WO2010098646A2 - 열분자 전지 및 이의 제조 방법 - Google Patents

열분자 전지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2010098646A2
WO2010098646A2 PCT/KR2010/001294 KR2010001294W WO2010098646A2 WO 2010098646 A2 WO2010098646 A2 WO 2010098646A2 KR 2010001294 W KR2010001294 W KR 2010001294W WO 2010098646 A2 WO2010098646 A2 WO 2010098646A2
Authority
WO
WIPO (PCT)
Prior art keywords
thermal molecular
cathode
semiconductor layer
group
battery
Prior art date
Application number
PCT/KR2010/001294
Other languages
English (en)
French (fr)
Other versions
WO2010098646A3 (ko
Inventor
이영희
유우종
허채정
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2010098646A2 publication Critical patent/WO2010098646A2/ko
Publication of WO2010098646A3 publication Critical patent/WO2010098646A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a thermal molecular battery using an electron carrier in which a semiconductor layer and a redox reaction are reversibly, a method for manufacturing the same, a device for generating power, a method for producing the same, and a method for generating device power.
  • An electrolytic cell is a device that converts chemical energy into electrical energy or vice versa, and two metal conductors or electron conductors (electrodes) are separated, and they are usually in contact with an electrolyte formed by dissociation or melting of an ionic compound. Connecting these electrodes directly to a source of current causes one electrode to be negatively charged and the other to be positively charged. The cations in the electrolyte migrate to the negatively charged electrode and combine with one or more electrons to lose some or all of the charge and become new ions, neutral atoms or molecules with lower charges. At the same time, the negative ions move to the anode, losing one or more electrons, and again becoming new ions or neutral particles.
  • the overall result of these two processes is a chemical reaction (redox) in which electrons move from anion to cation.
  • redox chemical reaction
  • the reaction can be divided into oxidation and reduction so that these reactions occur at each electrode, some or all of the energy can be converted into electricity.
  • lead-acid batteries for example, lead dioxide, lead metal, and sulfuric acid react to form lead sulfate and water.
  • lead dioxide is oxidized to lead sulfate at one electrode, and lead dioxide is reduced to lead sulfate at the other electrode, and charge is transferred in the electrolyte through the movement of hydrogen ions during this reaction.
  • This process creates an electromotive force (voltage or potential) that causes electricity to flow into the external circuit connecting the two electrodes.
  • electromotive force voltage or potential
  • Many other chemical bonds are also used in batteries and accumulators.
  • solar cells which absorb light and flow electrons between semiconductors, and continuously supply oxidants in the form of liquids or gases, such as oxygen, to draw electrons from the cathode.
  • oxidants in the form of liquids or gases, such as oxygen
  • NADH Nicotinamide Adenine Dinucleotide
  • NADPH Nicotinamide Adenine Dinucleotide Phosphate
  • NAD + is widely used in glycolytic processes and TCA circuits, and the reduction potential stored in NADH is converted to ATP through an electron transfer system. Or used for anabolism.
  • NADP provides reducing power and is used for assimilation such as fatty acid and nucleic acid synthesis.
  • NADP acts as an important oxidant in the photosynthetic initial reaction (water photolysis) to form NADPH.
  • NADPH provides reducing power to the Calvin cycle of photosynthesis.
  • flavin adenine dinucleotide (FAD) is also a redox coenzyme involved in important reactions in vivo. FAD can exist in two different redox states, depending on its role.
  • FAD oxidoreductases
  • flavoenzymes flavoproteins
  • FAD can be reduced to FADH 2 containing two hydrogen molecules.
  • Reduced coenzyme FADH 2 plays an energy transfer role and is used as a substrate for oxidative phosphorylation in mitochondria.
  • thermothermal molecular battery using the electron transporter containing the coenzyme.
  • the present invention provides a cathode and anode electrode coated on one or both sides with a semiconductor layer; And it provides a thermal molecular battery consisting of an electrolyte solution containing an electron transporter and a method for producing the same.
  • the present invention provides a method for generating power by coating a semiconductor layer on one or both inner walls of an electrode, and adding an electrolyte solution containing an electron carrier between the two electrodes.
  • the present invention is a semiconductor layer coated on the inner wall of one or both of the at least one electrode;
  • a power generating device having an electrolyte solution including an electron carrier between the electrodes, and a method of manufacturing the same.
  • the present invention provides a cathode and anode electrode coated on one or both sides with a semiconductor layer; And it provides a thermal molecular battery consisting of an electrolyte solution containing an electron carrier.
  • the thermal molecular battery is characterized in that the energy gap between the semiconductor layer and the electrode has a material within 0.3 to 4 eV.
  • the semiconductor layer is Si, Ge, GaAs, InAs, AlAs, InAlGaAs, GaN, AlGaN, InAlGaN, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InCuSe2, zinc oxide, gallium oxide, carbon nanotube, graphene
  • a thermal molecular battery characterized in that at least one metal or metal compound selected from the group consisting of fins, fullerenes and carbon black. More preferably, the semiconductor layer provides a thermal molecular battery characterized in that the carbon nanotubes.
  • the cathode electrode and the anode electrode of the present invention provides a thermal molecular battery, characterized in that each energy gap is a conductive material having a range of 0.1 or more and 0.5 eV.
  • the thermal molecular battery is characterized in that the work function of the cathode electrode is located on the valence band side of the semiconductor layer.
  • the work function of the anode electrode is provided to the thermal molecular battery, characterized in that located in the conduction band band side of the semiconductor layer.
  • the work function difference between the cathode electrode and the anode electrode provides a thermal molecular battery, characterized in that it has a range of 0.1 to 5eV.
  • the cathode of the present invention is indium tin oxide, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg , Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn , Sb, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb It provides a thermal molecular battery, characterized in that any one compound or two or more compounds selected from the group consisting of, Bi, Po, Fr, Ra, Ac, Th and U.
  • the cathode provides a thermal molecular battery, characterized in that any one compound or two
  • the anode of the invention is Al, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg, Al , K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn, Sb , I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb, Bi
  • the anode provides a thermal molecular battery, characterized in that any one compound selected from the group consisting of Po, Fr, Ra, Ac, Th and U or two or more compounds.
  • the anode provides a thermal molecular battery, characterized in that any one compound selected from the group consisting
  • the electron transporter of the present invention is any one selected from the group consisting of nicotinamide, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide, nitrogen compounds, ammonia, methylamine and aniline It provides a thermal molecular battery characterized in that the compound.
  • the electron transporter provides a thermal molecular cell, characterized in that the nicotinamide or nicotinamide adenine dinucleotide.
  • the solvent of the electrolyte solution of the present invention is capable of dissolving the electron transporter, and is not limited in kind.
  • the solvent of the electrolyte solution provides a thermal molecular battery, characterized in that distilled water or an organic solvent.
  • the present invention provides a thermal molecular battery, characterized in that the thickness of the semiconductor layer is 0.1 ⁇ m to 10 ⁇ m.
  • the present invention provides a thermal molecular battery, characterized in that the distance between the two electrodes 10 ⁇ m to 10cm.
  • a thermal molecular battery characterized in that the distance between the two electrodes is 200 ⁇ m.
  • the present invention provides a method of manufacturing a thermal molecular battery by coating a semiconductor layer on one or both inner walls of an anode and a cathode, adding an electrolyte solution containing an electron carrier between the two electrodes, and sealing the same.
  • the present invention provides a method of generating power by coating a semiconductor layer on one or both inner walls of an electrode, and adding an electrolyte solution including an electron carrier between the two electrodes.
  • the energy gap between the semiconductor layer and the electrode of the present invention is within 0.3 to 4 eV.
  • the semiconductor layer of the present invention is Si, Ge, GaAs, InAs, AlAs, InAlGaAs, GaN, AlGaN, InAlGaN, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InCuSe2, zinc oxide, gallium oxide, carbon nano
  • the at least one metal or metal compound selected from the group consisting of tubes, graphene, fullerenes and carbon black is selected from the group consisting of tubes, graphene, fullerenes and carbon black.
  • the semiconductor layer of the present invention provides a method for generating electric power, characterized in that the carbon nanotubes.
  • the invention provides a method of generating power, characterized in that the energy gap between the two electrodes is a conductive material having a range of 0.1 or more and 0.5 eV.
  • a method for generating power characterized in that the work function of the two electrodes of the present invention is located on the valence band side of the semiconductor layer.
  • the electrode of the present invention is any one compound selected from the group consisting of Indium Tin Oxide (ITO), Pt, Au, Cu, or a method of generating power, characterized in that two or more compounds. To provide.
  • ITO Indium Tin Oxide
  • Pt Pt
  • Au Au
  • Cu Cu
  • a method of generating power characterized in that two or more compounds.
  • the electron transporter of the present invention is any one selected from the group consisting of nicotinamide, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide, nitrogen compounds, ammonia, methylamine and aniline It provides a method for generating power characterized in that the compound. More preferably, the electron transporter of the present invention provides a method for generating power characterized in that it is nicotinamide or nicotinamide adenine dinucleotide.
  • the solvent of the electrolyte solution of the present invention is capable of dissolving the electron transporter, and is not limited to the kind thereof.
  • the solvent of the electrolyte solution provides a method for generating electric power, characterized in that the distilled water or an organic solvent.
  • In one embodiment provides a method for generating power, characterized in that the thickness of the semiconductor layer is 0.1 ⁇ m to 10 ⁇ m.
  • In one embodiment provides a method for generating power, characterized in that the spacing of the two electrodes is 10 ⁇ m to 10cm. Preferably it provides a method for generating power, characterized in that the distance between the two electrodes is 200 ⁇ m.
  • a method of generating power characterized in that the temperature is between 0 ° C and 100 ° C.
  • a method for generating power characterized in that the temperature is 10 to 80 °C.
  • the present invention is a semiconductor layer coated on the inner wall of one or both of the at least one electrode; Provided is a power generating device having an electrolyte solution including an electron carrier between the electrodes.
  • the present invention provides a method of manufacturing an apparatus for generating electric power by coating a semiconductor layer on one or both inner walls of one or more electrodes, and including an electrolyte solution containing an electron carrier between the electrodes.
  • the semiconductor layer stacked on the anode and the cathode reacts with the electron carrier dissolved in the electrolyte.
  • the anode receives electrons by the oxidation of the electron carriers.
  • the cathode receives holes due to the reduction of the electron carriers. .
  • the electron carrier reacts reversibly even at room temperature, and the heat of the surrounding environment serves to more actively promote the reversible redox action of the electron carrier.
  • the anode and the cathode can be used both metal or composite having a difference in work function.
  • aluminum having a small work function, scandium, molybdenum, and indium tin oxide (ITO) having high work function as a cathode, platinum, and gold are used as the anode.
  • the semiconductor layer may be selected from the group consisting of bulk, thin film, nano dot, nanotube, nanofiber and nanowire, more preferably carbon nanotube may be selected.
  • the electron transporter molecule is capable of repeatedly transmitting and receiving charges by reacting with the cathode and the anode in the electrolyte, and is not limited if the semiconductor layer and the redox reaction occur reversibly at a temperature of 0 to 100 o C or less. .
  • NADH nicotinamide adenine dinucleotide
  • NADPH nicotiamide adenine dinucleotide phosphate
  • FAD flavin adenine dinucleotide
  • ammonia nitrogen Compounds, including, such as CH 3 NH 2 (methylamine), C 6 H 5 NH 2 (aniline) can be used, in the embodiment of the present invention was used nicotinamide (nicotinamide).
  • the molecules are present in a dissolved state on the electrolyte, and a solvent capable of dissolving the molecules may be used as the electrolyte, and more preferably distilled water or an organic solvent may be selected.
  • the thermal molecular battery using molecules in which the semiconductor layer and the redox reaction occur reversibly at room temperature is semi-permanent due to no input and no emission at room temperature, has advantages of eco-friendliness, and its structure is simple and inexpensive. It has the possible advantages.
  • FIG. 1 is a diagram of an electroforming process in a thermal molecular battery according to a preferred embodiment of the present invention.
  • 3 is a graph of the amount of current according to temperature according to a preferred embodiment of the present invention.
  • 5 relates to electricity generation when an anode is used as Ag and a cathode is used as Au according to a preferred embodiment of the present invention.
  • the temperature was set to 36 ° C. using a Thermocycler.
  • the current between the aluminum electrode and the ITO electrode of the battery prepared in Example 1 was measured using Kethley 485, and the voltage was measured using Kethley 2000, using Kethley 2000 and resistance type thermal couple.
  • the temperature was measured by [Fig. 2]. As the resistance increased, the power increased and decreased, and the maximum power was reached when the resistance was 20 Kohm.
  • the current between the aluminum electrode and the ITO electrode of the battery prepared in Example 1 was measured using a Kethley 485, and Kethley 2000 and a resistance type thermal couple were measured. The temperature was measured using [Fig. 3].
  • the temperature was controlled using a thermocycler, and the current between the aluminum, scandium, molybdenum, platinum, gold and ITO electrodes of the cell prepared in Example 1 was measured using Kethley 485, and Kethley 2000 and resistance type. Temperature was measured using a resistance type thermal couple [FIG. 4].
  • ITO In the case of gold and platinum whose work function is larger than that of ITO, ITO is the anode and the counter electrode is the cathode. In the case of aluminum, scandium, and molybdenum, which have a smaller work function than ITO, ITO is the cathode and the counter electrode is the anode, and the larger the work function, the larger the current and voltage.
  • Example 1 When the battery was prepared as in Example 1, Iodine was used as the electrolyte solution, and the anode was used as Ag and the cathode was used as Au without the process of Example ii). Got it.
  • Example 2 a battery was prepared as in Example 1, but Iodine was used as the electrolyte solution, and the anode was used as Au and the cathode was used as Pt without the process of Example ii). The result was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Fuel Cell (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 한쪽 또는 양쪽이 반도체 층으로 코팅된 캐소드 및 애노드 전극; 및 전자전달체를 포함하는 전해질 용액으로 구성된 열분자 전지 및 이의 제조방법을 제공한다. 또한, 본 발명은 전극의 한쪽 또는 양쪽의 내벽에 반도체층을 코팅하고, 상기 두 전극 사이에 전자전달체를 포함하는 전해질 용액을 첨가하여 전력을 발생시키는 방법을 제공한다. 또한, 본 발명은1종 이상의 전극의 한쪽 또는 양쪽의 내벽에 코팅된 반도체층; 상기 전극 사이에 전자전달체를 포함하는 전해질 용액을 구비한 전력 발생 장치 및 이의 제조 방법을 제공한다. 본 발명으로 제조된 열분자 전지는 장치의 구조가 간단하여 저가로 제조가 용이하고, 외부의 입력연료없이 상온에서도 자기 스스로 전기를 발생시키고 배출물이 없는 친 환경적이고 반 영구적인 장점을 지닌다.

Description

열분자 전지 및 이의 제조 방법
본 발명은 반도체 층과 산화환원 반응이 가역적으로 일어나는 전자전달체를 이용한 열분자 전지 및 이의 제조 방법과 전력을 발생시키는 장치 및 이의 제조방법과 장치전력을 발생시키는 방법에 관한 것이다.
전해전지는 화학에너지를 전기에너지로 혹은 그 역과정으로 전환시키는 장치로서, 2개의 금속전도체나 전자전도체(전극)가 떨어져 있고 이들은 보통 이온성 화합물이 해리되거나 용융되어 만들어진 전해질과 접하고 있는 구조이다. 전류의 공급원에 이 전극들을 직접 연결시키면 한쪽 전극은 음전하를, 다른 쪽 전극은 양전하를 띠게 된다. 전해액 속에 있는 양이온은 음전하를 띤 전극으로 이동하여 하나 이상의 전자와 결합하여 전하의 일부나 전체를 잃고 낮은 전하를 띤 새로운 이온이나 중성 원자 또는 분자가 된다. 이와 동시에 음이온은 양극으로 이동하여 하나 이상의 전자를 잃고 역시 새로운 이온이나 중성 입자가 된다. 이 두 과정의 전체적인 결과는 음이온으로부터 양이온으로 전자가 이동되는 화학반응(산화환원반응)이다. 서로 반응할 때 에너지를 소모하지 않고 에너지를 생성하는 물질의 경우에 반응을 산화와 환원으로 나누어 이 반응들이 각각의 전극에서 일어나게 할 수 있으면 이때 나오는 에너지의 일부 또는 전부를 전기로 바꿀 수 있다. 예를 들면 납-산 축전지에서는 이산화납·금속납·황산이 반응하여 황산납과 물이 만들어진다. 각각의 과정을 살펴보면 한쪽 전극에서 납이 황산납으로 산화되고, 다른 쪽 전극에서는 이산화납이 황산납으로 환원되며, 이 반응이 일어나는 동안 수소 이온의 이동을 통해 전해액 내에서 전하가 이동된다. 이 과정을 통해 기전력(전압 또는 전위)이 생겨 두 전극을 연결하는 외부 회로로 전기가 흐르게 된다. 이외에도 다른 많은 화학결합들이 전지와 축전지에 이용되고 있다. 자기장 내부에서 도체가 움직이는 것 이외의 방법으로 전기를 만드는 발전기 외에도, 빛을 흡수하여 반도체 사이에 전자가 흐르게 되는 태양전지나, 산소와 같은 액체나 기체 형태의 산화제를 계속적으로 공급하여 이들이 음극에서 전자를 제거하는 동시에 수소 같은 환원제가 양극에 전자를 제공하게 되는 연료 전지가 있다.
최근에는 생물 내에서 행해지고 있는 호흡, 광합성 등의 생체대사가 고효율인 에너지 변환 기구에 의한 것임에 착안하여, 전지에 적용하고자 하는 시도가 이루어지고 있다. 생체대사는 발전 효율이 지극히 높고, 실온 정도의 온화한 조건에서 반응이 진행하는 장점을 지닌다. 상기 생체 대사에서 양성자 및 전자전달을 하는 물질로서 니코틴아미드 아데닌 디뉴클레오티드(NADH; Nicotinamide Adenine Dinucleotide)는 니코틴아미드 아데닌 디뉴클레오티드 인산(NADPH; Nicotinamide Adenine Dinucleotide Phosphate)와 더불어 세포에서 발견되는 중요한 조효소이다. NADH는 NAD+의 환원형태이고 NAD+는 NADH 의 산화형태이다. NAD+는 세포호흡에서의 해당과정과 TCA회로에 널리 쓰이며 NADH에 저장된 환원 잠재력은 전자전달계를 거치면서 ATP로 전환(녹색식물은 광합성을 통해서 ATP를 얻기도 하지만 대부분의 생물들은 세포호흡을 통해 ATP를 얻는다.)되거나 동화반응(anabolism)에 쓰인다. 반면, NADP는 환원력을 제공하여 지방산과 핵산 합성과 같은 동화작용에 쓰인다. NADP는 광합성 초기반응(물의 광분해)에서 중요한 산화제로 작용하여 NADPH를 형성한다. NADPH는 광합성의 캘빈회로에 환원력을 제공한다. 한편, 플라빈 아네닌 디뉴레오티드(FAD; flavin adenine dinucleotide) 또한 생체내 중요 반응에 관여하는 산화환원 조효소이다. FAD는 그것의 역할에 따라 두가지 다른 산환환원상태로 존재할 수 있다. 플라보엔자임 또는 플라보단백질이라 명명되는 많은 산화환원효소들은 전자전달에 있어서 보결분자단으로서 역할을 하는 FAD를 필요로 한다. FAD는 두개의 수소분자를 수용하는 FADH2로 환원될 수 있다. 환원된 조효소 FADH2는 에너지 전달 역할을 하며, 미토콘드리아에서 산화적 인산화 과정을 위한 기질로 사용된다.
본 발명자들은 상기 조효소를 포함하는 전자 전달체를 이용하여, 상 열분자 전지를 제조하여 본 발명을 완성하였다.
본 발명은 한쪽 또는 양쪽이 반도체 층으로 코팅된 캐소드 및 애노드 전극; 및 전자전달체를 포함하는 전해질 용액으로 구성된 열분자 전지 및 이의 제조방법을 제공한다.
또한, 본 발명은 전극의 한쪽 또는 양쪽의 내벽에 반도체층을 코팅하고, 상기 두 전극 사이에 전자전달체를 포함하는 전해질 용액을 첨가하여 전력을 발생시키는 방법을 제공한다.
또한, 본 발명은1종 이상의 전극의 한쪽 또는 양쪽의 내벽에 코팅된 반도체층; 상기 전극 사이에 전자전달체를 포함하는 전해질 용액을 구비한 전력 발생 장치 및 이의 제조 방법을 제공한다.
상기 목적을 달성하기 위해, 본 발명은 한쪽 또는 양쪽이 반도체 층으로 코팅된 캐소드 및 애노드 전극; 및 전자전달체를 포함하는 전해질 용액으로 구성된 열분자 전지를 제공한다. 바람직하게는 반도체 층과 전극의 에너지 갭이 0.3 내지 4 eV 이내를 갖는 물질임을 특징으로 하는 열분자 전지를 제공한다. 보다 바람직하게는 반도체 층은 Si, Ge, GaAs, InAs, AlAs, InAlGaAs, GaN, AlGaN, InAlGaN, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InCuSe2, 아연산화물, 갈륨산화물, 탄소나노튜브, 그래핀, 풀러렌 및 카본블랙으로 구성되는 군에서 선택되는 1종 이상의 금속 또는 금속 화합물임을 특징으로 하는 열분자 전지를 제공한다. 보다 바람직하게는 반도체층은 탄소나노튜브임을 특징으로 하는 열분자 전지를 제공한다.
일 구체예에서 본 발명의 캐소드 전극과 애노드 전극은 각각의 에너지 갭이 0.1 이상0.5eV 의 범위를 갖는 전도성물질임을 특징으로 하는 열분자 전지를 제공한다. 바람직하게는, 캐소드 전극의 일함수가 반도체층의 가전자대 밴드 쪽에 위치하는 것을 특징으로 하는 열분자 전지를 제공한다. 바람직하게는 애노드 전극의 일함수가 반도체층의 전도대 밴드 쪽에 위치하는 것을 특징으로 하는 열분자 전지를 제공한다. 바람직하게는 캐소드 전극과 애노드 전극의 일함수 차이는 0.1 내지 5eV의 범위를 갖는 것을 특징으로 하는 열분자 전지를 제공한다.
일 구체예에서 본 발명의 캐소드는 인듐주석산화물, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Th 및 U으로 구성된 군에서 선택된 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지를 제공한다. 바람직하게는 캐소드는 인듐주석산화물(ITO; Indium Tin Oxide), Pt, Au, Cu로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지를 제공한다.
일 구체예에서 본 발명의 애노드는 Al, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Th및 U 으로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지를 제공한다. 바람직하게는 애노드는 Al, Sc 및 Mo로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지를 제공한다.
일 구체예에서 본 발명의 전자전달체는 니코틴아마이드, 니코틴아미드 아데닌 디뉴클레오티드, 니코틴아이드 아데닌 디뉴클레오티드 포스페이트, 플라빈 아데닌 디뉴클레오티드, 질소화합물, 암모니아, 메틸아민 및 아닐린으로 구성되는 군에서 선택되는 어느 하나의 화합물임을 특징으로 하는 열분자 전지를 제공한다. 바람직하게는 전자전달체는 니코틴아마이드 또는 니코틴아미드 아데닌 디뉴클레오티드임을 특징으로 하는 열분자 전지를 제공한다.
일 구체예에서 본 발명의 전해질 용액의 용매는 전자전달체를 용해시킬 수 있는 것으로서, 그 종류에 제한을 받지 않는다. 바람직하게는 전해질 용액의 용매는 증류수 또는 유기용매임을 특징으로 하는 열분자 전지를 제공한다.
일 구체예에서 본 발명은 반도체층의 두께가 0.1㎛ 내지 10㎛임을 특징으로 하는 열분자 전지를 제공한다.
일 구체예에서 본 발명은 두 전극의 간격이 10㎛ 내지 10cm임을 특징으로 하는 열분자 전지를 제공한다. 바람직하게는 두 전극의 간격이 200㎛임을 특징으로 하는 열분자 전지를 제공한다.
본 발명은 애노드 및 캐소드 전극의 한쪽 또는 양쪽의 내벽에 반도체층을 코팅하고, 상기 두 전극 사이에 전자전달체를 포함하는 전해질 용액을 첨가한 후, 밀봉하여 열분자 전지를 제조 방법을 제공한다.
본 발명은 전극의 한쪽 또는 양쪽의 내벽에 반도체층을 코팅하고, 상기 두 전극 사이에 전자전달체를 포함하는 전해질 용액을 첨가하여 전력을 발생시키는 방법을 제공한다.
본 발명의 반도체 층과 전극의 에너지 갭이 0.3 내지 4 eV 이내를 갖는 물질임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
일 구체예에서 본 발명의 반도체 층은 Si, Ge, GaAs, InAs, AlAs, InAlGaAs, GaN, AlGaN, InAlGaN, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InCuSe2, 아연산화물, 갈륨산화물, 탄소나노튜브, 그래핀, 풀러렌 및 카본블랙으로 구성되는 군에서 선택되는 1종 이상의 금속 또는 금속 화합물임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
본 발명의 반도체층은 탄소나노튜브임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
일 구체예에서 본 발명은 두 전극간의 에너지 갭이 0.1 이상0.5eV 의 범위를 갖는 전도성 물질임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
일 구체예에서 본 발명의 두개의 전극의 일함수가 반도체층의 가전자대 밴드 쪽에 위치하는 것을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
일 구체예에서 본 발명의 2개의 전극중 하나는 인듐주석산화물, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Th 및 U으로 구성된 군에서 선택된 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
일 구체예에서 본 발명의 전극은 인듐주석산화물(ITO; Indium Tin Oxide), Pt, Au, Cu로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
일 구체예에서 본 발명의 2개의 전극 중 하나는 Al, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Th및 U 으로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 전력을 발생시키는 방법을 제공한다. 보다 바람직하게는 전극은 Al, Sc 및 Mo로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
일 구체예에서 본 발명의 전자전달체는 니코틴아마이드, 니코틴아미드 아데닌 디뉴클레오티드, 니코틴아이드 아데닌 디뉴클레오티드 포스페이트, 플라빈 아데닌 디뉴클레오티드, 질소화합물, 암모니아, 메틸아민 및 아닐린으로 구성되는 군에서 선택되는 어느 하나의 화합물임을 특징으로 하는 전력을 발생시키는 방법을 제공한다. 보다 바람직하게는 본 발명의 전자전달체는 니코틴아마이드 또는 니코틴아미드 아데닌 디뉴클레오티드임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
본 발명의 전해질 용액의 용매는 전자전달체를 용해시킬 수 있는 것으로서, 그 종류에 제한을 받지 않는다. 바람직하게는 전해질 용액의 용매는 증류수 또는 유기용매임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
일 구체예에서 반도체층의 두께가 0.1㎛ 내지 10㎛임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
일 구체예에서 두 전극의 간격이 10㎛ 내지 10cm임을 특징으로 하는 전력을 발생시키는 방법을 제공한다. 바람직하게는 두 전극의 간격이 200㎛임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
일 구체예에서, 온도가 0℃ 내지 100℃임을 특징으로 하는 전력을 발생시키는 방법을 제공한다. 바람직하게는 온도가 10 내지 80℃임을 특징으로 하는 전력을 발생시키는 방법을 제공한다.
본 발명은1종 이상의 전극의 한쪽 또는 양쪽의 내벽에 코팅된 반도체층; 상기 전극 사이에 전자전달체를 포함하는 전해질 용액을 구비한 전력 발생 장치를 제공한다.
본 발명은1종 이상의 전극의 한쪽 또는 양쪽의 내벽에 반도체층을 코팅하고, 상기 전극 사이에 전자전달체를 포함하는 전해질 용액을 구비하여 전력을 발생시키는 장치를 제조하는 방법을 제공한다.
애노드와 캐소드 위에 반도체 층을 올리게 되면 전극의 일함수와 반도체의 일함수 차이가 나서 쇼트키 장벽이 생긴다. 이때 전극의 일함수가 반도체의 가전자(valence) 밴드에 가까우면 정공이 잘 지나다닐 수 있고 전자는 쇼트키 장벽에 막혀 흐르지 못하게 된다. 반대로 전극의 일함수가 반도체의 전도대(conduction) 밴드에 가까우면 전자가 잘 다니게 되고 정공은 쇼트키 장벽에 막혀 흐르지 못하게 된다. 일함수의 차이가 나는 애노드와 캐소드를 전극으로 사용할 경우 한쪽에서 전자가 더 잘 흐르게 되고(애노드), 다른쪽에서는 정공이 더 잘 흐르게 되어(캐소드) 전류가 흐르게 된다. 일함수의 차이가 클수록 전자와 정공이 잘 흐르게 되는 정도가 커져 전류량이 커지게 된다.
애노드와 캐소드 위에 쌓인 반도체 층은 전해질에 녹아있는 전자전달체와 반응하여 애노드에서는 전자전달체의 산화작용에 의해 애노드가 전자를 받게 되고, 반대극인 캐소드에서는 전자전달체의 환원작용에 의해 캐소드가 정공을 받게 된다. 이 때 전자전달체는 상온에서도 가역 반응을 하며, 주위 환경의 열은 전자전달체의 가역적인 산화환원 작용을 더욱 활발히 촉진시키는 역할을 한다.
상기 애노드 및 캐소드는 일함수의 차이를 지니는 금속 또는 복합체 모두 사용 가능하다. 본 발명의 실시예에서는 애노드로서 일함수가 작은 알루미늄, 스칸디움, 몰리브데넘, 캐소드로서 일함수가 높은 인듐주석산화물(ITO; Indium Tin Oxide), 백금, 금을 사용하였다.
상기 반도체층은 벌크, 박막, 나노닷, 나노튜브, 나노파이버, 나노와이어로 구성되는 군에서 선택될 수 있으며, 보다 바람직하게는 탄소나노튜브가 선택될 수 있다.
전자전달체 분자는 전해질 내에서 캐소드 및 애노드와 반응하여 전하를 반복적으로 주고 받을 수 있는 것으로서, 0 내지100 oC 이하의 온도에서 반도체 층과 산화환원 반응이 가역적으로 일어나는 것이면 그 종류의 제한을 받지 않는다. 니코틴아마이드(nicotinamide), 니코틴아미드 아데닌 디뉴클레오티드(NADH;nicotinamide adenine dinucleotide), 니코틴아이드 아데닌 디뉴클레오티드 포스페이트(NADPH; nicotiamide adenine dinucleotide phosphate), 플라빈 아데닌 디뉴클레오티드(FAD;flavin ademine dinucleotide) 또는 암모니아, 질소를 포함하는 화합물, CH3NH2 (methylamine), C6H5NH2 (aniline)와 같은 화합물이 사용될 수 있으며, 본 발명의 실시예에서는 니코틴아마이드(nicotinamide)를 사용하였다.
상기 분자는 전해액상에 용해된 상태로 존재하며, 전해액으로서 분자를 용해 시킬 수 있는 용매가 사용 가능하며, 보다 바람직하게는 증류수 또는 유기용매가 선택 될 수 있다.
본 발명에 따른 상온에서 반도체 층과 산화환원 반응이 가역적으로 일어나는 분자를 이용한 열분자 전지는 상온에서 무투입, 무배출 방식으로 인하여 반영구적이고, 친환경의 장점을 지니고, 구조가 간단하여 저가로 제조가 가능한 장점을 지닌다.
도 1은 본 발명의 바람직한 실시예에 따른 열분자 전지내의 전기형성 과정에 관한 도면이다.
도 2는 본 발명의 바람직한 실시예에 따른 저항에 따른 전력에 관한 그래프이다.
도 3은 본 발명의 바람직한 실시예에 따른 온도에 따른 전류량에 관한 그래프이다.
도 4는 본 발명의 바람직한 실시예에 따른 전극의 일함수에 따른 전류량에 관한 그래프이다.
도 5는 본 발명의 바람직한 실시예에 따른 애노드를 Ag로 사용하고, 캐소드를 Au로 사용했을 때의 전기발생에 관한 것이다.
도 6은 본 발명의 바람직한 실시예에 따른 애노드를 Au로 사용하고, 캐소드를 Pt로 사용했을 때의 전기발생에 관한 것이다.
이하, 본 발명의 구성요소와 기술적 특징을 다음의 실시예들을 통하여 보다 상세하게 설명하고자 한다. 그러나 하기 실시예들은 본 발명의 내용을 예시하는 것일 뿐 발명의 범위가 실시예에 의해 한정되는 것은 아니다. 본 발명에서 인용된 문헌은 본 발명의 명세서에 참조로서 통합된다.
실시예
실시예 1: 전지 제조
i) 전해질 용액의 제조
니코틴아마이드(nicotinamide, Aldrich) 3 wt% (200 mM) 또는 β-니코틴아미드 아데닌 디뉴클레오티드(reduced dipotassium salt) (NADH, 98 % purity, Aldrich) 1 wt% (13.6 mM)를 물에 용해하여 전해질 용액을 제조하였다.
ii) 전극의 제조
아크(Arc) 방전 방법에 의해 만들어진 단일층 탄소나노튜브 (SWCNT, 한화 나노텍) 3mg을 무수 1,2-디클로로에탄(dichloroethane anhydrous)(DCE, 99.8 %, Sigma-Aldrich) 10 ml 에 넣고 15시간 동안 초음파 처리하여 탄소나노튜브을 분산시켰다. 스프레이 장비를 이용하여 분산된 탄소나노튜브를 알루미늄(4 X 4 cm), 스칸디움(1 X 1 cm) 몰리브데넘(1 X 1 cm)과 ITO (3 X 3 cm), 백금(1 X 1 cm), 금(1 X 1 cm)에 각각 표면이 보이지 않는, 1㎛ 두께로 코팅층을 형성시켰다.
iii) 전지의 완성
전극 사이에 양면 테잎(Tesa Co.)을 이용하여 200 um의 간격으로 설치한 후, 전극 사이에 전해질 용액을 첨가하였다. 그 후 ii) 단계에서 제조한 전극을 실리콘 접착제를 이용하여 접착시키고 전해질 용액이 새나가지 않도록 밀봉하였다.
실시예 2: 저항에 따른 전력 크기 측정
열순환기(Thermocycler)를 이용하여 온도를 36 ℃로 설정하였다. Kethley 485를 이용하여 실시예 1에서 제조된 전지의 알루미늄 전극과 ITO 전극 양단간의 전류를 측정하였고, Kethley 2000을 이용하여 전압을 측정하였으며, Kethley 2000과 저항 유형 열 커플(resistance type thermal couple)을 이용하여 온도를 측정하였다[도 2]. 저항이 증가함에 따라 전력이 증가하다가 감소하였으며, 저항이 20 Kohm일 때 전력이 최대값을 보였다.
실시예 3: 온도에 따른 전류 크기 측정
열순환기를 이용하여 온도를 제어하면서, Kethley 485를 이용하여, 실시예 1에서 제조된 전지의 알루미늄 전극과 ITO 전극 양단간의 전류를 측정하였고, Kethley 2000과 저항 유형 열 커플(resistance type thermal couple)을 이용하여 온도를 측정하였다[도 3].
실시예 4: 일함수가 상이한 금속간의 전류 및 전압의 크기 측정
열순환기를 이용하여 온도를 제어하였고, Kethley 485를 이용하여 실시예 1에서 제조된 전지의 알루미늄, 스칸디움, 몰리브데넘, 백금, 금 전극과 ITO 전극 간의 전류를 측정하였으며, Kethley 2000과 저항 유형 열 커플(resistance type thermal couple)을 이용하여 온도를 측정하였다[도 4].
ITO보다 일함수가 큰 금, 백금의 경우 ITO가 애노드, 상대전극이 캐소드가 되며 일함수 차이가 많이 날수록 전류, 전압 크기가 커졌다. ITO보다 일함수가 작은 알루미늄, 스칸디움, 몰리브데넘의 경우 ITO가 캐쏘드, 상대전극이 애노드가 되며 일함수 차이가 많이 날수록 전류, 전압 크기가 커졌다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
실시예 5: 반도체 층이 없는 전지의 제조 및 효과
실시예 1과 같이 전지를 제조하되, Iodine을 전해질 용액으로 사용하였고, 실시예 1의 ii)의 과정없이 애노드를 Ag로 사용하고, 캐소드를 Au로 사용했을 때, [도 5]와 같은 결과를 얻었다.
또한, 실시예 1과 같이 전지를 제조하되, Iodine을 전해질 용액으로 사용하였고, 실시예 1의 ii)의 과정없이 애노드를 Au로 사용하고, 캐소드를 Pt 로 사용했을 때, [도 6]와 같은 결과를 얻었다.

Claims (49)

  1. 한쪽 또는 양쪽이 반도체 층으로 코팅된 캐소드 및 애노드 전극; 및
    전자전달체를 포함하는 전해질 용액으로 구성된 열분자 전지에 있어서,
    반도체 층은 Si, Ge, GaAs, InAs, AlAs, InAlGaAs, GaN, AlGaN, InAlGaN, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InCuSe2, 아연산화물, 갈륨산화물, 탄소나노튜브, 그래핀, 풀러렌 및 카본블랙으로 구성되는 군에서 선택되는 1종 이상의 물질이고,
    전자전달체는 니코틴아마이드, 니코틴아미드 아데닌 디뉴클레오티드, 니코틴아이드 아데닌 디뉴클레오티드 포스페이트, 플라빈 아데닌 디뉴클레오티드, 질소화합물, 암모니아, 메틸아민 및 아닐린으로 구성되는 군에서 선택되는 어느 하나의 화합물이며,
    캐소드 전극과 애노드 전극의 일함수 차이를 통하여 전력을 발생시키는 것을 특징으로 하는 열분자 전지.
  2. 제1항에 있어서,
    반도체층은 탄소나노튜브임을 특징으로 하는 열분자 전지.
  3. 제1항에 있어서,
    캐소드 전극과 애노드 전극은 각각의 에너지 갭이 0eV 내지 0.5eV 의 범위를 갖는 물질임 특징으로 하는 열분자 전지.
  4. 제1항 또는 제3항에 있어서,
    캐소드 전극의 일함수가 반도체층의 가전자대 밴드 쪽에 위치하는 것을 특징으로 하는 열분자 전지.
  5. 제1항 또는 제3항에 있어서,
    애노드 전극의 일함수가 반도체층의 전도대 밴드 쪽에 위치하는 것을 특징으로 하는 열분자 전지.
  6. 제1항 또는 제3항에 있어서,
    캐소드 전극과 애노드 전극의 일함수 차이는 0.1eV내지 5eV임을 특징으로 하는 열분자 전지.
  7. 제1항에 있어서,
    캐소드 또는 애노드 전극은 전도성물질임을 특징으로 하는 열분자 전지.
  8. 제 1항에 있어서,
    캐소드는 인듐주석산화물, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Th 및 U으로 구성된 군에서 선택된 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지.
  9. 제1항에 있어서,
    캐소드는 인듐주석산화물, Pt, Au, Cu로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지.
  10. 제 1항에 있어서,
    애노드는 Al, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Th및 U 으로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지.
  11. 제1항에 있어서,
    애노드는 Al, Sc 및 Mo로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지.
  12. 제1항에 있어서,
    전자전달체는 니코틴아마이드 또는 니코틴아미드 아데닌 디뉴클레오티드임을 특징으로 하는 열분자 전지.
  13. 제1항에 있어서,
    전해질 용액의 용매는 증류수 또는 유기용매임을 특징으로 하는 열분자 전지.
  14. 제1항에 있어서,
    반도체층의 두께가 0.01㎛ 내지 10㎛임을 특징으로 하는 열분자 전지.
  15. 제1항에 있어서,
    두 전극의 간격이 10㎛ 내지 10 cm임을 특징으로 하는 열분자 전지.
  16. 제1항에 있어서,
    두 전극의 간격이 200㎛임을 특징으로 하는 열분자 전지.
  17. 애노드 및 캐소드 전극의 한쪽 또는 양쪽의 내벽에 반도체층을 코팅하고, 상기 두 전극 사이에 전자전달체를 포함하는 전해질 용액을 첨가한 후 밀봉하여 열분자 전지를 제조 방법에 있어서,
    반도체층은Si, Ge, GaAs, InAs, AlAs, InAlGaAs, GaN, AlGaN, InAlGaN, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InCuSe2, 아연산화물, 갈륨산화물, 탄소나노튜브, 그래핀, 풀러렌 및 카본블랙으로 구성되는 군에서 선택되는 1종 이상의 물질이고,
    전자전달체는 니코틴아마이드, 니코틴아미드 아데닌 디뉴클레오티드, 니코틴아이드 아데닌 디뉴클레오티드 포스페이트, 플라빈 아데닌 디뉴클레오티드, 질소화합물, 암모니아, 메틸아민 및 아닐린으로 구성되는 군에서 선택되는 어느 하나의 화합물이며,
    캐소드 전극과 애노드 전극의 일함수 차이를 통하여 전력을 발생시키는 것을 특징으로 하는 열분자 전지를 제조하는 방법.
  18. 제17항에 있어서,
    반도체층은 탄소나노튜브임을 특징으로 하는 열분자 전지를 제조하는 방법.
  19. 제17항에 있어서,
    캐소드 전극과 애노드 전극은 각각 에너지 갭이 0 내지 0.5eV의 범위를 갖는 물질임을 특징으로 하는 열분자 전지를 제조하는 방법.
  20. 제17항에 있어서,
    캐소드 전극의 일함수가 반도체층의 가전자대 밴드 쪽에 위치하는 것을 특징으로 하는 열분자 전지를 제조하는 방법.
  21. 제17항에 있어서,
    애노드 전극의 일함수가 반도체층의 전도대 밴드 쪽에 위치하는 것을 특징으로 하는 열분자 전지를 제조하는 방법.
  22. 제17항에 있어서,
    캐소드 전극 애노드 전극의 일함수의 차이는 0.1 내지 5eV임을 특징으로 하는 열분자 전지를 제조하는 방법.
  23. 제17항에 있어서,
    캐소드 또는 애노드 전극은 전도성 물질임을 특징으로 하는 열분자 전지를 제조하는 방법.
  24. 제17항에 있어서,
    캐소드는 인듐주석산화물, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Th 및 U으로 구성된 군에서 선택된 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지를 제조하는 방법.
  25. 제17항에 있어서,
    캐소드는 인듐주석산화물, Pt, Au, Cu로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지를 제조하는 방법.
  26. 제17항에 있어서,
    애노드는 Al, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Th및 U 으로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지를 제조하는 방법.
  27. 제17항에 있어서,
    애노드는 Al, Sc 및 Mo로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 열분자 전지를 제조하는 방법.
  28. 제17항에 있어서,
    전자전달체는 니코틴아마이드 또는 니코틴아미드 아데닌 디뉴클레오티드임을 특징으로 하는 열분자 전지를 제조하는 방법.
  29. 제17항에 있어서,
    전해질 용액의 용매는 증류수 또는 유기용매임을 특징으로 하는 열분자 전지를 제조하는 방법.
  30. 제17항에 있어서,
    반도체층의 두께가 0.01㎛ 내지 10㎛임을 특징으로 하는 열분자 전지를 제조하는 방법.
  31. 제17항에 있어서,
    두 전극의 간격이 100㎛ 내지 10 cm임을 특징으로 하는 열분자 전지를 제조하는 방법.
  32. 제17항에 있어서,
    두 전극의 간격이 200㎛임을 특징으로 하는 열분자 전지를 제조하는 방법.
  33. 애노드 및 캐소드 전극의 한쪽 또는 양쪽의 내벽에 반도체층을 코팅하고, 상기 두 전극 사이에 전자전달체를 포함하는 전해질 용액을 첨가한 후 밀봉하여 전력을 발생시키는 방법에 있어서,
    반도체층은Si, Ge, GaAs, InAs, AlAs, InAlGaAs, GaN, AlGaN, InAlGaN, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InCuSe2, 아연산화물, 갈륨산화물, 탄소나노튜브, 그래핀, 풀러렌 및 카본블랙으로 구성되는 군에서 선택되는 1종 이상의 물질이고,
    전자전달체는 니코틴아마이드, 니코틴아미드 아데닌 디뉴클레오티드, 니코틴아이드 아데닌 디뉴클레오티드 포스페이트, 플라빈 아데닌 디뉴클레오티드, 질소화합물, 암모니아, 메틸아민 및 아닐린으로 구성되는 군에서 선택되는 어느 하나의 화합물이며,
    작용 온도가 10 내지 90℃의 범위이며, 캐소드 전극과 애노드 전극의 일함수 차이를 통하여 전력을 발생시키는 방법.
  34. 제33항에 있어서,
    반도체층은 탄소나노튜브임을 특징으로 하는 전력을 발생시키는 방법.
  35. 제33항에 있어서,
    캐소드 전극과 애노드 전극은 각각 에너지 갭이 0 내지 0.5eV의 범위를 갖는 물질임을 특징으로 하는 전력을 발생시키는 방법.
  36. 제33항에 있어서,
    캐소드 전극의 일함수가 반도체층의 가전자대 밴드 쪽에 위치하는 것을 특징으로 하는 전력을 발생시키는 방법.
  37. 제33항에 있어서,
    애노드 전극의 일함수가 반도체층의 전도대 밴드 쪽에 위치하는 것을 특징으로 하는 전력을 발생시키는 방법.
  38. 제33항에 있어서,
    캐소드 전극과 애노드 전극의 일함수의 차이는 0.1 내지 5eV임을 특징으로 하는 전력을 발생시키는 방법.
  39. 제33항에 있어서,
    캐소드 또는 애노드 전극은 전도성 물질임을 특징으로 하는 전력을 발생시키는 방법.
  40. 제33항에 있어서,
    캐소드는 인듐주석산화물, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Th 및 U으로 구성된 군에서 선택된 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 전력을 발생시키는 방법.
  41. 제33항에 있어서,
    캐소드는 인듐주석산화물, Pt, Au, Cu로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 전력을 발생시키는 방법.
  42. 제33항에 있어서,
    애노드는 Al, Be, C, Si, Co, Ni, Ge, Se, Rh, Pd, Te, Re, Os, Ir, Pt, Au, Li, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Ag, Cd, In, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Th및 U 으로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 전력을 발생시키는 방법.
  43. 제33항에 있어서,
    애노드는 Al, Sc 및 Mo로 구성되는 군에서 선택되는 어느 하나의 화합물 또는 2종이상의 화합물임을 특징으로 하는 전력을 발생시키는 방법.
  44. 제33항에 있어서,
    전자전달체는 니코틴아마이드 또는 니코틴아미드 아데닌 디뉴클레오티드임을 특징으로 하는 전력을 발생시키는 방법.
  45. 제33항에 있어서,
    전해질 용액의 용매는 증류수 또는 유기용매임을 특징으로 하는 전력을 발생시키는 방법.
  46. 제33항에 있어서,
    반도체층의 두께가 0.01㎛ 내지 10㎛임을 특징으로 하는 전력을 발생시키는 방법.
  47. 제33항에 있어서,
    두 전극의 간격이 100㎛ 내지 10 cm임을 특징으로 하는 전력을 발생시키는 방법.
  48. 제33항에 있어서,
    두 전극의 간격이 200㎛임을 특징으로 하는 전력을 발생시키는 방법.
  49. 제33항에 있어서,
    온도가 45℃임을 특징으로 하는 전력을 발생시키는 방법.
PCT/KR2010/001294 2009-02-27 2010-03-02 열분자 전지 및 이의 제조 방법 WO2010098646A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0017180 2009-02-27
KR1020090017180A KR101120723B1 (ko) 2009-02-27 2009-02-27 열분자 전지 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
WO2010098646A2 true WO2010098646A2 (ko) 2010-09-02
WO2010098646A3 WO2010098646A3 (ko) 2010-11-25

Family

ID=42666103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001294 WO2010098646A2 (ko) 2009-02-27 2010-03-02 열분자 전지 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR101120723B1 (ko)
WO (1) WO2010098646A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172024B1 (ko) 2013-07-16 2020-10-30 삼성에스디아이 주식회사 집전체 구조 및 이를 채용한 전극과 리튬 전지
WO2015160150A1 (ko) * 2014-04-17 2015-10-22 부산대학교 산학협력단 열전 장치용 전해질 용액 및 이를 포함하는 열전 장치
KR101691946B1 (ko) 2014-04-17 2017-01-02 부산대학교 산학협력단 열전 장치용 전해질 용액 및 이를 포함하는 열전 장치
US20200014079A1 (en) * 2018-07-06 2020-01-09 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Battery internal short circuit trigger and improved performance method
KR102202519B1 (ko) * 2019-07-09 2021-01-13 서울대학교산학협력단 이차 전지용 전극 활물질 및 이를 포함하는 이차 전지
KR102335917B1 (ko) * 2020-05-06 2021-12-08 한국과학기술연구원 섬유형 다이오드 및 이를 포함한 소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520304A (ja) * 2002-03-14 2005-07-07 アリゾナ ボード オブ リージェンツ 電流発生のための酵素ベースの光電気化学電池
KR100814572B1 (ko) * 2000-10-17 2008-03-17 마쯔시다덴기산교 가부시키가이샤 발전방법 및 전지
KR20080086977A (ko) * 2005-11-02 2008-09-29 세인트 루이스 유니버시티 소수성 개질된 다당류에 고정화된 효소
JP2008305559A (ja) * 2007-06-05 2008-12-18 Sony Corp 燃料電池および電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202935A1 (en) * 2003-04-08 2004-10-14 Jeremy Barker Cathode active material with increased alkali/metal content and method of making same
KR100883752B1 (ko) * 2006-07-26 2009-02-12 주식회사 엘지화학 새로운 유/무기 복합 전해질 및 이를 이용하여 열적안전성이 향상된 전기 화학 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814572B1 (ko) * 2000-10-17 2008-03-17 마쯔시다덴기산교 가부시키가이샤 발전방법 및 전지
JP2005520304A (ja) * 2002-03-14 2005-07-07 アリゾナ ボード オブ リージェンツ 電流発生のための酵素ベースの光電気化学電池
KR20080086977A (ko) * 2005-11-02 2008-09-29 세인트 루이스 유니버시티 소수성 개질된 다당류에 고정화된 효소
JP2008305559A (ja) * 2007-06-05 2008-12-18 Sony Corp 燃料電池および電子機器

Also Published As

Publication number Publication date
KR20100098157A (ko) 2010-09-06
WO2010098646A3 (ko) 2010-11-25
KR101120723B1 (ko) 2012-03-23

Similar Documents

Publication Publication Date Title
WO2010098646A2 (ko) 열분자 전지 및 이의 제조 방법
Luo et al. Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries
CN104716382B (zh) 一种锂‑硫电池结构
Liu et al. Solar-driven efficient Li2O2 oxidation in solid-state Li-ion O2 batteries
Ren et al. Triggering ambient polymer-based Li-O2 battery via photo-electro-thermal synergy
CN103000864B (zh) 一种硫复合正极材料及其制备方法
CN103178246B (zh) 一种硒-介孔载体复合物及其制备方法和用途
CN106207121A (zh) 一种多孔石墨烯负载碳包覆氧化铁纳米颗粒复合材料及制备方法
CN110311092B (zh) 一种SnO2/碳/V2O5/石墨烯复合纳米材料作为电池负极材料的应用
CN103003193A (zh) 一种磷酸铁锂复合材料、其制备方法和应用
CN110265643B (zh) 一种Sb2O5/碳布柔性钠离子电池负极材料的制备方法
CN109449425A (zh) 一种锂硫电池用复合材料的制备方法及该复合材料的应用
Paolella et al. Li-ion photo-batteries: challenges and opportunities
CN105529464A (zh) 一种锂硫电池
Zeng et al. A multifunctional pentlandite counter electrode toward efficient and stable sensitized solar cells
Wu et al. High-performance aqueous battery with double hierarchical nanoarrays
CN110729528B (zh) 一种太阳能辅助的具有低充电电位的可充电锌空电池
WO2018001051A1 (zh) 一种储能器件集成式光电化学水分解电池的设计方法
CN108987688B (zh) 一种碳基复合材料、制备方法及钠离子电池
Tan et al. Fabrication of an all-solid-state Zn-air battery using electroplated Zn on carbon paper and KOH-ZrO2 solid electrolyte
Meng et al. Charge storage mechanisms of cathode materials in rechargeable aluminum batteries
CN113299928A (zh) 高性能柔性二次锌银锌空混合电池正极材料的制备方法
CN109755501A (zh) 用于钠离子电池的硫化锡量子点/氟化石墨烯复合电极
CN207611620U (zh) 一种量子点贝塔伏特电池
Zhu et al. Towards a high-performance anode for zinc metal batteries: A tri-functional nitrogen-defective graphitic carbon nitride material for anode protection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746485

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746485

Country of ref document: EP

Kind code of ref document: A2