WO2010095499A1 - 光送受信モジュールと分光素子の製造方法及び光送受信モジュールの製造方法 - Google Patents

光送受信モジュールと分光素子の製造方法及び光送受信モジュールの製造方法 Download PDF

Info

Publication number
WO2010095499A1
WO2010095499A1 PCT/JP2010/051136 JP2010051136W WO2010095499A1 WO 2010095499 A1 WO2010095499 A1 WO 2010095499A1 JP 2010051136 W JP2010051136 W JP 2010051136W WO 2010095499 A1 WO2010095499 A1 WO 2010095499A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
filter
optical fiber
lens
Prior art date
Application number
PCT/JP2010/051136
Other languages
English (en)
French (fr)
Inventor
俊宏 菊池
勝彦 大友
昇一 京谷
美樹 小野
浩幸 武田
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2010095499A1 publication Critical patent/WO2010095499A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4225Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements by a direct measurement of the degree of coupling, e.g. the amount of light power coupled to the fibre or the opto-electronic element

Definitions

  • the present invention relates to an optical transmitter / receiver module that demultiplexes and receives two wavelengths of light from an optical fiber and emits light to the optical fiber, a method for manufacturing a spectroscopic element, and an optical transmitter / receiver module manufacturing method.
  • the present invention also relates to an optical transmission / reception module that performs condensing with one element, a method for manufacturing a spectral element, and a method for manufacturing an optical transmission / reception module.
  • This terminal device includes an optical transmission / reception module that transmits and receives light to and from an optical fiber.
  • an optical transmission / reception module that transmits and receives light to and from an optical fiber.
  • two wavelengths of light having a wavelength of 1490 nm and light having a wavelength of 1550 nm are wavelength-multiplexed as a downlink signal on the subscriber side from the accommodating station, and a wavelength of 1310 nm is transmitted as an uplink signal on the subscriber station side from the subscriber.
  • the optical transceiver module In order to transmit this light, it is necessary for the optical transceiver module to transmit and receive by appropriately demultiplexing these lights.
  • Conventional optical transmission / reception modules have a light receiving part, a light emitting part, a filter and a lens for demultiplexing light, etc. arranged in a housing block.
  • an optical transmission / reception module for example, there is one disclosed in Patent Document 1.
  • the conventional optical transceiver module has a large number of parts, is complicated to assemble, and is difficult to downsize.
  • an optical transceiver module is formed by forming parts such as a filter on a wafer and combining the wafers on which the parts are formed.
  • an optical transmission / reception module there is a module as disclosed in Patent Document 2, for example. In this way, by forming components on the wafer, the number of components and the number of mounting processes can be reduced, and cost reduction and size reduction can be achieved.
  • the light emitting unit and the light receiving unit are arranged side by side, and crosstalk may occur.
  • crosstalk occurs, noise from the light emitting unit is mixed in a signal detected by the light receiving unit.
  • the adverse effects will increase as the size is reduced.
  • the optical transmission / reception module described in Patent Document 2 has a configuration in which a space is provided between wafer substrates and a filter is disposed in the space, so that an edge substrate is used, which increases costs.
  • the present invention has been made in view of the above problems, and an optical transmission / reception module and a spectroscopic element capable of demultiplexing at a wafer level with a simple configuration and causing no crosstalk between a light emitting portion and a light receiving portion. It is an object of the present invention to provide a manufacturing method and a manufacturing method of an optical transceiver module.
  • an optical transceiver module includes a light receiving unit that receives light of two wavelengths from an optical fiber for each wavelength, a light emitting unit that emits light to the optical fiber, and light that is received and emitted.
  • An optical transceiver module having a spectroscopic element for branching and condensing light
  • the spectroscopic element has a first surface facing the optical fiber and a second surface constituting a side surface opposite to the first surface, and the light receiving portion is disposed to face the first surface of the spectroscopic element, and the light emission The part is disposed opposite to the second surface of the spectroscopic element,
  • a first substrate, a first filter, a second substrate, and a second filter are provided in order from the first surface side, and the first filter has a first wavelength of light from the optical fiber.
  • the second filter reflects only the light of the second wavelength out of the light from the optical fiber, and the light from the optical fiber is incident on the first surface with an inclination.
  • the light having the first wavelength reflected by the first filter and the light having the second wavelength reflected by the second filter are branched into different optical paths.
  • the first surface of the spectroscopic element includes a first lens positioned on an optical path of light from the optical fiber and light from the light emitting unit, the first filter, and the first filter.
  • a second lens and a third lens for condensing each light reflected by the two filters on the light receiving unit are formed.
  • the optical transceiver module according to the present invention is characterized in that a fourth lens located on the optical path of the light from the light emitting section is formed on the second surface of the spectroscopic element.
  • the optical transceiver module according to the present invention is configured such that the fourth lens includes an inclined surface formed on the second surface and a lens surface formed on the inclined surface. .
  • the optical transceiver module according to the present invention is characterized in that a filter that transmits light of a predetermined wavelength is provided between the light receiving unit and the first surface of the spectroscopic element.
  • a third filter that transmits light of a predetermined wavelength provided on an optical path of light reflected by the first filter is formed on the first surface of the spectroscopic element, and the second filter
  • a second lens and a third lens for condensing each light on the light receiving part are formed.
  • a spectroscopic element for an optical transceiver module in the method for manufacturing a spectroscopic element for an optical transceiver module according to the present invention, two wavelengths of light from an optical fiber are reflected by a different filter for each wavelength and branched, and light from a light emitting unit that emits light is transmitted.
  • a method of manufacturing a spectroscopic element for an optical transceiver module that focuses light on the optical fiber, A first substrate on which a first filter that reflects only light of the first wavelength out of light from the optical fiber is formed on one surface, and a second substrate that reflects only light of the second wavelength out of light from the optical fiber on one surface.
  • An upper mold having a space part that fits the first substrate and the second substrate bonded together by bonding the surface of the first substrate on the first filter side and the surface of the second substrate opposite to the second filter.
  • the mold has positioning means for restricting the positional relationship between the upper mold and the lower mold, and after the positioning of the mold by the positioning means, the lens surfaces are respectively formed on the first substrate and the second filter. It is configured as a feature.
  • a spectroscopic element for an optical transceiver module Furthermore, in the method for manufacturing a spectroscopic element for an optical transceiver module according to the present invention, light of two wavelengths from an optical fiber is reflected by a different filter for each wavelength and branched, and light from a light emitting unit that emits light is transmitted.
  • a method of manufacturing a spectral element of an optical transceiver module for condensing the optical fiber A first substrate on which a first filter that reflects only light of the first wavelength out of light from the optical fiber is formed on one surface, and a second substrate that reflects only light of the second wavelength out of light from the optical fiber on one surface.
  • a spectroscopic element for an optical transceiver module in the method for manufacturing a spectroscopic element for an optical transceiver module according to the present invention, two wavelengths of light from an optical fiber are reflected by a different filter for each wavelength and branched, and light from a light emitting unit that emits light is transmitted.
  • a method of manufacturing a spectroscopic element for an optical transceiver module that focuses light on the optical fiber, A first large substrate on which a first filter that reflects only light of the first wavelength out of light from the optical fiber is formed on one surface, and only light of the second wavelength is reflected on one surface of the light from the optical fiber.
  • a second large substrate on which a second filter is formed On the surface of the first large substrate opposite to the first filter, a plurality of optical signal lens groups are formed, and an alignment lens is formed at the end, on the second filter of the second large substrate. A plurality of optical signal lenses are formed for each lens group, and an alignment lens is formed at the end, The surface of the first large substrate on the first filter side and the surface of the second large substrate opposite to the second filter are overlapped, and the alignment lens is formed from the first large substrate side or the second large substrate side. And the light received by the lens for alignment on the opposite side is received, and the positions of the first large substrate and the second large substrate are adjusted based on the intensity of the received light.
  • the first large substrate and the second large substrate that are combined and integrated are cut for each lens group.
  • the method for manufacturing an optical transceiver module includes: a light receiving unit that receives two wavelengths of light from an optical fiber for each wavelength; a light emitting unit that emits light to the optical fiber; And a method of manufacturing an optical transceiver module having a spectroscopic element for condensing, Forming a first unit formed by integrating the optical fiber and the light receiving unit; Forming a second unit having the light emitting portion; A first surface facing the optical fiber; and a second surface constituting a side surface opposite to the first surface, the first substrate, the first filter, the second substrate, and the second filter in order from the first surface side.
  • the first filter of the spectroscopic element reflects only light of the first wavelength out of the light from the optical fiber, and the second filter is light from the optical fiber. Only the second wavelength of light is reflected, Two wavelengths of light are emitted from the optical fiber of the first unit, and the light is reflected by the first filter and the second filter of the spectroscopic element for each wavelength and condensed on the light receiving unit, and collected by the light receiving unit.
  • Adjusting the position of the first unit and the spectroscopic element based on the intensity of the light Light is emitted from the light emitting section of the second unit, the light is incident on an optical fiber through the spectroscopic element, and the second unit, the first unit, and the spectroscopic element are based on the intensity of the light received by the optical fiber. The position of the combination is adjusted.
  • the method for manufacturing an optical transceiver module according to the present invention includes: a light receiving unit that receives two wavelengths of light from an optical fiber for each wavelength; a light emitting unit that emits light to the optical fiber; And a method of manufacturing an optical transceiver module having a spectroscopic element for condensing, A first substrate is formed on one surface that reflects only light having a first wavelength out of light from the optical fiber, an optical signal lens and an alignment lens are formed on the other surface, and the optical fiber is disposed on one surface.
  • the first substrate is disposed between the light emitting unit and the light receiving unit, emits light from the measurement light source, and receives light through the alignment lens of the first substrate by the measurement light receiving unit.
  • the surface of the second substrate opposite to the second filter is overlapped with the surface of the first substrate on the first filter side, and the intensity of the light received from the light emitting unit by the optical fiber through the spectroscopic element is set. Based on this, the second substrate is positioned relative to the first substrate.
  • the method for manufacturing an optical transceiver module includes a light receiving unit that receives two wavelengths of light from an optical fiber for each wavelength, a light emitting unit that emits light to the optical fiber, and a light that is received and emitted. And a method of manufacturing an optical transceiver module having a spectroscopic element for condensing, Forming a first unit formed by integrating the optical fiber and the light receiving unit; A second unit having the light emitting part and having an alignment mark formed at a predetermined position is formed. A first substrate is formed on one surface that reflects only light having a first wavelength out of light from the optical fiber, an optical signal lens and an alignment lens are formed on the other surface, and the optical fiber is disposed on one surface.
  • the light is emitted from the light emitting unit, the light is received by the optical fiber through the first substrate and the second substrate, and the first unit and the first unit are formed on the basis of the intensity of the received light.
  • the position adjustment of the combination of one substrate and the combination of the second unit and the second substrate is performed.
  • the spectroscopic element has a first surface facing the optical fiber and a second surface constituting the side surface opposite to the first surface, and the light receiving unit is on the first surface of the spectroscopic element.
  • the light emitting unit is disposed to face the second surface of the spectroscopic element, the spectroscopic element is provided with a first substrate, a first filter, a second substrate, and a second filter in order from the first surface side,
  • the first filter reflects only the first wavelength of the light from the optical fiber
  • the second filter reflects only the second wavelength of the light from the optical fiber
  • the light from the optical fiber is on the first surface.
  • the light having the first wavelength reflected by the first filter and the light having the second wavelength reflected by the second filter are branched into different optical paths by being inclined with respect to the substrate and the filter.
  • a simple element formed in a laminated form The light can be branched and the optical transmission / reception module with a simple configuration can be obtained, and the light receiving unit can be arranged on the opposite side of the light emitting unit with the spectroscopic element interposed therebetween. Crosstalk can be prevented.
  • the first lens located on the optical path of the light from the optical fiber and the light from the light emitting unit, the first filter, and the second filter are provided on the first surface of the spectroscopic element.
  • the spectroscopic element By forming the second lens and the third lens for condensing each light reflected on the light receiving unit, the spectroscopic element also has a function of condensing the light receiving unit, thereby reducing the number of components. Can do.
  • the fourth surface located on the optical path of the light from the light emitting unit is formed on the second surface of the spectroscopic element, so that the light from the light emitting unit is received.
  • the light can be appropriately incident on the spectroscopic element.
  • the fourth lens is composed of an inclined surface formed on the second surface and a lens surface formed on the inclined surface, thereby being inclined with respect to the spectroscopic element.
  • the filter that transmits light of a predetermined wavelength is provided between the light receiving unit and the first surface of the spectroscopic element, so that the light of the predetermined wavelength is reliably received by the light receiving unit.
  • stable communication can be performed.
  • a spectroscopic element for an optical transceiver module according to the present invention, a spectroscopic element whose both surfaces are reliably positioned can be formed by simple means.
  • an optical transceiver module in which both sides of the spectroscopic element and the light emitting part, the light receiving part, and the optical fiber are reliably positioned can be formed by simple means.
  • FIG. 1 shows a schematic diagram of an optical transceiver module in the present embodiment.
  • the optical transmission / reception module according to the present embodiment receives light from the optical fiber 4 and emits light to the optical fiber 4.
  • the light from the optical fiber 4 is composed of light of two wavelengths.
  • the emitted light consists of light of one wavelength.
  • the light transmitting / receiving module is provided with a light emitting part 2 made of a laser diode and a light receiving part 3 made of a photodiode, and among these, the light receiving part 3 receives a light of a first wavelength. And a second light receiving portion 3b for receiving light of the second wavelength.
  • the first wavelength constituting the light from the optical fiber 4 is 1550 nm
  • the second wavelength is 1490 nm.
  • the wavelength of light emitted from the light emitting unit 2 is 1310 nm.
  • the optical transceiver module has a spectroscopic element 1 that demultiplexes these lights.
  • the spectroscopic element 1 is an element that has a first surface 10 and a second surface 11 and is formed in a laminated shape, and the optical fiber 4 and the light receiving unit 3 are arranged to face the first surface 10 of the spectroscopic element 1.
  • the light emitting unit 2 is disposed so as to face the second surface 11 of the spectroscopic element 1. That is, the light from the light emitting unit 2 passes through the spectroscopic element 1 and is incident on the optical fiber 4, while the light from the optical fiber 4 is reflected by the spectroscopic element 1 and is branched for each wavelength and incident on the light receiving unit 3.
  • the configuration of the spectroscopic element 1 will be described in detail.
  • the spectroscopic element 1 has a first substrate 12 on the first surface 10 side, a first filter 14 is provided on the second surface 11 side, and a second substrate 13 is provided on the second surface 11 side.
  • the second filter 15 is provided on the surface of the second substrate 13 to form the second surface 11.
  • a first lens 16 is formed on the optical path of light from the optical fiber 4, and a second lens 17 and a third lens 18 are formed so as to be adjacent thereto. Further, a fourth lens 19 is formed on the second surface 11 on the optical path of the light from the light emitting unit 2.
  • the fourth lens 19 is formed on the inclined surface portion 19 a formed on the second surface 11, and is inclined with respect to the second surface 11. The inclination angle is set to be parallel to the angle of the optical path connecting the optical fiber 4 and the light emitting unit 2.
  • the first substrate 12 and the second substrate 13 are made of a material that transmits light.
  • the first filter 14 is composed of a multilayer filter and has a characteristic of reflecting only 1550 nm light from the optical fiber 4 and transmitting other light from the light from the optical fiber 4 and the light from the light emitting unit 2.
  • the second filter 15 is also composed of a multilayer filter, and has a characteristic of reflecting only 1490 nm light from the optical fiber 4 and transmitting other light from the light from the optical fiber 4 and the light from the light emitting unit 2. ing.
  • the light from the optical fiber 4 is incident on the first surface 10 of the spectroscopic element 1 with an inclination. Therefore, the end face of the optical fiber 4 is cut obliquely with respect to the optical axis. Or you may make it arrange
  • the light from the optical fiber 4 that has entered the first surface 10 of the spectroscopic element 1 from the first lens 16 enters the first substrate 12, and only the 1550 nm light is reflected by the first filter 14, and the 1490 nm light remains as it is. The light passes through and enters the second substrate 13.
  • the 1550 nm light reflected by the first filter 14 exits the spectroscopic element 1 from the second lens 17 on the first surface 10 and is condensed on the first light receiving unit 3 a of the light receiving unit 3.
  • the 1490 nm light that has passed through the first filter 14 is reflected by the second filter 15, is transmitted through the second substrate 13 and the first filter 14, and follows another optical path parallel to the optical path of the 1550 nm light.
  • the light passes through one substrate 12, exits the spectroscopic element 1 from the third lens 18 on the first surface 10, and is condensed on the second light receiving portion 3 b of the light receiving portion 3.
  • the first filter 14 that reflects the light having the first wavelength and the second filter 15 that reflects the light having the second wavelength are arranged in the spectroscopic element 1 so as to be separated from each other in the thickness direction.
  • the light from the optical fiber 4 incident at an angle is branched into different optical paths by being reflected for each wavelength by each filter.
  • the 1310 nm light from the light emitting unit 2 is incident on the spectroscopic element 1 in an oblique direction from the fourth lens 19 formed on the second surface 11 of the spectroscopic element 1, and the second filter 15, the second substrate 13, and the first
  • the light passes through the filter 14 and the first substrate 12 as it is, exits the spectroscopic element 1 from the first lens 16 on the first surface 10, and is condensed on the end surface of the optical fiber 4.
  • the third filter 20 that transmits only the light of the first wavelength and the fourth filter that transmits only the light of the second wavelength.
  • a filter 21 is provided.
  • the spectroscopic element 1 By configuring the spectroscopic element 1 in this way, the light emitting unit 2 can be disposed on the opposite side of the light receiving unit 3 with the spectroscopic element 1 interposed therebetween, so that electromagnetic noise generated from the laser diode constituting the light emitting unit 2 or the like The effect on the light receiving unit 3 can be reduced, and a more reliable optical transceiver module can be obtained. Further, since the spectroscopic element 1 has a simple laminated structure, it can be manufactured easily and the cost can be reduced.
  • FIG. 2 the conceptual diagram showing the process of the 1st manufacturing method is shown.
  • a lens surface is molded with a mold on an element obtained by bonding substrates on which filters are formed.
  • a first filter 14 formed on one surface of the first substrate 12 and a second filter 15 formed on one surface of the second substrate 13 is prepared in advance. .
  • the mold apparatus 30 includes an upper mold 31 and a lower mold 32.
  • the upper mold 31 has a lens molding surface 31 a for forming the fourth lens 19 on the second surface 11 of the element.
  • a lens molding surface 32a for forming the first lens 16, the second lens 17, and the third lens 18 is formed.
  • each lens is formed by injection molding to complete the spectroscopic element 1.
  • the spectral element 1 can be formed by a simple means by previously integrating the elements and molding each lens by the positioning means (rod 33) of the mold.
  • the mold positioning means is not limited to the rod, and may be other means such as providing irregularities corresponding to the upper mold 31 and the lower mold 32.
  • FIG. 3 is a conceptual diagram showing the steps of the second manufacturing method.
  • the first substrate 12 side and the second substrate 13 side are separately formed, and their positions are adjusted by light.
  • a first filter 14 is formed on one surface of the first substrate 12 in advance, and a first lens 16 and a second optical signal lens are formed on the surface opposite to the first filter 14.
  • a lens 17 and a third lens 18 are formed.
  • alignment lenses 38 and 38 are formed at both ends of the surface on which each lens is formed.
  • a second filter 15 is formed on one surface of the second substrate 13, and a fourth lens 19 for optical signals is formed on the second filter 15.
  • alignment lenses 39 and 39 are formed at both ends of the second filter 15, respectively.
  • the alignment lens 39 is formed at a position corresponding to the alignment lens 38 on the first substrate 12 side, and when the first substrate 12 and the second substrate 13 are in a predetermined positional relationship, the first substrate The light incident from the 12 alignment lenses 38 is condensed at a predetermined position.
  • the first substrate 12 side and the second substrate 13 side are aligned.
  • a light emitting portion and a light receiving portion are provided on both sides of the spectroscopic element 1 so that light is incident from the alignment lens 38 on the first substrate 12 side and is emitted from the alignment lens 39 on the second substrate 13 side. Measure the light that is emitted.
  • the intensity of the light to be measured becomes maximum.
  • the spectral element 1 can be manufactured easily and reliably by adjusting the positions of the first substrate 12 and the second substrate 13 using light.
  • FIG. 4 shows a conceptual diagram showing the steps of the third manufacturing method.
  • the third manufacturing method a plurality of sets of lens surfaces are respectively formed on two large substrates, aligned, bonded together, and cut to form individual elements.
  • the first filter 14 is formed on one surface of the first large substrate 35
  • the second filter 15 is formed on one surface of the second large substrate 36.
  • the first lens 16 for optical signals, the second lens 17 and the third lens 18 are formed on the surface of the first large substrate 35 opposite to the first filter 14.
  • a plurality of lens groups 37 are formed.
  • an alignment lens 38 is also formed at the end of the surface on which the lens group 37 is formed.
  • a plurality of fourth lenses 19 for optical signals are formed on the second filter 15 of the second large substrate 36, and an alignment lens 39 is also formed here in the same manner.
  • the first large substrate 35 and the second large substrate 36 are bonded together.
  • light is irradiated between the alignment lenses 38 and 39, and the intensity of the transmitted light is increased.
  • Measurement is performed, and the first large substrate 35 and the second large substrate 36 are aligned so that the intensity becomes maximum.
  • the first large substrate 35 and the second large substrate 36 are formed at predetermined positions, that is, the first lens 16 for optical signals, the second lens 17 and the third lens formed on the first surface 10 side.
  • the lens 18 and the fourth lens 19 for optical signals formed on the second surface 11 side have a predetermined positional relationship, the transmitted light is formed so as to have the maximum intensity. Alignment can be performed.
  • the first large substrate 35 and the second large substrate 36 are bonded together and further cut to complete the individual spectroscopic elements 1.
  • the alignment lenses 38 and 39 are formed on the large substrate, the alignment is performed after the alignment is performed, and the spectral elements 1 are formed by cutting along the one-dot chain line in FIG. As a result, a large number of spectroscopic elements 1 can be formed efficiently.
  • FIG. 5 shows a conceptual diagram showing the steps of the fourth manufacturing method.
  • the fourth manufacturing method is a method for manufacturing an optical transceiver module, and is a method for adjusting the position of the spectroscopic element 1 and other components.
  • the spectroscopic element 1 is formed in advance, and the first unit 5 including the light receiving unit 3 and the optical fiber 4 is formed in advance.
  • the spectroscopic element 1 can be formed by the first to third manufacturing methods described so far.
  • the first unit 5 is formed by positioning and fixing the first light receiving unit 3a, the second light receiving unit 3b, and the optical fiber 4 with high accuracy with respect to a housing or the like constituting the device.
  • a second unit 6 having a light emitting unit 2 is prepared.
  • the second unit 6 is formed by positioning and fixing the light emitting unit 2 with high accuracy with respect to a housing or the like constituting the device.
  • the position adjusting lens is configured by adjusting the positions of the spectroscopic element 1 and the first unit 5 and the second unit 6 by actually emitting and receiving light from each component constituting the optical transceiver module.
  • an optical transmission / reception module can be easily formed without providing a light emitting / receiving unit or the like.
  • FIG. 6 shows a conceptual diagram showing the steps of the fifth manufacturing method.
  • one substrate, on which a filter and a lens surface are formed is aligned in the optical transceiver module, and the other substrate is bonded to the other substrate while aligning.
  • the first filter 14 is formed on one surface of the first substrate 12, and the first lens 16 for optical signals is formed on the surface opposite to the first filter 14.
  • a second lens 17 and a third lens 18 are formed.
  • an alignment lens 38 is also formed at the end of the first substrate 12.
  • the second filter 15 is formed on one surface of the second substrate 13 and the fourth lens 19 for optical signals is formed on the second filter 15.
  • the first substrate 12 is disposed in the optical transceiver module.
  • the optical transceiver module includes the optical fiber 4, the light emitting unit 2, and the light receiving unit 3, and does not include only the second substrate 13. Further, the measurement light source 40 and the measurement light receiving unit 41 are arranged in the optical transceiver module.
  • the measurement light source 40 and the measurement light receiving unit 41 are arranged on both sides of the first substrate 12, and these are aligned so as to have a predetermined positional relationship with the optical fiber 4, the light emitting unit 2, and the light receiving unit 3. Yes.
  • the light from the measurement light source 40 passes through the first substrate 12 via the alignment lens 38 formed on the first substrate 12 and is received by the measurement light receiving unit 41.
  • the alignment lens 38 is formed so that the intensity of light received by the measurement light receiving unit 41 is maximized when the first substrate 12 is disposed at a predetermined position, and therefore alignment is performed by the measurement. be able to.
  • the second substrate 13 is aligned with respect to the first substrate 12 as shown in FIG.
  • the alignment of the second substrate 13 is adjusted so that light is actually emitted from the light emitting unit 2 of the optical transceiver module, the intensity received by the optical fiber 4 is measured, and these are equal to or greater than a predetermined value.
  • the second substrate 13 is aligned, it is bonded to the first substrate 12 to complete the spectroscopic element 1.
  • the spectroscopic element 1 can be surely functioned regardless of individual differences for each module.
  • FIG. 7 shows a conceptual diagram showing the steps of the sixth manufacturing method.
  • the sixth manufacturing method is a method for manufacturing an optical transceiver module, and adjusts the position of the spectroscopic element 1 on the first substrate 12 side and the second substrate 13 side, and also adjusts the position of other components. It is.
  • the first filter 14 is formed on one surface side of the first substrate 12 constituting the spectroscopic element 1 in advance, and the first lens 16 for optical signals and the first filter 16 are formed on the opposite surface. Two lenses 17 and a third lens 18 are formed.
  • a first unit 5 including the light receiving unit 3 and the optical fiber 4 is formed.
  • the first unit 5 is formed by positioning and fixing the first light receiving unit 3a, the second light receiving unit 3b, and the optical fiber 4 with high accuracy with respect to a housing or the like constituting the device.
  • At least the first wavelength light is emitted from the optical fiber 4 of the first unit 5, reflected by the first filter 14 of the first substrate 12, and the first light receiving unit 3 a. Receive light with.
  • the position of the first substrate 12 is adjusted, and if the intensity of light received by the first light receiving unit 3a is not less than a predetermined value, the first substrate 12 and the first unit are adjusted to a predetermined positional relationship. can do.
  • a second filter 15 is formed in advance on one surface side of the second substrate 13 constituting the spectroscopic element 1, and a fourth optical signal is formed on the second filter 15.
  • the lens 19 is formed.
  • An alignment lens 39 is formed at the end of the second filter 15.
  • the 2nd unit 6 which has the light emission part 2 is also prepared.
  • the second unit 6 is formed by positioning and fixing the light emitting unit 2 with high accuracy with respect to a housing or the like constituting the device.
  • the second unit 6 has an alignment mark 6a formed at a predetermined position.
  • the measurement camera 42 is disposed so as to face the second substrate 13, and the alignment mark of the second unit 6 is passed through the alignment lens 39 of the second substrate 13. Take 6a. In this state, the position of the second substrate 13 and the second unit 6 is adjusted, and if the alignment mark 6a photographed by the measurement camera 42 is focused, the second substrate 13 and the second unit 6 are adjusted to a predetermined positional relationship. Can be.
  • the combination of the first unit 5 and the first substrate 12 whose positions are adjusted to each other and the combination of the second unit 6 and the second substrate 13 whose positions are adjusted to each other are combined.
  • the first substrate 12 and the second substrate 13 are bonded and integrated to complete the optical transmission / reception module.
  • the position of the combination of the first unit 5 and the first substrate 12 and the combination of the second unit 6 and the second substrate 13 are adjusted, and the two are adjusted to be integrated.
  • the transceiver module can be easily assembled while adjusting the position of each component.
  • FIG. 8 shows a schematic diagram of an optical transceiver module in the present embodiment.
  • the optical transceiver module of the present embodiment has a configuration that is generally common to that of the optical transceiver module of the first embodiment, and description of common points is omitted.
  • the optical transceiver module of the present embodiment is partially different from the first embodiment in the configuration of the spectroscopic element 1.
  • a third filter 20, a fourth filter 21, and an antireflection film 22 are formed on the first surface 10 of the spectroscopic element 1, and the second lens 17 is formed on the third filter 20.
  • the third lens 18 is formed on the fourth filter 21, and the first lens 16 is formed on the antireflection film 22.
  • the third filter 20 and the fourth filter 21 have the same function as the third filter 20 and the fourth filter 21 in the first embodiment, and have a characteristic of transmitting only light of each wavelength. Further, the antireflection film 22 has a function of reducing reflection due to a difference in refractive index between the first lens 16 and the first substrate 12.
  • the optical transceiver module of this embodiment is configured as described above, it is not necessary to provide a filter in front of the first light receiving unit 3a and the second light receiving unit 3b constituting the light receiving unit 3. That is, since the number of parts in the optical transceiver module can be reduced, the cost can be reduced.
  • FIG. 9 shows a schematic diagram of the optical transceiver module of the present embodiment.
  • the optical transceiver module of this embodiment has the same function as that of the optical transceiver module of the first embodiment.
  • the optical fiber 4 and the light receiving unit 3 are provided on the first surface 10 side of the spectroscopic element 1, and the light emitting unit 2 is provided on the second surface 11 side of the spectroscopic element 1.
  • the spectroscopic element 1 has a first filter 14 and a second filter 15 on both surfaces of the first substrate 12, respectively, and reflects the light of the first wavelength from the optical fiber 4 by the first filter 14.
  • the second filter 15 reflects the light having the second wavelength from the optical fiber 4. Further, the first filter 14 and the second filter 15 both transmit the light from the light emitting unit 2.
  • the first lens 16 and the third lens 18 are formed on the first filter 14.
  • the first lens 16 has a function of condensing light from the optical fiber 4 onto the first light receiving unit 3 a and condensing light from the light emitting unit 2 onto the optical fiber 4.
  • the third lens 18 has a function of condensing light from the optical fiber 4 reflected by the second filter 15 onto the second light receiving unit 3b.
  • a fourth lens 19 is formed on the second filter 15.
  • the fourth lens 19 has a function of collimating diverging light from the light emitting unit 2 toward the optical fiber 4.
  • a third filter 20 is provided between the spectroscopic element 1 and the first light receiving unit 3a, and a fourth filter 21 is provided between the spectroscopic element 1 and the second light receiving unit 3b.
  • the third filter 20 and the fourth filter 21 have a characteristic of transmitting only light having the first wavelength and light having the second wavelength, respectively.
  • the first filter 14 that reflects the light of the first wavelength and the second filter 15 that reflects the light of the second wavelength are arranged in the spectroscopic element 1 so as to be separated in the thickness direction. Therefore, the light from the optical fiber 4 that is incident at an angle is branched into different optical paths by being reflected for each wavelength by each filter.
  • the spectroscopic element 1 has filters on both surfaces of the first substrate 12, and lenses are formed on the filter. Therefore, the spectroscopic element 1 can be configured more simply. it can.
  • FIG. 10 shows a schematic diagram of the optical transceiver module of the present embodiment.
  • the optical transmission / reception module of this embodiment has substantially the same configuration as that of the optical transmission / reception module of the third embodiment, and thus description of common points is omitted.
  • the optical transceiver module of the present embodiment differs from the third embodiment in the formation position of the first lens 16. That is, in the third embodiment, the first lens 16 is formed on the first filter 14, whereas in the present embodiment, the first lens 16 is formed on the third filter 20.
  • the light from the optical fiber 4 that is incident on the spectroscopic element 1 at an angle is reflected by the first filter 14 and the second filter 15 for each wavelength and is incident on the light receiving unit 3 through different optical paths.
  • the light from the light emitting unit 2 passes through the spectroscopic element 1 and is condensed on the end face of the optical fiber 4 by the fourth lens 19.
  • the fourth lens 19 of the spectroscopic element 1 is formed on the inclined surface portion 19 a and is inclined with respect to the second surface 11.
  • the second surface 11 may be formed horizontally.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】簡易な構成でウエハーレベルでの分波が可能で、かつ発光部と受光部の間でクロストークを生じることのない光送受信モジュールを提供する。 【解決手段】2波長の光を波長毎に受光する受光部3と、光ファイバー4に対して光を発光する発光部2と、受発光する光を分岐及び集光する分光素子1とを有し、受光部3は分光素子1の第1面10に対向配置され、発光部2は分光素子1の第2面11に対向配置され、分光素子1は、第1面側から順に第1基板12と第1フィルター14と第2基板13及び第2フィルター15が積層状に設けられ、第1フィルター14は第1の波長の光のみを反射させ、第2フィルター15は第2の波長の光のみを反射させ、光ファイバー4からの光は第1面10に対して傾斜状に入射することで、第1フィルター14で反射した第1の波長の光と第2フィルターで反射した第2の波長の光が、異なる光路に分岐される。

Description

光送受信モジュールと分光素子の製造方法及び光送受信モジュールの製造方法
 本発明は、光ファイバーからの2波長の光を分波して受光すると共に光ファイバーに対して光を発光する光送受信モジュールと分光素子の製造方法及び光送受信モジュールの製造方法に関し、特に光の分波及び集光を1つの素子で行う光送受信モジュールと分光素子の製造方法及び光送受信モジュールの製造方法に関する。
 従来、光通信を行うための端末装置が用いられている。この端末装置は、光ファイバーとの間で光の送受信を行う光送受信モジュールを備えている。特に、FTTHサービスにおいては、収容局から加入者側の下り信号として1490nmの波長の光と1550nmの波長の光の2波長を波長多重送信し、加入者から収容局側の上り信号として1310nmの波長の光を送信するため、光送受信モジュールにおいてはこれらの光を適切に分波して送受信を行う必要がある。
 従来の光送受信モジュールは、筐体ブロック内に受光部と発光部、及び光を分波するフィルターやレンズなどを配置したものであった。このような光送受信モジュールとしては、例えば特許文献1に挙げるようなものがある。しかし、従来の光送受信モジュールは、部品点数が多くて、組立が煩雑であると共に、小型化が困難であった。
 一方で、ウエハー上にフィルター等の部品を形成し、部品の形成されたウエハーを組み合わせることによって光送受信モジュールを構成することが考えられている。このような光送受信モジュールとしては、例えば特許文献2に挙げるようなものがある。このように、ウエハーに部品を形成することで、部品数や実装工程数を削減することができ、低コスト化及び小型化を図ることができる。
特開平11-23916号公報 特開2008-286962号公報
 しかし、従来の光送受信モジュールでは、発光部と受光部が並設配置されており、クロストークが発生する可能性がある。クロストークが発生すると、発光部からのノイズが受光部で検出する信号に混入することとなる。特に、小型化を進めることにより、その弊害が大きくなることが予想される。
 また、特許文献2に挙げる光送受信モジュールでは、ウエハー基板間に空間を設け、その空間内にフィルターを配置する構成であるため、エッジ基板を使用することとなり、コストがかかるという問題もある。
 本発明は前記課題を鑑みてなされたものであり、簡易な構成でウエハーレベルでの分波が可能で、かつ発光部と受光部の間でクロストークを生じることのない光送受信モジュールと分光素子の製造方法及び光送受信モジュールの製造方法を提供することを目的とする。
 前記課題を解決するため、本発明に係る光送受信モジュールは、光ファイバーからの2波長の光を波長毎に受光する受光部と、前記光ファイバーに対して光を発光する発光部と、受発光する光を分岐及び集光する分光素子とを有した光送受信モジュールであって、
 前記分光素子は前記光ファイバーに面する第1面と、該第1面の反対側面を構成する第2面とを有し、前記受光部は前記分光素子の第1面に対向配置され、前記発光部は前記分光素子の第2面に対向配置され、
 前記分光素子は、前記第1面側から順に第1基板と第1フィルターと第2基板及び第2フィルターが積層状に設けられ、前記第1フィルターは前記光ファイバーからの光のうち第1の波長の光のみを反射させ、前記第2フィルターは前記光ファイバーからの光のうち第2の波長の光のみを反射させ、前記光ファイバーからの光は前記第1面に対して傾斜して入射することで、前記第1フィルターで反射した第1の波長の光と前記第2フィルターで反射した第2の波長の光が、異なる光路に分岐されることを特徴として構成されている。
 また、本発明に係る光送受信モジュールは、前記分光素子の第1面には、前記光ファイバーからの光及び前記発光部からの光の光路上に位置する第1レンズと、前記第1フィルター及び第2フィルターで反射した各光を前記受光部にそれぞれ集光する第2レンズ及び第3レンズとが形成されてなることを特徴として構成されている。
 さらに、本発明に係る光送受信モジュールは、前記分光素子の第2面には、前記発光部からの光の光路上に位置する第4レンズが形成されてなることを特徴として構成されている。
 さらにまた、本発明に係る光送受信モジュールは、前記第4レンズは前記第2面上に形成される傾斜面と、該傾斜面に形成されるレンズ面とからなることを特徴として構成されている。
 そして、本発明に係る光送受信モジュールは、前記受光部と前記分光素子の第1面の間に所定波長の光を透過させるフィルターを設けたことを特徴として構成されている。
 また、本発明に係る光送受信モジュールは、前記分光素子の第1面には、前記第1フィルターで反射した光の光路上に設けられる所定波長の光を透過させる第3フィルターと、前記第2フィルターで反射した光の光路上に設けられる所定波長の光を透過させる第4フィルターとが形成され、前記第3フィルター上及び第4フィルター上にはそれぞれ前記第1フィルター及び第2フィルターで反射した各光を前記受光部にそれぞれ集光する第2レンズ及び第3レンズとが形成されてなることを特徴として構成されている。
 さらに、本発明に係る光送受信モジュールの分光素子の製造方法は、光ファイバーからの2波長の光を波長毎に異なるフィルターで反射させて分岐し、光を発光する発光部からの光を透過させて前記光ファイバーに対して集光する光送受信モジュールの分光素子の製造方法であって、
 一面に前記光ファイバーからの光のうち第1の波長の光のみを反射させる第1フィルターを形成した第1基板と、一面に前記光ファイバーからの光のうち第2の波長の光のみを反射させる第2フィルターを形成した第2基板とを形成し、
 前記第1基板の第1フィルター側の面と前記第2基板の第2フィルターと反対側の面とを貼り合わせ、該貼り合わせた第1基板及び第2基板に適合する空間部を有する上型と下型からなる金型内に配置し、前記上型と下型には、前記第1基板の露出する表面と前記第2フィルターの面とにそれぞれレンズを形成するレンズ形成面が形成され、
 前記金型は前記上型と下型の位置関係を規制する位置決め手段を有し、該位置決め手段により前記金型の位置決めを行ってから前記第1基板と第2フィルターにそれぞれレンズ面を成形することを特徴として構成されている。
 さらにまた、本発明に係る光送受信モジュールの分光素子の製造方法は、光ファイバーからの2波長の光を波長毎に異なるフィルターで反射させて分岐し、光を発光する発光部からの光を透過させて前記光ファイバーに対して集光する光送受信モジュールの分光素子の製造方法であって、
 一面に前記光ファイバーからの光のうち第1の波長の光のみを反射させる第1フィルターを形成した第1基板と、一面に前記光ファイバーからの光のうち第2の波長の光のみを反射させる第2フィルターを形成した第2基板とを形成し、
 前記第1基板の第1フィルターと反対側の面には、光信号用レンズと位置合わせ用レンズが形成され、前記第2基板の第2フィルター上には、光信号用レンズと位置合わせ用レンズが形成され、
 前記第1基板の第1フィルター側の面と前記第2基板の第2フィルターと反対側の面とを重ね合わせ、前記第1基板側または第2基板側から前記位置合わせ用レンズに光を入射させると共に、反対側の位置合わせ用レンズで集光された光を受光し、該受光した光の強度に基づいて前記第1基板と第2基板の位置調整を行うことを特徴として構成されている。
 さらに、本発明に係る光送受信モジュールの分光素子の製造方法は、光ファイバーからの2波長の光を波長毎に異なるフィルターで反射させて分岐し、光を発光する発光部からの光を透過させて前記光ファイバーに対して集光する光送受信モジュールの分光素子の製造方法であって、
 一面に前記光ファイバーからの光のうち第1の波長の光のみを反射させる第1フィルターを形成した第1大基板と、一面に前記光ファイバーからの光のうち第2の波長の光のみを反射させる第2フィルターを形成した第2大基板とを形成し、
 前記第1大基板の第1フィルターと反対側の面には、光信号用レンズ群が複数形成されると共に、端部に位置合わせ用レンズが形成され、前記第2大基板の第2フィルター上には、光信号用レンズが前記レンズ群毎に複数形成されると共に、端部に位置合わせ用レンズが形成され、
 前記第1大基板の第1フィルター側の面と前記第2大基板の第2フィルターと反対側の面とを重ね合わせ、前記第1大基板側または第2大基板側から前記位置合わせ用レンズに光を入射させると共に、反対側の位置合わせ用レンズで集光された光を受光し、該受光した光の強度に基づいて前記第1大基板と第2大基板の位置調整を行って貼り合わせ、一体化された前記第1大基板と第2大基板を前記レンズ群毎に切断することを特徴として構成されている。
 そして、本発明に係る光送受信モジュールの製造方法は、光ファイバーからの2波長の光を波長毎に受光する受光部と、前記光ファイバーに対して光を発光する発光部と、受発光する光を分岐及び集光する分光素子とを有した光送受信モジュールの製造方法であって、
 前記光ファイバーと受光部とを一体化してなる第1ユニットを形成し、
 前記発光部を有する第2ユニットを形成し、
 前記光ファイバーに面する第1面と、該第1面の反対側面を構成する第2面とを有し、前記第1面側から順に第1基板と第1フィルターと第2基板及び第2フィルターが積層状に設けられた分光素子を形成し、該分光素子の前記第1フィルターは前記光ファイバーからの光のうち第1の波長の光のみを反射させ、前記第2フィルターは前記光ファイバーからの光のうち第2の波長の光のみを反射させ、
 前記第1ユニットの光ファイバーから2波長の光を出射させ、該光を波長毎に前記分光素子の第1フィルターと第2フィルターで反射させて前記受光部に集光し、該受光部で集光した光の強度に基づいて前記第1ユニットと分光素子の位置調整を行い、
 前記第2ユニットの発光部から光を出射させ、該光を前記分光素子を介して光ファイバーに入射させ、該光ファイバーで受光した光の強度に基づいて前記第2ユニットと前記第1ユニット及び分光素子の組み合わせの位置調整を行うことを特徴として構成されている。
 また、本発明に係る光送受信モジュールの製造方法は、光ファイバーからの2波長の光を波長毎に受光する受光部と、前記光ファイバーに対して光を発光する発光部と、受発光する光を分岐及び集光する分光素子とを有した光送受信モジュールの製造方法であって、
 一面に前記光ファイバーからの光のうち第1の波長の光のみを反射させる第1フィルターを形成し、他面に光信号用レンズと位置合わせ用レンズを形成した第1基板と、一面に前記光ファイバーからの光のうち第2の波長の光のみを反射させる第2フィルターを形成し、該第2フィルター上に光信号用レンズを形成した第2基板とを形成し、
 前記発光部と受光部及び光ファイバーを位置決め固定すると共に、測定用光源と測定用受光部を前記発光部と受光部及び光ファイバーと所定の位置関係となるように配置し、
 前記第1基板を前記発光部と受光部の間に配置し、前記測定用光源から光を出射すると共に、前記第1基板の位置合わせ用レンズを介した光を前記測定用受光部で受光し、該受光した光の強度に基づいて前記第1基板の位置調整を行い、
 前記第2基板の第2フィルターと反対側の面を前記第1基板の第1フィルター側の面と重ね合わせ、前記発光部からの光を前記分光素子を介して光ファイバーで受光した光の強度に基づいて前記第2基板を前記第1基板に対して位置調整することを特徴として構成されている。
 さらに、本発明に係る光送受信モジュールの製造方法は、光ファイバーからの2波長の光を波長毎に受光する受光部と、前記光ファイバーに対して光を発光する発光部と、受発光する光を分岐及び集光する分光素子とを有した光送受信モジュールの製造方法であって、
 前記光ファイバーと受光部とを一体化してなる第1ユニットを形成し、
 前記発光部を有すると共に、所定位置にアライメントマークが形成された第2ユニットを形成し、
 一面に前記光ファイバーからの光のうち第1の波長の光のみを反射させる第1フィルターを形成し、他面に光信号用レンズと位置合わせ用レンズを形成した第1基板と、一面に前記光ファイバーからの光のうち第2の波長の光のみを反射させる第2フィルターを形成し、該第2フィルター上に光信号用レンズと位置合わせ用レンズとを形成した第2基板とを形成し、
 前記第1ユニットの光ファイバーから光を出射させ、該光を前記第1基板の第1フィルターで反射させて前記受光部に集光し、該受光部で集光した光の強度に基づいて前記第1ユニットと第1基板の位置調整を行い、
 前記第2基板を前記第2ユニットと対向させると共に、前記第2基板と対向するように測定用カメラを配置し、該測定用カメラで前記第2基板の位置合わせ用レンズを介して前記第2ユニットのアライメントマークを撮影し、該アライメントマークに焦点が合致するように前記第2ユニットと第2基板の位置調整を行い、
 それぞれ位置調整された第1ユニットと第1基板の組み合わせと、第2ユニットと第2基板の組み合わせについて、前記第1基板の第1フィルター側の面と前記第2基板の第2フィルターと反対側の面とを重ね合わせ、前記発光部から光を出射させ、該光を前記第1基板及び第2基板を介して前記光ファイバーで受光し、該受光した光の強度に基づいて第1ユニットと第1基板の組み合わせと、第2ユニットと第2基板の組み合わせとの位置調整を行うことを特徴として構成されている。
 本発明に係る光送受信モジュールによれば、分光素子は光ファイバーに面する第1面と、第1面の反対側面を構成する第2面とを有し、受光部は分光素子の第1面に対向配置され、発光部は分光素子の第2面に対向配置され、分光素子は、第1面側から順に第1基板と第1フィルターと第2基板及び第2フィルターが積層状に設けられ、第1フィルターは光ファイバーからの光のうち第1の波長の光のみを反射させ、第2フィルターは光ファイバーからの光のうち第2の波長の光のみを反射させ、光ファイバーからの光は第1面に対して傾斜して入射することで、第1フィルターで反射した第1の波長の光と第2フィルターで反射した第2の波長の光が、異なる光路に分岐されることにより、基板とフィルターを積層状に形成した単純な素子で光を分岐することができ、簡易な構成の光送受信モジュールとすることができると共に、受光部は分光素子を挟んで発光部と反対側に配置することができるので、受光部と発光部のクロストークを防止することができる。
 また、本発明に係る光送受信モジュールによれば、分光素子の第1面には、光ファイバーからの光及び発光部からの光の光路上に位置する第1レンズと、第1フィルター及び第2フィルターで反射した各光を受光部にそれぞれ集光する第2レンズ及び第3レンズとが形成されてなることにより、分光素子が受光部に対する集光の機能も有して、部品点数を少なくすることができる。
 さらに、本発明に係る光送受信モジュールによれば、分光素子の第2面には、発光部からの光の光路上に位置する第4レンズが形成されてなることにより、発光部からの光を適切に分光素子に入射させることができる。
 さらにまた、本発明に係る光送受信モジュールによれば、第4レンズは第2面上に形成される傾斜面と、傾斜面に形成されるレンズ面とからなることにより、分光素子に対して傾斜して入射される発光部からの光を効率よく伝播させることができる。
 そして、本発明に係る光送受信モジュールによれば、受光部と分光素子の第1面の間に所定波長の光を透過させるフィルターを設けたことにより、受光部において確実に所定波長の光を受信して、安定的な通信を行うことができる。
 また、本発明に係る光送受信モジュールの分光素子の製造方法によれば、簡易な手段により確実に両面が位置決めされた分光素子を形成することができる。
 さらに、本発明に係る光送受信モジュールの製造方法によれば、簡易な手段により確実に分光素子の両面と発光部、受光部及び光ファイバーが位置決めされた光送受信モジュールを形成することができる。
本実施形態における光送受信モジュールの概要図である。 第1の製造方法の概要図である。 第2の製造方法の概要図である。 第3の製造方法の概要図である。 第4の製造方法の概要図である。 第5の製造方法の概要図である。 第6の製造方法の概要図である。 第2の実施形態における光送受信モジュールの概要図である。 第3の実施形態における光送受信モジュールの概要図である。 第4の実施形態における光送受信モジュールの概要図である。
 本発明の実施形態について図面に沿って詳細に説明する。図1には、本実施形態における光送受信モジュールの概要図を示している。本実施形態における光送受信モジュールは、光ファイバー4からの光を受光すると共に、光ファイバー4に対して光を発光するものであり、光ファイバー4からの光は2波長の光からなり、光ファイバー4に対して発光する光は1波長の光からなるものである。
 このため、光送受信モジュールには、レーザーダイオードからなる発光部2とフォトダイオードからなる受光部3が設けられており、このうち受光部3は第1の波長の光を受光する第1受光部3aと、第2の波長の光を受光する第2受光部3bとからなっている。ここで、光ファイバー4からの光を構成する第1の波長は1550nmであり、第2の波長は1490nmである。また、発光部2から発光される光の波長は1310nmである。そして、光送受信モジュールはこれらの光を分波する分光素子1を有している。
 分光素子1は、第1面10と第2面11を有し積層状に形成されてなる素子であり、光ファイバー4と受光部3は分光素子1の第1面10に対向するように配置され、発光部2は分光素子1の第2面11に対向するように配置される。すなわち、発光部2からの光は分光素子1を透過して光ファイバー4に入射され、一方で光ファイバー4からの光は分光素子1で反射すると共に、波長毎に分岐されて受光部3に入射される。
 分光素子1の構成について詳細に説明する。分光素子1は、第1面10側に第1基板12を有し、その第2面11側には第1フィルター14が設けられ、さらにその第2面11側には第2基板13を有し、第2基板13の表面には第2フィルター15が設けられて第2面11を構成する。
 第1面10には、光ファイバー4からの光の光路上に第1レンズ16が形成され、それに隣接するように第2レンズ17及び第3レンズ18が形成されている。また、第2面11には、発光部2からの光の光路上に第4レンズ19が形成されている。第4レンズ19は、第2面11に形成された傾斜面部19a上に形成されており、第2面11に対しては傾斜して形成される。その傾斜角度は、光ファイバー4と発光部2とを結んだ光路の角度と平行となるように設定される。
 第1基板12と第2基板13は、光を透過させる素材により形成されている。第1フィルター14は、多層膜フィルターからなり、光ファイバー4からの光と発光部2からの光のうち、光ファイバー4からの1550nmの光のみを反射させ、それ以外の光を透過させる特性を有している。第2フィルター15も、多層膜フィルターからなり、光ファイバー4からの光と発光部2からの光のうち、光ファイバー4からの1490nmの光のみを反射させ、それ以外の光を透過させる特性を有している。
 図1に示すように、光ファイバー4からの光は、分光素子1の第1面10に対して傾斜して入射する。そのために、光ファイバー4の端面は光軸に対して斜めにカットされている。または光ファイバー4を傾斜して配置するようにしてもよい。分光素子1の第1面10に第1レンズ16から入射した光ファイバー4からの光は、第1基板12内に進入し、第1フィルター14で1550nmの光のみが反射され、1490nmの光はそのまま透過して第2基板13内に進入する。
 第1フィルター14で反射した1550nmの光は、第1面10の第2レンズ17から分光素子1を出て、受光部3のうち第1受光部3aに集光される。一方、第1フィルター14を透過した1490nmの光は、第2フィルター15において反射し、第2基板13と第1フィルター14を透過し、1550nmの光の光路と平行な別の光路をたどって第1基板12を透過し、第1面10の第3レンズ18から分光素子1を出て、受光部3のうち第2受光部3bに集光される。このように、第1の波長の光を反射させる第1フィルター14と第2の波長の光を反射させる第2フィルター15とが、分光素子1において厚み方向に離隔して配置されているため、傾斜して入射した光ファイバー4からの光は、各フィルターで波長毎に反射することで異なる光路に分岐される。
 発光部2からの1310nmの光は、分光素子1の第2面11に形成された第4レンズ19から分光素子1に対し斜め方向に入射し、第2フィルター15と第2基板13、第1フィルター14及び第1基板12をそのまま透過し、第1面10の第1レンズ16から分光素子1を出て、光ファイバー4の端面に集光される。
 受光部3を構成する第1受光部3aと第2受光部3bの手前には、第1の波長の光のみを透過させる第3フィルター20と、第2の波長の光のみを透過させる第4フィルター21とが設けられている。
 分光素子1をこのように構成することにより、発光部2を分光素子1を挟んで受光部3の反対側に配置することができるので、発光部2を構成するレーザーダイオードから発生する電磁ノイズ等の受光部3に対する影響を小さくすることができ、より信頼性の高い光送受信モジュールとすることができる。また、分光素子1は単純な積層構造により構成されているので、製造が容易でコストを低減することができる。
 次に、本実施形態における分光素子1の製造方法について説明する。図2には、第1の製造方法の工程を表した概念図を示している。第1の製造方法は、フィルターを形成した各基板を貼り合わせた素子に対し、金型でレンズ面を成形するものである。まず、図2(a)に示すように、第1基板12の一面に第1フィルター14を成膜形成し、第2基板13の一面に第2フィルター15を成膜形成したものを予め用意する。
 次に、図2(b)に示すように、両者を貼り合わせて一体化する。続いて、図2(c)に示すように、一体化された素子を金型装置30内に配置する。金型装置30は、上型31と下型32からなり、上型31には素子の第2面11に第4レンズ19を形成するレンズ成型面31aが形成されており、また下型32には素子の第1面10に第1レンズ16と第2レンズ17及び第3レンズ18を形成するレンズ成型面32aが形成されている。
 また、上型31と下型32間に渡ってロッド33が貫通状に挿入される。これによって、上型31と下型32間の位置精度を確保することができる。この状態で各レンズを射出成形によって形成し、分光素子1を完成させる。このように、素子を予め一体化した上で、金型の位置決め手段(ロッド33)により各レンズを成形することにより、簡易な手段で分光素子1を形成することができる。なお、金型の位置決め手段は、ロッドには限られず、例えば上型31と下型32に対応する凹凸を設けるなど、他の手段によってもよい。
 図3には、第2の製造方法の工程を表した概念図を示している。第2の製造方法は、第1基板12側と第2基板13側を別々に形成し、それらを光により位置調整するものである。図3(a)に示すように、予め第1基板12には一面に第1フィルター14を形成すると共に、第1フィルター14と反対側の面には光信号用の第1レンズ16と第2レンズ17及び第3レンズ18を形成しておく。また、各レンズが形成される面の両端部には、それぞれ位置合わせ用レンズ38、38を形成する。
 第2基板13には一面に第2フィルター15を形成すると共に、第2フィルター15上には光信号用の第4レンズ19を形成しておく。また、第2フィルター15の両端部には、それぞれ位置合わせ用レンズ39、39を形成する。位置合わせ用レンズ39は、それぞれ第1基板12側の位置合わせ用レンズ38に対応した位置に形成され、第1基板12と第2基板13が所定の位置関係となったときに、第1基板12の位置合わせ用レンズ38から入射した光を所定位置に集光する。
 続いて、図3(b)に示すように、第1基板12側と第2基板13側とを位置合わせする。この際に、分光素子1の両側には発光部と受光部を設け、第1基板12側の位置合わせ用レンズ38から光を入射させると共に、第2基板13側の位置合わせ用レンズ39から出射される光を測定する。第1基板12と第2基板13が所定の位置関係となるように位置調整されることで、測定される光の強度は最大となる。このように、光を用いて第1基板12と第2基板13の位置調整を行うことで、簡易かつ確実に分光素子1を製造することができる。
 図4には、第3の製造方法の工程を表した概念図を示している。第3の製造方法は、2枚の大基板にそれぞれ複数組のレンズ面を成形しておき、それらを位置合わせした上で貼り合わせると共に、切断して個々の素子を形成するものである。まず、図4(a)に示すように、第1大基板35の一面に第1フィルター14を成膜形成し、第2大基板36の一面に第2フィルター15を成膜形成する。
 次に図4(b)に示すように、第1大基板35の第1フィルター14とは反対側の面に、光信号用の第1レンズ16と第2レンズ17及び第3レンズ18からなるレンズ群37を複数形成する。この際に、レンズ群37を形成する面の端部に、位置合わせ用レンズ38を併せて形成しておく。また、第2大基板36の第2フィルター15上には、光信号用の第4レンズ19を複数形成し、ここでも同様に位置合わせ用レンズ39を併せて形成しておく。
 図4(c)に示すように、第1大基板35と第2大基板36とを貼り合わせるが、この際に位置合わせ用レンズ38、39間に光を照射し、透過した光の強度を測定して、該強度が最大となるように第1大基板35と第2大基板36のアライメントを行う。位置合わせ用レンズ38、39は、第1大基板35と第2大基板36が所定位置、すなわち第1面10側に形成される光信号用の第1レンズ16、第2レンズ17及び第3レンズ18と、第2面11側に形成される光信号用の第4レンズ19とが、所定の位置関係となるときに、透過光が最大強度となるように形成されており、その測定によって位置合わせを行うことができる。
 位置合わせを行ったら第1大基板35と第2大基板36を貼り合わせ、さらにそれを切断して個々の分光素子1を完成させる。このように、大基板に位置合わせ用レンズ38、39を形成しておき、位置合わせを行った上で貼り合わせ、図4(c)の一点鎖線に沿って切断して分光素子1を形成することにより、大量の分光素子1を効率よく形成することができる。
 図5には、第4の製造方法の工程を表した概念図を示している。第4の製造方法は、光送受信モジュールの製造方法であって、分光素子1とその他の構成要素との位置調整を行う方法である。図5(a)に示すように、予め光送受信モジュールのうち、分光素子1を形成しておくと共に、受光部3及び光ファイバー4からなる第1ユニット5を形成しておく。分光素子1は、これまで説明した第1~3の製造方法で形成することができる。また、第1ユニット5は、機器を構成するハウジング等に対し、第1受光部3a、第2受光部3b、及び光ファイバー4が高精度に位置決め固定されてなるものである。
 ここで、図5(a)に示すように、第1ユニット5の光ファイバー4から2波長の光を出射させ、分光素子1で反射させて受光部3で受光させる。この状態で分光素子1の位置調整を行い、受光部3で受光する光の強度が所定以上であれば、分光素子1と第1ユニット5が所定の位置関係に調整されたものとすることができる。
 次に、図5(b)に示すように、発光部2を有する第2ユニット6を用意する。第2ユニット6は、機器を構成するハウジング等に対し、発光部2が高精度に位置決め固定されてなるものである。
 ここで、図5(b)に示すように、発光部2から光を出射させ、分光素子1を透過させて光ファイバー4で受光させる。この光ファイバー4で受光した光の強度を測定しつつ、第2ユニット6の位置調整を行い、光ファイバー4で受光する光の強度が所定以上であれば、第2ユニット6が第1ユニット5と分光素子1との組み合わせに対して所定位置に調整されたものとすることができる。
 このように、光送受信モジュールを構成する各構成要素から実際に光を出射及び受光させて、分光素子1と第1ユニット5及び第2ユニット6の位置調整を行うことにより、位置調整用のレンズや受発光部等を設けることなく、簡易に光送受信モジュールを形成することができる。
 図6には、第5の製造方法の工程を表した概念図を示している。第5の製造方法は、表面にフィルター及びレンズ面が形成された一方の基板を光送受信モジュール内に位置合わせし、そこに他方の基板を位置合わせしながら貼り合わせるものである。まず、図6(a)に示すように、第1基板12の一面に第1フィルター14を成膜形成すると共に、第1フィルター14とは反対側の面に光信号用の第1レンズ16と第2レンズ17及び第3レンズ18を形成しておく。この際に、第1基板12の端部には位置合わせ用レンズ38を併せて形成する。また、第2基板13にも、一面に第2フィルター15を成膜形成すると共に、第2フィルター15上に光信号用の第4レンズ19を形成しておく。
 次に、図6(b)に示すように、第1基板12を光送受信モジュール内に配置する。この段階で光送受信モジュールは、光ファイバー4と発光部2及び受光部3を備えており、第2基板13のみを有していない。また、光送受信モジュール内に測定用光源40と測定用受光部41を配置する。
 測定用光源40と測定用受光部41は、第1基板12を挟んで両側に配置され、これらは光ファイバー4や発光部2及び受光部3とは所定の位置関係となるように位置合わせされている。測定用光源40からの光は、第1基板12に形成された位置合わせ用レンズ38を介して第1基板12を透過し、測定用受光部41で受光される。位置合わせ用レンズ38は、第1基板12が所定位置に配置されたときに測定用受光部41で受光する光の強度が最も大きくなるように形成されており、したがってその測定によって位置合わせを行うことができる。
 第1基板12の位置合わせを行ったら、図6(c)に示すように、第1基板12に対して第2基板13の位置合わせを行う。第2基板13の位置合わせは、光送受信モジュールの発光部2から実際に光を発光し、光ファイバー4で受光する強度を測定し、それらが所定値以上となるように調整する。第2基板13を位置合わせしたら第1基板12と貼り合わせて分光素子1を完成させる。
 このように、光送受信モジュール内において第1基板12と第2基板13の位置合わせを行うことで、モジュール毎の個体差にかかわらず確実に分光素子1を機能させることができる。
 図7には、第6の製造方法の工程を表した概念図を示している。第6の製造方法は、光送受信モジュールの製造方法であって、分光素子1の第1基板12側と第2基板13側とを位置調整しつつ、その他の構成要素との位置調整も行う方法である。図7(a)に示すように、予め分光素子1を構成する第1基板12の一面側に第1フィルター14を形成すると共に、それと反対側の面に光信号用の第1レンズ16、第2レンズ17、及び第3レンズ18を形成しておく。また、受光部3及び光ファイバー4からなる第1ユニット5を形成しておく。第1ユニット5は、機器を構成するハウジング等に対し、第1受光部3a、第2受光部3b、及び光ファイバー4が高精度に位置決め固定されてなるものである。
 ここで、図7(a)に示すように、第1ユニット5の光ファイバー4から少なくとも第1の波長の光を出射させ、第1基板12の第1フィルター14で反射させて第1受光部3aで受光させる。この状態で第1基板12の位置調整を行い、第1受光部3aで受光する光の強度が所定以上であれば、第1基板12と第1ユニットが所定の位置関係に調整されたものとすることができる。
 次に、図7(b)に示すように、予め分光素子1を構成する第2基板13の一面側に第2フィルター15を形成すると共に、第2フィルター15上には光信号用の第4レンズ19を形成しておく。また、第2フィルター15の端部には位置合わせ用レンズ39を形成しておく。一方で、発光部2を有する第2ユニット6も用意する。第2ユニット6は、機器を構成するハウジング等に対し、発光部2が高精度に位置決め固定されてなるものである。この第2ユニット6には、所定位置にアライメントマーク6aが形成されている。
 ここで、図7(b)に示すように、第2基板13に対向するように測定用カメラ42を配置し、第2基板13の位置合わせ用レンズ39を介して第2ユニット6のアライメントマーク6aを撮影する。この状態で第2基板13と第2ユニット6の位置調整を行い、測定用カメラ42で撮影したアライメントマーク6aに焦点が合えば、第2基板13と第2ユニット6が所定の位置関係に調整されたものとすることができる。
 続いて、図7(c)に示すように、互いに位置調整された第1ユニット5及び第1基板12の組み合わせと、互いに位置調整された第2ユニット6及び第2基板13の組み合わせとを合わせて、両者の位置調整を行う。この位置調整においては、発光部2から光を出射させ、分光素子1を透過させて光ファイバー4で受光し、この受光した光の強度が所定以上であれば、両者が所定の位置関係に調整されたものとすることができる。そして、第1基板12と第2基板13とを貼り合わせて一体化し、光送受信モジュールを完成させる。
 このように、第1ユニット5と第1基板12の組み合わせと、第2ユニット6と第2基板13の組み合わせを、それぞれ位置調整した上で、両者を位置調整して一体化することにより、光送受信モジュールを各部品の位置調整しつつ容易に組み立てることができる。
 次に、本発明の第2の実施形態について説明する。図8には、本実施形態における光送受信モジュールの概要図を示している。本実施形態の光送受信モジュールは、第1の実施形態の光送受信モジュールと概ね共通した構成を有しており、共通する点については説明を省略する。
 本実施形態の光送受信モジュールは、分光素子1の構成が一部第1の実施形態とは異なっている。図8に示すように、分光素子1の第1面10には、第3フィルター20と第4フィルター21及び反射防止膜22が形成されており、第3フィルター20上に第2レンズ17が形成され、第4フィルター21上に第3レンズ18が形成され、反射防止膜22上に第1レンズ16が形成されている。
 第3フィルター20及び第4フィルター21は、第1の実施形態における第3フィルター20及び第4フィルター21と同じ機能を有し、各波長の光のみを透過させる特性を有している。また、反射防止膜22は、第1レンズ16と第1基板12との屈折率差に伴う反射を低減する機能を有する。
 本実施形態の光送受信モジュールは、このように構成されているので、受光部3を構成する第1受光部3a及び第2受光部3bの前にフィルターを設ける必要がない。すなわち、光送受信モジュールにおける部品点数を少なくすることができるので、コストダウンを図ることができる。
 次に、本発明の第3の実施形態について説明する。図9には、本実施形態の光送受信モジュールの概要図を示している。本実施形態の光送受信モジュールは、第1の実施形態の光送受信モジュールと同様の機能を有しており、光ファイバー4と受光部3が分光素子1の第1面10側に設けられ、発光部2が分光素子1の第2面11側に設けられる。
 本実施形態において分光素子1は、第1基板12の両面にそれぞれ第1フィルター14と第2フィルター15を有しており、第1フィルター14で光ファイバー4からの第1の波長の光を反射させ、第2フィルター15で光ファイバー4からの第2の波長の光を反射させる。また、第1フィルター14及び第2フィルター15は、発光部2からの光をいずれも透過させる。
 第1フィルター14上には、第1レンズ16と第3レンズ18が形成されている。第1レンズ16は、光ファイバー4からの光を第1受光部3aに集光すると共に、発光部2からの光を光ファイバー4に集光する機能を有する。また、第3レンズ18は、第2フィルター15で反射した光ファイバー4からの光を第2受光部3bに集光する機能を有する。第2フィルター15上には、第4レンズ19が形成されている。第4レンズ19は、発光部2からの発散光を光ファイバー4に向かって平行にする機能を有している。
 また、分光素子1と第1受光部3aの間には、第3フィルター20が設けられ、分光素子1と第2受光部3bの間には、第4フィルター21が設けられる。第3フィルター20及び第4フィルター21は、それぞれ第1の波長の光と第2の波長の光のみを透過させる特性を有している。
 第1の実施形態と同様、第1の波長の光を反射させる第1フィルター14と第2の波長の光を反射させる第2フィルター15とが、分光素子1において厚み方向に離隔して配置されているため、傾斜して入射した光ファイバー4からの光は、各フィルターで波長毎に反射することで異なる光路に分岐される。
 本実施形態の光送受信モジュールでは、分光素子1が第1基板12の両面にフィルターを有してなり、フィルター上にレンズが形成されているので、分光素子1をより簡易な構成とすることができる。
 次に、本発明の第4の実施形態について説明する。図10には、本実施形態の光送受信モジュールの概要図を示している。本実施形態の光送受信モジュールは、第3の実施形態の光送受信モジュールと概ね同様の構成を有しているので、共通する点については説明を省略する。
 一方、本実施形態の光送受信モジュールは、第3の実施形態に対して、第1レンズ16の形成位置が異なっている。すなわち、第3の実施形態では、第1レンズ16は第1フィルター14上に形成されているのに対し、本実施形態で第1レンズ16は、第3フィルター20上に形成されている。
 この場合においても、分光素子1に傾斜して入射する光ファイバー4からの光は、波長毎に第1フィルター14と第2フィルター15で反射し、異なる光路で受光部3に入射する。一方、発光部2からの光は、分光素子1を透過し、第4レンズ19により光ファイバー4の端面に集光される。
 以上、本発明の実施形態について説明したが、本発明の適用は本実施形態には限られず、その技術的思想の範囲内において様々に適用されうるものである。例えば、本実施形態の第1の実施形態と第2の実施形態では、分光素子1の第4レンズ19が傾斜面部19aに形成されて、第2面11に対して傾斜状となっているが、効率は若干低下するものの第2面11に水平状に形成してもよい。
  1  分光素子
  2  発光部
  3  受光部
  4  光ファイバー
  5  第1ユニット
  6  第2ユニット
 10  第1面
 11  第2面
 12  第1基板
 13  第2基板
 14  第1フィルター
 15  第2フィルター
 16  第1レンズ
 17  第2レンズ
 18  第3レンズ
 19  第4レンズ
 19a 傾斜面部
 20  第3フィルター
 21  第4フィルター

Claims (12)

  1.  光ファイバーからの2波長の光を波長毎に受光する受光部と、前記光ファイバーに対して光を発光する発光部と、受発光する光を分岐及び集光する分光素子とを有した光送受信モジュールであって、
     前記分光素子は前記光ファイバーに面する第1面と、該第1面の反対側面を構成する第2面とを有し、前記受光部は前記分光素子の第1面に対向配置され、前記発光部は前記分光素子の第2面に対向配置され、
     前記分光素子は、前記第1面側から順に第1基板と第1フィルターと第2基板及び第2フィルターが積層状に設けられ、前記第1フィルターは前記光ファイバーからの光のうち第1の波長の光のみを反射させ、前記第2フィルターは前記光ファイバーからの光のうち第2の波長の光のみを反射させ、前記光ファイバーからの光は前記第1面に対して傾斜して入射することで、前記第1フィルターで反射した第1の波長の光と前記第2フィルターで反射した第2の波長の光が、異なる光路に分岐されることを特徴とする光送受信モジュール。
  2.  前記分光素子の第1面には、前記光ファイバーからの光及び前記発光部からの光の光路上に位置する第1レンズと、前記第1フィルター及び第2フィルターで反射した各光を前記受光部にそれぞれ集光する第2レンズ及び第3レンズとが形成されてなることを特徴とする請求項1記載の光送受信モジュール。
  3.  前記分光素子の第2面には、前記発光部からの光の光路上に位置する第4レンズが形成されてなることを特徴とする請求項1または2記載の光送受信モジュール。
  4.  前記第4レンズは前記第2面上に形成される傾斜面と、該傾斜面に形成されるレンズ面とからなることを特徴とする請求項3記載の光送受信モジュール。
  5.  前記受光部と前記分光素子の第1面の間に所定波長の光を透過させるフィルターを設けたことを特徴とする請求項1~4のいずれか1項に記載の光送受信モジュール。
  6.  前記分光素子の第1面には、前記第1フィルターで反射した光の光路上に設けられる所定波長の光を透過させる第3フィルターと、前記第2フィルターで反射した光の光路上に設けられる所定波長の光を透過させる第4フィルターとが形成され、前記第3フィルター上及び第4フィルター上にはそれぞれ前記第1フィルター及び第2フィルターで反射した各光を前記受光部にそれぞれ集光する第2レンズ及び第3レンズとが形成されてなることを特徴とする請求項1記載の光送受信モジュール。
  7.  光ファイバーからの2波長の光を波長毎に異なるフィルターで反射させて分岐し、光を発光する発光部からの光を透過させて前記光ファイバーに対して集光する光送受信モジュールの分光素子の製造方法であって、
     一面に前記光ファイバーからの光のうち第1の波長の光のみを反射させる第1フィルターを形成した第1基板と、一面に前記光ファイバーからの光のうち第2の波長の光のみを反射させる第2フィルターを形成した第2基板とを形成し、
     前記第1基板の第1フィルター側の面と前記第2基板の第2フィルターと反対側の面とを貼り合わせ、該貼り合わせた第1基板及び第2基板に適合する空間部を有する上型と下型からなる金型内に配置し、前記上型と下型には、前記第1基板の露出する表面と前記第2フィルターの面とにそれぞれレンズを形成するレンズ形成面が形成され、
     前記金型は前記上型と下型の位置関係を規制する位置決め手段を有し、該位置決め手段により前記金型の位置決めを行ってから前記第1基板と第2フィルターにそれぞれレンズ面を成形することを特徴とする光送受信モジュールの分光素子の製造方法。
  8.  光ファイバーからの2波長の光を波長毎に異なるフィルターで反射させて分岐し、光を発光する発光部からの光を透過させて前記光ファイバーに対して集光する光送受信モジュールの分光素子の製造方法であって、
     一面に前記光ファイバーからの光のうち第1の波長の光のみを反射させる第1フィルターを形成した第1基板と、一面に前記光ファイバーからの光のうち第2の波長の光のみを反射させる第2フィルターを形成した第2基板とを形成し、
     前記第1基板の第1フィルターと反対側の面には、光信号用レンズと位置合わせ用レンズが形成され、前記第2基板の第2フィルター上には、光信号用レンズと位置合わせ用レンズが形成され、
     前記第1基板の第1フィルター側の面と前記第2基板の第2フィルターと反対側の面とを重ね合わせ、前記第1基板側または第2基板側から前記位置合わせ用レンズに光を入射させると共に、反対側の位置合わせ用レンズで集光された光を受光し、該受光した光の強度に基づいて前記第1基板と第2基板の位置調整を行うことを特徴とする光送受信モジュールの分光素子の製造方法。
  9.  光ファイバーからの2波長の光を波長毎に異なるフィルターで反射させて分岐し、光を発光する発光部からの光を透過させて前記光ファイバーに対して集光する光送受信モジュールの分光素子の製造方法であって、
     一面に前記光ファイバーからの光のうち第1の波長の光のみを反射させる第1フィルターを形成した第1大基板と、一面に前記光ファイバーからの光のうち第2の波長の光のみを反射させる第2フィルターを形成した第2大基板とを形成し、
     前記第1大基板の第1フィルターと反対側の面には、光信号用レンズ群が複数形成されると共に、端部に位置合わせ用レンズが形成され、前記第2大基板の第2フィルター上には、光信号用レンズが前記レンズ群毎に複数形成されると共に、端部に位置合わせ用レンズが形成され、
     前記第1大基板の第1フィルター側の面と前記第2大基板の第2フィルターと反対側の面とを重ね合わせ、前記第1大基板側または第2大基板側から前記位置合わせ用レンズに光を入射させると共に、反対側の位置合わせ用レンズで集光された光を受光し、該受光した光の強度に基づいて前記第1大基板と第2大基板の位置調整を行って貼り合わせ、一体化された前記第1大基板と第2大基板を前記レンズ群毎に切断することを特徴とする光送受信モジュールの分光素子の製造方法。
  10.  光ファイバーからの2波長の光を波長毎に受光する受光部と、前記光ファイバーに対して光を発光する発光部と、受発光する光を分岐及び集光する分光素子とを有した光送受信モジュールの製造方法であって、
     前記光ファイバーと受光部とを一体化してなる第1ユニットを形成し、
     前記発光部を有する第2ユニットを形成し、
     前記光ファイバーに面する第1面と、該第1面の反対側面を構成する第2面とを有し、前記第1面側から順に第1基板と第1フィルターと第2基板及び第2フィルターが積層状に設けられた分光素子を形成し、該分光素子の前記第1フィルターは前記光ファイバーからの光のうち第1の波長の光のみを反射させ、前記第2フィルターは前記光ファイバーからの光のうち第2の波長の光のみを反射させ、
     前記第1ユニットの光ファイバーから2波長の光を出射させ、該光を波長毎に前記分光素子の第1フィルターと第2フィルターで反射させて前記受光部に集光し、該受光部で集光した光の強度に基づいて前記第1ユニットと分光素子の位置調整を行い、
     前記第2ユニットの発光部から光を出射させ、該光を前記分光素子を介して光ファイバーに入射させ、該光ファイバーで受光した光の強度に基づいて前記第2ユニットと前記第1ユニット及び分光素子の組み合わせの位置調整を行うことを特徴とする光送受信モジュールの製造方法。
  11.  光ファイバーからの2波長の光を波長毎に受光する受光部と、前記光ファイバーに対して光を発光する発光部と、受発光する光を分岐及び集光する分光素子とを有した光送受信モジュールの製造方法であって、
     一面に前記光ファイバーからの光のうち第1の波長の光のみを反射させる第1フィルターを形成し、他面に光信号用レンズと位置合わせ用レンズを形成した第1基板と、一面に前記光ファイバーからの光のうち第2の波長の光のみを反射させる第2フィルターを形成し、該第2フィルター上に光信号用レンズを形成した第2基板とを形成し、
     前記発光部と受光部及び光ファイバーを位置決め固定すると共に、測定用光源と測定用受光部を前記発光部と受光部及び光ファイバーと所定の位置関係となるように配置し、
     前記第1基板を前記発光部と受光部の間に配置し、前記測定用光源から光を出射すると共に、前記第1基板の位置合わせ用レンズを介した光を前記測定用受光部で受光し、該受光した光の強度に基づいて前記第1基板の位置調整を行い、
     前記第2基板の第2フィルターと反対側の面を前記第1基板の第1フィルター側の面と重ね合わせ、前記発光部からの光を前記分光素子を介して光ファイバーで受光した光の強度に基づいて前記第2基板を前記第1基板に対して位置調整することを特徴とする光送受信モジュールの製造方法。
  12.  光ファイバーからの2波長の光を波長毎に受光する受光部と、前記光ファイバーに対して光を発光する発光部と、受発光する光を分岐及び集光する分光素子とを有した光送受信モジュールの製造方法であって、
     前記光ファイバーと受光部とを一体化してなる第1ユニットを形成し、
     前記発光部を有すると共に、所定位置にアライメントマークが形成された第2ユニットを形成し、
     一面に前記光ファイバーからの光のうち第1の波長の光のみを反射させる第1フィルターを形成し、他面に光信号用レンズと位置合わせ用レンズを形成した第1基板と、一面に前記光ファイバーからの光のうち第2の波長の光のみを反射させる第2フィルターを形成し、該第2フィルター上に光信号用レンズと位置合わせ用レンズとを形成した第2基板とを形成し、
     前記第1ユニットの光ファイバーから光を出射させ、該光を前記第1基板の第1フィルターで反射させて前記受光部に集光し、該受光部で集光した光の強度に基づいて前記第1ユニットと第1基板の位置調整を行い、
     前記第2基板を前記第2ユニットと対向させると共に、前記第2基板と対向するように測定用カメラを配置し、該測定用カメラで前記第2基板の位置合わせ用レンズを介して前記第2ユニットのアライメントマークを撮影し、該アライメントマークに焦点が合致するように前記第2ユニットと第2基板の位置調整を行い、
     それぞれ位置調整された第1ユニットと第1基板の組み合わせと、第2ユニットと第2基板の組み合わせについて、前記第1基板の第1フィルター側の面と前記第2基板の第2フィルターと反対側の面とを重ね合わせ、前記発光部から光を出射させ、該光を前記第1基板及び第2基板を介して前記光ファイバーで受光し、該受光した光の強度に基づいて第1ユニットと第1基板の組み合わせと、第2ユニットと第2基板の組み合わせとの位置調整を行うことを特徴とする光送受信モジュールの製造方法。
PCT/JP2010/051136 2009-02-20 2010-01-28 光送受信モジュールと分光素子の製造方法及び光送受信モジュールの製造方法 WO2010095499A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-037619 2009-02-20
JP2009037619A JP2012098312A (ja) 2009-02-20 2009-02-20 光送受信モジュールと分光素子の製造方法及び光送受信モジュールの製造方法

Publications (1)

Publication Number Publication Date
WO2010095499A1 true WO2010095499A1 (ja) 2010-08-26

Family

ID=42633785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051136 WO2010095499A1 (ja) 2009-02-20 2010-01-28 光送受信モジュールと分光素子の製造方法及び光送受信モジュールの製造方法

Country Status (2)

Country Link
JP (1) JP2012098312A (ja)
WO (1) WO2010095499A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683254A (zh) * 2018-11-30 2019-04-26 广东瑞谷光网通信股份有限公司 计算机可读存储介质和应用该介质的四通道波分复用光接收器件的准直透镜耦合装置
CN111506136A (zh) * 2020-05-06 2020-08-07 苏州大侎光学科技有限公司 一种模拟太阳光及天空背景光照明的光源系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103612A1 (ja) * 2014-12-22 2016-06-30 日本電気株式会社 レンズ保持部材、レンズホルダ、光モジュールおよびレンズホルダの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226713A (ja) * 1985-04-01 1986-10-08 Hitachi Ltd 光波長多重伝送用光モジユ−ル
JP2004233484A (ja) * 2003-01-29 2004-08-19 Oki Electric Ind Co Ltd 光モジュール
JP2008096490A (ja) * 2006-10-06 2008-04-24 Hitachi Cable Ltd 光受信アセンブリ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226713A (ja) * 1985-04-01 1986-10-08 Hitachi Ltd 光波長多重伝送用光モジユ−ル
JP2004233484A (ja) * 2003-01-29 2004-08-19 Oki Electric Ind Co Ltd 光モジュール
JP2008096490A (ja) * 2006-10-06 2008-04-24 Hitachi Cable Ltd 光受信アセンブリ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683254A (zh) * 2018-11-30 2019-04-26 广东瑞谷光网通信股份有限公司 计算机可读存储介质和应用该介质的四通道波分复用光接收器件的准直透镜耦合装置
CN111506136A (zh) * 2020-05-06 2020-08-07 苏州大侎光学科技有限公司 一种模拟太阳光及天空背景光照明的光源系统

Also Published As

Publication number Publication date
JP2012098312A (ja) 2012-05-24

Similar Documents

Publication Publication Date Title
JP4759380B2 (ja) 光通信用光学プリズム及び光送受信モジュール
US8303195B2 (en) Optical transceiver module
US8380075B2 (en) Optical transceiver module
KR101041570B1 (ko) 광통신 모듈
JP3768901B2 (ja) 立体光導波路の製造方法
US9110260B2 (en) Hybrid optical coupling module having an alignment mark formed on an optical transmission means and an array lens and manufacturing method thereof
US20140133862A1 (en) Receiver optical module installing optical demultiplexer and method to produce optical demultiplexer
US8987655B2 (en) Optical module having at least one light receiving element with a wiring part covers a part of a side surface of a mesa part
JP2015096878A (ja) 光受信モジュール及び光送信モジュール
US9709759B2 (en) NxN parallel optical transceiver
TW200540481A (en) Light transmitting and receiving module
JP2019066739A (ja) 光受信モジュールの製造方法
JP2010191231A (ja) 光モジュール
JP4886819B2 (ja) 3波長多重光送受信モジュール
JP2009151106A (ja) 一芯双方向光デバイス
US20180275347A1 (en) Compact structure of integrated WDM device
WO2010095499A1 (ja) 光送受信モジュールと分光素子の製造方法及び光送受信モジュールの製造方法
US10859775B1 (en) Optical turning mirror with angled output interface to increase coupling efficiency and a multi-channel optical subassembly using same
JP6527451B2 (ja) 光分波器、光受信モジュールおよびその製造方法
KR102252682B1 (ko) 다채널 광모듈 장치 및 그것의 제조 방법
JP3806928B2 (ja) 光送受信機及びその製造方法
JP3978078B2 (ja) 光送受信装置
JP2010191342A (ja) 光送受信モジュール
JP2010191341A (ja) 光送受信モジュール
KR101114573B1 (ko) 광 수신 모듈용 하이브리드 집적회로 어셈블리 및 그 제작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP