WO2010095493A1 - 誘電率異方性が負の液晶性化合物、これを用いた液晶組成物および液晶表示素子 - Google Patents

誘電率異方性が負の液晶性化合物、これを用いた液晶組成物および液晶表示素子 Download PDF

Info

Publication number
WO2010095493A1
WO2010095493A1 PCT/JP2010/051005 JP2010051005W WO2010095493A1 WO 2010095493 A1 WO2010095493 A1 WO 2010095493A1 JP 2010051005 W JP2010051005 W JP 2010051005W WO 2010095493 A1 WO2010095493 A1 WO 2010095493A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
compound
crystal composition
fluorine
independently
Prior art date
Application number
PCT/JP2010/051005
Other languages
English (en)
French (fr)
Inventor
輝 縞田
山下 淳一
Original Assignee
チッソ株式会社
チッソ石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チッソ株式会社, チッソ石油化学株式会社 filed Critical チッソ株式会社
Priority to KR1020117018992A priority Critical patent/KR101688670B1/ko
Priority to CN201080007135.0A priority patent/CN102307838B/zh
Priority to EP10743622.2A priority patent/EP2399896B1/en
Priority to US13/145,344 priority patent/US8298632B2/en
Publication of WO2010095493A1 publication Critical patent/WO2010095493A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • C09K2019/0407Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems containing a carbocyclic ring, e.g. dicyano-benzene, chlorofluoro-benzene or cyclohexanone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • C09K2019/0411Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems containing a chlorofluoro-benzene, e.g. 2-chloro-3-fluoro-phenylene-1,4-diyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/308Cy-Cy-COO-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring
    • C09K2019/3425Six-membered ring with oxygen(s) in fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0045Liquid crystals characterised by their physical properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy

Definitions

  • the present invention relates to a novel liquid crystalline compound useful as a material for a liquid crystal display device and a liquid crystal composition containing the compound. Specifically, it has low viscosity, good compatibility with other liquid crystal compounds, and has appropriate refractive index anisotropy and dielectric anisotropy, and when used in a liquid crystal display device
  • the present invention relates to a novel liquid crystal compound capable of obtaining steep electro-optical characteristics, a liquid crystal composition containing the compound, and a liquid crystal display device containing the liquid crystal composition.
  • a display element using a liquid crystal compound (in this application, the term liquid crystal compound is used as a generic term for a compound that exhibits a liquid crystal phase and a compound that does not exhibit a liquid crystal phase but is useful as a component of a liquid crystal composition).
  • liquid crystal compound is used as a generic term for a compound that exhibits a liquid crystal phase and a compound that does not exhibit a liquid crystal phase but is useful as a component of a liquid crystal composition.
  • display elements utilize the refractive index anisotropy and dielectric anisotropy of liquid crystal compounds.
  • the liquid crystal phase includes a nematic liquid crystal phase, a smectic liquid crystal phase, and a cholesteric liquid crystal phase, and those using a nematic liquid crystal phase are most widely used.
  • Display methods include dynamic scattering (DS) type, oriented phase deformation (DAP) type, guest / host (GH) type, twisted nematic (TN) type, super twisted nematic (STN) type, thin film transistor (TFT) type, There are a vertical alignment (VA) type, an in-plane switching (IPS) type, a polymer support alignment (PSA) type, and the like.
  • liquid crystalline compounds used in these display systems exhibit a liquid crystal phase in a wide temperature range centered on room temperature, are sufficiently stable under the conditions in which the display element is used, and are sufficient to drive the display element. Although it must have characteristics, no single liquid crystal compound satisfying this condition has been found at present.
  • liquid crystal composition having required characteristics is prepared by mixing several to several tens of liquid crystal compounds.
  • These liquid crystal compositions are stable to moisture, light, heat and air that are usually present under the conditions in which the display element is used, are stable to electric fields and electromagnetic radiation, and are mixed.
  • the compound is required to be chemically stable.
  • the liquid crystal composition may have appropriate values of physical properties such as refractive index anisotropy ( ⁇ n) and dielectric anisotropy ( ⁇ ) depending on the display method and the shape of the display element. Needed.
  • ⁇ n refractive index anisotropy
  • dielectric anisotropy
  • the cell thickness of the liquid crystal display element constituting the liquid crystal display and the value of ⁇ n of the liquid crystal material used are constant (E. Jakeman et al., Pyhs. Lett., 39A. 69 (1972)).
  • the response speed of the liquid crystal display element is inversely proportional to the square of the thickness of the cell used. Therefore, it is necessary to have a liquid crystal composition having a large ⁇ n value in order to manufacture a liquid crystal display element capable of high-speed response that can be applied to the display of moving images and the like.
  • Various compounds have been developed as a single component of liquid crystal having a large value of ⁇ n.
  • a compound having such a large ⁇ n has a highly conjugated molecular structure, but is not compatible with other liquid crystal materials. It tends to have poor solubility and is difficult to use as a component of a liquid crystal composition having good electrical characteristics. Furthermore, a liquid crystal compound used as a component of a liquid crystal composition requiring high insulation (specific resistance) such as a thin film transistor type liquid crystal display element is required to have high stability.
  • the IPS mode, the VA mode, or the PSA mode is an operation mode using the vertical alignment of liquid crystal molecules, and the viewing angle that is a drawback of the conventional display modes such as the TN mode and the STN mode. It is known that the narrowness can be improved.
  • Patent Document 1 discloses a compound represented by the formula (s-1) in which hydrogen on a benzene ring is replaced with fluorine
  • Patent Document 2 discloses a benzene ring represented by the formula (s-2).
  • Compounds in which the above hydrogen is replaced with fluorine and have alkenyl are being investigated.
  • Patent Document 3 discloses compounds represented by the formulas (s-3), (s-4), and (s-5) as compounds in which the side group is a polar group such as halogen.
  • Patent Document 4 discloses a compound in which the side group represented by the formulas (s-6), (s-7), (s-8) and (s-9) is a polar group such as halogen.
  • a compound having a biphenyl ring having a fluorine or chlorine atom at the 2,3,3 ′ position and a —CH 2 O— and —COO— linking group as in the present application is not disclosed.
  • the compounds represented by the formulas (s-3), (s-4) and (s-5) all have small optical anisotropy, a low upper limit temperature of the nematic phase, and no liquid crystal phase.
  • the compounds represented by the formulas (s-5), (s-7), (s-8) and (s-9) all have small optical anisotropy, a low maximum temperature of the nematic phase, and a dielectric Since the rate anisotropy is small, the driving voltage cannot be lowered with a liquid crystal composition containing these.
  • the compounds represented by the formulas (s-3) and (s-6) are required to be further improved such that the low-temperature compatibility is not sufficient.
  • liquid crystal display element used in operation modes such as IPS mode, VA mode, and PSA mode still has problems as a display element as compared with a CRT, for example, an improvement in response speed and an improvement in contrast. Reduction of drive voltage is desired
  • the display element that operates in the above-described IPS mode, VA mode, or PSA mode is mainly composed of a liquid crystal composition having negative dielectric anisotropy.
  • the liquid crystalline compound contained in the liquid crystal composition is required to have the following properties (1) to (8). That is, (1) To have chemical stability and physical stability. (2) It has a high clearing point. The clearing point is the transition temperature between the liquid crystal phase and the isotropic phase. (3) It has a low lower limit temperature of the liquid crystal phase.
  • the liquid crystal phase means a nematic phase, a smectic phase, or the like. (4) It has a small viscosity. (5) It has appropriate optical anisotropy.
  • a composition containing a chemically and physically stable liquid crystal compound as in (1) When a composition containing a chemically and physically stable liquid crystal compound as in (1) is used for a display element, the voltage holding ratio can be increased.
  • a composition containing a liquid crystal compound having a high clearing point or a low lower limit temperature of the liquid crystal phase can expand the temperature range of the nematic phase, and in a wide temperature range. It can be used as a display element.
  • the threshold voltage of the liquid crystal composition containing this compound can be lowered, so that an appropriate negative voltage can be obtained as in (6).
  • the driving voltage of the display element can be lowered and the power consumption can be reduced.
  • the liquid crystal compound is generally used as a composition prepared by mixing with many other liquid crystal compounds in order to develop characteristics that are difficult to be exhibited by a single compound. Therefore, the liquid crystalline compound used for the display element preferably has good compatibility with other liquid crystalline compounds as in (8). In addition, since the display element may be used in a wide temperature range including below freezing point, it may be preferable that the display element is a compound showing good compatibility from a low temperature range.
  • the first object of the present invention is to eliminate the disadvantages of the prior art, and to provide general physical properties necessary for liquid crystal compounds, that is, stability to heat, light, etc., small viscosity, and refractive index anisotropy of an appropriate size.
  • the second object is to provide a liquid crystal composition containing this liquid crystalline compound and having a high upper limit temperature of the nematic phase, a lower lower limit temperature of the nematic phase, a small viscosity, an appropriate optical anisotropy, and a low threshold voltage.
  • it is to provide a liquid crystal composition having a high maximum temperature of the nematic phase and a low minimum temperature of the nematic phase.
  • a third object is to provide a liquid crystal display element containing this composition and having a wide temperature range that can be used, a short response time, a small power consumption, a large contrast, and a low driving voltage, and can be used in particular.
  • a liquid crystal display device having a wide temperature range is provided.
  • a biphenyl compound having a polar group such as a halogen on the side group has an extremely large elastic constant K 33 (K 33 : bend elastic constant) and a very low viscosity. It was found to have high chemical stability, wide nematic phase temperature range, large refractive index anisotropy and negative dielectric anisotropy. Furthermore, it has been found that when a liquid crystal composition containing the above compound is used, a liquid crystal display element having steep electro-optical characteristics, a short response time, a wide operating temperature range, and a small driving power can be produced. Therefore, the present inventors have found that the above compounds are suitable for liquid crystal display elements, particularly liquid crystal display elements such as ECB, IPS, VA, and PSA, which are currently widely used, and have completed the present invention.
  • liquid crystal display elements particularly liquid crystal display elements such as ECB, IPS, VA, and PSA
  • the gist of the present invention is as follows. 1. The compound represented by Formula (1).
  • R 1 and R 2 are each independently alkyl having 1 to 9 carbons, or alkenyl having 2 to 9 carbons, alkoxy having 1 to 8 carbons, or alkenyloxy having 2 to 8 carbons.
  • Q 1 and Q 4 are each independently fluorine or chlorine
  • Q 2 and Q 3 are each independently hydrogen, fluorine or chlorine, one of Q 2 and Q 3 is always hydrogen, and the other is always fluorine or chlorine
  • Z is —CH 2 O— or —COO—
  • h is 1 or 2
  • Q 1 and Q 2 are both fluorine, h is 1.
  • Item 2 The compound according to Item 1, wherein Q 1 , Q 2 and Q 4 are fluorine, and Q 3 is hydrogen. 3.
  • Item 2. The compound according to item 1, wherein Q 1 , Q 3 and Q 4 are fluorine, and Q 2 is hydrogen. 4).
  • Item 2. The compound according to Item 1, wherein Z is —CH 2 O—.
  • Item 2 A liquid crystal composition comprising two or more compounds, comprising at least one compound according to any one of items 1 to 3. 6).
  • Item 6 The liquid crystal composition according to item 5, comprising at least one compound selected from the group of compounds represented by formulas (2), (3), and (4).
  • R 3 is independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in alkyl and alkenyl, any hydrogen may be replaced by fluorine, and any —CH 2 — May be replaced by -O-;
  • X 1 is independently fluorine, chlorine, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 or —OCF 2 CHFCF 3 ;
  • Ring A 1 , Ring A 2 and Ring A 3 are independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, 1-pyran-2,5- Diyl or 1,4-phenylene in which optional hydrogen may be replaced by fluorine;
  • Z 1 and Z 2 are independently — (CH 2 ) 2 —, — (CH 2 ) 4 —, —COO—, —
  • R 4 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, any hydrogen may be replaced by fluorine, and any —CH 2 — represents —O May be replaced by-;
  • X 2 is —C ⁇ N or —C ⁇ C—C ⁇ N;
  • Ring B 1 , Ring B 2 and Ring B 3 are independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1-pyran-2,5-diyl, pyrimidine-2,5- Diyl or 1,4-phenylene in which any hydrogen may be replaced by fluorine;
  • Z 3 is — (CH 2 ) 2 —, —COO—, —CF 2 O—, —OCF 2 —, —C ⁇ C—, —CH 2 O— or a single bond;
  • L 3 and L 4 are independently hydrogen or fluorine;
  • q is 0, 1 or 2
  • Item 6 The item according to Item 5, comprising at least one compound selected from the group of compounds represented by each of formulas (6), (7), (8), (9), (10) and (11): Liquid crystal composition.
  • R 5 and R 6 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in alkyl and alkenyl, any hydrogen may be replaced by fluorine, and any — CH 2 — may be replaced by —O—;
  • Ring C 1 , Ring C 2 , Ring C 3 and Ring C 4 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 6-pyran-2,5-diyl or Decahydro-2,6-naphthalene;
  • Z 4 , Z 5 , Z 6 and Z 7 are independently — (CH 2 ) 2 —, —COO—, —CH 2 O—, —OCF 2 —, —OCF 2 (CH 2 ) 2 — or a single bond Is;
  • L 5 and L 6 are independently fluorine or chlorine;
  • j, k, l, m, n, and p are each independently 0 or 1, and
  • R 7 and R 8 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in this alkyl and alkenyl, any —CH 2 — is replaced by —O—.
  • Well; Ring D 1 , Ring D 2 and Ring D 3 are independently 1,4-cyclohexylene, pyrimidine-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro- 1,4-phenylene or 2,5-difluoro1,4-phenylene;
  • Z 8 and Z 9 are independently —C ⁇ C—, —COO—, — (CH 2 ) 2 —, —CH ⁇ CH— or a single bond.
  • Item 7. The liquid crystal composition according to item 6, further comprising at least one compound selected from the group of compounds represented by formula (5). 11. Item 7. The liquid crystal composition according to item 6, further comprising at least one compound selected from the group of compounds represented by formulas (12), (13), and (14). 12 Item 8. The liquid crystal composition according to item 7, further comprising at least one compound selected from the group of compounds represented by formulas (12), (13), and (14). 13. Item 9. The liquid crystal composition according to item 8, further comprising at least one compound selected from the group of compounds represented by formulas (12), (13), and (14). 14 Item 6. The liquid crystal composition according to item 5, further comprising at least one optically active compound and / or polymerizable compound. 15. Item 6. The liquid crystal composition according to item 5, further comprising at least one antioxidant and / or ultraviolet absorber. 16. Item 6. A liquid crystal display device comprising the liquid crystal composition according to item 5.
  • the compound of the present invention has general physical properties necessary for liquid crystal compounds, stability to heat, light, etc., small viscosity, appropriate optical anisotropy, appropriate negative dielectric anisotropy, And excellent compatibility with other liquid crystal compounds.
  • the liquid crystal composition of the present invention contains at least one of these compounds, and has a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, an appropriate optical anisotropy, and an appropriate elasticity.
  • constant K 33 with a (K 33 bend elastic constant) and a low threshold voltage.
  • the liquid crystal display element of the present invention contains this composition and has a wide temperature range that can be used, a short response time, a small power consumption, a large contrast ratio, and a low driving voltage.
  • the compound of the present invention is superior in compatibility with other liquid crystal materials, has a low viscosity, and has a wide liquid crystal temperature range as compared with known compounds having the same structure. Moreover, compared with a similar compound, it has a low threshold voltage and a relatively low viscosity. Further, the compound of the present invention is physically and chemically sufficiently stable under the conditions in which the liquid crystal display device is normally used, and is extremely excellent as a constituent component of the nematic liquid crystal composition, and is a TN type, STN type, TFT type, VA type, It can be suitably used as a component of liquid crystal compositions for IPS type and PSA type.
  • a liquid crystal compound is a generic term for a compound having a liquid crystal phase such as a nematic phase or a smectic phase and a compound having no liquid crystal phase but useful as a component of a liquid crystal composition.
  • a liquid crystal compound, a liquid crystal composition, and a liquid crystal display element may be abbreviated as a compound, a composition, and an element, respectively.
  • a liquid crystal display element is a general term for a liquid crystal display panel and a liquid crystal display module.
  • the upper limit temperature of the nematic phase is the phase transition temperature of the nematic phase-isotropic phase, and may simply be abbreviated as the upper limit temperature.
  • the lower limit temperature of the nematic phase may simply be abbreviated as the lower limit temperature.
  • the compound represented by formula (1) may be abbreviated as compound (1). This abbreviation may also apply to compounds represented by formula (2) and the like.
  • symbols such as A 1 , B 1 , C 1 , D 1 surrounded by hexagons correspond to the ring A 1 , the ring B 1 , the ring C 1 , the ring D 1, etc., respectively. .
  • a plurality of the same symbols are described in the same formula or different formulas, but each may be the same or different.
  • Alkyl in which any —CH 2 — may be replaced by —O— or —CH ⁇ CH— includes alkyl, alkenyl, alkoxy, alkoxyalkyl, alkoxyalkenyl, alkenyloxyalkyl, and the like.
  • Compound (1) is a tricyclic or tetracyclic compound having a biphenyl ring having a fluorine or chlorine atom at the 2,3,3 ′ positions.
  • This compound is extremely physically and chemically stable under the conditions under which the device is normally used, and has good compatibility with other liquid crystal compounds.
  • a composition containing this compound is stable under conditions in which the device is normally used. Even when the composition is stored at a low temperature, the compound does not precipitate as crystals (or a smectic phase).
  • This compound has general physical properties necessary for the compound, appropriate optical anisotropy, and appropriate negative dielectric anisotropy.
  • the physical properties such as optical anisotropy and dielectric anisotropy can be arbitrarily adjusted by appropriately selecting the terminal group, ring structure and bonding group of compound (1).
  • the effects of the preferred terminal group, the bonding group Z, and their kind in the compound (1) on the physical properties of the compound (1) will be described below.
  • R 1 and R 2 are preferably linear. When it is linear, the temperature range of the liquid crystal phase is wide and the viscosity is small. When either R 1 or R 2 is a branched chain, the compatibility with other liquid crystal compounds is good. A compound in which either R 1 or R 2 is an optically active group is useful as a chiral dopant. By adding this compound to the composition, a reverse twisted domain generated in the device can be prevented. Compounds in which R 1 and R 2 are not optically active groups are useful as components of the composition.
  • R 1 and R 2 are each independently alkyl having 1 to 9 carbons, or alkenyl having 2 to 9 carbons, alkoxy having 1 to 8 carbons, or alkenyl having 2 to 8 carbons. It is oxy.
  • R 1 and R 2 can be selected with reference to the following specific examples depending on the use of the compound.
  • alkenyl or alkenyloxy is a group in which any — (CH 2 ) 2 — in alkyl is replaced by —CH ⁇ CH— or the like, and is shown as an example.
  • Examples of groups in which any — (CH 2 ) 2 — in CH 3 (CH 2 ) 3 — is replaced by —CH ⁇ CH— are H 2 C ⁇ CH— (CH 2 ) 2 —, CH 3 —CH ⁇ CH—CH 2 — and the like.
  • the term “arbitrary” means “at least one selected without distinction”.
  • the preferred configuration of —CH ⁇ CH— in alkenyl depends on the position of the double bond.
  • alkenyl having a double bond at odd positions such as —CH ⁇ CHCH 3 , —CH ⁇ CHC 2 H 5 , —CH ⁇ CHC 3 H 7 and —CH ⁇ CHC 4 H 9 .
  • An alkenyl compound having a desirable configuration described above has a wide temperature range of liquid crystal phase, has large elastic constant K 33, it is possible to reduce the viscosity of the compound, further, the liquid crystal composition of this liquid crystal compound When added to, the upper limit temperature (T NI ) of the nematic phase can be increased.
  • T NI upper limit temperature
  • -CH 2 CH CHCH 3
  • R 1 and R 2 are —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7. H 15 , —C 8 H 17 , —C 9 H 19 , —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , —OC 6 H 13 , — OC 7 H 15 , —OC 8 H 17 , —CH ⁇ CH 2 , —CH ⁇ CHCH 3 , —CH ⁇ CHC 2 H 5 , — (CH 2 ) 2 CH ⁇ CH 2 , —CH ⁇ CHC 3 H 7 , — (CH 2 ) 2 CH ⁇ CHCH 3 , —CH ⁇ CHC 4 H 9 , — (CH 2 ) 2 CH ⁇ CHC 2 H 5 , —CH ⁇ CH (CH 2 ) 2 CH ⁇ CHCH 3 ,
  • R 1 and R 2 include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7 H 15 , —C 8 H 17 , —C 9 H 19 , —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , —OC 6 H 13 , —CH ⁇ CH 2 , —CH ⁇ CHCH 3 , — (CH 2 ) 2 CH ⁇ CH 2 , — (CH 2 ) 2 CH ⁇ CHCH 3 , —OCH ⁇ CH 2 , —OCH ⁇ CHCH 3 , —OCH 2 CH ⁇ CH 2 , —OCH ⁇ CHC 2 H 5 , —OCH 2 CH ⁇ CHCH 3 , —O (CH 2 ) 2 CH ⁇ CH 2 , —OCH ⁇ CHC 3 H 7
  • Q 1 and Q 4 are each independently fluorine or chlorine
  • Q 2 and Q 3 are each independently hydrogen, fluorine or chlorine
  • Q 2 and either Q 3 are a necessarily hydrogen, the other is always fluorine or chlorine.
  • Compound (1) has a large negative dielectric anisotropy.
  • a compound having a large dielectric anisotropy is useful as a component for lowering the threshold voltage of the composition.
  • the linking group Z in the compound (1) is —COO— or —CH 2 O—.
  • the optical anisotropy is negatively large due to this bonding group. Further, when the bonding group Z is —CH 2 O—, the viscosity is small.
  • the liquid crystal compound When the liquid crystal compound has a structure represented by these liquid crystal compounds (1), it has an appropriate negative dielectric anisotropy and is extremely compatible with other liquid crystal compounds. Furthermore, it has stability against heat, light and the like, has a nematic phase over a wide temperature range, has a low viscosity, has a large optical anisotropy, and appropriate elastic constants K 33 and K 11 . When the liquid crystal compound (1) has a tricycle, the viscosity is small. When the liquid crystal compound (1) has a tetracycle, the maximum temperature is high. As described above, a compound having desired physical properties can be obtained by appropriately selecting the type of terminal group, ring structure and bonding group, and the number of rings. In addition, the liquid crystal composition containing the liquid crystal compound (1) is stable under conditions in which the liquid crystal display element is normally used, and the compound precipitates as crystals (or smectic phases) even when stored at a low temperature. There is nothing to do.
  • the liquid crystal compound (1) can be suitably applied to a liquid crystal composition used for a liquid crystal display element in a display mode such as PC, TN, STN, ECB, OCB, IPS, VA, or PSA. Or it can apply especially suitably to the liquid crystal composition used for the liquid crystal display element of display modes, such as PSA.
  • the compound represented by the formula (1) of the present invention can be obtained by introducing a predetermined group into R 1 , R 2 , Q 1 , Q 2 , Q 3 , Q 4 and Z in the formula.
  • a group can be introduced by a known general organic synthesis method. Typical synthesis examples include the methods described in New Experimental Chemistry Course 14 Synthesis and Reaction of Organic Compounds (1978) Maruzen or Fourth Edition Experimental Chemistry Course 19-26 Organic Synthesis I-VIII (1991) Maruzen Can do.
  • MSG 1 or MSG 2 is a monovalent organic group having at least one ring.
  • a plurality of MSG 1 (or MSG 2 ) used in the scheme may be the same or different.
  • Compounds (1A) and (1B) correspond to compound (1).
  • liquid crystal compound (1) that is, the liquid crystal compound represented by the above formula (1) are shown.
  • R 1 , R 2 , Z, Q 1 , Q 2 , Q 3 , Q 4 and h have the same meaning as described above.
  • Compound (1a) is reacted with n-butyllithium to prepare a lithium salt, which is reacted with borate ester and hydrolyzed in an acidic atmosphere to obtain a dihydroxyborane derivative (1b).
  • Biphenyl derivative (1d) is obtained by reacting compound (1b) with phenol derivative (1c) in the presence of a base such as sodium carbonate and a catalyst such as Pd—C.
  • the compound represented by the formula (1) is a compound represented by the formulas (1-1) and (1-2), the compatibility with other liquid crystal compositions is good and the viscosity is small.
  • the compound represented by the formula (1) is a compound represented by the formulas (1-3) and (1-4), the maximum temperature (T NI ) of the nematic phase is high.
  • a liquid crystal compound which is an example of the liquid crystal compound (1) of the present invention by reacting the compound (1 g) with a biphenyl derivative (1d) in the presence of a base such as sodium carbonate. (1h) can be manufactured.
  • the liquid crystal composition of the present invention needs to contain the compound represented by the formula (1) of the present invention as the component A.
  • the composition of only component A or a composition of component A and other components not specifically indicated in the present specification may be used, but components B, C, D and E shown below for component A are as follows.
  • the liquid crystal composition of the present invention having various characteristics can be provided.
  • Component B consisting of at least one compound selected from the group consisting of Formulas (2), (3) and (4), and at least selected from the group consisting of Formula (5)
  • Component C consisting of one compound
  • Component D consisting of at least one compound selected from the group consisting of the above formulas (6), (7), (8), (9), (10) and (11)
  • a mixture of component E composed of at least one compound selected from the group consisting of formulas (12), (13) and (14).
  • each component of the liquid crystal composition used in the present invention is not greatly different in physical properties even if it is an analog composed of an isotope element of each element.
  • formulas (2-1) to (2-16) are preferred examples of the compound represented by formula (2), and formulas (3-1) to (2) are preferred examples of the compound represented by formula (3).
  • Preferred examples of the compound represented by (3-112) and formula (4) include formulas (4-1) to (4-54), respectively.
  • component B have a positive dielectric anisotropy and are very excellent in thermal stability and chemical stability. It is used when preparing a liquid crystal composition.
  • the content of component B in the liquid crystal composition of the present invention is suitably in the range of 1 to 99% by weight with respect to the total weight of the liquid crystal composition, preferably 10 to 97% by weight, more preferably 40 to 95% by weight. It is. Further, the viscosity can be adjusted by further containing a compound represented by formulas (12) to (14) (component E).
  • Preferred examples of the compound represented by the formula (5), that is, the component C include (5-1) to (5-64).
  • these compounds represented by the formula (5) that is, the component C are mainly used when preparing liquid crystal compositions for STN, TN, and PSA because the dielectric anisotropy is positive and the value is very large.
  • the threshold voltage of the composition can be reduced.
  • adjustment of viscosity, adjustment of refractive index anisotropy, and liquid crystal phase temperature range can be expanded. It can also be used to improve steepness.
  • the content of component C can be applied in the range of 0.1 to 99.9% by weight, preferably 10 to 97% by weight, more preferably 40 to 40%. 95% by weight.
  • the threshold voltage, the liquid crystal phase temperature range, the refractive index anisotropy, the dielectric anisotropy, the viscosity, and the like can be adjusted by mixing the components described later.
  • Component D consisting of at least one compound selected from the group consisting of formulas (6) to (11) can be used in vertical alignment mode (VA mode), polymer supported alignment mode (PSA mode), etc. This is a preferred component when the liquid crystal composition of the present invention having a negative dielectric anisotropy is used.
  • Preferable examples of the compounds (component D) represented by the formulas (6) to (11) are the formulas (6-1) to (6-6), (7-1) to (7-15), (8 -1), (9-1) to (9-3), (10-1) to (10-11), and (11-1) to (11-10).
  • These compounds of component D are mainly used in VA mode and PSA mode liquid crystal compositions having a negative dielectric anisotropy value. Increasing the content lowers the threshold voltage of the composition, but increases the viscosity. Therefore, it is preferable to reduce the content as long as the required value of the threshold voltage is satisfied. However, since the absolute value of dielectric anisotropy is about 5, if the content is less than 40% by weight, voltage driving may not be possible.
  • the compound represented by the formula (6) among the component D is a bicyclic compound, it is mainly effective in adjusting the threshold voltage, adjusting the viscosity, or adjusting the refractive index anisotropy. Further, since the compounds represented by the formulas (7) and (8) are tricyclic compounds, the clearing point is increased, the nematic range is increased, the threshold voltage is decreased, and the refractive index anisotropy is increased. The effect of doing etc. is acquired. In addition, Expressions (9), (10), and (11) can provide effects such as lowering the threshold voltage.
  • the content of Component D is preferably 40% by weight or more, more preferably 50 to 95% by weight, based on the total amount of the composition when a composition for VA mode or PSA mode is prepared. Further, by mixing the component D, it is possible to control the elastic constant and control the voltage transmittance curve of the composition. When component D is mixed with a composition having a positive dielectric anisotropy, the content is preferably 30% by weight or less based on the total amount of the composition.
  • Preferable examples of the compound (component E) represented by the formulas (12), (13) and (14) are the formulas (12-1) to (12-11) and (13-1) to (13-19), respectively. And (14-1) to (14-6).
  • the compounds represented by formulas (12) to (14) are compounds having a small absolute value of dielectric anisotropy and close to neutrality.
  • component E the threshold voltage, liquid crystal phase temperature range, refractive index anisotropy, dielectric anisotropy, viscosity and the like can be adjusted.
  • the compound represented by the formula (12) mainly has an effect of adjusting viscosity or refractive index anisotropy, and the compounds represented by the formulas (13) and (14) are nematic ranges such as increasing the clearing point. Has the effect of widening the refractive index or adjusting the refractive index anisotropy.
  • the content of component E is preferably 30% by weight or more, more preferably 50% by weight or more based on the total amount of the composition. Further, when preparing a liquid crystal composition for TN, STN, or PSA, the content of component E is preferably 30% by weight or more, more preferably 40% by weight or more based on the total amount of the composition. .
  • the liquid crystal composition of the present invention preferably contains at least one compound represented by the formula (1) of the present invention in a proportion of 0.1 to 99% by weight in order to develop excellent characteristics.
  • the liquid crystal composition of the present invention is generally prepared by a known method, for example, a method of dissolving necessary components at a high temperature.
  • an additive well known to those skilled in the art is added depending on the application, for example, an optically active compound as described below, a polymerizable compound, a liquid crystal composition of the present invention containing a polymerization initiator, a dye
  • a liquid crystal composition for GH type to which is added can be prepared.
  • additives are well known to those skilled in the art and are described in detail in the literature.
  • the liquid crystal composition of the present invention may further contain one or more optically active compounds.
  • a known chiral dopant is added as an optically active compound. This chiral dopant has the effect of inducing the helical structure of the liquid crystal to adjust the necessary twist angle and preventing reverse twist. Examples of the chiral dopant include the following optically active compounds.
  • these optically active compounds are usually added to adjust the twist pitch.
  • the twist pitch is preferably adjusted in the range of 40 to 200 ⁇ m for TFT and TN liquid crystal compositions.
  • a liquid crystal composition for STN it is preferably adjusted to a range of 6 to 20 ⁇ m.
  • a bistable TN (Bistable TN) mode it is preferable to adjust to a range of 1.5 to 4 ⁇ m.
  • Two or more optically active compounds may be added for the purpose of adjusting the temperature dependence of the pitch.
  • the liquid crystal composition of the present invention can be obtained as a GH type liquid crystal composition by adding a dichroic dye such as merocyanine, styryl, azo, azomethine, azoxy, quinophthalone, anthraquinone, and tetrazine. It can also be used.
  • a dichroic dye such as merocyanine, styryl, azo, azomethine, azoxy, quinophthalone, anthraquinone, and tetrazine. It can also be used.
  • the liquid crystal composition of the present invention is an NCAP produced by encapsulating nematic liquid crystals, or a polymer dispersed liquid crystal display device (PDLCD) produced by forming a three-dimensional network polymer in a liquid crystal, such as a polymer network. It can be used as a liquid crystal composition for birefringence control (ECB) type and DS type as well as for liquid crystal display elements (PNLCD).
  • ECB birefringence control
  • PLCD liquid crystal display elements
  • the liquid crystal composition according to the present invention When an ultraviolet absorber or an antioxidant is added to the liquid crystal composition according to the present invention, it is possible to prevent deterioration of the liquid crystal composition and the liquid crystal display element containing the liquid crystal composition.
  • the antioxidant can suppress a decrease in specific resistance value when the liquid crystal composition is heated.
  • UV absorber examples include benzophenone UV absorbers, benzoate UV absorbers, and triazole UV absorbers.
  • a specific example of the benzophenone-based ultraviolet absorber is 2-hydroxy-4-n-octoxybenzophenone.
  • a specific example of the benzoate ultraviolet absorber is 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate.
  • Specific examples of the triazole ultraviolet absorber include 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6-tetrahydroxyphthalimide-methyl)- 5-methylphenyl] benzotriazole, and 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole.
  • an antioxidant represented by the following formula is preferable.
  • w is an integer of 1 to 15.
  • w is 1, 3, 5, 7, or 9. Further preferred w is 1 or 7. Since the compound (15) in which w is 1 has high volatility, it is effective in preventing a decrease in specific resistance due to heating in the atmosphere. Since the compound (15) in which w is 7 has low volatility, it is effective for maintaining a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature of the nematic phase after using the device for a long time. .
  • phenolic antioxidants include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, 2,6-di-t-butyl- 4-propylphenol, 2,6-di-t-butyl-4-butylphenol, 2,6-di-t-butyl-4-pentylphenol, 2,6-di-t-butyl-4-hexylphenol, 2 , 6-di-t-butyl-4-heptylphenol, 2,6-di-t-butyl-4-octylphenol, 2,6-di-t-butyl-4-nonylphenol, 2,6-di-t- Butyl-4-decylphenol, 2,6-di-t-butyl-4-undecylphenol, 2, 6-di-t-butyl-4-dodecylphenol, 2,6-di-t-butyl-4-tridecylphenol
  • organic sulfur antioxidant examples include dilauryl-3,3′-thiopropionate, dimyristyl-3,3′-thiopropionate, distearyl-3,3′-thiopropionate, pentaerythritol Tetrakis (3-laurylthiopropionate) and 2-mercaptobenzimidazole.
  • the addition amount of the above-mentioned additives represented by ultraviolet absorbers, antioxidants and the like can be added and used within a range that can achieve the purpose of adding the additive without impairing the object of the present invention.
  • the addition ratio is usually in the range of 10 ppm to 500 ppm, preferably 30 to 300 ppm, based on the total weight of the liquid crystal composition according to the present invention.
  • the range is more preferably 40 to 200 ppm.
  • the liquid crystal composition according to the present invention includes impurities such as synthesis raw materials, by-products, reaction solvents, and synthesis catalysts that are mixed in the synthesis process of each compound constituting the liquid crystal composition, the liquid crystal composition preparation process, and the like. In some cases.
  • a polymerizable compound is mixed with the composition to be compatible with a PSA (Polymer Sustained Alignment) mode element.
  • Preferred examples of the polymerizable compound are compounds having a polymerizable group such as acrylate, methacrylate, vinyl, vinyloxy, propenyl ether, epoxy (oxirane, oxetane), vinyl ketone and the like. Particularly preferred examples are acrylate or methacrylate derivatives.
  • a desirable ratio of the polymerizable compound is 0.05% by weight or more for obtaining the effect thereof, and is 10% by weight or less for preventing defective display. A more desirable ratio is in the range of 0.1% to 2% by weight.
  • the polymerizable compound is preferably polymerized by UV irradiation or the like in the presence of a suitable initiator such as a photopolymerization initiator.
  • a suitable initiator such as a photopolymerization initiator.
  • Appropriate conditions for polymerization, the appropriate type of initiator, and the appropriate amount are known to those skilled in the art and are described in the literature.
  • Irgacure 651 registered trademark
  • Irgacure 184 registered trademark
  • Darocure 1173 registered trademark
  • the polymerizable compound preferably contains a photopolymerization initiator in the range of 0.1% to 5% by weight.
  • the photopolymerization initiator is contained in the range of 1% by weight to 3% by weight.
  • liquid crystal composition according to the present invention for example, when the compound constituting each component is a liquid, the respective compounds are mixed and shaken, and when the compound includes a solid, the respective compounds are mixed. It can be prepared by making each liquid by heating and then shaking.
  • the liquid crystal composition according to the present invention can also be prepared by other known methods.
  • the upper limit temperature of the nematic phase can be set to 70 ° C. or higher
  • the lower limit temperature of the nematic phase can be set to ⁇ 20 ° C. or lower
  • the temperature range of the nematic phase is wide. Therefore, a liquid crystal display element including this liquid crystal composition can be used in a wide temperature range.
  • an optical anisotropy in the range of 0.05 to 0.18, preferably an optical anisotropy in the range of 0.09 to 0.13, by appropriately adjusting the composition and the like. can be obtained.
  • the liquid crystal composition in the above numerical range can be suitably used as a liquid crystal display element that operates in the TN mode, STN mode, or TFT mode.
  • the dielectric anisotropy is usually in the range of ⁇ 5.0 to ⁇ 2.0, preferably the dielectric anisotropy in the range of ⁇ 4.5 to ⁇ 2.5.
  • a liquid crystal composition having properties can be obtained.
  • the liquid crystal composition in the above numerical range can be suitably used as a liquid crystal display element operating in the IPS mode, VA mode, or PSA mode.
  • the liquid crystal composition according to the present invention has operation modes such as a PC mode, a TN mode, an STN mode, and an OCB mode, and not only a liquid crystal display element driven by an AM mode, but also a PC mode, a TN mode, an STN mode, and an OCB. It can also be used for a liquid crystal display element that has an operation mode such as a mode, a VA mode, an IPS mode, or a PSA mode and is driven by a passive matrix (PM) method.
  • PM passive matrix
  • the liquid crystal composition according to the present invention includes a DS (dynamic scattering) mode element using a liquid crystal composition to which a conductive agent is added, and an NCAP (nematic curvilinear aligned phase) element manufactured by microencapsulating a liquid crystal composition.
  • a PD (polymer dispersed) element in which a three-dimensional network polymer is formed in a liquid crystal composition, for example, a PN (polymer network) element.
  • the liquid crystal composition according to the present invention since the liquid crystal composition according to the present invention has the above-described characteristics, it is driven in an operation mode using a liquid crystal composition having a negative dielectric anisotropy such as a VA mode, an IPS mode, or a PSA mode.
  • the liquid crystal display element can be suitably used for an AM liquid crystal display element, and can be particularly suitably used for an AM liquid crystal display element driven in a VA mode.
  • a sample was prepared in an acetone solution (0.1% by weight), and 1 ⁇ l thereof was injected into the sample vaporization chamber.
  • the recorder is a C-R7A Chromatopac manufactured by Shimadzu Corporation or an equivalent.
  • the obtained gas chromatogram showed the peak retention time and peak area corresponding to the component compounds.
  • the sample was dissolved in toluene to prepare a 1% by weight solution, and 1 ⁇ l of the resulting solution was injected into the sample vaporization chamber.
  • a recorder a C-R7A Chromatopac manufactured by Shimadzu Corporation or an equivalent thereof was used.
  • the obtained gas chromatogram shows the peak retention time and peak area value corresponding to the component compounds.
  • a dilution solvent for the sample for example, chloroform or hexane may be used.
  • a dilution solvent for the sample for example, chloroform or hexane may be used.
  • Agilent Technologies Inc. Capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), Agilent Technologies Inc. HP-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) manufactured by Restek Corporation, Rtx-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), SGE International Pty. BP-1 made of Ltd (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) or the like may be used.
  • the peak area ratio in the gas chromatogram corresponds to the ratio of the component compounds.
  • the weight% of the component compound of the analysis sample is not completely the same as the area% of each peak of the analysis sample.
  • the correction factor is substantially 1. Therefore, the weight% of the component compound in the analysis sample substantially corresponds to the area% of each peak in the analysis sample. This is because there is no significant difference in the correction coefficients of the component liquid crystal compounds.
  • an internal standard method using gas chromatogram is used.
  • test component liquid crystal compound component
  • reference liquid crystal compound reference material
  • T-3 1-ethoxy-2,3-difluorophenylboronic acid (T-3)
  • T-2 (19.5 g) obtained by the above operation was dissolved in dry tetrahydrofuran (hereinafter referred to as DryTHF) (500 ml). And cooled to -70 ° C. N-BuLi (500 ml) was added dropwise under a nitrogen atmosphere, and the mixture was stirred at -70 ° C for 2 hours. Thereafter, a dry THF solution of trimethyl borate (129.5 g) was slowly added dropwise at ⁇ 70 ° C., and the mixture was warmed to room temperature and stirred for 16 hours.
  • DryTHF dry tetrahydrofuran
  • the physical property values were calculated by extrapolation from the values obtained by measurement by preparing a sample by mixing 15% by weight of the compound and 85% by weight of the mother liquid crystal A as described in the section of the composition example below. .
  • Extrapolated value (measured value of sample ⁇ 0.85 ⁇ measured value of mother liquid crystal A) /0.15.
  • Example 2 4-Ethoxy-2,3,3′-trifluoro-4 ′-((pentylcyclohexyl) methoxy) biphenyl (1-1-29) was prepared in the same manner as described in Example 1, and 4′-ethoxy- 2 ', 3,3'-trifluorobiphenyl-4-ol (3.00 g) and 1-chloromethyl-4-pentylcyclohexane (2.95 g) were obtained as a white powder (3.66 g). Yield 62%.
  • Example 3 4-Butoxy-2,3,3′-trifluoro-4 ′-((pentylcyclohexyl) methoxy) biphenyl (1-1-34) was prepared in the same manner as described in Example 1, and 4′-butoxy- 2 ', 3,3'-trifluorobiphenyl-4-ol (4.44 g) and 1-chloromethyl-4-pentylcyclohexane (3.65 g) were obtained as a white powder (2.0 g). Yield 31%.
  • Example 4 4-((4'-Ethoxy-2 ', 3,3'-trifluorobiphenyl-4-yloxy) methyl) -4'-propylbicyclohexane (1-3-8) was prepared according to the method described in Example 1. Similarly, white powder was obtained from 4'-ethoxy-2 ', 3,3'-trifluorobiphenyl-4-ol (2.68 g) and 4-chloromethyl-4'-propylbicyclohexane (3.61 g). As (2.2 g). Yield 45%.
  • Example 5 4-((4′-Ethoxy-2 ′, 3,3′-trifluorobiphenyl-4-yloxy) methyl) -4′-pentylbicyclohexane (1-3-29) was prepared according to the method described in Example 1. Similarly, white powder was obtained from 4'-ethoxy-2 ', 3,3'-trifluorobiphenyl-4-ol (2.50 g) and 4-chloromethyl-4'-pentylbicyclohexane (3.99 g). As (4.2 g). Yield 87%.
  • Example 6 4-((4′-butoxy-2 ′, 3,3′-trifluorobiphenyl-4-yloxy) methyl) -4′-pentylbicyclohexane (1-3-34) was prepared by the method described in Example 1. Similarly, white powder was obtained from 4'-butoxy-2 ', 3,3'-trifluorobiphenyl-4-ol (4.44 g) and 4-chloromethyl-4'-pentylbicyclohexane (8.73 g). As (2.3 g). Yield 28%.
  • Example 7 4-((4′-Ethoxy-2 ′, 3,3′-trifluorobiphenyl-4-yloxy) methyl) -4′-vinylbicyclohexane (1-3-51) was prepared according to the method described in Example 1. Similarly, white powder was obtained from 4'-ethoxy-2 ', 3,3'-trifluorobiphenyl-4-ol (4.02 g) and 4-chloromethyl-4'-vinylbicyclohexane (6.79 g). As (4.5 g). Yield 64%.
  • Example 12 3-Chloro-4-ethoxy-2,3′-difluoro-4 ′-((4-propylcyclohexyl) methoxy) biphenyl (1-1-10) was prepared in the same manner as described in Example 1, and 3 ′ From -chloro-4'-ethoxy-2 ', 3-difluorobiphenyl-4-ol (2.85 g) and 4-chloromethyl-4'-propylcyclohexane (1.93 g) as a white powder (2.30 g) Obtained. Yield 54%.
  • Example 13 4-((3'-Chloro-4'-ethoxy-2 ', 3-difluorobiphenyl-4-yloxy) methyl) -4'-propylbi (cyclohexane) (1-3-10) is shown in Example 1.
  • Example 1 4-((3'-Chloro-4'-ethoxy-2 ', 3-difluorobiphenyl-4-yloxy) methyl) -4'-propylbi (cyclohexane) (1-3-10) is shown in Example 1.
  • 3'-chloro-4'-ethoxy-2 ', 3-difluorobiphenyl-4-ol (2.85 g) and 4-chloromethyl-4'-propylbicyclohexane (2.57 g) Obtained as a white powder (3.50 g). Yield 69%.
  • the measurement is performed by the following method. First, 15% by weight of the obtained liquid crystal compound and 85% by weight of the mother liquid crystal are mixed to prepare a sample. Then, an extrapolated value is calculated from the measured value of the obtained sample according to the extrapolation method shown in the following equation. This extrapolated value is taken as the physical property value of this compound.
  • ⁇ Extrapolated value> (100 ⁇ ⁇ Measured value of sample> ⁇ ⁇ Weight% of mother liquid crystal> ⁇ ⁇ Measured value of mother liquid crystal>) / ⁇ Weight% of liquid crystalline compound> Even when the ratio between the liquid crystal compound and the mother liquid crystal is this ratio, when the smectic phase or crystal precipitates at 25 ° C., the ratio between the liquid crystal compound and the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight: 95% by weight, 1% by weight: 99% by weight.
  • the physical properties of the sample were measured with a composition in which the smectic phase or crystals did not precipitate at 25 ° C. An interpolated value is obtained and used as a physical property value of the liquid crystal compound.
  • mother liquid crystals A there are various types of mother liquid crystals used for the measurement.
  • the composition of the mother liquid crystals A is as follows.
  • ⁇ n of this compound is 0.147
  • the upper limit temperature (NI) of the nematic phase is 111.3 ° C.
  • the viscosity ( ⁇ 20 ) is 106.9 mPa ⁇ s
  • the compound of the present application has a larger ⁇ n and a higher NI, It was found to have negatively large ⁇ and small viscosity.
  • compositions of the present invention are summarized in [Composition Example 1] to [Composition Example 14].
  • compounds that are components of the composition and their amounts (% by weight) are shown.
  • the compounds were indicated by the symbols of the left terminal group, linking group, ring structure, and right terminal group according to the conventions in [Table 9].
  • the configuration of 1,4-cyclohexylene is trans. If there is no end group symbol, it means that the end group is hydrogen.
  • physical property values of the composition are shown.
  • the characteristic value can be measured according to the following method. Many of them are the methods described in the Standards of the Electronic Industries Association of Japan (Standard of Industries Industries of Japan) EIAJ / ED-2521A, or modified methods thereof. No TFT was attached to the TN device used for measurement.
  • Transition temperature Measured by one of the following methods. 1) A sample was placed on a hot plate (METTLER FP-52 type hot stage) equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature at which the sample changed phase was measured. 2) Measurement was performed at a rate of 3 ° C./minute using a scanning calorimeter DSC-7 system manufactured by PerkinElmer.
  • the crystal was represented as C. If a crystal is distinguished into two crystals, it is denoted as C 1 or C 2, respectively.
  • the smectic phase was represented as S.
  • the crystal was represented as N.
  • the liquid (isotropic) was expressed as Iso.
  • the nematic phase was represented as N.
  • S B phase when a smectic B phase, a smectic C phase or a smectic A phase can be distinguished, they are represented as S B , S C or S A , respectively.
  • C 50.0 N 100.0 Iso means that the transition temperature (CN) from the crystal to the nematic phase is 50.0 ° C., and the transition temperature (NI) from the nematic phase to the liquid. Is 100.0 ° C. The same applies to other notations.
  • NI Maximum temperature of nematic phase
  • a sample was placed on a hot plate of a melting point measuring device equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid.
  • the upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.
  • T C Minimum temperature of nematic phase
  • a sample having a nematic phase is stored in a freezer at 0 ° C., ⁇ 10 ° C., ⁇ 20 ° C., ⁇ 30 ° C., and ⁇ 40 ° C. Observed. For example, it remains of the sample -20 ° C. in a nematic phase, when the change in the -30 ° C. crystals (or a smectic phase), is described as ⁇ -20 ° C.
  • the lower limit temperature of the nematic phase may be abbreviated as “lower limit temperature”.
  • a mother liquid crystal having a nematic phase was prepared by mixing several compounds having a similar structure.
  • a composition in which the compound to be measured and this mother liquid crystal were mixed was obtained.
  • An example of the mixing ratio is 15% by weight of the compound and 85% by weight of the mother liquid crystal.
  • This composition was stored at a low temperature such as ⁇ 20 ° C. and ⁇ 30 ° C. for 30 days. It was observed whether a part of this composition was changed to a crystal (or smectic phase). The mixing ratio and storage temperature were changed as necessary. From the measurement results, the conditions under which crystals (or smectic phases) precipitate and the conditions under which crystals (or smectic phases) do not precipitate were determined. These conditions are a measure of compatibility.
  • Viscosity (bulk viscosity; ⁇ ; measured at 20 ° C .; mPa ⁇ s): An E-type rotational viscometer was used for measurement.
  • Viscosity (rotational viscosity; ⁇ 1; measured at 25 ° C .; mPa ⁇ s): The measurement is as described in Imai et al. , Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). A sample was put in a VA device having a distance (cell gap) between two glass substrates of 20 ⁇ m. A voltage was applied stepwise to this device in the range of 30 to 50 volts every 1 volt. After no application for 0.2 seconds, the application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds). The peak current and peak time of the transient current generated by this application were measured. These measurements and M.I. The value of rotational viscosity was obtained from the paper by Imai et al., Calculation formula (8) on page 40. As the dielectric anisotropy necessary for this calculation, a value measured by the following dielectric anisotropy was used.
  • the optical anisotropy was measured by this method.
  • the optical anisotropy was measured after mixing the compound with an appropriate composition.
  • the optical anisotropy of the compound is an extrapolated value.
  • Dielectric Anisotropy ( ⁇ ; measured at 25 ° C.): When the sample was a compound, the compound was mixed with an appropriate composition, and then the dielectric anisotropy was measured. The dielectric anisotropy of the compound is an extrapolated value.
  • An ethanol (20 mL) solution of octadecyltriethoxysilane (0.16 mL) was applied to a well-cleaned glass substrate. The glass substrate was rotated with a spinner and then heated at 150 ° C. for 1 hour.
  • a VA device having an interval (cell gap) of 20 ⁇ m was assembled from two glass substrates. In the same manner, a polyimide alignment film was prepared on a glass substrate.
  • a TN device in which the distance between the two glass substrates was 9 ⁇ m and the twist angle was 80 degrees was assembled.
  • a sample (a liquid crystal composition or a mixture of a liquid crystal compound and a mother liquid crystal) is put into the obtained VA element, 0.5 V (1 kHz, sine wave) is applied, and a dielectric constant (in the major axis direction of liquid crystal molecules) ⁇ ) was measured.
  • a sample (liquid crystal composition or a mixture of a liquid crystal compound and a mother liquid crystal) is put into the obtained TN device, 0.5 V (1 kHz, sine wave) is applied, and the dielectric in the minor axis direction of the liquid crystal molecules.
  • the rate ( ⁇ ) was measured.
  • a composition having a negative value is a composition having a negative dielectric anisotropy.
  • Threshold voltage (Vth; measured at 25 ° C .; V): When the sample was a compound, the threshold voltage was measured after mixing the compound with an appropriate composition. The threshold voltage of the compound is an extrapolated value.
  • a sample was put in a normally black mode liquid crystal display element in which the distance (gap) between the two glass substrates was about 9 ⁇ m and was processed into homeotropic alignment. A rectangular wave having a frequency of 32 Hz was applied to this element. The voltage of the rectangular wave was raised, and the value of the voltage when the transmittance of light passing through the element reached 10% was measured.
  • Voltage holding ratio (VHR; measured at 25 ° C .;%):
  • the TN device used for the measurement has a polyimide alignment film, and the distance between two glass substrates (cell gap) is 6 ⁇ m. This element was sealed with an adhesive polymerized by ultraviolet rays after putting a sample.
  • the TN device was charged by applying a pulse voltage (60 microseconds at 5 V).
  • the decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined.
  • the area B is an area when it is not attenuated.
  • the voltage holding ratio is a percentage of the area A with respect to the area B.
  • the present invention provides a novel liquid crystalline compound having excellent compatibility with other liquid crystal materials, a large ⁇ n value, and a negative large ⁇ .
  • the present invention also provides a new liquid crystal composition having the above-mentioned characteristics having desired physical properties by appropriately selecting a ring, a substituent, a bonding group, and the like constituting the compound from the liquid crystal compound as a component. And a liquid crystal display device constituted by using the liquid crystal composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 液晶性化合物に必要な一般的物性、すなわち熱、光などに対する安定性、小さな粘度、適切な大きさの屈折率異方性値、適切な大きさの誘電率異方性値および急峻な電気光学特性、ネマチック相の広い温度範囲、および他の液晶性化合物との優れた相溶性を有する液晶性化合物、特にネマチック相の広い温度範囲を有する液晶性化合物を提供する。 式(1)で表される化合物。 例えば、RおよびRはそれぞれ独立して、炭素数1~9のアルキル、または炭素数2~9のアルケニル、炭素数1~8のアルコキシ、または炭素数2~8のアルケニルオキシであり;QおよびQはそれぞれ独立して、フッ素または塩素であり;QおよびQはそれぞれ独立して、水素、フッ素または塩素であり、QおよびQのいずれか1つは必ず水素であり;Zは-CHO-または-COO-であり;hは1または2である。

Description

誘電率異方性が負の液晶性化合物、これを用いた液晶組成物および液晶表示素子
 本発明は液晶表示素子用の材料として有用な新規液晶性化合物およびこの化合物を含有する液晶組成物に関する。詳しくは低い粘性、他の液晶性化合物との良好な相溶性を持ち、加えて適切な大きさの屈折率異方性および誘電率異方性を有し、液晶表示素子に使用した場合には急峻な電気光学特性を得ることができる新規液晶性化合物およびこの化合物を含有する液晶組成物ならびにこの液晶組成物を含有する液晶表示素子に関する。
 液晶性化合物(本願において、液晶性化合物なる用語は、液晶相を示す化合物および液晶相を示さないが液晶組成物の構成成分として有用である化合物の総称として用いられる。)を用いた表示素子は、時計、電卓、ワ-プロなどのディスプレイに広く利用されている。これらの表示素子は液晶性化合物の屈折率異方性、誘電率異方性などを利用したものである。
 液晶相には、ネマチック液晶相、スメクチック液晶相、コレステリック液晶相があるが、ネマチック液晶相を利用したものが最も広く用いられている。また表示方式としては動的散乱(DS)型、配向相変形(DAP)型、ゲスト/ホスト(GH)型、ねじれネマチック(TN)型、超ねじれネマチック(STN)型、薄膜トランジスタ(TFT)型、垂直配向(VA)型、インプレ-ンスイッチング(IPS)型、高分子支持配向(PSA)型などがある。
 これらの表示方式で用いられる液晶性化合物は、室温を中心とする広い温度範囲で液晶相を示し、表示素子が使用される条件下で十分に安定であり、さらに表示素子を駆動させるに十分な特性を持たなくてはならないが、現在のところ単一の液晶性化合物でこの条件を満たすものは見いだされていない。
 このため数種類から数十種類の液晶性化合物を混合することにより要求特性を備えた液晶組成物を調製しているのが実状である。これらの液晶組成物は、表示素子が使用される条件下で通常存在する水分、光、熱、空気に対して安定であり、また電場や電磁放射に対しても安定であるうえ、混合される化合物に対し化学的にも安定であることが要求される。また、液晶組成物には、その屈折率異方性(Δn)および誘電率異方性(Δε)などの諸物性値が表示方式や表示素子の形状に依存して適当な値をもつことが必要とされる。さらに液晶組成物中の各成分は、相互に良好な溶解性を持つことが重要である。
 良好な液晶表示を行うためには、それを構成する液晶表示素子のセル厚みと使用される液晶材料のΔnの値は一定であることが好ましい(E.Jakemanら、Pyhs.Lett.,39A.69(1972))。また、液晶表示素子の応答速度は、用いられるセルの厚みの二乗に反比例する。それ故、動画などの表示にも応用できる高速応答可能な液晶表示素子を製造するには大きなΔnの値を有する液晶組成物を持たなくてはならない。大きなΔnの値を有する液晶単体成分として種々の化合物開発がおこなわれたが、一般的に、かような大きなΔnを有する化合物は高度に共役した分子構造を有するが、その他の液晶材料との相溶性が悪い傾向があり、良好な電気特性を有する液晶組成物の構成要素として用いにくい。さらに、薄膜トランジスタ方式の液晶表示素子などの、高い絶縁性(比抵抗)を要求される液晶組成物の構成要素として用いられる液晶性化合物には、高い安定性を要求される。
 また、上述した動作モードの中でもIPSモード、VAモードあるいはPSAモードなどは、液晶分子の垂直配向性を利用した動作モードであり、TNモード、STNモードなどの従来の表示モードの欠点である視野角の狭さを改善可能であることが知られている。
 そして、従来からこれら動作モードの液晶表示素子に使用可能な、負の誘電率異方性を有する液晶組成物の成分として、ベンゼン環上の水素がフッ素で置き換えられた液晶性化合物が数多く検討されてきている(特許文献1~4参照。)。
 例えば、特許文献1にはベンゼン環上の水素がフッ素で置き換えられた式(s-1)で示される化合物が、また、特許文献2には、式(s-2)で示される、ベンゼン環上の水素がフッ素で置き換えられ、アルケニルを有する化合物が検討されている。
Figure JPOXMLDOC01-appb-I000006
しかし、式(s-1)で示されるベンゼン環上の水素がフッ素で置き換えられた化合物は光学異方性が小さく、式(s-2)で示される化合物でも光学異方性は十分に大きくない。また、側方基がハロゲンなどの極性基である化合物として特許文献3に式(s-3)、(s-4)および(s-5)で示される化合物が開示されている。
 その他にも、特許文献4には式(s-6)、(s-7)、(s-8)および(s-9)で示される側方基がハロゲンなどの極性基である化合物が開示されているが、本願のように2,3,3′位にフッ素または塩素原子を持つビフェニル環と-CHO-および-COO-結合基とを持つ化合物は開示されていない。
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
 そのうえ、式(s-3)、(s-4)および(s-5)で示される化合物は、いずれも光学異方性が小さく、ネマチック相の上限温度が低く、液晶相を示さない。さらに、式(s-5)、(s-7)、(s-8)および(s-9)で示される化合物は、いずれも光学異方性が小さく、ネマチック相の上限温度が低く、誘電率異方性が小さいため、これらを含有する液晶組成物ではその駆動電圧を下げることができない。また、式(s-3)および(s-6)で示される化合物は低温相溶性が充分でないなどの、さらに改良の求められる点がある。
特開平02-4725号公報 特開2000-53602号公報 特開平09-52852号公報 特開2007-2132号公報 国際公開第2009/034867パンフレット
 したがって、IPSモード、VAモードおよびPSAモードなどの動作モードで使用される液晶表示素子であっても、CRTと比較すれば表示素子としてはいまだ問題があり、例えば、応答速度の向上、コントラストの向上、駆動電圧の低下が望まれている
 上述したIPSモード、VAモードあるいはPSAモードで動作する表示素子は、主として、負の誘電率異方性を有する液晶組成物から構成されているが、上記特性などをさらに向上させるためには、上記液晶組成物に含まれる液晶性化合物が、以下(1)~(8)で示す特性を有することが必要である。すなわち、
(1)化学的な安定性と物理的な安定性を有すること。
(2)高い透明点を有すること。透明点は、液晶相-等方相の転移温度である。
(3)液晶相の低い下限温度を有すること。液晶相は、ネマチック相、スメクチック相などを意味する。
(4)小さな粘度を有すること。
(5)適切な光学異方性を有すること。
(6)適切な負の誘電率異方性を有すること。大きな誘電率異方性を有する化合物は、大きな粘度を有することが多い。
(7)適切な弾性定数K33およびK11(K33:ベンド弾性定数、K11:スプレイ弾性定数)を有すること、および
(8)他の液晶性化合物との相溶性に優れること。
 (1)のように化学的、物理的に安定な液晶性化合物を含む組成物を表示素子に用いると、電圧保持率を大きくすることができる。
 また、(2)、(3)のように、高い透明点、あるいは液晶相の低い下限温度を有する液晶性化合物を含む組成物ではネマチック相の温度範囲を広げることが可能となり、幅広い温度領域で表示素子として使用することが可能となる。
 さらに、(4)のように粘度の小さい化合物、(7)のように大きな弾性定数K33を有する化合物を含む組成物を表示素子として用いると応答速度を向上することができ、(5)のように適切な光学異方性を有する化合物を含む組成物を用いた表示素子の場合は、表示素子のコントラストの向上を図ることができる。
 加えて、液晶性化合物が負の大きな誘電率異方性を有する場合には、この化合物を含む液晶組成物のしきい値電圧を低くすることができるので、(6)のように適切な負の誘電率異方性を有する化合物を含む組成物を用いた表示素子の場合には、表示素子の駆動電圧を低くし、消費電力も小さくすることができる。さらに(7)のように適切な弾性定数K33を有する化合物を含む組成物を表示素子として用いることで表示素子の駆動電圧を調整することができ、消費電力も調整することができる。
 液晶性化合物は、単一の化合物では発揮することが困難な特性を発現させるために、他の多くの液晶性化合物と混合して調製した組成物として用いることが一般的である。したがって、表示素子に用いる液晶性化合物は、(8)のように、他の液晶性化合物などとの相溶性が良好であることが好ましい。また、表示素子は、氷点下を含め幅広い温度領域で使用することもあるので、低い温度領域から良好な相溶性を示す化合物であることが好ましい場合もある。
 本発明の第一の目的は、前記従来技術の欠点を解消し、液晶性化合物に必要な一般的物性、すなわち熱、光などに対する安定性、小さな粘度、適切な大きさの屈折率異方性、適切な大きさの負の誘電率異方性、適切な大きさの弾性定数K33、K11および急峻な電気光学特性、ネマチック相の広い温度範囲、および他の液晶性化合物との優れた相溶性を有する液晶性化合物を提供することであり、特にネマチック相の広い温度範囲を有する液晶性化合物を提供することである。
 第二の目的は、この液晶性化合物を含有し、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、および低いしきい値電圧を有する液晶組成物を提供することであり、特にネマチック相の高い上限温度およびネマチック相の低い下限温度を有する液晶組成物を提供することである。
 第三の目的は、この組成物を含有し、使用できる広い温度範囲、短い応答時間、小さな消費電力、大きなコントラスト、および低い駆動電圧を有する液晶表示素子を提供することであり、特に、使用できる広い温度範囲を有する液晶表示素子を提供することである。
 本発明者らは前記課題を解決するために鋭意検討した結果、側方基にハロゲンなどの極性基を有するビフェニル化合物が極めて大きな弾性定数K33(K33:ベンド弾性定数)、非常に低い粘性、高い化学的安定性、広いネマチック相温度範囲、大きな屈折率異方性および負の誘電率異方性を持つことを見出した。さらに上記化合物を含有する液晶組成物を用いると、急峻な電気光学特性、短い応答時間、広い動作温度範囲および駆動電力が小さい液晶表示素子を作製できることを見出した。従って、上記化合物は液晶表示素子、特に現在広く利用されているECB、IPS、VAあるいはPSAなどの液晶表示素子に好適であることを見出し、本発明を完成するに至ったものである。
 本発明の要旨は下記の項などのとおりである。
1. 式(1)で表される化合物。
Figure JPOXMLDOC01-appb-I000009
[式中、RおよびRはそれぞれ独立して、炭素数1~9のアルキル、または炭素数2~9のアルケニル、炭素数1~8のアルコキシ、または炭素数2~8のアルケニルオキシであり;
およびQはそれぞれ独立して、フッ素または塩素であり;
およびQはそれぞれ独立して、水素、フッ素または塩素であり、QおよびQのいずれか一方は必ず水素であり、他方は必ずフッ素または塩素であり;
Zは-CHO-または-COO-であり;
hは1または2であり、QおよびQはいずれもフッ素であるとき、hは1である。]
2. Q、QおよびQがフッ素であり、Qが水素である、項1に記載の化合物。
3. Q、QおよびQがフッ素であり、Qが水素である、項1に記載の化合物。
4.Zが-CHO-である項1に記載の化合物。
5. 項1のいずれかに記載の化合物を少なくとも1つ含有することを特徴とする、2つ以上の化合物からなる液晶組成物。
6. 式(2)、(3)および(4)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を含有する、項5に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000010
[式中、Rは独立して炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH-は-O-で置き換えられてもよく;
 Xは独立してフッ素、塩素、-OCF、-OCHF、-CF、-CHF、-CHF、-OCFCHFまたは-OCFCHFCFであり;
 環A、環Aおよび環Aは独立して1,4-シクロヘキシレン、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、1-ピラン-2,5-ジイルまたは任意の水素がフッ素で置き換えられてもよい1,4-フェニレンであり;
 ZおよびZは独立して-(CH-、-(CH-、-COO-、-CFO-、-OCF-、-CH=CH-、-C≡C-、-CHO-または単結合であり;
 LおよびLは独立して水素またはフッ素である。]
7. 式(5)で表される化合物の群から選択される少なくとも1つの化合物を含有する、項5に記載の液晶組成物。
[式中、Rは炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH-は-O-で置き換えられてもよく;
 Xは-C≡Nまたは-C≡C-C≡Nであり;
 環B、環Bおよび環Bは独立して1,4-シクロヘキシレン、1,3-ジオキサン-2,5-ジイル、1-ピラン-2,5-ジイル、ピリミジン-2,5-ジイル、または任意の水素がフッ素で置き換えられてもよい1,4-フェニレンであり;
 Zは-(CH-、-COO-、-CFO-、-OCF-、-C≡C-、-CHO-または単結合であり;
 LおよびLは独立して水素またはフッ素であり;
 qは0、1または2であり、rは0または1であり、q+rは0、1または2である。]
8. 式(6)、(7)、(8)、(9)、(10)および(11)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を含有する、項5に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000012
[式中、RおよびRは独立して炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH-は-O-で置き換えられてもよく;
 環C、環C、環Cおよび環Cは独立して1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、6-ピラン-2,5-ジイルまたはデカヒドロ-2,6-ナフタレンであり;
 Z、Z、ZおよびZは独立して-(CH-、-COO-、-CHO-、-OCF-、-OCF(CH-または単結合であり;
およびLは独立してフッ素または塩素であり;
j、k、l、m、n、およびpは独立して0または1であり、k+l+m+nは1または2である。]
9. 式(12)、(13)および(14)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を含有する、項5に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000013
[式中、RおよびRは独立して炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、このアルキルおよびアルケニルにおいて任意の-CH-は-O-で置き換えられてもよく;
 環D、環Dおよび環Dは独立して1,4-シクロヘキシレン、ピリミジン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレンまたは2,5-ジフルオロ1,4-フェニレンであり;
 ZおよびZは独立して-C≡C-、-COO-、-(CH-、-CH=CH-または単結合である。]
10. 式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項6に記載の液晶組成物。
11. 式(12)、(13)および(14)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項6に記載の液晶組成物。
12. 式(12)、(13)および(14)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項7に記載の液晶組成物。
13. 式(12)、(13)および(14)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項8に記載の液晶組成物。
14. 少なくとも1つの光学活性化合物および/または重合可能な化合物をさらに含有する、項5に記載の液晶組成物。
15. 少なくとも1つの酸化防止剤および/または紫外線吸収剤をさらに含有する、項5に記載の液晶組成物。
16. 項5に記載の液晶組成物を含有する液晶表示素子。
 本発明の化合物は、液晶性化合物に必要な一般的物性、熱、光などに対する安定性、小さな粘度、適切な大きさの光学異方性、適切な大きさの負の誘電率異方性、および他の液晶性化合物との優れた相溶性を有する。本発明の液晶組成物は、これらの化合物の少なくとも一つを含有し、そしてネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な大きさの光学異方性、適切な弾性定数K33(K33:ベンド弾性定数)および低いしきい値電圧を有する。本発明の液晶表示素子は、この組成物を含有し、そして使用できる広い温度範囲、短い応答時間、小さな消費電力、大きなコントラスト比、および低い駆動電圧を有する。
 すなわち、本発明の化合物は、公知の同様な構造の化合物に比べ、他の液晶材料との相溶性に優れかつ低粘度であり、液晶温度レンジも広い。また、類似の化合物と比較し、低いしきい値電圧を有するうえ比較的低粘度を示す。さらに本発明化合物は液晶表示素子が通常使用される条件下において物理的および化学的に十分安定であり、ネマチック液晶組成物の構成成分として極めて優れ、TN型、STN型、TFT型、VA型、IPS型、およびPSA型用の液晶組成物の構成成分として好適に使用することができる。
 この明細書における用語の使い方は次のとおりである。液晶性化合物は、ネマチック相、スメクチック相などの液晶相を有する化合物および液晶相を有しないが液晶組成物の成分として有用な化合物の総称である。液晶性化合物、液晶組成物、液晶表示素子をそれぞれ化合物、組成物、素子と略すことがある。液晶表示素子は液晶表示パネルおよび液晶表示モジュールの総称である。ネマチック相の上限温度はネマチック相-等方相の相転移温度であり、そして単に上限温度と略すことがある。ネマチック相の下限温度を単に下限温度と略すことがある。式(1)で表わされる化合物を化合物(1)と略すことがある。この略記は式(2)などで表される化合物にも適用することがある。式(1)~(14)において、六角形で囲んだA、B、C、Dなどの記号はそれぞれ環A、環B、環C、環Dなどに対応する。複数の同じ記号を同一の式または異なった式に記載したが、これらはそれぞれが同一であってもよいし、または異なってもよい。
 「任意の」は、位置だけでなく個数についても任意であることを示すが、個数が0である場合を含まない。任意のAがB、CまたはDで置き換えられてもよいという表現は、任意のAがBで置き換えられる場合、任意のAがCで置き換えられる場合および任意のAがDで置き換えられる場合に加えて、複数のAがB~Dの少なくとも2つで置き換えられる場合をも含むことを意味する。例えば、任意の-CH-が-O-または-CH=CH-で置き換えられてもよいアルキルには、アルキル、アルケニル、アルコキシ、アルコキシアルキル、アルコキシアルケニル、アルケニルオキシアルキルなどが含まれる。なお、本発明においては、連続する2つの-CH-が-O-で置き換えられて、-O-O-のようになることは好ましくない。そして、アルキルにおける末端の-CH-が-O-で置き換えられることも好ましくない。百分率で表した化合物の量は組成物の全重量に基づいた重量百分率(重量%)である。以下に本発明をさらに説明する。
〔液晶性化合物〕
 第一に、本発明の化合物(1)をさらに説明する。

Figure JPOXMLDOC01-appb-I000014
 化合物(1)について後述の実施例における[表9]に記載したように、左末端基、結合基、環構造、および右末端基の構造に分けて、各構造について説明する。化合物(1)は2,3,3′位にフッ素または塩素原子を持つビフェニル環を有する三環または四環の化合物である。この化合物は、素子が通常使用される条件下において物理的および化学的に極めて安定であり、そして他の液晶性化合物との相溶性がよい。この化合物を含有する組成物は素子が通常使用される条件下で安定である。この組成物を低い温度で保管しても、この化合物が結晶(またはスメクチック相)として析出することがない。この化合物は、化合物に必要な一般的物性、適切な光学異方性、そして適切な負の誘電率異方性を有する。
 化合物(1)の末端基、環構造および結合基を適切に選択することによって、光学異方性、誘電率異方性などの物性を任意に調整することが可能である。化合物(1)における好ましい末端基、結合基Zとそれらの種類が、化合物(1)の物性に与える効果を以下に説明する。
 化合物(1)中、RおよびRにおいて、これらは直鎖であることが好ましい。直鎖であるときは液晶相の温度範囲が広くそして粘度が小さい。RおよびRのいずれかが分岐鎖であるときは他の液晶性化合物との相溶性がよい。RおよびRのいずれかが光学活性基である化合物は、キラルドーパントとして有用である。この化合物を組成物に添加することによって、素子に発生するリバース・ツイスト・ドメイン(Reverse twisted domain)を防止することができる。RおよびRが光学活性基でない化合物は組成物の成分として有用である。
 化合物(1)中、RおよびRはそれぞれ独立して、炭素数1~9のアルキル、または炭素数2~9のアルケニル、炭素数1~8のアルコキシ、または炭素数2~8のアルケニルオキシである。RおよびRに関しては、化合物の用途に応じて下記の具体例を参照し選択することができる。ここでアルケニルまたはアルケニルオキシは、アルキルにおいて任意の-(CH-が-CH=CH-などで置き換えられた基であり、一例で示す。CH(CH-において任意の-(CH-を-CH=CH-で置き換えた基の例は、HC=CH-(CH-、CH-CH=CH-CH-などである。このように「任意の」語は、「区別なく選択された少なくとも一つの」を意味する。化合物の安定性を考慮して、二重結合が隣接したCH=CH-CH=CH-CH-CH-よりも、二重結合が隣接しないCH=CH-CH-CH-CH=CH-の方が好ましい。
 アルケニルにおける-CH=CH-の好ましい立体配置は、二重結合の位置に依存する。-CH=CHCH、-CH=CHC、-CH=CHCおよび-CH=CHCのような奇数位に二重結合をもつアルケニルにおいてはトランス配置が好ましい。上述のような好ましい立体配置を有するアルケニル化合物は、液晶相の温度範囲が広く、大きな弾性定数K33を有し、化合物の粘度を小さくすることができ、さらに、この液晶性化合物を液晶組成物に添加すると、ネマチック相の上限温度(TNI)を高くすることができる。また、-CHCH=CHCH、-CHCH=CHC、および-CHCH=CHCのような偶数位に二重結合をもつアルケニルにおいてはシス配置が好ましい。
 好ましいRおよびRの具体的な例は、-CH、-C、-C、-C、-C11、-C13、-C15、-C17、-C19、-OCH、-OC、-OC、-OC、-OC11、-OC13、-OC15、-OC17、-CH=CH、-CH=CHCH、-CH=CHC、-(CHCH=CH、-CH=CHC、-(CHCH=CHCH、-CH=CHC、-(CHCH=CHC、-CH=CH(CHCH=CH、-CH=CHC、-(CHCH=CHC、-CH=CH(CHCH=CHCH、-CH=CHC、-(CHCH=CHC、-CH=CH(CHCH=CHC、-OCH=CH、-OCH=CHCH、-OCHCH=CH、-OCH=CHC、-OCHCH=CHCH、-O(CHCH=CH、-OCH=CHC、-OCHCH=CHC、-O(CHCH=CHCH、-O(CHCH=CH、-(CHCH=CH(CHCH=CH、-(CHCH=CH(CHCH=CHCH、-OCHCH=CH(CHCH=CH、および-OCHCH=CH(CHCH=CHCHである。
 さらに好ましいRおよびRの具体的な例は、-CH、-C、-C、-C、-C11、-C13、-C15、-C17、-C19、-OCH、-OC、-OC、-OC、-OC11、-OC13、-CH=CH、-CH=CHCH、-(CHCH=CH、-(CHCH=CHCH、-OCH=CH、-OCH=CHCH、-OCHCH=CH、-OCH=CHC、-OCHCH=CHCH、-O(CHCH=CH、-OCH=CHC、-OCHCH=CHC、-O(CHCH=CHCH、および-O(CHCH=CHである。
 最も好ましいRおよびRの具体的な例は、-CH、-C、-C11、-C15、-C19、-OCH、-OC、-OC、-OC13、-OC17、-CH=CH、-CH=CHCH、-(CHCH=CH、-(CHCH=CHCH、-OCH=CHおよび-OCHCH=CHである。
 化合物(1)における側方基としては、QおよびQはそれぞれ独立して、フッ素または塩素であり、QおよびQはそれぞれ独立して、水素、フッ素または塩素であり、QおよびQのいずれか一方は必ず水素であり、他方は必ずフッ素または塩素である。
 化合物(1)は、誘電率異方性が負に大きい。大きな誘電率異方性を有する化合物は、組成物のしきい値電圧を下げるための成分として有用である。
 化合物(1)における結合基Zは、-COO-または-CHO-である。この結合基であることにより光学異方性が負に大きい。さらに結合基Zが-CHO-であるときは粘度が小さい。
 液晶性化合物がこれら液晶性化合物(1)で示される構造を有する場合には、適切な負の誘電率異方性を有し、他の液晶性化合物との相溶性が極めてよい。さらに、熱、光などに対する安定性を有し、広い温度範囲でネマチック相となり、粘度が小さく、大きな光学異方性、および適切な弾性定数K33、K11を有している。液晶性化合物(1)が三環を有するときは粘度が小さい。液晶性化合物(1)が四環を有するときは上限温度が高い。以上のように、末端基、環構造および結合基の種類、環の数を適当に選択することにより目的の物性を有する化合物を得ることができる。また、この液晶性化合物(1)を含有する液晶組成物は、液晶表示素子が通常使用される条件下で安定であり、低い温度で保管してもこの化合物が結晶(またはスメクチック相)として析出することがない。
 したがって、液晶性化合物(1)は、PC、TN、STN、ECB、OCB、IPS、VAもしくはPSAなどの表示モードの液晶表示素子に用いる液晶組成物に好適に適用することができ、IPS、VAもしくはPSAなどの表示モードの液晶表示素子に用いる液晶組成物に、特に好適に適用することができる。
 本発明の式(1)で示される化合物は、該式中のR、R、Q、Q、Q、QおよびZに所定の基を導入することにより得られるが、このような基の導入は公知の一般的な有機合成法により行い得る。代表的な合成例は、新実験化学講座 14 有機化合物の合成と反応(1978年)丸善 あるいは第四版 実験化学講座 19~26 有機合成I~VIII (1991)丸善 などに記載の方法をあげることができる。
 結合基Zを生成する方法の一例に関して、最初にスキームを示し、次に項(I)および(II)でスキームを説明する。このスキームにおいて、MSGまたはMSGは少なくとも一つの環を有する1価の有機基である。スキームで用いた複数のMSG(またはMSG)は、同一であってもよいし、または異なってもよい。化合物(1A)および(1B)は化合物(1)に相当する。
Figure JPOXMLDOC01-appb-I000015

Figure JPOXMLDOC01-appb-I000016
(I)-COO-の生成
 化合物(22)にn-ブチルリチウムを、続いて二酸化炭素を反応させてカルボン酸(23)を得る。化合物(23)と、公知の方法で合成されるフェノール(24)とをDDC(1,3-ジシクロヘキシルカルボジイミド)とDMAP(4-ジメチルアミノピリジン)の存在下で脱水させて-COO-を有する化合物(1A)を合成する。
(II)-CHO-の生成
 化合物(25)を水素化ホウ素ナトリウムなどの還元剤で還元して化合物(26)を得る。これを塩化チオニルなどでハロゲン化して化合物(27)を得る。炭酸ナトリウムなどの塩基の存在下で、化合物(27)を化合物(24)と反応させて化合物(1B)を合成する。
 次に液晶性化合物(1)、すなわち上記式(1)で表される液晶性化合物の製造例を示す。なお、下記反応経路においてR、R、Z、Q、Q、Q、Qおよびhは前記と同一の意味である。

Figure JPOXMLDOC01-appb-I000017
 化合物(1a)とn-ブチルリチウムとを反応させリチウム塩を調製し、それとホウ酸エステルとを反応させ、酸性雰囲気下で加水分解することによりジヒドロキシボラン誘導体(1b)を得る。この化合物(1b)とフェノール誘導体(1c)とを炭酸ナトリウムなどの塩基、およびPd-Cなどの触媒存在下反応させることにより、ビフェニル誘導体(1d)を得る。

Figure JPOXMLDOC01-appb-I000018
 化合物(1e)と、ビフェニル誘導体(1d)とをDDC(1,3-ジシクロヘキシルカルボジイミド)とDMAP(4-ジメチルアミノピリジン)の存在下で脱水させて本発明の液晶性化合物(1)の一例である液晶性化合物(1f)を製造することができる。

Figure JPOXMLDOC01-appb-I000019
 本発明の式(1)で示される化合物のうち、より好ましい化合物は式(1-1)~(1-4)で示される化合物である。

Figure JPOXMLDOC01-appb-I000020
 式(1)で示される化合物が式(1-1)および(1-2)で示される化合物であるときは、他の液晶組成物との相溶性がよく粘度が小さい。式(1)で示される化合物が式(1-3)および(1-4)で示される化合物であるときは、ネマチック相の上限温度(TNI)が高い。
(II)-CHO-の生成
 化合物(1g)と、ビフェニル誘導体(1d)とを炭酸ナトリウムなどの塩基の存在下反応させて本発明の液晶性化合物(1)の一例である液晶性化合物(1h)を製造することができる。
〔液晶組成物〕
 第二に、本発明の組成物をさらに説明する。本発明の液晶組成物は、前記本発明の式(1)で示される化合物を成分Aとして含む必要がある。この成分Aのみの組成物、または成分Aと本明細書中で特に成分名を示していないその他の成分との組成物でもよいが、この成分Aに以下に示す成分B、C、DおよびE成分から選ばれた成分を加えることにより種々の特性を有する本発明の液晶組成物が提供できる。
 成分Aに加える成分として、前記式(2)、(3)および(4)からなる群から選ばれた少なくとも1種の化合物からなる成分B、前記式(5)からなる群から選ばれた少なくとも1種の化合物からなる成分C、前記式(6)、(7)、(8)、(9)、(10)および(11)からなる群から選ばれた少なくとも1種の化合物からなる成分D、または式(12)、(13)および(14)からなる群から選ばれた少なくとも1種の化合物からなる成分Eを混合したものが好ましい。これらの各成分は、組成物の使用される目的により適宜組み合わされて使用することができる。
 また、本発明に使用される液晶組成物の各成分は、各元素の同位体元素からなる類縁体でもその物理特性に大きな差異がない。
 上記成分Bのうち、式(2)で示される化合物の好適例として式(2-1)~(2-16)、式(3)で示される化合物の好適例として式(3-1)~(3-112)、式(4)で示される化合物の好適例として式(4-1)~(4-54)をそれぞれ挙げることができる。
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
(式中、R、Xは前記と同じ意味を表す)
 これらの式(2)~(4)で示される化合物すなわち成分Bは、誘電率異方性が正であり、熱安定性や化学的安定性が非常に優れているので、TFT用およびPSA用の液晶組成物を調製する場合に用いられる。本発明の液晶組成物における成分Bの含有量は、液晶組成物の全重量に対して1~99重量%の範囲が適するが、好ましくは10~97重量%、より好ましくは40~95重量%である。また式(12)~(14)で表される化合物(成分E)をさらに含有させることにより粘度調整をすることができる。
 前記、式(5)で示される化合物すなわち成分Cのうちの好適例として、(5-1)~(5-64)を挙げることができる。
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000031
(式中、RおよびXは前記と同じ意味を表す)
 これらの式(5)で示される化合物すなわち成分Cは、誘電率異方性が正でその値が非常に大きいのでSTN,TN用、PSA用の液晶組成物を調製する場合に主として用いられる。この成分Cを含有させることにより、組成物のしきい値電圧を小さくすることができる。また、粘度の調整、屈折率異方性の調整および液晶相温度範囲を広げることができる。さらに急峻性の改良にも利用できる。
 STNまたはTN用の液晶組成物を調製する場合には、成分Cの含有量は0.1~99.9重量%の範囲が適用できるが、好ましくは10~97重量%、より好ましくは40~95重量%である。また、後述の成分を混合することによりしきい値電圧、液晶相温度範囲、屈折率異方性、誘電率異方性及び粘度などを調整できる。
 式(6)~(11)からなる群から選ばれた少なくとも一種の化合物からなる成分Dは、垂直配向モ-ド(VAモ-ド)、高分子支持配向モード(PSAモ-ド)などに用いられる誘電率異方性が負の本発明の液晶組成物を調製する場合に、好ましい成分である。
 この式(6)~(11)で示される化合物(成分D)の好適例として、それぞれ式(6-1)~(6-6)、(7-1)~(7-15)、(8-1)、(9-1)~(9-3)、(10-1)~(10-11)、および(11-1)~(11-10)を挙げることができる。
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000033
(式中、R,Rは前記と同じ意味を表す)
 これら成分Dの化合物は主として誘電率異方性の値が負であるVAモ-ド、PSAモード用の液晶組成物に用いられる。その含有量を増加させると組成物のしきい値電圧が低くなるが、粘度が大きくなるので、しきい値電圧の要求値を満足している限り含有量を少なくすることが好ましい。しかしながら、誘電率異方性の絶対値が5程度であるので、含有量が40重量%より少なくなると電圧駆動ができなくなる場合がある。
 成分Dのうち式(6)で表される化合物は2環化合物であるので、主としてしきい値電圧の調整、粘度調整または屈折率異方性の調整の効果がある。また、式(7)および式(8)で表される化合物は3環化合物であるので透明点を高くする、ネマチックレンジを広くする、しきい値電圧を低くする、屈折率異方性を大きくするなどの効果が得られる。また、式(9)、(10)および(11)はしきい値電圧を低くするなどの効果が得られる。
 成分Dの含有量は、VAモ-ド、PSAモード用の組成物を調製する場合には、組成物全量に対して好ましくは40重量%以上、より好ましくは50~95重量%である。また、成分Dを混合することにより、弾性定数をコントロ-ルし、組成物の電圧透過率曲線を制御することが可能となる。成分Dを誘電率異方性が正である組成物に混合する場合はその含有量が組成物全量に対して30重量%以下が好ましい。
 式(12)、(13)および(14)で表わされる化合物(成分E)の好適例として、それぞれ式(12-1)~(12-11)、(13-1)~(13-19)および(14-1)~(14-6)を挙げることができる。
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000035
(式中、RおよびRは前記と同じ意味を表す)
 式(12)~(14)で表される化合物(成分E)は、誘電率異方性の絶対値が小さく、中性に近い化合物である。成分Eを混合することにより、しきい値電圧、液晶相温度範囲、屈折率異方性、誘電率異方性および粘度などを調整することができる。
 式(12)で表される化合物は主として粘度調整または屈折率異方性の調整の効果があり、また式(13)および(14)で表される化合物は透明点を高くするなどのネマチックレンジを広げる効果、または屈折率異方性の調整の効果がある。
 成分Eで表される化合物の含有量を増加させると液晶組成物のしきい値電圧が高くなり、粘度が低くなるので、液晶組成物のしきい値電圧の要求値を満たす限り、含有量は多いほうが望ましい。TFT用、PSA用の液晶組成物を調製する場合に、成分Eの含有量は、組成物全量に対して好ましくは30重量%以上、より好ましくは50重量%以上である。また、TN用、STN用またはPSA用の液晶組成物を調製する場合には、成分Eの含有量は、組成物全量に対して好ましくは30重量%以上、より好ましくは40重量%以上である。
 本発明の液晶組成物は、本発明の式(1)で示される化合物の少なくとも1種類を0.1~99重量%の割合で含有することが、優良な特性を発現せしめるために好ましい。
 本発明の液晶組成物の調製は、公知の方法、例えば必要な成分を高温度下で溶解させる方法などにより一般に調製される。また、用途に応じて当業者によく知られている添加物を添加して、例えばつぎに述べるような光学活性化合物、または重合可能な化合物、重合開始剤を含む本発明の液晶組成物、染料を添加したGH型用の液晶組成物を調製することができる。通常、添加物は当該業者によく知られており、文献などに詳細に記載されている。
 本発明の液晶組成物は、さらに1種以上の光学活性化合物を含有してもよい。
 光学活性化合物として、公知のキラルド-プ剤を添加する。このキラルド-プ剤は液晶のらせん構造を誘起して必要なねじれ角を調整し、逆ねじれを防ぐといった効果を有する。キラルド-プ剤の例として以下の光学活性化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000036
 本発明の液晶組成物は、通常これらの光学活性化合物を添加して、ねじれのピッチを調整する。ねじれのピッチはTFT用およびTN用の液晶組成物であれば40~200μmの範囲に調整するのが好ましい。STN用の液晶組成物であれば6~20μmの範囲に調整するのが好ましい。また、双安定TN(Bistable TN)モ-ド用の場合は、1.5~4μmの範囲に調整するのが好ましい。また、ピッチの温度依存性を調整する目的で2種以上の光学活性化合物を添加しても良い。
 本発明の液晶組成物は、メロシアニン系、スチリル系、アゾ系、アゾメチン系、アゾキシ系、キノフタロン系、アントラキノン系、テトラジン系などの二色性色素を添加すれば、GH型用の液晶組成物として使用することもできる。
 本発明の液晶組成物は、ネマチック液晶をマイクロカプセル化して作製したNCAPや、液晶中に三次元網目状高分子を形成して作製したポリマ-分散型液晶表示素子(PDLCD)例えばポリマ-ネットワ-ク液晶表示素子(PNLCD)用をはじめ、複屈折制御(ECB)型やDS型用の液晶組成物としても使用できる。
 紫外線吸収剤、あるいは酸化防止剤を本発明に係る液晶組成物に添加した場合には、液晶組成物や該液晶組成物を含む液晶表示素子の劣化を防止することなどが可能となる。例えば酸化防止剤は、液晶組成物を加熱したときに比抵抗値の低下を抑制することが可能である。
 上記紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、ベンゾエート系紫外線吸収剤、トリアゾール系紫外線吸収剤などを挙げることができる。
 ベンゾフェノン系紫外線吸収剤の具体例は、2-ヒドロキシ-4-n-オクトキシベンゾフェノンである。
 ベンゾエート系紫外線吸収剤の具体例は、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートである。
 トリアゾール系紫外線吸収剤の具体例は、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロキシフタルイミド-メチル)-5-メチルフェニル]ベンゾトリアゾール、および2-(3-t-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾールである。
 上記酸化防止剤としては、フェノール系酸化防止剤、有機硫黄系酸化防止剤などを挙げることができる。
 特に、液晶組成物の物性値を変化させずに酸化防止効果が高いという観点からは、下記式で表される酸化防止剤が好ましい。

Figure JPOXMLDOC01-appb-I000037
 式(15)中、wは1~15の整数である。
 化合物(15)において、好ましいwは、1、3、5、7、または9である。さらに好ましいwは1または7である。wが1である化合物(15)は、揮発性が大きいので、大気中での加熱による比抵抗の低下を防止するときに有効である。wが7である化合物(15)は、揮発性が小さいので、素子を長時間使用したあと、室温だけではなくネマチック相の上限温度に近い温度でも大きな電圧保持率を維持するのに有効である。
 フェノール系酸化防止剤の具体例は、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,6-ジ-t-ブチル-4-プロピルフェノール、2,6-ジ-t-ブチル-4-ブチルフェノール、2,6-ジ-t-ブチル-4-ペンチルフェノール、2,6-ジ-t-ブチル-4-ヘキシルフェノール、2,6-ジ-t-ブチル-4-ヘプチルフェノール、2,6-ジ-t-ブチル-4-オクチルフェノール、2,6-ジ-t-ブチル-4-ノニルフェノール、2,6-ジ-t-ブチル-4-デシルフェノール、2,6-ジ-t-ブチル-4-ウンデシルフェノール、2,
6-ジ-t-ブチル-4-ドデシルフェノール、2,6-ジ-t-ブチル-4-トリデシルフェノール、2,6-ジ-t-ブチル-4-テトラデシルフェノール、2,6-ジ-t-ブチル-4-ペンタデシルフェノール、2,2’-メチレンビス(6-t-ブチルー4-メチルフェノール)、4,4’-ブチリデンビス(6-t-ブチル-3-メチルフェノール)、2,6-ジ-t-ブチル-4-(2-オクタデシルオキシカルボニル)エチルフェノール、およびペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]である。
 有機硫黄系酸化防止剤の具体例は、ジラウリル-3,3’-チオプロピオネート、ジミリスチル-3,3’-チオプロピオネート、ジステアリル-3,3’-チオプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、および2-メルカプトベンズイミダゾールである。
 紫外線吸収剤、酸化防止剤などに代表される上記添加物の添加量は、本発明の目的を損なわず、かつ添加物を添加する目的を達成できる量の範囲で添加して用いることができる。
 例えば、上記紫外線吸収剤、あるいは酸化防止剤を添加する場合には、その添加割合は、本発明に係る液晶組成物の全重量に基づいて、通常10ppm~500ppmの範囲、好ましくは30~300ppmの範囲、より好ましくは40~200ppmの範囲である。
 なお、本発明に係る液晶組成物は、液晶組成物を構成する各化合物の合成工程、液晶組成物の調製工程などにおいて混入する合成原料、副生成物、反応溶媒、合成触媒などの不純物を含んでいる場合もある。
 PSA(Polymer sustained alignment)モードの素子に適合させるために重合可能な化合物が組成物に混合される。重合可能な化合物の好ましい例は、アクリレート、メタクリレート、ビニル、ビニルオキシ、プロペニルエーテル、エポキシ(オキシラン、オキセタン)、ビニルケトンなどの重合可能な基を有する化合物である。特に好ましい例は、アクリレート、またはメタクリレートの誘導体である。重合可能な化合物の好ましい割合は、その効果を得るために、0.05重量%以上であり、不良表示を防ぐために10重量%以下である。さらに好ましい割合は、0.1重量%から2重量%の範囲である。重合可能な化合物は、好ましくは光重合開始剤などの適切な開始剤存在下でUV照射などにより重合する。重合のための適切な条件、開始剤の適切なタイプ、および適切な量は、当業者には既知であり、文献に記載されている。例えば光重合開始剤であるIrgacure651(登録商標)、Irgacure184(登録商標)、またはDarocure1173(登録商標)(Ciba JAPAN K.K.)がラジカル重合に対して適切である。重合可能な化合物は、好ましくは光重合開始剤を0.1重量%から5重量%の範囲で含む。特に好ましくは、光重合開始剤を1重量%から3重量%の範囲で含む。
 本発明に係る液晶組成物は、例えば、各成分を構成する化合物が液体の場合には、それぞれの化合物を混合し振とうさせることにより、また固体を含む場合には、それぞれの化合物を混合し、加熱溶解によってお互い液体にしてから振とうさせることにより調製することができる。また、本発明に係る液晶組成物はその他の公知の方法により調製することも可能である。
 本発明に係る液晶組成物では、ネマチック相の上限温度を70℃以上とすること、ネマチック相の下限温度は-20℃以下とすることができ、ネマチック相の温度範囲が広い。したがって、この液晶組成物を含む液晶表示素子は広い温度領域で使用することが可能である。
 本発明に係る液晶組成物では、組成などを適宜調整することで、0.05~0.18の範囲の光学異方性、好ましくは、0.09~0.13の範囲の光学異方性を有する液晶組成物を得ることができる。上記数値範囲にある液晶組成物は、TNモード、STNモード、またはTFTモードで動作する液晶表示素子として好適に使用することができる。
 また、本発明に係る液晶組成物では、通常、-5.0~-2.0の範囲の誘電率異方性、好ましくは、-4.5~-2.5の範囲の誘電率異方性を有する液晶組成物を得ることができる。上記数値範囲にある液晶組成物は、IPSモード、VAモード、またはPSAモードで動作する液晶表示素子として好適に使用することができる。
 〔液晶表示素子〕
 本発明に係る液晶組成物は、PCモード、TNモード、STNモード、OCBモードなどの動作モードを有し、AM方式で駆動する液晶表示素子だけでなく、PCモード、TNモード、STNモード、OCBモード、VAモード、IPSモードまたはPSAモードなどの動作モードを有しパッシブマトリクス(PM)方式で駆動する液晶表示素子にも使用することができる。
 これらAM方式、およびPM方式の液晶表示素子は、反射型、透過型、半透過型、いずれの液晶ディスプレイなどにも適用ができる。
 また、本発明に係る液晶組成物は、導電剤を添加させた液晶組成物を用いたDS(dynamic scattering)モード素子や、液晶組成物をマイクロカプセル化して作製したNCAP(nematic curvilinear aligned phase)素子や、液晶組成物中に三次元の網目状高分子を形成させたPD(polymer dispersed)素子、例えばPN(polymer network)素子にも使用できる。
 中でも本発明に係る液晶組成物では、上述のような特性を有するので、VAモード、IPSモード、またはPSAモードなどの負の誘電率異方性を有する液晶組成物を利用した動作モードで駆動するAM方式の液晶表示素子に好適に用いることができ、特に、VAモードで駆動するAM方式の液晶表示素子に好適に用いることができる。
 なお、TNモード、VAモードまたはPSAモードなどで駆動する液晶表示素子においては、電場の方向は、ガラス基板面に対して垂直である。一方、IPSモードなどで駆動する液晶表示素子においては、電場の方向は、基板面に対して平行である。なお、VAモードで駆動する液晶表示素子の構造は、K. Ohmuro, S. Kataoka, T. Sasaki and Y. Koike, SID '97 Digest of Technical Papers, 28, 845 (1997) に報告されており、IPSモードで駆動する液晶表示素子の構造は、国際公開91/10936号パンフレット(ファミリー:US5576867)に報告されている。
〔液晶性化合物(1)の実施例〕
 以下、実施例により本発明をより詳細に説明する。しかしながら、本発明はこれらの実施例によって制限されない。なお特に断りのない限り、「%」は「重量%」を意味する。得られた化合物は、H-NMR分析で得られる核磁気共鳴スペクトル、ガスクロマトグラフィー(GC)分析で得られるガスクロマトグラムなどにより同定した。これらによる測定方法は後述する方法に従った。なお、各実施例中において、Cは結晶を、SAはスメクチックA相を、SBはスメクチックB相を、SXは相構造未解析のスメクチック相を、Nはネマチック相を、Iは等方相を示し、相転移温度の単位はすべて℃である。
 H-NMR分析:測定は、DRX-500(ブルカーバイオスピン(株)製)を用いた。CDClなど重水素化されたサンプルが可溶な溶媒に溶解させた溶液を、室温にて核磁気共鳴装置を用いて測定した。なお、δ値のゼロ点の基準物質にはテトラメチルシラン(TMS)を用いた。なお、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、mはマルチプレットの意味である。
 ガスクロマトグラフ分析:測定には島津製作所製のGC-2014型ガスクロマトグラフを用いた。キャリアーガスはヘリウム(2ml/分)である。試料気化室を280℃に、検出器(FID)を300℃に設定した。成分化合物の分離には、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ30m、内径0.32mm、膜厚0.25μm;固定液相はジメチルポリシロキサン;無極性)を用いた。このカラムは、180℃で2分間保持したあと、5℃/分の割合で280℃まで昇温した。試料はアセトン溶液(0.1重量%)に調製したあと、その1μlを試料気化室に注入した。記録計は島津製作所製のC-R7A型Chromatopac、またはその同等品である。得られたガスクロマトグラムは、成分化合物に対応するピークの保持時間およびピークの面積を示した。
 試料はトルエンに溶解して、1重量%の溶液となるように調製し、得られた溶液1μlを試料気化室に注入した。
 記録計としては島津製作所製のC-R7A型Chromatopac、またはその同等品を用いた。得られたガスクロマトグラムには、成分化合物に対応するピークの保持時間およびピークの面積値が示されている。
 なお、試料の希釈溶媒としては、例えば、クロロホルム、ヘキサンを用いてもよい。また、カラムとしては、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ30m、内径0.32mm、膜厚0.25μm)、Agilent Technologies Inc.製のHP-1(長さ30m、内径0.32mm、膜厚0.25μm)、Restek Corporation製のRtx-1(長さ30m、内径0.32mm、膜厚0.25μm)、SGE International Pty.Ltd製のBP-1(長さ30m、内径0.32mm、膜厚0.25μm)などを用いてもよい。
 ガスクロマトグラムにおけるピークの面積比は成分化合物の割合に相当する。一般には、分析サンプルの成分化合物の重量%は、分析サンプルの各ピークの面積%と完全に同一ではないが、本発明において上述したカラムを用いる場合には、実質的に補正係数は1であるので、分析サンプル中の成分化合物の重量%は、分析サンプル中の各ピークの面積%とほぼ対応している。成分の液晶性化合物における補正係数に大きな差異がないからである。ガスクロクロマトグラムにより液晶組成物中の液晶性化合物の組成比をより正確に求めるには、ガスクロマトグラムによる内部標準法を用いる。一定量正確に秤量された各液晶性化合物成分(被検成分)と基準となる液晶性化合物(基準物質)を同時にガスクロ測定して、得られた被検成分のピークと基準物質のピークとの面積比の相対強度をあらかじめ算出する。基準物質に対する各成分のピーク面積の相対強度を用いて補正すると、液晶組成物中の液晶性化合物の組成比をガスクロ分析からより正確に求めることができる。
[実施例1]
 4-エトキシ-2,3,3′-トリフルオロ-4′-((プロピルシクロヘキシル)メトキシ)ビフェニル(1-1-8)を下記に示す合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-I000038
1-エトキシ-2,3-ジフルオロベンゼン(T-2)の合成
 2,3-ジフルオロフェノール(T-1)(195.0g)、ブロモエタン(196.2g)およびテトラブチルアンモニウムブロミド(TBAB)(24.2g)の水(400ml)溶液に、水酸化ナトリウム(75.9g)を加え、窒素雰囲気下80℃で6時間加熱撹拌した。反応終了後ヘプタンにて抽出し、有機層を水および飽和塩化ナトリウム水溶液にて洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮して黒色油状物を得た。このものを蒸留にて精製することにより、1-エトキシ-2,3-ジフルオロベンゼン(T-1)を無色油状物として(230.0g)得た。収率97%。
1-エトキシ-2,3-ジフルオロフェニルボロン酸(T-3)の合成
 上記操作で得られた化合物(T-2)(129.5g)を乾燥テトラヒドロフラン(以下、DryTHFという)(500ml)に溶解させ、-70℃まで冷却した。窒素雰囲気下n-BuLi(500ml)を滴下し、-70℃で2時間撹拌した。その後ホウ酸トリメチル(129.5g)のDryTHF溶液を-70℃でゆっくりと滴下し、室温まで昇温して16時間撹拌した。反応終了後2N-HCl(200ml)を加えた後、トルエンにて抽出し、水、飽和塩化ナトリウム水溶液にて洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮して淡茶色固体を得た。このものを再結晶(容量比で、ヘプタン:トルエン=4:1)することにより、(T-3)を白色粉末として(117.2g)得た。収率71%。
4′-エトキシ-2′,3,3′-トリフルオロビフェニル-4-オール(T-5)の合成
 上記操作で得られた化合物(T-3)(88.8g)、4-ブロモ-2-フルオロフェノール(T-4)(76.4g)、炭酸ナトリウム(50.8g)およびPd-C(NXタイプ)(0.21g)をソルミックス (400ml)に溶解させ、窒素雰囲気下6時間加熱還流した。反応終了後セライトろ過し、ろ液をトルエンにて抽出した。有機層を2N水酸化ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液、水および飽和塩化ナトリウム水溶液にて洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮して淡茶色固体を得た。このものを再結晶(容量比で、ヘプタン:トルエン=4:1)することにより、4′-エトキシ-2′,3,3′-トリフルオロビフェニル-4-オール(T-5)を白色粉末として(72.0g)得た。収率67%。
4-エトキシ-2,3,3′-トリフルオロ-4′-((プロピルシクロヘキシル)メトキシ)ビフェニル(1-1-8)の合成
 上記操作で得られた化合物(T-5)(4.02g)、1-クロロメチル-4-プロピルシクロヘキサン(T-6)(3.15g)、をDMF(100ml)に溶解させ、炭酸ナトリウム(2.39g)を加え、窒素雰囲気下80℃で3時間加熱撹拌した。反応終了後トルエンにて抽出し、有機層を飽和炭酸水素ナトリウム水溶液、水、飽和塩化ナトリウム水溶液にて洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮して淡茶色固体を得た。このものをシリカゲルカラムクロマトグラフィー(容量比で、ヘプタン:酢酸エチル=20:1)、及び再結晶(容量比で、ヘプタン:エタノール=1:1)することにより、表題化合物(1-1-8)を白色粉末として(4.7g)得た。収率77%。
 物性値は下記組成例の項に記載した様に、15重量%の化合物および85重量%の母液晶Aを混合することによって試料を調製し、測定によって得られた値から外挿法によって算出した。外挿値=(試料の測定値-0.85×母液晶Aの測定値)/0.15。この化合物の物性値は、NI=123.9℃,Δε=-7.24, Δn=0.170, η=97.2mPa・s, K33/K11=1.267, C 91.2 N 129.7 Iso であった。
H-NMR(CDCl):δ(ppm);7.25(d,1H)、7.19(d,1H)、7.05(t,1H)、6.99(t,1H)、6.78(t,1H)、4.15(q,2H)、3.86(d,2H)、1.93(d,2H)、1.81(d,3H)、1.48(t,3H)、1.37-1.16(m,5H)、1.07(q,2H)、0.96(t,2H)、0.89(t,3H).
[実施例2]
 4-エトキシ-2,3,3′-トリフルオロ-4′-((ペンチルシクロヘキシル)メトキシ)ビフェニル(1-1-29)を実施例1に示した方法と同様にして、4′-エトキシ-2′,3,3′-トリフルオロビフェニル-4-オール(3.00g)および1-クロロメチル-4-ペンチルシクロヘキサン(2.95g)より、白色粉末として(3.66g)得た。収率62%。
 この化合物の物性値は、NI=126.6℃,Δε=-7.10, Δn=0.167, η=81.9mPa・s, K33/K11=1.430, C 59.4 C 82.5 N 132.0 Iso であった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.23(d,1H)、7.18(d,1H)、7.05(t,1H)、6.97(t,1H)、6.78(t,1H)、4.09(q,2H)、3.90(d,2H)、1.99-1.93(md,1H)、1.58-1.39(m,10H)、1.37-1.26(m,8H)、1.32(t,3H)、0.88(t,3H).
[実施例3]
 4-ブトキシ-2,3,3′-トリフルオロ-4′-((ペンチルシクロヘキシル)メトキシ)ビフェニル(1-1-34)を実施例1に示した方法と同様にして、4′-ブトキシ-2′,3,3′-トリフルオロビフェニル-4-オール(4.44g)および1-クロロメチル-4-ペンチルシクロヘキサン(3.65g)より、白色粉末として(2.0g)得た。収率31%。
 この化合物の物性値は、NI=118.6℃,Δε=-6.79, Δn=0.175, η=101.1mPa・s, K33/K11=1.373, C 95.9 (S 92.1) N 123.1 Iso であった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.24(d,1H)、7.19(d,1H)、7.04(t,1H)、6.99(t,1H)、6.78(t,1H)、4.08(t,2H)、3.86(d,2H)、1.93(d,2H)、1.86-1.77(m,5H)、1.58-1.48(m,2H)、1.35-1.16(m,9H)、1.07(q,2H)、0.99(t,3H)、0.97(q,2H)、0.89(t,3H).
[実施例4]
 4-((4′-エトキシ-2′,3,3′-トリフルオロビフェニル-4-イルオキシ)メチル)-4′-プロピルビシクロヘキサン(1-3-8)を実施例1に示した方法と同様にして、4′-エトキシ-2′,3,3′-トリフルオロビフェニル-4-オール(2.68g)および4-クロロメチル-4′-プロピルビシクロヘキサン(3.61g)より、白色粉末として(2.2g)得た。収率45%。
 この化合物の物性値は、NI=228.6℃,Δε=-6.04, Δn=0.191, η=79.5mPa・s, K33/K11=1.223, C 137.7 N 252.3 Iso であった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.24(d,1H)、7.19(d,1H)、7.05(t,1H)、6.99(t,1H)、6.78(t,1H)、4.15(q,2H)、3.85(d,2H)、1.96(s,2H)、1.83-1.68(m,7H)、1.48(t,3H)、1.34-1.26(m,2H)、1.18-0.80(m,13H)、0.88(t,3H).
[実施例5]
 4-((4′-エトキシ-2′,3,3′-トリフルオロビフェニル-4-イルオキシ)メチル)-4′-ペンチルビシクロヘキサン(1-3-29)を実施例1に示した方法と同様にして、4′-エトキシ-2′,3,3′-トリフルオロビフェニル-4-オール(2.50g)および4-クロロメチル-4′-ペンチルビシクロヘキサン(3.99g)より、白色粉末として(4.2g)得た。収率87%。
 この化合物の物性値は、NI=226.6℃,Δε=-7.23, Δn=0.187, η=69.9mPa・s, K33/K11=1.261, C 49.5C 121.2 S 131.7 N 242.0 Iso であった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.24(d,1H)、7.19(d,1H)、7.05(t,1H)、6.99(t,1H)、6.78(t,1H)、4.16(q,2H)、3.86(d,2H)、1.96(s,2H)、1.53-1.38(m,12H)、1.48(t,3H)、1.35-1.26(m,12H)、0.88(t,3H).
[実施例6]
 4-((4′-ブトキシ-2′,3,3′-トリフルオロビフェニル-4-イルオキシ)メチル)-4′-ペンチルビシクロヘキサン(1-3-34)を実施例1に示した方法と同様にして、4′-ブトキシ-2′,3,3′-トリフルオロビフェニル-4-オール(4.44g)および4-クロロメチル-4′-ペンチルビシクロヘキサン(8.73g)より、白色粉末として(2.3g)得た。収率28%。
 この化合物の物性値は、NI=211.3℃,Δε=-5.72, Δn=0.181, η=89.9mPa・s, K33/K11=1.202, C 84.8 S 172.5 N 228.9 Iso であった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.24(d,1H)、7.19(d,1H)、7.04(t,1H)、6.99(t,1H)、6.78(t,1H)、4.08(t,2H)、3.85(d,2H)、1.97(s,2H)、1.86-1.68(m,8H)、1.57-1.48(m,2H)、1.34-0.80(m,20H)、0.99(t,3H)、0.89(t,3H).
[実施例7]
 4-((4′-エトキシ-2′,3,3′-トリフルオロビフェニル-4-イルオキシ)メチル)-4′-ビニルビシクロヘキサン(1-3-51)を実施例1に示した方法と同様にして、4′-エトキシ-2′,3,3′-トリフルオロビフェニル-4-オール(4.02g)および4-クロロメチル-4′-ビニルビシクロヘキサン(6.79g)より、白色粉末として(4.5g)得た。収率64%。
 この化合物の物性値は、NI=207.3℃,Δε=-6.32, Δn=0.192, η=88.6mPa・s, K33/K11=1.264, C 113.8 N 240.3 Iso であった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.24(d,1H)、7.19(d,1H)、7.04(t,1H)、6.99(t,1H)、6.78(t,1H)、5.82-5.73(m,1H)、4.96(d,1H)、4.88(d,1H)、4.15(q,2H)、3.85(d,2H)、2.00-1.73(m,10H)、1.48(t,3H)、1.13-0.99(m,10H).
[実施例8]
 4′-ブトキシ-2,3,3′-トリフルオロ-4-((プロピルシクロヘキシル)メトキシ)ビフェニル(1-2-13)を下記に示す合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-I000039
4-ブロモ-1-ブトキシ-2-フルオロベンゼン(T-8)の合成
 4-ブロモ-2-フルオロフェノール(T-7)(76.4g)、ブロモブタン(65.8g)およびテトラブチルアンモニウムブロミド(TBAB)(6.44g)の水(400ml)溶液に、水酸化ナトリウム(20.2g)を加え、窒素雰囲気下80℃で6時間加熱撹拌した。反応終了後ヘプタンにて抽出し、有機層を水および飽和塩化ナトリウム水溶液にて洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮して黒色油状物を得た。このものを蒸留にて精製することにより、4-ブロモ-1-ブトキシ-2-フルオロベンゼン(T-8)を無色油状物として(97.5g)得た。収率98%。
4-ブトキシ-3-フルオロフェニルボロン酸(T-9)の合成
 上記操作で得られた化合物(T-8)(97.5g)をDryTHF(500ml)に溶解させ、-70℃まで冷却した。窒素雰囲気下n-BuLi(241ml)を滴下し、-70℃で2時間撹拌した。その後ホウ酸トリメチル(62.4g)のDryTHF溶液を-70℃でゆっくりと滴下し、室温まで昇温して16時間撹拌した。反応終了後2N-HCl(200ml)を加えた後、トルエンにて抽出し、水、飽和塩化ナトリウム水溶液にて洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮して淡茶色固体を得た。このものを再結晶(容量比で、ヘプタン:トルエン=4:1)することにより、(T-9)を白色粉末として(54.8g)得た。収率66%。
4′-ブトキシ-2,3,3′-トリフルオロビフェニル-4-オール(T-11)の合成
 上記操作で得られた化合物(T-9)(30.0g)、4-ブロモ-2,3-ジフルオロフェノール(T-10)(26.9g)、炭酸ナトリウム(37.5g)およびPd-C(NXタイプ)(0.11g)をソルミックス (300ml)に溶解させ、窒素雰囲気下6時間加熱還流した。反応終了後セライトろ過し、ろ液をトルエンにて抽出した。有機層を2N水酸化ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液、水および飽和塩化ナトリウム水溶液にて洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮して淡茶色固体を得た。このものを再結晶(容量比で、ヘプタン:トルエン=4:1)することにより、4′-ブトキシ-2,3,3′-トリフルオロビフェニル-4-オール(T-11)を白色粉末として(24.1g)得た。収率56%。
4′-ブトキシ-2,3,3′-トリフルオロ-4-((プロピルシクロヘキシル)メトキシ)ビフェニル(1-2-13)の合成
 上記操作で得られた化合物(T-11)(2.50g)、1-クロロメチル-4-プロピルシクロヘキサン(T-6)(2.22g)、をDMF(100ml)に溶解させ、炭酸ナトリウム(1.75g)を加え、窒素雰囲気下80℃で3時間加熱撹拌した。反応終了後トルエンにて抽出し、有機層を飽和炭酸水素ナトリウム水溶液、水、飽和塩化ナトリウム水溶液にて洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮して淡茶色固体を得た。このものをシリカゲルカラムクロマトグラフィー(容量比で、ヘプタン:酢酸エチル=20:1)、及び再結晶(容量比で、ヘプタン:エタノール=1:1)することにより、表題化合物(1-2-13)を白色粉末として(3.0g)得た。収率82%。
 この化合物の物性値は、NI=118.6℃,Δε=-6.79, Δn=0.170, η=101.1mPa・s, K33/K11=1.373, C 95.9 (S 92.1) N 123.1 Iso であった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.43(d,1H)、7.41(d,1H)、7.31(t,1H)、7.08(t,1H)、6.78(t,1H)、4.06(q,2H)、3.90(d,2H)、2.00-1.78(m,1H)、1.65-1.58(m,2H)、1.56-1.39(m,7H)、1.35-1.28(m,8H)、0.99(t,3H)、0.89(t,3H).
[参考実施例9]
 4-((4′-ブトキシ-2,3,3′-トリフルオロビフェニル-4-イルオキシ)メチル)-4′-プロピルビシクロヘキサン(1-4-13)を実施例8に示した方法と同様にして、4′-ブトキシ-2,3,3′-トリフルオロビフェニル-4-オール(2.00g)および4-クロロメチル-4′-プロピルビシクロヘキサン(2.64g)より、白色粉末として(2.9g)得た。収率83%。
 この化合物の物性値は、NI=214.6℃,Δε=-6.06, Δn=0.174, η=88.5mPa・s, K33/K11=1.424, C 86.8 S 179.8 N 235.5 Iso であった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.43(d,1H)、7.41(d,1H)、7.30(t,1H)、7.08(t,1H)、6.78(t,1H)、4.05(t,2H)、3.90(d,2H)、2.00-1.77(m,1H)、1.66-1.58(m,2H)、1.56-1.31(m,15H)、1.30-1.15(m,10H)、0.99(t,3H)、0.89(t,3H).
[参考実施例10]
 4-((4′-ブトキシ-2,3,3′-トリフルオロビフェニル-4-イルオキシ)メチル)-4′-ビニルビシクロヘキサン(1-4-55)を実施例8に示した方法と同様にして、4′-ブトキシ-2,3,3′-トリフルオロビフェニル-4-オール(2.67g)および4-クロロメチル-4′-ビニルビシクロヘキサン(3.39g)より、白色粉末として(3.2g)得た。収率71%。
 この化合物の物性値は、NI=206.6℃,Δε=-6.63, Δn=0.176, η=98.6mPa・s, K33/K11=1.112, C 91.7 S 151.0 N 230.4 Isoであった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.43(d,1H)、7.41(d,1H)、7.04(t,1H)、6.99(t,1H)、6.78(t,1H)、5.82-5.73(m,1H)、4.99(d,2H)、4.93(d,1H)、4.06(t,2H)、3.90(d,2H)、2.25-2.08(m,1H)、1.99-1.88(m,2H)、1.78-1.65(m,2H)、1.63-1.41(m,10H)、1.40-1.21(m,9H)、0.90(t,3H).
[参考実施例11]
 4′-ブトキシ-2,3,3′-トリフルオロビフェニル-4-イル 4′-プロピルビシクロヘキサン-4-カルボキシレート(1-4-14)を下記に示す合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-I000040
4′-ブトキシ-2,3,3′-トリフルオロビフェニル-4-イル 4′-プロピルビシクロヘキサン-4-カルボキシレート(1-4-14)の合成
 実施例8で合成した4′-ブトキシ-2,3,3′-トリフルオロビフェニル-4-オール(T-11)(2.00g)、ジシクロヘキシルカルボジイミド(DCC)(1.46g)およびジメチルアミノピリジン(DMAP)(0.08g)をトルエン(100ml)に溶解させ、4′-プロピルビシクロヘキサン-4-カルボン酸(1.70g)を加え、室温で16時間撹拌した。反応終了後ろ過し、ろ液をトルエンにて抽出した。有機層を1N-HCl水溶液、1N-水酸化ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液、水および飽和塩化ナトリウム水溶液にて洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮して淡茶色固体を得た。このものをシリカゲルカラムクロマトグラフィー(容量比で、ヘプタン:酢酸エチル=20:1)、及び再結晶(容量比で、ヘプタン:トルエン=4:1)することにより、4′-ブトキシ-2,3,3′-トリフルオロビフェニル-4-イル 4′-プロピルビシクロヘキサン-4-カルボキシレート(1-8-14)を白色粉末として(2.39g)得た。収率67%。
 この化合物の物性値は、NI=244.6℃,Δε=-4.76, Δn=0.167, η=75.7mPa・s, K33/K11=1.274, C 72.0 N 303.2 Iso であった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.43(d,1H)、7.40(d,1H)、7.28(t,1H)、7.10(t,1H)、6.78(t,1H)、4.06(t,2H)、2.38-2.25(m,1H)、1.78-1.66(m,2H)、1.58-1.38(m,15H)、1.36-1.25(m,10H)、0.99(t,3H)、0.89(t,3H).
[実施例12]
 3-クロロ-4-エトキシ-2,3′-ジフルオロ-4′-((4-プロピルシクロヘキシル)メトキシ)ビフェニル(1-1-10)を実施例1に示した方法と同様にして、3′-クロロ-4′-エトキシ-2′,3-ジフルオロビフェニル-4-オール(2.85g)および4-クロロメチル-4′-プロピルシクロヘキサン(1.93g)より、白色粉末として(2.30g)得た。収率54%。
 この化合物の物性値は、NI=112.6℃,Δε=-6.58, Δn=0.161, η=125.6mPa・s, K33/K11=1.299, C 76.8 N 117.3 Iso であった。物性値は[実施例1]と同様にして測定した。
1H-NMR(CDCl3):δ(ppm);7.27-7.16(m,3H)、6.99(t,1H)、6.77(d,1H)、4.15(q,2H)、3.86(d,2H)、1.93(d,2H)、1.81(d,3H)、1.50(t,3H)、1.37-0.90(m,9H)、0.88(t,3H).
[実施例13]
 4-((3′-クロロ-4′-エトキシ-2′,3-ジフルオロビフェニル-4-イルオキシ)メチル)-4′-プロピルビ(シクロヘキサン)(1-3-10)を実施例1に示した方法と同様にして、3′-クロロ-4′-エトキシ-2′,3-ジフルオロビフェニル-4-オール(2.85g)および4-クロロメチル-4′-プロピルビシクロヘキサン(2.57g)より、白色粉末として(3.50g)得た。収率69%。
 この化合物の物性値は、NI=212.6℃,Δε=-5.71, Δn=0.171, η=121.2mPa・s, K33/K11=1.328, C 102.4 N 237.3 Iso であった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.26-7.16(m,3H)、6.98(t,1H)、6.77(d,1H)、4.15(q,2H)、3.85(d,2H)、1.95(brs,2H)、1.83-1.38(m,7H)、1.49(t,3H)、1.35-0.80(m,15H)、0.87(t,3H).
[実施例14]
4′-エトキシ-2′,3,3′-トリフルオロビフェニル-4-イル 4-プロピルシクロヘキサンカルボキシレート(1-1-9)を実施例11に示した方法と同様にして、4′-エトキシ-2′,3,3′-トリフルオロビフェニル-4-オール(T-5)(5.36g)、ジシクロヘキシルカルボジイミド(DCC)(4.53g)、ジメチルアミノピリジン(DMAP)(0.244g)および4′-プロピルシクロヘキサン-4-カルボン酸(5.10g)より、白色粉末として(2.70g)得た。収率32%。
 この化合物の物性値は、NI=145.9℃,Δε=-6.08, Δn=0.164, η=65.8mPa・s, K33/K11=1.438, C 101.9 N 194.9 Iso であった。物性値は[実施例1]と同様にして測定した。
H-NMR(CDCl):δ(ppm);7.31(d,1H)、7.26(d,1H)、7.16(t,1H)、7.07(t,1H)、6.79(t,1H)、4.16(q,2H)、2.52-2.59(m,1H)、2.17(d,2H)、1.89(d,2H)、1.64-1.53(m,2H)、1.48(t,3H)、1.38-1.18(m,5H)、1.04-0.95(m,2H)、0.90(t,3H).
 [実施例1]~[実施例14]に記載した合成法をもとに、下記の[表1]~[表8]に示した化合物を合成する。なお、[実施例1]~[実施例14]で得られる化合物(1-1-8、1-1-9、1-1-10、1-1-29、1-1-34、1-2-13、1-3-8、1-3-10、1-3-29、1-3-34、1-3-51、1-4-13、1-4-14および1-4-55)も再掲した。

Figure JPOXMLDOC01-appb-I000041
Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-I000043

Figure JPOXMLDOC01-appb-I000044
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000046
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000048
Figure JPOXMLDOC01-appb-I000049
Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000052
 本発明の代表的組成の一例を以下に示す。物性値の測定方法は後述する方法に従った。
 液晶性化合物の物性値を測定する試料としては、化合物そのものを試料とする場合、化合物を母液晶と混合して試料とする場合の2種類がある。
 化合物を母液晶と混合した試料を用いる後者の場合には、以下の方法で測定を行う。まず、得られた液晶性化合物15重量%と母液晶85重量%とを混合して試料を作製する。そして、得られた試料の測定値から、下記式に示す式に示す外挿法にしたがって、外挿値を計算する。この外挿値をこの化合物の物性値とする。
 〈外挿値〉=(100×〈試料の測定値〉-〈母液晶の重量%〉×〈母液晶の測定値〉)/〈液晶性化合物の重量%〉
液晶性化合物と母液晶との割合がこの割合であっても、スメクチック相、または結晶が25℃で析出する場合には、液晶性化合物と母液晶との割合を10重量%:90重量%、5重量%:95重量%、1重量%:99重量%の順に変更をしていき、スメクチック相、または結晶が25℃で析出しなくなった組成で試料の物性値を測定し上記式にしたがって外挿値を求めて、これを液晶性化合物の物性値とする。
 上記測定に用いる母液晶としては様々な種類が存在するが、例えば、母液晶Aの組成は以下のとおりである。
 母液晶A:
Figure JPOXMLDOC01-appb-I000053
 組成物Aの物性値は次のとおりであった。上限温度(NI)=74.6℃;光学異方性(Δn)=0.087;誘電率異方性(Δε)=-1.3。
 この組成物Aに実施例1に記載の4-エトキシ-2,3,3′-トリフルオロ-4′-((プロピルシクロヘキシル)メトキシ)ビフェニルを15重量%添加して物性値を測定した。その結果、上限温度(NI)=123.9℃;光学異方性(Δn)=0.170;誘電率異方性(Δε)=-7.24であった。
[比較例1]
 4-(4-エトキシ-2,3-ジフルオロ-フェニル)-4′-プロピル-ビシクロヘキシル(s-1)を合成し、この化合物の15重量%と母液晶Aの85重量%とからなる組成物を調製し、[実施例1]と同様にして物性値を測定した。その結果、この化合物のΔnは0.114、Δεは-5.81となり、本願化合物の方が大きなΔnおよび負に大きなΔεを有することが分かった。
[比較例2]
 4-(4-エトキシ-2,3-ジフルオロ-フェニル)-4′-ビニル-ビシクロヘキシル(s-2)を合成し、この化合物の15重量%と母液晶Aの85重量%とからなる組成物を調製し、[実施例1]と同様にして物性値を測定した。その結果、この化合物のΔnは0.120、Δεは-5.79となり、本願化合物の方が大きなΔnおよび負に大きなΔεを有することが分かった。
[比較例3]
 2,2′,3,3′-テトラフルオロ-4,4′-ビス(オクチルオキシ)ビフェニル(s-3)を合成し、この化合物の15重量%と母液晶Aの85重量%とからなる組成物を調製し、[実施例1]と同様にして物性値を測定した。その結果、この化合物のΔnは0.120、ネマチック相の上限温度(NI)は9.3℃となり、本願化合物の方が大きなΔnと高いNIを有することが分かった。また、この化合物の相転移温度はC 52.2℃ Iであり液晶相を示さなかった。
[比較例4]
 2,3,3′-トリフルオロ-4,4′-ビス(オクチルオキシ)ビフェニル(s-4)を合成し、この化合物の15重量%と母液晶Aの85重量%とからなる組成物を調製し、[実施例1]と同様にして物性値を測定した。その結果、この化合物のΔnは0.132、ネマチック相の上限温度(NI)は21.9℃となり、本願化合物の方が大きなΔnと高いNIを有することが分かった。また、この化合物の相転移温度はC 40.2℃ Iであり液晶相を示さなかった。
[比較例5]
 2,2′,3′-トリフルオロ-4,4′-ビス(オクチルオキシ)ビフェニル(s-5)を合成し、この化合物の15重量%と母液晶Aの85重量%とからなる組成物を調製し、[実施例1]と同様にして物性値を測定した。その結果、この化合物のΔnは0.135、Δεは-4.51、ネマチック相の上限温度(NI)は10.6℃となり、本願化合物の方が大きなΔnと高いNIおよび負に大きなΔεを有することが分かった。また、この化合物の相転移温度はC 45.7℃ Iであり液晶相を示さなかった。
[比較例6]
 4-エトキシ-2,2′,3,3′-テトラフルオロ-4′-((4-プロピルシクロヘキシル)メトキシ)ビフェニル(s-6)を合成し、この化合物の15重量%と母液晶Aの85重量%とからなる組成物を調製し、[実施例1]と同様にして物性値を測定した。その結果、この化合物のΔnは0.147、ネマチック相の上限温度(NI)は111.3℃、粘度(η20)は106.9mPa・sとなり、本願化合物の方が大きなΔnと高いNI、負に大きなΔεおよび小さな粘度を有することが分かった。
[比較例7]
 4-メトキシ-2,2′,3-トリフルオロ-4′-((4-プロピルシクロヘキシル)メトキシ)ビフェニル(s-7)を合成し、この化合物の15重量%と母液晶Aの85重量%とからなる組成物を調製し、[実施例1]と同様にして物性値を測定した。その結果、この化合物のΔεは-3.65、ネマチック相の上限温度(NI)は112.6℃、粘度(η20)は100.3mPa・sとなり、本願化合物の方が高いNIおよび負に大きなΔεを有することが分かった。
[比較例8]
 4-エトキシ-2,3,-ジフルオロ-4′-(2-(4-プロピルシクロヘキシル)エチル)ビフェニル(s-8)を合成し、この化合物の15重量%と母液晶Aの85重量%とからなる組成物を調製し、[実施例1]と同様にして物性値を測定した。その結果、この化合物のΔnは0.145、ネマチック相の上限温度(NI)は110.6℃となり、本願化合物の方が大きなΔnおよび高いNIを有することが分かった。
[比較例9]
 4′-(ジフルオロ(4-プロピルシクロヘキシル)メトキシ)-4-エトキシ-2,3,3′-トリフルオロビフェニル(s-9)を合成し、この化合物の15重量%と母液晶Aの85重量%とからなる組成物を調製し、[実施例1]と同様にして物性値を測定した。その結果、この化合物のΔnは0.127、Δεは-4.33、ネマチック相の上限温度(NI)は111.6℃となり、本願化合物の方が大きなΔnと高いNIおよび負に大きなΔεを有することが分かった。
 さらに本発明の代表的な組成物を[組成物例1]~[組成物例14]にまとめた。最初に、組成物の成分である化合物とその量(重量%)を示した。化合物は[表9]の取り決めに従い、左末端基、結合基、環構造、および右末端基の記号によって表示した。1,4-シクロヘキシレンの立体配置はトランスである。末端基の記号がない場合は、末端基が水素であることを意味する。次に組成物の物性値を示した。
Figure JPOXMLDOC01-appb-I000054
 特性値の測定は下記の方法にしたがって行うことができる。それらの多くは、日本電子機械工業会規格(Standard of Electric Industries Association of Japan)EIAJ・ED-2521Aに記載された方法、またはこれを修飾した方法である。測定に用いたTN素子には、TFTを取り付けなかった。
 転移温度(℃):次のいずれかの方法で測定した。1)偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP-52型ホットステージ)に試料を置き、1℃/分の速度で加熱した。試料が相変化したときの温度を測定した。2)パーキンエルマー社製走査熱量計DSC-7システムを用い3℃/分速度で測定した。
 結晶はCと表した。結晶の区別がつく場合は、それぞれCまたはCと表した。スメクチック相はSと表した。結晶はNと表した。液体(アイソトロピック)はIsoと表した。ネマチック相はNと表した。スメクチック相の中で、スメクチックB相、スメクチックC相またはスメクチックA相の区別がつく場合は、それぞれS、SまたはSと表した。転移温度の表記として、「C 50.0 N 100.0 Iso」とは、結晶からネマチック相への転移温度(CN)が50.0℃であり、ネマチック相から液体への転移温度(NI)が100.0℃であることを示す。他の表記も同様である。
 ネマチック相の上限温度(NI;℃):偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。ネマチック相の上限温度を「上限温度」と略すことがある。
 ネマチック相の下限温度(T;℃):ネマチック相を有する試料を0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が-20℃ではネマチック相のままであり、-30℃では結晶(またはスメクチック相)に変化したとき、Tを<-20℃と記載する。ネマチック相の下限温度を「下限温度」と略すことがある。
 化合物の相溶性:類似の構造を有する幾つかの化合物を混合してネマチック相を有する母液晶を調製した。測定する化合物とこの母液晶とを混合した組成物を得た。混合する割合の一例は、15重量%の化合物と85重量%の母液晶である。この組成物を-20℃、-30℃のような低い温度で30日間保管した。この組成物の一部が結晶(またはスメクチック相)に変化したか否かを観察した。必要に応じて混合する割合と保管温度とを変更した。このようにして測定した結果から、結晶(またはスメクチック相)が析出する条件および結晶(またはスメクチック相)が析出しない条件を求めた。これらの条件が相溶性の尺度である。
 粘度(バルク粘度;η;20℃で測定;mPa・s):測定にはE型回転粘度計を用いた。
 粘度(回転粘度;γ1;25℃で測定;mPa・s):
測定はM. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。2枚のガラス基板の間隔(セルギャップ)が20μmのVA素子に試料を入れた。この素子に30ボルト~50ボルトの範囲で1ボルト毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文、40頁の計算式(8)とから回転粘度の値を得た。この計算に必要な誘電率異方性は、下記の誘電率異方性で測定した値を用いた。
 光学異方性(屈折率異方性;Δn;25℃で測定):測定は、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビング(rubbing)したあと、試料を主プリズムに滴下した。屈折率(n∥)は偏光の方向がラビングの方向と平行であるときに測定した。屈折率(n⊥)は偏光の方向がラビングの方向と垂直であるときに測定した。光学異方性の値は、Δn=n∥-n⊥、の式から計算した。試料が組成物のときはこの方法によって光学異方性を測定した。試料が化合物のときは、化合物を適切な組成物に混合したあと光学異方性を測定した。化合物の光学異方性は外挿値である。
 誘電率異方性(Δε;25℃で測定):試料が化合物のときは、化合物を適切な組成物に混合したあと誘電率異方性を測定した。化合物の誘電率異方性は外挿値である。
 よく洗浄したガラス基板にオクタデシルトリエトキシシラン(0.16mL)のエタノール(20mL)溶液を塗布した。ガラス基板をスピンナーで回転させたあと、150℃で1時間加熱した。2枚のガラス基板から、間隔(セルギャップ)が20μmであるVA素子を組み立てた。
 同様の方法で、ガラス基板にポリイミドの配向膜を調製した。得られたガラス基板の配向膜にラビング処理をした後、2枚のガラス基板の間隔が9μmであり、ツイスト角が80度であるTN素子を組み立てた。
 得られたVA素子に試料(液晶組成物、または液晶性化合物と母液晶との混合物)を入れ、0.5V(1kHz、サイン波)を印加して、液晶分子の長軸方向における誘電率(ε∥)を測定した。
 また、得られたTN素子に試料(液晶組成物、または液晶性化合物と母液晶との混合物)を入れ、0.5V(1kHz、サイン波)を印加して、液晶分子の短軸方向における誘電率(ε⊥)を測定した。
 誘電率異方性の値は、Δε=ε∥-ε⊥の式から計算した。
 この値が負である組成物が、負の誘電率異方性を有する組成物である。
 しきい値電圧(Vth;25℃で測定;V):試料が化合物のときは、化合物を適切な組成物に混合したあとしきい値電圧を測定した。化合物のしきい値電圧は外挿値である。
2枚のガラス基板の間隔(ギャップ)が約9μmであり、ホメオトロピック配向に処理したノーマリーブラックモード(normally black mode)の液晶表示素子に試料を入れた。この素子に周波数が32Hzである矩形波を印加した。矩形波の電圧を上昇させ、素子を通過する光の透過率10%になったときの電圧の値を測定した。
 電圧保持率(VHR;25℃で測定;%):測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は6μmである。この素子は試料を入れたあと紫外線によって重合する接着剤で密閉した。このTN素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。減衰する電圧を高速電圧計で16.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積である。電圧保持率は面積Bに対する面積Aの百分率である。
[組成例1]
3-H1OB(2F,3F)B(F)-O4   (1-2-13) 4%
V-HH1OB(2F,3F)B(F)-O4  (1-4-55) 4%
3-HHEB(2F,3F)B(F)-O4   (1-4-14) 5%

5-HH-O1                  (12-1) 4%
3-HH-4                   (12-1) 5%
3-HB(2F,3F)-O2            (6-1)16%
5-HB(2F,3F)-O2            (6-1)21%
3-HHB(2F,3F)-1            (7-1) 7%
3-HHB(2F,3F)-O2           (7-1)14%
5-HHB(2F,3F)-O2           (7-1)20%
NI=82.3℃;Δn=0.093;η=32.6mPa・s;Δε=-4.8.
[組成例2]
5-H1OB(2F)B(2F,3F)-O2  (1-1-29) 5%
5-H1OB(2F)B(2F,3F)-O4  (1-1-34) 3%
3-HH1OB(2F)B(2F,3F)-O2  (1-3-8) 3%

3-HB-O1                  (12-5)15%
3-HH-4                   (12-1) 5%
3-HB(2F,3F)-O2            (6-1)12%
5-HB(2F,3F)-O2            (6-1)12%
2-HHB(2F,3F)-1            (7-1)12%
3-HHB(2F,3F)-1            (7-1) 7%
3-HHB(2F,3F)-O2           (7-1)13%
5-HHB(2F,3F)-O2           (7-1)13%
NI=87.7℃;Δn=0.097;Δε=-4.0.
[組成例3]
5-HH1OB(2F)B(2F,3F)-O2 (1-3-29) 3%
5-HH1OB(2F)B(2F,3F)-O4 (1-3-34) 3%
V-HH1OB(2F)B(2F,3F)-O2 (1-3-51) 3%

3-HB-O1                  (12-5)15%
3-HH-4                   (12-1) 5%
3-HB(2F,3F)-O2            (6-1)12%
5-HB(2F,3F)-O2            (6-1)12%
2-HHB(2F,3F)-1            (7-1)12%
3-HHB(2F,3F)-1            (7-1) 3%
3-HHB(2F,3F)-O2           (7-1)13%
5-HHB(2F,3F)-O2           (7-1)13%
6-HEB(2F,3F)-O2           (6-6) 6%
NI=89.8℃;Δn=0.095;η=39.3mPa・s;Δε=-4.0.
[組成例4]
5-H1OB(2F)B(2F,3F)-O2  (1-1-29) 3%
5-H1OB(2F)B(2F,3F)-O4  (1-1-34) 3%
3-H1OB(2F)B(2F,3F)-O2   (1-1-8) 3%

3-HH-4                   (12-1) 8%
3-H2B(2F,3F)-O2           (6-4)22%
5-H2B(2F,3F)-O2           (6-4)22%
3-HHB(2F,3Cl)-O2         (7-12) 3%
5-HHB(2F,3Cl)-O2         (7-12) 2%
3-HBB(2F,3F)-O2           (7-7) 9%
5-HBB(2F,3F)-O2           (7-7) 4%
V-HHB-1                  (13-1) 6%
3-HHB-3                  (13-1) 6%
3-HHEBH-3                (14-6) 3%
3-HHEBH-4                (14-6) 3%
3-HHEBH-5                (14-6) 3%
NI=89.5℃;Δn=0.102;η=31.8mPa・s;Δε=-4.1.
[参考組成例5]
3-HH1OB(2F,3F)B(F)-O4  (1-4-13) 3%
V-HH1OB(2F,3F)B(F)-O4  (1-4-55) 3%
3-HHEB(2F,3F)B(F)-O4   (1-4-14) 3%

2-HH-5                   (12-1) 3%
3-HH-4                   (12-1)15%
3-HH-5                   (12-1) 4%
3-H2B(2F,3F)-O2           (6-4)15%
5-H2B(2F,3F)-O2           (6-4)15%
3-HHB(2F,3Cl)-O2         (7-12) 5%
3-HBB(2F,3F)-O2           (7-7) 9%
5-HBB(2F,3F)-O2           (7-7) 9%
3-HHB-3                  (13-1) 4%
3-HB-O2                  (12-5)12%
NI=81.6℃;Δn=0.097;η=24.5mPa・s;Δε=-4.4.
上記組成物100部に(Op-05)を0.25部添加したときのピッチは61.3μmであった。
[組成例6]
5-H1OB(2F)B(2F,3F)-O2  (1-1-29) 5%
5-H1OB(2F)B(2F,3F)-O4  (1-1-34) 5%

2-BEB(F)-C               (5-14) 5%
3-BEB(F)-C               (5-14) 4%
4-BEB(F)-C               (5-14)12%
1V2-BEB(F,F)-C           (5-15) 9%
3-HB-O2                  (12-5) 8%
3-HH-4                   (12-1) 5%
3-HHB-F                   (3-1) 3%
3-HHB-1                  (13-1) 8%
3-HHB-O1                 (13-1) 4%
3-HBEB-F                 (3-37) 4%
3-HHEB-F                 (3-10) 6%
5-HHEB-F                 (3-10) 5%
3-H2BTB-2               (13-17) 4%
3-H2BTB-3               (13-17) 4%
3-H2BTB-4               (13-17) 4%
3-HB(F)TB-2             (13-18) 5%
[組成例7]
3-H1OB(2F)B(2F,3F)-O2   (1-1-8) 8%

2-HB-C                    (5-1) 5%
3-HB-C                    (5-1)12%
3-HB-O2                  (12-5)15%
2-BTB-1                 (12-10) 3%
3-HHB-F                   (3-1) 4%
3-HHB-1                  (13-1) 8%
3-HHB-O1                 (13-1) 5%
3-HHB-3                  (13-1)14%
3-HHEB-F                 (3-10) 4%
5-HHEB-F                 (3-10) 4%
2-HHB(F)-F                (3-2) 4%
3-HHB(F)-F                (3-2) 4%
5-HHB(F)-F                (3-2) 5%
3-HHB(F,F)-F              (3-3) 5%
[組成例8]
5-H1OB(2F)B(2F,3F)-O2  (1-1-29) 7%

5-HB-CL                   (2-2)16%
3-HH-4                   (12-1)12%
3-HH-5                   (12-1) 4%
3-HHB-F                   (3-1) 4%
3-HHB-CL                  (3-1) 3%
4-HHB-CL                  (3-1) 4%
3-HHB(F)-F                (3-2) 8%
4-HHB(F)-F                (3-2) 7%
5-HHB(F)-F                (3-2) 7%
7-HHB(F)-F                (3-2) 7%
5-HBB(F)-F               (3-23) 4%
1O1-HBBH-5               (14-1) 3%
3-HHBB(F,F)-F             (4-6) 2%
4-HHBB(F,F)-F             (4-6) 3%
5-HHBB(F,F)-F             (4-6) 3%
3-HH2BB(F,F)-F           (4-15) 3%
4-HH2BB(F,F)-F           (4-15) 3%
[組成例9]
3-H1OB(2F)B(2F,3F)-O2   (1-1-8) 5%
5-H1OB(2F)B(2F,3F)-O4  (1-1-34) 6%

3-HHB(F,F)-F              (3-3) 9%
3-H2HB(F,F)-F            (3-15) 8%
4-H2HB(F,F)-F            (3-15) 8%
5-H2HB(F,F)-F            (3-15) 8%
3-HBB(F,F)-F             (3-24)20%
5-HBB(F,F)-F             (3-24)15%
3-H2BB(F,F)-F            (3-27) 5%
5-HHBB(F,F)-F             (4-6) 3%
5-HHEBB-F                (4-17) 3%
3-HH2BB(F,F)-F           (4-15) 2%
1O1-HBBH-4               (14-1) 4%
1O1-HBBH-5               (14-1) 4%
[組成例10]
3-H1OB(2F)B(2F,3F)-O2   (1-1-8)12%

5-HB-CL                   (2-2)11%
3-HH-4                   (12-1) 8%
3-HHB-1                  (13-1) 5%
3-HHB(F,F)-F              (3-3) 8%
3-HBB(F,F)-F             (3-24)13%
5-HBB(F,F)-F             (3-24)10%
3-HHEB(F,F)-F            (3-12)10%
4-HHEB(F,F)-F            (3-12) 3%
5-HHEB(F,F)-F            (3-12) 3%
2-HBEB(F,F)-F            (3-39) 3%
3-HBEB(F,F)-F            (3-39) 5%
5-HBEB(F,F)-F            (3-39) 3%
3-HHBB(F,F)-F             (4-6) 6%
[組成例11]
5-H1OB(2F)B(2F,3F)-O2  (1-1-29) 4%
5-H1OB(2F)B(2F,3F)-O4  (1-1-34) 4%

3-HB-CL                   (2-2) 6%
5-HB-CL                   (2-2) 4%
3-HHB-OCF3                (3-1) 5%
3-H2HB-OCF3              (3-13) 5%
5-H4HB-OCF3              (3-19)14%
V-HHB(F)-F                (3-2) 5%
3-HHB(F)-F                (3-2) 5%
5-HHB(F)-F                (3-2) 5%
3-H4HB(F,F)-CF3          (3-21) 8%
5-H4HB(F,F)-CF3          (3-21)10%
5-H2HB(F,F)-F            (3-15) 5%
5-H4HB(F,F)-F            (3-21) 7%
2-H2BB(F)-F              (3-26) 3%
3-H2BB(F)-F              (3-26) 5%
3-HBEB(F,F)-F            (3-39) 5%
[組成例12]
3-H1OB(2F)B(2F,3F)-O2   (1-1-8) 8%

5-HB-CL                   (2-2) 3%
7-HB(F)-F                 (2-3) 7%
3-HH-4                   (12-1) 9%
3-HH-EMe                 (12-2)15%
3-HHEB-F                 (3-10) 8%
5-HHEB-F                 (3-10) 8%
3-HHEB(F,F)-F            (3-12)10%
4-HHEB(F,F)-F            (3-12) 5%
4-HGB(F,F)-F            (3-103) 5%
5-HGB(F,F)-F            (3-103) 6%
2-H2GB(F,F)-F           (3-106) 4%
3-H2GB(F,F)-F           (3-106) 5%
5-GHB(F,F)-F            (3-109) 7%
[組成例13]
5-H1OB(2F)B(2F,3F)-O2  (1-1-29) 5%
5-H1OB(2F)B(2F,3F)-O4  (1-1-34) 5%

3-HH-4                   (12-1) 8%
3-HHB-1                  (13-1) 6%
3-HHB(F,F)-F             (3-3) 10%
3-H2HB(F,F)-F            (3-15) 9%
3-HBB(F,F)-F             (3-24)15%
3-BB(F,F)XB(F,F)-F       (3-97)25%
1O1-HBBH-5               (14-1) 7%
2-HHBB(F,F)-F             (4-6) 3%
3-HHBB(F,F)-F             (4-6) 3%
3-HH2BB(F,F)-F           (4-15) 4%
[組成例14]
3-H1OB(2F)B(2F,3F)-O2   (1-1-8) 3%
5-H1OB(2F)B(2F,3F)-O4  (1-1-34) 5%

3-HB―CL                   (2-2)13%
3-HB-O2                  (12-5)10%
3-PyB(F)-F               (2-15)10%
5-PyB(F)-F               (2-15)10%
3-HBB(F,F)-F             (3-24) 7%
3-PyBB-F                 (3-80) 8%
3-PyBB-F                 (3-80) 7%
3-PyBB-F                 (3-80) 7%
5-HBB(F)B-2              (14-5)10%
5-HBB(F)B-3              (14-5)10%
 本発明は、他の液晶材料との相溶性に優れ、大きなΔnの値を有し、負に大きなΔεを有する新規液晶性化合物を提供する。
 また、本発明は、この液晶性化合物を成分として、その化合物を構成する環、置換基、結合基などを適当に選択することにより、所望の物性を有する上記の特徴を備えた新たな液晶組成物を提供し、さらにこの液晶組成物を用いて構成した液晶表示素子を提供する。

Claims (16)

  1.  式(1)で表される化合物。

    Figure JPOXMLDOC01-appb-I000001
    [式中、RおよびRはそれぞれ独立して、炭素数1~9のアルキル、または炭素数2~9のアルケニル、炭素数1~8のアルコキシ、または炭素数2~8のアルケニルオキシであり;
    およびQはそれぞれ独立して、フッ素または塩素であり;
    およびQはそれぞれ独立して、水素、フッ素または塩素であり、QおよびQのいずれか一方は必ず水素であり、他方は必ずフッ素または塩素であり;
    Zは-CHO-または-COO-であり;
    hは1または2であり、QおよびQはいずれもフッ素であるとき、hは1である。]
  2.  Q、QおよびQがフッ素であり、Qが水素である、請求項1に記載の化合物。
  3.  Q、QおよびQがフッ素であり、Qが水素である、請求項1に記載の化合物。
  4.  Zが-CHO-である請求項1に記載の化合物。
  5.  請求項1に記載の化合物を少なくとも1つ含有することを特徴とする、2つ以上の化合物からなる液晶組成物。
  6.  式(2)、(3)および(4)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を含有する、請求項5に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000002
    [式中、Rは独立して炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;
     Xは独立してフッ素、塩素、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2または-OCF2CHFCF3であり;
     環A、環Aおよび環Aは独立して1,4-シクロヘキシレン、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、1-ピラン-2,5-ジイルまたは任意の水素がフッ素で置き換えられてもよい1,4-フェニレンであり;
     ZおよびZは独立して-(CH22-、-(CH24-、-COO-、-CF2O-、-OCF2-、-CH=CH-、-C≡C-、-CHO-または単結合であり;
     LおよびLは独立して水素またはフッ素である。]
  7.  式(5)で表される化合物の群から選択される少なくとも1つの化合物を含有する、請求項5に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000003
    [式中、Rは炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;
     Xは-C≡Nまたは-C≡C-C≡Nであり;
     環B、環Bおよび環Bは独立して1,4-シクロヘキシレン、1,3-ジオキサン-2,5-ジイル、1-ピラン-2,5-ジイル、ピリミジン-2,5-ジイル、または任意の水素がフッ素で置き換えられてもよい1,4-フェニレンであり;
     Zは-(CH22-、-COO-、-CF2O-、-OCF2-、-C≡C-、-CHO-または単結合であり;
     LおよびLは独立して水素またはフッ素であり;
     qは0、1または2であり、rは0または1であり、q+rは0、1または2である。]
  8.  式(6)、(7)、(8)、(9)、(10)および(11)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を含有する、請求項5に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000004
    [式中、RおよびRは独立して炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;
     環C、環C、環Cおよび環Cは独立して1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、6-ピラン-2,5-ジイルまたはデカヒドロ-2,6-ナフタレンであり;
     Z、Z、ZおよびZは独立して-(CH22-、-COO-、-CHO-、-OCF-、-OCF(CH22-または単結合であり;
    およびLは独立してフッ素または塩素であり;
    j、k、l、m、n、およびpは独立して0または1であり、k+l+m+nは1または2である。]
  9.  式(12)、(13)および(14)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を含有する、請求項5に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000005
    [式中、RおよびRは独立して炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、このアルキルおよびアルケニルにおいて任意の-CH2-は-O-で置き換えられてもよく;
     環D、環Dおよび環Dは独立して1,4-シクロヘキシレン、ピリミジン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレンまたは2,5-ジフルオロ1,4-フェニレンであり;
     ZおよびZは独立して-C≡C-、-COO-、-(CH22-、-CH=CH-または単結合である。]
  10.  式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項6に記載の液晶組成物。
  11.  式(12)、(13)および(14)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項6に記載の液晶組成物。
  12.  式(12)、(13)および(14)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項7に記載の液晶組成物。
  13.  式(12)、(13)および(14)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項8に記載の液晶組成物。
  14.  少なくとも1つの光学活性化合物および/または重合可能な化合物をさらに含有する、請求項5に記載の液晶組成物。
  15.  少なくとも1つの酸化防止剤および/または紫外線吸収剤をさらに含有する、請求項5に記載の液晶組成物。
  16.  請求項5に記載の液晶組成物を含有する液晶表示素子。
PCT/JP2010/051005 2009-02-17 2010-01-27 誘電率異方性が負の液晶性化合物、これを用いた液晶組成物および液晶表示素子 WO2010095493A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117018992A KR101688670B1 (ko) 2009-02-17 2010-01-27 유전율 이방성이 부인 액정성 화합물, 이것을 사용한 액정 조성물 및 액정 표시 소자
CN201080007135.0A CN102307838B (zh) 2009-02-17 2010-01-27 负介电异向性液晶性化合物、液晶组成物及液晶显示元件
EP10743622.2A EP2399896B1 (en) 2009-02-17 2010-01-27 Liquid crystalline compound having negative dielectric anisotropy, and liquid crystal composition and liquid crystal display device each comprising same
US13/145,344 US8298632B2 (en) 2009-02-17 2010-01-27 Liquid crystal compound having negative dielectric anisotropy, liquid crystal composition using this and liquid crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-033738 2009-02-17
JP2009033738 2009-02-17
JP2009292443A JP5526762B2 (ja) 2009-02-17 2009-12-24 誘電率異方性が負の液晶性化合物、これを用いた液晶組成物および液晶表示素子
JP2009-292443 2009-12-24

Publications (1)

Publication Number Publication Date
WO2010095493A1 true WO2010095493A1 (ja) 2010-08-26

Family

ID=42633779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051005 WO2010095493A1 (ja) 2009-02-17 2010-01-27 誘電率異方性が負の液晶性化合物、これを用いた液晶組成物および液晶表示素子

Country Status (7)

Country Link
US (1) US8298632B2 (ja)
EP (1) EP2399896B1 (ja)
JP (1) JP5526762B2 (ja)
KR (1) KR101688670B1 (ja)
CN (1) CN102307838B (ja)
TW (1) TWI460255B (ja)
WO (1) WO2010095493A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001918A1 (en) * 2009-07-02 2011-01-06 Chisso Corporation Liquid Crystal Composition and Liquid Crystal Display Device
JP2014114276A (ja) * 2012-11-16 2014-06-26 Jnc Corp ビニルオキシを有する液晶性化合物、液晶組成物および液晶表示素子
US9080101B2 (en) 2010-12-24 2015-07-14 Dic Corporation Polymerizable compound-containing liquid crystal composition and liquid crystal display device using the same
US9439875B2 (en) * 2011-05-11 2016-09-13 The United States Of America, As Represented By The Secretary Of Agriculture Anxiolytic effect of pterostilbene
WO2017187859A1 (ja) * 2016-04-28 2017-11-02 Jnc株式会社 ナフタレン環を有する化合物、液晶組成物、および液晶表示素子

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515505B2 (ja) * 2009-08-12 2014-06-11 Jnc株式会社 液晶組成物および液晶表示素子
JP5699518B2 (ja) * 2010-10-15 2015-04-15 Dic株式会社 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
CN103476905A (zh) * 2011-04-18 2013-12-25 捷恩智株式会社 液晶组合物及液晶显示元件
JP5962949B2 (ja) * 2011-11-28 2016-08-03 Dic株式会社 重合性液晶化合物
KR101930000B1 (ko) 2012-02-22 2018-12-19 삼성디스플레이 주식회사 액정 표시 장치
US8961823B2 (en) * 2012-07-05 2015-02-24 Jnc Corporation Polymerizable compound, liquid crystal composition and liquid crystal display device
JP5561440B1 (ja) * 2013-03-25 2014-07-30 Dic株式会社 液晶組成物及びそれを使用した液晶表示素子
CN103214353B (zh) * 2013-04-10 2016-04-06 陕西师范大学 端烯多氟二芳基乙炔液晶化合物及其制备方法
CN104419427B (zh) * 2013-08-20 2016-12-28 江苏和成显示科技股份有限公司 液晶组合物及其应用
CN103540324B (zh) * 2013-09-05 2015-05-20 烟台万润精细化工股份有限公司 一种乙烯基环己基甲醚类液晶化合物及其制备方法
DE102013021683A1 (de) * 2013-12-19 2015-06-25 Merck Patent Gmbh Flüssigkristallines Medium
CN104529723B (zh) * 2014-12-31 2016-06-29 浙江永太科技股份有限公司 一种1-烷氧基氟代苯类化合物的制备方法
KR102041815B1 (ko) * 2015-06-30 2019-11-07 주식회사 엘지화학 액정 소자 및 이의 용도
CN106753427B (zh) * 2015-11-19 2018-12-18 江苏和成显示科技有限公司 液晶组合物及其显示器件
CN106753425B (zh) * 2015-11-19 2018-09-28 江苏和成显示科技有限公司 液晶组合物及其显示器件
CN106753426B (zh) * 2015-11-19 2018-12-18 江苏和成显示科技有限公司 液晶组合物及其显示器件
CN106753422B (zh) * 2015-11-19 2021-04-20 江苏和成显示科技有限公司 液晶组合物及其显示器件
TWI693275B (zh) 2016-01-20 2020-05-11 日商捷恩智股份有限公司 具有2原子鍵結基與2,3-二氟伸苯基的4環液晶化合物、液晶組成物和液晶顯示元件
EP3418350B1 (en) * 2016-02-19 2020-12-23 JNC Corporation Liquid crystal composition and liquid crystal display device
CN108611103B (zh) * 2016-12-09 2021-08-20 江苏和成显示科技有限公司 一种包含可聚合化合物的液晶组合物及其应用
CN108239548B (zh) * 2016-12-23 2021-07-13 江苏和成显示科技有限公司 电压稳定性高,频率依赖性好的液晶组合物及其显示器件
CN110520789A (zh) * 2017-03-31 2019-11-29 夏普株式会社 液晶显示装置、液晶显示装置的制造方法、电子设备
CN109135764B (zh) * 2017-06-27 2022-03-11 江苏和成显示科技有限公司 一种具有负的介电各向异性的液晶组合物及液晶显示器件
CN109207158A (zh) * 2017-06-29 2019-01-15 北京八亿时空液晶科技股份有限公司 一种含烯类负介电各向异性的液晶化合物及其应用
CN109207159A (zh) * 2017-06-30 2019-01-15 北京八亿时空液晶科技股份有限公司 一种负介电各向异性的液晶化合物及其制备方法与应用
CN108264498B (zh) 2017-08-16 2021-02-26 石家庄诚志永华显示材料有限公司 化合物、包含该化合物的液晶介质及其应用
JP6900852B2 (ja) * 2017-09-11 2021-07-07 Jnc株式会社 フルオロビフェニルを有する誘電率異方性が負の液晶性化合物、液晶組成物および液晶表示素子
CN109575952B (zh) * 2017-09-28 2021-12-03 江苏和成显示科技有限公司 一种具有高的穿透率的液晶组合物及其液晶显示器件
CN108018048B (zh) * 2017-12-15 2021-11-05 石家庄诚志永华显示材料有限公司 一种负介电各项异性液晶组合物
WO2020095499A1 (ja) * 2018-11-05 2020-05-14 Jnc株式会社 液晶組成物および液晶表示素子
KR200490282Y1 (ko) 2019-05-24 2019-11-18 정민기 장애아동용 하체 단련기구

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299258A (ja) * 1988-05-26 1989-12-04 Kanto Chem Co Inc シクロヘキサンカルボン酸化合物並びにそれらを含む液晶組成物
JPH024725A (ja) 1988-03-10 1990-01-09 Merck Patent Gmbh ジハロゲノベンゼン誘導体
JPH02503678A (ja) * 1988-03-30 1990-11-01 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング オクタフルオロビフエニル化合物
JPH02276887A (ja) * 1989-04-19 1990-11-13 Dainippon Ink & Chem Inc 強誘電性液晶組成物
WO1991010936A1 (de) 1990-01-09 1991-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrooptisches flüssigkristallschaltelement
US5576867A (en) 1990-01-09 1996-11-19 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid crystal switching elements having a parallel electric field and βo which is not 0° or 90°
JPH0952852A (ja) 1995-08-08 1997-02-25 Kanto Chem Co Inc フッ素置換ビフェニル誘導体並びにそれらを含む液晶組成物
WO1998023562A1 (fr) * 1996-11-25 1998-06-04 Chisso Corporation Derives du 3,3'-difluorobiphenyle, compositions pour cristaux liquides, et elements d'afficheurs a cristaux liquides
JP2000053602A (ja) 1998-06-02 2000-02-22 Chisso Corp Δεが負の値を有するアルケニル化合物、液晶組成物および液晶表示素子
JP2007002132A (ja) 2005-06-24 2007-01-11 Chisso Corp 液晶組成物および液晶表示素子
JP2008502014A (ja) * 2004-06-09 2008-01-24 エクシベオ ペーペーエフ1 アーベー 液晶デバイス及びその製造方法
WO2009034867A1 (ja) 2007-09-10 2009-03-19 Chisso Corporation 液晶性化合物、液晶組成物および液晶表示素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9325438D0 (en) * 1993-12-13 1994-02-16 Secr Defence Ferroelectric liquid crystal devices
JP4091987B2 (ja) * 1996-11-28 2008-05-28 チッソ株式会社 クロロベンゼン誘導体、液晶組成物および液晶表示素子
EP0945418B1 (en) * 1996-11-28 2004-04-07 Chisso Corporation Liquid crystal compounds exhibiting negative anisotropy of permittivity, liquid crystal compositions, and liquid crystal displays
JP5359016B2 (ja) * 2008-05-08 2013-12-04 Jnc株式会社 液晶組成物および液晶表示素子
JP5515505B2 (ja) * 2009-08-12 2014-06-11 Jnc株式会社 液晶組成物および液晶表示素子

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024725A (ja) 1988-03-10 1990-01-09 Merck Patent Gmbh ジハロゲノベンゼン誘導体
JPH02503678A (ja) * 1988-03-30 1990-11-01 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング オクタフルオロビフエニル化合物
JPH01299258A (ja) * 1988-05-26 1989-12-04 Kanto Chem Co Inc シクロヘキサンカルボン酸化合物並びにそれらを含む液晶組成物
JPH02276887A (ja) * 1989-04-19 1990-11-13 Dainippon Ink & Chem Inc 強誘電性液晶組成物
WO1991010936A1 (de) 1990-01-09 1991-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrooptisches flüssigkristallschaltelement
US5576867A (en) 1990-01-09 1996-11-19 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid crystal switching elements having a parallel electric field and βo which is not 0° or 90°
JPH0952852A (ja) 1995-08-08 1997-02-25 Kanto Chem Co Inc フッ素置換ビフェニル誘導体並びにそれらを含む液晶組成物
WO1998023562A1 (fr) * 1996-11-25 1998-06-04 Chisso Corporation Derives du 3,3'-difluorobiphenyle, compositions pour cristaux liquides, et elements d'afficheurs a cristaux liquides
JP2000053602A (ja) 1998-06-02 2000-02-22 Chisso Corp Δεが負の値を有するアルケニル化合物、液晶組成物および液晶表示素子
JP2008502014A (ja) * 2004-06-09 2008-01-24 エクシベオ ペーペーエフ1 アーベー 液晶デバイス及びその製造方法
JP2007002132A (ja) 2005-06-24 2007-01-11 Chisso Corp 液晶組成物および液晶表示素子
WO2009034867A1 (ja) 2007-09-10 2009-03-19 Chisso Corporation 液晶性化合物、液晶組成物および液晶表示素子

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Experimental Chemistry Course", vol. 19-26, 1991, MARUZEN CO., LTD., article "Organic Synthesis I to VIII"
"New Experimental Chemistry Course", vol. 14, 1978, MARUZEN CO., LTD., article "Synthesis and Reaction of Organic Compounds"
E. JAKEMAN ET AL., PHYS. LETT., vol. 39A, 1972, pages 69
K. OHMURO, S. KATAOKA, T. SASAKI, Y. KOIKE, SID '97 DIGEST OF TECHNICAL PAPERS, vol. 28, 1997, pages 845
M. IMAI ET AL., MOLECULAR CRYSTALS AND LIQUID CRYSTALS, vol. 259, 1995, pages 37
M. IMAI ET AL.: "The value of the dielectric anisotropy necessary for the present calculation was obtained by the method described below, under the heading", DIELECTRIC ANISOTROPY
See also references of EP2399896A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001918A1 (en) * 2009-07-02 2011-01-06 Chisso Corporation Liquid Crystal Composition and Liquid Crystal Display Device
US8211512B2 (en) * 2009-07-02 2012-07-03 Jnc Corporation Liquid Crystal composition and liquid crystal display device
US9080101B2 (en) 2010-12-24 2015-07-14 Dic Corporation Polymerizable compound-containing liquid crystal composition and liquid crystal display device using the same
US9353312B2 (en) 2010-12-24 2016-05-31 Dic Corporation Polymerizable compound-containing liquid crystal composition and liquid crystal display device using the same
US9777220B2 (en) 2010-12-24 2017-10-03 Dic Corporation Polymerizable compound-containing liquid crystal composition and liquid crystal display device using the same
US10308873B2 (en) 2010-12-24 2019-06-04 Dic Corporation Polymerizable compound-containing liquid crystal composition and liquid crystal display device using the same
US10934488B2 (en) 2010-12-24 2021-03-02 Dic Corporation Polymerizable compound-containing liquid crystal composition and liquid crystal display device using the same
US9439875B2 (en) * 2011-05-11 2016-09-13 The United States Of America, As Represented By The Secretary Of Agriculture Anxiolytic effect of pterostilbene
JP2014114276A (ja) * 2012-11-16 2014-06-26 Jnc Corp ビニルオキシを有する液晶性化合物、液晶組成物および液晶表示素子
WO2017187859A1 (ja) * 2016-04-28 2017-11-02 Jnc株式会社 ナフタレン環を有する化合物、液晶組成物、および液晶表示素子
US10676669B2 (en) 2016-04-28 2020-06-09 Jnc Corporation Compound having naphthalene ring, liquid crystal composition and liquid crystal display device

Also Published As

Publication number Publication date
US8298632B2 (en) 2012-10-30
CN102307838B (zh) 2015-03-11
US20110272630A1 (en) 2011-11-10
JP5526762B2 (ja) 2014-06-18
EP2399896A4 (en) 2014-10-22
KR101688670B1 (ko) 2016-12-21
TW201037062A (en) 2010-10-16
EP2399896A1 (en) 2011-12-28
TWI460255B (zh) 2014-11-11
CN102307838A (zh) 2012-01-04
KR20110116175A (ko) 2011-10-25
JP2010215609A (ja) 2010-09-30
EP2399896B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5526762B2 (ja) 誘電率異方性が負の液晶性化合物、これを用いた液晶組成物および液晶表示素子
JP5958608B2 (ja) 誘電率異方性が負の液晶性化合物、これを用いた液晶組成物および液晶表示素子
JP5458577B2 (ja) 液晶性化合物、液晶組成物および液晶表示素子
JP6627515B2 (ja) 3,6−ジヒドロ−2h−ピランを有する誘電率異方性が負の液晶性化合物、液晶組成物および液晶表示素子
JP5637137B2 (ja) 液晶性化合物、液晶組成物および液晶表示素子
JP5817734B2 (ja) シクロヘキセン−3,6−ジイル化合物、液晶組成物および液晶表示素子
JP5663957B2 (ja) 誘電率異方性が負のトランスモノフルオロエチレン液晶性化合物、これを用いた液晶組成物および液晶表示素子
WO2011083677A1 (ja) 液晶化合物、液晶組成物および液晶表示素子
WO2009145101A1 (ja) フッ素原子を有する液晶性四環化合物、液晶組成物、及び液晶表示素子
JP5954017B2 (ja) ペルフルオロアルキル鎖を有する液晶化合物、液晶組成物および液晶表示素子
WO2017014326A2 (ja) ピペリジン誘導体、液晶組成物、および液晶表示素子
US20170210991A1 (en) Compound having a difluorocyclohexane ring, liquid crystal composition and liquid crystal display device
JP5887713B2 (ja) フルオロビニル誘導体、液晶組成物及び液晶表示素子
JP5736670B2 (ja) 二つの酸素を有する縮合環からなる液晶化合物およびこれを用いた液晶組成物
US10100251B2 (en) Compounds having a difluorocyclohexane ring, liquid crystal compositions and liquid crystal display devices
WO2017126275A1 (ja) 2原子結合基と2,3-ジフルオロフェニレンを有する4環液晶性化合物、液晶組成物および液晶表示素子
WO2010146992A1 (ja) 5環液晶性化合物、液晶組成物および液晶表示素子
JP2019094368A (ja) 液晶組成物および液晶表示素子
JP5637135B6 (ja) 5環液晶性化合物、液晶組成物および液晶表示素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007135.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743622

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010743622

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13145344

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117018992

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE