third filter 13 are shown in the middle part of FIG.
  • the frequency components of 40 GHz and 40 GHz + 50 MHz are respectively multiplied by the frequency (39 GHz) of the oscillator 50, and the difference frequency components (1 GHz and 1 GHz + 50 MHz) are respectively extracted by the BPF (fourth filter 51 and fifth filter 52). Is issued.
  • the frequency components (1 GHz and 1 GHz + 50 MHz) obtained by subtracting the frequency of the oscillator 50 (39 GHz) are shown in the lower part of FIG.
  • the frequency of the oscillator 50 is, for example, 40 GHz-50 MHz in the middle stage of FIG.
  • the frequency component of the beat signal lower than the frequency of the oscillator 50 (for example, 40 GHz-100 MHz) and the frequency component of the beat signal higher than the frequency of the oscillator 50 (for example, 40 GHz) are differentiated by the frequency of the oscillator 50 (40 GHz-50 MHz). In both cases, a frequency component of 50 MHz is generated.
  • the frequency component (40 GHz) to be extracted overlaps with the unnecessary frequency component (40 GHz-100 MHz). That is, a signal component is generated in which a frequency component lower and a higher frequency component than the frequency of the oscillator 50 are folded and overlapped with the frequency (40 GHz-50 MHz) of the oscillator 50 being zero.
  • the frequency of the oscillator 50 is set (39 GHz) so as to have a difference (1 GHz) of 1/40 or more of the frequency to be extracted (40 GHz and 40 GHz + 50 MHz). And set outside the range of the frequency passing through the third filter 13. Therefore, in the middle stage of FIG. 3, the frequency (39 GHz) of the oscillator 50 does not overlap with the frequency components (40 GHz and 40 GHz + 50 MHz) of the beat signal extracted by the first filter 14 and the third filter 13.
  • the frequency components (1 GHz and 1 GHz + 50 MHz) of the difference maintaining the frequency components (40 GHz and 40 GHz + 50 MHz) to be extracted are generated. That is, it is possible to appropriately beat down the frequency components (40 GHz and 40 GHz + 50 MHz) to be extracted.
  • FIG. 4 is an explanatory diagram for explaining the relationship between the temporal fluctuation of the frequency of the oscillator and the processing signal frequency.
  • the frequency component from the measurement light receiving unit 6 is 0.996 GHz to 1.004 GHz, which is the reference
  • the frequency component from the light receiving unit 3 is 1.046 GHz to 1.054 GHz, and each frequency is greatly affected by fluctuation.
  • the difference between the two is further taken, and each difference (50 MHz) is constant at the frequency interval (50 MHz) of the optical frequency comb, so that the ranging signal (processed signal) is always beat-down to 50 MHz. Is done.
  • the processing signal frequency does not change, so that the phase difference between the ranging signal and the reference signal can be measured stably.
  • FIG. 5 is a block diagram of the distance measuring apparatus according to the second embodiment.
  • the frequency of the oscillator 50 is the frequency (for example, 40 GHz) to be extracted from the received light signal of the measurement light receiving unit 6 and the frequency interval (for example, 50 MHz) of the optical frequency comb. Is set to a frequency (40 GHz-12.5 MHz) having a difference of 1/4. A method for setting the frequency of the oscillator 50 will be described later.
  • the first mixer 31 outputs the frequency component of the sum and difference between the light reception signal (full spectrum) of the measurement light receiving unit 6 and the frequency (40 GHz-12.5 MHz) of the oscillator 50 to the fourth filter 51.
  • the fourth filter 51 extracts a frequency component of 12.5 MHz from the difference frequency components.
  • the second mixer 32 outputs to the fifth filter 52 the frequency component of the sum and difference of the light reception signal (full spectrum) of the reference light receiving unit 3 and the frequency of the oscillator 50 (40 GHz-12.5 MHz).
  • the fifth filter 52 extracts a frequency component of 62.5 MHz from the difference frequency components.
  • the third mixer 53 multiplies the frequency components of 12.5 MHz and 62.5 MHz and outputs the sum and difference frequency components to the sixth filter 54.
  • the sixth filter 54 outputs the difference frequency component (50 MHz) to the phase difference measurement circuit 12 as a distance measurement signal.
  • the phase difference measurement circuit 12 inputs the ranging signal (50 MHz) extracted by the sixth filter 54 and the reference signal (50 MHz) extracted by the second filter 11.
  • the processing in the phase difference measurement circuit 12 and the distance measurement unit 17 is the same as that in the first embodiment.
  • FIG. 6 is an explanatory diagram for explaining the relationship between the optical frequency comb and the extracted frequency component
  • FIG. 7 is an explanatory diagram for explaining a method for setting the frequency of the oscillator.
  • the received light signal (full spectrum) of the reference light receiving unit 3 is multiplied by the frequency of the oscillator 50 (40 GHz-12.5 MHz) to generate a frequency component of the sum and difference.
  • a frequency component of 62.5 MHz is extracted by the BPF (fifth filter 52) from the frequency components of the difference.
  • the frequency component of the difference when the light receiving signals (full spectrum) of the measurement light receiving unit 6 and the reference light receiving unit 3 are directly multiplied by the frequency (40 GHz-12.5 MHz) of the oscillator 50 is shown in the lower right part of FIG. .
  • the frequency component of the difference shown in the lower right of FIG. 7 has the frequency of the oscillator 50 (40 GHz-12.5 MHz) as zero, and the frequency component of the oscillator 50 (40 GHz-12.5 MHz) to the frequency component (40 GHz and 40 GHz + 50 MHz) to be extracted.
  • the signal component is obtained by folding and overlapping unnecessary lower frequency components.
  • unnecessary frequency components for example, 40 GHz-50 MHz and 40 GHz-100 MHz
  • the frequency of the oscillator 50 is the frequency of the optical frequency comb. It must be other than an integral multiple of 1/2 of the interval (50 MHz) (1 / n (n ⁇ 1, 2)). That is, the frequency of the oscillator 50 needs to be set so as to have a difference by 1 / n (n ⁇ 1, 2) of the frequency interval of the optical frequency comb with respect to the beat signal output from the measurement light receiving unit 6. .
  • the frequency of the oscillator 50 is an integral multiple of 1/2 of the frequency interval of the optical frequency comb, the frequency component lower than the frequency of the oscillator 50 overlaps with the higher frequency component, and the frequency component to be extracted is not maintained.
  • the frequency components (40 GHz and 40 GHz + 50 MHz) to be extracted are beat-down by the frequency (40 GHz-12.5 MHz) of the oscillator 50 and become 12.5 MHz and 62.5 MHz as shown in the lower left of FIG. Further, unnecessary frequency components (40 GHz-50 MHz and 40 GHz-100 MHz) are 37.5 MHz and 75 MHz.
  • the frequency of the oscillator 50 is set to a frequency (40 GHz-12.5 MHz) having a difference by a quarter of the frequency interval (50 MHz) of the optical frequency comb with respect to the frequency (40 GHz) to be extracted as a ranging signal. .
  • first filter 14 and the third filter 13 referred to in the first embodiment are not used is shown here, a configuration using the first filter 14 and the third filter 13 may be used. In that case, the performance of the filter can be suppressed.
  • FIG. 8 is an explanatory diagram for explaining the relationship between the temporal fluctuation of the frequency of the oscillator and the processing signal frequency.
  • the frequency component from the measurement light receiving unit 6 is 8.5 MHz to 16.5 MHz, and the reference The frequency component from the light receiving unit 3 is changed from 58.5 MHz to 66.5 MHz, and each frequency is greatly affected by fluctuation.
  • the difference between the two is further taken, and each difference (50 MHz) is constant at the frequency interval (50 MHz) of the optical frequency comb, so that the ranging signal (processed signal) is always beat-down to 50 MHz. Is done.
  • the frequency of the oscillator 50 is made to differ from the beat signal (40 GHz) output from the measurement light receiving unit 6 by 1 ⁇ 4 of the frequency interval of the optical frequency comb, so that the required frequencies 12.5 MHz and 62 are obtained. It is possible to efficiently set the characteristics of the fourth filter 51 and the fifth filter 52 that select .5 MHz and the frequencies to be removed 37.5 MHz and 75.0 MHz. In addition, it becomes easy to select a required frequency and a frequency to be removed.
  • the processing signal frequency does not change, so that the phase difference between the ranging signal and the reference signal can be stably measured, Furthermore, frequency selection can be facilitated.
  • the present invention can be used for a distance measuring device that measures a distance from a phase difference of two or more periodic signals using an optical frequency comb.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

 発振器の周波数にゆらぎが生じても、ビートダウンした処理信号間の位相差から距離を測定する。距離測定装置は、レーザ光束として光周波数コムを発生するレーザ装置1と、基準光27を受光する基準受光部3と、測距光28を受光する測定受光部6とを備える。第1ミキサ31および第2ミキサ32は、測定受光部6および基準受光部3の受光信号と特定の周波数を持つ発振器50の周期信号とを乗算する。第4フィルタ51および第5フィルタ52は、第1ミキサ31および第2ミキサ32で生成された信号成分から異なる周波数成分を抜き出す。第4フィルタ51および第5フィルタ52で抜き出された信号は、第3ミキサで乗算され、差の周波数成分が第6フィルタ54で抜き出される。位相差測定部12は、第6フィルタ54および第2フィルタ11からの2つの処理信号の位相差を測定し、距離測定部17は、その位相差から距離を測定する。

Description

距離測定装置
 本発明は、光周波数コムを用いて、2以上の周期信号の位相差から距離を測定する距離測定装置に係り、特に周期信号の周波数をビートダウンするために用いる発振器の周波数にゆらぎが生じても距離を測定可能な距離測定装置に関する。
 フェムト秒モード同期パルスレーザ装置を用いた距離測定装置が知られている(例えば、特許文献1)。モード同期パルスレーザの周波数スペクトルは、光パルスの繰り返し周波数で一定間隔に並び、かつ、モード間の位相が揃った多数の離散スペクトル(縦モード)で構成されている。正確な間隔の縦モードが櫛の歯のように多数立つため、この光パルスは、光周波数コム(comb)と呼ばれている。光周波数コムを用いた距離測定装置は、レーザを対象物に照射し、その反射光を受光素子で受光して、広いスペクトル幅の周波数成分から距離測定の分解能が高い周波数成分を選択し、これを物差しとして利用する。
 特許文献1に記載の距離測定装置を図9に示す。距離測定装置は、レーザ装置1からのレーザ光線を基準光と測距光に分割する分割手段2と、基準光を受光して多数のビート信号を出力する基準受光部3と、測距光を受光して多数のビート信号を出力する測定受光部6とを有する。第1フィルタ14は、測定受光部6の受光信号から測距用の周波数成分を含む成分を抜き出す。第2フィルタ11は、基準受光部3の受光信号から基準用の周波数成分を含む成分を抜き出す。第1フィルタ14および第2フィルタ11からの周波数成分(例えば40GHz近辺)は、これと僅かに差を持つ発振器30からの周波数(40GHz+10MHz)と第1ミキサ31および第2ミキサ32で乗算され、低い周波数成分(10MHz)にビートダウンされる(ローカルオシレータ法)。低い周波数成分は、測距信号および基準信号として位相差測定回路12に入力される。
 しかしながら、発振器30は、時間的ゆらぎを有した周波数を発生する場合があり、その時間的ゆらぎが生じると、ビートダウンされた測距信号および基準信号の周波数にもゆらぎが生じてしまう。
 例えば、発振器30の周波数が±100ppmのゆらぎを持つ場合、周波数の変動量は±4MHzに達するため、第1ミキサ31、第2ミキサ32によってビートダウンされる処理信号周波数は、6MHzから14MHzまで変動してしまう。このように、たとえ発振器30の時間的ゆらぎを、受光信号から抜き出す周波数(40GHz)に対して±10ppm程度に落としたとしても、ビートダウンされた信号に対しては(10MHzに対して±400kHzとなり)大きなゆらぎとなる。したがって、処理信号周波数が変化したり、フィルタで取り出すことが困難になったりするため、処理信号間の位相差を測定することが困難になる。このため、ゆらぎの量を抑えた高精度の発振器が必要となっていた。
特開2006-184181号公報
光周波数コム―新しい光のものさし―(http://www.aist.go.jp/aist_j/museum/keisoku/komu/komu.html)
 このような背景を鑑み、本発明は、光周波数コムから抜き出す周波数を発振器によってビートダウンするローカルオシレータ法において、発振器の周波数にゆらぎが生じても、ビートダウンした処理信号間の位相差から距離を測定可能な距離測定装置を提供することを目的とする。
 請求項1に記載の発明は、レーザ光束として光周波数コムを発生するレーザ装置と、前記レーザ光束を基準光と測距光に分割する分割手段と、前記基準光を受光して多数のビート信号を出力する基準受光部と、前記測距光を受光して多数のビート信号を出力する測定受光部と、前記測定受光部のビート信号から抜き出す周波数成分と異なる周波数の周期信号を発振する発振器と、前記測定受光部からのビート信号と前記発振器が発振する周期信号との和と差の周波数成分を生成する第1ミキサと、前記基準受光部からのビート信号と前記発振器が発振する周期信号との和と差の周波数成分を生成する第2ミキサと、前記第1ミキサで生成された周波数成分から差の周波数成分のビート信号を抜き出す第4フィルタと、前記第2ミキサで生成された周波数成分から前記第4フィルタで抜き出された周波数成分と異なる周波数成分のビート信号を抜き出す第5フィルタと、前記第4フィルタで抜き出されたビート信号と前記第5フィルタで抜き出されたビート信号との和と差の周波数成分を生成する第3ミキサと、前記第3ミキサで生成された周波数成分から差の周波数成分のビート信号を抜き出す第6フィルタと、前記基準受光部のビート信号から第6フィルタで抜き出した周波数成分と同じ周波数成分のビート信号を抜き出す第2フィルタと、前記第6フィルタおよび前記第2フィルタで抜き出された2つのビート信号の位相差を測定する位相差測定部と、前記位相差測定部で測定された位相差に基づいて距離を測定する距離測定部と、を備えることを特徴とする距離測定装置である。
 請求項1に記載の発明によれば、発振器の周波数にゆらぎが生じても、ビートダウンした処理信号周波数が変化しないため、処理信号間の位相差から距離を測定することができる。
 請求項2に記載の発明は、請求項1に記載の発明において、前記第1ミキサおよび前記第2ミキサは、それぞれ前記測定受光部および前記基準受光部からの多数のビート信号に対して前記発振器の周期信号を直接乗算することを特徴とする。
 請求項2に記載の発明によれば、測定受光部および基準受光部からの多数のビート信号に対してフィルタを用意する必要がないため、簡易な構成にすることができる。
 請求項3に記載の発明は、請求項1に記載の発明において、前記発振器の周波数は、前記測定受光部のビート信号に対して前記光周波数コムの周波数間隔の1/n(n≠1,2)だけ差を持つことを特徴とする。
 請求項3に記載の発明によれば、第1ミキサおよび第2ミキサが、それぞれ測定受光部および基準受光部からのビート信号と発振器の周期信号とを乗算した場合に、抜き出したい周波数成分を維持した信号成分が生成される。このため、抜き出したい周波数成分が適切にビートダウンされる。
 請求項4に記載の発明は、請求項1に記載の発明において、前記発振器の周波数は、前記測定受光部のビート信号に対して光周波数コムの周波数間隔の1/4だけ差を持つことを特徴とする。
 請求項4に記載の発明によれば、第1ミキサおよび第2ミキサが、それぞれ測定受光部および基準受光部からのビート信号と発振器の周期信号とを乗算した場合に、周波数スペクトルの間隔が等しい信号成分が生成される。このため、その信号成分から抜き出したい周波数成分を抜き出し易くなる。
 請求項5に記載の発明は、請求項1に記載の発明において、前記第1ミキサおよび前記第2ミキサで生成された信号成分における周波数スペクトルの間隔は、等間隔であることを特徴とする。
 請求項5に記載の発明によれば、第1ミキサおよび第2ミキサで生成された信号成分から抜き出したい周波数成分を抜き出し易くなる。
 請求項6に記載の発明は、請求項1に記載の発明において、前記測定受光部から少なくとも一つのビート信号を抜き出す第1フィルタと、前記基準受光部から少なくとも一つのビート信号を抜き出す第3フィルタとをさらに備え、前記第1ミキサは、前記第1フィルタからのビート信号と前記発振器が発振する周期信号との和と差の周波数成分を生成し、前記第2ミキサは、前記第3フィルタからのビート信号と前記発振器が発振する周期信号との和と差の周波数成分を生成することを特徴とする。
 請求項6に記載の発明によれば、発振器の周波数にゆらぎが生じても、ビートダウンした処理信号周波数が変化しないため、処理信号間の位相差から距離を測定することができる。
 請求項7に記載の発明は、請求項6に記載の発明において、前記発振器の周波数は、前記第1フィルタおよび前記第3フィルタを通過する周波数の範囲外に設定されていることを特徴とする。
 請求項7に記載の発明によれば、発振器の周波数は、第1フィルタおよび第3フィルタで抜き出したビート信号の周波数成分と重ならない。このため、第1ミキサおよび第2ミキサが、それぞれ第1フィルタおよび第3フィルタで抜き出したビート信号と発振器の周期信号とを乗算した場合に、抜き出したい周波数成分を維持した信号成分が生成される。したがって、抜き出したい周波数成分が適切にビートダウンされる。
 本発明によれば、光周波数コムから抜き出す周波数を発振器によってビートダウンするローカルオシレータ法において、発振器の周波数にゆらぎが生じても、ビートダウンした処理信号間の位相差から距離を測定することができる。
第1の実施形態に係る距離測定装置のブロック図である。 第1の実施形態に係る光周波数コムと抜き出す周波数成分との関係を説明する説明図である。 第1の実施形態に係る発振器の周波数の設定方法を説明する説明図である。 第1の実施形態に係る発振器の周波数の時間的ゆらぎと処理信号周波数との関係を説明する説明図である。 第2の実施形態に係る距離測定装置のブロック図である。 第2の実施形態に係る光周波数コムと抜き出す周波数成分との関係を説明する説明図である。 第2の実施形態に係る発振器の周波数の設定方法を説明する説明図である。 第2の実施形態に係る発振器の周波数の時間的ゆらぎと処理信号周波数との関係を説明する説明図である。 従来の距離測定装置のブロック図である。
 1…フェムト秒モード同期レーザ装置、2…分割手段、3…基準受光部、4…ハーフミラー、5…ハーフミラー、6…測定受光部、7…レンズ、8…コーナーキューブ、9…レンズ、10…チョッパー、11…第2フィルタ、12…位相差測定回路、13…第3フィルタ、14…第1フィルタ、17…距離測定部、31…第1ミキサ、32…第2ミキサ、50…発振器、51…第4フィルタ、52…第5フィルタ、53…第3ミキサ、54…第6フィルタ。
1.第1の実施形態
 以下、距離測定装置の一例について、図面を参照して説明する。
 図1は、第1の実施形態に係る距離測定装置のブロック図である。距離測定装置は、フェムト秒モード同期レーザ装置1、分割手段2、基準受光部3、ハーフミラー4、ハーフミラー5、測定受光部6、レンズ7、コーナーキューブ8、レンズ9、チョッパー10、第2フィルタ11、第3フィルタ13、第1フィルタ14、発振器50、第1ミキサ31、第2ミキサ32、第4フィルタ51、第5フィルタ52、第3ミキサ53、第6フィルタ54、位相差測定回路12、距離測定部17を備える。距離測定装置は、光周波数コムを用いたフェムト秒コム距離計であり、距離測定装置から測定対象物に設けられるコーナーキューブ8までの距離を測定する。
 フェムト秒モード同期レーザ装置1は、フェムト秒という非常に短いパルス幅のパルスを一定間隔で出力する。1つのパルスは、広い周波数スペクトルを有している。周波数スペクトルは、光パルスの繰り返し周波数で一定間隔に並び、かつ、モード間の位相が揃った多数の離散スペクトル(縦モード)で構成されている。正確な間隔の縦モードが櫛の歯のように多数立つため、この光パルスは、光周波数コム(comb)と呼ばれている。
 フェムト秒モード同期レーザ装置1は、例えば、励起光源、光ファイバ、光アイソレータ、可飽和吸収体、光カプラを備える。励起光源には、レーザダイオード等の励起用半導体レーザを使用し、光ファイバには、エルビウム等の希土類イオンをドープしたシングルモード光ファイバを使用する。共振器は、光ファイバでリング状に形成される。リング共振器内には、光アイソレータ、可飽和吸収体、および光カプラが配置される。
 励起光源からの光は、光ファイバ内に入射する。光アイソレータは、共振器内に入射した光の反射を防ぐ。可飽和吸収体は、強度の弱い光を吸収し、強度の強い光で飽和する。これにより、各モード間の位相が時間的に同期すると共に、位相差が一定となる(モード同期)。各モードの光が共振器内で互いに干渉し、フェムト秒台の超短パルスが多重モード発振する。光カプラは、リング共振器から光パルスを取り出す。
 なお、モード同期方法としては、共振器内に可飽和吸収体を挿入する受動モード同期(passive mode locking)の他、光変調器による強制モード同期(forced mode locking)を用いてもよい。光変調器は、共振器内における光巡回時間の逆数の自然数倍に等しい繰り返し周波数で共振器内の光を変調する。
 例えば、フェムト秒モード同期レーザ装置1の共振器長Lが4m、光ファイバの屈折率nが1.5、真空中の光速度cが3×10m/sである場合、以下の式からリング共振器内における光巡回時間Tは20nsであり、光パルスの繰り返し周波数frは50MHzとなる。
Figure JPOXMLDOC01-appb-M000001
 フェムト秒モード同期レーザ装置1からの光束は、分割手段2によって基準受光部3に向かう基準光27と、測距用の光束(測距光28と内部参照光29)に分けられる。基準光27は、基準受光部3で受光され、測距用の光束と位相を比較するための基準信号となる。
 測距用の光束は、ハーフミラー4によって測距光28と内部参照光29に分けられる。内部参照光29は、ハーフミラー5によって反射されて、測定受光部6に入射する。測距光28は、レンズ7を透過して、測定対象物のコーナーキューブ8で反射する。反射した測距光28は、レンズ9を透過して、ハーフミラー5を透過し、測定受光部6に受光され、測距信号となる。
 測距光28と内部参照光29は、チョッパー10によって交互に切り替えられる。チョッパー10の切り替え前後における測距値の差を取ることで、内部参照光路aと外部測定光路bの差の距離が測定される。
 次に信号処理について説明する。第2フィルタ11は、基準受光部3の受光信号から、位相差測定に用いる周波数成分を抜き出す。ここでは、光パルスの繰り返し周波数(光周波数コムの周波数間隔、例えば50MHz)に等しい周波数成分を抜き出す。第2フィルタ11からの基準信号は、位相差測定回路12に入力する。
 第1フィルタ14は、測定受光部6の受光信号から測距用の第1の高周波数成分(例えば40GHz)を含む周波数成分(40GHz近辺)を抜き出す。第3フィルタ13は、基準受光部3の受光信号から、第1フィルタ14で抜き出した周波数成分と僅かに差がある第2の高周波数成分(例えば40GH+50MHz)を含む周波数成分(40GHz+50MHz近辺)を抜き出す。なお、「僅かに差がある」とは、光周波数コムの周波数間隔(50MHz)だけ差があることをいうが、これに限ることはなく、第2フィルタ11で抜き出した成分の周波数分だけ差をつけるとよい。
 発振器50は、第1の高周波数成分(40GHz)および第2の高周波数成分(40GHz+50MHz)と十分に差がある単一高周波数成分(39GHz)を第1ミキサ31と第2ミキサ32に出力する。なお、「十分に差がある」とは、抜き出す周波数(例えば40GHz)の40分の1以上の差(1GHz)があることをいう。
 第1ミキサ31は、第1フィルタ14を通過した高周波数成分(40GHz近辺)と発振器50の高周波数成分(39GHz)を乗算して、和と差の周波数成分を生成する。第4フィルタ51は、差の周波数成分(1GHz)を抜き出す。なお、第1フィルタ14は、この差の周波数成分(1GHz)と同じ周波数を生成する不要な高周波数成分(38GHz)を通過させないように設定されている。
 第2ミキサ32は、第3フィルタ13を通過した高周波数成分(40GHz+50MHz近辺)と発振器50の高周波数成分(39GHz)を乗算して、和と差の周波数成分を生成する。第5フィルタ52は、差の周波数成分(1GHz+50MHz)を抜き出す。なお、第3フィルタ13は、この差の周波数成分(1GHz+50MHz)と同じ周波数を生成する不要な高周波数成分(38GHz-50MHz)を通過させないように設定されている。
 第3ミキサ53は、第4フィルタ51からの周波数成分(1GHz)と、第5フィルタ52からの周波数成分(1GHz+50MHz)を乗算して、和と差の周波数成分を生成する。第6フィルタ54は、差の周波数成分(50MHz)である測距信号を抜き出す。測距信号は、位相差測定回路12に入力する。
 なお、光周波数コムは、広い周波数帯域にあるため、測定受光部6の受光信号から抜き出す周波数成分(波長)を可変にし、測定環境に応じた距離測定を行ってもよい。これによって、空気の屈折率が気温や気圧変化、浮遊物や霧等によって変化しても精度良く距離測定を行うことができる。
 位相差測定回路12は、基準信号と測距信号の位相差を測定する。位相差のデータは、距離測定部17に出力される。距離測定部17は、その位相差から距離を測定する。位相差をΔφ、距離をD、周波数をf、光速をCとすれば、位相差は、Δφ=4πfDCと表される。コーナーキューブ8までの距離は、内部参照光路aと外部測定光路bの差として算出される。
 以下、発振器50の周波数の設定方法について説明する。図2は、光周波数コムと抜き出す周波数成分との関係を説明する説明図であり、図3は、発振器の周波数の設定方法を説明する説明図である。
 図2に示すように、光周波数コムの周波数スペクトルのうち40GHzを測距信号として利用する場合、まず、測定受光部6の受光信号から40GHzの周波数成分を含む40GHz近辺の周波数成分をバンドパスフィルタ(BPF:第1フィルタ14)によって抜き出す。
 次に基準受光部3の受光信号から40GHz+50MHzの周波数成分を含む40GHz+50MHz近辺の周波数成分をBPF(第3フィルタ13)によって抜き出す。
 第1フィルタ14からの周波数成分(40GHz)と第3フィルタ13からの周波数成分(40GHz+50MHz)は、図3の中段に示されている。
 図2に戻り、40GHzと40GHz+50MHzの周波数成分は、それぞれ発振器50の周波数(39GHz)と乗算され、差の周波数成分(1GHzと1GHz+50MHz)がBPF(第4フィルタ51と第5フィルタ52)によってそれぞれ抜き出される。
 発振器50の周波数(39GHz)で差分された周波数成分(1GHzと1GHz+50MHz)は、図3の下段に示されている。
 図3の中段において、発振器50の周波数が、例えば40GHz-50MHzの場合について考える。発振器50の周波数よりも低いビート信号の周波数成分(例えば40GHz-100MHz)と、発振器50の周波数よりも高いビート信号の周波数成分(例えば40GHz)は、発振器50の周波数(40GHz-50MHz)で差分された場合、いずれも50MHzの周波数成分を生成する。
 この場合、抜き出したい周波数成分(40GHz)と不要な周波数成分(40GHz-100MHz)が重なってしまう。すなわち、発振器50の周波数よりも低い周波数成分と高い周波数成分が発振器50の周波数(40GHz-50MHz)をゼロとして折り返して重ねた信号成分が生成されてしまう。
 しかしながら、第1の実施形態では、発振器50の周波数は、抜き出したい周波数(40GHzと40GHz+50MHz)の40分の1以上の差(1GHz)を持つように設定されており(39GHz)、第1フィルタ14および第3フィルタ13を通過する周波数の範囲外に設定されている。このため、図3の中段において、発振器50の周波数(39GHz)は、第1フィルタ14と第3フィルタ13で抜き出したビート信号の周波数成分(40GHzと40GHz+50MHz)と重ならない。
 したがって、図3の下段に示すように、39GHzの発振器50を用いてビートダウンすると、抜き出したい周波数成分(40GHzと40GHz+50MHz)を維持した差の周波数成分(1GHzと1GHz+50MHz)が生成される。すなわち、抜き出したい周波数成分(40GHzと40GHz+50MHz)を適切にビートダウンすることができる。
(第1の実施形態の優位性)
 以下、第1の実施形態の優位性について説明する。図4は、発振器の周波数の時間的ゆらぎと処理信号周波数との関係を説明する説明図である。
 図4に示すように、発振器50の周波数に±100ppmのゆらぎがある場合(38.996GHzから39.004GHz)、測定受光部6からの周波数成分は、0.996GHzから1.004GHzになり、基準受光部3からの周波数成分は、1.046GHzから1.054GHzとなり、それぞれの周波数はゆらぎの影響を大きく受けてしまう。しかし、本実施形態ではさらに両者の差を取り、それぞれの差(50MHz)は、光周波数コムの周波数間隔(50MHz)で一定であるため、測距信号(処理信号)は、常に50MHzへビートダウンされる。
 このように、第1の実施形態によれば、発振器50の周波数がゆらいだとしても、処理信号周波数が変化しないため、測距信号と基準信号の位相差を安定して測定することができる。
2.第2の実施形態
 以下、第1の実施形態の変形例について説明する。第2の実施形態は、図1の第1フィルタ14と第3フィルタ13をなくした構成である。もしくは、図1の第1フィルタ14と第3フィルタ13の性能を低く抑えることができる構成である。以下、第1の実施形態と同様の構成については、説明を省略する。
 図5は、第2の実施形態に係る距離測定装置のブロック図である。光周波数コムの周波数スペクトルのうち40GHzを測距信号として利用する場合、発振器50の周波数は、測定受光部6の受光信号から抜き出したい周波数(例えば40GHz)と光周波数コムの周波数間隔(例えば50MHz)の1/4だけ差がある周波数(40GHz-12.5MHz)に設定する。発振器50の周波数の設定方法については、後述する。
 第1ミキサ31は、測定受光部6の受光信号(全スペクトル)と発振器50の周波数(40GHz-12.5MHz)との和と差の周波数成分を第4フィルタ51に出力する。第4フィルタ51は、差の周波数成分のうち12.5MHzの周波数成分を抜き出す。
 第2ミキサ32は、基準受光部3の受光信号(全スペクトル)と発振器50の周波数(40GHz-12.5MHz)との和と差の周波数成分を第5フィルタ52に出力する。第5フィルタ52は、差の周波数成分のうち62.5MHzの周波数成分を抜き出す。
 第3ミキサ53は、12.5MHzと62.5MHzの周波数成分を乗算し、和と差の周波数成分を第6フィルタ54に出力する。第6フィルタ54は、差の周波数成分(50MHz)を測距信号として、位相差測定回路12に出力する。
 位相差測定回路12は、第6フィルタ54で抜き出された測距信号(50MHz)と第2フィルタ11で抜き出された基準信号(50MHz)を入力する。位相差測定回路12および距離測定部17における処理は、第1の実施形態と同様である。
 以下、発振器の周波数の設定方法について説明する。図6は、光周波数コムと抜き出す周波数成分との関係を説明する説明図であり、図7は、発振器の周波数の設定方法を説明する説明図である。
 図6に示すように、光周波数コムの周波数スペクトルのうち40GHzを測距信号として利用する場合、まず、測定受光部6の受光信号(全スペクトル)と発振器50の周波数(40GHz-12.5MHz)を乗算し、和と差の周波数成分を生成する。この差の周波数成分のうち12.5MHzの周波数成分をBPF(第4フィルタ51)によって抜き出す。
 また、基準受光部3の受光信号(全スペクトル)と発振器50の周波数(40GHz-12.5MHz)を乗算し、和と差の周波数成分を生成する。この差の周波数成分のうち62.5MHzの周波数成分をBPF(第5フィルタ52)によって抜き出す。
 測定受光部6および基準受光部3の受光信号(全スペクトル)を発振器50の周波数(40GHz-12.5MHz)と直接乗算したときの差の周波数成分は、図7の下段右に示されている。
 図7の下段右に示す差の周波数成分は、発振器50の周波数(40GHz-12.5MHz)をゼロとして、抜き出したい周波数成分(40GHzと40GHz+50MHz)に、発振器50の周波数(40GHz-12.5MHz)よりも低い不要な周波数成分を折り返して重ねた信号成分となる。
 図7の上段において、不要な周波数成分(例えば40GHz-50MHzと40GHz-100MHz)が折り返され、抜き出したい周波数成分(40GHzと40GHz+50MHz)に重ならないためには、発振器50の周波数を光周波数コムの周波数間隔(50MHz)の1/2の整数倍以外としなければならない(1/n(n≠1,2))。すなわち、発振器50の周波数は、測定受光部6から出力されたビート信号に対して、光周波数コムの周波数間隔の1/n(n≠1,2)だけ差を持つように設定する必要がある。なお、発振器50の周波数を光周波数コムの周波数間隔の1/2の整数倍とした場合には、発振器50の周波数よりも低い周波数成分と高い周波数成分が重なり、抜き出したい周波数成分が維持されない。
 さらに、差の周波数成分を拡大したものを図7の下段左に示す。抜き出したい周波数成分(40GHzと40GHz+50MHz)は、発振器50の周波数(40GHz-12.5MHz)によってビートダウンされ、図7の下段左に示すように、12.5MHzと62.5MHzになる。また、不要な周波数成分(40GHz-50MHzと40GHz-100MHz)は、37.5MHzと75MHzになる。
 抜き出したい周波数成分(12.5MHzと62.5MHz)をBPF(第4フィルタ51と第5フィルタ52)で抜き出し易くするためには、図3下段左に示すように、差の周波数成分の間隔が等しいことが好ましい。そこで、発振器50の周波数は、測距信号として抜き出したい周波数(40GHz)に対して光周波数コムの周波数間隔(50MHz)の1/4だけ差を持つ周波数(40GHz-12.5MHz)に設定される。なお、ここでは抜き出したい周波数に対して光周波数コムの周波数間隔の1/4だけ差を持たせているが、これに限ることはなく、測定受光部6が出力するビート信号に対して光周波数コムの周波数間隔の1/4だけ差を持たせればよい。
 また、ここでは第1の実施形態でいう第1フィルタ14と第3フィルタ13を用いない例を示したが、第1フィルタ14と第3フィルタ13を用いる構成としてもよい。その場合は、フィルタの性能を抑えることができる。
(第2の実施形態の優位性)
 以下、第2の実施形態の優位性について説明する。図8は、発振器の周波数の時間的ゆらぎと処理信号周波数との関係を説明する説明図である。
 図8に示すように、発振器50の周波数に±100ppmのゆらぎがある場合(39.9835GHzから39.9915GHz)、測定受光部6からの周波数成分は、8.5MHzから16.5MHzになり、基準受光部3からの周波数成分は、58.5MHzから66.5MHzとなり、それぞれの周波数はゆらぎの影響を大きく受けてしまう。しかし、本実施形態ではさらに両者の差を取り、それぞれの差(50MHz)は、光周波数コムの周波数間隔(50MHz)で一定であるため、測距信号(処理信号)は、常に50MHzへビートダウンされる。
 さらに、発振器50の周波数を、測定受光部6が出力するビート信号(40GHz)に対して光周波数コムの周波数間隔の1/4だけ差を持たせることによって、必要とする周波数12.5MHzと62.5MHz、除去する周波数37.5MHzと75.0MHzを選別する、第4フィルタ51、第5フィルタ52の特性を効率よく設定することが可能になる。また、必要とする周波数と除去する周波数との選別が容易になる。
 このように、第2の実施形態によれば、発振器50の周波数がゆらいだとしても、処理信号周波数が変化しないため、測距信号と基準信号の位相差を安定して測定することができ、さらに周波数選別を容易にできる。
 本発明は、光周波数コムを用いて、2以上の周期信号の位相差から距離を測定する距離測定装置に用いることができる。

Claims (7)

  1.  レーザ光束として光周波数コムを発生するレーザ装置と、
     前記レーザ光束を基準光と測距光に分割する分割手段と、
     前記基準光を受光して多数のビート信号を出力する基準受光部と、
     前記測距光を受光して多数のビート信号を出力する測定受光部と、
     前記測定受光部のビート信号から抜き出す周波数成分と異なる周波数の周期信号を発振する発振器と、
     前記測定受光部からのビート信号と前記発振器が発振する周期信号との和と差の周波数成分を生成する第1ミキサと、
     前記基準受光部からのビート信号と前記発振器が発振する周期信号との和と差の周波数成分を生成する第2ミキサと、
     前記第1ミキサで生成された周波数成分から差の周波数成分のビート信号を抜き出す第4フィルタと、
     前記第2ミキサで生成された周波数成分から前記第4フィルタで抜き出された周波数成分と異なる周波数成分のビート信号を抜き出す第5フィルタと、
     前記第4フィルタで抜き出されたビート信号と前記第5フィルタで抜き出されたビート信号との和と差の周波数成分を生成する第3ミキサと、
     前記第3ミキサで生成された周波数成分から差の周波数成分のビート信号を抜き出す第6フィルタと、
     前記基準受光部のビート信号から第6フィルタで抜き出した周波数成分と同じ周波数成分のビート信号を抜き出す第2フィルタと、
     前記第6フィルタおよび前記第2フィルタで抜き出された2つのビート信号の位相差を測定する位相差測定部と、
     前記位相差測定部で測定された位相差に基づいて距離を測定する距離測定部と、を備えることを特徴とする距離測定装置。
  2.  前記第1ミキサおよび前記第2ミキサは、それぞれ前記測定受光部および前記基準受光部からの多数のビート信号に対して前記発振器の周期信号を直接乗算することを特徴とする請求項1に記載の距離測定装置。
  3.  前記発振器の周波数は、前記測定受光部のビート信号に対して前記光周波数コムの周波数間隔の1/n(n≠1,2)だけ差を持つことを特徴とする請求項1に記載の距離測定装置。
  4.  前記発振器の周波数は、前記測定受光部のビート信号に対して光周波数コムの周波数間隔の1/4だけ差を持つことを特徴とする請求項1に記載の距離測定装置。
  5.  前記第1ミキサおよび前記第2ミキサで生成された信号成分における周波数スペクトルの間隔は、等間隔であることを特徴とする請求項1に記載の距離測定装置。
  6.  前記測定受光部から少なくとも一つのビート信号を抜き出す第1フィルタと、
     前記基準受光部から少なくとも一つのビート信号を抜き出す第3フィルタとをさらに備え、
     前記第1ミキサは、前記第1フィルタからのビート信号と前記発振器が発振する周期信号との和と差の周波数成分を生成し、
     前記第2ミキサは、前記第3フィルタからのビート信号と前記発振器が発振する周期信号との和と差の周波数成分を生成することを特徴とする請求項1に記載の距離測定装置。
  7.  前記発振器の周波数は、前記第1フィルタおよび前記第3フィルタを通過する周波数の範囲外に設定されていることを特徴とする請求項6に記載の距離測定装置。
     
PCT/JP2010/052970 2009-03-03 2010-02-25 距離測定装置 WO2010101071A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10748666.4A EP2405286B1 (en) 2009-03-03 2010-02-25 Distance measuring device
CN201080010167.6A CN102341725B (zh) 2009-03-03 2010-02-25 距离测定装置
US13/223,888 US8179522B2 (en) 2009-03-03 2011-09-01 Distance measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009049016A JP5254844B2 (ja) 2009-03-03 2009-03-03 距離測定装置
JP2009-049016 2009-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/223,888 Continuation US8179522B2 (en) 2009-03-03 2011-09-01 Distance measuring device

Publications (1)

Publication Number Publication Date
WO2010101071A1 true WO2010101071A1 (ja) 2010-09-10

Family

ID=42709630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052970 WO2010101071A1 (ja) 2009-03-03 2010-02-25 距離測定装置

Country Status (5)

Country Link
US (1) US8179522B2 (ja)
EP (1) EP2405286B1 (ja)
JP (1) JP5254844B2 (ja)
CN (1) CN102341725B (ja)
WO (1) WO2010101071A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565806A (zh) * 2011-12-31 2012-07-11 北京握奇数据系统有限公司 一种激光测距方法及装置
CN105180892A (zh) * 2015-07-31 2015-12-23 天津大学 一种飞秒激光频率梳脉冲啁啾干涉测距方法及测距系统
CN110007310A (zh) * 2019-03-13 2019-07-12 北京空间飞行器总体设计部 一种基于双光梳测距的大动态范围基线测量系统及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212663A1 (de) * 2012-07-19 2014-01-23 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage für die Mikrolithographie mit einer optischen Abstandsmessvorrichtung
CN102841355A (zh) * 2012-08-30 2012-12-26 中国科学技术大学 基于微波光子学的飞秒测距激光雷达数据测量装置及方法
CN104035099B (zh) * 2013-03-08 2017-02-01 江苏徕兹测控科技有限公司 基于双发双收相位测量的校准方法及其测距装置
KR101357120B1 (ko) * 2013-04-23 2014-02-05 김태민 광 신호를 이용한 거리 측정 방법 및 장치
CN106370111B (zh) * 2016-09-23 2019-11-26 中国航空工业集团公司北京长城计量测试技术研究所 一种基于变频测相原理的飞秒激光测长装置及方法
JP6902901B2 (ja) * 2017-03-30 2021-07-14 株式会社トプコン 光波距離計
JP6902902B2 (ja) * 2017-03-30 2021-07-14 株式会社トプコン 光波距離計
EP3521854B1 (en) * 2018-02-01 2021-07-14 OHB System AG Frequency domain distance measurement cross correlation
JP7329376B2 (ja) 2019-07-04 2023-08-18 株式会社ミツトヨ 測定装置および測定方法
JP7426123B2 (ja) * 2019-12-25 2024-02-01 国立研究開発法人産業技術総合研究所 光学的測定装置及び測定方法
US11662437B2 (en) 2020-04-03 2023-05-30 Aqronos, Inc. Frequency information rapid extraction for ranging applications
JP7448964B2 (ja) 2021-07-28 2024-03-13 株式会社OptoComb 光コム距離計測方法及び光コム距離計測装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317482U (ja) * 1986-07-16 1988-02-05
JP2003344464A (ja) * 2002-05-31 2003-12-03 Yokogawa Electric Corp 周波数信号測定装置
JP2006184181A (ja) 2004-12-28 2006-07-13 National Institute Of Advanced Industrial & Technology 距離測定装置
JP2006300753A (ja) * 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology 距離測定装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468155B1 (ko) * 2002-06-27 2005-01-26 한국과학기술원 이종모드 헬륨-네온 레이저와 슈퍼 헤테로다인위상측정법을 이용한 헤테로다인 레이저 간섭계
JP2006300453A (ja) * 2005-04-22 2006-11-02 Hoshizaki Electric Co Ltd 貯湯タンクの給水装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317482U (ja) * 1986-07-16 1988-02-05
JP2003344464A (ja) * 2002-05-31 2003-12-03 Yokogawa Electric Corp 周波数信号測定装置
JP2006184181A (ja) 2004-12-28 2006-07-13 National Institute Of Advanced Industrial & Technology 距離測定装置
JP2006300753A (ja) * 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology 距離測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2405286A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565806A (zh) * 2011-12-31 2012-07-11 北京握奇数据系统有限公司 一种激光测距方法及装置
CN105180892A (zh) * 2015-07-31 2015-12-23 天津大学 一种飞秒激光频率梳脉冲啁啾干涉测距方法及测距系统
CN110007310A (zh) * 2019-03-13 2019-07-12 北京空间飞行器总体设计部 一种基于双光梳测距的大动态范围基线测量系统及方法
CN110007310B (zh) * 2019-03-13 2020-10-23 北京空间飞行器总体设计部 一种基于双光梳测距的大动态范围基线测量系统及方法

Also Published As

Publication number Publication date
EP2405286A4 (en) 2012-07-25
JP2010203884A (ja) 2010-09-16
US20120033197A1 (en) 2012-02-09
EP2405286A1 (en) 2012-01-11
EP2405286B1 (en) 2017-05-03
US8179522B2 (en) 2012-05-15
JP5254844B2 (ja) 2013-08-07
CN102341725A (zh) 2012-02-01
CN102341725B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5254844B2 (ja) 距離測定装置
JP2010203877A (ja) 距離測定装置
JP5836739B2 (ja) 光周波数測定装置
JP4793675B2 (ja) 距離測定装置
JP5736247B2 (ja) 距離計測方法および装置
US8938362B2 (en) Systems, methods, and apparatus for doppler LIDAR
JP6448236B2 (ja) 光周波数コムを使ったレーザ周波数測定方法及び装置
JP2014134575A (ja) テラヘルツ波発生装置及びテラヘルツ波測定方法
CN110857988B (zh) 测量装置和测量方法
JP4617434B2 (ja) 距離測定装置
JP2020511634A (ja) パルス群を放出するためのレーザ光源
JP2015135414A (ja) テラヘルツ帯波長板、及びテラヘルツ波測定装置
EP4202356A1 (en) Interferometric dual-comb distance measuring device and measuring method
US8995796B2 (en) System for generating a beat signal
CN109031852A (zh) 全固态飞秒光学频率梳系统
JP2012004426A (ja) 無変調安定化レーザ装置
CN112180389A (zh) 测量装置和测量方法
WO2014045655A1 (ja) 距離計測方法および装置
CN112433220B (zh) 测量装置和测量方法
Mildner et al. Dual-frequency comb generation with differing GHz repetition rates by parallel Fabry–Perot cavity filtering of a single broadband frequency comb source
JP2010093243A (ja) 光ピークパワー検出装置及び該装置を利用したパルスレーザー発生装置
JP2014209517A (ja) 光周波数コム発生装置および光周波数コムの周波数安定化方法
JP4164599B2 (ja) 多色モードロックレーザを用いた光周波数測定装置及び測定方法
JP5665042B2 (ja) 位相保持型ラムゼー法を用いた基準信号発生器および基準信号発生方法
JP2012132704A (ja) ピークパワーモニター装置、およびピークパワーのモニター方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010167.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010748666

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010748666

Country of ref document: EP