WO2010100983A1 - 吸収電力測定方法、局所平均吸収電力測定方法、局所平均吸収電力算出装置、局所平均吸収電力算出プログラム - Google Patents

吸収電力測定方法、局所平均吸収電力測定方法、局所平均吸収電力算出装置、局所平均吸収電力算出プログラム Download PDF

Info

Publication number
WO2010100983A1
WO2010100983A1 PCT/JP2010/051199 JP2010051199W WO2010100983A1 WO 2010100983 A1 WO2010100983 A1 WO 2010100983A1 JP 2010051199 W JP2010051199 W JP 2010051199W WO 2010100983 A1 WO2010100983 A1 WO 2010100983A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbed power
local average
average absorbed
candidate
local
Prior art date
Application number
PCT/JP2010/051199
Other languages
English (en)
French (fr)
Inventor
井山 隆弘
輝夫 大西
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to JP2011502688A priority Critical patent/JP5221752B2/ja
Priority to CA2752570A priority patent/CA2752570C/en
Priority to CN201080010361.4A priority patent/CN102341697B/zh
Priority to EP10748580.7A priority patent/EP2405259B1/en
Priority to US13/201,373 priority patent/US8903666B2/en
Publication of WO2010100983A1 publication Critical patent/WO2010100983A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0857Dosimetry, i.e. measuring the time integral of radiation intensity; Level warning devices for personal safety use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0892Details related to signal analysis or treatment; presenting results, e.g. displays; measuring specific signal features other than field strength, e.g. polarisation, field modes, phase, envelope, maximum value

Definitions

  • the present invention provides an absorbed power measuring method in which an electromagnetic field probe is provided inside a phantom that simulates the electromagnetic characteristics of a human body, and the electric field intensity or magnetic field intensity of a radio wave irradiated to the phantom from a wireless device is measured by the electromagnetic field probe Absorption power calculation device and local average absorbed power measurement method for obtaining local average absorbed power (local average absorbed power) that maximizes the power absorbed by the human body (absorbed power) using the method and local average absorption
  • the present invention relates to a power calculation device and a program for operating a computer as these devices.
  • FIG. 1 is a diagram showing the arrangement of components in a conventional local average absorbed power measuring method.
  • FIG. 2 is a diagram showing a flow of a first conventional local average absorbed power measuring method.
  • FIG. 3 is a diagram showing a flow of a second conventional local average absorbed power measuring method.
  • a radio (not shown) antenna 810 is placed on the y-axis, and a rectangular parallelepiped phantom 920 is placed at a predetermined distance in the y-axis direction.
  • the electromagnetic field probe 910 measures the electric field strength or magnetic field strength of the radio wave at the portion where the tip is located.
  • the phantom may be in the shape of a human head. Also, the orientation of the axis is arbitrary.
  • a plurality of measurement points 921 mn (m is 1 to M) on a two-dimensional surface 921 inside a predetermined distance from the surface of the phantom 920 on the antenna 810 side.
  • the absorbed power is measured with an integer (n is an integer of 1 to N) (S911).
  • the absorbed power is measured at a plurality of measurement points in the three-dimensional space 925 including the measurement point 921 mn where the absorbed power is maximized (S912).
  • the interval between the measurement points is made finer than in the measurement in S911. The degree of fineness can be determined according to the required measurement accuracy.
  • a local average absorbed power (local average absorbed power) in the vicinity of the point where the absorbed power is maximum is obtained (S913).
  • a plurality of measurement points 921 mn (where m is 1 to M) on the two-dimensional surface 921 inside a predetermined distance from the surface of the phantom 920 on the antenna 810 side.
  • the amplitude and phase of the electric field or magnetic field are measured with an integer (n is an integer of 1 to N) (S921).
  • the distribution of absorbed power in the three-dimensional space 925 is calculated using an equivalence theorem (S922).
  • the local average absorbed power is obtained from the calculated distribution of absorbed power in the three-dimensional space 925 (S923).
  • step S910 the entire processing flow (S911 to S913) of the first conventional local average absorbed power measurement method is collectively referred to as step S910, and the second conventional local average absorbed power is calculated.
  • step S920 The entire processing flow (S921 to S923) of the measurement method is collectively referred to as step S920.
  • the local average absorbed power measurement method of Patent Document 2 includes a determination step and a local average absorbed power measurement step or a local absorbed power calculation step.
  • the determination step the measurement point and the combination of the transmission power and phase of each antenna or the combination of only the transmission power of each antenna are determined in advance, and the measurement results are used to determine the local average absorbed power for each antenna.
  • a combination of transmission power and phase or a combination of only the transmission power of each antenna is determined.
  • the local average absorbed power measurement step or the local average absorbed power calculation step the local average absorbed power is measured or calculated while being fixed to the combination determined in the determination step.
  • IEC / PT62209 “Procedure Determine the Specific Absorption Rate (SAR) for Hand-Held Mobile Telephones.”
  • the conventional local average absorbed power measuring method described in the background art is premised on the measurement of a single antenna.
  • a plurality of antennas 310 k as in FIG. 4 are no rules especially for local average absorbed power measuring method intended for radio to be used simultaneously in the same frequency band.
  • the directivity characteristics of the whole antenna may change due to mutual coupling between the antennas, and the result may be greatly different from the case of one antenna. Therefore, in order to measure the local average absorbed power of a radio having a plurality of antennas used simultaneously in the same frequency band using the conventional method, a combination of transmission power and phase of each antenna is used in step S910. Or it is necessary to repeat S920, and enormous time is required.
  • the local average absorbed power measurement method of Patent Document 2 is one method for solving the above-described problem. This method is repeated while changing the combination of the transmission power and phase of each antenna or the combination of only the transmission power of each antenna, and selects the combination that is predicted to maximize the local average absorbed power. However, the measurement or calculation of the local average absorbed power is not repeated. Therefore, there is a possibility that the combination that maximizes the local average absorbed power is actually missed.
  • An object of the present invention is to provide a simple method for measuring the local average absorbed power of a radio having a plurality of antennas.
  • an electromagnetic field probe is provided inside a phantom that simulates the electromagnetic characteristics of a human body, and the phantom is irradiated from a radio having a plurality of antennas used simultaneously in the same frequency band. Absorbed power measurement method that measures the electric field strength or magnetic field strength of radio waves with an electromagnetic field probe, and using this method, the average absorbed power (local average) where the power absorbed by the human body (absorbed power) is maximum It is related with the method of calculating
  • the measurement points are three-dimensionally arranged, and the amplitude and phase of each electric field or magnetic field in a plurality of antennas that radiate radio waves of the same frequency. Are measured at predetermined measurement points.
  • a plurality of local average absorbed power candidates are obtained by repeating the synthesis sub-step and the local average absorbed power candidate calculation sub-step while changing the weight.
  • the combining substep combines the amplitude and phase of the electric or magnetic field at a single antenna.
  • a local average absorbed power candidate calculation sub-step a three-dimensional absorbed power distribution corresponding to each weight is calculated, and a local average absorbed power corresponding to each weight is obtained as a local average absorbed power candidate.
  • the local average absorbed power selection step selects the maximum one from the local average absorbed power candidates corresponding to each weighting.
  • the local average absorbed power measurement method of FIG. 9 in a single measurement step, measurement points are two-dimensionally arranged on a plane separated by a predetermined distance from the phantom surface, and a plurality of antennas that emit radio waves of the same frequency are included. The amplitude and phase of each electric or magnetic field are measured at predetermined measurement points.
  • a plurality of local average absorbed power candidates are obtained by repeating the synthesis sub-step and the local average absorbed power candidate calculation sub-step while changing the weight.
  • the amplitude and phase of the electric field or magnetic field of a single antenna are synthesized two-dimensionally.
  • the three-dimensional absorbed power distribution inside the phantom on the opposite side of the antenna is obtained from the information of the two-dimensional combined electric field or combined magnetic field, and each weight is assigned to each weight.
  • the corresponding local average absorbed power is obtained as a local average absorbed power candidate.
  • the local average absorbed power selection step selects the maximum one from the local average absorbed power candidates corresponding to each weighting.
  • the local average absorbed power corresponding to each weight determined in the local average absorbed power selection step is measured. Note that the measurement method need not be limited to the method used in the single measurement step.
  • the difference between the calculated value and the measured value of the local average absorbed power corresponding to each weight determined in the local average absorbed power selection step is accumulated, and the accumulated data is stored.
  • the calculated local average absorbed power obtained in the local average absorbed power selection step is corrected to obtain the local average absorbed power of the radio.
  • the calculation of the local average absorbed power candidate calculation sub-step may be performed by calculating a three-dimensional absorbed power distribution using an equivalence theorem.
  • the three-dimensional absorbed power distribution may be calculated using Alternatively, the three-dimensional absorbed power distribution may be calculated using conversion to a wave number space such as Fourier transform.
  • local average absorbed power candidates corresponding to the respective weights are obtained, and further, a time rate for weighting them in actual antenna operation is obtained, and these are used as expected values. It is good also as a local average absorbed electric power candidate of time average.
  • the single measurement step measures the amplitude and phase of each electric field or magnetic field in a plurality of antennas that radiate radio waves of the same frequency at predetermined measurement points.
  • the combining step combining is performed after arbitrarily weighting the amplitude and phase of the electric field or magnetic field in the single antenna obtained in the single measurement step.
  • the absorbed power at the measurement point can be obtained from the amplitude of the combined electric field or magnetic field.
  • the labor can be greatly reduced as compared with the case of measuring the combination of the transmission power and the phase of all the antennas.
  • a plurality of local average absorbed power candidates are obtained by repeating calculation of local average absorbed power. Therefore, the possibility of overlooking the combination of the transmission power and phase of each antenna that maximizes the local average absorbed power is small. Further, since the number of times of measurement can be reduced, the labor and time for obtaining the local average absorbed power of the radio can be reduced.
  • FIG. 3 is a diagram illustrating a processing flow according to the first embodiment.
  • FIG. 3 is a diagram illustrating a relationship between measurement points in the phantom of Example 1 and a three-dimensional space. The figure which looked at FIG. 6 from the direction perpendicular
  • FIG. 6 is a diagram illustrating a processing flow of the second embodiment.
  • FIG. The figure which shows the processing flow of the example which actually measures a local average absorbed electric power following the method of Example 2.
  • FIG. 10 shows the relationship between the measurement point in the phantom of Example 2, and three-dimensional space.
  • FIG. 14 The figure which shows the function structural example of the local average absorbed electric power calculation apparatus which performs a part of processing flow of FIG. 14 and FIG.
  • FIG. The figure which shows the processing flow of the method of Example 5 based on the method of Example 2.
  • FIG. The figure which shows the function structural example of the local average absorbed electric power calculation apparatus which performs a part of processing flow of FIG. 17 and FIG.
  • FIG. 5 shows a processing flow of the first embodiment.
  • FIG. 6 shows an example of measurement points in the phantom in the first embodiment.
  • FIG. 7 is a view of FIG. 6 viewed from a direction perpendicular to the yz plane.
  • output is performed from each antenna 310 k, and the amplitude and phase of the electric field or magnetic field are measured by the electromagnetic field probe 910 at a predetermined measurement point 511 lmn arranged three-dimensionally (S510).
  • k is an integer from 1 to K
  • l is an integer from 1 to L
  • m is an integer from 1 to M
  • n is an integer from 1 to N.
  • K indicates the number of antennas
  • L indicates the number of measurement points in the y-axis direction
  • M indicates the number of measurement points in the x-axis direction
  • N indicates the number of measurement points in the z-axis direction. That is, the number of measurement points in the three-dimensional space is L ⁇ M ⁇ N.
  • a combination of transmission power and phase of each antenna 310 k (S521). From the amplitude and phase of the electric field or magnetic field at the single antenna 310 k , the amplitude and phase of the electric field or magnetic field at the measurement point 511 lmn are combined with the combination of the transmission power and the phase determined in step S521 (S520). The amplitude and phase of the electric field or magnetic field at each measurement point can be combined for each component after weighting. That is, by calculating the amplitude and phase of the combined electric field or magnetic field at each measurement point, a distribution of the amplitude and phase of the three-dimensional electric field or magnetic field corresponding to an arbitrary weighting, and further an absorbed power distribution can be obtained.
  • the above composition may be performed after replacing When the phase is changed by ⁇ 1, the above synthesis may be performed after the phase ⁇ 1 is replaced with ⁇ 1- ⁇ 1. If the amplitude A2 and the phase ⁇ 2 are similarly replaced, the weighting can be arbitrarily changed. Furthermore, when the number of antennas is three or more, they can be combined by repeating the above combination.
  • the local average absorbed power corresponding to an arbitrary weighting can also be obtained by the above calculation. That is, by changing the transmission power and phase that can be taken by each antenna on the computer, the corresponding local average absorbed power (local average absorbed power candidate) is obtained (S530). Then, the processing for the combination of transmission power and phase of each antenna 310 k was previously determined to check whether it has finished all (S531). When step S531 is No, it returns to step S521 and determines a different combination. When step S531 is Yes, the largest local average absorbed power (local average absorbed power candidate) is determined as the local average absorbed power (S913).
  • FIG. 8 is a diagram illustrating a functional configuration example of a local average absorbed power calculating apparatus that executes a part of the processing flow of FIG. 5.
  • Local average absorbed power calculating apparatus 500 measures the amplitude and phase of each electric field or magnetic field in the plurality of antennas at measurement points arranged three-dimensionally inside the phantom (result of step S510). ) As an input value.
  • Local average absorbed power calculation apparatus 500 includes combining section 520, local average absorbed power candidate calculation section 530, multiple candidate acquisition section 531, and local average absorbed power selection section 913.
  • the combining unit 520 determines a combination of the transmission power and the phase of each antenna 310 k in a predetermined order, combines the input values with a predetermined weight (processing in steps S521 and S520).
  • the local average absorbed power candidate calculation unit calculates the absorbed power distribution in the three-dimensional space based on the combined electric field or combined magnetic field obtained by the combining unit 520, and calculates the local average absorbed power in the absorbed power distribution corresponding to the weighting to the local average. Obtained as an absorbed power candidate (processing of step S530).
  • the multiple candidate acquisition unit obtains a plurality of local average absorbed power candidates by repeating the process of the combining unit 520 and the process of the local average absorbed power candidate calculation unit 530 while changing a predetermined weight (in the process of step S531). Equivalent).
  • the local average absorbed power selection unit 913 sets the maximum local average absorbed power candidate among the local average absorbed power candidates as the local average absorbed power of the wireless device (processing in step S913).
  • the input value to local average absorbed power calculation apparatus 500 is the result of measurement at the measurement points arranged three-dimensionally inside the phantom (result of step S510).
  • the input value may be the amplitude and phase of the electric field or magnetic field at three-dimensionally arranged points obtained using electromagnetic field simulation such as FDTD method (Finite-difference time-domain method).
  • the local average absorbed power measuring method of this embodiment can be obtained on a computer only by first measuring the three-dimensional electric field or magnetic field distribution formed by each antenna. Therefore, the labor can be greatly reduced as compared with the case where the measurement is performed for the combination of the transmission power and the phase of all the antennas.
  • a plurality of local average absorbed power candidates are obtained by repeating calculation of local average absorbed power. After knowing the combination of transmit power and phase of each antenna where local average absorbed power is likely to increase, calculate the local average absorbed power by reducing the amount of change in transmit power and phase of each antenna near those combinations. As a result, the possibility of overlooking the combination of the transmission power and phase of each antenna that maximizes the local average absorbed power can be reduced.
  • FIG. 9 shows a processing flow of the second embodiment.
  • FIG. 10 shows an example of measurement points in the phantom in the second embodiment.
  • FIG. 11 is a view of FIG. 10 viewed from a direction perpendicular to the yz plane.
  • K is an integer from 1 to K
  • m is an integer from 1 to M
  • n is an integer from 1 to N.
  • K indicates the number of antennas
  • M indicates the number of measurement points in the x-axis direction
  • N indicates the number of measurement points in the z-axis direction. That is, the number of measurement points on the two-dimensional surface is M ⁇ N.
  • a combination of transmission power and phase of each antenna 310 k (S521). From the amplitude and phase of the electric field or magnetic field at the single antenna 310 k , the amplitude and phase of the electric field or magnetic field at the measurement point 521 mn are synthesized (S525).
  • the amplitude and phase of the electric field or magnetic field at each measurement point can be combined for each component after weighting by the method shown in the first embodiment. That is, by calculating the amplitude and phase of the combined electric field or magnetic field at each measurement point, the distribution of the amplitude and phase of the two-dimensional electric field or magnetic field corresponding to arbitrary weighting can be obtained.
  • the absorbed power distribution in the three-dimensional space inside the phantom on the side opposite to the antenna as viewed from the two-dimensional plane is calculated (S526).
  • an equivalent theorem a combination of the equivalence principle and the mirror image principle, or a transformation to a wave number space such as Fourier transform can be considered.
  • Japanese Patent Application Laid-Open No. 2008-134218 measures the amplitude and phase of only two components that are parallel to the two-dimensional plane and not parallel to each other in the measurement of the amplitude and phase of the electric field or magnetic field in step S515.
  • the distribution of absorbed power in the three-dimensional space 920 in step S526 can be calculated.
  • the three-dimensional electric field distribution E est is calculated by applying the electric field distribution E 2d having a component parallel to the two-dimensional surface on the two-dimensional surface 521 to the equation (1).
  • n a square vector pointing from the two-dimensional surface 521 in the positive direction of the y-axis
  • S represents the two-dimensional surface 521.
  • is a Green function defined by the following equation.
  • the vector r ′ is a position vector indicating coordinates in the phantom 920.
  • the three-dimensional distribution of the electric field in the three-dimensional space 920 can be calculated from the electric field distribution E 2d of the component parallel to the two-dimensional surface on the two-dimensional surface.
  • the three-dimensional of step S526 is performed. The distribution of absorbed power in the space 920 can be calculated.
  • FIG. 13 is a view of FIG. 12 viewed from a direction perpendicular to the yz plane. That is, the corresponding local average absorbed power (local average absorbed power candidate) is obtained by changing the amplitude and phase of transmission power that can be taken by each antenna on the computer (S535).
  • step S531 the processing for the combination of transmission power and phase of each antenna 310 k was previously determined to check whether it has finished all (S531).
  • step S531 is No, it returns to step S521 and determines a different combination.
  • step S531 is Yes, the largest local average absorbed power (local average absorbed power candidate) is determined as the local average absorbed power (S913).
  • FIG. 8 is a diagram illustrating a functional configuration example of the local average absorbed power calculating apparatus that executes a part of the processing flow of FIG. 9.
  • the local average absorbed power calculating apparatus 505 is a measurement point in which the amplitude and phase of each electric field or magnetic field in a plurality of antennas are two-dimensionally arranged on a plane separated by a predetermined distance from the surface of the phantom.
  • the measurement result (result of step S515) is set as an input value.
  • the local average absorbed power calculation device 505 includes a combining unit 525, a local average absorbed power candidate calculation unit 535, a plurality of candidate acquisition units 531 and a local average absorbed power selection unit 913.
  • the synthesizer 525 synthesizes the input values with a predetermined weight (processing in steps S521 and S525).
  • the local average absorbed power candidate calculation unit calculates the absorbed power distribution in the three-dimensional space inside the phantom on the side opposite to the antenna when viewed from the two-dimensional plane based on the combined electric field or magnetic field obtained by the combining unit 525 (step (Process of S526), the local average absorbed power in the absorbed power distribution corresponding to the weighting is obtained as a local average absorbed power candidate (treatment of Step S535).
  • the multiple candidate acquisition unit obtains a plurality of local average absorbed power candidates by repeating the process of the combining unit 525 and the process of the local average absorbed power candidate calculation unit 535 while changing a predetermined weight (in the process of step S531). Equivalent).
  • the local average absorbed power selection unit 913 sets the maximum local average absorbed power candidate among the local average absorbed power candidates as the local average absorbed power of the wireless device (processing in step S913).
  • the input value may be the amplitude and phase of the electric field or magnetic field at the two-dimensionally arranged points obtained using electromagnetic field simulation such as the FDTD method.
  • the local average absorbed power measuring method of this embodiment can be obtained on a computer only by first measuring the two-dimensional electric field or magnetic field distribution formed by each antenna. Therefore, the labor can be greatly reduced as compared with the case where the measurement is performed for the combination of the transmission power and the phase of all the antennas.
  • a combination of equivalence principle and mirror image principle, or transformation to wave number space such as Fourier transform it is only necessary to measure two components of electric field or magnetic field, which can further reduce labor and simplify the device configuration. can do.
  • not only is repeated while changing the combination of the transmission power and phase of each antenna, but also the calculation of the local average absorbed power is repeated to obtain a plurality of local average absorbed power candidates. Therefore, the possibility of overlooking the combination of the transmission power and phase of each antenna that maximizes the local average absorbed power is small.
  • the present embodiment relates to a case where the actual transmission power and phase of each antenna fluctuate with time and the time average of the local average absorbed power is obtained.
  • the local average absorbed power candidates for the transmission power and phase of each antenna can be obtained by the methods and apparatuses of the first and second embodiments. If the time ratio in that state (the ratio of the time in that state to the total time) is known, the time average local average absorbed power candidate can be obtained by taking the expected value.
  • the local average absorbed power candidate for the transmission power / phase combination 1 is S1
  • the local average absorbed power candidate for the transmission power / phase combination 2 is S2
  • the time in each state is t1 and t2
  • a local average absorbed power candidate considering such fluctuations can be obtained as S1 ⁇ t1 / (t1 + t2) + S2 ⁇ t2 / (t1 + t2).
  • t1 + t2 indicates the total time
  • t1 / (t1 + t2) is a temporal ratio at which the local average absorbed power is S1.
  • Example 4 In this embodiment, after determining the transmission power and phase of each antenna from which local average absorbed power is obtained on a computer, the local average absorbed power is actually measured under the same conditions.
  • 14 and 15 show the processing flow of this embodiment.
  • FIG. 14 shows an example of actually measuring the local average absorbed power following the method of the first embodiment
  • FIG. 15 shows the actual measurement of the local average absorbed power following the method of the second embodiment.
  • the processes up to step S531 are the same as those in the first or second embodiment.
  • step S551 a condition when the local average absorbed power candidate reaches the maximum value is specified (S551). And it actually measures on the same conditions and calculates
  • the local average absorbed power may be obtained using an electromagnetic field simulation such as the FDTD method under the same conditions, instead of actual measurement.
  • FIG. 16 is a diagram illustrating a functional configuration example of the local average absorbed power calculating apparatus that executes a part of the processing flow of FIGS.
  • the local average absorbed power calculating apparatus 550 is a modification of the local average absorbed power calculating apparatus 500 of the first embodiment.
  • Local average absorbed power calculating apparatus 550 includes combining unit 520, local average absorbed power candidate calculating unit 530, multiple candidate acquiring unit 531, and condition specifying unit 551.
  • the local average absorbed power calculation device 555 is a modification of the local average absorbed power calculation device 505 of the second embodiment.
  • Local average absorbed power calculating apparatus 555 includes combining unit 525, local average absorbed power candidate calculating unit 535, multiple candidate acquiring unit 531, and condition specifying unit 551.
  • the condition specifying unit 551 specifies a condition for obtaining the local average absorbed power candidate having the maximum value (processing in step S551).
  • Example 1 and Example 2 the final local average absorbed power was obtained by calculation, whereas in this example, the final local average absorbed power was obtained by measurement or electromagnetic field simulation. This is effective when the difference between the theoretical value (calculated value) and the actually measured value is likely to occur. Further, when compared with the local average absorbed power measurement method of Patent Document 2, it is common to obtain the final local average absorbed power by measurement. However, since it is determined by calculation whether the local average absorbed power is maximized under what conditions, it is possible to reduce the possibility of missing a combination that maximizes the local average absorbed power.
  • the measurement combining the transmission power and the phase of the antenna is only performed under the condition that the local average absorbed power is maximized, the number of measurements can be greatly reduced.
  • the local average absorbed power S1 and the local average absorbed power S2 may be actually measured when they are obtained.
  • Example 5 In this embodiment, the difference between the local average absorbed power obtained by calculation and the local average absorbed power obtained by measurement is accumulated, and when sufficient difference data can be accumulated, the accumulated data is used for calculation. The local average absorbed power obtained in step 1 is corrected. In this way, after sufficient difference data is accumulated, the local average absorbed power can be obtained with the same degree of accuracy as the measurement even if the measurement operation is omitted.
  • 17 and 18 show the processing flow of this embodiment.
  • FIG. 17 shows an example in which the method of Example 5 is applied to the method of Example 1
  • FIG. 18 shows an example in which the method of Example 5 is applied to the method of Example 2.
  • the processes up to step S913 are the same as those in the first or second embodiment.
  • step S913 it is determined whether to measure the local average absorbed power (S561). Specifically, Yes and No may be determined depending on whether or not the difference data is stored so as to know how much the calculated value should be corrected. For example, if sufficient difference data is not accumulated, Yes is selected, and the condition when the local average absorbed power candidate reaches the maximum value is specified (S551). And it actually measures on the same conditions and calculates
  • the local average absorbed power may be obtained using an electromagnetic field simulation such as the FDTD method under the same conditions, instead of actual measurement.
  • the local average absorbed power obtained in step S552 may be used as the local average absorbed power (final local average absorbed power) as a result of this processing.
  • the difference between the local average absorbed power obtained in step S913 (local average absorbed power obtained by calculation) and the local average absorbed power obtained in step S552 (local average absorbed power obtained by measurement or electromagnetic simulation) is calculated. Accumulate in the recording unit (S562). If sufficient difference data has been accumulated, No is selected in step S561. And final local average absorbed power is calculated
  • FIG. 19 is a diagram illustrating a functional configuration example of a local average absorbed power calculating apparatus that executes a part of the processing flow of FIGS.
  • the local average absorbed power calculation device 560 is a modification of the local average absorbed power calculation device 500 of the first embodiment.
  • the local average absorbed power calculation device 560 includes a combining unit 520, a local average absorbed power candidate calculation unit 530, a plurality of candidate acquisition units 531, a local average absorbed power selection unit 913, a condition specifying unit 551, a difference accumulation unit 562, and a local average absorbed power.
  • a correction unit 563 is provided.
  • the local average absorbed power calculation device 565 is a modification of the local average absorbed power calculation device 505 of the second embodiment.
  • the local average absorbed power calculation device 565 includes a combining unit 525, a local average absorbed power candidate calculation unit 535, a plurality of candidate acquisition units 531, a local average absorbed power selection unit 913, a condition specifying unit 551, a difference accumulation unit 562, and a local average absorbed power.
  • a correction unit 563 is provided.
  • the condition specifying unit 551 specifies a condition for obtaining the local average absorbed power candidate having the maximum value (processing in step S551).
  • the difference accumulating unit 562 is obtained by the calculated value of the local average absorbed power obtained by the local average absorbed power selecting unit 913 and the measured value obtained by measurement under the condition specified by the condition specifying unit 551 or the electromagnetic field simulation.
  • the difference from the measured value is accumulated as difference data (processing in step S562).
  • the local average absorbed power correction unit 563 corrects the calculated value of the local average absorbed power obtained by the local average absorbed power selection unit 913 based on the accumulated difference data to obtain the local average absorbed power of the wireless device (step S563). Processing).
  • the determination in step S561 may be made by the measurer or the local average absorbed power calculating device 560 (565) according to a predetermined criterion.
  • Example 1 and Example 2 the final local average absorbed power is obtained by calculation, whereas in this example, when the accumulated difference data is small, the final local average absorbed power is obtained. Is obtained by measurement or electromagnetic field simulation and difference data is accumulated. After sufficient difference data has been accumulated, the local average absorbed power obtained by calculation is corrected based on the difference data. This is effective when there is a tendency for a difference between the theoretical value (calculated value) and the measured value. In addition, the processing can be performed in a shorter time than in the fourth embodiment.
  • the program describing the processing contents can be recorded on a computer-readable recording medium.
  • a computer-readable recording medium for example, any recording medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory may be used.
  • this program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Furthermore, the program may be distributed by storing the program in a storage device of the server computer and transferring the program from the server computer to another computer via a network.
  • a computer that executes such a program first stores a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device.
  • the computer reads a program stored in its own recording medium and executes a process according to the read program.
  • the computer may directly read the program from the portable recording medium and execute processing according to the program, and the program is transferred from the server computer to the computer.
  • the processing according to the received program may be executed sequentially.
  • the program is not transferred from the server computer to the computer, and the above-described processing is executed by a so-called ASP (Application Service Provider) type service that realizes a processing function only by an execution instruction and result acquisition. It is good.
  • the program in this embodiment includes information that is used for processing by an electronic computer and that conforms to the program (data that is not a direct command to the computer but has a property that defines the processing of the computer).
  • the present apparatus is configured by executing a predetermined program on a computer.
  • a predetermined program on a computer.
  • at least a part of these processing contents may be realized by hardware.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明の目的は、複数のアンテナを有する無線機の局所平均吸収電力を測定する簡易な方法を提供することである。本発明の局所平均吸収電力測定方法では、単独測定ステップと計算ステップとを有している。単独測定ステップは、複数のアンテナの中の1個ずつの電界又は磁界の振幅と位相を、測定する。計算ステップでは、重み付けを変化させながら、局所平均吸収電力候補を求める。具体的には、合成サブステップは、単独測定ステップで得た単独のアンテナでの電界又は磁界の振幅と位相に任意の重み付けをしたのちに合成する。局所平均吸収電力候補計算サブステップは、合成サブステップで得た合成電界又は合成磁界を元に3次元空間の吸収電力分布を計算し、局所平均吸収電力候補を求める。局所平均吸収電力選定ステップは、局所平均吸収電力候補の中から最大のものを、無線機の局所平均吸収電力とする。

Description

吸収電力測定方法、局所平均吸収電力測定方法、局所平均吸収電力算出装置、局所平均吸収電力算出プログラム
 本発明は、人体の電磁気的特性を模擬するファントムの内部に電磁界プローブが設けられ、無線機からファントムに照射された電波の電界強度或いは磁界強度を電磁界プローブにより測定する吸収電力測定方法、吸収電力算出装置と、その方法を用いて、人体に吸収される電力(吸収電力)が最大となる局所での平均吸収電力(局所平均吸収電力)を求める局所平均吸収電力測定方法、局所平均吸収電力算出装置、およびこれらの装置としてコンピュータを動作させるプログラムに関する。
 従来、人体の頭部での吸収電力を測定する場合、人体の頭部の電磁気的特性を模擬する頭部模擬ファントムを構成し、このファントムに吸収される電力を測定して人体の頭部における吸収電力を類推している。そして、具体的な測定方法として、非特許文献1に記載された方法などが用いられてきた。また、このような測定方法を簡単に行う装置の提案もある(特許文献1、2)。
 図1から図3を用いて、代表的な従来技術について説明する。図1は、従来の局所平均吸収電力測定方法での構成品の配置を示す図である。図2は、第1の従来の局所平均吸収電力測定方法のフローを示す図である。図3は、第2の従来の局所平均吸収電力測定方法のフローを示す図である。図1では、y軸上に無線機(図示していない)のアンテナ810が置かれ、y軸方向に所定の距離を空けて直方体のファントム920が設置されている。電磁界プローブ910は、先端部が位置する部分の電波の電界強度或いは磁界強度を測定する。なお、ファントムは人体の頭部の形状の場合もある。また、軸をどの向きにするのかも任意である。
 第1の従来の局所平均吸収電力測定方法(図2)では、アンテナ810側のファントム920の表面から所定の距離内側の2次元面921上の複数の測定点921mn(mは1~Mの整数、nは1~Nの整数)で、吸収電力を測定する(S911)。吸収電力が最大となった測定点921mnを含む3次元空間925内の複数の測定点で、吸収電力を測定する(S912)。なお、3次元空間925内の測定では、S911の測定よりも測定点の間隔を細かくする。どの程度細かくするかは、要求される測定精度にあわせて決めれば良い。そして、吸収電力が最大となる点近傍での局所的な平均吸収電力(局所平均吸収電力)を求める(S913)。
 第2の従来の局所平均吸収電力測定方法(図3)では、アンテナ810側のファントム920の表面から所定の距離内側の2次元面921上の複数の測定点921mn(mは1~Mの整数、nは1~Nの整数)で、電界または磁界の振幅と位相を測定する(S921)。等価定理等を用いて、3次元空間925の吸収電力の分布を計算する(S922)。計算した3次元空間925の吸収電力の分布から、局所平均吸収電力を求める(S923)。
 なお、以下の説明を簡略にするために、第1の従来の局所平均吸収電力測定方法の処理フロー全体(S911~S913)をまとめて、ステップS910といい、第2の従来の局所平均吸収電力測定方法の処理フロー全体(S921~S923)をまとめて、ステップS920という。
 また、特許文献2の局所平均吸収電力測定方法では、決定ステップと、局所平均吸収電力測定ステップまたは局所吸収電力計算ステップとを有している。決定ステップでは、測定点および各アンテナの送信電力と位相の組み合わせ又は各アンテナの送信電力のみの組み合わせとをあらかじめ定めておき、測定した結果を用いて、局所平均吸収電力を求めるための各アンテナの送信電力と位相の組み合わせ又は各アンテナの送信電力のみの組み合わせを決定する。局所平均吸収電力測定ステップ又は局所平均吸収電力計算ステップでは、決定ステップで決められた組み合わせに固定して、局所平均吸収電力を測定又は計算する。
特許第3809166号公報 特開2008-249394号公報
 背景技術で説明した従来の局所平均吸収電力測定方法は、アンテナ単体に対する測定を前提としている。しかし、図4のように複数のアンテナ310を有し、かつそれらが同一周波数帯で同時に使用される無線機を対象とした局所平均吸収電力測定方法については特に決まりがない。この場合、各アンテナ間の相互結合によってアンテナ全体としての指向特性が変化する可能性があり、アンテナが1つの場合とは結果が大きく異なることもあり得る。したがって、従来の方法を用いて同一周波数帯で同時に使用される複数のアンテナを有する無線機の局所平均吸収電力を測定するには、いろいろな各アンテナの送信電力と位相との組み合わせで、ステップS910又はS920を繰り返す必要があり、膨大な時間が必要である。
 特許文献2の局所平均吸収電力測定方法は、上記の課題を解決する1つの方法である。この方法は、各アンテナの送信電力と位相の組み合わせ又は各アンテナの送信電力のみの組み合わせを変更しながら繰り返し、局所平均吸収電力が最大となると予測される組合せを選定する。しかし、局所平均吸収電力の測定または計算は、繰り返さない。したがって、実際には局所平均吸収電力が最大となる組合せを見逃している可能性がある。
 本発明の目的は、複数のアンテナを有する無線機の局所平均吸収電力を測定する簡易な方法を提供することである。
 本発明の局所平均吸収電力測定方法は、人体の電磁気的特性を模擬するファントムの内部に電磁界プローブが設けられ、同一周波数帯で同時に使用される複数のアンテナを有する無線機からファントムに照射された電波の電界強度或いは磁界強度を電磁界プローブにより測定する吸収電力測定方法と、その方法を用いて、人体に吸収される電力(吸収電力)が最大となる局所での平均吸収電力(局所平均吸収電力)を求める方法に関する。
 図5の局所平均吸収電力測定方法では、単独測定ステップにおいて、測定点を3次元的に配置し、同一周波数の電波を放射する複数のアンテナの中の1個ずつの電界又は磁界の振幅と位相を、あらかじめ定めた測定点で測定する。計算ステップでは、重み付けを変化させながら、合成サブステップと局所平均吸収電力候補計算サブステップとを繰り返すことで、複数の局所平均吸収電力候補を求める。合成サブステップは、単独のアンテナでの電界又は磁界の振幅と位相を合成する。そして、局所平均吸収電力候補計算サブステップにおいて、各重み付けに対応する3次元吸収電力分布を計算し、各重み付けに対応する局所平均吸収電力を局所平均吸収電力候補として求める。局所平均吸収電力選定ステップは、各重み付けに対応する局所平均吸収電力候補の中から最大のものを選択する。
 図9の局所平均吸収電力測定方法では、単独測定ステップにおいて、測定点をファントム表面から所定の距離はなれた面上に2次元的に配置し、同一周波数の電波を放射する複数のアンテナの中の1個ずつの電界又は磁界の振幅と位相を、あらかじめ定めた測定点で測定する。計算ステップでは、重み付けを変化させながら、合成サブステップと局所平均吸収電力候補計算サブステップとを繰り返すことで、複数の局所平均吸収電力候補を求める。合成サブステップで単独のアンテナでの電界又は磁界の振幅と位相を2次元的に合成する。次に2次元的な合成電界または合成磁界の情報から、局所平均吸収電力候補計算サブステップにおいて、上記2次元面からみてアンテナと逆側のファントム内部の3次元吸収電力分布を求め、各重み付けに対応する局所平均吸収電力を局所平均吸収電力候補として求める。局所平均吸収電力選定ステップは、各重み付けに対応する局所平均吸収電力候補の中から最大のものを選択する。
 また、図14、図15の局所平均吸収電力測定方法では、局所平均吸収電力選定ステップにて決定した各重み付けに対応する局所平均吸収電力を測定する。なお、測定の方法は、単独測定ステップで用いた方法に限定する必要はない。
 さらに、図17、18の局所平均吸収電力測定方法では、局所平均吸収電力選定ステップにて決定した各重み付けに対応する局所平均吸収電力の計算値と測定値の差分を蓄積し、その蓄積データを元に局所平均吸収電力選定ステップで得られた局所平均吸収電力の計算値を補正して無線機の局所平均吸収電力とする。計算値と測定値の差分を蓄積していくことにより、局所平均吸収電力の計算値の信頼度を向上させることができる。
 なお、局所平均吸収電力候補計算サブステップの計算は、等価定理を用いて3次元吸収電力分布を計算すればよい。もしくは、
Figure JPOXMLDOC01-appb-M000003
を用いて3次元吸収電力分布を計算してもよい。もしくは、フーリエ変換等による波数空間への変換を用いて3次元吸収電力分布を計算すればよい。
 また、局所平均吸収電力選定ステップでは、各重み付けに対応する局所平均吸収電力候補を求めておき、さらに、実際のアンテナの動作においてそれらの重み付けとなる時間率を求めておき、それらを期待値として時間平均の局所平均吸収電力候補としてもよい。
 本発明の吸収電力測定方法では、単独測定ステップは、同一周波数の電波を放射する複数のアンテナの中の1個ずつの電界又は磁界の振幅と位相を、あらかじめ定めた測定点で測定する。合成ステップは、単独測定ステップで得た単独のアンテナでの電界又は磁界の振幅と位相に任意の重み付けをしたのちに合成する。合成電界または合成磁界の振幅から、測定点での吸収電力を求めることができる。
 本発明の局所平均吸収電力測定方法によれば、すべての各アンテナの送信電力と位相の組み合わせに対して測定を行うよりも労力を大幅に削減できる。また、各アンテナの送信電力と位相の組み合わせを変更しながら繰り返すだけでなく、局所平均吸収電力の計算も繰り返すことで、複数の局所平均吸収電力候補を求める。したがって、局所平均吸収電力が最大となる各アンテナの送信電力と位相の組み合わせを見逃す可能性が小さい。また、測定回数を少なくできるので、無線機の局所平均吸収電力を求めるための労力や時間を低減できる。
従来の局所平均吸収電力測定方法での構成品の配置を示す図。 第1の従来の局所平均吸収電力測定方法のフローを示す図。 第2の従来の局所平均吸収電力測定方法のフローを示す図。 無線機のアンテナの数を複数にした場合を示す図。 実施例1の処理フローを示す図。 実施例1のファントム内の測定点と3次元空間との関係を示す図。 図6をyz平面に垂直な方向から見た図。 図5と図9の処理フローの一部を実行する局所平均吸収電力算出装置の機能構成例を示す図。 実施例2の処理フローを示す図。 実施例2のファントム内の測定点と3次元空間との関係を示す図。 図10をyz平面に垂直な方向から見た図。 実施例2で電界又は磁界の2成分だけを測定するときのファントム内の測定点と3次元空間との関係を示す図。 図12をyz平面に垂直な方向から見た図。 実施例1の方法に続いて実際に局所平均吸収電力の測定を行う例の処理フローを示す図。 実施例2の方法に続いて実際に局所平均吸収電力の測定を行う例の処理フローを示す図。 図14と図15の処理フローの一部を実行する局所平均吸収電力算出装置の機能構成例を示す図。 実施例1の方法を元にした実施例5の方法の処理フローを示す図。 実施例2の方法を元にした実施例5の方法の処理フローを示す図。 図17と図18の処理フローの一部を実行する局所平均吸収電力算出装置の機能構成例を示す図。
 本発明の考え方に沿った実施形態を以下に説明する。説明の重複を避けるため同じ機能を有する構成部や同じ処理を行う処理ステップには同一の番号を付与し、説明を省略する。
[実施例1]
 図5に、実施例1の処理フローを示す。また、図6に、実施例1でのファントム内の測定点の例を示す。また、図7は、図6をyz平面に垂直な方向から見た図である。まず、1個ずつのアンテナ310から出力し、電磁界プローブ910によって電界又は磁界の振幅と位相を、あらかじめ定めた3次元的に配置した測定点511lmnで測定する(S510)。なお、kは1~Kの整数、lは1~Lの整数、mは1~Mの整数、nは1~Nの整数である。Kはアンテナの数を示し、Lはy軸方向の測定点の数、Mはx軸方向の測定点の数、Nはz軸方向の測定点の数を示している。つまり、3次元空間での測定点の数は、L×M×N個ある。
 各アンテナ310の送信電力と位相の組み合わせを予め定めた順番で決める(S521)。単独のアンテナ310での電界又は磁界の振幅と位相から、測定点511lmnでの電界又は磁界の振幅と位相を、ステップS521で決めた送信電力と位相の組み合わせで合成する(S520)。各測定点での電界又は磁界の振幅と位相は、重み付けをした上で成分ごとに合成することができる。すなわち、各測定点での合成電界又は合成磁界の振幅と位相を計算することで、任意の重み付けに対応する3次元電界または磁界の振幅と位相の分布、さらには吸収電力分布が得られる。なお、電界(または磁界)の振幅と位相の合成は例えば以下のように行えばよい。アンテナ310のみから出力したときの観測点Pでの電界の振幅をA1、位相をφ1,アンテナ310のみから出力したときの観測点Pでの電界の振幅をA2、位相をφ2とする。合成された振幅Aと合成された位相φは、
Figure JPOXMLDOC01-appb-M000004
となる。また、重み付けをした上で合成する場合は、次のようにする。アンテナ310の出力をn1倍にするときは振幅A1を
Figure JPOXMLDOC01-appb-M000005
に置き換えた上で上記の合成を行えばよい。位相をθ1分変更するときは、位相φ1をφ1-θ1に置き換えた上で上記の合成を行えばよい。振幅A2、位相φ2についても同じように置き換えれば任意に重み付けを変更できる。さらに、アンテナの数が3個以上の場合には、上記の合成を繰り返すことで合成できる。
 さらに、任意の重み付けに対応する局所平均吸収電力も上記の計算により求めることができる。すなわち、1個ずつのアンテナが取りうる送信電力と位相を計算機上で変化させることにより、対応した局所平均吸収電力(局所平均吸収電力候補)を求める(S530)。そして、予め定めておいた各アンテナ310の送信電力と位相の組み合わせに対する処理がすべて終了したかを確認する(S531)。ステップS531がNoの場合には、ステップS521に戻り、異なる組合せを決める。ステップS531がYesの場合には、求められた局所平均吸収電力(局所平均吸収電力候補)のうち、最大のものを局所平均吸収電力とする(S913)。
 図8は、図5の処理フローの一部を実行する局所平均吸収電力算出装置の機能構成例を示す図である。局所平均吸収電力算出装置500は、複数のアンテナの中の1個ずつの電界又は磁界の振幅と位相を、ファントムの内部に3次元的に配置された測定点で測定した結果(ステップS510の結果)を、入力値とする。そして、局所平均吸収電力算出装置500は、合成部520、局所平均吸収電力候補計算部530、複数候補取得部531、局所平均吸収電力選定部913を備える。合成部520は、各アンテナ310の送信電力と位相の組み合わせを予め定めた順番で決め、入力値にあらかじめ定めた重み付けをして合成する(ステップS521とS520の処理)。局所平均吸収電力候補計算部は、合成部520で得た合成電界又は合成磁界を元に3次元空間の吸収電力分布を計算し、重み付けに対応した吸収電力分布での局所平均吸収電力を局所平均吸収電力候補として求める(ステップS530の処理)。複数候補取得部は、合成部520の処理と局所平均吸収電力候補計算部530の処理とを、あらかじめ定めた重み付けを変更しながら繰り返して複数の局所平均吸収電力候補を得る(ステップS531の処理に相当)。局所平均吸収電力選定部913は、局所平均吸収電力候補の中から最大のものを、無線機の局所平均吸収電力とする(ステップS913の処理)。なお、上述の説明では、局所平均吸収電力算出装置500への入力値を、ファントムの内部に3次元的に配置された測定点で測定した結果(ステップS510の結果)とした。しかし、入力値を、FDTD法(Finite-difference time-domain method)などの電磁界シミュレーションを用いて求めた3次元的に配置された点での電界又は磁界の振幅と位相としてもよい。
 本実施例の局所平均吸収電力測定方法によれば、各アンテナが形成する3次元的な電界又は磁界分布を最初に測定しておくだけで、計算機上で局所平均吸収電力を求めることができる。したがって、すべての各アンテナの送信電力と位相の組み合わせに対して測定を行うよりも労力を大幅に削減できる。また、各アンテナの送信電力と位相の組み合わせを変更しながら繰り返すだけでなく、局所平均吸収電力の計算も繰り返すことで、複数の局所平均吸収電力候補を求める。局所平均吸収電力が大きくなりそうな各アンテナの送信電力と位相の組み合わせがわかったのちに,それらの組み合わせ付近で各アンテナの送信電力と位相の変化量を小さくして局所平均吸収電力を計算することによって局所平均吸収電力が最大となる各アンテナの送信電力と位相の組み合わせを見逃す可能性を小さくできる。
[実施例2]
 図9に、実施例2の処理フローを示す。また、図10に、実施例2でのファントム内の測定点の例を示す。また、図11は、図10をyz平面に垂直な方向から見た図である。まず、1個ずつのアンテナ310から出力し、電界又は磁界の振幅と位相を、あらかじめ定めた2次元的に配置した測定点521mnで測定する(S515)。なお、kは1~Kの整数、mは1~Mの整数、nは1~Nの整数である。Kはアンテナの数を示し、Mはx軸方向の測定点の数、Nはz軸方向の測定点の数を示している。つまり、2次元面での測定点の数は、M×N個ある。
 各アンテナ310の送信電力と位相の組み合わせを予め定めた順番で決める(S521)。単独のアンテナ310での電界又は磁界の振幅と位相から、測定点521mnでの、電界又は磁界の振幅と位相を合成する(S525)。各測定点での電界又は磁界の振幅と位相は、実施例1で示した方法によって、重み付けをした上で成分ごとに合成することができる。すなわち、各測定点での合成電界又は合成磁界の振幅と位相を計算することで、任意の重み付けに対応する2次元電界または磁界の振幅と位相の分布が得られる。そして、それを元に、上記2次元面からみてアンテナと逆側のファントム内部の3次元空間の吸収電力分布を計算する(S526)。その方法として、等価定理を適用したり、等価原理と鏡像原理を組み合わせて適用したり、フーリエ変換等による波数空間への変換を適用したりする方法が考えられる。等価原理と鏡像原理を組み合わせる場合、特開2008-134218号に、ステップS515での電界または磁界の振幅と位相の測定において、2次元面に平行かつ互いに平行でない2成分のみの振幅と位相を測定すれば、ステップS526の3次元空間920の吸収電力の分布を計算できることが示されている。具体的には、2次元面521上の2次元面と平行な成分の電界分布E2dを式(1)に適用することにより、3次元電界分布Eestが計算される。
Figure JPOXMLDOC01-appb-M000006
ただし、nは2次元面521からy軸の正方向に向く方線ベクトル、Sは2次元面521を表す。φは、次式で定義されるグリーン関数である。
Figure JPOXMLDOC01-appb-M000007
ここで、ベクトルr’はファントム920内の座標を示す位置ベクトルである。このように式(1)を用いれば、2次元面上の2次元面に平行な成分の電界分布E2dから、3次元空間920の電界の3次元分布が計算できる。フーリエ変換等による波数空間への変換も同様に、電界または磁界の振幅と位相の測定において、2次元面に平行かつ互いに平行でない2成分のみの振幅と位相を測定すれば、ステップS526の3次元空間920の吸収電力の分布を計算できる。但し、測定面上の直交3成分電界分布Eestは計算できないため、図12のように第2の面527上の直交3成分電界分布Eestを計算し、それを元にさらに奥の3次元吸収電力分布を計算することになる。任意の重み付けに対応する3次元吸収電力分布により、任意の重み付けに対応する局所平均吸収電力を求めることができる。なお、図13は、図12をyz平面に垂直な方向から見た図である。すなわち、1個ずつのアンテナが取りうる送信電力の振幅と位相を計算機上で変化させることにより、対応した局所平均吸収電力(局所平均吸収電力候補)を求める(S535)。そして、予め定めておいた各アンテナ310の送信電力と位相の組み合わせに対する処理がすべて終了したかを確認する(S531)。ステップS531がNoの場合には、ステップS521に戻り、異なる組合せを決める。ステップS531がYesの場合には、求められた局所平均吸収電力(局所平均吸収電力候補)のうち、最大のものを局所平均吸収電力とする(S913)。
 図8は、図9の処理フローの一部を実行する局所平均吸収電力算出装置の機能構成例を示す図である。局所平均吸収電力算出装置505は、複数のアンテナの中の1個ずつの電界又は磁界の振幅と位相を、ファントムの表面から所定の距離はなれた面上に2次元的に配置された測定点で測定した結果(ステップS515の結果)を、入力値とする。そして、局所平均吸収電力算出装置505は、合成部525、局所平均吸収電力候補計算部535、複数候補取得部531、局所平均吸収電力選定部913を備える。合成部525は、入力値にあらかじめ定めた重み付けをして合成する(ステップS521とS525の処理)。局所平均吸収電力候補計算部は、合成部525で得た合成電界又は合成磁界を元に、2次元面から見てアンテナと逆側のファントム内部の3次元空間の吸収電力分布を計算し(ステップS526の処理)、重み付けに対応した吸収電力分布での局所平均吸収電力を局所平均吸収電力候補として求める(ステップS535の処置)。複数候補取得部は、合成部525の処理と局所平均吸収電力候補計算部535の処理とを、あらかじめ定めた重み付けを変更しながら繰り返して複数の局所平均吸収電力候補を得る(ステップS531の処理に相当)。局所平均吸収電力選定部913は、局所平均吸収電力候補の中から最大のものを、無線機の局所平均吸収電力とする(ステップS913の処理)。なお、上述の説明では、局所平均吸収電力算出装置505への入力値を、ファントムの表面から所定の距離はなれた面上に2次元的に配置された測定点で測定した結果(ステップS515の結果)とした。しかし、入力値を、FDTD法などの電磁界シミュレーションを用いて求めた2次元的に配置された点での電界又は磁界の振幅と位相としてもよい。
 本実施例の局所平均吸収電力測定方法によれば、各アンテナが形成する2次元的な電界又は磁界分布を最初に測定しておくだけで、計算機上で局所平均吸収電力を求めることができる。したがって、すべての各アンテナの送信電力と位相の組み合わせに対して測定を行うよりも労力を大幅に削減できる。等価原理と鏡像原理の組み合わせや、フーリエ変換等による波数空間への変換を適用する場合には、電界又は磁界の2成分だけを測定すればよいため、さらに労力を削減でき、装置構成も簡単にすることができる。また、各アンテナの送信電力と位相の組み合わせを変更しながら繰り返すだけでなく、局所平均吸収電力の計算も繰り返すことで、複数の局所平均吸収電力候補を求める。したがって、局所平均吸収電力が最大となる各アンテナの送信電力と位相の組み合わせを見逃す可能性が小さい。
[実施例3]
 本実施例は、実際の各アンテナの送信電力と位相が時間的に変動し、局所平均吸収電力の時間平均を求める場合に関する。実施例1と実施例2の方法や装置により、各アンテナの送信電力と位相に対する局所平均吸収電力候補を求めることが可能である。その状態にある時間率(全時間に対するその状態である時間の割合)が既知であれば、その期待値を取ることによって時間平均の局所平均吸収電力候補を得ることができる。例えば、送信電力と位相の組み合わせ1に対する局所平均吸収電力候補をS1、送信電力と位相の組み合わせ2に対する局所平均吸収電力候補をS2とし、それぞれの状態にある時間をt1およびt2とすると、時間的な変動を考慮した局所平均吸収電力候補は、S1×t1/(t1+t2)+S2×t2/(t1+t2)として得ることができる。この例の場合、t1+t2は、全時間を示しており、t1/(t1+t2)は局所平均吸収電力がS1となる時間的な割合である。
[実施例4]
 本実施例では、計算機上で局所平均吸収電力が得られる各アンテナの送信電力と位相を決定した後、同じ条件で実際に局所平均吸収電力を測定する。図14と図15に本実施例の処理フローを示す。図14は、実施例1の方法に続いて実際に局所平均吸収電力の測定を行う例を示しており、図15は、実施例2の方法に続いて実際に局所平均吸収電力の測定を行う例を示している。どちらの図も、ステップS531までは実施例1もしくは実施例2と同じである。本実施例では、ステップS531の後、局所平均吸収電力候補が最大値となったときの条件を特定する(S551)。そして、同じ条件で実際に測定して局所平均吸収電力を求める(S552)。なお、ステップS552は、実際の測定ではなく、同じ条件でFDTD法などの電磁界シミュレーションを利用して局所平均吸収電力を求めてもよい。
 図16は、図14、15の処理フローの一部を実行する局所平均吸収電力算出装置の機能構成例を示す図である。局所平均吸収電力算出装置550は、実施例1の局所平均吸収電力算出装置500を変形したものである。局所平均吸収電力算出装置550は、合成部520、局所平均吸収電力候補計算部530、複数候補取得部531、条件特定部551を備える。局所平均吸収電力算出装置555は、実施例2の局所平均吸収電力算出装置505を変形したものである。局所平均吸収電力算出装置555は、合成部525、局所平均吸収電力候補計算部535、複数候補取得部531、条件特定部551を備える。条件特定部551は、値が最大となる前記局所平均吸収電力候補が得られる条件を特定する(ステップS551の処理)。
 このように、実施例1と実施例2では最終的な局所平均吸収電力を計算で求めていたのに対し、本実施例では最終的な局所平均吸収電力を測定または電磁界シミュレーションによって求めるので、理論値(計算値)と実測値とに差が生じやすい場合に有効である。また、特許文献2の局所平均吸収電力測定方法と比較してみると、最終的な局所平均吸収電力を測定によって求めることは共通する。しかし、どのような条件のときに局所平均吸収電力が最大になるかは計算によって求めるため、局所平均吸収電力が最大となる組合せを見逃す可能性を小さくできる。さらに、本実施例の場合、アンテナの送信電力と位相を組み合わせた測定は、局所平均吸収電力が最大になる条件のときだけなので、測定回数を大幅に削減できる。なお、実施例3においても、局所平均吸収電力S1と局所平均吸収電力S2を求める場合に、実際に測定してもよい。
[実施例5]
 本実施例では、計算で得た局所平均吸収電力と測定で得た局所平均吸収電力との差分を蓄積しておき、十分な差分データが蓄積できた場合などには蓄積データを利用して計算で得た局所平均吸収電力を補正する。このようにすれば、十分な差分データが蓄積した後は、測定作業を省略しても測定と同程度の精度で局所平均吸収電力を求めることができる。図17と図18に本実施例の処理フローを示す。図17は、実施例1の方法に実施例5の方法を適用した例を示しており、図18は、実施例2の方法に実施例5の方法を適用した例を示している。どちらの図も、ステップS913までは実施例1もしくは実施例2と同じである。本実施例では、ステップS913の後、局所平均吸収電力を測定するかを判断する(S561)。具体的には、計算値をどの程度補正すればよいかが分かる程度の差分データが蓄積されたかによってYesとNoとを判断すればよい。例えば十分な差分データが蓄積されていなければYesを選択し、局所平均吸収電力候補が最大値となったときの条件を特定する(S551)。そして、同じ条件で実際に測定して局所平均吸収電力を求める(S552)。なお、ステップS552は、実際の測定ではなく、同じ条件でFDTD法などの電磁界シミュレーションを利用して局所平均吸収電力を求めてもよい。また、この処理の結果となる局所平均吸収電力(最終的な局所平均吸収電力)は、ステップS552で求めた局所平均吸収電力を用いればよい。次に、ステップS913で求めた局所平均吸収電力(計算によって得た局所平均吸収電力)とステップS552で求めた局所平均吸収電力(測定または電磁界シミュレーションによって得た局所平均吸収電力)との差分を記録部に蓄積する(S562)。十分な差分データが蓄積されていれば、ステップS561でNoを選択する。そして、ステップS913で求めた局所平均吸収電力(計算によって得た局所平均吸収電力)を、補正することで最終的な局所平均吸収電力を求める。具体的には、計算値を一定の比率で増加または減少させることや、計算値に一定の値を加算または減算することなどによって補正すればよい。なお、どの程度の差分データが蓄積されれば十分かは、要求される測定精度を基にあらかじめ決めればよい。
 図19は、図17、18の処理フローの一部を実行する局所平均吸収電力算出装置の機能構成例を示す図である。局所平均吸収電力算出装置560は、実施例1の局所平均吸収電力算出装置500を変形したものである。局所平均吸収電力算出装置560は、合成部520、局所平均吸収電力候補計算部530、複数候補取得部531、局所平均吸収電力選定部913、条件特定部551、差分蓄積部562、局所平均吸収電力補正部563を備える。局所平均吸収電力算出装置565は、実施例2の局所平均吸収電力算出装置505を変形したものである。局所平均吸収電力算出装置565は、合成部525、局所平均吸収電力候補計算部535、複数候補取得部531、局所平均吸収電力選定部913、条件特定部551、差分蓄積部562、局所平均吸収電力補正部563を備える。条件特定部551は、値が最大となる前記局所平均吸収電力候補が得られる条件を特定する(ステップS551の処理)。差分蓄積部562は、局所平均吸収電力選定部913で得られた局所平均吸収電力の計算値と、条件特定部551が特定した条件で測定して得られた測定値または電磁界シミュレーションによって得られた値との差分を、差分データとして蓄積する(ステップS562の処理)。局所平均吸収電力補正部563は、蓄積された差分データを元に局所平均吸収電力選定部913で得た局所平均吸収電力の計算値を補正して無線機の局所平均吸収電力とする(ステップS563の処理)。なお、ステップS561の判断は、測定者が行ってもよいし、あらかじめ定めた基準に従って局所平均吸収電力算出装置560(565)が行ってもよい。
 このように、実施例1と実施例2では最終的な局所平均吸収電力を計算で求めていたのに対し、本実施例では、蓄積された差分データが少ないときは最終的な局所平均吸収電力を測定または電磁界シミュレーションによって求めると共に差分データを蓄積していく。そして、十分な差分データが蓄積された後は、差分データを元に計算で得た局所平均吸収電力を補正するので、理論値(計算値)と実測値とに差が生じやすい場合に有効であり、かつ、実施例4よりも処理を短時間で行うことが可能となる。
プログラム
 局所平均吸収電力算出装置500、505、550、555、560、565の構成をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。
 この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。
 また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。
 このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。
 また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、本装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。

Claims (26)

  1.  人体の電磁気的特性を模擬するファントムの内部に電磁界プローブが設けられ、無線機からファントムに照射された電波の電界強度或いは磁界強度を電磁界プローブにより測定する局所平均吸収電力測定方法において、
     前記無線機は、同一周波数の電波を放射する複数のアンテナを有しており、
     前記複数のアンテナの中の1個ずつの電界又は磁界の振幅と位相を、前記ファントムの表面から所定の距離はなれた面上に2次元的に配置された測定点で測定する単独測定ステップと、
     前記単独測定ステップで得た単独のアンテナでの電界又は磁界の振幅と位相にあらかじめ定めた重み付けをして合成する合成サブステップと、前記合成サブステップで得た合成電界又は合成磁界を元に、前記2次元面から見てアンテナと逆側のファントム内部の3次元空間の吸収電力分布を計算し、前記重み付けに対応した吸収電力分布での局所平均吸収電力を局所平均吸収電力候補として求める局所平均吸収電力候補計算サブステップとを有し、前記合成サブステップと前記局所平均吸収電力候補計算サブステップとを、前記あらかじめ定めた重み付けを変更しながら繰り返して複数の局所平均吸収電力候補を得る計算ステップと
     を有する局所平均吸収電力測定方法。
  2.  請求項1に記載の局所平均吸収電力測定方法であって、
    さらに、
     前記局所平均吸収電力候補の中から最大のものを、前記無線機の局所平均吸収電力とする局所平均吸収電力選定ステップ
     も有することを特徴とする局所平均吸収電力測定方法。
  3.  請求項1に記載の局所平均吸収電力測定方法であって、
    さらに、
     値が最大となる前記局所平均吸収電力候補が得られる条件を特定する条件特定ステップと、
     前記条件で局所平均吸収電力を測定し、測定結果を前記無線機の局所平均吸収電力とする局所平均吸収電力測定ステップ
     も有することを特徴とする局所平均吸収電力測定方法。
  4.  請求項1に記載の局所平均吸収電力測定方法であって、
    さらに、
     前記局所平均吸収電力候補の中から最大のものを、局所平均吸収電力の計算値とする局所平均吸収電力選定ステップと、
     値が最大となる前記局所平均吸収電力候補が得られる条件を特定する条件特定ステップと、
     前記条件で局所平均吸収電力を測定し、測定結果を局所平均吸収電力の測定値とする局所平均吸収電力測定ステップと、
     前記局所平均吸収電力選定ステップで得られた局所平均吸収電力の計算値と、前記局所平均吸収電力測定ステップで得られた局所平均吸収電力の測定値との差分を、差分データとして蓄積する差分蓄積ステップと、
     蓄積された前記差分データを元に局所平均吸収電力選定ステップで得られた局所平均吸収電力の計算値を補正して無線機の局所平均吸収電力とする局所平均吸収電力補正ステップ
     も有することを特徴とする局所平均吸収電力測定方法。
  5.  請求項1から4のいずれかに記載の局所平均吸収電力測定方法であって、
     局所平均吸収電力候補計算サブステップにおいて、合成電界又は合成磁界を元に前記2次元面から見てアンテナと逆側のファントム内部の3次元空間の吸収電力分布を計算する方法が等価定理であること
     を特徴とする局所平均吸収電力測定方法。
  6.  請求項1から4のいずれかに記載の局所平均吸収電力測定方法であって、
     前記局所平均吸収電力候補計算サブステップにおいて、合成電界又は合成磁界を元に前記2次元面から見てアンテナと逆側のファントム内部の3次元空間の吸収電力分布を計算する方法が、
    Figure JPOXMLDOC01-appb-M000001

    であること
     を特徴とする局所平均吸収電力測定方法。
  7.  請求項1から4のいずれかに記載の局所平均吸収電力測定方法であって、
     前記局所平均吸収電力候補計算サブステップにおいて、合成電界又は合成磁界を元に前記2次元面からみてアンテナと逆側のファントム内部の3次元空間の吸収電力分布を計算する方法がフーリエ変換等による波数空間への変換であること
     を特徴とする局所平均吸収電力測定方法。
  8.  人体の電磁気的特性を模擬するファントムの内部に電磁界プローブが設けられ、無線機からファントムに照射された電波の電界強度或いは磁界強度を電磁界プローブにより測定する局所平均吸収電力測定方法において、
     前記無線機は、同一周波数の電波を放射する複数のアンテナを有しており、
     前記複数のアンテナの中の1個ずつの電界又は磁界の振幅と位相を、前記ファントムの内部に3次元的に配置された測定点で測定する単独測定ステップと、
     前記単独測定ステップで得た単独のアンテナでの電界又は磁界の振幅と位相にあらかじめ定めた重み付けをして合成する合成サブステップと、前記合成サブステップで得た合成電界又は合成磁界を元に3次元空間の吸収電力分布を計算し、前記重み付けに対応した吸収電力分布での局所平均吸収電力を局所平均吸収電力候補として求める局所平均吸収電力候補計算サブステップとを有し、前記合成サブステップと前記局所平均吸収電力候補計算サブステップとを、前記あらかじめ定めた重み付けを変更しながら繰り返して複数の局所平均吸収電力候補を得る計算ステップと、
     を有する局所平均吸収電力測定方法。
  9.  請求項8に記載の局所平均吸収電力測定方法であって、
    さらに、
     前記局所平均吸収電力候補の中から最大のものを、前記無線機の局所平均吸収電力とする局所平均吸収電力選定ステップ
     も有することを特徴とする局所平均吸収電力測定方法。
  10.  請求項8に記載の局所平均吸収電力測定方法であって、
    さらに、
     値が最大となる前記局所平均吸収電力候補が得られる条件を特定する条件特定ステップと、
     前記条件で局所平均吸収電力を測定し、測定結果を前記無線機の局所平均吸収電力とする局所平均吸収電力測定ステップ
     も有することを特徴とする局所平均吸収電力測定方法。
  11.  請求項8に記載の局所平均吸収電力測定方法であって、
     さらに、
     前記局所平均吸収電力候補の中から最大のものを、局所平均吸収電力の計算値とする局所平均吸収電力選定ステップと、
     値が最大となる前記局所平均吸収電力候補が得られる条件を特定する条件特定ステップと、
     前記条件で局所平均吸収電力を測定し、測定結果を局所平均吸収電力の測定値とする局所平均吸収電力測定ステップと、
     前記局所平均吸収電力選定ステップで得られた局所平均吸収電力の計算値と、前記局所平均吸収電力測定ステップで得られた局所平均吸収電力の測定値との差分を、差分データとして蓄積する差分蓄積ステップと、
     蓄積された前記差分データを元に局所平均吸収電力選定ステップで得られた局所平均吸収電力の計算値を補正して無線機の局所平均吸収電力とする局所平均吸収電力補正ステップ
     も有することを特徴とする局所平均吸収電力測定方法。
  12.  請求項2,4,9,11のいずれかに記載の局所平均吸収電力測定方法であって、
     前記局所平均吸収電力選定ステップでは、局所平均吸収電力候補の値と、局所平均吸収電力候補ごとの時間的な割合とを用いて、期待値を取って局所平均吸収電力候補とすること
     を特徴とする局所平均吸収電力測定方法。
  13.  人体の電磁気的特性を模擬するファントムの内部に電磁界プローブが設けられ、無線機からファントムに照射された電波の電界強度或いは磁界強度を電磁界プローブにより測定する吸収電力測定方法において、
     前記無線機は、同一周波数の電波を放射する複数のアンテナを有しており、
     前記複数のアンテナの中の1個ずつの電界又は磁界の振幅と位相を、前記ファントムの内部の測定点で測定する単独測定ステップと、
     前記単独測定ステップで得た単独のアンテナでの電界又は磁界の振幅と位相にあらかじめ定めた重み付けをしたのちに合成する合成ステップ
     を有する吸収電力測定方法。
  14.  同一周波数の電波を放射する複数のアンテナを有する無線機からファントムに照射された電波の電界強度或いは磁界強度から、局所平均吸収電力を算出する局所平均吸収電力算出装置であって、
     前記ファントムの表面から所定の距離はなれた面上に2次元的に配置された点での前記複数のアンテナの中の1個ずつの電界又は磁界の振幅と位相を、当該局所平均吸収電力計算装置への入力値とし、
     前記入力値にあらかじめ定めた重み付けをして合成する合成部と、
     前記合成部で得た合成電界又は合成磁界を元に、前記2次元面から見てアンテナと逆側のファントム内部の3次元空間の吸収電力分布を計算し、前記重み付けに対応した吸収電力分布での局所平均吸収電力を局所平均吸収電力候補として求める局所平均吸収電力候補計算部と、
     前記合成部の処理と前記局所平均吸収電力候補計算部の処理とを、前記あらかじめ定めた重み付けを変更しながら繰り返して複数の局所平均吸収電力候補を得る複数候補取得部と
     を備える局所平均吸収電力算出装置。
  15.  請求項14に記載の局所平均吸収電力算出装置であって、
    さらに、
     前記局所平均吸収電力候補の中から最大のものを、前記無線機の局所平均吸収電力とする局所平均吸収電力選定部
     も備えることを特徴とする局所平均吸収電力算出装置。
  16.  請求項14に記載の局所平均吸収電力算出装置であって、
    さらに、
     値が最大となる前記局所平均吸収電力候補が得られる条件を特定する条件特定部
     も備えることを特徴とする局所平均吸収電力算出装置。
  17.  請求項14に記載の局所平均吸収電力算出装置であって、
     さらに、
     前記局所平均吸収電力候補の中から最大のものを、局所平均吸収電力の計算値とする局所平均吸収電力選定部と、
     値が最大となる前記局所平均吸収電力候補が得られる条件を特定する条件特定部と、
     前記局所平均吸収電力選定部で得られた局所平均吸収電力の計算値と、前記条件特定部が特定した条件で測定して得られた測定値または電磁界シミュレーションによって得られた値との差分を、差分データとして蓄積する差分蓄積部と、
     蓄積された前記差分データを元に局所平均吸収電力選定部で得た局所平均吸収電力の計算値を補正して無線機の局所平均吸収電力とする局所平均吸収電力補正部
     も備えることを特徴とする局所平均吸収電力算出装置。
  18.  請求項14から17のいずれかに記載の局所平均吸収電力算出装置であって、
     局所平均吸収電力候補計算部において、合成電界又は合成磁界を元に前記2次元面から見てアンテナと逆側のファントム内部の3次元空間の吸収電力分布を計算する方法が等価定理であること
     を特徴とする局所平均吸収電力算出装置。
  19.  請求項14から17のいずれかに記載の局所平均吸収電力算出装置であって、
     前記局所平均吸収電力候補計算部において、合成電界又は合成磁界を元に前記2次元面から見てアンテナと逆側のファントム内部の3次元空間の吸収電力分布を計算する方法が、
    Figure JPOXMLDOC01-appb-M000002

    であること
     を特徴とする局所平均吸収電力算出装置。
  20.  請求項14から17のいずれかに記載の局所平均吸収電力算出装置であって、
     前記局所平均吸収電力候補計算部において、合成電界又は合成磁界を元に前記2次元面からみてアンテナと逆側のファントム内部の3次元空間の吸収電力分布を計算する方法がフーリエ変換等による波数空間への変換であること
     を特徴とする局所平均吸収電力算出装置。
  21.  同一周波数の電波を放射する複数のアンテナを有する無線機からファントムに照射された電波の電界強度或いは磁界強度から、局所平均吸収電力を算出する局所平均吸収電力算出装置であって、
     前記ファントムの内部に3次元的に配置された測定点での前記複数のアンテナの中の1個ずつの電界又は磁界の振幅と位相を、当該局所平均吸収電力計算装置への入力値とし、
     前記入力値にあらかじめ定めた重み付けをして合成する合成部と、
     前記合成部で得た合成電界又は合成磁界を元に3次元空間の吸収電力分布を計算し、前記重み付けに対応した吸収電力分布での局所平均吸収電力を局所平均吸収電力候補として求める局所平均吸収電力候補計算部と、
     前記合成部の処理と前記局所平均吸収電力候補計算部の処理とを、前記あらかじめ定めた重み付けを変更しながら繰り返して複数の局所平均吸収電力候補を得る複数候補取得部と、
     を備える局所平均吸収電力算出装置。
  22.  請求項21に記載の局所平均吸収電力算出装置であって、
    さらに、
     前記局所平均吸収電力候補の中から最大のものを、前記無線機の局所平均吸収電力とする局所平均吸収電力選定部
     も備えることを特徴とする局所平均吸収電力算出装置。
  23.  請求項21に記載の局所平均吸収電力算出装置であって、
    さらに、
     値が最大となる前記局所平均吸収電力候補が得られる条件を特定する条件特定部
     も備えることを特徴とする局所平均吸収電力算出装置。
  24.  請求項21に記載の局所平均吸収電力算出装置であって、
     さらに、
     前記局所平均吸収電力候補の中から最大のものを、局所平均吸収電力の計算値とする局所平均吸収電力選定部と、
     値が最大となる前記局所平均吸収電力候補が得られる条件を特定する条件特定部と、
     前記局所平均吸収電力選定部で得られた局所平均吸収電力の計算値と、前記条件特定部が特定した条件で測定して得られた測定値または電磁界シミュレーションによって得られた値との差分を、差分データとして蓄積する差分蓄積部と、
     蓄積された前記差分データを元に局所平均吸収電力選定部で得た局所平均吸収電力の計算値を補正して無線機の局所平均吸収電力とする局所平均吸収電力補正部
     も備えることを特徴とする局所平均吸収電力算出装置。
  25.  請求項15,17,22,24のいずれかに記載の局所平均吸収電力算出装置であって、
     前記局所平均吸収電力選定部では、局所平均吸収電力候補の値と、局所平均吸収電力候補ごとの時間的な割合とを用いて、期待値を取って局所平均吸収電力候補とすること
     を特徴とする局所平均吸収電力算出装置。
  26.  請求項14から25のいずれかに記載の局所平均吸収電力算出装置としてコンピュータを機能させるための局所平均吸収電力算出プログラム。
PCT/JP2010/051199 2009-03-03 2010-01-29 吸収電力測定方法、局所平均吸収電力測定方法、局所平均吸収電力算出装置、局所平均吸収電力算出プログラム WO2010100983A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011502688A JP5221752B2 (ja) 2009-03-03 2010-01-29 局所平均吸収電力測定方法、局所平均吸収電力算出装置、局所平均吸収電力算出プログラム
CA2752570A CA2752570C (en) 2009-03-03 2010-01-29 Absorbed power measuring method, local average absorbed power measuring method, local average absorbed power calculating apparatus, and local average absorbed power calculating program
CN201080010361.4A CN102341697B (zh) 2009-03-03 2010-01-29 吸收功率测定方法、局部平均吸收功率测定方法、局部平均吸收功率计算装置、局部平均吸收功率计算程序
EP10748580.7A EP2405259B1 (en) 2009-03-03 2010-01-29 Absorbed power measuring method, local average absorbed power measuring method, local average absorbed power calculating device, and local average absorbed power calculating program
US13/201,373 US8903666B2 (en) 2009-03-03 2010-01-29 Absorbed power measuring method, local average absorbed power measuring method, local average absorbed power calculating apparatus, and local average absorbed power calculating program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-049956 2009-03-03
JP2009049956 2009-03-03
JP2009166932 2009-07-15
JP2009-166932 2009-07-15

Publications (1)

Publication Number Publication Date
WO2010100983A1 true WO2010100983A1 (ja) 2010-09-10

Family

ID=42709546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051199 WO2010100983A1 (ja) 2009-03-03 2010-01-29 吸収電力測定方法、局所平均吸収電力測定方法、局所平均吸収電力算出装置、局所平均吸収電力算出プログラム

Country Status (6)

Country Link
US (1) US8903666B2 (ja)
EP (1) EP2405259B1 (ja)
JP (1) JP5221752B2 (ja)
CN (1) CN102341697B (ja)
CA (1) CA2752570C (ja)
WO (1) WO2010100983A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211832A (ja) * 2011-03-31 2012-11-01 Ntt Docomo Inc 局所平均吸収電力測定方法
JP2014159991A (ja) * 2013-02-19 2014-09-04 National Institute Of Information & Communication Technology 複数の電磁波源からの電磁波の比吸収率の測定方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013158004A1 (en) * 2012-04-19 2013-10-24 Telefonaktiebolaget L M Ericsson (Publ) Efficient whole-body sar estimation
US9781683B2 (en) 2014-12-16 2017-10-03 Qualcomm Incorporated Determining transmit power limits using a combined specific absorption measurement for multiple transmitters
WO2016138073A1 (en) * 2015-02-24 2016-09-01 Zte(Usa) Inc. Methods and user equipment for measuring the radiated power of a wireless device proximate to a phantom
US20180041288A1 (en) * 2015-03-02 2018-02-08 Zte (Usa) Inc. Methods using a hand phantom for evaluating tablets in a wireless communication system
CN107958107A (zh) * 2017-11-16 2018-04-24 贵州师范大学 Uhf带限单谐振电小天线的射频功率获取和平衡方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793209B2 (ja) * 1988-12-16 1998-09-03 株式会社東芝 放射電磁界測定装置
JP2003322668A (ja) * 2002-02-27 2003-11-14 Matsushita Electric Ind Co Ltd 偏波測定装置並びにそれを用いたアンテナ特性測定装置及び電波測定装置
JP2004279411A (ja) * 2003-02-26 2004-10-07 Matsushita Electric Ind Co Ltd 無線通信装置用比吸収率測定装置
JP3809166B2 (ja) 2001-08-08 2006-08-16 株式会社エヌ・ティ・ティ・ドコモ 吸収電力測定装置
JP2007078482A (ja) * 2005-09-13 2007-03-29 Matsushita Electric Ind Co Ltd アダプティブアレーアンテナの特性評価方法及び装置
JP2008134218A (ja) 2006-10-23 2008-06-12 Ntt Docomo Inc 比吸収率を測定するためのシステム及び方法
JP2008249394A (ja) 2007-03-29 2008-10-16 Ntt Docomo Inc 局所平均吸収電力測定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3266091B2 (ja) * 1998-03-04 2002-03-18 日本電気株式会社 セルラシステム
CN100365420C (zh) * 2003-02-26 2008-01-30 松下电器产业株式会社 无线电通信装置用比吸收率测定装置
JP4177761B2 (ja) * 2003-11-12 2008-11-05 株式会社エヌ・ティ・ティ・ドコモ ウエイト決定装置及びウエイト決定方法
JP4489505B2 (ja) * 2004-05-12 2010-06-23 株式会社エヌ・ティ・ティ・ドコモ ウエイト決定装置及びウエイト決定方法
JP2006132970A (ja) * 2004-11-02 2006-05-25 Ntt Docomo Inc 比吸収率測定システム及び方法
CN101529260B (zh) * 2006-10-27 2011-12-21 艾利森电话股份有限公司 快速吸收测量
US20100203862A1 (en) * 2009-02-09 2010-08-12 Friedlander Gil Method and a system for controlling and tracking radiation emitted from mobile phones

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793209B2 (ja) * 1988-12-16 1998-09-03 株式会社東芝 放射電磁界測定装置
JP3809166B2 (ja) 2001-08-08 2006-08-16 株式会社エヌ・ティ・ティ・ドコモ 吸収電力測定装置
JP2003322668A (ja) * 2002-02-27 2003-11-14 Matsushita Electric Ind Co Ltd 偏波測定装置並びにそれを用いたアンテナ特性測定装置及び電波測定装置
JP2004279411A (ja) * 2003-02-26 2004-10-07 Matsushita Electric Ind Co Ltd 無線通信装置用比吸収率測定装置
JP2007078482A (ja) * 2005-09-13 2007-03-29 Matsushita Electric Ind Co Ltd アダプティブアレーアンテナの特性評価方法及び装置
JP2008134218A (ja) 2006-10-23 2008-06-12 Ntt Docomo Inc 比吸収率を測定するためのシステム及び方法
JP2008249394A (ja) 2007-03-29 2008-10-16 Ntt Docomo Inc 局所平均吸収電力測定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211832A (ja) * 2011-03-31 2012-11-01 Ntt Docomo Inc 局所平均吸収電力測定方法
JP2014159991A (ja) * 2013-02-19 2014-09-04 National Institute Of Information & Communication Technology 複数の電磁波源からの電磁波の比吸収率の測定方法

Also Published As

Publication number Publication date
EP2405259B1 (en) 2019-03-13
CN102341697B (zh) 2013-10-30
EP2405259A4 (en) 2015-04-08
US8903666B2 (en) 2014-12-02
JP5221752B2 (ja) 2013-06-26
JPWO2010100983A1 (ja) 2012-09-06
CA2752570A1 (en) 2010-09-10
CN102341697A (zh) 2012-02-01
EP2405259A1 (en) 2012-01-11
CA2752570C (en) 2016-01-26
US20110301886A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5221752B2 (ja) 局所平均吸収電力測定方法、局所平均吸収電力算出装置、局所平均吸収電力算出プログラム
JP4481578B2 (ja) 電磁波測定装置およびその方法
CN109581078B (zh) 一种适用于半空间环境中天线的方向图测量系统及方法
KR101360280B1 (ko) 흡수재를 구비하지 않은 다중채널 근접장 측정 시스템
CN106788791B (zh) 暗室多波面控制器测试系统、方法及装置
US8538115B2 (en) Coil compression for three dimensional autocalibrating parallel imaging with cartesian sampling
JP2014503290A5 (ja)
KR20130122773A (ko) Ota 시험
CN109813969B (zh) 一种阵列天线的诊断方法、设备、系统
JP2011099856A (ja) 放射界の特性測定のための方法及び装置
JP5323423B2 (ja) 方向推定システム、方向推定方法及び方向推定プログラム
Buonanno et al. Reducing complexity in indoor array testing
Derat et al. On the minimum range length for performing accurate direct far-field over-the-air measurements
CN114069254A (zh) 用于制造天线阵列的方法、天线阵列和测试系统
Arnaut et al. Electromagnetic reverberation near a perfectly conducting boundary
JP5038762B2 (ja) 局所平均吸収電力測定方法
JP5596610B2 (ja) 局所平均吸収電力測定方法
CN109815509B (zh) 一种阵列天线的诊断方法、设备、系统以及计算机可读存储介质
JP2016057165A (ja) 無線通信装置及び推定方法
JP2016130702A (ja) 等価電界強度推定方法および放射妨害波測定装置
Le et al. Measurement procedure to determine SAR of multiple antenna transmitters using scalar electric field probes
Carlsson et al. About measurements in reverberation chamber and isotropic reference environment
Le et al. A new measurement technique and experimental validations in determination SAR of N-antenna transmitters using scalar E-field probes
JP2005077268A (ja) アレーマニフォルドデータ補間方法、到来方位推定方法およびアレーマニフォルドデータ補間装置
JP2012215444A (ja) 方位測定装置、該方位測定装置に用いられる方位測定方法及び方位測定プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010361.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502688

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13201373

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2752570

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010748580

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE