JP7329376B2 - 測定装置および測定方法 - Google Patents

測定装置および測定方法 Download PDF

Info

Publication number
JP7329376B2
JP7329376B2 JP2019125541A JP2019125541A JP7329376B2 JP 7329376 B2 JP7329376 B2 JP 7329376B2 JP 2019125541 A JP2019125541 A JP 2019125541A JP 2019125541 A JP2019125541 A JP 2019125541A JP 7329376 B2 JP7329376 B2 JP 7329376B2
Authority
JP
Japan
Prior art keywords
frequency
light
signal
measurement
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019125541A
Other languages
English (en)
Other versions
JP2021012069A (ja
Inventor
義将 鈴木
慎一 原
晋路 小松崎
隆介 加藤
大希 氏原
正之 奈良
知隆 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2019125541A priority Critical patent/JP7329376B2/ja
Priority to DE102020208207.3A priority patent/DE102020208207A1/de
Priority to CN202010633181.7A priority patent/CN112180389A/zh
Priority to US16/921,839 priority patent/US11867809B2/en
Publication of JP2021012069A publication Critical patent/JP2021012069A/ja
Application granted granted Critical
Publication of JP7329376B2 publication Critical patent/JP7329376B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4917Receivers superposing optical signals in a photodetector, e.g. optical heterodyne detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out

Description

本発明は、測定装置および測定方法に関する。
共振器内に周波数シフタが設けられ、時間の経過とともに発振周波数が線形に変化する複数の縦モードレーザを出力する周波数シフト帰還レーザ(FSFL:Frequency Shifted Feedback Laser)が知られている。また、このような周波数シフト帰還レーザを用いた光学式の距離計が知られている(例えば、特許文献1および非特許文献1を参照)。
特許第3583906号明細書
原武文,「FSLレーザによる距離センシングとその応用」,オプトニューズ,Vol.7,No.3,2012年,pp.25-31
周波数シフト帰還レーザを用いた光学式距離計は、非接触で大量の三次元情報を取得可能であり、例えば、設計および生産現場等で用いられてきた。周波数シフト帰還レーザは、温度等の環境変動によって共振器長が変動することがあるので、光学式距離計の測定精度を低減させてしまうことがあった。このような測定精度の低下を防止すべく、従来、周波数シフト帰還レーザを恒温槽内に設置して環境変動を低減させること、周波数シフト帰還レーザの出力をモニタして共振器長の変動を観測すること等が考えられていた。しかしながら、共振器長の変動の観測結果を距離測定に用いると、共振器長の観測ばらつきが距離測定ばらつきに重畳され、距離測定ばらつきが大きくなってしまうことがあった。
そこで、本発明はこれらの点に鑑みてなされたものであり、光学式距離計において、コストの増加を抑制しつつ、高精度に距離測定できるようにすることを目的とする。
本発明の第1の態様においては、計測対象物までの距離を測定する測定装置であって、レーザ共振器を有し、複数のモードの周波数変調レーザ光を出力するレーザ装置と、前記レーザ装置が出力する前記周波数変調レーザ光の一部を参照光とし、残りの少なくとも一部を測定光として分岐させる分岐部と、前記測定光を計測対象物に照射して反射された反射光と、前記参照光とを混合してビート信号を発生させるビート信号発生部と、前記ビート信号を第1サンプリングレートでデジタル信号に変換してから、前記デジタル信号を周波数解析する変換部と、前記レーザ装置が出力する前記周波数変調レーザ光に重畳されている、前記レーザ共振器の共振器周波数に応じた信号成分を抽出する抽出部と、抽出された前記信号成分を第2サンプリングレートでデジタルフィルタリングするデジタルフィルタと、前記ビート信号を周波数解析した結果と、デジタルフィルタリングされた前記信号成分とに基づき、前記参照光と前記測定光との伝搬距離の差を算出する算出部とを備える、測定装置を提供する。
前記デジタルフィルタは、前記第1サンプリングレートよりも遅い前記第2サンプリングレートでデジタルフィルタリングしてもよい。前記分岐部は、前記周波数変調レーザ光を前記参照光、前記測定光、およびモニタ光に分岐し、前記抽出部は、前記モニタ光を電気信号に変換する光電変換部を有し、前記光電変換部が変換した電気信号から前記レーザ共振器の共振器周波数に応じた前記信号成分を抽出してもよい。
前記抽出部は、前記光電変換部が変換した電気信号のうち前記レーザ共振器の共振器周波数を有する前記信号成分を通過させるフィルタ部と、前記フィルタ部を通過した前記信号成分を周波数解析して前記レーザ共振器の共振器周波数を出力する共振器周波数出力部とを更に有してもよい。
前記算出部は、デジタルフィルタリングされた前記信号成分の単位時間当たりの変化率を算出する変化率算出部と、単位時間当たりの前記変化率に基づき、前記測定装置による測定の安定性を判定する判定部とを更に備えてもよい。
前記判定部は、更に、算出された前記変化率の値が第1閾値以上、かつ、第2閾値以下となったことに応じて、前記測定装置が安定であると判定してもよい。
本発明の第2の態様においては、計測対象物までの距離を測定する測定方法であって、レーザ共振器を有するレーザ装置から複数のモードの周波数変調レーザ光を出力するステップと、前記周波数変調レーザ光の一部を参照光とし、残りの少なくとも一部を測定光として分岐させるステップと、前記測定光を計測対象物に照射して反射された反射光と、前記参照光とを混合してビート信号を発生させるステップと、前記ビート信号を第1サンプリングレートでデジタル信号に変換してから、前記デジタル信号を周波数解析するステップと、前記周波数変調レーザ光に重畳されている、前記レーザ共振器の共振器周波数に応じた信号成分を抽出するステップと、前記信号成分を第2サンプリングレートでデジタルフィルタリングするステップと、前記ビート信号を周波数解析した結果と、デジタルフィルタリングされた前記信号成分とに基づき、前記参照光と前記測定光との伝搬距離の差を算出するステップとを備える、測定方法を提供する。
デジタルフィルタリングされた前記信号成分の単位時間当たりの変化率を算出するステップと、単位時間当たりの前記変化率に基づき、測定の安定性を判定するステップとを更に備えてもよい。
本発明によれば、光学式距離計において、コストの増加を抑制しつつ、高精度に距離測定できるという効果を奏する。
本実施形態に係る測定装置100の構成例を計測対象物10と共に示す。 本実施形態に係るレーザ装置110の構成例を示す。 本実施形態に係るレーザ装置110が出力するレーザ光の一例を示す。 本実施形態に係る測定装置100が検出するビート信号の周波数と、光ヘッド部140および計測対象物10の間の距離dとの関係の一例を示す。 本実施形態に係るビート信号発生部150および変換部160の構成例を示す。 本実施形態に係るビート信号発生部150および変換部160の直交検波の概略の一例を示す。 本実施形態に係る抽出部170の構成例を示す。 本実施形態に係る測定装置300の構成例を計測対象物10と共に示す。 本実施形態に係る抽出部170が出力する共振器周波数νの一例を示す。 本実施形態に係るデジタルフィルタ310がフィルタリングして出力する共振器周波数νの一例を示す。 本実施形態に係る測定装置300の変形例を計測対象物10と共に示す。
[測定装置100の構成例]
図1は、本実施形態に係る測定装置100の構成例を計測対象物10と共に示す図である。測定装置100は、当該測定装置100および計測対象物10の間の距離を光学的に測定する。また、測定装置100は、計測対象物10に照射するレーザ光の位置を走査して、計測対象物10の三次元的な形状を計測してもよい。測定装置100は、レーザ装置110と、分岐部120と、光サーキュレータ130と、光ヘッド部140と、ビート信号発生部150と、変換部160と、抽出部170と、算出部180と、表示部190とを備える。
レーザ装置110は、レーザ共振器を有し、複数のモードの周波数変調レーザ光を出力する。レーザ装置110は、共振器内に周波数シフタが設けられ、時間の経過とともに発振周波数が線形に変化する複数の縦モードレーザを出力する。レーザ装置110は、一例として、周波数シフト帰還レーザである。周波数シフト帰還レーザについては後述する。
分岐部120は、レーザ装置110が出力する周波数変調レーザ光の一部を参照光とし、残りの少なくとも一部を測定光として分岐させる。分岐部120は、例えば、レーザ装置110が出力する周波数変調レーザ光を参照光、測定光、およびモニタ光として分岐させる。分岐部120は、一例として、1入力3出力の光ファイバ型の光カプラである。図1の例において、分岐部120は、測定光を光サーキュレータ130に供給し、参照光をビート信号発生部150に供給し、モニタ光を抽出部170に供給する。図1は、分岐部120が1入力3出力の光カプラである例を示したが、これに代えて、分岐部120は、2つの1入力2出力の光カプラの組み合わせであってもよい。
光サーキュレータ130は、複数の入出力ポートを有する。光サーキュレータ130は、例えば、一のポートに入力した光を次のポートから出力させ、当該次のポートから入力する光を更に次のポートから出力させる。図1は、光サーキュレータ130が3つの入出力ポートを有する例を示す。この場合、光サーキュレータ130は、分岐部120から供給される測定光を光ヘッド部140に出力する。また、光サーキュレータ130は、光ヘッド部140から入力する光をビート信号発生部150へと出力する。
光ヘッド部140は、光サーキュレータ130から入力する光を計測対象物10に向けて照射する。光ヘッド部140は、一例として、コリメータレンズを有する。この場合、光ヘッド部140は、光ファイバを介して光サーキュレータ130から入力する光をコリメータレンズでビーム状に調節してから出力する。
また、光ヘッド部140は、計測対象物10に照射した測定光の反射光を受光する。光ヘッド部140は、受光した反射光をコリメータレンズで光ファイバに集光して光サーキュレータ130に供給する。この場合、光ヘッド部140は、共通の1つのコリメータレンズを有し、当該コリメータレンズで、測定光を計測対象物10に照射し、また、計測対象物10からの反射光を受光してよい。なお、光ヘッド部140および計測対象物10の間の距離をdとする。
これに代えて、光ヘッド部140は、集光レンズを有してもよい。この場合、光ヘッド部140は、光ファイバを介して光サーキュレータ130から入力する光を計測対象物10の表面に集光する。そして、光ヘッド部140は、計測対象物10の表面で反射した反射光の少なくとも一部を受光する。光ヘッド部140は、受光した反射光を集光レンズで光ファイバに集光して光サーキュレータ130に供給する。この場合においても、光ヘッド部140は、共通の1つの集光レンズを有し、当該集光レンズで、測定光を計測対象物10に照射し、また、計測対象物10からの反射光を受光してよい。
ビート信号発生部150は、測定光を計測対象物10に照射して反射された反射光を光サーキュレータ130から受けとる。また、ビート信号発生部150は、分岐部120から参照光を受けとる。ビート信号発生部150は、反射光および参照光を混合してビート信号を発生させる。ビート信号発生部150は、例えば、光電変換素子を有し、ビート信号を電気信号に変換して出力する。
ここで、反射光は、光ヘッド部140から計測対象物10までの距離を往復しているので、参照光と比較して少なくとも距離2dに応じた伝搬距離の差が生じることになる。レーザ装置110が出力する光は、時間の経過とともに発振周波数が線形に変化するので、参照光および反射光の発振周波数は、当該伝搬距離の差に対応する伝搬遅延に応じた周波数差が生じる。ビート信号発生部150は、このような周波数差に対応するビート信号を発生させる。
変換部160は、ビート信号発生部150が発生させたビート信号を周波数解析して、当該ビート信号の周波数を検出する。ここで、ビート信号の周波数をνとする。
抽出部170は、レーザ装置110が出力する周波数変調レーザ光に重畳されている、レーザ共振器の共振器周波数に応じた信号成分を抽出する。例えば、抽出部170は、モニタ光に基づき、レーザ装置110の共振器長に対応する共振器周波数を抽出する。ここで、共振器周波数をνとする。
算出部180は、変換部160の検出結果および抽出部170の抽出結果に基づき、参照光と測定光との伝搬距離の差を算出する。例えば、算出部180は、ビート信号の周波数νおよび共振器周波数νに基づき、光ヘッド部140から計測対象物10までの距離dを算出する。
表示部190は、算出部180の算出結果を表示する。表示部190は、ディスプレイ等を有し、算出結果を表示してよい。また、表示部190は、記憶部等に算出結果を記憶させてもよい。表示部190は、ネットワーク等を介して外部に算出結果を供給してもよい。
以上の測定装置100は、計測対象物10に照射した測定光の反射光と、参照光との間の周波数差を解析することにより、測定装置100および計測対象物10の間の距離dを測定可能とする。即ち、測定装置100は、非接触および非破壊の光学式距離計を構成できる。測定装置100のより詳細な構成について次に説明する。
[レーザ装置110の構成例]
図2は、本実施形態に係るレーザ装置110の構成例を示す。図2のレーザ装置110は、周波数シフト帰還レーザの一例を示す。レーザ装置110は、レーザ共振器を有し、当該レーザ共振器内でレーザ光を発振させる。レーザ装置110のレーザ共振器は、周波数シフタ112と、増幅媒体114と、WDMカプラ116と、ポンプ光源117、出力カプラ118とを含むレーザ共振器を有する。
周波数シフタ112は、入力する光の周波数を略一定の周波数だけシフトする。周波数シフタ112は、一例として、音響光学素子を有するAOFS(Acousto-Optic Frequency Shifter)である。ここで、周波数シフタ112による周波数シフト量を+νとする。即ち、周波数シフタ112は、共振器を周回する光の周波数を、1周回毎にνだけ周波数が増加するようにシフトさせる。
増幅媒体114は、ポンプ光が供給され、入力光を増幅する。増幅媒体114は、一例として、不純物が添加された光ファイバである。不純物は、例えば、エルビウム、ネオジウム、イッテルビウム、テルビウム、ツリウム等の希土類元素である。また、増幅媒体114は、WDMカプラ116を介してポンプ光源117からポンプ光が供給される。出力カプラ118は、共振器内でレーザ発振した光の一部を外部に出力する。
即ち、図2に示すレーザ装置110は、共振器内に周波数シフタ112を有するファイバリングレーザを構成する。レーザ装置110は、共振器内にアイソレータを更に有することが望ましい。また、レーザ装置110は、予め定められた波長帯域の光を通過させる光バンドパスフィルタを共振器内に有してもよい。このようなレーザ装置110が出力するレーザ光の周波数特性について次に説明する。
図3は、本実施形態に係るレーザ装置110が出力するレーザ光の一例を示す。図3は、時刻tにおいてレーザ装置110が出力するレーザ光の光スペクトルを左側に示す。当該光スペクトルにおいては、横軸が光強度、縦軸が光の周波数を示す。また、光スペクトルの複数の縦モードを番号qで示す。複数の縦モードの周波数は、略一定の周波数間隔で並ぶ。ここで、光が共振器を1周する時間をτRT(=1/ν)とすると、複数の縦モードは、次式のように1/τRT(=ν)間隔で並ぶことになる。なお、νは、時刻tにおける光スペクトルの初期周波数とする。
Figure 0007329376000001
図3は、レーザ装置110が出力する複数の縦モードの時間経過にともなう周波数の変化を右側に示す。図3の右側においては、横軸が時間、縦軸が周波数を示す。即ち、図3は、レーザ装置110が出力するレーザ光の周波数の時間的な変化を右側に示し、当該レーザ光の時刻tにおける瞬時周波数を左側に示したものである。
レーザ装置110は、共振器内の光が共振器を1周する毎に、周波数シフタ112が周回する光の周波数をνだけ増加させる。即ち、時間がτRT経過する毎に、各モードの周波数はνだけ増加するので、周波数の時間変化dν/dtは、ν/τRTと略等しくなる。したがって、(数1)式で示した複数の縦モードは、時間tの経過に伴って、次式のように変化する。
Figure 0007329376000002
[距離測定処理の詳細]
本実施形態に係る測定装置100は、(数2)式で示すような周波数成分を出力するレーザ装置110を用いて、光ヘッド部140および計測対象物10の間の距離dを測定する。ここで、参照光および反射光の間の光路差が、距離dを往復した距離2dだけであり、距離2dに対応する伝搬遅延をΔtとする。即ち、時刻tにおいて、測定光が計測対象物10から反射して戻ってきた場合、戻ってきた反射光は、時刻tよりも時間Δtだけ過去の周波数と略一致するので、次式で示すことができる。
Figure 0007329376000003
一方、時刻tにおける参照光は、(数2)式と同様に次式で示すことができる。ここで、参照光をνq’(t)とした。
Figure 0007329376000004
ビート信号発生部150は、このような反射光および参照光を重畳させるので、(数3)式の複数の縦モードと(数4)式で示す複数の縦モードとの間の複数のビート信号が発生することになる。このようなビート信号の周波数をν(m,d)とすると、ν(m,d)は、(数3)式および(数4)式より次式で示すことができる。なお、mを縦モード番号の間隔(=q-q’)とし、Δt=2d/cとした。
Figure 0007329376000005
(数5)式より、距離dは、次式のように示される。ここで、1/τRT=νとした。
Figure 0007329376000006
(数6)式より、縦モード番号の間隔mを判別すれば、ビート信号の周波数観測結果から距離dを算出できることがわかる。なお、間隔mは、レーザ装置110の周波数シフト量νを変化させた場合のビート信号の変化を検出することで、判別することができる。このような間隔mの判別方法は、特許文献1等に記載されているように既知であるから、ここでは詳細な説明を省略する。
観測されるビート信号は常に正の周波数であるから、計算上、負の周波数側に発生するビート信号は、正側に折り返され、イメージ信号として観測される。このようなイメージ信号の発生について、次に説明する。
図4は、本実施形態に係る測定装置100が検出するビート信号の周波数と、光ヘッド部140および計測対象物10の間の距離dとの関係の一例を示す。図4の横軸は距離dを示し、縦軸はビート信号の周波数ν(m,d)を示す。図4の実線で示す複数の直線は、(数5)式に示したように、距離dに対するビート信号の周波数ν(m,d)の関係を、複数のm毎に示したグラフである。
図4のように、mの値に応じた複数のビート信号が発生する。しかしながら、反射光および参照光のそれぞれに含まれる複数の縦モードは、略一定の周波数間隔νで並ぶので、mの値が等しい複数のビート信号は周波数軸上では略同一の周波数に重畳されることになる。例えば、周波数0からνの間の周波数帯域を観測した場合、複数のビート信号は略同一の周波数に重畳されて、1本の線スペクトルとして観測される。
これに加えて、0よりも小さい負の領域のビート信号の周波数ν(m,d)は、周波数の絶対値がイメージ信号として更に観測される。即ち、図4の縦軸が0よりも小さい領域のグラフは、周波数0を境界として折り返される。図4は、折り返されたイメージ信号を、複数の点線で示す。折り返された複数のイメージ信号は、正負が反転するだけなので、観測される周波数軸上では折り返される前の周波数の絶対値と同一の周波数に重畳される。例えば、周波数0からνの間の周波数帯域を観測した場合、このようなビート信号およびイメージ信号は、周波数がそれぞれν/2にならない限り、それぞれ異なる周波数に位置する。
このように、周波数0からνの間の観測帯域においては、ビート信号ν(m,d)と、ビート信号ν(m,d)とはmの値が異なるイメージ信号ν(m’,d)の2本の線スペクトルが発生する。ここで、一例として、m’=m+1である。この場合、ビート信号発生部150が直交検波を用いることで、このようなイメージ信号をキャンセルできる。そこで直交検波を用いたビート信号発生部150および変換部160について、次に説明する。
図5は、本実施形態に係るビート信号発生部150および変換部160の構成例を示す。ビート信号発生部150は、反射光および参照光を直交検波する。ビート信号発生部150は、光90度ハイブリッド152と、第1光電変換部154と、第2光電変換部156とを有する。
光90度ハイブリッド152は、入力する反射光および参照光をそれぞれ2つに分岐させる。光90度ハイブリッド152は、分岐した一方の反射光と、分岐した一方の参照光とを光カプラ等で合波して第1ビート信号を発生させる。また、光90度ハイブリッド152は、分岐した他方の反射光と、分岐した他方の参照光とを光カプラ等で合波して第2ビート信号を発生させる。ここで、光90度ハイブリッド152は、分岐した2つの参照光の間に90度の位相差を生じさせてから、ビート信号を発生させる。光90度ハイブリッド152は、例えば、分岐した2つの参照光のうちいずれか一方に、π/2波長板を介してから反射光とそれぞれ合波させる。
第1光電変換部154および第2光電変換部156は、合波した反射光および参照光を受光して電気信号に変換する。第1光電変換部154および第2光電変換部156のそれぞれは、フォトダイオード等でよい。第1光電変換部154および第2光電変換部156のそれぞれは、一例として、バランス型フォトダイオードである。図5において、第1光電変換部154が第1ビート信号を発生させ、第2光電変換部156が第2ビート信号を発生させるものとする。以上のように、ビート信号発生部150は、位相を90度異ならせた2つの参照光と反射光とをそれぞれ合波させて直交検波し、2つのビート信号を変換部160に出力する。
変換部160は、2つのビート信号を周波数解析する。ここでは、変換部160が、第1ビート信号をI信号とし、第2ビート信号をQ信号として周波数解析する例を説明する。変換部160は、第1フィルタ部162、第2フィルタ部164、第1AD変換器202、第2AD変換器204、第1クロック信号供給部210、および周波数解析部220を有する。
第1フィルタ部162および第2フィルタ部164は、ユーザ等が周波数解析したい周波数帯域とは異なる周波数帯域の信号成分を低減させる。ここで、ユーザ等が周波数解析したい周波数帯域を0からνとする。第1フィルタ部162および第2フィルタ部164は、例えば、周波数ν以下の信号成分を通過させるローパスフィルタである。この場合、第1フィルタ部162は、周波数νよりも高い周波数の信号成分を低減させた第1ビート信号を第1AD変換器202に供給する。また、第2フィルタ部164は、周波数νよりも高い周波数の信号成分を低減させた第2ビート信号を第2AD変換器204に供給する。
第1AD変換器202および第2AD変換器204は、入力するアナログ信号をデジタル信号に変換する。例えば、第1AD変換器202は第1ビート信号をデジタル信号に変換し、第2AD変換器204は第2ビート信号をデジタル信号に変換する。第1クロック信号供給部210は、第1AD変換器202および第2AD変換器204に第1クロック信号を供給する。これにより、第1AD変換器202および第2AD変換器204は、受け取った第1クロック信号のクロック周波数と略同一の第1サンプリングレートでアナログ信号をデジタル信号に変換する。
ここで、観測帯域を0からνとすると、ビート信号の周波数は、最大でもレーザ共振器の共振器周波数νである。したがって、第1クロック信号供給部210が、レーザ共振器の共振器周波数νの2倍以上の周波数の第1クロック信号を、第1AD変換器202および第2AD変換器204に供給することで、ビート信号を観測することができる。
周波数解析部220は、第1ビート信号および第2ビート信号を周波数データに変換する。周波数解析部220は、一例として、第1ビート信号および第2ビート信号をそれぞれデジタルフーリエ変換(DFT)する。周波数解析部220は、周波数データに変換した第1ビート信号を実部、周波数データに変換した第2ビート信号を虚部として加算し、イメージ信号を相殺する。このように、変換部160は、ビート信号を第1サンプリングレートでデジタル信号に変換してから、当該デジタル信号を周波数解析する。なお、変換部160は、ビート信号がデジタル信号に変換された後は、集積回路等で周波数解析部220を構成してよい。以上のビート信号発生部150における直交検波と変換部160における周波数解析について、次に述べる。
図6は、本実施形態に係るビート信号発生部150および変換部160の直交検波の概略の一例を示す。図6の横軸はビート信号の周波数、縦軸は信号強度を示す。図6は、I信号およびQ信号のいずれか一方の周波数スペクトルを示す。I信号およびQ信号のいずれの周波数スペクトルも、図6の上側に示すように、略同一のスペクトル形状となる。I信号およびQ信号は、例えば、周波数0からνの間の周波数帯域に、ビート信号ν(m,d)およびイメージ信号ν(m+1,d)が観測される。この場合、I信号およびQ信号は、負側の周波数0から-νの間の周波数帯域に、ビート信号-ν(m,d)およびイメージ信号の元のビート信号-ν(m+1,d)が存在する。
ここで、I信号およびQ信号は、ビート信号発生部150が直交検波した信号成分なので、スペクトル形状が同一であっても、異なる位相情報を含む。例えば、正側の周波数0からνの間の周波数帯域において、I信号のイメージ信号ν(m+1,d)とQ信号のイメージ信号ν(m+1,d)とは、互いに位相が反転する。同様に、負側の周波数0から-νの間の周波数帯域において、I信号のビート信号-ν(m,d)とQ信号のビート信号-ν(m,d)とは、互いに位相が反転する。
したがって、図6の下側に示すように、周波数解析部220がI信号およびQ信号を用いてI+jQを算出すると、周波数0からνの間の周波数帯域において、周波数ν(m,d)のビート信号が強め合い、周波数ν(m+1,d)のイメージ信号が相殺される。同様に、周波数0から-νの間の周波数帯域において、周波数-ν(m+1,d)のビート信号が強め合い、周波数-ν(m,d)のビート信号が相殺される。
このような周波数解析部220の周波数解析結果により、周波数0からνの間の周波数帯域には1つのビート信号が周波数ν(m,d)に観測されることになる。測定装置100は、このようにして、イメージ信号をキャンセルできるので、ビート信号の周波数ν(m,d)の周波数を検出することができる。例えば、周波数解析部220は、変換した周波数信号の信号強度が最も高くなる周波数をビート信号の周波数ν(m,d)として出力する。
ここで、測定装置100が測定する距離dは、(数6)式で示されている。(数6)式より、ν、ν、およびν(m,d)の3つの周波数を用いることで、距離dが算出できることがわかる。3つの周波数のうち、ν(m,d)は、以上のように、検出できることがわかる。また、νおよびνは、レーザ装置110の部材によって定まる周波数なので、固定値となることが理想的である。ここで、νは、周波数シフタ112による周波数シフト量なので、安定なシフト量を有するデバイスを周波数シフタ112として用いることで、実質的にほぼ固定値とみなすことができる。
その一方で、νは、レーザ装置110の共振器の光学長に対応するので、温度等の環境変動によって変化してしまうことがある。例えば、レーザ装置110が図2で説明したようなファイバリングレーザであり、共振器が光ファイバで構成されている場合、環境温度が1℃変動すると、共振器長は10ppm程度変化することがある。なお、レーザ装置110が半導体レーザ等のように固体レーザであっても、このような環境変動によって共振器長が変化してしまうことがある。そこで、抽出部170は、このような共振器長の変化をモニタするために、共振器長に対応する共振器周波数を抽出する。このような抽出部170について次に説明する。
図7は、本実施形態に係る抽出部170の構成例を示す。抽出部170は、光電変換部を有し、当該光電変換部が変換した電気信号からレーザ共振器の共振器周波数に応じた信号成分を抽出する。抽出部170は、第3光電変換部172と、第3フィルタ部174と、第3AD変換器176と、共振器周波数出力部178を有する。
第3光電変換部172は、モニタ光を電気信号に変換する。第3光電変換部172は、フォトダイオード等でよい。レーザ装置110は、図4で説明したように、共振器周波数νに略一致する周波数間隔で並ぶ複数の縦モードを有する周波数変調レーザ光を出力する。したがって、第3光電変換部172が当該周波数変調レーザ光を光電変換すると、共振器周波数νを含む電気信号を出力することになる。
第3フィルタ部174は、第3光電変換部172が変換した電気信号のうちレーザ共振器の共振器周波数νを有する信号成分を通過させる。第3フィルタ部174は、例えば、ハイパスフィルタ、ローパスフィルタ、バンドパスフィルタ、およびバンドリジェクションフィルタのうち、少なくとも1つのフィルタを有する。図7は、第3フィルタ部174がバンドパスフィルタである例を示す。
第3AD変換器176は、入力するアナログ信号をデジタル信号に変換する。第3AD変換器176は、共振器周波数νの2倍以上の周波数のクロック信号に同期して、アナログ信号をデジタル信号に変換する。第3AD変換器176は、一例として、第1クロック信号供給部210からクロック信号を受け取って動作する。
共振器周波数出力部178は、第3フィルタ部174を通過した信号成分を周波数解析する。共振器周波数出力部178は、まず、第3AD変換器176から出力されるデジタル信号を周波数データに変換する。共振器周波数出力部178は、一例として、デジタル信号をデジタルフーリエ変換(DFT)する。そして、共振器周波数出力部178は、周波数データを解析して、共振器周波数νを出力する。共振器周波数出力部178は、例えば、周波数データの信号強度が最も大きくなっている周波数を、共振器周波数νとして出力する。
以上のように、図7に示す抽出部170は、モニタ光から共振器周波数νを抽出して出力する。したがって、環境温度の変動によりレーザ装置110の共振器長が変化しても、抽出部170は、当該変化に応じた共振器周波数νを抽出して出力できる。算出部180は、固定値のνと、以上のように検出されたν(m,d)および共振器周波数νとを用いるので、環境温度の変動に対応した距離dを算出できる。
このように、測定装置100は、環境変動が生じても、当該環境変動に応じた共振器周波数νをモニタして距離dの算出に反映させるので、測定精度の低減を抑制できる。これに代えて、または、これに加えて、レーザ装置110を恒温槽等の温度安定化制御されたチャンバの中に入れて環境変動の影響を低減させ、測定装置100の測定精度の低減を抑制してもよい。
しかしながら、以上の測定装置100は、装置の規模が大きくなってしまい、コスト、回路調整等の手間、および設置面積等が増大してしまうという問題が生じることがあった。また、共振器長の変動の観測結果を距離測定に用いると、共振器長の観測ばらつきが距離測定ばらつきに重畳され、距離測定ばらつきが大きくなってしまうことがあった。ここで、距離測定ばらつきをΔd、ビート信号の測定ばらつきをΔν、共振器周波数の測定ばらつきをΔνをとすると、距離測定ばらつきΔdは、次式のように示される。
Figure 0007329376000007
(数7)式のように、共振器周波数の測定結果を用いることにより、距離測定ばらつきΔdは、共振器周波数の測定ばらつきΔνを含む項の分だけ増加することがわかる。そこで、本実施形態に係る測定装置は、このような共振器周波数の測定ばらつきΔνを低減させて、高精度な距離測定をできるようにする。このような測定装置について、次に説明する。
[測定装置300の構成例]
図8は、本実施形態に係る測定装置300の構成例を計測対象物10と共に示す。図8に示す測定装置300において、図1に示された本実施形態に係る測定装置100の動作と略同一のものには同一の符号を付け、説明を省略する。測定装置300は、デジタルフィルタ310と第2クロック信号供給部320を更に備える。
デジタルフィルタ310は、抽出部170によって抽出された信号成分をデジタルフィルタリングする。デジタルフィルタ310は、抽出部170がモニタ光から抽出した共振器周波数νをフィルタリングして、共振器周波数νの測定ばらつきΔνを低減させる。デジタルフィルタ310は、例えば、カルマンフィルタ、ガウシアンフィルタ、移動平均フィルタ等である。また、デジタルフィルタ310は、間引きフィルタ、ハイパスフィルタ、ローパスフィルタ、バンドパスフィルタ、および/またはバンドリジェクションフィルタ等を更に有してもよい。
第2クロック信号供給部320は、デジタルフィルタ310に第2クロック信号を供給する。また、第2クロック信号供給部320は、抽出部170に第2クロック信号を供給してもよい。第2クロック信号のクロック周波数は、例えば、第1クロック信号のクロック周波数と略同一の周波数である。これに代えて、第2クロック信号のクロック周波数は、第1クロック信号のクロック周波数よりも低い周波数であってもよい。
抽出部170による共振器周波数νの抽出とデジタルフィルタ310によるフィルタリング処理は、環境温度等に起因する共振器周波数νの変動を測定するためのものであるから、これらの処理動作に用いるクロック周波数は比較的低い周波数でもよい。例えば、抽出部170およびデジタルフィルタ310が用いる第2クロック信号は、参照光と測定光との伝搬距離の差を測定するためのビート信号の測定に用いる第1クロック信号のクロック周波数よりも低いクロック周波数でよい。
そこで、第2クロック信号供給部320は、第1クロック信号よりもクロック周波数が低い第2クロック信号をデジタルフィルタ310に供給する。これにより、デジタルフィルタ310は、抽出部170によって抽出された信号成分を第1サンプリングレートよりも遅い第2サンプリングレートでデジタルフィルタリングする。また、第3AD変換器176も、第2クロック信号供給部320から第2クロック信号を受け取って、第2サンプリングレートで入力するアナログ信号をデジタル信号に変換してよい。
図9は、本実施形態に係る抽出部170が出力する共振器周波数νの一例を示す。図9の横軸は時間を示し、縦軸は周波数を示す。抽出部170が出力する共振器周波数νは、一例として、共振器周波数νの測定ばらつきΔνと、環境温度等に起因する当該測定ばらつきΔνよりも時間的に緩やかな変動とが重畳された信号波形となる。
図10は、本実施形態に係るデジタルフィルタ310がフィルタリングして出力する共振器周波数νの一例を示す。図10は、図9と同様に、横軸は時間を示し、縦軸は周波数を示す。図10に示すように、デジタルフィルタ310は、信号波形に重畳された測定ばらつきΔνを低減させた共振器周波数νを出力できる。このようなデジタルフィルタ310のフィルタリング処理は、特別な装置等を設けることなく、既知のアルゴリズム等で実現可能である。また、デジタルフィルタ310の動作は、変換部160の動作よりも遅くすることができるので、コストが低く、低消費電力の簡便な構成により、このようなデジタルフィルタを構成できる。
そして、算出部180は、ビート信号を周波数解析した結果と、デジタルフィルタリングされた信号成分とに基づき、参照光と測定光との伝搬距離の差を算出する。算出部180は、固定値のνと、以上のように検出されたν(m,d)および共振器周波数νとを用いるので、環境温度の変動に対応した距離dを算出できる。以上のように、測定装置300は、デジタルフィルタ310によって測定ばらつきΔνを低減させた共振器周波数νを用いるので、コストの増加を抑制しつつ、高精度に計測対象物10までの距離dを測定することができる。
以上の算出部180は、図10に示すように、観測ばらつきΔνを低減させた共振器周波数νの時間的な変動波形をデジタルフィルタ310から取得できる。したがって、算出部180は、測定装置300の起動直後、環境温度の急激な変化、電源の瞬時電圧低下、電源の短時間の供給停止(瞬停、瞬断)等によって、共振器周波数νが大きく変動する現象を観測することもできる。
算出部180は、上述のように、このような共振器周波数νの変動を加味して計測対象物10までの距離dを算出してもよいが、このように環境変動が急激に変動する状態においては、精密測定を避けてもよい。そこで、算出部180は、共振器周波数νの変動に基づき、測定装置300による測定の安定性を判定し、判定結果に応じて測定をするか否かを制御してもよい。このような算出部180が設けられている測定装置300について、次に説明する。
[測定装置300の変形例]
図11は、本実施形態に係る測定装置300の変形例を計測対象物10と共に示す。図11に示す測定装置300において、図8に示された本実施形態に係る測定装置300の動作と略同一のものには同一の符号を付け、説明を省略する。変形例の測定装置300は、算出部180が変化率算出部330、判定部340、および出力制御部350を更に備える。
変化率算出部330は、デジタルフィルタリングされた信号成分の単位時間当たりの変化率を算出する。変化率算出部330は、例えば、デジタルフィルタ310から予め定められた数の共振器周波数νの信号値を取得したことに応じて、単位時間当たりの変化率を算出する。また、変化率算出部330は、単位時間当たりの変化率を、一定時間ごとに算出してもよい。
判定部340は、単位時間当たりの変化率に基づき、測定装置300による測定の安定性を判定する。判定部340は、例えば、測定装置300による測定結果が安定となる変化率の範囲を予め記憶する。そして、判定部340は、変化率算出部330の変化率の算出結果が記憶した変化率の範囲内であることに応じて、測定装置300が安定に測定可能であると判定する。この場合、判定部340は、算出した変化率の値が第1閾値以上、かつ、第2閾値以下となったことに応じて、測定装置300が安定であると判定する。
出力制御部350は、測定装置300が安定に測定可能である場合、距離dの算出結果を表示部190に供給する。また、出力制御部350は、測定装置300が安定に測定可能ではない場合、距離dの算出結果を表示部190に供給しない。これにより、表示部190は、測定装置300が距離dを安定に測定した結果だけを出力することができる。これにより、測定装置300のユーザ等は、測定装置300の安定な動作環境において当該測定装置300が測定した測定結果だけを利用することができる。
これに代えて、出力制御部350は、測定装置300が安定に測定可能ではない場合、距離dの算出結果を表示部190に供給すると共に、不安定な測定環境であったことを表示部190に通知する。この場合、表示部190は、例えば、「参考値」、「測定環境が変動中」等の表示と共に、距離dの算出結果を表示する。これにより、測定装置300のユーザ等は、測定装置300が安定な環境において測定したか否かを容易に知ることができ、測定結果を有効に利用することができる。
以上の本実施形態に係る測定装置300は、第2クロック信号供給部320を備え、第2クロック信号をデジタルフィルタ310に供給する例を説明したが、これに限定されることはない。例えば、第1クロック信号供給部210が第1クロック信号をデジタルフィルタ310に供給してもよい。この場合、デジタルフィルタ310は、変換回路、フィルタ等を有し、第1クロック信号をより低い周波数に変換したクロック信号を用いて、フィルタリングすることが望ましい。また、第1クロック信号供給部210は、第1クロック信号を抽出部170に供給してもよく、この場合、第2クロック信号供給部320は無くてもよい。
なお、以上の本実施形態に係る測定装置100および測定装置300に設けられている変換部160、抽出部170、および算出部180の少なくとも一部は、集積回路等で構成されていることが望ましい。変換部160、抽出部170、および算出部180の少なくとも一部は、例えば、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)、および/またはCPU(Central Processing Unit)を含む。
変換部160、抽出部170、および算出部180の少なくとも一部をコンピュータ等で構成する場合、これらの部位は、記憶部および制御部を含む。記憶部は、一例として、変換部160、抽出部170、および算出部180を実現するコンピュータ等のBIOS(Basic Input Output System)等を格納するROM(Read Only Memory)、および作業領域となるRAM(Random Access Memory)を含む。また、記憶部は、OS(Operating System)、プログラム、アプリケーション、および/または種々の情報等を格納してよい。記憶部は、HDD(Hard Disk Drive)および/またはSSD(Solid State Drive)等の大容量記憶装置を含んでよい。
制御部は、CPU等のプロセッサであり、記憶部に記憶されたプログラムを実行することによって変換部160、抽出部170、および算出部180の少なくとも一部として機能する。制御部は、GPU(Graphics Processing Unit)等を含んでもよい。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。
10 計測対象物
100 測定装置
110 レーザ装置
112 周波数シフタ
114 増幅媒体
116 WDMカプラ
117 ポンプ光源
118 出力カプラ
120 分岐部
130 光サーキュレータ
140 光ヘッド部
150 ビート信号発生部
152 光90度ハイブリッド
154 第1光電変換部
156 第2光電変換部
160 変換部
162 第1フィルタ部
164 第2フィルタ部
170 抽出部
172 第3光電変換部
174 第3フィルタ部
176 第3AD変換器
178 共振器周波数出力部
180 算出部
190 表示部
202 第1AD変換器
204 第2AD変換器
210 第1クロック信号供給部
220 周波数解析部
300 測定装置
310 デジタルフィルタ
320 第2クロック信号供給部
330 変化率算出部
340 判定部
350 出力制御部

Claims (8)

  1. 計測対象物までの距離を測定する測定装置であって、
    レーザ共振器を有し、複数のモードの周波数変調レーザ光を出力するレーザ装置と、
    前記レーザ装置が出力する前記周波数変調レーザ光の一部を参照光とし、残りの少なくとも一部を測定光として分岐させる分岐部と、
    前記測定光を計測対象物に照射して反射された反射光と、前記参照光とを混合してビート信号を発生させるビート信号発生部と、
    前記ビート信号を第1サンプリングレートでデジタル信号に変換してから、前記デジタル信号を周波数解析する変換部と、
    前記レーザ装置が出力する前記周波数変調レーザ光に重畳されている、前記レーザ共振器の共振器周波数を抽出し、抽出した共振器周波数に対応する信号成分を出力する抽出部と、
    抽出された前記信号成分を第2サンプリングレートでデジタルフィルタリングするデジタルフィルタと、
    前記ビート信号を周波数解析した結果と、デジタルフィルタリングされた前記信号成分とに基づき、前記参照光と前記測定光との伝搬距離の差を算出する算出部と
    を備える、測定装置。
  2. 前記デジタルフィルタは、前記第1サンプリングレートよりも遅い前記第2サンプリングレートでデジタルフィルタリングする、請求項1に記載の測定装置。
  3. 前記分岐部は、前記周波数変調レーザ光を前記参照光、前記測定光、およびモニタ光に分岐し、
    前記抽出部は、
    前記モニタ光を電気信号に変換する光電変換部を有し、
    前記光電変換部が変換した電気信号から前記レーザ共振器の共振器周波数に応じた前記信号成分を抽出する、
    請求項1または2に記載の測定装置。
  4. 前記抽出部は、
    前記光電変換部が変換した電気信号のうち前記レーザ共振器の共振器周波数を有する前記信号成分を通過させるフィルタ部と、
    前記フィルタ部を通過した前記信号成分を周波数解析して前記レーザ共振器の共振器周波数を出力する共振器周波数出力部と
    を更に有する、請求項3に記載の測定装置。
  5. 前記算出部は、
    デジタルフィルタリングされた前記信号成分の単位時間当たりの変化率を算出する変化率算出部と、
    単位時間当たりの前記変化率に基づき、前記測定装置による測定の安定性を判定する判定部と
    を更に備える、請求項1から4のいずれか一項に記載の測定装置。
  6. 前記判定部は、更に、算出された前記変化率の値が第1閾値以上、かつ、第2閾値以下となったことに応じて、前記測定装置が安定であると判定する、請求項5に記載の測定装置。
  7. 計測対象物までの距離を測定する測定方法であって、
    レーザ共振器を有するレーザ装置から複数のモードの周波数変調レーザ光を出力するステップと、
    前記周波数変調レーザ光の一部を参照光とし、残りの少なくとも一部を測定光として分岐させるステップと、
    前記測定光を計測対象物に照射して反射された反射光と、前記参照光とを混合してビート信号を発生させるステップと、
    前記ビート信号を第1サンプリングレートでデジタル信号に変換してから、前記デジタル信号を周波数解析するステップと、
    前記周波数変調レーザ光に重畳されている、前記レーザ共振器の共振器周波数を抽出し、抽出した共振器周波数に対応する信号成分を出力するステップと、
    前記信号成分を第2サンプリングレートでデジタルフィルタリングするステップと、
    前記ビート信号を周波数解析した結果と、デジタルフィルタリングされた前記信号成分とに基づき、前記参照光と前記測定光との伝搬距離の差を算出するステップと
    を備える、測定方法。
  8. デジタルフィルタリングされた前記信号成分の単位時間当たりの変化率を算出するステップと、
    単位時間当たりの前記変化率に基づき、測定の安定性を判定するステップと
    を更に備える、請求項7に記載の測定方法。
JP2019125541A 2019-07-04 2019-07-04 測定装置および測定方法 Active JP7329376B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019125541A JP7329376B2 (ja) 2019-07-04 2019-07-04 測定装置および測定方法
DE102020208207.3A DE102020208207A1 (de) 2019-07-04 2020-07-01 Messvorrichtung und Messverfahren
CN202010633181.7A CN112180389A (zh) 2019-07-04 2020-07-02 测量装置和测量方法
US16/921,839 US11867809B2 (en) 2019-07-04 2020-07-06 Measurement apparatus and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019125541A JP7329376B2 (ja) 2019-07-04 2019-07-04 測定装置および測定方法

Publications (2)

Publication Number Publication Date
JP2021012069A JP2021012069A (ja) 2021-02-04
JP7329376B2 true JP7329376B2 (ja) 2023-08-18

Family

ID=73919354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019125541A Active JP7329376B2 (ja) 2019-07-04 2019-07-04 測定装置および測定方法

Country Status (4)

Country Link
US (1) US11867809B2 (ja)
JP (1) JP7329376B2 (ja)
CN (1) CN112180389A (ja)
DE (1) DE102020208207A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047963B1 (en) 2020-08-21 2021-06-29 Aeva, Inc. Selective sub-band processing for angular resolution and detection sensitivity in a LIDAR system
WO2023062949A1 (ja) * 2021-10-13 2023-04-20 ソニーセミコンダクタソリューションズ株式会社 測距装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300753A (ja) 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology 距離測定装置
WO2007148056A1 (en) 2006-06-22 2007-12-27 University Of Kent Optical frequency comb generator
JP2008536096A (ja) 2005-02-14 2008-09-04 デジタル シグナル コーポレイション レーザレーダシステム、及びチャープされた電磁波を提供するシステム及び方法
JP2010203884A (ja) 2009-03-03 2010-09-16 Topcon Corp 距離測定装置
JP2013072848A (ja) 2011-09-29 2013-04-22 Mitsutoyo Corp レーザ装置
CN104950311A (zh) 2015-07-03 2015-09-30 天津大学 基于oeo的自校准的大量程、高精度绝对距离测量系统
JP2017516093A (ja) 2014-04-28 2017-06-15 オプトプラン・アー・エス 干渉計型光ファイバセンサシステムおよびインテロゲーションの方法
DE102018216636A1 (de) 2018-09-27 2020-04-02 Carl Zeiss Smt Gmbh Vorrichtung zur scannenden Abstandsermittlung eines Objekts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583906B2 (ja) 1996-07-15 2004-11-04 伊藤 弘昌 光学式距離計
JP2001201573A (ja) * 2000-01-20 2001-07-27 Mitsubishi Electric Corp コヒーレントレーザレーダ装置および目標測定方法
JP4335816B2 (ja) * 2003-05-30 2009-09-30 三菱電機株式会社 コヒーレントレーザレーダ装置
DE102011100252A1 (de) * 2011-05-03 2012-11-08 Polytec Gmbh Verfahren und Vorrichtung zur optischen, berührungslosen Schwingungsmessung eines schwingenden Objekts
US10578740B2 (en) * 2017-08-23 2020-03-03 Mezmeriz Inc. Coherent optical distance measurement apparatus and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536096A (ja) 2005-02-14 2008-09-04 デジタル シグナル コーポレイション レーザレーダシステム、及びチャープされた電磁波を提供するシステム及び方法
JP2006300753A (ja) 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology 距離測定装置
WO2007148056A1 (en) 2006-06-22 2007-12-27 University Of Kent Optical frequency comb generator
JP2010203884A (ja) 2009-03-03 2010-09-16 Topcon Corp 距離測定装置
JP2013072848A (ja) 2011-09-29 2013-04-22 Mitsutoyo Corp レーザ装置
JP2017516093A (ja) 2014-04-28 2017-06-15 オプトプラン・アー・エス 干渉計型光ファイバセンサシステムおよびインテロゲーションの方法
CN104950311A (zh) 2015-07-03 2015-09-30 天津大学 基于oeo的自校准的大量程、高精度绝对距离测量系统
DE102018216636A1 (de) 2018-09-27 2020-04-02 Carl Zeiss Smt Gmbh Vorrichtung zur scannenden Abstandsermittlung eines Objekts

Also Published As

Publication number Publication date
US11867809B2 (en) 2024-01-09
US20210011155A1 (en) 2021-01-14
JP2021012069A (ja) 2021-02-04
CN112180389A (zh) 2021-01-05
DE102020208207A1 (de) 2021-01-07

Similar Documents

Publication Publication Date Title
CA2800267C (en) Method and apparatus for a pulsed coherent laser range finder
JP7329376B2 (ja) 測定装置および測定方法
US11255969B2 (en) Measurement apparatus and measurement method
US10697807B2 (en) Measurement system and temperature and/or shape change sensor using brillouin scattering analysis
JP6308184B2 (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
JP7289222B2 (ja) 測定装置および測定方法
JP7247058B2 (ja) 測定装置および測定方法
JP7233302B2 (ja) 測定装置および測定方法
JP7284652B2 (ja) 測定装置および測定方法
JP2017078677A (ja) 距離測定装置及びその方法
CN112433220B (zh) 测量装置和测量方法
JP2022036465A (ja) 測定装置および測定方法
JP5371933B2 (ja) レーザ光測定方法及びその測定装置
JP2022128698A (ja) 測定装置及び測定方法
US11879975B2 (en) Measurement apparatus and measurement method
JP2022165436A (ja) 測定装置および測定方法
JP7478067B2 (ja) データ補正装置、測定システム、プログラム、および補正方法
JP7424250B2 (ja) 光ファイバ歪測定装置及び光ファイバ歪測定方法
RU2649643C1 (ru) Способ измерения пространственно-временной эволюции излучения
JP2022042885A (ja) 測定装置および測定方法
CN114814856A (zh) 一种基于外差检测的激光雷达系统
Zhang et al. Laser frequency stability estimation and velocity measurement in the atmosphere with self-heterodyne
JP2011203550A (ja) ヘテロダイン光源、並びに、それを用いた光吸収/光損失計測装置及び分光分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R150 Certificate of patent or registration of utility model

Ref document number: 7329376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150