WO2008028675A2 - Windkraftanlage - Google Patents

Windkraftanlage Download PDF

Info

Publication number
WO2008028675A2
WO2008028675A2 PCT/EP2007/007826 EP2007007826W WO2008028675A2 WO 2008028675 A2 WO2008028675 A2 WO 2008028675A2 EP 2007007826 W EP2007007826 W EP 2007007826W WO 2008028675 A2 WO2008028675 A2 WO 2008028675A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotation
wind turbine
inlet surfaces
turbine according
Prior art date
Application number
PCT/EP2007/007826
Other languages
English (en)
French (fr)
Other versions
WO2008028675A3 (de
Inventor
Ramona Themel
Original Assignee
AeroVigor Hungária Kft.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AeroVigor Hungária Kft. filed Critical AeroVigor Hungária Kft.
Priority to EP07802209A priority Critical patent/EP2064444A2/de
Publication of WO2008028675A2 publication Critical patent/WO2008028675A2/de
Publication of WO2008028675A3 publication Critical patent/WO2008028675A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/711Shape curved convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/712Shape curved concave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to a wind turbine with a rotor whose axis of rotation is arranged transversely to the wind flow, for energy production, wherein a rotor according to the flow principle converts the energy and an outer inlet surface construction is provided to supply air to the rotor.
  • the areas of application of these plants are the industrial sector, wind farms and the home area.
  • the invention therefore has the task of creating a wind turbine of the type mentioned, with the aim of implementing as much flow energy in kinetic energy of the rotor. - A -
  • the object is achieved according to a first aspect of the invention by a wind turbine with the technical features indicated in claim 1, as well as according to a second aspect of the invention by a wind turbine with the technical features indicated in claim 27.
  • an ideal intake of the flow takes place in the first place and the flow is compressed precisely on the right side of the flow.
  • an ideal conversion of the flow energy can take place.
  • the system statics is protected by the fact that the achieved good frequency constancy an ideal weight and mass balance takes place.
  • the invention also makes it possible for the aerodynamics on the rotor blades to begin to work as quickly as possible. In the inventive design of the profiles of the rotor blades is therefore both as a preferred embodiment of the arrangement of
  • Einleit vomkonstrument according to the first aspect of the invention as well as a separate second aspect of the invention, a protection seen and claimed.
  • the system can run to hurricane without being damaged and without having to be shut down.
  • the system also fits into the landscape and is not as obtrusive, as is the case with the systems with horizontal axis. Cost-effective materials can be used to build the plant to achieve a positive cost / benefit effect.
  • the system according to the invention can work independent of the direction of the wind. It can comprise a foundation, a machine room, a tower-like machine structure and a roof.
  • the machine structure then preferably consists of a body made of two or more base plates, between which the inlet constructions are located.
  • the floors are preferably formed by the base floors, with one floor between two floors. Two floors thus have three floors.
  • the maximum height of the system is determined by the approved static calculation, as well as the possibilities of the system diameter and the possible rotor axis lengths.
  • the guide surfaces in the individual floors are advantageously arranged directly above one another. The flow in the system is compressed in the direction of the rotors, so that the flow velocity is increased.
  • the baffles are preferably seated in the plant such that "back-going vanes" (ie vanes not driven by the windstream in the desired direction of rotation) are freed from the front inflow
  • the rotor preferably has three vanes that operate on a flow-through principle The base of a Bernard cell and represents a conically upwardly running honeycomb shape.
  • the wind is better passed through this slope in the system.
  • the arrangement of the inlet surfaces is designed so that the flow always flows on the pointing in the direction of rotation of the rotor side of the rotor.
  • the large inlet surfaces preferably point in the direction of the rotor axis and are bent at the end in the direction of rotation of the rotor.
  • the 6 small inlet surfaces In between, preferably sit the 6 small inlet surfaces, which are preferably in the direction of rotation subsequent body edge in a parallel direction.
  • These small lead-in surfaces preferably correspond to one third of the large guide surfaces in their charge.
  • the roof may have an elevation in the middle and thus protrude so that the whole system is covered.
  • the wings of the rotor may consist of a straight piece in the inner part and in the outer, the wind flow facing part consist of a rounding.
  • the straight piece then preferably has the length of one sixth of the diameter of the rotor circle and the rounding is preferably exactly the curvature of one-eighth of the diameter of the rotor circle.
  • At The leading edge of the rotor blades may still be a chamfer attached.
  • the large baffles have a distance from the rotor due to the hexagonal design of the carcase. This space can be used to insert pointing in the direction of rotation of the rotor curvatures.
  • Figure 1 is a vertical section of a wind turbine as a large system.
  • Figure 2 is a horizontal section of the wind turbine.
  • Fig. 3 is a vertical section of a wind turbine in smaller
  • FIG. 4 shows a horizontal section of a rotor with three wings.
  • FIG. 8 shows a machine room body in the form of a hexagonal body.
  • a machine room 2 On a foundation 1 is a machine room 2, which is connected to a machine body 3.
  • the machine structure 3 exists from six pieces large inlet surfaces 4, six small inlet surfaces 5, the floors 6 and the rotor 7.
  • the machine structure 3 may consist of a different number of floors 12.
  • Each floor consists of a floor 6 above floor and a bottom floor 6 below, as well as large inlet surfaces 4 and small inlet surfaces. 5
  • the large inlet surfaces 4 and the small inlet surfaces 5 are with the shelves 6, the static components in the floor 12. The connection of these components is carried out by welding.
  • the top floor 12 receives a roof 13.
  • the vertical rotor system is arranged, which comprises the rotatable about the rotor axis 8 rotor 7.
  • the rotor system also includes a generator 15 and rotor floor 16 floors on the rotor floors 16, the rotor blades 9, 10 and 11 are arranged on each floor 12.
  • the direction of rotation of the rotor R is directed counterclockwise.
  • the rotor blades 9, 10 and 11 have in their design in the interior a straight profile 17 with a length of one-sixth of the rotor diameter 19.
  • the rotor blades 9, 10, 11 extend in a circular curve, the diameter of the curvature equal to one-eighth the diameter 19 of the rotor outer circle K is.
  • the flowed by the wind flow outer edges of the rotor blades 9, 10 and 11 are the rotor axis 8 exactly 120 ° apart.
  • the inner end 20 of the rotor blades 9, 10, 11 lies on a circle Ki about the center of the rotor axis 8, whose diameter is one quarter of the diameter 19 of the rotor outer circle K.
  • the rotor blades 9, 10 and 11 have in variant I (FIG. 6) on their front side a flat iron projection 21.
  • the large inlet surfaces 4 and the small inlet surfaces 5 have the particular task of covering the returning rotor blades 9, 10 and 11 and the flow as a whole to lead to the front in the direction of rotation of the rotor side.
  • Inlet surfaces 4 are provided on the rotor 7 adjacent in the direction of rotation of the rotor R (whose direction of rotation is directed counterclockwise) with a right curvature 22, so that the air diverted in the direction of rotation becomes.
  • the projection 23 of the large inlet surfaces 4 corresponds at least to the radius of the rotor outer circle K and they are aligned exactly to the center of the rotor axis 8.
  • the small inlet surfaces 5 are arranged in the circumferential direction exactly in the middle between the large inlet surfaces 4. These small inlet surfaces 5 have only one third of
  • the system In the flow direction S of the wind, the system is flowed around so that on the right (ie in the direction of rotation lying) leeward side of the Magnus effect cooperates and another compartment 25 served.
  • the static is loaded at hurricane forces only with the Flettner effect, which is not threatening.
  • the second variant of the wings 9, 10 and 11 shown in Fig. 7 has instead of the flat iron approach 21 a round rod made of iron 26 and a built pressure side tangent 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

Die Erfindung betrifft eine Windkraftanlage, umfassend einen Durchströmrotor (7) mit einer Mehrzahl von Rotorflügeln (9, 10, 11) welche um eine quer zur Richtung der Windströmung (S) verlaufende Drehachse (8) drehbar sind, und eine Einleitflächenkonstruktion mit einer Mehrzahl von Einleitflächen (4, 5), welche die Windströmung (S) den Rotorflügeln (9, 10, 11) zuführen, worin wenigstens ein Teil der Einleitflächen (4, 5) radial zu der Drehachse (8) des Rotors (7) hin ausgerichtet ist.

Description

Windkraftanlage
Beschreibung
Die Erfindung betrifft eine Windkraftanlage mit einem Rotor, dessen Drehachse quer zur Windströmung angeordnet ist, zur Energiegewinnung, wobei ein Rotor nach dem Durchströmungsprinzip die Energie umsetzt und eine äußere Einleitflächenkonstruktion vorgesehen ist, um dem Rotor Luft zuzuführen. Die Einsatzgebiete dieser Anlagen sind der Industriebereich, Windparks und der Eigenheimbereich.
Aus der DE 299 00 664 ist eine solche Strömungsenergieanlage bekannt. Damit bei dieser Anlage das Leitwerk überhaupt arbeitet, bedarf es zur Nachführung in Windrichtung einer sehr hohen Windgeschwindigkeit. Der Wind strömt an der Anlage nur vorbei, weil keine Strömungsantrichterung vorhanden ist. Das bedeutet, dass die Strömung an der freien Seite ausweicht. Es entsteht dabei ein Wirbelpolster, wobei die Strömung vorbeigeleitet wird. Dieser Zustand tritt sofort ein, wenn die Sättigung des Aufnah- mevolumens im Rotor erfolgt ist. Es ist weiterhin nachteilig, dass der Rotor ohne Durchströmung arbeitet. Die Anlage besitzt auch keine ausreichende Frequenzkonsistenz und fängt erst bei relativ hohen Windgeschwindigkeiten an zu arbeiten. Dabei wird aber nicht sofort Leistung erzeugt.
Aus der DE 195 14 499 ist eine weitere Windkraftanlage bekannt. Diese Anlage arbeitet nach dem Winddruckprinzip. Da sie keinen Durchströmrotor besitzt, werden nur etwa 20% aus der Strömung in Energie umgesetzt. Selbst der Winddruck kann sich in diesem Rotor nicht richtig entfalten. Wegen der schlechten Frequenzkonstanz unterliegen solche Anlagen großen Ausfallzeiten. Selbst bei Windgeschwindigkeiten von 10 bis 30 m/s bleiben sie immer Langsamläufer. Diese Anlage wird gegenüber anderen Anlagen, die mit aerodynamischer Flügelform und Durchströmung arbeiten, immer benachteiligt sein, da diese in der Lage sind, etwa 42% aus der Strömung umzusetzen. Da der nach dem Winddruckprinzip arbeitende Rotor immer sehr viel langsamer laufen wird als die Strömungsgeschwindigkeit, leidet die Statik der Anlage und auch das Drehmoment vor allem bei hohen Windlasten.
Aus der DE 199 20 560 ist eine weitere Strömungsanlage bekannt. Die dort vorgesehenen 12 Leitvorrichtungen erlauben nur eine 70%ige Nutzung der Frontanströmung. Durch die drei Rotorflügel und deren Form entsteht in der Rotormitte eine Drucksäule, die gleichermaßen die Durchströmung abbaut. Die aerodynamische Flügelform kann sich deshalb auch nicht entfalten.
Weiterhin ist aus der WO 81/00463 eine weitere Windkraftanlage bekannt. Die Anlage besitzt 12 vertikale Einleitflächen und 12 horizontale Einleitflächen. Im Rotor dieser Anlage sind 24 Schaufeln angeordnet. Nachteilig wirken in dieser Anlage die zu flach anliegenden Einleitflächen. Dadurch baut sich eine zu hohe Rückströmung in den Einleitflächen auf, welche die eigentliche Einströmung zum Rotor nicht zulässt. Dabei wird bereits ein hoher Anteil an Energie vernichtet. Die 24 Schaufeln im Rotor besitzen keine Durchströmung, wodurch die dringend nötige Durchströmung von etwa 15% stark unterschritten wird. Dadurch kann die einzige arbeitende Druckkraft von theoretisch 15% nicht einmal umgesetzt werden. Die Strömung bricht zusammen. Der Strömungsdruck arbeitet in den Rotorflügeln nur bis zum jeweiligen Leitflächenende und entlädt den Druck im nachfolgenden Fach. Die Folge ist ein unerwünschter Gegendruck.
Die DE 31 29 660 offenbart eine weitere Lösung für eine Windkraftanlage. Die Umsetzung der Windenergie in Rotationsenergie erfolgt mit einer Vielzahl von Rotorblättem an den Rotoren. Die Rotorachse selbst steht dabei orthogonal zur Ebene der möglichen Windrichtung. Dieser Vertikalläufer er- zeugt seine Leistung, indem der Rotor von seinem Stator umgeben ist, der eine Vielzahl von gleich beabstandeten Statorblättern aufweist. Diese Statorblätter bilden zum Rotor hin sich verjüngende Kanäle, die schräg zum Rotor angeordnet sind. Diese Anlage weist den Nachteil auf, dass sie mit der konstruktiven Anordnung der Einleitflächen einen zu geringen Teil der Frontalanströmfläche zur Energieumsetzung nutzt. Die Ursache für diesen Nachteil liegt in den zu flach anliegenden Einleitflächen, wodurch nur höchstens 75% der Frontalanströmfläche genutzt werden kann. Die verbleibenden 25% werden einfach um die Anlage herum nach außen abgeleitet. Die dringend nötige Durchströmung von mindestens 15% wird auf jeden Fall unterschritten, da dieser Rotor keine Durchströmmöglichkeit besitzt. Es kann sogar der Fall eintreten, dass die Strömung zusammenbricht oder die Anlage nur bei besonders hohen Strömungsgeschwindigkeiten ab etwa 30 m/s ar- beitet. Selbst bei so hohen Strömungsgeschwindigkeiten ist eine derartige Anlage nur in der Lage, höchstens 15% der auftreffenden Arbeitsströmung in Energie umzusetzen. Rotor und Einleitflächen praktizieren in der aufgeführten Anordnung und in der Energieumsetzung kein effektives Zusammenwirken.
Aus der WO 91/19093 ist eine weitere Windkraftanlage bekannt. Sie arbeitet nach dem Prinzip der Durchströmung. Diese Anlage setzt den Winddruck und einen Teil der Aerodynamik um. Der achtflüglige Rotor ist auf die 16 Einleitelemente abgestimmt. Das offengelegte Einleitflächenprinzip erbringt nur eine etwa 85%ige Frontflächennutzung, ohne dem Idealzustand nahe zu kommen. Der Kapzitätsverlust liegt an der Abfälschung der Strömung. Trotz der eingearbeiteten Durchströmfähigkeit bilden die acht Rotorflügel einen zu extremen Trichter. Die Folge ist eine Behinderung der Durchströmung. Die Rotorflügel sind zu kurz und bieten der Windströmung einen zu kurzen Arbeitsweg. Bei dieser Bauart ist es auch nicht möglich, eine voll arbeitsfähige Aerodynamik unterzubringen. Es arbeitet die Durchströmung auch nicht von innen nach außen. Aufgrund des Trichterverhaltens kann die Strömung nicht aktiv werden. Der Abstand des Gehäuses zum Rotor ist zu groß, weil der Druck unkompliziert entweichen kann.
Die Erfindung stellt sich daher die Aufgabe, eine Windkraftanlage der genannten Art zu schaffen, mit dem Ziel, möglichst viel Strömungsenergie in Bewegungsenergie des Rotors umzusetzen. - A -
Die Aufgabe wird gemäß einem ersten Aspekt der Erfindung gelöst durch eine Windkraftanlage mit den im Anspruch 1 aufgezeigten technischen Merkmalen, sowie gemäß einem zweiten Aspekt der Erfindung durch eine Windkraftanlage mit den im Anspruch 27 aufgezeigten technischen Merkmalen.
In den Unteransprüchen sind weitere bevorzugte Ausgestaltungen der Erfindung genannt.
Erfindungsgemäß findet in erster Linie eine ideale Aufnahme der Strömung statt und wird die Strömung genau auf der richtigen Seite der Strömung komprimiert. Durch ein gutes Zusammenwirken von Strömungsdruck und Aerodynamik mit den Leitflächen kann eine ideale Umsetzung der Strö- mungsenergie erfolgen. Die Anlagenstatik wird dadurch geschont, dass durch die erreichte gute Frequenzkonstanz eine ideale Gewichts- und Massenausgewogenheit stattfindet. Die Erfindung ermöglicht ferner, dass die Aerodynamik an den Rotorflügeln schnellstmöglich zu arbeiten beginnt. In der erfindungsgemäßen Ausgestaltung der Profile der Rotorflügel wird daher sowohl als bevorzugte Ausgestaltung der Anordnung der
Einleitflächenkonstruktion gemäß dem ersten Aspekt der Erfindung als auch als eigenständiger zweiter Aspekt der Erfindung ein Schutz gesehen und beansprucht. Die Anlage kann, ohne Schaden zu nehmen und ohne, dass sie abgeschaltet werden muss, bis zum Orkan laufen. Die Anlage passt ferner in das Landschaftsbild und stellt sich nicht so aufdringlich dar, wie es bei den Anlagen mit Horizontalachse der Fall ist. Es können kostengünstige Materialien zum Bau der Anlage verwendet werden, um einen positiven Kosten-/Nutzeneffekt zu erzielen.
Die erfindungsgemäße Anlage kann windrichtungsunabhängig arbeiten. Sie kann ein Fundament, einen Maschinenraum, einen turmartigen Maschinenaufbau und ein Dach umfassen. Der Maschinenaufbau besteht dann vorzugsweise als Korpus aus zwei oder mehreren Grundböden, zwischen welchen sich die Einleitkonstruktionen befinden. Die Etagen werden bevorzugt durch die Grundböden gebildet, wobei sich zwischen zwei Grundböden immer eine Etage befindet. Zwei Etagen haben somit drei Grundböden. Die maximale Höhe der Anlage wird durch die zugelassene Statikberechnung bestimmt, sowie die Möglichkeiten des Anlagendurchmessers und die möglichen Rotorachslängen. Aus Statikgründen sind günstigerweise die Leitflächen in den einzelnen Etagen direkt übereinander angeordnet. Die Strömung in der Anlage wird in Richtung der Rotoren verdichtet, so dass die Strömungsgeschwindigkeit erhöht wird. Die Leitflächen sitzen bevorzugt so in der Anlage, dass „zurücklaufende Flügel" (d.h. nicht von der Windströmung in Soll-Drehrichtung angetriebene Flügel) von der Frontanströmung freigestellt werden. Der Rotor besitzt vorzugsweise drei Flügel, die nach dem Durchströmungsprinzip arbeiten. Der Maschinenraum hat bevorzugt die Grundfläche einer Bernardschen Zelle und stellt eine konisch nach oben laufende Bienenwabenform dar. Der Vorteil dieser
Ausgestaltung liegt darin, dass der Wind durch diese Schräge besser in die Anlage geleitet wird. Die Anordnung der Einleitflächen ist so gestaltet, dass die Strömung immer auf die in Drehrichtung des Rotors zeigende Seite des Rotors strömt. An ihrem jeder Ecke des sechseckigen Korpusses benachbarten Ende zeigen die großen Einleitflächen bevorzugt in Richtung Rotorachse und sind am Ende in Drehrichtung des Rotors gebogen. Dazwischen sitzen vorzugsweise die 6 kleinen Einleitflächen, die bevorzugt zur in Drehrichtung nachfolgenden Korpuskante in paralleler Richtung stehen. Diese kleinen Einleitflächen entsprechen bevorzugt einem Drittel der großen Leitflächen in ihrer Aufladung.
Das Dach kann in der Mitte eine Erhebung aufweisen und somit vorstehen, damit die ganze Anlage abgedeckt wird. Die Flügel des Rotors können im Innenteil aus einem geraden Stück bestehen und im äußeren, der Windströmung zugewandten Teil aus einer Rundung bestehen. Das gerade Stück hat dann vorzugsweise die Länge von einem Sechstel des Durchmessers des Rotorkreises und die Rundung ist vorzugsweise genau die Krümmung von einem Achtel des Durchmessers des Rotorkreises. An der Vorderkante der Rotorflügel kann noch eine Abschrägung angebracht sein. Die großen Leitflächen haben durch die sechseckige Ausführung des Korpusses noch einen Abstand zum Rotor. Dieser Platz kann genutzt werden, um in Drehrichtung des Rotors zeigende Krümmungen einzufügen. Es lohnt sich auch, als Variante eine Druckseitentangente einzuziehen, damit der Unterdruck und der Überdruck besser hervortreten. Anstelle der Abschrägung an der Vorderkante der Flügel wäre ein Rundstab, der mit der Flügelform eingearbeitet ist, von Vorteil. Die Rotoretagenböden und die Etagenböden sitzen in der Regel auf gleicher Höhe.
Die Erfindung soll nachstehend an einem Ausführungsbeispiel näher erläutert werden. In den dazugehörigen Zeichnungen zeigt:
Fig. 1 einen Vertikalschnitt einer Windkraftanlage als Großanlage;
Fig. 2 einen Horizontalschnitt der Windkraftanlage;
Fig. 3 einen Vertikalschnitt einer Windkraftanlage in kleiner
Ausführung;
Fig. 4 einen Horizontalschnitt eines Rotors mit drei Flügeln;
Fig. 5 eine große Einleitfläche mit Rechtskrümmung;
Fig. 6 einen Horizontalschnitt eines Flügels, Variante I;
Fig. 7 einen Horizontalschnitt eines Flügels, Variante II; und
Fig. 8 einen Maschinenraumkorpus in Form eines sechseckigen Körpers.
Auf einem Fundament 1 befindet sich ein Maschinenraum 2, welcher mit einem Maschinenaufbau 3 verbunden ist. Der Maschinenaufbau 3 besteht aus sechs Stück großen Einleitflächen 4, aus sechs Stück kleinen Einleitflächen 5, den Etagenböden 6 und dem Rotor 7. Der Maschinenaufbau 3 kann aus einer unterschiedlichen Anzahl von Etagen 12 bestehen. Jede Etage besteht aus einem Etagenboden 6 oben und einem Etagenboden 6 unten, sowie aus großen Einleitflächen 4 und kleinen Einleitflächen 5.
Die großen Einleitflächen 4 und die kleinen Einleitflächen 5 sind mit den Etagenböden 6 die statischen Bauteile in der Etage 12. Die Verbindung dieser Bauelemente erfolgt durch Verschweißung. Die oberste Etage 12 erhält ein Dach 13. Im sechseckigen Schacht 14 ist die vertikale Rotoranlage angeordnet, welche den um die Rotorachse 8 drehbaren Rotor 7 umfasst. Zur Rotoranlage gehören außerdem ein Generator 15 und Rotoretagenböden 16. Auf den Rotoretagenböden 16 sind die Rotorflügel 9, 10 und 11 je Etage 12 angeordnet. Die Drehrichtung des Rotors R ist gegen den Uhrzeigersinn gerichtet. Die Rotorflügel 9, 10 und 11 haben in ihrer Ausführung im Innenbereich ein geradliniges Profil 17 mit einer Länge von einem Sechstel des Rotordurchmessers 19. Im nach außen anschließenden Bereich 18 verlaufen die Rotorflügel 9, 10, 11 kreisförmig gekrümmt, wobei der Krümmungsdurchmesser gleich einem Achtel des Durchmessers 19 des Rotoraußenkreises K ist. Die von der Windströmung angeströmten äußeren Kanten der Rotorflügel 9, 10 und 11 liegen zur Rotorachse 8 genau 120° auseinander. Das innere Ende 20 der Rotorflügel 9, 10, 11 liegt auf einem Kreis Ki um den Mittelpunkt der Rotorachse 8, dessen Durchmesser ein Viertel des Durchmessers 19 des Rotoraußenkreises K beträgt.
Die Rotorflügel 9, 10 und 11 besitzen in Variante I (Fig. 6) an ihrer Frontseite einen Flacheisenansatz 21. Die großen Einleitflächen 4 und die kleinen Einleitflächen 5 haben die besondere Aufgabe, die zurücklaufenden Rotorflügel 9, 10 und 11 abzudecken und die Strömung insgesamt auf die in Drehrichtung des Rotors vorne liegende Seite zu leiten. Die großen
Einleitflächen 4 sind an den Rotor 7 angrenzend in Drehrichtung des Rotors R (dessen Drehrichtung gegen den Uhrzeigersinn gerichtet ist) mit einer Rechtskrümmung 22 versehen, so dass die Luft in Drehrichtung umgeleitet wird. Die Ausladung 23 der großen Einleitflächen 4 entspricht mindestens dem Radius des Rotoraußenkreises K und sie sind genau auf die Mitte der Rotorachse 8 ausgerichtet. Die kleinen Einleitflächen 5 sind in Umfangsrichtung genau in der Mitte zwischen den großen Einleitflächen 4 angeordnet. Diese kleinen Einleitflächen 5 haben nur ein Drittel der
Ausladung 23 der großen Einleitflächen 4 und sind immer so ausgerichtet, dass sie in die gleiche Richtung zeigen wie die in Drehrichtung des Rotors folgende Sechskantlinie 24. In der Strömungsrichtung S des Windes wird die Anlage so umströmt, dass auf der rechten (d. h. der in Drehrichtung liegenden) windabgewandten Seite der Magnus-Effekt mitarbeitet und ein weiteres Fach 25 bedient. Die Statik wird bei Orkanstärken nur mit dem Flettner-Effekt belastet, was nicht bedrohlich wird. Die in Fig. 7 gezeigte zweite Variante der Flügel 9, 10 und 11 hat anstelle des Flacheisenansatzes 21 einen Rundstab aus Eisen 26 und eine untergebaute Druckseitentangente 27. Beim Austreten der Strömung S aus dem Rotor drückt der Flacheisenansatz 21 und der Rundstab aus Eisen 26 an der Strömung S und drückt noch ein letztes Mal an die Rotorflügel 9, 10 und 11. Durch die eingesetzte Druckseitentangente 27 vergrößert sich der Umströmungsunterschied und es kommt zu einem höheren aerodyna- mischen Auftrieb und zu einer besseren Kraftübertragung. Die Oberfläche der Rotorflügel 9, 10 und 11 sowie die großen Einleitflächen 4 und die kleinen Einleitflächen 5 müssen eine glatte Oberfläche besitzen. Die Rotoretagenböden 16 und die Etagenböden 6 sitzen auf gleicher Höhe.

Claims

Ansprüche
1. Windkraftanlage, umfassend: einen Durchströmrotor (7) mit einer Mehrzahl von Rotorflügeln (9, 10,
11) , welche um eine quer zur Richtung der Windströmung (S) verlaufende Drehachse (8) drehbar sind, und eine Einleitflächenkonstruktion mit einer Mehrzahl von Einleitflächen (4, 5), welche die Windströmung (S) den Rotorflügeln (9, 10, 11) zuführen, dadurch gekennzeichnet, dass wenigstens ein Teil der Einleitflächen (4, 5) radial zu der Drehachse (8) des Rotors (7) hin ausgerichtet ist.
2. Windkraftanlage nach Anspruch 1 , dadurch gekennzeichnet, dass der Rotor (7) an einem Grundgerüst der Windkraftanlage drehbar gelagert ist und die Einleitflächenkonstruktion an dem Grundgerüst stationär gehalten ist, wobei die Einleitflächen (4, 5) mit Abstand zueinander um den Rotor (7) herum angeordnet sind.
3. Windkraftanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Einleitflächenkonstruktion große Einleitflächen (4) und kleine Einleitflächen (5) aufweist, wobei eine jeweilige kleine Einleitfläche (5) zwischen zwei großen Einleitflächen (4) angeordnet ist, wobei zwischen je zwei großen Einleitflächen (4) vorzugsweise wenigstens je eine, ganz besonders vorzugsweise genau eine, kleine Einleitfläche (5) angeordnet ist.
4. Windkraftanlage nach Anspruch 3, dadurch gekennzeichnet, dass die Einleitflächenkonstruktion zwischen 3 und 10, vorzugsweise sechs große Einleitflächen (4) und zwischen 3 und 10, vorzugsweise sechs kleine Einleitflächen (5) aufweist.
5. Windkraftanlage nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die großen Einleitflächen (4) radial zur Drehachse (8) des Rotors (7) hin ausgerichtet sind.
6. Windkraftanlage nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die kleinen Einleitflächen (5) die Windströmung
(S) in Drehrichtung des Rotors (7) ablenken.
7. Windkraftanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Rotor (7) in einem sechseckigen Schacht (14) eines Maschinenaufbaus (3) angeordnet ist, wobei die Drehachse (8) des
Rotors (7) parallel zur Längsachse des Schachts (14) verläuft und wobei die kleinen Einleitflächen (5) jeweils so ausgerichtet sind, dass sie in die gleiche Richtung wie die in Drehrichtung des Rotors (7) folgende Wand des Schachts (14) zeigen.
8. Windkraftanlage nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die großen Einleitflächen (4) jeweils eine Ausladung (23) haben, die mindestens dem als Radius des Rotors (7) bezeichneten Radius des Kreises (K) entspricht, auf dem die äußeren Enden der Rotorflügel (9, 10, 11) umlaufen.
9. Windkraftanlage nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die kleinen Einleitflächen (5) nur ein Drittel der Ausladung (23) der großen Einleitflächen (4) haben.
10. Windkraftanlage nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass die großen Einleitflächen (4) an ihrem dem Rotor (7) zugewandten Ende jeweils mit einer in Drehrichtung des Rotors (7) zeigenden Krümmung (22) ausgestattet sind.
11. Windkraftanlage nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, dass je eine kleine Einleitfläche (5) in der Umfangsrichtung des Rotors (7) in der Mitte zwischen zwei benachbarten großen Einleitflächen (4) angeordnet ist.
12. Windkraftanlage nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Drehrichtung des Rotors (R) gegen den Uhrzeiger- sinn zeigt.
13. Windkraftanlage nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Rotor (7) mehrere vertikal übereinander angeordnete Etagen aufweist, die durch jeweilige Rotoretagenböden (16) voneinander getrennt sind, wobei der Rotor (7) in jeder Etage
Rotorflügel (9, 10, 11 ) aufweist, wobei die Einleitflächenkonstruktion ebenfalls mehrere vertikal übereinander angeordnete Etagen mit jeweils großen Einleitflächen (4) und kleinen Einleitflächen (5) aufweist, die durch jeweilige Etagenböden (6) voneinander getrennt sind.
14. Windkraftanlage nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass diese einen Maschinenaufbau (3) aufweist, der die Einleitflächenkonstruktion umfasst, und einen Maschinenraum (2) aufweist, der die Form einer konisch nach oben laufenden Bienenwabe besitzt, wobei der Maschinenaufbau (3) turmartig auf dem
Maschinenraum (2) sitzt, und als obere Begrenzung ein gewölbtes Dach (13) hat.
15. Windkraftanlage nach Anspruch 14, dadurch gekennzeichnet, dass unterhalb des Rotors (7) im Maschinenraum (2) ein Generator (28) vorgesehen ist.
16. Windkraftanlage nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die Rotoretagenböden (16) und die Einleitflächen-Etagenböden (6) auf gleicher Höhe angeordnet sind, wobei die großen Einleitflächen (4) sowie die kleinen Einleitflächen (5) im gesamten Maschinenaufbau (3) fluchtend übereinander angeordnet sind.
17. Windkraftanlage nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass auf den Rotoretagen böden (16) die Rotorflügel (9, 10, 11 ) einer jeweiligen Etage (12) angeordnet sind.
18. Windkraftanlage nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der Rotor (7) eine Mehrzahl von Rotorflügeln (9, 10, 11) mit einem aerodynamisch geformten Profil aufweist, deren äußeres Ende auf einem Kreis (K) um die Drehachse des Rotors (7) verläuft, dessen Durchmesser den Rotordurchmesser (19) definiert, und deren kleines Ende (20) ebenfalls auf einem Kreis (Ki) um die Drehachse (8) des Rotors (7) verläuft.
19. Windkraftanlage nach Anspruch 18, dadurch gekennzeichnet, dass der Durchmesser des Kreises (Ki) um den Mittelpunkt der Rotorachse (8), auf dem das innere Ende (20) der Rotorflügel (9, 10, 11 ) umläuft, ein Viertel des Rotordurchmessers (19) beträgt.
20. Windkraftanlage nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass die Rotorflügel (9, 10, 11) an ihrem der Außenseite des Rotors (7) zugewandten Ende einen Flachmetallansatz (21) oder einen Rundstab aus Metall (26) besitzen.
21. Windkraftanlage nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass zwischen zwei und sechs Rotorflügel vorgesehen sind, vorzugsweise drei Rotorflügel (9, 10, 11) vorgesehen sind, die so angeordnet sind, dass die Verbindungslinien ihrer äußeren Enden mit der Drehachse (8) des Rotors (7) jeweils einen Winkel von 120° zueinander bilden.
22. Windkraftanlage nach einem der Ansprüche 18 bis 21 , dadurch gekennzeichnet, dass die Rotorflügell (9, 10, 11 ) ein Profil aufweisen, das zusammengesetzt ist aus einer in Drehrichtung des Rotors (7) zeigenden im Wesentlichen konvex gewölbten Profiikontour und einer gegen die Drehrichtung des Rotors (7) zeigenden Profilkontour, die schwächer konvex, geradlinig oder/und konkav gewölbt ist, so dass von dem äußeren Ende des Rotorflügels (9, 10, 11) her anströmende Luft entlang der in Drehrichtung des Rotors (7) zeigenden Profilkontour schneller strömt als entlang der gegen die Drehrichtung des Rotors (7) zeigenden Profilkontour.
23. Windkraftanlage nach Anspruch 22, dadurch gekennzeichnet, dass die in Drehrichtung des Rotors (7) zeigende Profilkontour eine Abknickung
(30) aufweist.
24. Windkraftanlage nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass die Drehrichtung des Rotors (7) zeigende Profilkontour in ihrem dem inneren Ende (20) des Rotorfllügels (9, 10, 11) benachbarten
Abschnitt (17) geradlinig ausgebildet ist, wobei sich an den geradlinigen Abschnitt (17) ein konvex gekrümmter Abschnitt (18) anschließt.
25. Windkraftanlage nach Anspruch 24, dadurch gekennzeichnet, dass die Länge des geradlinigen Abschnitts (17) ein Sechstel des Durchmessers (19) des Rotorkreises (K) beträgt.
26. Windkraftanlage nach Anspruch 24 oder 25, dadurch gekennzeichnet, dass die Krümmung des konvex gekrümmten Abschnitts (18) ein
Achtel des Durchmessers (19) des Rotorkreises (K) beträgt.
27. Windkraftanlage, umfassend: einen Rotor (7) mit einer Mehrzahl von Rotorflügeln (9, 10, 11 ), die jeweils ein Profil aufweisen, das zusammengesetzt ist aus einer in
Drehrichtung des Rotors (7) zeigenden im Wesentlichen konvex gewölbten Profilkontour und einer gegen die Drehrichtung des Rotors (7) zeigenden Profilkontour, die schwächer konvex, geradlinig oder/und konkav gewölbt ist, so dass von dem äußeren Ende des Rotorflügels (9, 10, 11 ) her anströmende Luft entlang der in Drehrichtung des Rotors (7) zeigenden Profilkontour schneller strömt als entlang der gegen die Drehrichtung des Rotors (7) zeigenden Profilkontour, dadurch gekennzeichnet, dass die in Drehrichtung des Rotors (7) zeigende Profilkontour eine Abknickung (30) aufweist oder/und die Drehrichtung des Rotors (7) zeigende Profilkontour in ihrem dem inneren Ende (20) des Rotorfllügels (9, 10, 11) benachbarten Abschnitt (17) geradlinig ausgebildet ist, wobei sich an den geradlinigen Abschnitt (17) ein konvex gekrümmter Abschnitt (18) anschließt.
28. Windkraftanlage nach Anspruch 27, gekennzeichnet durch ein beliebiges der in Ansprüchen 1 bis 21 , 25 oder 26 genannten Merkmale.
PCT/EP2007/007826 2006-09-08 2007-09-07 Windkraftanlage WO2008028675A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07802209A EP2064444A2 (de) 2006-09-08 2007-09-07 Windkraftanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202006013779.3 2000-09-06
DE202006013779U DE202006013779U1 (de) 2006-09-08 2006-09-08 Windkraftanlage

Publications (2)

Publication Number Publication Date
WO2008028675A2 true WO2008028675A2 (de) 2008-03-13
WO2008028675A3 WO2008028675A3 (de) 2008-06-12

Family

ID=38973535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/007826 WO2008028675A2 (de) 2006-09-08 2007-09-07 Windkraftanlage

Country Status (3)

Country Link
EP (1) EP2064444A2 (de)
DE (1) DE202006013779U1 (de)
WO (1) WO2008028675A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8154145B2 (en) 2007-08-10 2012-04-10 Gunter Krauss Flow energy installation
US8378518B2 (en) 2009-03-26 2013-02-19 Terra Telesis, Inc. Wind power generator system, apparatus, and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HK1121911A2 (en) * 2008-02-29 2009-04-30 Sir Gordon Ying Sheung Wu Shaftless vertical axis wind cage turbine
ES2496672T3 (es) * 2008-05-07 2014-09-19 Design Licensing International Pty Ltd Turbina eólica
DE102008033531A1 (de) * 2008-07-17 2010-01-21 Andreas Lehmkuhl Windkraftanlage
ITNA20100042A1 (it) * 2010-09-17 2012-03-18 Gerardo Giambitto Turbina eolica ad asse verticale tipo stellare

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019093A1 (en) * 1990-05-31 1991-12-12 Michael Valsamidis Wind turbine cross wind machine
DE19920560A1 (de) * 1999-05-05 1999-08-26 Themel Windkraftanlage mit Vertikalrotor
EP0957265A2 (de) * 1998-05-11 1999-11-17 Luigi Sanna Windturbine mit senkrechter Drehachse
DE29980074U1 (de) * 1998-05-26 2000-06-08 Krauss, Gunter, 08237 Steinberg Strömungsenergieanlage
US20020109358A1 (en) * 2001-02-12 2002-08-15 Roberts Gary D. Omni-directional vertical-axis wind turbine
US20040036297A1 (en) * 2002-08-21 2004-02-26 Rowe John Vertical axis wind turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019093A1 (en) * 1990-05-31 1991-12-12 Michael Valsamidis Wind turbine cross wind machine
EP0957265A2 (de) * 1998-05-11 1999-11-17 Luigi Sanna Windturbine mit senkrechter Drehachse
DE29980074U1 (de) * 1998-05-26 2000-06-08 Krauss, Gunter, 08237 Steinberg Strömungsenergieanlage
DE19920560A1 (de) * 1999-05-05 1999-08-26 Themel Windkraftanlage mit Vertikalrotor
US20020109358A1 (en) * 2001-02-12 2002-08-15 Roberts Gary D. Omni-directional vertical-axis wind turbine
US20040036297A1 (en) * 2002-08-21 2004-02-26 Rowe John Vertical axis wind turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8154145B2 (en) 2007-08-10 2012-04-10 Gunter Krauss Flow energy installation
US8378518B2 (en) 2009-03-26 2013-02-19 Terra Telesis, Inc. Wind power generator system, apparatus, and methods

Also Published As

Publication number Publication date
EP2064444A2 (de) 2009-06-03
WO2008028675A3 (de) 2008-06-12
DE202006013779U1 (de) 2008-01-24

Similar Documents

Publication Publication Date Title
EP1177381B1 (de) Windkraftanlage mit vertikalrotor
DE202006008289U1 (de) Windrichtungsunabhängige Windkraftanlage mit vertikalen Durchströmrotor
DE19957141B4 (de) Windkraftanlage mit Vertikalrotor und Frontalanströmung
EP1859164B1 (de) Verfahren und vorrichtung zur nutzung der windenergie
AT512326B1 (de) Strömungsmaschine
WO2008028675A2 (de) Windkraftanlage
DE202010016013U1 (de) Windrichtungsunabhängige Windturbine mit vertikalem Rotor, mehrreihiger Einleitflächenkonstruktion und tropfenförmig profilierten Rotorblättern
EP2681448A1 (de) Anlage zur nutzung von windkraft
EP2128432B1 (de) Windkraftanlage mit axialem Lufteintritt und radialem Luftaustritt
WO2010097204A2 (de) Wasserrad
WO2012116678A1 (de) Vorrichtung zur nutzung von windkraft mit mindestens einem rotor
DE112017004377B4 (de) Windturbinenanlage
DE102009015669A1 (de) Kleinwindkraftanlage
EP2546513A2 (de) Windkraftanlage und Turbinenlaufrad hierfür
DE102010052947B4 (de) Windrichtungsunabhängige Windturbine mit vertikalem Rotor, mehrreihiger Einleitflächenkonstruktion und tropfenförmig profilierten Rotorflügeln
DE29907940U1 (de) Windkraftanlage mit Vertikalrotor
DE202008015173U1 (de) Axialsymmetrische Windkraftanlage mit vertikalen Achsen und Photovoltaik
DE10145865A1 (de) Wind- und Wasserkraftanlage mit vertikalen Durchströmrotoren
DE202010009987U1 (de) Turbine III
DE20108925U1 (de) Strömungsenergieanlage, insbesondere Windkraftanlage
DE102022127815A1 (de) Windkraftanlage
DE102010035178B4 (de) Windkraftanlage
AT523838A4 (de) Windkraftanlage
DE102013004277A1 (de) Druckerzeugungseinrichtung für eine Anlage zur Erzeugung von Energie aus Solar- und/oder Windenergie
AT523104A1 (de) Stützkonstruktion mit Diffusor für Savonius-Turbinenrotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07802209

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007802209

Country of ref document: EP