WO2010097931A1 - 湿式多板クラッチ - Google Patents

湿式多板クラッチ Download PDF

Info

Publication number
WO2010097931A1
WO2010097931A1 PCT/JP2009/053599 JP2009053599W WO2010097931A1 WO 2010097931 A1 WO2010097931 A1 WO 2010097931A1 JP 2009053599 W JP2009053599 W JP 2009053599W WO 2010097931 A1 WO2010097931 A1 WO 2010097931A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate clutch
wet multi
driver
discharge groove
disk
Prior art date
Application number
PCT/JP2009/053599
Other languages
English (en)
French (fr)
Inventor
浩平 百々
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to PCT/JP2009/053599 priority Critical patent/WO2010097931A1/ja
Publication of WO2010097931A1 publication Critical patent/WO2010097931A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/123Details not specific to one of the before-mentioned types in view of cooling and lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • F16D13/68Attachments of plates or lamellae to their supports
    • F16D13/683Attachments of plates or lamellae to their supports for clutches with multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae

Definitions

  • the present invention relates to a wet multi-plate clutch.
  • the wet multi-plate clutch includes an inner driver (for example, a ring gear of a planetary gear mechanism) that rotates inside, and a plurality of inner disks provided on the outer periphery of the inner driver. Further, the wet multi-plate clutch is provided in an outer driver (for example, an outer drum constituting a part of a case of an automatic transmission) disposed radially outward with respect to the inner driver, and an inner peripheral portion of the outer driver. A plurality of outer disks.
  • an inner driver for example, a ring gear of a planetary gear mechanism
  • an outer driver for example, an outer drum constituting a part of a case of an automatic transmission
  • An inner spline extending in the rotation axis direction is formed on the outer peripheral portion of the inner driver, and the inner edge portion of the inner disk is fitted to the inner spline. Accordingly, each inner disk rotates integrally with the inner driver in a state where the inner driver can move in the axial direction and in a state where relative movement in the rotation direction of the inner driver is restricted.
  • an outer spline extending in the axial direction is formed on the inner peripheral portion of the outer driver, and the outer edge portion of the outer disk is fitted to the outer spline. Accordingly, each outer disk is attached to the outer driver in a state in which relative movement in the axial direction is possible and relative movement in the rotational direction is restricted. Further, the inner disks and the outer disks are arranged so as to be alternately arranged in the axial direction, and are relatively rotatable around the axis.
  • the wet type multi-plate clutch for example, when a separately provided piston presses the outer disk in the axial direction so that each outer disk is moved closer to each inner disk, the distance between the adjacent outer disk and the inner disk is increased. The frictional force generated in the is increased. Therefore, the inner driver is connected to the outer driver. Further, when the outer disks are moved away from the inner disks, for example, by releasing the pressing by the piston, the frictional force generated between the adjacent outer disks and the inner disks is reduced. Therefore, the outer disk and the inner disk rotate relative to each other, and the connection between the inner driver and the outer driver is released, that is, the connection is not established.
  • the wet multi-plate clutch described above is partitioned by the top surface of the protruding portion of the outer spline, the side surfaces of the two adjacent outer disks, and the outer peripheral surface of the inner disk between the outer disks. There are multiple small spaces.
  • the wet multi-plate clutch is formed without considering the oil inflow into the space, there is the following possibility. That is, the actual oil inflow amount into the space may be larger than the upper limit of the smooth oil dischargeable amount from the inside of the space to the outside. In this case, the oil stays inside the space, and the staying oil may be unnecessarily agitated with the relative rotation of the outer disk and the inner disk. Unnecessary agitation of oil may undesirably increase the rotational resistance of the outer disk or inner disk, which is not preferable because it causes loss. JP-A-9-53656
  • An object of the present invention is to provide a wet multi-plate clutch capable of reducing oil stirring loss.
  • a wet multi-plate clutch that switches between connection and disconnection of an inner driver and an outer driver.
  • the inner driver rotates to define the axial direction.
  • the outer driver is disposed radially outward with respect to the inner driver.
  • the wet multi-plate clutch includes a plurality of inner disks that are spline-fitted to the outer peripheral part of the inner driver, and a plurality of outer disks that are spline-fitted to the inner peripheral part of the outer driver.
  • the inner disk and the outer disk are alternately arranged in the axial direction and arranged so as to be relatively rotatable.
  • a protruding portion of the spline is formed on the inner peripheral portion of the outer driver.
  • a discharge groove extending in the axial direction is formed on the top surface of the spline protruding portion.
  • the oil inside each space is guided to the outside of the space and discharged through the discharge groove formed on the top surface. Therefore, oil stays inside the spaces can be suppressed, and oil agitation inside the spaces can be suppressed. As a result, loss due to oil agitation can be reduced.
  • the top surface has an opposing portion, a first portion, and a second portion.
  • the facing portion faces the inner disk and the outer disk.
  • the first part is on one side in the axial direction with respect to the opposing part, and the second part is on the other side in the axial direction with respect to the opposing part.
  • the discharge groove extends from the first part to the second part.
  • the discharge groove is formed so as to extend from the first axial end of the top surface to the second axial end. According to these aspects, the oil in the outer driver inner peripheral portion facing the outer peripheral surfaces of the inner disk and the outer disk is directly discharged to the outside through the discharge groove. Therefore, the oil discharged to the outside of each space is suppressed from being stirred by the relative rotation of the inner disk and the outer disk. Therefore, loss due to oil agitation can be suitably reduced.
  • the discharge groove extends parallel to the axial direction.
  • the thickness of the extending groove is formed in a shape that gradually increases toward one direction of the extending direction of the extending groove.
  • the bottom wall (inner wall) of the discharge groove is formed in a shape extending in a direction inclined from a direction orthogonal to the oil flow. Therefore, the oil flow is deflected toward a thick portion of the discharge groove after colliding with the bottom wall of the discharge groove. Therefore, the oil inside the space can be discharged in any desired direction by passing through the discharge groove.
  • a first adjacent portion and a second adjacent portion adjacent to the wet multi-plate clutch are defined.
  • the first adjacent portion, the wet multi-plate clutch, and the second adjacent portion are sequentially arranged in the axial direction.
  • a rotating body other than the components of the wet multi-plate clutch is disposed in the first adjacent portion, but no rotating body is disposed in the second adjacent portion.
  • the thickness of the discharge groove is formed in a shape that gradually increases toward the second adjacent portion.
  • the oil discharged to the outside of the wet multi-plate clutch through the discharge groove is suppressed from being unnecessarily stirred due to interference with a rotating body other than the clutch components. Therefore, loss due to oil agitation can be suitably reduced.
  • the top surface has a front end in the rotational direction of the inner driver and a rear end in the rotational direction.
  • the discharge groove is formed to extend from one of the rotation direction front end and the rotation direction rear end. In another aspect of the present invention, the discharge groove is formed to extend from the rotation direction front end.
  • the oil inside each space can be discharged to the recessed part of the spline of the outer driver.
  • the oil flow generated by the centrifugal force accompanying the relative rotation of the inner disk with respect to the outer disk flows toward the front in the rotation direction of the inner disk by being driven by the inner disk.
  • the oil inside each space is discharged toward the front in the rotation direction of the inner disk. Therefore, the oil discharged from the discharge groove smoothly merges with the oil flow at other locations caused by the centrifugal force. Therefore, it can suppress that the oil flow discharged
  • the top surface has an engaging recess extending in the rotation direction of the inner driver.
  • the wet multi-plate clutch has a snap ring that engages with the engagement recess. The snap ring restricts the outer disk and the inner disk from moving in the axial direction.
  • the discharge groove is extended in such a shape that the snap ring does not block the oil flow inside the discharge groove.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an automatic transmission provided with a wet multi-plate clutch according to an embodiment embodying the present invention.
  • FIG. 2 is a partial perspective view of an inner driver and an inner disk shown in FIG. 1.
  • FIG. 2 is a partial perspective view of an outer driver and an outer disk shown in FIG. 1.
  • FIG. 2 is an enlarged sectional view of a clutch structure in the vicinity of an inner peripheral surface of the outer driver in FIG. 1.
  • FIG. 6 is a cross-sectional view of a spline protruding portion along the line AA in FIG. 5.
  • FIG. 6 is another cross-sectional view of the spline protruding portion along the line BB in FIG. 5.
  • Sectional drawing of the peripheral part of the discharge groove of the automatic transmission of FIG. The top view which shows the extended shape of the discharge groove
  • FIG. 1 to 8 show a clutch 20 as a wet multi-plate clutch according to an embodiment of the present invention.
  • the multi-stage automatic transmission 10 having a plurality of shift stages is provided with another wet multi-plate clutch 14. That is, the clutch 20 is one of a plurality of wet multi-plate clutches provided in the automatic transmission 10.
  • FIG. 1 shows a schematic configuration of the automatic transmission 10.
  • a transmission case 12 as a case of the automatic transmission 10 accommodates an inner driver 21.
  • the clutch 20 switches between a connected state and an unconnected state between the inner driver 21 and the outer driver 22.
  • the inner driver 21 rotates inside the clutch 20 and defines the axial direction.
  • the “axial direction” means the rotational axis direction of the inner driver 21, that is, the axial direction.
  • the outer driver 22 is disposed radially outward with respect to the inner driver 21.
  • the inner driver 21 rotates as the input shaft (not shown) of the automatic transmission 10 rotates.
  • the inner driver 21 is integrally formed with the ring gear 11 of a planetary gear mechanism that includes a gear formed on the input shaft as a sun gear.
  • a plurality of (in this embodiment, five) inner disks 23 are provided on the outer peripheral surface of the inner driver 21.
  • FIG. 2 schematically shows the relationship between the inner driver 21 and the inner disk 23.
  • an inner spline 21 s is formed on the outer peripheral portion of the inner driver 21.
  • Each inner disk 23 is formed in a substantially annular shape with a metal such as an iron-based material.
  • each inner disk 23 includes an inner engagement portion 23a as an annular portion at the outer peripheral portion and an inner spline edge 23b at the inner peripheral portion.
  • Each inner disk 23 is attached to the inner driver 21 so that the inner spline 21s meshes with the inner spline edge 23b. Accordingly, the inner disk 23 is slidable in the axial direction along the inner spline 21 s and rotates in synchronization with the inner driver 21.
  • a friction material (not shown) is attached to the surface of each inner engagement portion 23a, that is, both side surfaces in the left-right direction in FIG.
  • the outer driver 22 (FIG. 1) is an outer drum that constitutes a part of the transmission case 12.
  • a plurality (six in this embodiment) of outer disks 24 are provided on the inner periphery of the outer driver 22.
  • FIG. 3 schematically shows the relationship between the outer driver 22 and the outer disk 24.
  • an outer spline 22 s is formed on the inner peripheral portion of the outer driver 22.
  • Each outer disk 24 is formed in a substantially annular shape by a metal such as an iron-based material.
  • each outer disk 24 includes an outer engaging portion 24a as an annular portion on the inner peripheral portion and an outer spline edge 24b on the outer peripheral portion.
  • Each outer disk 24 is attached to the outer driver 22 so that the outer spline 22s meshes with the outer spline edge 24b. Accordingly, the outer disk 24 is slidable in the axial direction along the outer spline 22 s and does not rotate relative to the outer driver 22.
  • the inner disks 23 and the outer disks 24 are arranged so as to be alternately arranged in the axial direction so as to be relatively rotatable. That is, each inner engagement portion 23a is opposed to each outer engagement portion 24a in the axial direction.
  • a first snap ring 25, a second snap ring 26, and a third snap ring 27 are locked to the inner peripheral surface of the outer driver 22 so as to be aligned in the axial direction.
  • the first snap ring 25 is located on the right side in FIG. 1, that is, on the first axial side
  • the third snap ring 27 is located on the left side in FIG. All the inner disks 23 and the outer disks 24 are disposed between the first snap ring 25 and the second snap ring 26.
  • a piston 28 is provided on the first axial side (the right side in FIG. 1) with respect to the inner disk 23 and the outer disk 24. Oil for lubrication and cooling is supplied between the inner disk 23 and the outer disk 24.
  • the piston 28 is always biased by a spring (not shown) in a direction away from the inner disk 23 and the outer disk 24 (right side in FIG. 1).
  • a hydraulic chamber 29 is formed between the piston 28 and the transmission case 12.
  • each inner engagement portion 23a (specifically, the friction material) is pressed against each outer engagement portion 24a in the axial direction, so that the inner disk 23 and the outer disk 24 are in an engaged state. Therefore, it will be in the connection state in which the power transmission from the inner driver 21 to the outer driver 22 is possible.
  • a piston 28, a clutch 20, a one-way clutch 13, and another wet multi-plate clutch 14 are arranged in this order in the axial direction. That is, the one-way clutch 13 is adjacent to the clutch 20 in the axial direction, and is located on the opposite side of the piston 28 from the clutch 20. Since the one-way clutch 13 is disposed between the second snap ring 26 and the third snap ring 27, movement in the axial direction is restricted with respect to the outer driver 22.
  • the one-way clutch 13 has a first movable part fixed to the ring gear 11 and a second movable part locked to the outer spline 22s.
  • the one-way clutch 13 allows the ring gear 11 to rotate in one direction with respect to the transmission case 12, but prohibits rotation in the reverse direction.
  • the other wet multi-plate clutch 14 is located on the opposite side of the one-way clutch 13 from the clutch 20 while adjacent to the one-way clutch 13. A part of the transmission case 12 and the piston 28 are adjacent to the clutch 20 from the first axial side of the clutch 20. That is, no rotating body member such as another wet multi-plate clutch is disposed in the adjacent portion on the first axial side of the clutch 20.
  • the inner disk 23 can rotate with little friction against the outer disk 24.
  • the centrifugal force accompanying the rotation of the inner disk 23 acts on the oil, the oil flows from the inner peripheral portion of the clutch 20 toward the outer peripheral portion.
  • FIG. 4 schematically shows a cross-sectional structure of the clutch 20 in the vicinity of the inner peripheral surface of the outer driver 22.
  • FIG. 4 shows a gap between each inner disk 23 and each outer disk 24 and a gap between the outer driver 22 and each outer disk 24 larger than the actual dimensional ratio.
  • a plurality of protruding portions of the outer spline 22s with respect to the inner peripheral surface of the outer driver 22 are referred to as spline protruding portions 31, respectively.
  • the surface of each spline protruding portion 31 that faces radially inward is referred to as a top surface 31a.
  • each space 30 is defined by the top surface 31 a of the spline protruding portion 31, the side surfaces of the two outer disks 24 adjacent to each other, and the outer peripheral surface of the inner disk 23 between the outer disks 24.
  • part of the oil that flows due to the rotation of the inner disk 23 flows into the space 30 from the gap between the inner disk 23 and the outer disk 24 that are adjacent to each other.
  • each outer disk 24 in the clutch 20 is determined by the engagement between the outer peripheral end of each outer disk 24 and the spline protruding portion 31.
  • the gap between the outer driver 22 and each outer disk 24 is set to be extremely small. Therefore, the oil that has flowed into the space 30 hardly flows into the other space 30 through the gap between the inner disk 23 and the outer disk 24.
  • each space 30 opens in a recessed portion of the outer spline 22s at the front and rear in the rotational direction of the inner driver 21 (see FIG. 1). That is, the oil inside the space 30 can be discharged to the outside of the space 30 from the rotation direction opening.
  • the clutch 20 is formed without considering the amount of oil flowing into the space 30, the amount of oil that actually flows into the space 30 becomes larger than the upper limit of the smooth oil discharge amount from the space 30. There is a risk of it. For example, this is a case where the gap between each inner disk 23 and the outer driver 22 is small. In this case, there is a possibility that oil stays inside the space 30. If the stagnant oil is unnecessarily agitated along with the rotation of each inner disk 23 or the like, the rotational resistance of the clutch 20 may be increased unnecessarily, resulting in a loss.
  • the discharge grooves 32 are formed on the top surfaces 31a of the spline protruding portions 31, respectively.
  • Each discharge groove 32 functions to discharge the oil inside each space 30 to the outside.
  • the extending aspect of the discharge groove 32 will be described in detail.
  • FIG. 5 shows an enlarged view of one of the spline protruding portions 31.
  • FIG. 6 shows a cross-sectional structure of the spline protruding portion 31 along the line AA in FIG.
  • the discharge groove 32 extends parallel to the axial direction on the top surface 31 a of the spline protruding portion 31. Specifically, the discharge groove 32 extends from the first axial end (upper end in FIG. 5) of the top surface 31a to the second axial end (lower end in FIG. 5).
  • a first engagement recess 25a, a second engagement recess 26a, and a third engagement recess 27a extending in the rotation direction of the inner disk 23 are formed on the top surface 31a of the spline protruding portion 31. .
  • the first snap ring 25 to the third snap ring 27 (see FIG. 1) described above are attached to the first engagement recess 25a to the third engagement recess 27a, respectively.
  • FIG. 7 shows a cross-sectional structure of the spline protruding portion 31 along the line BB in FIG.
  • the depth of the first engaging recess 25 a is formed to be shallower than the depth of the discharge groove 32. Accordingly, when the first snap ring 25 is attached to the first engagement recess 25a, the first snap ring 25 does not block the oil flow inside the discharge groove 32.
  • the depths of the second engagement recess 26a and the third engagement recess 27a are formed shallower than the depth of the discharge groove 32, respectively.
  • FIG. 8 schematically shows a cross-sectional structure of the automatic transmission 10 around the discharge groove 32.
  • FIG. 8 shows the gaps between the inner disks 23 and the outer disks 24 and the gaps between the outer driver 22 and the outer disks 24 larger than the actual dimensional ratio.
  • the top surface 31a of the spline protruding portion 31 has an opposing portion, a first portion, and a second portion.
  • the facing portion is a portion facing all of the inner disk 23 and the outer disk 24, that is, a portion between the first snap ring 25 and the second snap ring 26.
  • the first part is on the first axial side with respect to the opposing part, and the second part is on the second axial side with respect to the opposing part.
  • Each of the discharge grooves 32 is formed so as to extend from the first axial end (the right end in FIG. 8) to the second axial end (the left end in the same 8) than the opposing portion.
  • the oil inside each space 30 is directly discharged to the outside from between the first snap ring 25 and the second snap ring 26 through the discharge groove 32. That is, the oil inside each space 30 is discharged to the outside from the portions facing the outer peripheral surfaces of the inner disk 23 and the outer disk 24 by being transmitted through the discharge groove 32. Accordingly, the oil once discharged to the outside of each space 30 is suppressed from flowing unnecessarily into a portion close to the inner disk 23. That is, the oil is accurately suppressed from being stirred by the rotation of the inner disk 23.
  • a discharge groove 32 extending in the axial direction is formed on the top surface 31 a of the spline protruding portion 31 formed on the inner peripheral portion of the outer driver 22. Therefore, the oil that has flowed into the spaces 30 from the gaps between the inner disks 23 and the outer disks 24 is guided to the outside of the spaces 30 through the discharge grooves 32 and discharged. Therefore, oil can be prevented from staying inside each space 30. Accordingly, it is possible to suppress the oil from being agitated unnecessarily in each space 30 and to reduce loss due to oil agitation.
  • the discharge groove 32 is formed in a shape extending in parallel with the axial direction and extending from the first axial end of the top surface 31a to the second axial end. Therefore, in the inner peripheral portion of the outer driver 22, the oil in the portion facing the outer peripheral surfaces of the inner disk 23 and the outer disk 24 can be directly discharged to the outside through the discharge groove 32. Therefore, the oil once discharged to the outside of each space 30 is accurately suppressed from being stirred by the rotation of the inner disk 23. Therefore, the loss of the clutch 20 due to oil agitation can be suitably reduced.
  • the above embodiment may be modified as follows.
  • the discharge groove 32 is not limited to be formed with a constant thickness, but may be formed in a shape that gradually increases toward one side in the extending direction.
  • the width of the discharge groove 42 may be formed so as to gradually increase toward one side in the extending direction of the discharge groove 42.
  • the structure which forms in the shape where the depth of the discharge groove 52 becomes deep gradually as it goes to one side of the extending direction of the discharge groove 52 is employable.
  • the direction in which the bottom walls of the discharge grooves 42 and 52 extend can be formed so as to be inclined from the orthogonal direction with respect to the oil flow flowing into the discharge grooves 42 and 52 from the space 30 (see FIG. 8).
  • the white arrows in FIGS. 9 and 10 indicate the oil flows flowing into the discharge grooves 42 and 52 from the space 30, respectively.
  • the oil flow flows into the discharge grooves 42 and 52 due to the centrifugal force accompanying the rotation of the inner disks 23 and collides with the bottom wall as the inner wall of the discharge grooves 42 and 52.
  • the oil flow is deflected in the direction toward the thicker portions of the discharge grooves 42 and 52, as indicated by black arrows in FIGS. Accordingly, the oil inside the space 30 can be guided and discharged in a predetermined direction by being transmitted through the discharge grooves 42 and 52.
  • the discharge grooves 42 and 52 are gradually thickened from the clutch 20 toward the piston 28 in FIG. That is, it is preferable that the oil flow is discharged from the clutch 20 toward the axially adjacent portion where the rotating body other than the components of the clutch 20 is not disposed. In this case, the oil discharged to the outside of the clutch 20 is prevented from being unnecessarily stirred due to interference with a rotating body such as a component of another wet multi-plate clutch 14, for example. Therefore, the discharge grooves 42 and 52 can favorably reduce loss due to oil agitation.
  • the extending shape of the discharge groove 32 can be arbitrarily changed as long as it extends outward in the axial direction from the top surface 31a of the spline protruding portion 31 facing all the inner disks 23 and the outer disk 24.
  • As the extended shape of the discharge groove for example, an extended shape in which a portion other than the end portion in the axial direction of the top surface 31a becomes the end point of the discharge groove 32 can be adopted.
  • the discharge groove 32 is not limited to being formed in a shape extending from the first axial end of the top surface 31a of the spline protruding portion 31 to the second axial end.
  • the discharge groove 32 may be formed in a shape extending from the front end in the rotation direction or the rear end in the rotation direction of the top surface 31 a in the rotation direction of the inner disk 23. That is, the leading end of the rotation phrase on the top surface 31 a and the trailing end in the rotation direction may be set as the starting point of the discharge groove 32. In such a configuration, the oil inside each space 30 travels through the discharge groove 32 and is discharged to the recessed portion of the outer spline 22s.
  • the depth of the hollow portion of the outer spline 22s is shallow, so that the discharge that can be formed on the top surface 31a of the spline protruding portion 31 is possible.
  • the depth of the groove also becomes shallow. Therefore, if the discharge groove 62 is simply formed on the top surface 31a of the spline projecting portion 31, a snap ring (one-dot chain line) attached to the engaging recess 65a formed on the top surface 31a as shown in FIG. However, there is a risk of blocking the oil flow inside the discharge groove 62.
  • the discharge grooves 71, 82, 83, and 84, and the first snap ring 25 to the third snap ring 27 do not block the oil flow. What is necessary is just to extend.
  • the discharge groove 72 is formed in a shape that extends from the front end in the rotational direction of the top surface 31a (left end in FIG. 12) to the rear end in the rotational direction (right end in FIG. 12).
  • the discharge grooves 82, 83, and 84 open at at least one of the front end in the rotational direction and the rear end in the rotational direction of the top surface 31 a.
  • These discharge grooves 71, 82, 83, 84 are located between the first engagement recess 25a and the second engagement recess 26a, and extend obliquely with respect to the extending direction of the spline protruding portion 31, that is, the axial direction. .
  • the oil in each space 30 is discharged to the discharge grooves 71, 82, 83 and 84 are discharged to the outside. Specifically, it is possible to ensure the function of discharging the oil inside each space 30 to the recessed portion of the outer spline 22s.
  • the discharge grooves 92, 102, 103, and 104 in FIGS. 14 and 15 are desirably extended from the front end of the top surface 31a in the rotational direction.
  • the discharge groove 92 in FIG. 14 is formed in a shape extending from the front end in the rotation direction of the top surface 31a (the right end in FIG. 14) to the first engagement recess 25a.
  • the discharge grooves 102, 103, 104 in FIG. 15 all start from the front end in the rotation direction of the top surface 31a (the right end in FIG. 15).
  • the end point of the discharge groove 102 is the first engagement recess 25a.
  • the end points of the discharge grooves 103 and 104 are portions other than the rotation direction end of the top surface 31a.
  • the oil flow generated by the centrifugal force associated with the rotation of the inner disk 23 flows along the inner disk 23 and therefore flows forward in the rotation direction. Therefore, if the oil in each space 30 is discharged toward the rear in the rotational direction of the inner disk 23, the discharged oil collides with the oil flow generated by the centrifugal force, resulting in oil agitation and therefore loss. May grow.
  • the wet multi-plate clutch according to the present invention is not limited to switching between connection and disconnection between the ring gear of the planetary gear mechanism and the case (outer drum) of the automatic transmission,
  • the present invention can also be applied to switching between connection and non-connection with the rotating body of the planetary gear mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

クラッチ20は、回転するインナドライバの外周部にスプライン嵌合された複数のインナディスク23と、インナドライバに対して径方向外方に配設されるアウタドライバ22の内周部にスプライン嵌合された複数のアウタディスク24とを備える。インナディスク23とアウタディスク24は、軸方向に交互に並ぶように、且つ相対回転可能に配設される。アウタドライバ22の内周部に形成されたスプライン突出部分31の頂面31aには、軸方向に延びる排出溝32が形成される。

Description

湿式多板クラッチ
 本発明は、湿式多板クラッチに関する。
 近年、自動車などの車両に多段式の自動変速機を搭載することが多用され、自動変速機内部には、変速段の切替や前後進の切替を行うためのクラッチ機構として湿式多板クラッチが設けられている(例えば特許文献1参照)。
 湿式多板クラッチは、内部で回転するインナドライバ(例えば遊星歯車機構のリングギア)と、インナドライバの外周部に設けられた複数のインナディスクとを備える。更に湿式多板クラッチは、インナドライバに対して径方向外方に配設されたアウタドライバ(例えば自動変速機のケースの一部を構成するアウタドラム)と、アウタドライバの内周部に設けられた複数のアウタディスクとを備える。
 インナドライバの外周部には、回転軸方向(軸方向)に延びるインナスプラインが形成され、インナスプラインにインナディスクの内縁部分が嵌合する。従って、各インナディスクは、インナドライバの軸方向への相対移動が可能な状態で、且つインナドライバの回転方向への相対移動が規制された状態で、インナドライバと一体回転する。また、アウタドライバの内周部には、軸方向に延びるアウタスプラインが形成され、アウタスプラインにアウタディスクの外縁部分が嵌合する。従って、各アウタディスクは、軸方向への相対移動が可能な状態で、且つ回転方向への相対移動が規制された状態で、アウタドライバに取付けられる。更に、各インナディスクと各アウタディスクは軸方向に交互に並ぶように配置され、軸線回りに相対回転可能である。
 湿式多板クラッチでは、例えば別途設けたピストンがアウタディスクを軸方向に押圧するなどして、各アウタディスクを各インナディスクに互いに近づけるように移動させると、互いに隣合うアウタディスクとインナディスクの間に生じる摩擦力が大きくなる。よって、インナドライバがアウタドライバに連結される。また、例えばピストンによる押圧を解除するなどして、各アウタディスクを各インナディスクから遠ざかるように移動させると、互いに隣合うアウタディスクとインナディスクの間に生じる摩擦力が小さくなる。よってそれらアウタディスクとインナディスクが互いに相対回転し、インナドライバとアウタドライバの間の連結が解除され、つまり非連結状態になる。
 上述した湿式多板クラッチ内部には、アウタスプラインの突出部分の頂面と、互いに隣合う二枚のアウタディスクそれぞれの側面と、それらアウタディスクの間のインナディスクの外周面とによって区画されるごく小さいスペースが、複数存在する。
 湿式多板クラッチ内部にはオイルが供給されるため、インナディスクとアウタディスクが相対回転する場合、オイルに遠心力が作用する。その結果、互いに隣合うインナディスクとアウタディスクの間の隙間から、スペース内部にオイルが流入する。
 仮に、そうしたスペース内部へのオイル流入を考慮することなく、湿式多板クラッチを形成すると、以下の虞がある。つまり、スペース内部への実際のオイル流入量が、スペース内部から外部への円滑なオイル排出可能量の上限よりも多くなってしまう虞がある。この場合、スペース内部にオイルが滞留し、滞留オイルがアウタディスクとインナディスクの相対回転に伴って不要に攪拌される虞がある。オイルの不要な攪拌は、アウタディスクやインナディスクの回転抵抗を不要に増加させる虞があり、損失を生じさせるため好ましくない。
特開平9-53656号公報
 本発明の目的は、オイル攪拌損失の低減を図ることのできる湿式多板クラッチを提供することにある。
 上記目的を達成するため、インナドライバとアウタドライバの連結と非連結とを切替える湿式多板クラッチが提供される。インナドライバは回転して、軸方向を規定する。アウタドライバは、インナドライバに対して径方向外方に配設される。湿式多板クラッチは、インナドライバの外周部にスプライン嵌合された複数のインナディスクと、アウタドライバの内周部にスプライン嵌合された複数のアウタディスクとを備える。インナディスクとアウタディスクは、軸方向に交互に並び、且つ相対回転可能に配設される。アウタドライバの内周部には、スプラインの突出部分が形成される。スプライン突出部分の頂面には、軸方向に延びる排出溝が形成される。
 アウタドライバ内周部のスプライン突出部分の頂面と、互いに隣合う二枚のアウタディスクそれぞれの側面と、両アウタディスク間のインナディスクの外周面とが区画するスペース内部には、オイルが流入する。上記構成によれば、各スペース内部のオイルは、それぞれ頂面に形成した排出溝を伝わって、スペース外部に導かれ排出される。従って、各スペース内部におけるオイルの滞留を抑制でき、それらスペース内部におけるオイルの攪拌を抑制できる。その結果、オイル攪拌による損失を低減できる。
 本発明の一態様では、頂面は対向部分、第1部分および第2部分を有する。対向部分は、インナディスクとアウタディスクに対向する。第1部分は、対向部分に対して軸方向の一方側であり、第2部分は、対向部分に対して軸方向の他方側である。排出溝は、第1部分から第2部分まで延設される。
 好ましい態様では、排出溝は、頂面の軸方向第1端から軸方向第2端まで延びるように形成される。
 これら態様によれば、インナディスクとアウタディスクそれぞれの外周面に対向するアウタドライバ内周部の部分のオイルは、排出溝を伝わって、外部に直接排出される。そのため、各スペース外部に排出後のオイルは、インナディスクとアウタディスクの相対回転によって攪拌されることが抑制される。従って、オイル攪拌による損失を好適に低減できる。
 本発明の一態様では、排出溝は、軸方向に平行に延びる。延出溝の太さは、延出溝の延設方向のうちの一方向に向かって、徐々に太くなる形状に形成される。
 インナディスクとアウタディスクの相対回転に伴う遠心力の作用によって生じるオイル流れは、アウタドライバの内周部から外周部に向かって流れ、そして各スペースと排出溝に流入する。
 上記態様によれば、排出溝の底壁(内壁)は、オイル流れに対する直交方向から傾斜した方向に延びる形状に形成される。よってオイル流れは、排出溝の底壁に衝突した後、排出溝の太い部分に向かって偏向する。従って、スペース内部のオイルは、排出溝を伝わることによって、所望の任意の方向に排出されることができる。
 好ましい態様では、湿式多板クラッチに隣接する第1隣接部分と第2隣接部分が規定される。軸方向に第1隣接部分、湿式多板クラッチ、および第2隣接部分が順に並ぶ。第1隣接部分には、湿式多板クラッチの構成部品以外の回転体が配設されるが、第2隣接部分には回転体は配設されない。排出溝の太さは、第2隣接部分に向かうに連れて徐々に太くなる形状に形成される。
 上記態様によれば、排出溝を伝わって湿式多板クラッチ外部に排出されたオイルは、クラッチ構成部品以外の回転体との干渉によって不要に攪拌されることが抑制される。よって、オイル攪拌による損失を好適に低減できる。
 本発明の一態様では、頂面は、インナドライバの回転方向の前端と回転方向後端とを有する。排出溝は、回転方向前端と回転方向後端のうちの一方から延びるように形成される
 本発明の他の態様では、排出溝は、回転方向前端から延びるように形成される。
 これら態様によれば、各スペース内部のオイルを、アウタドライバのスプラインの窪み部分に排出できる。
 アウタディスクに対するインナディスクの相対回転に伴う遠心力によって生じるオイル流れは、インナディスクに連れ回ることによって、インナディスクの回転方向前方に向かって流れる。
 上記態様の排出溝によれば、各スペース内部のオイルは、インナディスクの回転方向前方に向かって排出される。よって、排出溝から排出されたオイルは、遠心力によって生じた他の箇所のオイル流れと円滑に合流する。そのため、各スペースから排出されたオイル流れが、遠心力によって生じた他の箇所のオイル流れと干渉することを抑制でき、干渉によるオイル攪拌を抑制できる。その結果、オイル攪拌による損失を好適に抑制できる。
 好ましい態様では、頂面は、インナドライバの回転方向に延びる係合凹部を有する。湿式多板クラッチは、係合凹部に係合するスナップリングを有する。スナップリングは、アウタディスクとインナディスクが軸方向に移動することを制限する。排出溝は、スナップリングが排出溝内部のオイル流れを遮断しないようにした形状で、延設される。
 上記態様によれば、アウタドライバのスプラインにスナップリングを取付けても、支障なく、各スペース内部のオイルが排出溝を伝わって外部に排出される機能を確保できる。
本発明を具体化した一実施形態に係る湿式多板クラッチが設けられた、自動変速機の概略構成を示す断面図。 図1に示すインナドライバとインナディスクの部分斜視図。 図1に示すアウタドライバとアウタディスクの部分斜視図。 図1のアウタドライバの内周面付近の、クラッチ構造の拡大断面図。 図4のアウタドライバ内周面におけるスプライン突出部分の拡大平面図。 図5のA-A線に沿った、スプライン突出部分の断面図。 図5のB-B線に沿った、スプライン突出部分の別の断面図。 図1の自動変速機の、排出溝の周辺部の断面図。 本発明の変形例の、排出溝の延設形状を示す平面図。 別の変形例の、排出溝の延設形状を示す断面図。 比較例の排出溝の深さと、係合凹部の深さとの関係を示す断面図。 本発明の別の変形例の、排出溝の延設形状を示す平面図。 更に別の変形例の、排出溝の延設形状を示す平面図。 更に別の変形例の、排出溝の延設形状を示す平面図。 更に別の変形例の、排出溝の延設形状を示す平面図。
 図1~図8は、本発明を具体化した一実施形態に係る湿式多板クラッチとしてのクラッチ20を示す。複数の変速段を有する多段式の自動変速機10には、他の湿式多板クラッチ14も設けられている。つまりクラッチ20は、自動変速機10に設けられた複数の湿式多板クラッチのうちの一つである。
 図1は、自動変速機10の概略構成を示す。
 図1に示すように、自動変速機10のケースとしての変速機ケース12は、インナドライバ21を収容する。クラッチ20は、インナドライバ21とアウタドライバ22の間の連結状態と、非連結状態とを切替える。インナドライバ21は、クラッチ20の内部において回転し、軸方向を規定する。以下、「軸方向」とは、インナドライバ21の回転軸方向つまり軸線方向を意味する。アウタドライバ22は、インナドライバ21に対して径方向外方に配設される。
 インナドライバ21は、自動変速機10の入力シャフト(図示略)の回転に伴って回転する。詳しくは、インナドライバ21は、前記入力シャフトに形成された歯車をサンギアとして備える遊星歯車機構のリングギア11に一体形成される。インナドライバ21の外周面には、複数(本実施形態では五枚)のインナディスク23が設けられる。
 図2は、インナドライバ21とインナディスク23の関係を概略的に示す。
 図2に示すように、インナドライバ21の外周部には、インナスプライン21sが形成される。各インナディスク23は、鉄系材料等の金属によって略円環形状に形成される。詳しくは各インナディスク23は、外周部の円環形状部分としてのインナ係合部23aと、内周部のインナスプラインエッジ23bとを備える。インナスプライン21sをインナスプラインエッジ23bと噛み合わせるように、各インナディスク23はインナドライバ21に取付けられる。従ってインナディスク23は、インナスプライン21sに沿って軸方向に摺動可能になっており、インナドライバ21と同期回転する。各インナ係合部23aの表面、すなわち図1の左右方向の両側面には、摩擦材(図示略)が取付けられる。
 一方、アウタドライバ22(図1)は、変速機ケース12の一部を構成するアウタドラムである。アウタドライバ22の内周部には、複数(本実施形態では六枚)のアウタディスク24が設けられる。
 図3は、アウタドライバ22とアウタディスク24の関係を概略的に示す。
 図3に示すように、アウタドライバ22の内周部には、アウタスプライン22sが形成される。各アウタディスク24は鉄系材料等の金属によって略円環形状に形成される。詳しくは各アウタディスク24は、内周部の円環形状部分としてのアウタ係合部24aと、外周部のアウタスプラインエッジ24bとを備える。アウタスプライン22sをアウタスプラインエッジ24bと噛み合わせるように、各アウタディスク24はアウタドライバ22に取付けられる。従ってアウタディスク24は、アウタスプライン22sに沿って軸方向に摺動可能になっており、アウタドライバ22に対して相対回転はしない。
 図1に示すように、各インナディスク23と各アウタディスク24は、軸方向に交互に並ぶように、且つ相対回転可能なように配設される。すなわち、各インナ係合部23aは、各アウタ係合部24aに軸方向に対向する。アウタドライバ22の内周面には、軸方向に並ぶように、第1スナップリング25,第2スナップリング26,および第3スナップリング27が係止される。本実施形態では、図1の右方すなわち軸方向第1側に、第1スナップリング25が位置し、図1の左方すなわち軸方向第2側に、第3スナップリング27が位置する。全てのインナディスク23とアウタディスク24は、第1スナップリング25と第2スナップリング26の間に配設される。また、インナディスク23とアウタディスク24に対して、軸方向第1側(図1の右方)には、ピストン28が設けられる。インナディスク23とアウタディスク24の間には、潤滑や冷却のためのオイルが供給される。
 ピストン28は、スプリング(図示略)によって、インナディスク23とアウタディスク24から離間する方向(図1における右方)に常時付勢される。また、ピストン28と変速機ケース12の間には、油圧室29が形成される。油圧室29にオイル供給されると、スプリングの付勢力に抗してピストン28を付勢し、軸方向においてインナディスク23とアウタディスク24に近接する方向(図1における左方)にピストン28を変位可能である。
 クラッチ20を係合させる際には、油圧室29内部にオイル供給される。従って、スプリングの付勢力に抗してピストン28が図1の左方へ移動する。ピストン28が隣接するアウタディスク24を押圧すると、第2スナップリング26に対して、各アウタディスク24と各インナディスク23の積層部分が圧縮される。このとき各インナ係合部23a(詳しくは、前記摩擦材)は、各アウタ係合部24aに軸方向に互いに押し付けられ、よってインナディスク23とアウタディスク24は係合状態となる。よって、インナドライバ21からアウタドライバ22への動力伝達が可能な連結状態になる。
 一方、クラッチ20による係合状態を解除する際には、油圧室29内部のオイルが排出される。従って、スプリングの付勢力によってピストン28が図1の右方に移動し、その結果、ピストン28によるアウタディスク24への押圧が解除される。よって、インナディスク23とアウタディスク24の積層部分の圧縮が解除され、インナディスク23はアウタディスク24から係合解除状態となる。よって、インナドライバ21からアウタドライバ22に動力伝達されない非連結状態になる。
 図1に示すように、変速機ケース12内において、軸方向に順に、ピストン28、クラッチ20、ワンウェイクラッチ13、および他の湿式多板クラッチ14が並ぶ。つまり、ワンウェイクラッチ13は、軸方向においてクラッチ20に隣接し、クラッチ20に対してピストン28とは反対側に位置する。ワンウェイクラッチ13は、第2スナップリング26と第3スナップリング27の間に配置されるため、アウタドライバ22に対して軸方向への移動が規制される。ワンウェイクラッチ13は、リングギア11に固定される第1可動部と、アウタスプライン22sに係止される第2可動部とを有する。ワンウェイクラッチ13は、リングギア11が変速機ケース12に対して一方向に回転することは許容するが、逆方向への回転を禁止する。他の湿式多板クラッチ14は、ワンウェイクラッチ13に隣接しつつ、ワンウェイクラッチ13に対してクラッチ20とは反対側に位置する。変速機ケース12の一部と、ピストン28は、クラッチ20の軸方向第1側から、クラッチ20に隣接する。つまり、クラッチ20の軸方向第1側の隣接部分には、他の湿式多板クラッチ等の回転体部材は配設されていない。
 ところで、クラッチ20が係合解除状態の場合、インナディスク23はアウタディスク24に対する摩擦が少ない状態で回転できる。インナディスク23の回転に伴う遠心力がオイルに作用すると、オイルは、クラッチ20の内周部から外周部に向かって流れる。
 図4は、アウタドライバ22の内周面付近における、クラッチ20の断面構造を概略的に示す。図4は、便宜上、各インナディスク23と各アウタディスク24の間の隙間や、アウタドライバ22と各アウタディスク24の間の隙間を、実際の寸法比よりも大きく示す。アウタドライバ22の内周面に対する、アウタスプライン22sの複数の突出部分を、それぞれスプライン突出部分31と称する。各スプライン突出部分31の、径方向内方に向かう面を、頂面31aと称する。
 図4に示すように、クラッチ20内部には、ごく小さい複数のスペース30が区画形成される。詳しくは、各スペース30は、スプライン突出部分31の頂面31aと、互いに隣合う二枚のアウタディスク24それぞれの側面と、それらアウタディスク24間のインナディスク23の外周面とによって区画される。図4中に矢印で示すように、インナディスク23の回転によって流動するオイルの一部は、互いに隣合うインナディスク23とアウタディスク24の間の隙間から、スペース30内部に流入する。
 クラッチ20内部における、各アウタディスク24の配設位置は、各アウタディスク24の外周端と、スプライン突出部分31との係合によって定められる。各アウタディスク24の不要な動きを抑制すべく、アウタドライバ22と各アウタディスク24の間の隙間は、ごく小さく設定される。そのため、スペース30内部に流入したオイルは、インナディスク23とアウタディスク24の間の隙間を伝わって他のスペース30に流入することは殆ど無い。その一方、各スペース30は、インナドライバ21の回転方向前方と後方において、それぞれアウタスプライン22sの窪み部分に開口する(図1参照)。つまり、スペース30内部のオイルは、回転方向開口から、スペース30外部に排出され得る。
 ただし、スペース30内部に流入するオイル量を考慮することなくクラッチ20を形成すると、スペース30内部に実際に流入するオイル量が、スペース30内部からの円滑なオイル排出量の上限よりも多くなってしまう虞がある。たとえば、各インナディスク23とアウタドライバ22の間の隙間が小さい場合である。この場合、スペース30内部にオイルが滞留する虞がある。滞留オイルが、各インナディスク23などの回転によって伴って不要に攪拌されると、クラッチ20の回転抵抗を不要に増加させて損失が生じる虞がある。
 こうした実情をふまえて本実施形態では、各スプライン突出部分31の頂面31aに、それぞれ排出溝32を形成した。それぞれ排出溝32は、各スペース30内部のオイルを、外部に排出するように機能する。以下、排出溝32の延設態様を詳細に説明する。
 図5は、スプライン突出部分31の一つを、拡大して示す。図6は、図5のA-A線に沿って、スプライン突出部分31の断面構造を示す。
 図5と図6に示すように、排出溝32は、スプライン突出部分31の頂面31aにおいて、軸方向に平行に延びる。詳しくは、排出溝32は、頂面31aの軸方向第1端(図5の上端)から、軸方向第2端(図5の下端)まで延びる。
 スプライン突出部分31の頂面31aには、排出溝32の他、インナディスク23の回転方向に延びる第1係合凹部25a,第2係合凹部26a,および第3係合凹部27aが形成される。これら第1係合凹部25a~第3係合凹部27aには、それぞれ上述した第1スナップリング25~第3スナップリング27(図1参照)が取付けられる。
 図7は、図5のB-B線に沿って、スプライン突出部分31の断面構造を示す。
 図7に示すように、第1係合凹部25aの深さは、排出溝32の深さよりも浅く形成される。従って、第1係合凹部25aに第1スナップリング25が取付けられた場合、第1スナップリング25は、排出溝32内部のオイル流れを遮断しない。それぞれ第2係合凹部26aと第3係合凹部27aの深さも、第1係合凹部25aと同様に、排出溝32の深さよりも浅く形成される。そのため、それら第2係合凹部26aと第3係合凹部27aにそれぞれ第2スナップリング26と第3スナップリング27が取付けられた場合も、それら第2スナップリング26と第3スナップリング27は排出溝32内部のオイル流れを遮断しない。
 以下、排出溝32を形成したことによる作用を説明する。
 図8は、排出溝32の周辺部の、自動変速機10の断面構造を概略的に示す。図8は、便宜上、各インナディスク23と各アウタディスク24の間の隙間や、アウタドライバ22と各アウタディスク24の間の隙間を、実際の寸法比よりも大きく示す。
 図8に示すように、クラッチ20では、互いに隣合うインナディスク23とアウタディスク24の間の隙間から、各スペース30内部にオイルが流入する。しかし、図8に矢印で示すように、各スペース30内部のオイルは、スプライン突出部分31の頂面31aに形成された排出溝32を伝わって、スペース30外部に導かれることによって排出される。
 従って、各スペース30内部から外部に、オイルが円滑に排出される。それらスペース30内部にオイルが滞留することが抑制される。つまり、各スペース30内部においてオイルが不要に攪拌されることが抑制される。その結果、本実施形態では、クラッチ20内部におけるオイル攪拌損失が低減され、高い効率で自動変速機10の作動が実現される。
 スプライン突出部分31の頂面31aが、対向部分、第1部分および第2部分を有すると定義する。対向部分は、全てのインナディスク23とアウタディスク24に対向する部分であり、つまり第1スナップリング25と第2スナップリング26の間の部分である。第1部分は、対向部分に対して軸方向第1側であり、第2部分は、対向部分に対しえ軸方向第2側である。それぞれ排出溝32は、対向部分よりも軸方向第1端(図8の右端)から、軸方向第2端(同8の左端)まで延びるように形成される。そのため、各スペース30内部のオイルは、排出溝32を伝わって、第1スナップリング25と第2スナップリング26の間から外部に直接排出される。つまり、各スペース30内部のオイルは、排出溝32を伝わることによって、インナディスク23とアウタディスク24それぞれの外周面に対向する部分から外部に排出される。従って、各スペース30外部に一旦排出されたオイルは、インナディスク23に近接する部分に不要に流入することが抑制される。つまりオイルは、インナディスク23の回転によって攪拌されることが的確に抑制される。
 本実施形態は、以下の効果を有する。
 (1)アウタドライバ22の内周部に形成されたスプライン突出部分31の頂面31aに、軸方向に延びる排出溝32を形成した。そのため、各インナディスク23と各アウタディスク24の間の隙間から各スペース30内部に流入したオイルは、排出溝32を伝わってスペース30外部に導かれ排出される。よって、各スペース30内部にオイルが滞留することを抑制できる。従って、各スペース30内部においてオイルが不要に攪拌されることを抑制でき、オイル攪拌による損失を低減できる。
 (2)排出溝32は、軸方向に平行に延びるように、且つ頂面31aの軸方向第1端から軸方向第2端まで延びる形状に形成した。そのため、アウタドライバ22の内周部において、インナディスク23とアウタディスク24それぞれの外周面に対向する部分のオイルは、排出溝32を伝わることによって、外部に直接排出できる。従って、各スペース30外部に一旦排出されたオイルは、インナディスク23の回転によって攪拌されることが的確に抑制される。よって、オイル攪拌によるクラッチ20の損失を好適に低減できる。
 上記実施形態は、以下のように変更して実施してもよい。
 ・排出溝32を一定の太さに形成することに限らず、延設方向の一方側に向かって徐々に太くなる形状に形成してもよい。具体的には、例えば図9に示すように、排出溝42の幅が、排出溝42の延設方向の一方側に向かうに連れて徐々に広くなる形状に形成してもよい。また、図10に示すように、排出溝52の深さが、排出溝52の延設方向の一方側に向かうに連れて徐々に深くなる形状に形成する構成を採用できる。
 こうした構成によれば、排出溝42,52の底壁が延びる方向を、スペース30(図8参照)から排出溝42,52内部に流入するオイル流れに対して、直交方向から傾斜させて形成できる。図9と図10の白抜矢印は、それぞれスペース30から排出溝42,52内部に流入するオイル流れを示す。オイル流れは、各インナディスク23の回転に伴う遠心力によって排出溝42,52に流入し、排出溝42,52の内壁としての底壁に衝突する。その結果、オイル流れは、図9と図10に黒塗矢印で示すように、それぞれ排出溝42,52の太い部分に向かう方向に偏向する。従って、スペース30内部のオイルは、排出溝42,52を伝わることによって、予め定めた方向に向かって誘導して排出できる。
 こうした構成を採用する場合、図8において、クラッチ20からピストン28に向かって、排出溝42,52を徐々に太くする形状に形成することが望ましい。すなわち、クラッチ20に対して、クラッチ20の構成部品以外の回転体が配設されない軸方向隣接部分に向かって、オイル流れを排出するのが好ましい。この場合、クラッチ20外部に排出されたオイルは、例えば他の湿式多板クラッチ14の構成部品などの回転体と干渉して不要に攪拌されるようなことが抑制される。よって排出溝42,52は、オイル攪拌による損失を好適に低減できる。
 ・排出溝32の延設形状は、全てのインナディスク23とアウタディスク24に対向するスプライン突出部分31の頂面31aの部分から、軸方向外方に延びる形状であれば任意に変更できる。そうした排出溝の延設形状としては、例えば頂面31aの軸方向端部以外の部分が、排出溝32の終点になる延設形状などを採用できる。
 こうした構成によっても、各スペース30内部のオイルは、インナディスク23とアウタディスク24それぞれの外周面に対向するアウタドライバ22の内周部から、排出溝32を伝わって外部に直接排出される。そのため、各スペース30外部に一旦排出されたオイルは、インナディスク23の回転によって攪拌されることが的確に抑制され、オイル攪拌による損失を好適に低減できる。
 ・排出溝32は、スプライン突出部分31の頂面31aの軸方向第1端から軸方向第2端まで延びる形状に形成することに限らない。排出溝32は、インナディスク23の回転方向における頂面31aの回転方向前端または回転方向後端から延びる形状に形成してもよい。つまり頂面31aの回転方句先行端や回転方向後行端を、排出溝32の始点にしてもよい。こうした構成では、各スペース30内部のオイルは、排出溝32を伝わって、アウタスプライン22sの窪み部分に排出される。
 自動変速機10の軽量化を図るため、肉薄の変速機ケース12が採用される場合、アウタスプライン22sの窪み部分の深さが浅いために、スプライン突出部分31の頂面31aに形成可能な排出溝の深さも浅くなってしまう。そのため、単にスプライン突出部分31の頂面31aに排出溝62を形成するだけだと、図11に一例を示すように、頂面31aに形成した係合凹部65aに取付けたスナップリング(一点鎖線)が、排出溝62内部のオイル流れを遮断してしまう虞がある。
 そうした自動変速機においては、図12や図13にそれぞれ一例を示すように、排出溝71,82,83,84を、第1スナップリング25~第3スナップリング27がオイル流れを遮断しないように延設すればよい。図12の例では、排出溝72は、頂面31aの回転方向先端(図12の左端)から、回転方向後端(図12の右端)まで延びる形状に形成される。また図13の例では、排出溝82,83,84はそれぞれ、頂面31aの回転方向前端と回転方向後端のうちの少なくとも一方において開口する。これら排出溝71,82,83,84は、第1係合凹部25aと第2係合凹部26aの間に位置し、且つスプライン突出部分31の延設方向つまり軸方向に対して、斜めに延びる。こうした構成を採用することによって、スプライン突出部分31の頂面31aに第1スナップリング25~第3スナップリング27が取付けられても遮られずに、各スペース30内部のオイルは、排出溝71,82,83,84を伝わって外部に排出される。具体的には、各スペース30内部のオイルを、アウタスプライン22sの窪み部分に排出する機能を確保できる。
 図12と同様に、図14と図15の排出溝92,102,103,104は、頂面31aの回転方向前端を始点にして延設することが望ましい。図14の排出溝92は、頂面31aの回転方向前端(図14の右端)から、第1係合凹部25aまで延びる形状に形成される。また図15の排出溝102,103,104は、いずれも頂面31aの回転方向前端(図15の右端)を始点とする。排出溝102の終点は、第1係合凹部25aである。排出溝103,104それぞれの終点は、頂面31aの回転方向端部以外の部分である。
 インナディスク23の回転に伴う遠心力によって生じるオイル流れは、インナディスク23に連れ回りするため、回転方向前方に向かって流れる。そのため、仮に各スペース30内部のオイルが、インナディスク23の回転方向後方に向かって排出されると、排出されたオイルが、遠心力によって生じるオイル流れに衝突し、オイル攪拌が生じ、従って損失が大きくなる虞がある。
 この点、図14と図15のように、排出溝92,102,103,104の始点を、回転方向前端に形成すると、各スペース30内部のオイルは、排出溝92,102,103,104を伝わって回転方向前方に排出され、その結果、遠心力によるオイル流れに円滑に合流する。従って、各スペース30から排出されるオイル流れが、遠心力によって生じるオイル流れと干渉することを抑制できる。つまりオイル攪拌を抑制でき、オイル攪拌による損失を好適に抑制できる。
 ・本発明に係る湿式多板クラッチは、遊星歯車機構のリングギアと自動変速機のケース(アウタドラム)との間の連結と非連結を切替えるものに限らず、遊星歯車機構の各回転体と他の遊星歯車機構の回転体との間の連結と非連結を切替えるものにも適用できる。

Claims (8)

  1.  インナドライバとアウタドライバの連結と非連結とを切替える湿式多板クラッチであって、前記インナドライバは回転して軸方向を規定し、前記アウタドライバは前記インナドライバに対して径方向外方に配設され、前記湿式多板クラッチは、
     前記インナドライバの外周部にスプライン嵌合された複数のインナディスクと、
     前記アウタドライバの内周部にスプライン嵌合された複数のアウタディスクと
    を備え、
     前記インナディスクと前記アウタディスクは、前記軸方向に交互に並び、且つ相対回転可能に配設され、
     前記アウタドライバの内周部に形成されたスプラインの突出部分の頂面には、前記軸方向に延びる排出溝が形成されていることを特徴とする、湿式多板クラッチ。
  2.  請求項1記載の湿式多板クラッチにおいて、
     前記頂面は対向部分、第1部分および第2部分を有し、前記対向部分は前記インナディスクと前記アウタディスクに対向し、前記第1部分は前記対向部分に対して前記軸方向の一方側であり、前記第2部分は前記対向部分に対して前記軸方向の他方側であり、
     前記排出溝は前記第1部分から前記第2部分まで延設されることを特徴とする、湿式多板クラッチ。
  3.  請求項2記載の湿式多板クラッチにおいて、
     前記排出溝は、前記頂面の軸方向第1端から軸方向第2端まで延びるように形成されることを特徴とする、湿式多板クラッチ。
  4.  請求項3記載の湿式多板クラッチにおいて、
     前記排出溝は前記軸方向に平行に延び、
     前記延出溝の太さは、前記延出溝の延設方向のうちの一方向に向かって徐々に太くなる形状に形成されることを特徴とする、湿式多板クラッチ。
  5.  請求項4記載の湿式多板クラッチにおいて、
     前記湿式多板クラッチに隣接する第1隣接部分と第2隣接部分が規定され、
     前記軸方向に第1隣接部分、前記湿式多板クラッチ、および第2隣接部分が順に並び、前記第1隣接部分には、前記湿式多板クラッチの構成部品以外の回転体が配設されるが、前記第2隣接部分には前記回転体は配設されず、
     前記排出溝の太さは、前記第2隣接部分に向かうに連れて徐々に太くなる形状に形成されることを特徴とする、湿式多板クラッチ。
  6.  請求項1記載の湿式多板クラッチにおいて、
     前記頂面は、前記インナドライバの回転方向に関する前端である回転方向前端と、回転方向後端とを有し、
     前記排出溝は、前記回転方向前端と前記回転方向後端のうちの一方から延びるように形成されることを特徴とする、湿式多板クラッチ。
  7.  請求項1記載の湿式多板クラッチにおいて、
     前記頂面は、前記インナドライバの回転方向に関する前端である回転方向前端と、回転方向後端とを有し、
     前記排出溝は、前記回転方向前端から延びるように形成されることを特徴とする、湿式多板クラッチ。
  8.  請求項6または7記載の湿式多板クラッチにおいて、
     前記頂面は前記インナドライバの回転方向に延びる係合凹部を有し、
     前記湿式多板クラッチは前記係合凹部に係合するスナップリングを有し、前記スナップリングは前記アウタディスクと前記インナディスクが前記軸方向に移動することを制限し、
     前記排出溝は、前記スナップリングが前記排出溝内部のオイル流れを遮断しないようにした形状で延設されることを特徴とする、湿式多板クラッチ。
PCT/JP2009/053599 2009-02-26 2009-02-26 湿式多板クラッチ WO2010097931A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/053599 WO2010097931A1 (ja) 2009-02-26 2009-02-26 湿式多板クラッチ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/053599 WO2010097931A1 (ja) 2009-02-26 2009-02-26 湿式多板クラッチ

Publications (1)

Publication Number Publication Date
WO2010097931A1 true WO2010097931A1 (ja) 2010-09-02

Family

ID=42665158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053599 WO2010097931A1 (ja) 2009-02-26 2009-02-26 湿式多板クラッチ

Country Status (1)

Country Link
WO (1) WO2010097931A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219975A (ja) * 2011-04-13 2012-11-12 Honda Motor Co Ltd クラッチ構造
DE102011076035A1 (de) * 2011-05-18 2012-11-22 Zf Friedrichshafen Ag Lamellenbremse und Lamelle einer Lamellenbremse
CN106895133A (zh) * 2015-12-17 2017-06-27 罗伯特·博世有限公司 用于发动机起动机的齿轮轴及发动机起动机
CN114270063B (zh) * 2019-08-21 2024-05-24 克诺尔商用车制动系统有限公司 用于引起降低的拖曳功率的离合器盘、摩擦盘和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122033U (ja) * 1984-01-27 1985-08-17 トヨタ自動車株式会社 自動車用自動変速機の摩擦係合装置
JPH0419426A (ja) * 1990-05-10 1992-01-23 Nissan Motor Co Ltd 湿式多板クラッチ装置
JPH04125317A (ja) * 1990-09-13 1992-04-24 Nissan Motor Co Ltd 湿式多板締結装置
JPH11101265A (ja) * 1997-09-19 1999-04-13 Mascotech Inc 車両用変速装置クラッチハウジングを成形する方法
JP2001336545A (ja) * 2000-05-26 2001-12-07 Exedy Corp クラッチドラム
JP2005024014A (ja) * 2003-07-03 2005-01-27 Nsk Warner Kk 湿式多板クラッチ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122033U (ja) * 1984-01-27 1985-08-17 トヨタ自動車株式会社 自動車用自動変速機の摩擦係合装置
JPH0419426A (ja) * 1990-05-10 1992-01-23 Nissan Motor Co Ltd 湿式多板クラッチ装置
JPH04125317A (ja) * 1990-09-13 1992-04-24 Nissan Motor Co Ltd 湿式多板締結装置
JPH11101265A (ja) * 1997-09-19 1999-04-13 Mascotech Inc 車両用変速装置クラッチハウジングを成形する方法
JP2001336545A (ja) * 2000-05-26 2001-12-07 Exedy Corp クラッチドラム
JP2005024014A (ja) * 2003-07-03 2005-01-27 Nsk Warner Kk 湿式多板クラッチ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219975A (ja) * 2011-04-13 2012-11-12 Honda Motor Co Ltd クラッチ構造
DE102011076035A1 (de) * 2011-05-18 2012-11-22 Zf Friedrichshafen Ag Lamellenbremse und Lamelle einer Lamellenbremse
CN106895133A (zh) * 2015-12-17 2017-06-27 罗伯特·博世有限公司 用于发动机起动机的齿轮轴及发动机起动机
CN106895133B (zh) * 2015-12-17 2022-08-02 索恩格汽车德国有限责任公司 用于发动机起动机的齿轮轴及发动机起动机
CN114270063B (zh) * 2019-08-21 2024-05-24 克诺尔商用车制动系统有限公司 用于引起降低的拖曳功率的离合器盘、摩擦盘和系统

Similar Documents

Publication Publication Date Title
JP3124493U (ja) 湿式デュアルクラッチの冷却構造
US7731623B2 (en) Automatic transmission
JP4656211B2 (ja) 摩擦係合装置
JP2017020654A (ja) 自動車変速機用シフト装置
JP5333651B2 (ja) ロックアップクラッチ
US20160215830A1 (en) Friction engagement element
JP2005233426A (ja) 振動ダンパを備えたクラッチアセンブリー
WO2010097931A1 (ja) 湿式多板クラッチ
JP2011089577A (ja) トルクコンバータ
US7481305B2 (en) Lock-up mechanism for torque converter
US20180202500A1 (en) Clutch device and power transmission device
US8061498B2 (en) Wet clutch friction plate
JP6323082B2 (ja) 自動変速機
JP2016125558A (ja) 変速装置
JP2010255841A (ja) 多板摩擦要素
JP2016125557A (ja) クラッチおよびそれを備えた変速装置
US11209051B2 (en) Clutch assembly pressure plate with tapered face
JP6589717B2 (ja) 動力伝達装置
JP2009121631A (ja) 自動変速機のピストン装置
US20050034952A1 (en) Wet multi-plate clutch
US10221923B2 (en) Multi-stage transmission
JP6435855B2 (ja) クラッチおよびそれを備えた変速装置
JP6194834B2 (ja) 自動変速機
US11536322B2 (en) Automatic transmission
JP2017106548A (ja) 変速機及び支持構造の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP