WO2010097204A2 - Wasserrad - Google Patents

Wasserrad Download PDF

Info

Publication number
WO2010097204A2
WO2010097204A2 PCT/EP2010/001130 EP2010001130W WO2010097204A2 WO 2010097204 A2 WO2010097204 A2 WO 2010097204A2 EP 2010001130 W EP2010001130 W EP 2010001130W WO 2010097204 A2 WO2010097204 A2 WO 2010097204A2
Authority
WO
WIPO (PCT)
Prior art keywords
blade
water
wheel
waterwheel
depth
Prior art date
Application number
PCT/EP2010/001130
Other languages
English (en)
French (fr)
Other versions
WO2010097204A4 (de
WO2010097204A3 (de
Inventor
Hermann Riegerbauer
Original Assignee
Hermann Riegerbauer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EA201101091A priority Critical patent/EA201101091A1/ru
Application filed by Hermann Riegerbauer filed Critical Hermann Riegerbauer
Priority to CA2752343A priority patent/CA2752343A1/en
Priority to JP2011551436A priority patent/JP2012518749A/ja
Priority to AU2010219135A priority patent/AU2010219135A1/en
Priority to US13/138,435 priority patent/US20110299988A1/en
Priority to BRPI1008728A priority patent/BRPI1008728A2/pt
Priority to CN2010800097261A priority patent/CN102369351A/zh
Priority to RS20110370A priority patent/RS20110370A1/en
Publication of WO2010097204A2 publication Critical patent/WO2010097204A2/de
Publication of WO2010097204A3 publication Critical patent/WO2010097204A3/de
Publication of WO2010097204A4 publication Critical patent/WO2010097204A4/de
Priority to IL214598A priority patent/IL214598A0/en
Priority to NO20111173A priority patent/NO20111173A1/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/712Shape curved concave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a water wheel, preferably a underschl foundedes or mittschl foundedes waterwheel with horizontal hub, wherein along the Rad chiefs blade arrangements are provided for converting the motion and possibly also the energy of the water stream in a rotational movement of the water wheel, wherein the blade assemblies comprise at least two blade blades and the vane fins have different sizes.
  • Water wheels have been in use for a very long time. Such water wheels were used in particular for the power supply of mills and hammer mills. Both undershot and overshot waterwheels were only set for a relatively low speed and the energy utilization of the water flow was deficient. The technological development of such water wheels has therefore largely come to an end, as by the development of turbines of various types high efficiency and high speeds could be achieved, which subsequently made the production of electric power economically reasonable.
  • this object is achieved in that the outermost blade lamella has a greater blade depth than the other inner blade lamellae of the blade assembly.
  • the inner blade lamellae of a blade arrangement have a blade depth increasing inwards from the wheel circumference, that the blade lamellae of a blade arrangement are offset from the wheel circumference inwards and against the flow direction of the water flow and that the blade arrangements are tapered inward.
  • the blade lamellae can each be arranged with inwardly tapering distances from each other.
  • each blade blade is bent, wherein the convex curvatures are directed in the direction of rotation of the water wheel.
  • the extreme blade furrow provided with the largest blade depth has a blade depth of at least twice the water flow depth.
  • the inner ends of the outermost blade lamellae can be arranged in the direction of the wheel hub of the waterwheel.
  • the inner ends of the outermost ends of the outermost blade louvers may be inclined against the inflow direction of the water and thus bent away from the radial orientation.
  • the tan At the outer ends of the vane blades the edges on the wheel circumference preferably have an angle of 45 ° + 5 °.
  • the water wheel is further characterized in that the inner blade lamellae and possibly also the outermost blade lamella have a hydrofoil-like cross-sectional profile, and are arranged such that tapered flow channels for the water are formed between the adjacent blade louvers.
  • a hydroelectric plant may be formed by having at least one waterwheel with at least some of these features.
  • the arrangement of the water wheel with horizontal hub means that the individual vane fins between the vertically standing Radwangen lie substantially horizontally, although within the scope of the invention, the vane blades are also oblique to the Radwangen or ben may have a deviating from the straight shape.
  • the respective outer blade lamellae are those which are arranged closest to the wheel circumference or directly on the wheel circumference.
  • the inner vane lamellae are those that have a lesser or least radial distance from the hub.
  • the respective water depth is the depth of the water flow, which allows an optimal work of the water wheel and for which the water wheel is designed.
  • the high rotational speed of the water wheel resulting from the invention allows a higher immersion depth of the water wheel in the rear water. As the wheel dips deeper, the fall of the water in the inlet of the wheel increases.
  • a smooth running behavior can be achieved by dividing the space between the Radwangen and in between the corresponding shortened slats are mounted offset on the circumference.
  • the waterwheel may also have the feature that it is formed by joining two water wheels to a single water wheel with three Radwangen and that the blade assemblies of the two Wasserradhcann are offset in their rotational position to each other.
  • the use of the water wheel according to the invention may of course also be useful if not the optimal water flow depth, but too low or a slightly too large water depth is present.
  • Figure 1 is a section through a hydroelectric power plant and Figure 2 is a section along the line M-II in Figure 1.
  • Figure 3 is a plan view of this hydroelectric power plant.
  • Figure 4 shows schematically the flow conditions on the waterwheel and
  • Figure 5 shows the scheme of the arrangement of the vane blades between the Radwangen of the waterwheel.
  • FIGS. 6 and 7 show in detail two examples of the arrangement of the blade lamellae of a blade arrangement.
  • a power plant is shown schematically.
  • the water flow flows in the direction of the flow direction 1 into the water inlet channel 2, which has a sedimentation tank 3.
  • An overflow channel 4 is provided to receive excess water or to steer the entire water flow by means of a weir (8, 9) on the water wheels 5.
  • a weir 8, 9) on the water wheels 5.
  • two water wheels are arranged next to each other. But it may also be provided only a single waterwheel or a plurality of water wheels next to each other.
  • the blade assemblies 15 between the respective Radwangen 12 are indicated only schematically by straight lines.
  • the water channel has in a known manner via an accelerator section 6, which prefers an increase in the bottom of the water inlet and a subsequent sloping route for the watercourse and serves to increase the flow rate and the generation of a defined water flow.
  • FIG. 3 shows the schematic plan view of this power plant, the associated weirs 8, 9 being shown only schematically.
  • the watercourse is shown schematically, wherein the height ratios and slopes of the flow path are not drawn to scale.
  • the water flow has in the water inlet channel an inlet water depth he, which decreases along the accelerator section 6 and the water flow depth h, which represents the effective water flow, which exerts its force on the water wheel.
  • Each water wheel has a water flow depth that is optimal for the work of the water wheel and to which the dimensions of the water wheel are placed.
  • the outlet water depth ha does not fall below the water flow depth h.
  • the outlet water depth ha can also be greater than the water flow depth h, as dashed with ha'einge plausible.
  • the weir 9 shown in FIGS. 1 and 4 limits the water flow depth and is preferably adjustable in height for this purpose. With complete lowering of the weir 9 of the water inlet is shut off, after which, for example, the water wheel is dry and can be maintained.
  • FIG. 5 shows schematically and in section a cross-section through the water wheel according to the invention, as it interacts with the incoming water flow 7.
  • the wheel is shown only over a small part of its wheel circumference 22, and of the vane arrangements 15 arranged along the entire circumference of the water wheel only those five vane arrangements are shown, which are in contact with the water in the drawing.
  • Each blade assembly 15 has an outermost blade louver 13 having a larger blade depth 23 (see FIG. 6) than the other blade louvers 14, 16 and 17.
  • the number of inner blade blades 14, 16, 17 can be adapted to the circumstances at least one or more inner blade blades may be provided.
  • the pointing to the wheel hub 21 lines 19 are only constructive guidelines and illustrate in this embodiment, the orientation of the outermost blade blades 13 in the direction of the hub 21 of the water wheel.
  • the Radwangen 12 may be formed as a solid surfaces, between which lie the blade assemblies. However, other cheek constructions may also be provided, such as strut constructions which have not been completely closed since. A further embodiment may also be to provide on the hub 22 only a central Radwange, on both sides of the blade assemblies extend outward.
  • Figures 6 and 7 show an enlarged view of the arrangement of the blade blades within a blade assembly in two variants.
  • FIG. 6 also indicates the flow pattern of the inflowing water with flow lines 20.
  • turbulences of the inflowing water which prevents high flow of the water over the entire blade depth of the outermost blade lamella 13, are produced after flowing through the lamellar arrangement. This ensures that the entire kinetic energy of the inflowing water is converted into the rotational movement of the water wheel. Furthermore, it is ensured that the inflowing water can flow out of the blade arrangement on the shortest path and thus does not hinder the rotational movement.
  • FIG. 7 shows a further embodiment in a representation according to FIG. 6, wherein the inner blade louvers 14, 16 and 17 are profiled like a wing.
  • the inner blade louvers 14, 16 and 17 are profiled like a wing.
  • the outermost blade lamella 13 may have such a wing-like profiling, as the inner blade blades 14, 16, 17 of Figure 7.
  • the fins are at an angle ⁇ of about 45 ° to the tangent to the wheel circumference 22, as in Figure 6 is drawn with auxiliary lines.
  • An angular range of 45 ° ⁇ 5 ° is advantageous.
  • the effect of the blade arrangement according to the invention is particularly characterized in that the flow velocity of the water is converted almost without loss in the peripheral speed of the water wheel and thus in a high rotational speed.
  • Such water wheels are thus energy efficient and in addition to produce even at low cost.
  • the blade depth 23 of the outermost blade lamellae 13 depends on the water depth of the inflowing water.
  • the depth is preferably at least twice the height of the water, and in any case must be so great that the inflowing water can not overflow over the inner edges of the outermost blade lamellae.
  • the blade arrangement according to the invention also has the advantage that an efficient use of the water and a constant efficiency is ensured even if the actual water level is above or below the line of the optimum water level.
  • the inflowing water first fills the outermost blade lamella, since this is the first to dip into the water.
  • the inflowing water rises between the blade lamellae and in the region of the inner ends of the blade lamellae, the inflowing water is swirled and turned against the flow direction. directs.
  • the further inflowing between the slats water is braked, so that the flow of energy is transferred to the water wheel.
  • Another effect is achieved by trapping and compressing air present there between the high-flow water streams of the blade blades and the waters flowing from the inside to the outside. This contributes to increasing the service life of the water wheel and in an advantageous manner is increasingly introduced atmospheric oxygen in the water.
  • stabilization of the blades may be necessary. This can e.g. achieved with struts, not shown here between the blade blades, the number of struts can be selected according to the requirements.
  • the preferred material for the waterwheel is steel. Parts of the water wheel can also consist of aluminum alloys, wood and plastic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Die Erfindung betrifft ein Wasserrad, bevorzugt ein unterschlächtiges oder mittelschlächtiges Wasserrad mit horizontaler Radnabe (21), wobei entlang des Radumfangs (22) Schaufelanordnungen (15) zur Umsetzung der Bewegungs- und gegebenenfalls auch Lageenergie des Wasserstroms in eine Drehbewegung des Wasserrades vorgesehen sind, wobei die Schaufelanordnungen (15) mindestens zwei Schaufellamellen umfassen und die Schaufellamellen unterschiedliche Größen aufweisen, dadurch gekennzeichnet, dass die äußerste Schaufellamelle (13) eine größere Schaufeltiefe (23) aufweist als die anderen inneren Schaufellamellen (14, 16, 17) der Schaufelanordnung. Weiters betrifft die Erfindung ein Wasserkraftwerk mit ein oder mehreren derartigen Wasserrädern.

Description

Wasserrad
Die Erfindung betrifft ein Wasserrad, bevorzugt ein unterschlächtiges oder mit- telschlächtiges Wasserrad mit horizontaler Nabe, wobei entlang des Radumfangs Schaufelanordnungen zur Umsetzung der Bewegungs- und gegebenenfalls auch Lageenergie des Wasserstroms in eine Drehbewegung des Wasserrades vorgesehen sind, wobei die Schaufelanordnungen mindestens zwei Schaufellamellen umfassen und die Schaufellamellen unterschiedliche Größen aufweisen.
Wasserräder sind seit sehr langer Zeit im Gebrauch. Solche Wasserräder wurden insbesondere für die Kraftversorgung von Mühlen und Hammerwerken eingesetzt. Sowohl unterschlächtige als auch oberschlächtige Wasserräder waren nur für eine relativ geringe Drehzahl eingerichtet und die Energieausnützung des Wasserstromes war mangelhaft. Die technologische Entwicklung derartiger Wasserräder hat daher weitgehend ein Ende gefunden, als durch die Entwicklung von Turbinen verschiedener Bauart eine hohe Effizienz und auch hohe Drehzahlen erzielt werden konnten, die in weiterer Folge auch die Erzeugung von elektrischem Strom wirtschaftlich sinnvoll machten.
Allerdings besteht ein ständiger und auch steigender Bedarf nach Kleinkraftwerken, die bei nur geringen Eingriffen in den natürlichen Wasserlauf eine Stromerzeugung ermöglichen, sodass jetzt eine Weiterentwicklung von Wasserrädern wieder sinnvoll geworden ist.
Bekannte unterschlächtige oder mittelschlächtige Wasserräder haben überwiegend einteilige durchgehende Schaufeln, die jedoch hinsichtlich der Strömungsverhältnisse ungünstig sind. Beim Eintauchen der Schaufeln in den Wasserstrom und auch beim Austreten der Schaufel aus dem Wasserstrom kommt es zu Energieverlusten, wobei Wasservolumina nutzlos verdrängt oder angehoben werden. Dadurch ist der Wir- kungsgrad stark herabgesetzt und auch die erzielbaren Drehzahlen sind gering. Wenn die durchgehenden Schaufeln zur Nabe des Wasserrades hin geschlossen sind, kommt es zusätzlich noch zu einer Sogwirkung beim Ablaufen des Wassers, was das Wasserrad noch weiter hemmt. Zur Überwindung dieses Nachteiles ist durch die AT 503 184 A1 vorgeschlagen worden, dass die Schaufelanordnungen je eine äußere und wenigstens eine innere Schaufellamelle umfassen und die inneren Schaufellamellen vom Radumfang nach innen und gegen die Fließrichtung des Wasserstroms versetzt sind.
Die Praxis hat gezeigt, dass trotz der gegebenen Vorteile des zuvor genannten Wasserrades der Wirkungsgrad noch nicht optimal ist. Der auf die Schaufelanordnungen treffende Wasserstrom überträgt beim Stand der Technik nur einen Teil seiner kinetischen Energie auf das Wasserrad und ein Teil des Wasserstroms rinnt durch die La- mellen der Schaufelanordnungen hindurch, ohne seine kinetische Energie abzugeben.
Es ist somit Aufgabe der vorliegenden Erfindung, ein Wasserrad vorzusehen, welches einen höheren Wirkungsgrad als die bisherigen Wasserräder aufweist.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass die äußerste Schaufellamelle eine größere Schaufeltiefe aufweist, als die anderen inneren Schaufellamellen der Schaufelanordnung. Weitere Merkmale sind den Patentansprüchen, der Beschreibung und den Zeichnungen zu entnehmen.
Weitere vorteilhafte Merkmale sind, dass die inneren Schaufellamellen einer Schaufelanordnung eine vom Radumfang nach innen zunehmende Schaufeltiefe aufweisen, dass die Schaufellamellen einer Schaufelanordnung vom Radumfang nach innen und gegen die Fließrichtung des Wasserstroms versetzt sind und dass die Schaufelanordnungen sich nach innen verjüngend ausgebildet sind. Vorteilhaft können die Schaufel- lamellen jeweils mit nach innen hin sich verjüngenden Abständen zueinander angeordnet sein. Bevorzugt ist jede Schaufellamelle gebogen, wobei die konvexen Wölbungen in Drehrichtung des Wasserrades gerichtet sind.
Weitere Merkmale sind, dass die mit größter Schaufeltiefe versehene äußerste Schau- fellamelle eine Schaufeltiefe von wenigstens der zweifachen Wasserstromtiefe aufweist. Die inneren Enden der äußersten Schaufellamellen können in Richtung zur Radnabe des Wasserrades angeordnet sein. Alternativ können die inneren Enden der äußersten Enden der äußersten Schaufellamellen gegen die Anströmrichtung des Wassers geneigt und somit von der radialen Ausrichtung abgebogen sein. Die Tan- genten an den äußeren Enden der Schaufellamellen weisen mit der Tangente am Radumfang bevorzugt einen Winkel von 45° + 5° auf. Das Wasserrad ist weiters dadurch gekennzeichnet, dass die innenliegenden Schaufellamellen und gegebenenfalls auch die äußerste Schaufellamelle ein tragflügelartiges Querschnittsprofil aufweisen, und derart angeordnet sind, dass zwischen den nebeneinanderliegenden Schaufellamellen sich verjüngende Strömkanäle für das Wasser gebildet sind.
Ein Wasserkraftwerk kann dadurch ausgebildet sein, dass es zumindest ein Wasserrad mit wenigstens einigen dieser Merkmale aufweist.
Die Anordnung des Wasserrades mit horizontaler Nabe bedeutet, dass auch die einzelnen Schaufellamellen zwischen den vertikal stehenden Radwangen im wesentlichen horizontal liegen, obwohl im Rahmen der Erfindung die Schaufellamellen auch schräg zu den Radwangen stehen oder eine von der Geraden abweichende Form ha- ben können. Die jeweils äußeren Schaufellamellen sind jene, die am nächsten zum Radumfang oder direkt am Radumfang angeordnet sind. Die inneren Schaufellamellen sind jene, die einen geringeren oder den geringsten radialen Abstand zur Nabe aufweisen.
Die jeweils genannte Wassertiefe ist jene Tiefe des Wasserstromes, die eine optimale Arbeit des Wasserrades erlaubt und für die das Wasserrad ausgelegt ist.
Die durch die Erfindung resultierende hohe Drehgeschwindigkeit des Wasserrades erlaubt im Hinterwasser eine höhere Eintauchtiefe des Wasserrades. Im gleichen Ma- ße, wie das Rad tiefer eintaucht, erhöht sich die Fallhöhe des Wassers im Einlauf des Rades.
Ein ruhiges Laufverhalten kann dadurch erzielt werden, indem der Zwischenraum zwischen den Radwangen unterteilt wird und dazwischen die entsprechend verkürzten Lamellen am Umfang versetzt angebracht werden. Somit kann das Wasserrad auch das Merkmal aufweisen, dass es durch Zusammenfügen von zwei Wasserrädern zu einem einzigen Wasserrad mit drei Radwangen gebildet ist und dass die Schaufelanordnungen der beiden Wasserradhälften in ihrer Drehlage zueinander versetzt sind. Die Benutzung des erfindungsgemäßen Wasserrades kann selbstverständlich auch sinnvoll sein, wenn nicht die optimale Wasserstromtiefe, sondern eine zu geringe oder eine etwas zu große Wassertiefe vorliegt.
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben.
Die Figur 1 ist ein Schnitt durch ein Wasserkraftwerk und Figur 2 ein Schnitt nach der Linie M-Il in Figur 1. Figur 3 ist eine Aufsicht auf dieses Wasserkraftwerk. Figur 4 zeigt schematisch die Strömungsverhältnisse am Wasserrad und Figur 5 zeigt das Schema der Anordnung der Schaufellamellen zwischen den Radwangen des Wasserrades. Figuren 6 und 7 zeigen im Detail zwei Beispiele für die Anordnung der Schaufellamellen einer Schaufelanordnung.
In den Figuren 1 bis 3 ist ein Kraftwerk schematisch dargestellt. Der Wasserstrom fließt in Richtung der Fließrichtung 1 in den Wassereinlaufkanal 2, der ein Absetzbecken 3 aufweist. Ein Überströmkanal 4 ist vorgesehen, um überschüssiges Wasser aufzunehmen oder um den gesamten Wasserstrom mittels einer Wehr (8, 9) an den Wasserrädern 5 vorbeizulenken. Im vorliegenden Beispiel sind zwei Wasserräder ne- beneinander angeordnet. Es kann aber auch bloß ein einziges Wasserrad vorgesehen sein oder eine Mehrzahl von Wasserrädern nebeneinander.
Die Schaufelanordnungen 15 zwischen den jeweiligen Radwangen 12 sind nur schematisch durch gerade Striche angedeutet.
Der Wasserkanal verfügt in bekannter Weise über eine Beschleunigerstrecke 6, die am Wassereinlauf eine Erhöhung des Bodens und eine darauffolgende abfallende Strecke für den Wasserlauf vorzieht und der Erhöhung der Fließgeschwindigkeit sowie der Erzeugung eines definierten Wasserstroms dient.
Die Figur 3 zeigt die schematische Aufsicht auf dieses Kraftwerk, wobei die zugehörigen Wehre 8,9 nur schematisch dargestellt sind.
In Figur 4 ist schematisch der Wasserlauf dargestellt, wobei die Höhenverhältnisse und Steigungen der Fließstrecke nicht maßstäblich eingezeichnet sind. Der Wasserstrom hat im Wassereinlaufkanal eine Einlaufwassertiefe he, die sich entlang der Beschleunigerstrecke 6 verringert und die Wasserstromtiefe h ergibt, die den wirksamen Wasserstrom darstellt, der auf das Wasserrad seine Kraft ausübt. Bei je- dem Wasserrad gibt es eine Wasserstromtiefe, die für die Arbeit des Wasserrades optimal ist und auf die die Dimensionen des Wasserrades abgestellt sind.
Nach Durchlaufen des Wasserrades fließt das Wasser über den Wasserauslauf 10 ab, wobei es vorteilhaft ist, wenn die Auslaufwassertiefe ha die Wasserstromtiefe h nicht unterschreitet. Zufolge der Drehbewegung des Wasserrades in Drehrichtung 11 um die Drehachse 18 und der Radnabe 21 kommt es jedoch zumeist zu einem Aufstauen des auslaufenden Wassers, wodurch die Auslaufwassertiefe ha auch größer sein kann als die Wasserstromtiefe h, wie strichliert mit ha'eingezeichnet ist.
Die in den Figuren 1 und 4 eingezeichnete Wehr 9 begrenzt die Wasserstromtiefe und ist bevorzugt für diesen Zweck in der Höhe verstellbar. Bei völligem Absenken der Wehr 9 wird der Wassereinlauf abgesperrt, wonach beispielsweise das Wasserrad trockenliegt und gewartet werden kann.
Die Figur 5 zeigt schematisch und abgebrochen einen Querschnitt durch das erfindungsgemäße Wasserrad, wie es mit dem einlaufenden Wasserstrom 7 zusammenwirkt. Das Rad ist nur über einen geringen Teil seines Radumfanges 22 dargestellt und von den entlang des gesamten Umfanges des Wasserrades angeordneten Schaufelanordnungen 15 sind nur jene fünf Schaufelanordnungen eingezeichnet, die in der Zeichnung mit dem Wasser in Berührung stehen.
Jede Schaufelanordnung 15 weist eine äußerste Schaufellamelle 13 auf, die eine größere Schaufeltiefe 23 (siehe Fig. 6) aufweist, als die anderen Schaufellamellen 14, 16 und 17. Die Anzahl der inneren Schaufellamellen 14, 16, 17 kann den Gegebenheiten angepasst werden, wobei wenigstens eine oder mehr innere Schaufellamellen vorgesehen sein können. Die zur Radnabe 21 weisenden Linien 19 sind nur konstruktive Hilfslinien und verdeutlichen bei diesem Ausführungsbeispiel die Ausrichtung der äußersten Schaufellamellen 13 in Richtung zur Nabe 21 des Wasserrades. Als Alternative kann es auch vorteilhaft sein, die inner Kante der äußersten Schaufellamelle 13 gegen die Anströmrichtung 1 geneigt auszugestalten, (strichliert in Fig. 6 angedeutet), sodass die Abstände der inneren Kanten der inneren Schaufellamellen 14, 16, 17 zur äußersten Schaufellamelle 13 den Strömungsbedingungen angepasst werden können. Nach innen hin sind alle Schaufelanordnungen offen, sodass geschlossene Kammern vermieden sind, die in nachteiliger Weise Wasser aufnehmen und dessen Abfließen hindern könnten.
Die Radwangen 12 können als volle Flächen ausgebildet sein, zwischen denen die Schaufelanordnungen liegen. Es können aber auch andere Wangenkonstruktionen vorgesehen sein, wie z.B: Strebenkonstruktionen, die seitilich nicht vollständig geschlossen sind. Eine weitere Ausführungsform kann auch darin liegen, auf der Radnabe 22 lediglich eine mittige Radwange vorzusehen, zu deren beiden Seiten sich die Schaufelanordnungen nach außen erstrecken.
Die Figuren 6 und 7 zeigen in vergrößerter Darstellung die Anordnung der Schaufellamellen innerhalb einer Schaufelanordnung in zwei Varianten.
Gemäß Figur 6 sind alle Schaufellamellen 13, 14, 16, 17 aus Materialstücken gleicher Stärke gebogen, wobei die konvexen Wölbungen in Drehrichtung 11 gerichtet sind. In Figur 6 ist auch der Strömungsverlauf des anströmenden Wassers mit Strömungslinien 20 angedeutet. Durch die gebogene Ausbildung der jeweils nebeneinanderliegenden Lamellen und den dadurch gegebenen Verengungen ergeben sich nach dem Durchfließen durch die Lamellenanordnung Verwirbelungen des einströmenden Was- sers, welche ein Hochströmen des Wassers über die gesamte Schaufeltiefe der äußersten Schaufellamelle 13 verhindert. Dadurch ist sichergestellt, dass die gesamte kinetische Energie des anströmenden Wassers in die Drehbewegung des Wasserrades umgesetzt wird. Weiters ist sichergestellt, dass das eingeströmte Wasser auf kürzestem Weg wieder aus der Schaufelanordnung herausfließen kann und somit die Drehbewegung nicht behindert.
Für die Erzielung des erfindungsgemäßen Effektes ist grundsätzlich nur die erste innenliegende Schaufellamelle 14 nötig. Die zusätzlichen innenliegenden Schaufellamellen 16 und 17 können die Wirkung aber noch verstärken. Die Figur 7 zeigt eine weitere Ausführungsform in einer Darstellung gemäß Figur 6, wobei die innenliegenden Schaufellamellen 14, 16 und 17 tragflügelartig profiliert sind. Auch hier ergibt sich zwischen einander benachbarte Lamellen ein sich verengender Strömungskanal mit der gewünschten Wirkung der Verwirbelung nach dem Durchströmen des Wassers und dem Effekt des schnellen Abfließens des Wassers beim Herausheben der Schaufelanordnung aus dem Wasserstrom.
Auch die äußerste Schaufellamelle 13 kann eine solche tragflügelartige Profilierung aufweisen, wie die inneren Schaufellamellen 14, 16, 17 der Figur 7. An den jeweils außenliegenden Kanten 24 stehen die Lamellen in einem Winkel α von etwa 45° zur Tangente am Radumfang 22, wie in Figur 6 mit Hilfslinien eingezeichnet ist. Vorteilhaft ist ein Winkelbereich 45° ± 5°.
Die Wirkung der erfindungsgemäßen Schaufelanordnung ist insbesondere dadurch ausgezeichnet, dass die Fließgeschwindigkeit des Wassers fast ohne Verlust in die Umfangsgeschwindigkeit des Wasserrades und damit in eine hohe Umdrehungsgeschwindigkeit umgesetzt wird. Derartige Wasserräder sind somit energieeffizient und zusätzlich auch noch mit geringen Kosten herstellbar.
Die Schaufeltiefe 23 der äußersten Schaufellamellen 13 hängt von der Wassertiefe des einströmenden Wassers ab. Die Tiefe beträgt bevorzugt zumindest das Zweifache der Wasserhöhe he und muss jedenfalls so groß sein, dass das anströmende Wasser nicht über die inneren Kanten der äußersten Schaufellamellen überfließen kann.
Die erfindungsgemäße Schaufelanordnung hat auch den Vorteil, dass eine effiziente Nutzung des Wassers und ein konstanter Wirkungsgrad auch dann gewährleistet ist, wenn der tatsächliche Wasserstand über oder unter der Linie des optimalen Wasserstandes liegt. Durch die äußerste Schaufellamelle 13 mit der großen Schaufeltiefe 23 wird gewährleistet, dass das Wasser nicht durch das Wasserrad ungenutzt durchfließen kann. Das einströmende Wasser füllt zuerst die äußerste Schaufellamelle, da diese auch als erstes in das Wasser eintaucht. Das einströmende Wasser steigt zwischen den Schaufellamellen hoch und im Bereich der inneren Enden der Schaufellamellen wird das einströmende Wasser verwirbelt und gegen die Strömungsrichtung umge- lenkt. Dadurch wird das weiters zwischen den Lamellen einströmende Wasser gebremst, sodass die Strömungsenergie auf das Wasserrad übertragen wird. Ein weiterer Effekt wird dadurch erzielt, dass zwischen den hochströmenden Wasserströmen der Schaufellamellen und den von innen nach außen strömenden Wässern dort vor- handene Luft eingeschlossen und komprimiert wird. Dies trägt zur Erhöhung der Lebensdauer des Wasserrades bei und in vorteilhafter Weise wird verstärkt Luftsauerstoff in das Wasser eingebracht.
Für kleine Bauformen der Schaufelanordnungen kann eine Stabilisierung der Schau- fellamellen notwendig werden. Dies kann z.B. mit hier nicht dargestellten Verstrebungen zwischen den Schaufellamellen erzielt werden, wobei die Anzahl der Verstrebungen den Anforderungen gemäß gewählt werden kann.
Das bevorzugte Material für das Wasserrad ist Stahl. Teile des Wasserrades können aber auch aus Aluminiumlegierungen, Holz und Kunststoff bestehen.
Bezugszeichenliste
1. Fließrichtung
2. Wassereinlaufkanal
3. Absetzbecken
4. Überströmkanal
5. Wasserrad
6. Besch leu n igerstrecke
7. Wasser
8. Wehr
9. Wehr
10. Wasserauslauf
11. Drehrichtung
12. Radwange
13. äußerste Schaufellamelle
14. Lamelle
15. Schaufelanordnung
16. Lamelle
17. Lamelle
18. Drehachse
19. Linien
20. Strömungslinie
21. Radnabe
22. Radumfang
23. Schaufeltiefe
24. Kante he Einlaufwassertiefe h Wasserstromtiefe ha, ha' Auslaufwassertiefe
X' unterer Punkt α Winkel

Claims

Patentansprüche
1. Wasserrad, bevorzugt ein unterschlächtiges oder mittelschlächtiges Wasserrad mit horizontaler Radnabe (21), wobei entlang des Radumfangs (22) Schaufel- anordnungen (15) zur Umsetzung der Bewegungs- und gegebenenfalls auch
Lageenergie des Wasserstroms in eine Drehbewegung des Wasserrades vorgesehen sind, wobei die Schaufelanordnungen (15) mindestens zwei Schaufellamellen umfassen und die Schaufellamellen unterschiedliche Größen aufweisen, dadurch gekennzeichnet, dass die äußerste Schaufellamelle (13) eine grö- ßere Schaufeltiefe (23) aufweist als die anderen inneren Schaufellamellen (14,
16, 17) der Schaufelanordnung.
2. Wasserrad nach Anspruch 1 , dadurch gekennzeichnet, dass die inneren Schaufellamellen einer Schaufelanordnung (15) eine vom Radumfang (22) nach innen zunehmende Schaufeltiefe (23) aufweisen.
3. Wasserrad nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Schaufellamellen (13, 14, 16, 17) einer Schaufelanordnung (15) vom Radumfang (22) nach innen und gegen die Fließrichtung des Wasserstroms versetzt sind.
4. Wasserrad nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schaufelanordnungen (15) sich nach innen verjüngend ausgebildet sind.
5. Wasserrad nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Schaufellamellen (13, 14, 16, 17) jeweils mit nach innen hin sich verjüngenden Abständen zueinander angeordnet.
6. Wasserrad nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass jede Schaufellamelle (13, 14, 16, 17) gebogen ist, wobei die konvexen Wölbungen in Drehrichtung (11) des Wasserrades gerichtet sind.
7. Wasserrad nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die mit größter Schaufeltiefe (23) versehene äußerste Schaufellamelle (13) eine Schaufeltiefe von wenigstens der zweifachen Wasserstromtiefe (h) aufweist.
8. Wasserrad nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die inneren Enden der äußersten Schaufellamellen (13) in Richtung zur Radnabe (21) des Wasserrades angeordnet sind.
9. Wasserrad nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die inneren Enden der äußersten Enden der äußersten Schaufellamellen (13) gegen die Anströmrichtung (1) des Wassers geneigt und somit von der radialen Ausrichtung abgebogen sind.
10. Wasserrad nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Tangenten an den äußeren Enden (24) der Schaufellamellen mit der Tangente am Radumfang (22) einen Winkel (α) von 45° + 5° aufweisen.
11. Wasserrad nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die innenliegenden Schaufellamellen (14, 16, 17) und gegebenenfalls auch die äußerste Schaufellamelle (13) ein tragflügelartiges Querschnittsprofil aufweisen, und derart angeordnet sind, dass zwischen den nebeneinanderliegenden Schaufellamellen (13, 14, 16, 17) sich verjüngende Strömkanäle für das Wasser gebildet sind.
12. Wasserkraftwerk, dadurch gekennzeichnet, dass es ein oder mehrere Wasserräder gemäß einem der Ansprüche 1 bis 11 aufweist.
PCT/EP2010/001130 2009-02-25 2010-02-24 Wasserrad WO2010097204A2 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BRPI1008728A BRPI1008728A2 (pt) 2009-02-25 2010-02-24 roda hidráulica
CA2752343A CA2752343A1 (en) 2009-02-25 2010-02-24 Water wheel
JP2011551436A JP2012518749A (ja) 2009-02-25 2010-02-24 水車
AU2010219135A AU2010219135A1 (en) 2009-02-25 2010-02-24 Water wheel
US13/138,435 US20110299988A1 (en) 2009-02-25 2010-02-24 Water wheel
EA201101091A EA201101091A1 (ru) 2009-02-25 2010-02-24 Водяное колесо
CN2010800097261A CN102369351A (zh) 2009-02-25 2010-02-24 水轮
RS20110370A RS20110370A1 (en) 2009-02-25 2010-02-24 WATERCOLE
IL214598A IL214598A0 (en) 2009-02-25 2011-08-11 Water wheel
NO20111173A NO20111173A1 (no) 2009-02-25 2011-08-30 Vannhjul

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA313/2009 2009-02-25
AT0031309A AT507922A1 (de) 2009-02-25 2009-02-25 Wasserrad

Publications (3)

Publication Number Publication Date
WO2010097204A2 true WO2010097204A2 (de) 2010-09-02
WO2010097204A3 WO2010097204A3 (de) 2011-05-12
WO2010097204A4 WO2010097204A4 (de) 2011-07-28

Family

ID=42665980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/001130 WO2010097204A2 (de) 2009-02-25 2010-02-24 Wasserrad

Country Status (14)

Country Link
US (1) US20110299988A1 (de)
JP (1) JP2012518749A (de)
KR (1) KR20110122201A (de)
CN (1) CN102369351A (de)
AT (1) AT507922A1 (de)
AU (1) AU2010219135A1 (de)
BR (1) BRPI1008728A2 (de)
CA (1) CA2752343A1 (de)
CO (1) CO6420367A2 (de)
EA (1) EA201101091A1 (de)
IL (1) IL214598A0 (de)
NO (1) NO20111173A1 (de)
RS (1) RS20110370A1 (de)
WO (1) WO2010097204A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040585A (ja) * 2011-08-18 2013-02-28 Hajime Gokan 発電装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2834514A4 (de) * 2012-02-18 2016-02-24 Hydro Holding Llc Turbinensystem zur energieerzeugung aus einem flüssigkeitsfluss sowie entsprechende systeme und verfahren
CO6700144A1 (es) * 2013-06-07 2013-06-28 Univ Del Valle Máquina hidraulica para bajas caidas
CN105840394B (zh) * 2015-01-13 2018-06-22 总瀛企业股份有限公司 陆上水流发电装置
CN105275828B (zh) * 2015-11-06 2018-03-27 孙继辉 一种低扬程大流量液体输送装置
GB2551519B (en) * 2016-06-20 2021-04-14 Jane Carruthers Penelope Waterwheel
KR20230005283A (ko) 2020-06-25 2023-01-09 가부시키가이샤 엘리스 소수력 발전 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT503184A1 (de) 2006-02-14 2007-08-15 Hermann Riegerbauer Schaufel für ein schaufelrad

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1338890A (en) * 1917-11-20 1920-05-04 William H Wilber Water-power apparatus
US4005947A (en) * 1975-02-10 1977-02-01 Norton Joseph R Fluid operated rotor
CN2038957U (zh) * 1988-08-29 1989-06-07 成都科技大学 新型双击式水轮机装置
CN2089080U (zh) * 1990-09-15 1991-11-20 解贵福 带副叶片的水轮机转轮
JP3782752B2 (ja) * 2002-04-24 2006-06-07 東京電力株式会社 スプリッタランナを備えるポンプ水車
EP1529164B1 (de) * 2002-07-08 2007-05-02 Colin Regan Vorrichtung und verfahren zur krafterzeugung eines strömenden gewässers
US8403622B2 (en) * 2005-02-09 2013-03-26 Prime Energy Corporation Radial-flow, horizontal-axis fluid turbine
GB2447781B (en) * 2007-03-22 2012-03-21 Hugh Malcolm Ian Bell Improvements in or relating to waterwheels

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT503184A1 (de) 2006-02-14 2007-08-15 Hermann Riegerbauer Schaufel für ein schaufelrad

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040585A (ja) * 2011-08-18 2013-02-28 Hajime Gokan 発電装置

Also Published As

Publication number Publication date
JP2012518749A (ja) 2012-08-16
WO2010097204A4 (de) 2011-07-28
RS20110370A1 (en) 2012-08-31
CN102369351A (zh) 2012-03-07
IL214598A0 (en) 2011-09-27
WO2010097204A3 (de) 2011-05-12
BRPI1008728A2 (pt) 2016-03-15
US20110299988A1 (en) 2011-12-08
CA2752343A1 (en) 2010-09-02
AT507922A1 (de) 2010-09-15
AU2010219135A1 (en) 2011-09-08
CO6420367A2 (es) 2012-04-16
EA201101091A1 (ru) 2012-02-28
KR20110122201A (ko) 2011-11-09
NO20111173A1 (no) 2011-08-30

Similar Documents

Publication Publication Date Title
EP1177381B1 (de) Windkraftanlage mit vertikalrotor
DE60313618T2 (de) Vorrichtung und verfahren zur krafterzeugung eines strömenden gewässers
DE19957141B4 (de) Windkraftanlage mit Vertikalrotor und Frontalanströmung
WO2010097204A2 (de) Wasserrad
DE19963086C1 (de) Rotorblatt für eine Windenergieanlage
DE3213810A1 (de) Turbine und deren verwendung
DE112012005432T5 (de) Windturbine mit Gondelzaun
DE202006008289U1 (de) Windrichtungsunabhängige Windkraftanlage mit vertikalen Durchströmrotor
DE202010016013U1 (de) Windrichtungsunabhängige Windturbine mit vertikalem Rotor, mehrreihiger Einleitflächenkonstruktion und tropfenförmig profilierten Rotorblättern
DE112010004236B4 (de) Wasserkraftanlage
WO2012116678A1 (de) Vorrichtung zur nutzung von windkraft mit mindestens einem rotor
WO2008028675A2 (de) Windkraftanlage
WO2020016351A1 (de) Rotorblatt für eine windenergieanlage und windenergieanlage
DE10125299A1 (de) Vertikalachs-Windturbine
DE102010050878B3 (de) Unterschlächtiges Wasserrad
AT506106B1 (de) Wasserrad
DE102010016086A1 (de) Rotorblatt für H-Rotor
DE10340112A1 (de) Windkraftanlage
DE102007062483A1 (de) Strömungskraftanlage mit einem mehrere Flügel tragenden Rotor, der etwa radial zur Rotorachse angeströmt wird, und mit einer Mehrzahl von feststehenden Strömungsleitblechen, sowie Verfahren zum Betrieb dieser Strömungskraftanlage
DE202010009987U1 (de) Turbine III
DE10145865A1 (de) Wind- und Wasserkraftanlage mit vertikalen Durchströmrotoren
DE8228078U1 (de) Vertikalachsenrotor
DE3715265A1 (de) Windturbine
WO2023001843A1 (de) Rechenvorrichtung und kinetisches strömungskraftwerk
EP3470668A1 (de) Windkraftanlage zur umwandlung von windenergie in mechanische und elektrische energie sowie land- oder wasserfahrzeug mit einer solchen windkraftanlage als antrieb

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009726.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10706529

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2752343

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 214598

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 11104417

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 594657

Country of ref document: NZ

Ref document number: 13138435

Country of ref document: US

Ref document number: 2010219135

Country of ref document: AU

Ref document number: 201101091

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: P-2011/0370

Country of ref document: RS

WWE Wipo information: entry into national phase

Ref document number: 2011002048

Country of ref document: CL

WWE Wipo information: entry into national phase

Ref document number: 12348

Country of ref document: GE

Ref document number: 2011551436

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6101/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010219135

Country of ref document: AU

Date of ref document: 20100224

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117022406

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10706529

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1008728

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1008728

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110825