WO2010095374A1 - 撮像素子及びそれを備えた撮像装置 - Google Patents

撮像素子及びそれを備えた撮像装置 Download PDF

Info

Publication number
WO2010095374A1
WO2010095374A1 PCT/JP2010/000613 JP2010000613W WO2010095374A1 WO 2010095374 A1 WO2010095374 A1 WO 2010095374A1 JP 2010000613 W JP2010000613 W JP 2010000613W WO 2010095374 A1 WO2010095374 A1 WO 2010095374A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photoelectric conversion
unit
conversion unit
filter
Prior art date
Application number
PCT/JP2010/000613
Other languages
English (en)
French (fr)
Inventor
新谷大
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/202,869 priority Critical patent/US8593563B2/en
Priority to JP2011500485A priority patent/JP5190537B2/ja
Publication of WO2010095374A1 publication Critical patent/WO2010095374A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/133Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/042Picture signal generators using solid-state devices having a single pick-up sensor
    • H04N2209/047Picture signal generators using solid-state devices having a single pick-up sensor using multispectral pick-up elements

Definitions

  • the technology disclosed herein relates to an imaging element that receives light and performs photoelectric conversion, and an imaging apparatus including the imaging element.
  • imaging devices that convert received light into electrical signals by photoelectric conversion, such as CCD (Charge Coupled Device) and CMOS (Complimentary Metal Oxide Semiconductor), are known.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • an infrared cut filter (so-called IR cut filter: Infrared Cut Filter) is provided in front of the image sensor to pick up an image. Infrared light is removed from light incident on the element.
  • the imaging apparatus is configured to install an IR cut filter in front of the imaging element in accordance with the amount of light so as to support both of them. Specifically, when the IR cut filter is attached to the aperture and the amount of light incident on the image sensor is small, the IR cut filter is retracted in conjunction with the aperture to be opened, while when the amount of light incident on the image sensor is large, The IR cut filter is moved and installed in front of the image sensor in conjunction with an aperture that is reduced to a predetermined aperture value.
  • the image sensor receives infrared light only when the aperture is open. If the aperture is reduced even a little from the open state, an IR cut filter is installed in front of the image sensor, and the image sensor cannot receive infrared light.
  • An object of the present invention is to provide an imaging device that can be used.
  • the technology disclosed herein is intended for an image sensor that receives light and performs photoelectric conversion.
  • the said image pick-up element receives the light which remove
  • light is configured to pass through the first photoelectric conversion unit, and light including infrared light is received by the first photoelectric conversion unit, and from light that has passed through the first photoelectric conversion unit.
  • the second photoelectric conversion unit By receiving light excluding infrared light with the second photoelectric conversion unit, infrared light can be received with the first photoelectric conversion unit, so that imaging using infrared light can be performed flexibly.
  • the second photoelectric conversion unit can receive light other than infrared light, an image with high color reproducibility can be obtained using at least the light received by the second photoelectric conversion unit.
  • FIG. 1 is a schematic cross-sectional view of an imaging unit according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic end view of the image sensor.
  • FIG. 3 is a schematic plan view of the image sensor.
  • FIG. 4 is a schematic exploded perspective view of the image sensor.
  • FIG. 5 is a schematic perspective view of the imaging unit.
  • FIG. 6 is a graph showing the spectral characteristics of the filter and the photoelectric conversion unit in the pixel corresponding to the green color filter, where (A) shows the spectral characteristic of the first filter and (B) shows the first photoelectric conversion unit 10. (C) shows the spectral characteristics of the second filter.
  • FIG. 6 is a graph showing the spectral characteristics of the filter and the photoelectric conversion unit in the pixel corresponding to the green color filter, where (A) shows the spectral characteristic of the first filter and (B) shows the first photoelectric conversion unit 10.
  • C shows the spectral characteristics of the second filter.
  • FIG. 7 is a graph showing the spectral characteristics of the filter and the substrate in the pixel corresponding to the blue color filter, where (A) shows the spectral characteristics of the first filter, and (B) shows the spectral characteristics of the first photoelectric conversion unit 10.
  • C shows the spectral characteristics of the second filter.
  • FIG. 8 is a graph showing the spectral characteristics of the filter and the substrate in the pixel corresponding to the colorless filter, where (A) shows the spectral characteristics of the first filter and (B) shows the spectral characteristics of the first photoelectric conversion unit 10. , (C) shows the spectral characteristics of the second filter.
  • FIG. 9 is a schematic exploded perspective view of an image sensor according to the first modification.
  • FIG. 10 is a graph showing the spectral characteristics of the filter and the substrate in the pixel corresponding to the red color filter, where (A) shows the spectral characteristics of the first filter, and (B) shows the spectral characteristics of the first photoelectric conversion unit 10. (C) shows the spectral characteristics of the second filter.
  • FIG. 11 is a schematic cross-sectional view of an image sensor according to the second modification.
  • FIG. 12 is a block diagram of a camera according to the second embodiment.
  • FIG. 13 is a flowchart showing the photographing operation until the release button is fully pressed.
  • FIG. 14 is a flowchart showing the photographing operation after the release button is fully pressed.
  • FIG. 1 is a schematic cross-sectional view of an imaging unit U according to Embodiment 1 of the present invention.
  • the imaging unit U includes an imaging device 1 for converting a subject image into an electrical signal, and a phase difference detection unit 30 for performing focus detection by a phase difference detection method.
  • This imaging unit U constitutes an imaging device.
  • the imaging element 1 is an interline CCD image sensor, and includes a first imaging unit 1A and a second imaging unit 1B, and is configured by stacking these.
  • the first imaging unit 1A includes a first photoelectric conversion unit 10 made of a semiconductor material, a first vertical register 13, a first transfer path 14, a first mask 15, a first filter 16, and a microlens 17.
  • the second imaging unit 1B includes a second photoelectric conversion unit 20, a second vertical register 23, a second transfer path 24, a second mask 25, and a second filter 26.
  • the first imaging unit 1A will be described.
  • the first photoelectric conversion unit 10 includes a substrate 11 and a plurality of light receiving units (also referred to as pixels) 12, 12,.
  • the substrate 11 is composed of Si (silicon) base.
  • the substrate 11 is composed of a Si single crystal substrate or SOI (Silicon On Insulator wafer).
  • SOI substrate has a sandwich structure of an Si thin film and an SiO 2 thin film, and can stop the reaction in the SiO 2 layer in an etching process or the like, which is advantageous for stable substrate processing.
  • the light receiving unit 12 is composed of a photodiode, and absorbs light to generate electric charges.
  • the light receiving portions 12, 12,... are respectively provided in minute rectangular pixel areas arranged in a matrix on the substrate 11.
  • the first vertical register 13 is provided for each light receiving unit 12 and has a role of temporarily storing charges accumulated in the light receiving unit 12. That is, the electric charge accumulated in the light receiving unit 12 is transferred to the first vertical register 13. The charges transferred to the first vertical register 13 are transferred to a horizontal register (not shown) via the first transfer path 14 and sent to an amplifier (not shown). The electric charge sent to the amplifier is amplified and taken out as an electric signal.
  • the first mask 15 is provided so as to cover the first vertical register 13 and the first transfer path 14 while exposing the light receiving unit 12 to the subject side, and light is applied to the first vertical register 13 and the first transfer path 14. Is prevented from entering.
  • the first filter 16 and the microlens 17 are provided for each of the small square pixel regions corresponding to each light receiving unit 12.
  • the first filter 16 is a color filter that transmits only light in a specific wavelength range, and a primary color filter or a complementary color filter is used.
  • the first filter 16 is a primary color filter in which a plurality of color filters 16g, 16b, 16w,... Are arranged in a matrix as shown in FIGS.
  • Two green color filters that is, color filters having higher transmittance than the visible light wavelength region of other colors other than green with respect to the green visible light wavelength region
  • a blue color filter that is, a color filter having a higher transmittance than the visible light wavelength region of colors other than blue with respect to the blue visible light wavelength region
  • a colorless filter That is, a filter 16w that transmits at least light in the visible light wavelength region and the infrared light region with little attenuation is arranged.
  • green color filters 16g, 16g,... are arranged in a staggered manner as a whole.
  • the micro lens 17 collects light and makes it incident on the light receiving unit 12.
  • the light receiving unit 12 can be efficiently irradiated by the microlens 17.
  • the first photoelectric conversion unit 10 is formed to have a thickness that allows the incident light to pass through the first photoelectric conversion unit 10. That is, the first photoelectric conversion unit 10 is configured such that light incident on the light receiving unit 12 passes through the light receiving unit 12 and further the substrate 11.
  • the second photoelectric conversion unit 20 includes a substrate 21 and a plurality of light receiving units (also referred to as pixels) 22, 22,.
  • the substrate 21 is composed of Si (silicon) base.
  • the substrate 21 is composed of a Si single crystal substrate or SOI (Silicon On Insulator wafer).
  • SOI substrate has a sandwich structure of an Si thin film and an SiO 2 thin film, and can stop the reaction in the SiO 2 layer in an etching process or the like, which is advantageous for stable substrate processing.
  • the light receiving unit 22 is composed of a photodiode and absorbs light to generate electric charges. .. Are provided in minute square pixel areas arranged in a matrix on the substrate 21, respectively.
  • the second vertical register 23 is provided for each light receiving unit 22 and has a role of temporarily storing charges accumulated in the light receiving unit 22. That is, the charge accumulated in the light receiving unit 22 is transferred to the second vertical register 23. The charges transferred to the second vertical register 23 are transferred to the horizontal register (not shown) via the second transfer path 24 and sent to the amplifier (not shown). The electric charge sent to the amplifier is amplified and taken out as an electric signal.
  • the second mask 25 is provided so as to cover the second vertical register 23 and the second transfer path 24 while exposing the light receiving unit 22 to the subject side, and light is applied to the second vertical register 23 and the second transfer path 24. Is prevented from entering.
  • the second filter 26 is provided corresponding to each light receiving unit 22 and arranged in a matrix for each of the small square pixel regions.
  • the second filter 26 is an infrared cut filter (so-called IR cut filter: Infrared Cut Filter) that removes infrared light, and a color filter that transmits only red light (that is, in the red visible light wavelength region).
  • IR cut filter Infrared Cut Filter
  • red light that is, in the red visible light wavelength region
  • it also functions as a color filter having a higher transmittance than the visible light wavelength range of colors other than red. That is, the second filter 26 transmits light in the visible wavelength region of red that is shorter than the infrared region.
  • the pixel pitch of the second photoelectric conversion unit 20 (that is, the pitch of the light receiving unit 22) is set to twice the pixel pitch of the first photoelectric conversion unit 10 (that is, the pitch of the light receiving unit 12). That is, the area of the pixel 22 of the second photoelectric conversion unit 20 is about four times the area of the pixel 12 of the first photoelectric conversion unit 10. Accordingly, the area of the second filter 26 is about four times the area of the first filter 16.
  • a plurality of transmission parts 27 that transmit the irradiated light are formed on the substrate 21 of the second photoelectric conversion part 20 (only one is shown in FIGS. 1 and 2).
  • the transmission unit 27 transmits the light irradiated on the second photoelectric conversion unit 20 and makes the light incident on the phase difference detection unit 30.
  • the transmission part 27 is formed by recessing a surface 21a opposite to the surface on which the light receiving unit 22 is provided in the substrate 21 (hereinafter also simply referred to as a back surface) into a concave shape by cutting, polishing or etching, It is thinner than the periphery. More specifically, the transmission part 27 has a depressed surface 27a that is the thinnest and inclined surfaces 27b and 27b that connect the depressed surface 27a and the rear surface 21a.
  • the transmission part 27 in the substrate 21 By forming the transmission part 27 in the substrate 21 to a thickness that allows light to pass therethrough, a part of the light incident on the second photoelectric conversion part 20 is not converted into charges. Is transmitted through the second photoelectric conversion unit 20.
  • the inclined surfaces 27b and 27b are set at an angle at which the light reflected by the inclined surface 27b when passing through the transmitting portion 27 does not go to the condenser lenses 31, 31,. . By doing so, an image that is not a real image is prevented from being formed on the line sensor 33 described later.
  • the transmission part 27 constitutes a thin part that transmits, that is, allows light incident on the image sensor 1 to pass therethrough.
  • passing is a concept including “transmission”.
  • FIG. 5 is a schematic perspective view of the imaging unit.
  • the phase difference detection unit 30 receives the passing light from the image sensor 1 and detects the phase difference. That is, the phase difference detection unit 30 converts the received passing light into an electrical signal for distance measurement. This phase difference detection unit 30 constitutes a phase difference detection unit.
  • the phase difference detection unit 30 is disposed on the back side of the image sensor 1 (on the side opposite to the subject), more specifically, on the back side of the transmission unit 27.
  • nine transmission portions 27, 27,... In correspondence therewith, nine phase difference detection units 30, 30,... are provided.
  • Each phase difference detection unit 30 includes a condenser lens 31, a separator lens 32, and a line sensor 33.
  • the condenser lens 31, the separator lens 32, and the line sensor 33 are arranged in this order along the thickness direction of the image sensor 1 from the image sensor 1 side.
  • the condenser lens 31 is for condensing incident light.
  • the condenser lens 31 condenses the light that is transmitted through the transmission part 27 and is spreading, and guides it to the separator lens 32.
  • the incident angle on the separator lens 32 is increased (the incident angle is reduced), so that the aberration of the separator lens 32 can be suppressed and the object image interval on the line sensor 33 described later can be reduced. Can be small. As a result, the separator lens 32 and the line sensor 33 can be reduced in size.
  • the focus position of the subject image from the imaging optical system is greatly deviated from the imaging unit U (specifically, when it is greatly deviated from the imaging device 1 of the imaging unit U)
  • the contrast of the image is significantly reduced.
  • the reduction effect of the contrast can be suppressed by the reduction effect by the condenser lens 31 and the separator lens 32, and the focus detection range can be widened.
  • the condenser lens 31 may not be provided in the case of high-accuracy phase difference detection in the vicinity of the focal position, or in the case where there is a margin in the dimensions of the separator lens 32, the line sensor 33, or the like.
  • the separator lens 32 forms the incident light flux on the line sensor 33 as the same two subject images.
  • the line sensor 33 receives an image formed on the imaging surface and converts it into an electrical signal. That is, an interval between two subject images can be detected from the output of the line sensor 33, and a defocus amount (that is, defocus amount (Df amount)) of the subject image formed on the image sensor 1 by the interval and It can be determined in which direction the focus is deviated (that is, the defocus direction) (hereinafter, the Df amount, the defocus direction, and the like are also referred to as defocus information).
  • the imaging unit U configured as described above is connected to a control unit (not illustrated in the present embodiment, but corresponds to, for example, a body control unit 5 of the second embodiment described later).
  • the control unit is not included in the imaging unit U, but may be configured to be included in the imaging unit U.
  • the control unit acquires the subject image as an electrical signal based on the output signal from the image sensor 1 and acquires defocus information based on the output signal from the phase difference detection unit 30.
  • FIG. 6 is a graph showing spectral characteristics of the filter and photoelectric conversion unit in the pixel corresponding to the green color filter
  • FIG. 7 is a graph showing spectral characteristics of the filter and substrate in the pixel corresponding to the blue color filter
  • FIG. 8 is a graph showing spectral characteristics of the filter and the substrate in the pixel corresponding to the colorless filter.
  • (A) shows the spectral characteristics of the first filter
  • (B) shows the spectral characteristics of the first photoelectric conversion unit 10
  • C shows the spectral characteristics of the second filter.
  • the light When light from the subject enters the imaging unit U, the light enters the image sensor 1.
  • the light is collected by the microlens 17 of the first imaging unit 1 ⁇ / b> A and then passes through the first filter 16 so that only light in a specific wavelength region reaches the light receiving unit 12 of the first photoelectric conversion unit 10. .
  • the green color filter 16g the light in the wavelength range indicated by the hatched portion in FIG. 6A passes through the green color filter 16g and reaches the light receiving unit 12.
  • the blue color filter 16b light in the wavelength region indicated by the hatched portion in FIG. 7A passes through the blue color filter 16b and reaches the light receiving unit 12.
  • the colorless filter 16w as shown by the hatched portion in FIG.
  • At least the light in the visible light region and the infrared region are transmitted without being attenuated and reach the light receiving unit 12.
  • Each light receiving unit 12 absorbs the reached light and generates an electric charge.
  • the generated charges are sent to the amplifier via the first vertical register 13 and the first transfer path 14 and output as an electrical signal.
  • the green and blue color filters 16g and 16b mainly transmit light in the blue and green wavelength regions, respectively, and do not transmit infrared light so much. Therefore, the light receiving units 12, 12,... Corresponding to the green and blue color filters 16g, 16b can acquire the amounts of green and blue light without being significantly affected by the infrared light.
  • the colorless filter 16w transmits light of almost all wavelengths, not only light in the visible light wavelength region but also light in the infrared region is incident on the light receiving units 12, 12, ... corresponding to the colorless filter 16w. To do. As a result, the light receiving units 12, 12,... Corresponding to the colorless filter 16w can acquire the amount of light including infrared light.
  • the substrate 11 has spectral characteristics as indicated by broken lines in FIGS. That is, the light transmitted through the color filters 16g, 16b, and 16w attenuates when passing through the substrate 11, as indicated by the hatched portions in FIGS. 6 (B) to 8 (B).
  • the light transmitted through the first photoelectric conversion unit 10 enters the second imaging unit 1B.
  • the second filter 26 of the second imaging unit 1B By passing through the second filter 26 of the second imaging unit 1B, only light in a specific wavelength region reaches the light receiving unit 22 of the second photoelectric conversion unit 20.
  • the second filter 26 has a spectral characteristic indicated by a region where a region surrounded by a solid line and a region surrounded by a two-dot chain line in FIGS. That is, the second filter 26 transmits light having a shorter wavelength than the infrared region in the red wavelength region, as indicated by the hatched portion in FIGS. 6 (C) to 8 (C).
  • the light receiving unit 22 of the second photoelectric conversion unit 20 has a red wavelength range and a shorter wavelength side than the infrared range of the light transmitted through the first filter 16 and the first photoelectric conversion unit 10.
  • the light reaches.
  • the light receiving unit 22 absorbs the reached light and generates a charge. That is, the light receiving unit 22 can acquire the amount of red light that does not include infrared light.
  • the imaging device 1 the light receiving units 12, 12,... Of the first photoelectric conversion unit 10 and the light receiving units 22, 22,.
  • the subject image formed on the imaging surface is converted into an electrical signal for creating an image signal. That is, the image sensor 1 acquires green and blue color information that does not include infrared light by the light receiving units 12, 12,... Of the first photoelectric conversion unit 10, and red color information that does not include infrared light. 2. Obtained by the light receiving units 22, 22,... Of the photoelectric conversion unit 20. Imaging with high color reproducibility can be performed based on the red, green, and blue color information thus obtained. In addition, the imaging device 1 acquires white color information including infrared light from the light receiving units 12, 12,... Of the first photoelectric conversion unit 10 by the light receiving units 12, 12,.
  • the accumulated charge amounts differ if the light wavelengths are different.
  • the first photoelectric conversion unit 10 since the light receiving units 22, 22,... Of the second photoelectric conversion unit 20 receive light that has been transmitted through the first photoelectric conversion unit 10 and attenuated, the first photoelectric conversion unit 10 also has that point. .. And the light receiving units 22, 22,... Of the second photoelectric conversion unit 20 are different in accumulated charge amount. Therefore, the outputs from the light receiving sections 12, ..., 22, ... of the image sensor 1 are corrected according to the type of filter provided in each.
  • the R pixel 22 provided with the second filter 26 that transmits red light, the G pixel 12 provided with the green color filter 16g, and the B pixel 12 provided with the blue color filter 16b are respectively color filters.
  • the correction amount of each pixel is set so that the outputs per unit area from the R pixel 22, the G pixel 12, and the B pixel 12 are the same level when the same color light is received. That is, the R pixel 22 is corrected in consideration of the fact that the amount of received light is four times that of the G pixel 12 and the B pixel 12 because the area is four times as large.
  • the photoelectric conversion efficiency in the transmission portions 27, 27, is the pixel 22, 22,... Provided at the position corresponding to the transmission portions 27, 27,. It will be less than 22, 22,.
  • the output of the light receiving units 22, 22,... Of the second photoelectric conversion unit 20 is subjected to correction based on whether or not it is located in the transmission units 27, 27,.
  • the amount of correction based on whether or not the light is located in the transmissive portions 27, 27,... To be determined.
  • control unit corrects the output signals from the light receiving units 12,..., 22,... As described above, and then, based on the output signals, positions in the respective light receiving units, that is, the pixels 12,. An image signal including information, color information, and luminance information is created. In this way, an image signal of the subject image formed on the imaging surface of the imaging device 1 is obtained.
  • each pixel 12 is provided with a corresponding filter, and receives light in a wavelength region corresponding to the filter. Therefore, the color information outside the wavelength range corresponding to the filter is interpolated based on the outputs of the surrounding pixels 12, 12,.
  • the green color information is obtained based on the output signal from the G pixel 12, and the red color information is located on the back surface of the G pixel 12.
  • the blue color information is obtained based on the output signal of the R pixel 22 of the second photoelectric conversion unit 20, and the output of the B pixels 12 and 12 corresponding to the two blue color filters 16b adjacent to each other with the G pixel 12 interposed therebetween.
  • the blue color information is obtained based on the output signal from the B pixel 12, and the red color information is located on the back surface of the B pixel 12.
  • the green color information is obtained based on the output signal of the R pixel 22 of the two photoelectric conversion unit 20, and the green color information corresponds to the four green color filters 16g adjacent to the four sides of the B pixel 12, G pixels 12, 12,. Is interpolated based on the output signal.
  • the red color information is obtained based on the output signal of the R pixel 22 of the second photoelectric conversion unit 20 located on the back surface of the W pixel 12, and the green color
  • the information is interpolated based on the output signals of the G pixels 12, 12,... Corresponding to the four green color filters 16g adjacent to the four sides of the W pixel 12, and the blue color information sandwiches the W pixel 12. Interpolation is performed based on the output signals of the B pixels 12 and 12 corresponding to the two adjacent blue color filters 16b. In this way, red, blue, and green color information is acquired in each pixel 12. At this time, color information of white light and infrared light is acquired from the W pixel 12 corresponding to the colorless filter 16 w of the first photoelectric conversion unit 10.
  • part of the irradiated light is transmitted through the second photoelectric conversion unit 20.
  • the light that has passed through the second photoelectric conversion unit 20, that is, the light that has passed through the imaging device 1 enters the condenser lens 31.
  • the light collected by passing through each condenser lens 31 enters the separator lens 32.
  • the light divided by the separator lens 32 forms an image of the same subject at two positions on the line sensor 33. Similar to the first and second photoelectric conversion units 10 and 20, the line sensor 33 outputs the received light amount in each light receiving unit as an electrical signal by photoelectric conversion.
  • the output signal output from the line sensor 33 is input to the control unit.
  • This control unit may be the same as or different from the control unit of the image sensor 1.
  • the control unit obtains an interval between the two subject images formed on the line sensor 33 based on the output signal, and detects a focus state of the subject image formed on the image sensor 1 from the obtained interval. be able to.
  • the two subject images formed on the line sensor 33 have a predetermined reference when the subject image formed on the image sensor 1 through the imaging lens is accurately formed (focused). Positioned at a predetermined reference position with a gap.
  • the interval between the two subject images becomes narrower than the reference interval at the time of focusing.
  • the control unit detects the interval between the two subject images on the line sensor 33 based on the output signal from the line sensor 33, and acquires defocus information from the interval.
  • the first photoelectric conversion unit 10 is configured to transmit light
  • the second filter 26 that removes at least infrared rays is disposed on the back side of the first photoelectric conversion unit 10
  • the second photoelectric conversion unit 20 By disposing the second photoelectric conversion unit 20 on the back side of the second filter 26, light including infrared light can be photoelectrically converted by the first photoelectric conversion unit 10, and light not including infrared light is converted into the first light.
  • Two photoelectric conversion units 20 can perform photoelectric conversion. That is, even in an environment with a small amount of light such as darkness, the first photoelectric conversion unit 10 can receive and image light including infrared light, and as a result, even in an environment with a small amount of light.
  • the second photoelectric conversion unit 20 receives and captures light that does not include infrared light, it is possible to perform imaging with high color reproducibility.
  • the light reception including the infrared light in the first photoelectric conversion unit 10 is not configured to switch the installation and retraction of the IR cut filter by another mechanism. Since it is not configured to be switched in conjunction with the member, infrared light can always be received, and infrared light can be used flexibly as necessary.
  • the light-receiving part 22,22, ... of the 2nd photoelectric conversion part 20 since the light-receiving part 22,22, ... of the 2nd photoelectric conversion part 20 receives the light which permeate
  • the second photoelectric conversion unit 20 can receive a sufficient amount of light and perform photoelectric conversion. That is, as shown by the broken lines in FIGS. 6 to 8, the red light has a smaller attenuation when transmitted through the substrate 11 than the green or blue light. Therefore, a larger amount of light can be received by setting the light received by the light receiving units 22, 22,... Of the second photoelectric conversion unit 20 to red.
  • the light received by the light receiving units 12, 12,... Other than the light receiving units 12, 12,... Corresponding to the colorless filter 16w of the first photoelectric conversion unit 10 is changed to green and blue in advance. Even if light is not removed, light containing almost no infrared light can be received. That is, if a red color filter is provided in the light receiving units 12, 12,... Of the first photoelectric conversion unit 10, the spectral characteristics of the red color filter are as shown by the two-dot chain lines in FIGS. Infrared light is included, and the light receiving units 12, 12,... Receive red light including infrared light. As a result, it is impossible to perform imaging with a color reproducibility close to human visibility.
  • the green and blue color filters 16g and 16b have spectral characteristics that hardly contain infrared light, as shown by dotted lines and alternate long and short dash lines in FIGS. That is, the green and blue color filters 16g and 16b substantially remove infrared light by transmitting light in the green and blue wavelength regions.
  • the color information for generating the image data can be acquired from the light before passing through the first photoelectric conversion unit 10, that is, from the light that has not been attenuated, so that the sensitivity can be improved.
  • the second photoelectric conversion unit 20 is configured to transmit light, so that the phase difference detection unit 30 is provided on the back side of the second photoelectric conversion unit 20 to perform phase difference detection. it can. As a result, phase difference detection can be performed while imaging.
  • the transmission part 27 is formed thinner than the peripheral part in the substrate 21, but is not limited thereto.
  • the thickness of the entire substrate 21 may be set so that light applied to the substrate 21 passes through the substrate 21 and sufficiently reaches the phase difference detection unit 30 on the back side of the substrate 21. In this case, the whole substrate 21 becomes a transmission part.
  • nine transmission portions 27, 27,... are formed, and nine phase difference detection units 30, 30,... Are provided corresponding to the nine transmission portions 27, 27,. is not.
  • the number of these is not limited to nine, and can be set to an arbitrary number.
  • FIG. 9 is a schematic exploded perspective view of an image sensor according to the first modification.
  • the imaging device 201 according to the first modification differs from the first embodiment in the configuration of the filter of the first imaging unit 201A. Therefore, the same components as those of the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and description will be made focusing on portions having different configurations.
  • the imaging element 201 includes a first imaging unit 201A and a second imaging unit 1B, and is configured by stacking these.
  • the first imaging unit 201A has the same configuration as the first imaging unit 1A of Embodiment 1 except for the configuration of the first filter 216.
  • the first filter 216 is a color filter that transmits only a specific color, and a Bayer array primary color filter in which a plurality of color filters 216r, 216g, 216b,.
  • a Bayer array primary color filter in which a plurality of color filters 216r, 216g, 216b,.
  • two green color filters 216g are arranged in the direction, and a red color filter 216r and a blue color filter 216b are arranged in the other diagonal direction.
  • every other green color filter 216g, 216g,... Is arranged vertically and horizontally.
  • the light When entering the imaging device 201 configured as described above, the light is condensed by a microlens (not shown in FIG. 9) of the first imaging unit 201A, and then transmitted through the first filter 216 to have a specific wavelength. Only the light in the region reaches the light receiving unit 12 of the first photoelectric conversion unit 10. Specifically, the transmission of light through the green and blue color filters 216g and 216b is as described in the above embodiment. In the red color filter 216r, light in the wavelength range indicated by the hatched portion in FIG. 10A passes through the red color filter 216r and reaches the light receiving unit 12. Each light receiving unit 12 absorbs the reached light and generates an electric charge.
  • the generated charge is sent to the amplifier via the first vertical register and the first transfer path, and is output as an electric signal. Since the red color filter 216r transmits light in the red wavelength band and infrared region, the light receiving units 12, 12,... Corresponding to the red color filter 216r include not only red wavelength region light but also infrared light. Area light is also incident. As a result, the light receiving units 12, 12,... Corresponding to the red color filter 216r can acquire the amount of light including infrared light.
  • the light transmitted through the first photoelectric conversion unit 10 enters the second imaging unit 1B.
  • the second filter 26 of the second imaging unit 1B By passing through the second filter 26 of the second imaging unit 1B, only light in a specific wavelength region reaches the light receiving unit 22 of the second photoelectric conversion unit 20.
  • the second filter 26 has spectral characteristics indicated by a region where a region surrounded by a solid line and a region surrounded by a two-dot chain line in FIGS. That is, the second filter 26 transmits light having a shorter wavelength than the infrared region in the red wavelength region, as indicated by the hatched portions in FIGS. 6 (C), 7 (C), and 10 (C).
  • the light receiving unit 22 of the second photoelectric conversion unit 20 has a red wavelength range and a shorter wavelength side than the infrared range of the light transmitted through the first filter 16 and the first photoelectric conversion unit 10.
  • the light reaches.
  • the light receiving unit 22 absorbs the reached light and generates a charge. That is, the light receiving unit 22 can acquire the received light amount of red light that does not include infrared light.
  • the image sensor 201 acquires the green and blue color information not including infrared light by the light receiving units 12, 12,... Of the first photoelectric conversion unit 10, and the red color information not including infrared light is the first. 2. Obtained by the light receiving units 22, 22,... Of the photoelectric conversion unit 20. Imaging with high color reproducibility can be performed based on the red, green, and blue color information thus obtained. In addition, the image sensor 201 converts red color information including infrared light into the light receiving units 12, 12,... Corresponding to the red color filter 216r among the light receiving units 12, 12,. Can be obtained at. Based on the infrared light information thus obtained, it is possible to perform high-sensitivity imaging and high-sensitivity contrast autofocus.
  • the image sensor 301 according to the second modification is different from the first embodiment in that it is not a CCD image sensor but a CMOS image sensor.
  • the imaging element 301 is a CMOS image sensor
  • the first imaging unit 301A includes a first photoelectric conversion unit 310 made of a semiconductor material, a transistor 313, a signal line 314, a mask 315, and a first filter 16. And a microlens 17.
  • the configurations of the first filter 16 and the microlens 17 are the same as those in the first embodiment.
  • the second imaging unit 301B includes a second photoelectric conversion unit 320 made of a semiconductor material, a transistor 323, a signal line 324, a mask 325, and a second filter 26.
  • the configuration of the second filter 26 is the same as that of the first embodiment.
  • the first photoelectric conversion unit 310 includes a substrate 311 and light receiving units 312, 312,.
  • a transistor 313 is provided for each light receiving unit 312.
  • the charge accumulated in the light receiving unit 312 is amplified by the transistor 313 and output to the outside through the signal line 314.
  • a mask 315 is provided so that light does not enter the transistor 313 and the signal line 314.
  • the first photoelectric conversion unit 310 is formed to have a thickness that allows incident light to pass through the first photoelectric conversion unit 310. That is, the first photoelectric conversion unit 310 is configured such that light incident on the light receiving unit 312 is transmitted through the light receiving unit 312 and further through the substrate 311.
  • the second photoelectric conversion unit 320 includes a substrate 321 and light receiving units 322, 322,.
  • a transistor 323 is provided for each light receiving unit 322.
  • the charge accumulated in the light receiving portion 322 is amplified by the transistor 323 and output to the outside through the signal line 324.
  • a mask 325 is provided so that light does not enter the transistor 323 and the signal line 324.
  • the area of the light receiving unit 322 is about four times the area of the light receiving unit 312.
  • the substrate 321 is formed with a transmission part 327 that transmits the irradiated light, like the CCD image sensor.
  • the transmission part 327 is formed thinner than the peripheral part.
  • green and blue color information not including infrared light is acquired by the light receiving units 312, 312,... Of the first photoelectric conversion unit 310, and red not including infrared light. Are acquired by the light receiving units 322, 322,... Of the second photoelectric conversion unit 320. Imaging with high color reproducibility can be performed based on the red, green, and blue color information thus obtained. Further, the image sensor 301 acquires white color information including infrared light from the light receiving units 312, 312,... Of the first photoelectric conversion unit 310 corresponding to the colorless filter 16w. can do. Based on the infrared light information thus obtained, it is possible to perform high-sensitivity imaging and high-contrast autofocus.
  • the amplification factors of the transistors 313 and 323 can be set for each of the light receiving portions 312 and 322. Therefore, the amplification factors of the transistors 313 and 323 can be set for the color filters corresponding to the light receiving portions 312 and 322, respectively.
  • the second photoelectric conversion unit 320 further sets the amplification factor of the transistor 323 based on whether or not the light receiving unit 322 is located at a position corresponding to the transmission unit 327. Thus, it is possible to appropriately capture the image of the part.
  • Embodiment 2 of the Invention ⁇ Embodiment 2 of the Invention >> Next, a camera as an imaging apparatus according to Embodiment 2 of the present invention will be described.
  • a camera 100 according to the second embodiment is an interchangeable-lens single-lens reflex digital camera as shown in FIG. 12, and is mainly removable from the camera body 4 having the main functions of the camera system and the camera body 4.
  • the interchangeable lens 7 is mounted.
  • the interchangeable lens 7 is attached to a body mount 41 provided on the front surface of the camera body 4.
  • the body mount 41 is provided with an electrical section 41a.
  • the camera body 4 includes an imaging unit U according to the first embodiment that acquires a subject image as a captured image, a shutter unit 42 that adjusts the exposure state of the imaging unit U, and a liquid crystal monitor. And an image display unit 44 for displaying various information and a body control unit 5.
  • the camera body 4 is provided with a power switch 40a for operating on / off of the power of the camera system and a release button 40b operated by the photographer during focusing and release.
  • the release button 40b is a two-stage type, which performs autofocus and AE, which will be described later, by half-pressing, and releasing by fully pressing the release button 40b.
  • the imaging unit U is configured to be movable in a plane perpendicular to the optical axis X by the blur correction unit 45.
  • the body control unit 5 controls the operation of the body microcomputer 50, the non-volatile memory 50a, the shutter control unit 51 that controls the driving of the shutter unit 42, and the imaging unit U, and outputs an electrical signal from the imaging unit U to the A /
  • the imaging unit control unit 52 that performs D conversion and outputs the image data to the body microcomputer 50, and the reading of the image data from the image storage unit 58, which is a card-type recording medium or an internal memory, for example, and the recording of the image data in the image storage unit 58
  • a blur detection unit 56 that detects the amount and a correction unit control unit 57 that controls the blur correction unit 45 are included.
  • the body microcomputer 50 is a control device that controls the center of the camera body 4 and controls various sequences.
  • a CPU, a ROM, and a RAM are mounted on the body microcomputer 50.
  • the body microcomputer 50 can implement
  • the body microcomputer 50 receives input signals from the power switch 40a and the release button 40b, as well as a shutter control unit 51, an imaging unit control unit 52, an image readout / recording unit 53, an image recording control unit 54, and a correction unit control.
  • the controller 57 is configured to output control signals to the shutter 57, the imaging unit controller 52, the image reading / recording unit 53, the image recording controller 54, the correction unit controller 57, and the like. Make control run.
  • the body microcomputer 50 performs inter-microcomputer communication with a lens microcomputer 80 described later.
  • the imaging unit control unit 52 performs A / D conversion on the electrical signal from the imaging unit U and outputs it to the body microcomputer 50.
  • the body microcomputer 50 performs predetermined image processing on the captured electric signal to create image data.
  • the body microcomputer 50 transmits the image data to the image reading / recording unit 53 and instructs the image recording control unit 54 to record and display the image, thereby saving the image data in the image storage unit 58 and the image.
  • Transmission of image data to the display control unit 55 is performed.
  • the image display control unit 55 controls the image display unit 44 based on the transmitted image data, and causes the image display unit 44 to display an image.
  • the body microcomputer 50 corrects the output from the light receiving unit 22 according to whether or not the light receiving unit 22 is provided at a position corresponding to the transmission unit 27 as described above as predetermined image processing.
  • the correction etc. which eliminate the influence of are performed.
  • the nonvolatile memory 50a stores various information (body information) related to the camera body 4.
  • the body information includes, for example, the model name for identifying the camera body 4 such as the manufacturer name, date of manufacture, model number, software version installed in the body microcomputer 50, and information on the firmware upgrade.
  • Information main body specifying information
  • information about whether the camera body 4 is equipped with means for correcting image blur such as the blur correction unit 45 and the blur detection unit 56, the model number and sensitivity of the blur detection unit 56, etc. It also includes information on detection performance, error history, etc.
  • These pieces of information may be stored in the memory unit in the body microcomputer 50 instead of the nonvolatile memory 50a.
  • the shake detection unit 56 includes an angular velocity sensor that detects the movement of the camera body 4 caused by camera shake or the like.
  • the angular velocity sensor outputs a positive / negative angular velocity signal according to the direction in which the camera body 4 moves with reference to the output when the camera body 4 is stationary.
  • two angular velocity sensors are provided to detect the two directions of the yawing direction and the pitching direction.
  • the output angular velocity signal is subjected to filter processing, amplifier processing, and the like, converted into a digital signal by an A / D conversion unit, and provided to the body microcomputer 50.
  • the interchangeable lens 7 constitutes an imaging optical system for connecting a subject image to the imaging unit U in the camera body 4, and mainly includes a focus adjustment unit 7A that performs focusing and an aperture adjustment unit 7B that adjusts the aperture.
  • the image blur correction unit 7C for correcting the image blur by adjusting the optical path and the lens control unit 8 for controlling the operation of the interchangeable lens 7 are provided.
  • the interchangeable lens 7 is attached to the body mount 41 of the camera body 4 via the lens mount 71.
  • the lens mount 71 is provided with an electrical piece 71 a that is electrically connected to the electrical piece 41 a of the body mount 41 when the interchangeable lens 7 is attached to the camera body 4.
  • the focus adjusting unit 7A includes a focus lens group 72 that adjusts the focus.
  • the focus lens group 72 is movable in the direction of the optical axis X in a section from the closest focus position to the infinite focus position defined as the standard of the interchangeable lens 7.
  • the focus lens group 72 needs to be movable back and forth in the optical axis X direction with respect to the focus position in the case of focus position detection by a contrast detection method to be described later. It has a lens shift margin section that can move further back and forth in the optical axis X direction than the section up to the infinite focus position.
  • the focus lens group 72 does not necessarily need to be composed of a plurality of lenses, and may be composed of a single lens.
  • the aperture adjusting unit 7B includes an aperture unit 73 that adjusts the aperture or opening.
  • the lens image blur correction unit 7C includes a blur correction lens 74 and a blur correction lens driving unit 74a that moves the blur correction lens 74 in a plane orthogonal to the optical axis X.
  • the lens controller 8 receives a control signal from the lens microcomputer 80, the nonvolatile memory 80 a, the focus lens group controller 81 that controls the operation of the focus lens group 72, and the focus lens group controller 81, and receives the focus lens group 72.
  • a focus drive unit 82 for driving the lens a diaphragm control unit 83 for controlling the operation of the diaphragm unit 73, a blur detection unit 84 for detecting blur of the interchangeable lens 7, and a blur correction lens unit for controlling the blur correction lens driving unit 74a.
  • a control unit 85 a control unit 85.
  • the lens microcomputer 80 is a control device that controls the center of the interchangeable lens 7, and is connected to each part mounted on the interchangeable lens 7.
  • the lens microcomputer 80 is equipped with a CPU, a ROM, and a RAM, and various functions can be realized by reading a program stored in the ROM into the CPU.
  • the lens microcomputer 80 has a function of setting a lens image blur correction device (such as the blur correction lens driving unit 74a) to a correctable state or an uncorrectable state based on a signal from the body microcomputer 50.
  • the body microcomputer 50 and the lens microcomputer 80 are electrically connected by contact between the electrical slice 71a provided on the lens mount 71 and the electrical slice 41a provided on the body mount 41, so that information can be transmitted and received between them. It has become.
  • the lens information includes, for example, a model for specifying the interchangeable lens 7 such as a manufacturer name, a date of manufacture, a model number, a software version installed in the lens microcomputer 80, and information on firmware upgrade of the interchangeable lens 7.
  • the interchangeable lens 7 is equipped with means for correcting image blur such as the blur correction lens driving unit 74a and blur detection unit 84, and means for correcting image blur , Information on the detection performance such as the model number and sensitivity of the blur detection unit 84, information on the correction performance such as the model number of the blur correction lens driving unit 74a and the maximum correctable angle (lens side correction performance information), Software version for image blur correction is included.
  • the lens information includes information on power consumption necessary for driving the blur correction lens driving unit 74a (lens side power consumption information) and information on driving method of the blur correction lens driving unit 74a (lens side driving method information). It is.
  • the nonvolatile memory 80a can store information transmitted from the body microcomputer 50. These pieces of information may be stored in a memory unit in the lens microcomputer 80 instead of the nonvolatile memory 80a.
  • the focus lens group control unit 81 includes an absolute position detection unit 81a that detects an absolute position of the focus lens group 72 in the optical axis direction, and a relative position detection unit 81b that detects a relative position of the focus lens group 72 in the optical axis direction.
  • the absolute position detector 81 a detects the absolute position of the focus lens group 72 in the casing of the interchangeable lens 7.
  • the absolute position detector 81a is constituted by, for example, a contact encoder board of several bits and a brush, and is configured to be able to detect the absolute position.
  • the relative position detector 81b alone cannot detect the absolute position of the focus lens group 72, but can detect the moving direction of the focus lens group 72, and uses, for example, a two-phase encoder.
  • Two two-phase encoders such as a rotary pulse encoder, an MR element, and a Hall element, are provided that alternately output binary signals at an equal pitch according to the position of the focus lens group 72 in the optical axis direction. These pitches are installed so as to shift the phases.
  • the lens microcomputer 80 calculates the relative position of the focus lens group 72 in the optical axis direction from the output of the relative position detector 81b.
  • the shake detection unit 84 includes an angular velocity sensor that detects the movement of the interchangeable lens 7 caused by camera shake or the like.
  • the angular velocity sensor outputs positive and negative angular velocity signals according to the direction in which the interchangeable lens 7 moves with reference to the output when the interchangeable lens 7 is stationary.
  • two angular velocity sensors are provided to detect the two directions of the yawing direction and the pitching direction.
  • the output angular velocity signal is subjected to filter processing, amplifier processing, and the like, converted into a digital signal by an A / D conversion unit, and provided to the lens microcomputer 80.
  • the blur correction lens unit control unit 85 includes a movement amount detection unit (not shown).
  • the movement amount detection unit is a detection unit that detects an actual movement amount of the blur correction lens 74.
  • the blur correction lens unit control unit 85 performs feedback control of the blur correction lens 74 based on the output from the movement amount detection unit.
  • a correction device may be mounted, and neither of the shake detection unit and the shake correction device may be mounted (in this case, the above-described sequence related to the shake correction may be excluded).
  • FIG. 13 is a flowchart illustrating the operation of the camera 100 until the release button is fully pressed
  • FIG. 14 is a flowchart illustrating the operation of the camera 100 after the release button is fully pressed.
  • the following operations are mainly controlled by the body microcomputer 50.
  • step St1 when the power switch 40a is turned on (step St1), communication between the camera body 4 and the interchangeable lens 7 is performed (step St2). Specifically, power is supplied to the body microcomputer 50 and various units in the camera body 4, and the body microcomputer 50 is activated. At the same time, electrodes are supplied to the lens microcomputer 80 and various units in the interchangeable lens 7 via the electrical sections 41a and 71a, and the lens microcomputer 80 is activated.
  • the body microcomputer 50 and the lens microcomputer 80 are programmed to transmit and receive information to each other at the time of activation. For example, lens information relating to the interchangeable lens 7 is transmitted from the memory unit of the lens microcomputer 80 to the body microcomputer 50. 50 memory units.
  • the body microcomputer 50 positions the focus lens group 72 at a predetermined reference position set in advance via the lens microcomputer 80 (step St3), and at the same time, opens the shutter unit 42 (see FIG. Step St4). Thereafter, the process proceeds to step St5 and waits until the photographer presses the release button 40b halfway.
  • the body microcomputer 50 reads the electric signal from the image sensor 1 through the image pickup unit control unit 52 at a constant cycle, performs predetermined image processing on the read electric signal, and then creates an image signal. Then, the image display control unit 55 is controlled to display the live view image on the image display unit 44.
  • a part of the light incident on the imaging unit U passes through the imaging device 1 and enters the phase difference detection unit 30.
  • step St5 when the release button 40b is half-pressed by the photographer (that is, the S1 switch (not shown) is turned on) (step St5), the body microcomputer 50 receives the signal from the line sensor 33 of the phase difference detection unit 30. After the output is amplified, it is calculated by an arithmetic circuit to detect whether it is in focus or not in focus (step St6). Furthermore, the body microcomputer 50 obtains the defocus information by obtaining the front pin or the rear pin and how much the defocus amount is (step St7). Thereafter, the process proceeds to step St10.
  • phase difference detection units 30 are provided, that is, nine distance measuring points for performing phase difference detection are provided.
  • the focus lens group 72 is driven based on the output of the set of line sensors 33 corresponding to the distance measuring points arbitrarily selected by the photographer.
  • an automatic optimization algorithm is set in the body microcomputer 50 so that the focus lens group 72 is driven by selecting the distance measurement point closest to the camera and the subject from among the plurality of distance measurement points. Also good. In this case, it is possible to reduce the probability that a hollow photo or the like will occur.
  • step St8 photometry is performed (step St8) and image blur detection is started (step St9).
  • step St8 the amount of light incident on the image sensor 1 is measured by the image sensor 1. That is, in the present embodiment, since the above-described phase difference detection is performed using the light that has entered the image sensor 1 and has passed through the image sensor 1, the image sensor 1 is mounted in parallel with the phase difference detection. Can be used for photometry.
  • the body microcomputer 50 performs photometry by taking in an electrical signal from the imaging device 1 via the imaging unit controller 52 and measuring the intensity of the subject light based on the electrical signal. Then, the body microcomputer 50 determines the shutter speed and aperture value at the time of exposure according to the photographing mode from the photometric result according to a predetermined algorithm.
  • step St8 image blur detection is started in step St9.
  • step St8 and step St9 may be performed in parallel.
  • Step St10 In addition, after step St9, you may progress to step St12 instead of step St10.
  • step St10 the body microcomputer 50 drives the focus lens group 72 based on the defocus information acquired in step St7.
  • the body microcomputer 50 determines whether or not a contrast peak has been detected (step St11).
  • the contrast peak is not detected (NO)
  • the drive of the focus lens group 72 is repeated (step St10), while when the contrast peak is detected (YES), the drive of the focus lens group 72 is stopped and the focus lens group 72 is stopped. Is moved to a position where the contrast value reaches a peak, and then the process proceeds to step St11.
  • the focus lens group 72 is driven at a high speed to a position farther forward and backward than the position predicted as the in-focus position based on the defocus amount calculated in step St7. Thereafter, the contrast peak is detected while the focus lens group 72 is driven at a low speed toward the predicted position as the in-focus position.
  • the output signals of the pixels 12, 12,... Corresponding to the colorless filter 16w of the first photoelectric conversion unit 10 are used.
  • the received light quantity of light including infrared light is acquired, so that the contrast peak can be detected using infrared light. Therefore, a contrast peak can be detected even in an environment such as darkness.
  • the output signals of the pixels 22, 22,... Of the first imaging unit 1B may be used.
  • the contrast peak is detected using the output signals of the pixels 12, 12, when the predetermined threshold value is exceeded, a contrast peak is obtained using the output signals of the pixels 12, 12,... Corresponding to the green or blue color filters 16g, 16b and the output signals of the pixels 22, 22,. You may comprise so that it may detect.
  • step St12 the process waits until the photographer fully presses the release button 40b (that is, the S2 switch (not shown) is turned on).
  • the release button 40b When the release button 40b is fully pressed by the photographer, the body microcomputer 50 temporarily closes the shutter unit 42 (step St13).
  • the shutter unit 42 While the shutter unit 42 is in the closed state, charges accumulated in the light receiving portions 12,..., 22,.
  • the body microcomputer 50 starts correction of image blur based on communication information between the camera body 4 and the interchangeable lens 7 or arbitrary designation information of the photographer (step St14). Specifically, the blur correction lens driving unit 74 a in the interchangeable lens 7 is driven based on information from the blur detection unit 56 in the camera body 4. Further, according to the photographer's intention, (i) the blur detection unit 84 and the blur correction lens driving unit 74a in the interchangeable lens 7 are used, and (ii) the blur detection unit 56 and the blur correction unit 45 in the camera body 4 are provided. Either (iii) using the blur detection unit 84 in the interchangeable lens 7 or the blur correction unit 45 in the camera body 4 can be selected.
  • the start of driving of the image blur correcting means is started when the release button 40b is half-pressed, so that the movement of the subject to be focused is reduced and AF can be performed more accurately.
  • the body microcomputer 50 narrows down the diaphragm 73 through the lens microcomputer 80 so that the diaphragm value obtained from the photometric result in step St8 is obtained (step St15).
  • step St16 the body microcomputer 50 opens the shutter unit 42 based on the shutter speed obtained from the photometric result in step St8.
  • step St17 the image sensor 1
  • the body microcomputer 50 closes the shutter unit 42 based on the shutter speed, and ends the exposure (step St18).
  • the body microcomputer 50 reads out an output signal from the imaging unit U via the imaging unit controller 52 to generate image data, and after predetermined image processing, controls image display via the image readout / recording unit 53.
  • the image data is output to the unit 55.
  • the captured image is displayed on the image display unit 44.
  • the body microcomputer 50 stores image data in the image storage unit 58 via the image recording control unit 54 as necessary.
  • the body microcomputer 50 outputs the output signals of the pixels 12, 12,... Corresponding to the green and blue color filters 16g, 16b of the first photoelectric conversion unit 10 and the pixels 22, 22 of the second photoelectric conversion unit 20.
  • Image data is generated based on the output signals of. That is, the body microcomputer 50 generates image data with high color reproducibility based on color information of light that does not include infrared light.
  • the body microcomputer 50 generates image data using the output signals of the pixels 12, 12,... Corresponding to the colorless filter 16w of the first photoelectric conversion unit 10 when the amount of light is small as a result of the photometry at step St8. You may make it do. In this way, highly sensitive imaging can be performed.
  • the body microcomputer 50 ends the image blur correction (step St19) and opens the diaphragm 73 (step St20). Then, the body microcomputer 50 opens the shutter unit 42 (step St21).
  • the lens microcomputer 80 When the reset is completed, the lens microcomputer 80 notifies the body microcomputer 50 of the completion of the reset. The body microcomputer 50 waits for the reset completion information from the lens microcomputer 80 and the completion of the series of processes after exposure, and then confirms that the state of the release button 40b is not depressed, and ends the photographing sequence. Thereafter, the process returns to step St5 and waits until the release button 40b is half-pressed.
  • the body microcomputer 50 moves the focus lens group 72 to a predetermined reference position set in advance (step St23) and closes the shutter unit 42. (Step St24). Then, the operation of the body microcomputer 50 and various units in the camera body 4 and the lens microcomputer 80 and various units in the interchangeable lens 7 are stopped.
  • the defocus information is acquired by the phase difference detection unit 30, and the focus lens group 72 is driven based on the defocus information. Then, the position of the focus lens group 72 where the contrast value calculated based on the output from the image sensor 1 reaches a peak is detected, and the focus lens group 72 is positioned at this position. In this way, since defocus information can be detected before the focus lens group 72 is driven, there is no need to drive the focus lens group 72 for the time being as in the conventional contrast detection method AF. The autofocus processing time can be shortened.
  • the contrast detection method AF since the focus is finally adjusted by the contrast detection method AF, it is possible to directly capture the contrast peak, and unlike the phase difference detection method AF, there are various methods such as open back correction (focus shift due to the aperture opening degree). Since no correction calculation is required, a highly accurate focus performance can be obtained. In particular, it is possible to focus on a subject with a repetitive pattern or a subject with extremely low contrast with higher accuracy than the conventional phase difference detection method AF.
  • the defocus information is acquired by the phase difference detection unit 30 using the light transmitted through the image sensor 1.
  • Metering and acquisition of defocus information by the phase difference detection unit 30 can be performed in parallel. That is, since the phase difference detection unit 30 receives light transmitted through the image sensor 1 and acquires defocus information, the image sensor 1 is always irradiated with light from the subject when acquiring the defocus information. . Therefore, photometry is performed using light transmitted through the image sensor 1 during autofocus. By doing so, it is not necessary to separately provide a photometric sensor, and since photometry can be performed before the release button 40b is fully pressed, exposure is completed after the release button 40b is fully pressed. Time (hereinafter also referred to as a release time lag) can be shortened.
  • part of the light guided from the subject to the imaging device is guided to the phase difference detection unit provided outside the imaging device by a mirror or the like, whereas the light guided to the imaging unit U is directly used. Since the focus state can be detected by the phase difference detection unit 30, the defocus information can be acquired with high accuracy.
  • a so-called hybrid AF that performs contrast AF after phase difference detection is employed, but is not limited thereto.
  • phase difference detection AF that performs AF based on defocus information acquired by phase difference detection may be used.
  • the hybrid AF, the phase difference detection AF, and the contrast detection AF that performs focusing based on only the contrast value without performing the phase difference detection may be switched.
  • the present embodiment by detecting the contrast peak using the output signals of the pixels 12, 12,... Corresponding to the colorless filter 16w of at least the first photoelectric conversion unit 10, the amount of light such as darkness is small. Even in an environment, a contrast peak can be detected with high sensitivity.
  • infrared light is cut by the output signals of the pixels 12, 12,... Corresponding to the green and blue color filters 16g, 16b of the first photoelectric conversion unit 10 and the second filter 26.
  • the output signals of the pixels 22, 22,... Of the second photoelectric conversion unit 20 that receive the emitted light it is possible to perform imaging with high color reproducibility.
  • the image data is generated using the output signal of the pixels 12, 12,... Corresponding to the colorless filter 16w of the first photoelectric conversion unit 10, so that the amount of light such as darkness can be reduced. Image recognition can be performed in a small number of environments.
  • the 1st photoelectric conversion part 10 is comprised so that light may permeate
  • the IR cut filter is installed and retracted in the front position of the image sensor 1 in conjunction with the diaphragm 73, or the IR cut filter is installed and retracted by another mechanism. There is no need to do.
  • the phase difference detection unit 30 is provided on the back side of the second photoelectric conversion unit 20, thereby imaging.
  • the phase difference detection by the phase difference detection unit 30 can be performed while imaging with the element 1.
  • the light receiving units 22, 22,... Of the second photoelectric conversion unit 20 are configured to have an area four times that of the light receiving units 12, 12,. However, it is not limited to this.
  • the size of the light receiving unit 22 may be the same size as the light receiving unit 12, or may be smaller or larger than the light receiving unit 12.
  • the configuration of the first filter 16 (216) and the second filter 26 is not limited to the configuration of the embodiment.
  • the first filter 16 is entirely constituted by a colorless filter, and the first photoelectric conversion unit 10 receives white light including infrared light, and the second filter 26 also functions as an IR cut filter. You may make it comprise the primary color filter of an arrangement
  • first imaging unit 1A and the second imaging unit 1B are stacked, a configuration in which both are physically separated from each other may be employed.
  • the technology disclosed herein is useful for an image sensor that receives light and performs photoelectric conversion and an image pickup apparatus including the image sensor.

Abstract

 IRカットフィルタの設置状態を切り換える別部材を設ける必要がなく且つ、赤外光を柔軟に利用できる撮像素子を提供する。 撮像素子(1)は、光を受けて光電変換を行う。撮像素子(1)は、赤外光を含む光を受光すると共に光を通過させる第1光電変換部(10)と、第1光電変換部(10)を通過した光から赤外光を除く第2フィルタ(26)と、第2フィルタ(26)を透過した光を受光する第2光電変換部(20)とを備えている。

Description

撮像素子及びそれを備えた撮像装置
 ここに開示された技術は、光を受光して光電変換する撮像素子及びそれを備えた撮像装置に関するものである。
 従来より、CCD(Charge Coupled Device)やCMOS(Complimentary Metal OxideSemiconductor)のように、受光した光を光電変換によって電気信号に変換する撮像素子が知られている。
 このような撮像素子においては、一般的に、色再現性を人間の視感度に合わせるために、撮像素子の前に赤外カットフィルタ(いわゆる、IRカットフィルタ:Infrared Cut Filter)を設けて、撮像素子に入射する光から赤外光を除去している。
 ところが、監視カメラのように、色再現性よりも感度を重視する場合もあり、かかる場合には、赤外光を含む光を撮像素子で受光することが必要となる。
 そこで、特許文献1に係る撮像装置は、それらの両方に対応すべく、IRカットフィルタを光量に応じて撮像素子の前に設置するように構成されている。詳しくは、IRカットフィルタが絞りに取り付けられており、撮像素子に入射する光量が少ないときには、開放する絞りに連動させて、IRカットフィルタを退避させる一方、撮像素子に入射する光量が多いときには、所定の絞り値となるように絞られる絞りに連動させて、IRカットフィルタを移動させて撮像素子の前に設置している。
特開2001-36807号公報
 しかしながら、IRカットフィルタの設置と退避とを選択的に切り換える構成においては、IRカットフィルタを設置したときには、色再現性が良い撮像を行うことができるものの、感度が劣ることになる一方、IRカットフィルタを退避させたときには、感度の良い撮像を行うことができるものの、色再現性が劣ることになる。つまり、色再現性か感度かを択一的に選んで撮像を行うことになる。
 さらに、IRカットフィルタの設置及び退避を別の部材に連動させる場合には、赤外光を該部材の動作と無関係に利用することができない。例えば、特許文献1に係る撮像素子では、撮像素子が赤外光を受光するのは、絞りが開放されているときだけである。絞りが開放状態から少しでも絞られると、撮像素子の前にIRカットフィルタが設置され、撮像素子は赤外光を受光することができない。
 そこで、赤外光を他の部材の動作と無関係に利用するために、IRカットフィルタの設置状態を専用の機構で切り換えることも考えられるが、かかる構成の場合、部品点数が増えると共に構造が複雑になるため、好ましくない。
 ここに開示された技術は、かかる点に鑑みてなされたものであり、その目的とするところは、IRカットフィルタの設置状態を切り換える別部材を設ける必要がなく且つ、赤外光を柔軟に利用できる撮像素子を提供することにある。
 ここに開示された技術は、光を受けて光電変換を行う撮像素子が対象である。そして、当該撮像素子は、赤外光を含む光を受光すると共に該光を通過させる第1光電変換部と、前記第1光電変換部を通過した光から赤外光を除いた光を受光する第2光電変換部とを備えている。
 当該撮像素子によれば、第1光電変換部を光が通過するように構成され、赤外光を含む光を第1光電変換部で受光すると共に、該第1光電変換部を通過した光から赤外光を除いた光を第2光電変換部で受光することによって、赤外光を第1光電変換部で受光することができるため、赤外光を柔軟に利用した撮像を行うことができる。それに加えて、第2光電変換部では赤外光を除いた光を受光できるため、少なくとも第2光電変換部で受光した光を用いて色再現性の高い画像を取得することができる。
図1は、本発明の実施形態1に係る撮像ユニットの概略断面図である。 図2は、撮像素子の概略的な端面図である。 図3は、撮像素子の概略的な平面図である。 図4は、撮像素子の概略的な分解斜視図である。 図5は、撮像ユニットの概略的な斜視図である。 図6は、緑色のカラーフィルタに対応する画素におけるフィルタ及び光電変換部の分光特性を示すグラフであって、(A)は第1フィルタの分光特性を、(B)は第1光電変換部10の分光特性を、(C)は第2フィルタの分光特性を示す。 図7は、青色のカラーフィルタに対応する画素におけるフィルタ及び基板の分光特性を示すグラフであって、(A)は第1フィルタの分光特性を、(B)は第1光電変換部10の分光特性を、(C)は第2フィルタの分光特性を示す。 図8は、無色フィルタに対応する画素におけるフィルタ及び基板の分光特性を示すグラフであって、(A)は第1フィルタの分光特性を、(B)は第1光電変換部10の分光特性を、(C)は第2フィルタの分光特性を示す。 図9は、変形例1に係る撮像素子の概略的な分解斜視図である。 図10は、赤色のカラーフィルタに対応する画素におけるフィルタ及び基板の分光特性を示すグラフであって、(A)は第1フィルタの分光特性を、(B)は第1光電変換部10の分光特性を、(C)は第2フィルタの分光特性を示す。 図11は、変形例2に係る撮像素子の概略的な断面図である。 図12は、実施形態2に係るカメラのブロック図である。 図13は、レリーズボタンが全押しされるまでの撮影動作を示すフローチャート図である。 図14は、レリーズボタンが全押しされた後の撮影動作を示すフローチャート図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 《発明の実施形態1》
 図1は、本発明の実施形態1に係る撮像ユニットUの概略断面図を示す。撮像ユニットUは、被写体像を電気信号に変換するための撮像素子1と、位相差検出方式の焦点検出を行うための位相差検出ユニット30とを有している。この撮像ユニットUが撮像装置を構成する。
 図2は、撮像素子の概略的な断面図を示し、図3は、撮像素子の概略的な平面図を示し、図4は、撮像素子の概略的な分解斜視図を示す。撮像素子1は、インターライン型CCDイメージセンサであって、第1撮像部1Aと、第2撮像部1Bとを有し、これらを積層して構成されている。
 第1撮像部1Aは、半導体材料で構成された第1光電変換部10と、第1垂直レジスタ13と、第1転送路14と、第1マスク15と、第1フィルタ16と、マイクロレンズ17とを含んでいる。第2撮像部1Bは、第2光電変換部20と、第2垂直レジスタ23と、第2転送路24と、第2マスク25と、第2フィルタ26とを含んでいる。
 まず、第1撮像部1Aについて説明する。
 第1光電変換部10は、基板11と、基板11に配列された複数の受光部(画素ともいう)12,12,…とを有している。
 基板11は、Si(シリコン)ベースで構成されている。詳しくは、基板11は、Si単結晶基板又はSOI(Silicon On Insulator wafer)で構成されている。特に、SOI基板は、Si薄膜とSiO薄膜のサンドイッチ構造をなし、エッチングの処理などにおいてSiO層で反応をとめることが可能であり、安定した基板加工を行う上で有利である。
 また、受光部12は、フォトダイオードで構成されていて、光を吸収して電荷を発生する。受光部12,12,…は、基板11上において行列状に配列された微小な方形の画素領域内にそれぞれ設けられている。
 第1垂直レジスタ13は、受光部12ごとに設けられており、受光部12に蓄積された電荷を一時蓄積する役割を有する。つまり、受光部12に蓄積された電荷は、第1垂直レジスタ13に転送される。第1垂直レジスタ13に転送された電荷は、第1転送路14を介して水平レジスタ(図示省略)に転送され、増幅器(図示省略)に送られる。増幅器に送られた電荷は、増幅され電気信号として取り出される。
 第1マスク15は、受光部12を被写体側に露出させる一方、第1垂直レジスタ13及び第1転送路14を覆うように設けられていて、第1垂直レジスタ13及び第1転送路14に光が入射することを防止している。
 第1フィルタ16及びマイクロレンズ17は、各受光部12に対応して前記微小な方形の画素領域ごとに設けられている。第1フィルタ16は、特定の波長域の光だけを透過させるカラーフィルタであって、原色フィルタ又は補色フィルタが用いられる。本実施形態では、第1フィルタ16は、図2,3に示すように、複数のカラーフィルタ16g,16b,16w,…がマトリックス状に配列された原色フィルタが用いられている。すなわち、撮像素子1全体としては、2行2列に隣接する4つのカラーフィルタ16g,16b,16g,16w(又は4つの画素領域)を1つの繰り返し単位としたときに、該繰り返し単位中において、一方の対角方向に2つの緑色のカラーフィルタ(即ち、緑色の可視光波長域に対して緑色以外の他の色の可視光波長域よりも高い透過率を持つカラーフィルタ)16g,16gが配列され、他方の対角方向に青色のカラーフィルタ(即ち、青色の可視光波長域に対して青色以外の他の色の可視光波長域よりも高い透過率を持つカラーフィルタ)16bと無色フィルタ(即ち、少なくとも可視光波長域及び赤外光領域の光をほとんど減衰させることなく透過させるフィルタ)16wとが配列されている。第1フィルタ16では、全体として緑のカラーフィルタ16g,16g,…が千鳥状に配置されている。
 マイクロレンズ17は、光を集光して受光部12に入射させるものである。このマイクロレンズ17によって受光部12を効率良く照射できる。
 ここで、第1光電変換部10は、入射した光が該第1光電変換部10を透過する程度の厚さに形成されている。すなわち、第1光電変換部10は、受光部12に入射した光が該受光部12、さらには基板11を透過するように構成されている。
 次に、第2撮像部1Bについて説明する。
 第2光電変換部20は、基板21と、基板21に配列された複数の受光部(画素ともいう)22,22,…とを有している。
 基板21は、Si(シリコン)ベースで構成されている。詳しくは、基板21は、Si単結晶基板又はSOI(Silicon On Insulator wafer)で構成されている。特に、SOI基板は、Si薄膜とSiO薄膜のサンドイッチ構造をなし、エッチングの処理などにおいてSiO層で反応をとめることが可能であり、安定した基板加工を行う上で有利である。
 また、受光部22は、フォトダイオードで構成されていて、光を吸収して電荷を発生する。受光部22,22,…は、基板21上において行列状に配列された微小な方形の画素領域内にそれぞれ設けられている。
 第2垂直レジスタ23は、受光部22ごとに設けられており、受光部22に蓄積された電荷を一時蓄積する役割を有する。つまり、受光部22に蓄積された電荷は、第2垂直レジスタ23に転送される。第2垂直レジスタ23に転送された電荷は、第2転送路24を介して水平レジスタ(図示省略)に転送され、増幅器(図示省略)に送られる。増幅器に送られた電荷は、増幅され電気信号として取り出される。
 第2マスク25は、受光部22を被写体側に露出させる一方、第2垂直レジスタ23及び第2転送路24を覆うように設けられていて、第2垂直レジスタ23及び第2転送路24に光が入射することを防止している。
 第2フィルタ26は、各受光部22に対応して前記微小な方形の画素領域ごとにマトリックス状に配列されて設けられている。第2フィルタ26は、赤外光を除去する赤外カットフィルタ(いわゆる、IRカットフィルタ:Infrared Cut Filter)であると共に、赤色の光だけを透過させるカラーフィルタ(即ち、赤色の可視光波長域に対して赤色以外の他の色の可視光波長域よりも高い透過率を持つカラーフィルタ)としても機能する。つまり、第2フィルタ26は、赤外線領域よりも短波長側であって赤色の可視光波長域の光を透過させる。
 ここで、第2光電変換部20の画素ピッチ(即ち、受光部22のピッチ)は、第1光電変換部10の画素ピッチ(即ち、受光部12のピッチ)の2倍に設定されている。すなわち、第2光電変換部20の画素22の面積は、第1光電変換部10の画素12の面積の約4倍となっている。それに合わせて、第2フィルタ26の面積も、第1フィルタ16の面積の約4倍となっている。
 また、第2光電変換部20の基板21には、照射された光を透過させる透過部27が複数形成されている(図1,2では、1つだけ図示)。この透過部27は、第2光電変換部20に照射された光を透過させて、該光を位相差検出ユニット30に入射させるためのものである。透過部27は、基板21における受光部22が設けられている面とは反対側の面(以下、単に裏面ともいう)21aを切削、研磨又はエッチングにより凹状に陥没させることによって形成されており、周辺部よりも薄く形成されている。さらに詳しくは、透過部27は、最も薄肉になっている陥没面27aと、該陥没面27aと裏面21aとを繋ぐ傾斜面27b,27bとを有している。
 この基板21における透過部27を光が透過する程度の厚みに形成することによって、第2光電変換部20に入射した光のうち該透過部27に入射した光の一部は電荷に変換されずに該第2光電変換部20を透過する。
 また、傾斜面27b,27bは、透過部27を透過する際に該傾斜面27bで反射する光が後述する位相差検出ユニット30のコンデンサレンズ31,31,…へ向かわない角度に設定されている。こうすることで、後述するラインセンサ33に実像でない像が形成されることを防止している。
 この透過部27が、撮像素子1に入射する光を透過、即ち、通過させる薄肉部を構成する。ここで、少なくとも本明細書においては、「通過」は「透過」を含む概念である。
 次に、位相差検出ユニット30について、図1,5を参照して説明する。図5は、撮像ユニットの概略的な斜視図を示す。
 位相差検出ユニット30は、撮像素子1からの通過光を受光して位相差検出を行う。すなわち、位相差検出ユニット30は、受光した通過光を測距のための電気信号に変換する。この位相差検出ユニット30が位相差検出部を構成する。
 位相差検出ユニット30は、撮像素子1の背面側(被写体と反対側)、詳しくは、透過部27の背面側に配置されている。ここで、本実施形態では、図5に示すように、撮像素子1に9つの透過部27,27,…が設けられている。そして、それに対応させて、9つの位相差検出ユニット30,30,…が設けられている。
 各位相差検出ユニット30は、コンデンサレンズ31と、セパレータレンズ32と、ラインセンサ33とを有している。コンデンサレンズ31、セパレータレンズ32及びラインセンサ33は、撮像素子1の厚さ方向に沿って該撮像素子1側からこの順で並んでいる。
 コンデンサレンズ31は、入射する光を集光するためのものであり、透過部27を透過して拡がりつつある光を集光して、セパレータレンズ32へと導く。
 このコンデンサレンズ31を設けることによって、セパレータレンズ32への入射角度が立つ(入射角が小さくなる)ため、セパレータレンズ32の収差を抑えることができると共に、後述するラインセンサ33上の被写体像間隔を小さくすることができる。その結果、セパレータレンズ32及びラインセンサ33を小型化することができる。また、撮像光学系からの被写体像の焦点位置が撮像ユニットUから大きく外れたとき(詳しくは、撮像ユニットUの撮像素子1から大きく外れたとき)、その像のコントラストが著しく下がるが、本実施形態によれば、コンデンサレンズ31とセパレータレンズ32による縮小効果によりコントラストの低下を抑え、焦点検出範囲を広くすることもできる。尚、焦点位置近傍における高精度な位相差検出等の場合、セパレータレンズ32やラインセンサ33等の寸法に余裕がある場合等においては、コンデンサレンズ31を設けなくてもよい。
 セパレータレンズ32は、入射してきた光束を、同一の2つの被写体像としてラインセンサ33上に結像させる。
 ラインセンサ33は、撮像面上に結像する像を受光して電気信号に変換する。つまり、ラインセンサ33出力から、2つの被写体像の間隔を検出することができ、その間隔によって撮像素子1に結像する被写体像の焦点のずれ量(即ち、デフォーカス量(Df量))及び焦点がどちらの方向にずれているか(即ち、デフォーカス方向)を求めることができる(以下、これらDf量及びデフォーカス方向等をデフォーカス情報ともいう)。
 このように構成された撮像ユニットUは、制御部(本実施形態では図示を省略するが、例えば、後述する実施形態2のボディ制御部5が相当する)に接続される。尚、本実施形態では、制御部は撮像ユニットUに含まれていないが、撮像ユニットUに含まれるように構成してもよい。制御部は、撮像素子1からの出力信号に基づいて、被写体像を電気信号として取得すると共に、位相差検出ユニット30からの出力信号に基づいて、デフォーカス情報を取得する。
 以下に、撮像ユニットUの動作について説明する。図6は、緑色のカラーフィルタに対応する画素におけるフィルタ及び光電変換部の分光特性を示すグラフで、図7は、青色のカラーフィルタに対応する画素におけるフィルタ及び基板の分光特性を示すグラフで、図8は、無色フィルタに対応する画素におけるフィルタ及び基板の分光特性を示すグラフである。各図において、(A)は、第1フィルタの分光特性を、(B)は、第1光電変換部10の分光特性を、(C)は、第2フィルタの分光特性を示す。
 撮像ユニットUに被写体からの光が入射すると、該光は、撮像素子1に入射する。該光は、第1撮像部1Aのマイクロレンズ17により集光された後、第1フィルタ16を透過することにより特定の波長域の光だけが第1光電変換部10の受光部12に到達する。詳しくは、緑色のカラーフィルタ16gにおいては、図6(A)の斜線部で示す波長域の光が該緑色のカラーフィルタ16gを透過して、受光部12に到達する。また、青色のカラーフィルタ16bにおいては、図7(A)の斜線部で示す波長域の光が該青色のカラーフィルタ16bを透過して、受光部12に到達する。さらに、無色フィルタ16wにおいては、図8(A)の斜線部で示すように、少なくとも可視光領域及び赤外線領域の光が減衰することなく透過して、受光部12に到達する。各受光部12は到達した光を吸収して電荷を発生する。発生した電荷は第1垂直レジスタ13及び第1転送路14を介して増幅器に送られ、電気信号として出力される。
 このように、緑色及び青色のカラーフィルタ16g,16bは、それぞれ青色及び緑色の波長域の光を主として透過させ、赤外光をあまり透過させない。そのため、緑色及び青色のカラーフィルタ16g,16bに対応する受光部12,12,…では、赤外光の影響をそれほど受けることなく、緑色及び青色の光の光量を取得することができる。
 一方、無色フィルタ16wは、ほぼ全ての波長の光を透過させるため、無色フィルタ16wに対応する受光部12,12,…には、可視光波長域の光だけでなく、赤外線領域の光も入射する。その結果、無色フィルタ16wに対応する受光部12,12,…では、赤外光を含む光の光量を取得することができる。
 ここで、第1光電変換部10に入射した光は、全てが受光部12で光電変換されるわけではなく、一部の光は基板11を透過する。詳しくは、基板11は、図6~8において破線で示すような分光特性を有している。つまり、カラーフィルタ16g,16b,16wを透過した光はそれぞれ、図6(B)~8(B)の斜線部に示すように、基板11を透過する際に減衰する。
 第1光電変換部10を透過した光は、第2撮像部1Bに入射する。第2撮像部1Bの第2フィルタ26を透過することにより特定の波長域の光だけが第2光電変換部20の受光部22に到達する。詳しくは、第2フィルタ26は、図6~8の実線で囲まれた領域と二点鎖線で囲まれた領域とが重なる領域で示される分光特性を有している。すなわち、第2フィルタ26は、図6(C)~8(C)の斜線部で示すように、赤色の波長域のうち赤外線領域よりも短波長側の光を透過させる。その結果、第2光電変換部20の受光部22には、第1フィルタ16及び第1光電変換部10を透過した光のうち、赤色の波長域であって且つ赤外線領域よりも短波長側の光が到達する。受光部22は、到達した光を吸収して電荷を発生する。つまり、受光部22は、赤外光を含まない赤色の光の光量を取得することができる。
 こうして、撮像素子1は、その撮像面全体において第1光電変換部10の受光部12,12,…及び第2光電変換部20の受光部22,22,…が光を電気信号に変換することによって、撮像面に形成された被写体像を、画像信号を作成するための電気信号に変換する。つまり、撮像素子1は、赤外光を含まない緑色及び青色の色情報を第1光電変換部10の受光部12,12,…で取得し、赤外光を含まない赤色の色情報を第2光電変換部20の受光部22,22,…で取得する。こうして得られた赤色、緑色及び青色の色情報に基づいて色再現性の高い撮像を行うことができる。また、撮像素子1は、赤外光を含む白色の色情報を、第1光電変換部10の受光部12,12,…のうち、無色フィルタ16wに対応する受光部12,12,…で取得することができる。こうして得られた赤外光の情報に基づいて感度の高い撮像や感度の高いコントラスト方式のオートフォーカスを行うことができる。また、従来のデジタルカメラのように撮像素子前面に赤外カットフィルタを配置する必要がなくなるため、カメラ本体の光学全長を短くすることが可能となり、カメラの小型化及びコストダウンを実現することができる。
 ここで、受光部12,…,22,…では同じ光量の光を受光しても光の波長が異なると蓄積電荷量が異なる。また、第2光電変換部20の受光部22,22,…は、第1光電変換部10を透過して減衰した光を受光しているため、その点においても、第1光電変換部10の受光部12,12,…と第2光電変換部20の受光部22,22,…とでは蓄積電荷量が異なる。そこで、撮像素子1の受光部12,…,22,…からの出力はそれぞれに設けられているフィルタの種類に応じて補正される。例えば、赤色の光を透過させる第2フィルタ26が設けられたR画素22、緑のカラーフィルタ16gが設けられたG画素12及び青のカラーフィルタ16bが設けられたB画素12がそれぞれのカラーフィルタに対応する色の光を同じ光量だけ受光したときに、R画素22、G画素12、B画素12からの単位面積当たりの出力が同じレベルとなるように各画素の補正量が設定される。すなわち、R画素22は、G画素12及びB画素12に比べて面積が4倍であるため受光光量が4倍となる点を考慮して補正される。
 また、第2光電変換部20の基板21に透過部27,27,…を設けることによって、透過部27,27,…における光電変換効率が、それ以外の部分に比べて低くなる。つまり、同じ光量の光を受光しても、蓄積電荷量は、透過部27,27,…に対応する位置に設けられた画素22,22,…の方がそれ以外の部分に設けられた画素22,22,…よりも少なくなってしまう。その結果、透過部27,27,…に対応する位置に設けられた画素22,22,…から出力された出力信号にそれ以外の部分に設けられた画素22,22,…から出力された出力信号と同様の画像処理を施したのでは、透過部27,27,…に対応する部分の画像が適切に撮影されない(例えば、暗く撮影されてしまう)可能性がある。そこで、透過部27,27,…における各画素22の出力を、透過部27,27,…の影響がなくなるように補正(例えば、透過部27,27,…における各画素22の出力を増幅する等)される。つまり、第2光電変換部20の受光部22,22,…の出力は、色の違いによる補正以外に透過部27,27,…に位置するか否かによる補正も施される。透過部27,27,…に位置するか否かによる補正量は、例えば、透過部27からの出力と透過部27以外からの出力とにより表示される画像のホワイトバランス及び/又は輝度が等しくなるように決定される。
 そして、制御部は、受光部12,…,22,…からの出力信号を前述の如く補正した後、該出力信号に基づいて、各受光部、即ち、画素12,…,22,…における位置情報、色情報及び輝度情報とを含む画像信号を作成する。こうして、撮像素子1の撮像面上に結像された被写体像の画像信号が得られる。
 ここで、各画素12における色情報についてさらに詳しく説明する。各画素12には、それぞれ対応するフィルタが設けられており、該フィルタに対応した波長域の光を受光する。そのため、該フィルタに対応した波長域以外の色情報については、周辺の画素12,12,…の出力に基づいて補間する。詳しくは、緑色のカラーフィルタ16gに対応するG画素12においては、緑色の色情報はそのG画素12からの出力信号に基づいて求められ、赤色の色情報はそのG画素12の背面に位置する第2光電変換部20のR画素22の出力信号に基づいて求められ、青色の色情報はそのG画素12を挟んで隣接する2つの青色のカラーフィルタ16bに対応するB画素12,12の出力信号に基づいて補間される。また、青色のカラーフィルタ16bに対応するB画素12においては、青色の色情報はそのB画素12からの出力信号に基づいて求められ、赤色の色情報はそのB画素12の背面に位置する第2光電変換部20のR画素22の出力信号に基づいて求められ、緑色の色情報はそのB画素12の4辺に隣接する4つの緑色のカラーフィルタ16gに対応するG画素12,12,…の出力信号に基づいて補間される。さらに、無色フィルタ16wに対応するW画素12においては、赤色の色情報はそのW画素12の背面に位置する第2光電変換部20のR画素22の出力信号に基づいて求められ、緑色の色情報はそのW画素12の4辺に隣接する4つの緑色のカラーフィルタ16gに対応するG画素12,12,…の出力信号に基づいて補間され、青色の色情報はそのW画素12を挟んで隣接する2つの青色のカラーフィルタ16bに対応するB画素12,12の出力信号に基づいて補間される。こうして、各画素12において、赤色、青色及び緑色の色情報が取得される。このとき、第1光電変換部10の、無色フィルタ16wに対応するW画素12からは、白色光と赤外光の色情報が取得される。
 ところで、第2光電変換部20の透過部27,27,…では、照射された光の一部が第2光電変換部20を透過する。第2光電変換部20を透過した光、即ち、撮像素子1を透過した光は、コンデンサレンズ31へ入射する。各コンデンサレンズ31を透過することにより集光された光は、セパレータレンズ32に入射する。セパレータレンズ32で瞳分割された光は、ラインセンサ33上の2つの位置に同一の被写体像として結像する。ラインセンサ33は、第1及び第2光電変換部10,20と同様に、各受光部における受光光量を光電変換により電気信号として出力する。
 このラインセンサ33から出力される出力信号は、制御部に入力される。この制御部は、撮像素子1の制御部と同じであってもよいし、別であってもよい。そして、制御部は、該出力信号に基づいて、ラインセンサ33上に結像する2つの被写体像の間隔を求め、求めた間隔から、撮像素子1に結像する被写体像の焦点状態を検出することができる。例えば、ラインセンサ33上に結像する2つの被写体像は、撮像レンズを透過して撮像素子1に結像する被写体像が正確に結像しているとき(合焦)には、所定の基準間隔を開けて所定の基準位置に位置する。それに対し、被写体像が撮像素子1よりも光軸方向手前側に結像しているとき(前ピン)には、2つの被写体像の間隔が合焦時の基準間隔よりも狭くなる。一方、被写体像が撮像素子1よりも光軸方向奥側に結像しているとき(後ピン)には、2つの被写体像の間隔が合焦時の基準間隔よりも広くなる。つまり、ラインセンサ33からの出カを増幅した後、演算回路にて演算することによって、合焦か非合焦か、前ピンか後ピンか、Df量はどの位かを知ることができる。こうして、制御部は、ラインセンサ33からの出力信号に基づいて、ラインセンサ33上の2つの被写体像の間隔を検出して、その間隔からデフォーカス情報を取得する。
 したがって、本実施形態によれば、第1光電変換部10を光が透過するように構成し、該第1光電変換部10の背面側に少なくとも赤外線を除去する第2フィルタ26を配置し、該第2フィルタ26の背面側に第2光電変換部20を配置することによって、赤外光を含む光を第1光電変換部10で光電変換することができ、赤外光を含まない光を第2光電変換部20で光電変換することができる。つまり、暗闇等の光量が少ない環境下であっても、第1光電変換部10によって赤外光を含む光を受光して撮像することができ、その結果、光量が少ない環境下であっても、画像認識や、コントラストに基づいて合焦状態を判断するコントラスト方式のオートフォーカスを行うことができる。それに加えて、第2光電変換部20では赤外光を含まない光を受光して撮像しているため、色再現性の高い撮像を行うことができる。
 このように、色再現性の高い撮像と、光量の少ない環境下での感度の高い撮像とを両立させることができる。そして、第1光電変換部10における赤外光を含む光の受光は、IRカットフィルタの設置及び退避を別の機構により切り換えるように構成するわけでもなく、IRカットフィルタの設置及び退避を別の部材に連動させて切り換えるように構成するわけでもないため、赤外光を常に受光し、必要に応じて赤外光を柔軟に利用することができる。
 また、前記実施形態では、第2光電変換部20の受光部22,22,…は、第1光電変換部10を透過した光を受光するため、第1光電変換部10に比べて入射してくる光の光量が少ないが、各受光部22の面積を第1光電変換部10の各受光部12よりも大きくすることによって、各受光部22に十分な光量の光を入射させて光電変換を行うことができる。
 さらに、第2光電変換部20の受光部22,22,…で受光する光を赤色とすることによって、第1光電変換部10を透過した光を受光して光電変換する構成であっても、第2光電変換部20で十分な光量の光を受光して光電変換を行うことができる。つまり、図6~図8の破線で示すように、赤色の光は緑色や青色の光に比べて基板11を透過する際の減衰が小さい。そのため、第2光電変換部20の受光部22,22,…で受光する光を赤色とすることによって、より多くの光量を受光することができる。
 さらにまた、第1光電変換部10の、無色フィルタ16wに対応する受光部12,12,…以外の受光部12,12,…で受光する光を緑色及び青色にすることによって、事前に赤外光を除去しなくても、赤外光をほとんど含まない光を受光することができる。つまり、仮に、第1光電変換部10の受光部12,12,…に赤色のカラーフィルタを設けたとすると、赤色のカラーフィルタの分光特性は、図6~8の二点鎖線で示すように、赤外光を含んでおり、受光部12,12,…は赤外光を含んだ赤色の光を受光することになる。その結果、人間の視感度に近い、色再現性の良い撮像を行うことができない。それに対して、緑色及び青色のカラーフィルタ16g,16bは、図6~8の点線及び一点鎖線で示すように、赤外光をほとんど含まない分光特性を有している。つまり、緑色及び青色のカラーフィルタ16g,16bは、緑色及び青色の波長域の光を透過させることで、赤外光を実質的に除去している。その結果、画像データを生成するための色情報を、第1光電変換部10を通過する前の、即ち、減衰していない光から取得することができるため、感度を向上させることができる。
 また、本実施形態では、第2光電変換部20を光が透過するように構成することによって、第2光電変換部20の背面側に位相差検出ユニット30を設けて位相差検出を行うことができる。その結果、撮像を行いながら、位相差検出を行うことができる。
 尚、本実施形態では、透過部27は基板21において周辺部よりも薄肉状に形成されているが、これに限られるものではない。例えば、基板21に照射される光が基板21を透過して基板21背面側の位相差検出ユニット30に十分到達するように、基板21全体の厚さを設定してもよい。この場合、基板21全体が透過部となる。
 また、本実施形態では、9つの透過部27,27,…が形成されると共に、それに対応させて、9つの位相差検出ユニット30,30,…が設けられているが、これに限られるものではない。これらの個数は9つに限定されるものではなく、任意の個数に設定し得る。
  -変形例1-
 次に、本実施形態1の変形例1について、図9を参照しながら説明する。図9は、変形例1に係る撮像素子の概略的な分解斜視図である。
 変形例1に係る撮像素子201は、第1撮像部201Aのフィルタの構成が実施形態1と異なる。そこで、実施形態1と同様の構成については同様の符号を付して、説明を省略し、構成が異なる部分を中心に説明する。
 撮像素子201は、第1撮像部201Aと、第2撮像部1Bとを有し、これらを積層して構成されている。
 第1撮像部201Aは、第1フィルタ216の構成以外は、実施形態1の第1撮像部1Aと同様の構成をしている。
 第1フィルタ216は、特定の色だけを透過させるカラーフィルタであって、複数のカラーフィルタ216r,216g,216b…がマトリックス状に配列されたベイヤ配列の原色フィルタが用いられている。撮像素子1全体としては、2行2列に隣接する4つのカラーフィルタ216,216,…(又は4つの画素領域)を1つの繰り返し単位としたときに、該繰り返し単位中において、一方の対角方向に2つの緑色のカラーフィルタ216gが配列され、他方の対角方向に赤のカラーフィルタ216rと青色のカラーフィルタ216bとが配列されている。全体として緑色のカラーフィルタ216g,216g,…が縦横に1つおきに配置されている。
 このように構成された撮像素子201に入射すると、該光は、第1撮像部201Aのマイクロレンズ(図9では省略)により集光された後、第1フィルタ216を透過することにより特定の波長域の光だけが第1光電変換部10の受光部12に到達する。詳しくは、緑色及び青色のカラーフィルタ216g,216bにおける光の透過については、前記実施形態で述べた通りである。赤色のカラーフィルタ216rにおいては、図10(A)の斜線部で示す波長域の光が該赤色のカラーフィルタ216rを透過して、受光部12に到達する。各受光部12は到達した光を吸収して電荷を発生する。発生した電荷は第1垂直レジスタ及び第1転送路を介して増幅器に送られ、電気信号として出力される。赤色のカラーフィルタ216rは、赤色の波長域と赤外線領域の光を透過させるため、赤色のカラーフィルタ216rに対応する受光部12,12,…には、赤色の波長域の光だけでなく、赤外線領域の光も入射する。その結果、赤色のカラーフィルタ216rに対応する受光部12,12,…では、赤外光を含む光の光量を取得することができる。
 そして、第1光電変換部10に入射した光の一部は、基板11を透過する。基板11を透過する光は、図6,7,10の(B)に示すように、該基板11によって減衰させられる。
 こうして第1光電変換部10を透過した光は、第2撮像部1Bに入射する。第2撮像部1Bの第2フィルタ26を透過することにより特定の波長域の光だけが第2光電変換部20の受光部22に到達する。詳しくは、第2フィルタ26は、図6,7,10の実線で囲まれた領域と二点鎖線で囲まれた領域とが重なる領域で示される分光特性を有している。すなわち、第2フィルタ26は、図6(C),7(C),10(C)の斜線部で示すように、赤色の波長域のうち赤外線領域よりも短波長側の光を透過させる。その結果、第2光電変換部20の受光部22には、第1フィルタ16及び第1光電変換部10を透過した光のうち、赤色の波長域であって且つ赤外線領域よりも短波長側の光が到達する。受光部22は、到達した光を吸収して電荷を発生する。つまり、受光部22は、赤外光を含まない赤色の光の受光光量を取得することができる。
 こうして、撮像素子201は、赤外光を含まない緑色及び青色の色情報を第1光電変換部10の受光部12,12,…で取得し、赤外光を含まない赤色の色情報を第2光電変換部20の受光部22,22,…で取得する。こうして得られた赤色、緑色及び青色の色情報に基づいて色再現性の高い撮像を行うことができる。また、撮像素子201は、赤外光を含む赤色の色情報を、第1光電変換部10の受光部12,12,…のうち、赤色のカラーフィルタ216rに対応する受光部12,12,…で取得することができる。こうして得られた赤外光の情報に基づいて感度の高い撮像や感度の高いコントラスト方式のオートフォーカスを行うことができる。
  -変形例2-
 続いて、変形例2に係る撮像素子301について図11を参照して説明する。変形例2に係る撮像素子301は、CCDイメージセンサではなく、CMOSイメージセンサである点で実施形態1と異なる。
 撮像素子301は、CMOSイメージセンサであって、第1撮像部301Aは、半導体材料で構成された第1光電変換部310と、トランジスタ313と、信号線314と、マスク315と、第1フィルタ16と、マイクロレンズ17とを有している。第1フィルタ16とマイクロレンズ17の構成は実施形態1と同様である。第2撮像部301Bは、半導体材料で構成された第2光電変換部320と、トランジスタ323と、信号線324と、マスク325と、第2フィルタ26とを有している。第2フィルタ26の構成は実施形態1と同様である。
 第1光電変換部310は、基板311と、フォトダイオードで構成された受光部312,312,…とを有している。各受光部312ごとに、トランジスタ313が設けられている。受光部312で蓄積された電荷は、トランジスタ313で増幅され、信号線314を介して外部へ出力される。トランジスタ313と信号線314に光が入射しないようにマスク315が設けられている。
 ここで、第1光電変換部310は、入射した光が該第1光電変換部310を透過する程度の厚さに形成されている。すなわち、第1光電変換部310は、受光部312に入射した光が該受光部312、さらには基板311を透過するように構成されている。
 第2光電変換部320も、同様に、基板321と、フォトダイオードで構成された受光部322,322,…とを有している。各受光部322ごとに、トランジスタ323が設けられている。受光部322で蓄積された電荷は、トランジスタ323で増幅され、信号線324を介して外部へ出力される。トランジスタ323と信号線324に光が入射しないようにマスク325が設けられている。受光部322の面積は、受光部312の面積の約4倍となっている。
 そして、基板321には、CCDイメージセンサと同様に、照射された光を透過させる透過部327が形成されている。透過部327は、周辺部よりも薄肉に形成されている。
 このように構成された撮像素子301においては、赤外光を含まない緑色及び青色の色情報を第1光電変換部310の受光部312,312,…で取得し、赤外光を含まない赤色の色情報を第2光電変換部320の受光部322,322,…で取得する。こうして得られた赤色、緑色及び青色の色情報に基づいて色再現性の高い撮像を行うことができる。また、撮像素子301は、赤外光を含む白色の色情報を、第1光電変換部310の受光部312,312,…のうち、無色フィルタ16wに対応する受光部312,312,…で取得することができる。こうして得られた赤外光の情報に基づいて感度の高い撮像や感度の高いコントラスト方式のオートフォーカスを行うことができる。
 また、CMOSイメージセンサにおいては、トランジスタ313,323の増幅率を受光部312,322ごとに設定することができるため、トランジスタ313,323の増幅率を受光部312,322それぞれに対応するカラーフィルタの種類に基づいて設定することによって、さらには、第2光電変換部320については、トランジスタ323の増幅率を受光部322が透過部327に対応する位置に位置するか否かに基づいて設定することによって、部分の画像を適切に撮像することができる。
 《発明の実施形態2》
 次に、本発明の実施形態2に係る撮像装置としてのカメラについて説明する。
 実施形態2に係るカメラ100は、図12に示すように、交換レンズ式の一眼レフデジタルカメラであり、主に、カメラシステムの主要な機能を有するカメラ本体4と、カメラ本体4に取り外し可能に装着された交換レンズ7とから構成されている。交換レンズ7は、カメラ本体4の前面に設けられたボディマウント41に装着されている。ボディマウント41には電気切片41aが設けられている。
  -カメラ本体の構成-
 カメラ本体4は、被写体像を撮影画像として取得する前記実施形態1に係る撮像ユニットUと、撮像ユニットUの露光状態を調節するシャッタユニット42と、液晶モニタで構成され、撮影画像やライブビュー画像や各種情報を表示する画像表示部44と、ボディ制御部5とを有している。
 カメラ本体4には、カメラシステムの電源の入切を操作する電源スイッチ40aと、撮影者がフォーカシング時およびレリーズ時に操作するレリーズボタン40bとが設けられている。
 電源スイッチ40aにより電源がON状態になると、カメラ本体4および交換レンズ7の各部に電源が供給される。
 レリーズボタン40bは、2段式であって、半押しすることで後述するオートフォーカスやAE等を行う一方、全押しすることでレリーズが行われる。
 撮像ユニットUは、ブレ補正ユニット45によって光軸Xに直行する平面内で移動可能に構成されている。
 ボディ制御部5は、ボディマイコン50と、不揮発性メモリ50aと、シャッタユニット42の駆動を制御するシャッタ制御部51と、撮像ユニットUの動作を制御すると共に撮像ユニットUからの電気信号をA/D変換してボディマイコン50へ出力する撮像ユニット制御部52と、例えばカード型記録媒体や内部メモリである画像格納部58からの画像データの読み出し及び該画像格納部58への画像データの記録を行う画像読み出し/記録部53と、画像読み出し/記録部53を制御する画像記録制御部54と、画像表示部44の表示を制御する画像表示制御部55と、カメラ本体4のブレにより生じる像ブレ量を検出するブレ検出部56と、ブレ補正ユニット45を制御する補正ユニット制御部57とを含む。
 ボディマイコン50は、カメラ本体4の中枢を司る制御装置であり、各種シーケンスの制御を行う。ボディマイコン50には、例えば、CPU,ROM,RAMが搭載されている。そして、ROMに格納されたプログラムがCPUに読み込まれることで、ボディマイコン50は様々な機能を実現することができる。
 このボディマイコン50は、電源スイッチ40a及びレリーズボタン40bからの入力信号が入力されると共に、シャッタ制御部51、撮像ユニット制御部52、画像読み出し/記録部53、画像記録制御部54及び補正ユニット制御部57等に対し制御信号を出力するように構成されており、シャッタ制御部51、撮像ユニット制御部52、画像読み出し/記録部53、画像記録制御部54及び補正ユニット制御部57等にそれぞれの制御を実行させる。また、ボディマイコン50は、後述するレンズマイコン80とマイコン間通信を行う。
 例えば、ボディマイコン50の指示により、撮像ユニット制御部52が撮像ユニットUからの電気信号をA/D変換してボディマイコン50へ出力する。ボディマイコン50は、取り込んだ電気信号に所定の画像処理を施して画像データを作成する。そして、ボディマイコン50は、画像読み出し/記録部53に画像データを送信すると共に、画像記録制御部54に画像の記録及び表示の指示を行って、画像格納部58への画像データの保存と画像表示制御部55への画像データの送信を行わせる。画像表示制御部55は、送信されてきた画像データに基づいて画像表示部44を制御して、該画像表示部44に画像を表示させる。
 また、ボディマイコン50は、所定の画像処理として、前述の如く、受光部22が透過部27に対応する位置に設けられたものか否かによって受光部22からの出力を補正する、透過部27の影響をなくす補正等を行っている。
 不揮発性メモリ50aには、カメラ本体4に関する各種情報(本体情報)が格納されている。この本体情報には、例えば、カメラ本体4のメーカー名、製造年月日、型番、ボディマイコン50にインストールされているソフトのバージョン、およびファームアップに関する情報などのカメラ本体4を特定するための型式に関する情報(本体特定情報)、カメラ本体4がブレ補正ユニット45及びブレ検出部56等の像ブレを補正するための手段を搭載しているか否かに関する情報、ブレ検出部56の型番および感度などの検出性能に関する情報、エラー履歴なども含まれている。尚、これらの情報は、不揮発性メモリ50aの代わりにボディマイコン50内のメモリ部に格納されていてもよい。
 ブレ検出部56は、手ブレなどに起因するカメラ本体4の動きを検出する角速度センサを備える。角速度センサは、カメラ本体4が静止している状態での出力を基準としてカメラ本体4が動く方向に応じて正負の角速度信号を出力する。尚、本実施の形態では、ヨーイング方向及びピッチング方向の2方向を検出するために角速度センサを2個設けている。出力された角速度信号は、フィルタ処理、アンプ処理等を経て、A/D変換部によりデジタル信号に変換されてボディマイコン50に与えられる。
  -交換レンズの構成-
 交換レンズ7は、カメラ本体4内の撮像ユニットUに被写体像を結ぶための撮像光学系を構成しており、主に、フォーカシングを行うフォーカス調節部7Aと、絞りを調節する絞り調節部7Bと、光路を調節することで像ブレを補正するレンズ用像ブレ補正部7Cと、交換レンズ7の動作を制御するレンズ制御部8とを有している。
 交換レンズ7は、レンズマウント71を介して、カメラ本体4のボディマウント41に取り付けられている。また、レンズマウント71には、交換レンズ7がカメラ本体4に取り付けられてときにボディマウント41の電気切片41aと電気的に接続される電気切片71aが設けられている。
 フォーカス調節部7Aは、フォーカスを調節するフォーカスレンズ群72で構成されている。フォーカスレンズ群72は、交換レンズ7の規格として定められた最至近合焦位置から無限合焦位置までの区間で光軸X方向に移動可能である。また、フォーカスレンズ群72は、後述するコントラスト検出方式による合焦位置検出の場合、合焦位置を挟んで光軸X方向前後に移動可能である必要があるため、上述の最至近合焦位置から無限合焦位置までの区間よりもさらに光軸X方向前後に移動可能なレンズシフト余裕区間を有している。なお、フォーカスレンズ群72は、必ずしも複数のレンズで構成される必要はなく、1枚のレンズで構成されていてもよい。
 絞り調節部7Bは、絞りまたは開放を調節する絞り部73で構成されている。
 レンズ用像ブレ補正部7Cは、ブレ補正レンズ74と、ブレ補正レンズ74を光軸Xに直行する平面内で移動させるブレ補正レンズ駆動部74aとを有している。
 レンズ制御部8は、レンズマイコン80と、不揮発性メモリ80aと、フォーカスレンズ群72の動作を制御するフォーカスレンズ群制御部81と、フォーカスレンズ群制御部81の制御信号を受けてフォーカスレンズ群72を駆動するフォーカス駆動部82と、絞り部73の動作を制御する絞り制御部83と、交換レンズ7のブレを検出するブレ検出部84と、ブレ補正レンズ駆動部74aを制御するブレ補正レンズユニット制御部85とを有する。
 レンズマイコン80は、交換レンズ7の中枢を司る制御装置であり、交換レンズ7に搭載された各部に接続されている。具体的には、レンズマイコン80には、CPU、ROM、RAMが搭載されており、ROMに格納されたプログラムがCPUに読み込まれることで、様々な機能を実現することができる。例えば、レンズマイコン80は、ボディマイコン50からの信号に基づいてレンズ用像ブレ補正装置(ブレ補正レンズ駆動部74a等)を補正可能状態または補正不能状態に設定する機能を有している。また、レンズマウント71に設けられた電気切片71aとボディマウント41に設けられた電気切片41aとの接触により,ボディマイコン50およびレンズマイコン80は電気的に接続されており、互いに情報の送受信が可能となっている。
 また、不揮発性メモリ80aには、交換レンズ7に関する各種情報(レンズ情報)が格納されている。このレンズ情報には、例えば、交換レンズ7のメーカー名、製造年月日、型番、レンズマイコン80にインストールされているソフトのバージョンおよびファームアップに関する情報などの交換レンズ7を特定するための型式に関する情報(レンズ特定情報)、交換レンズ7がブレ補正レンズ駆動部74a及びブレ検出部84等の像ブレを補正するための手段を搭載しているか否かに関する情報、像ブレを補正するための手段を搭載している場合は、ブレ検出部84の型番および感度などの検出性能に関する情報、ブレ補正レンズ駆動部74aの型番および最大補正可能角度などの補正性能に関する情報(レンズ側補正性能情報)、像ブレ補正を行うためのソフトのバージョンなどが含まれている。さらに、レンズ情報には、ブレ補正レンズ駆動部74aの駆動に必要な消費電力に関する情報(レンズ側消費電力情報)およびブレ補正レンズ駆動部74aの駆動方式に関する情報(レンズ側駆動方式情報)も含まれている。尚、不揮発性メモリ80aは、ボディマイコン50から送信された情報を格納可能である。尚、これらの情報は、不揮発性メモリ80aの代わりに、レンズマイコン80内のメモリ部に格納されていてもよい。
 フォーカスレンズ群制御部81は、フォーカスレンズ群72の光軸方向の絶対位置を検出する絶対位置検出部81aと、フォーカスレンズ群72の光軸方向の相対位置を検出する相対位置検出部81bとを有している。絶対位置検出部81aは、交換レンズ7の筐体におけるフォーカスレンズ群72の絶対位置を検出するものである。絶対位置検出部81aは、例えば、数bitの接触型エンコーダ基板とブラシとによって構成され、絶対位置を検出可能に構成されている。相対位置検出部81bは、それのみではフォーカスレンズ群72の絶対位置を検出することができないが、フォーカスレンズ群72の移動方向は検出可能であり、例えば二相エンコーダを用いている。二相エンコーダは回転パルスエンコーダや、MR素子、ホール素子など、フォーカスレンズ群72の光軸方向の位置に応じて等しいピッチで2値の信号を交互に出力するものが2つ設けられており、これらのピッチの位相をずらすように設置されている。レンズマイコン80は、相対位置検出部81bの出力からフォーカスレンズ群72の光軸方向の相対位置を算出する。
 ブレ検出部84は,手ブレなどに起因する交換レンズ7の動きを検出する角速度センサを備える。角速度センサは、交換レンズ7が静止している状態での出力を基準として交換レンズ7が動く方向に応じて正負の角速度信号を出力する。尚、本実施の形態では、ヨーイング方向及びピッチング方向の2方向を検出するために角速度センサを2個設けている。出力された角速度信号は、フィルタ処理、アンプ処理等を経て、A/D変換部によりデジタル信号に変換されてレンズマイコン80に与えられる。
 ブレ補正レンズユニット制御部85は、移動量検出部(図示せず)を備える。移動量検出部は、ブレ補正レンズ74の実際の移動量を検出する検出部である。ブレ補正レンズユニット制御部85は、移動量検出部からの出力に基づいて、ブレ補正レンズ74を帰還制御している。
 尚、カメラ本体4及び交換レンズ7の両方にブレ検出部56,84とブレ補正装置45,74aを搭載した例を示したが、カメラ本体4及び交換レンズ7の何れかにブレ検出部及びブレ補正装置が搭載されていてもよく、何れにもブレ検出部及びブレ補正装置が搭載されていない場合であってもよい(その場合は、上述のブレ補正に関するシーケンスを排除すればよい)。
  -カメラの動作説明-
 このように構成されたカメラ100の動作について、図13,14を参照しながら説明する。図13は、レリーズボタンが全押しされるまでのカメラ100の動作を示すフローチャート図であり、図14は、レリーズボタンが全押しされた後のカメラ100の動作を示すフローチャート図である。
 以下の各動作は、主に、ボディマイコン50によって制御されている。
 まず、電源スイッチ40aがONされると(ステップSt1)、カメラ本体4と交換レンズ7との交信が行われる(ステップSt2)。詳しくは、カメラ本体4内のボディマイコン50及び各種ユニットに電力が供給され、ボディマイコン50が起動する。同時に、電気切片41a,71aを介して、交換レンズ7内のレンズマイコン80及び各種ユニットに電極が供給され、レンズマイコン80が起動する。ボディマイコン50及びレンズマイコン80は、起動時に互いに情報を送受信するようプログラミングされており、例えばレンズマイコン80のメモリ部からボディマイコン50へ交換レンズ7に関するレンズ情報が送信され、このレンズ情報はボディマイコン50のメモリ部に格納される。
 続いて、ボディマイコン50は、レンズマイコン80を介してフォーカスレンズ群72を予め設定された所定の基準位置に位置させる(ステップSt3)と共に、それと並行して、シャッタユニット42を開状態にする(ステップSt4)。その後、ステップSt5へ進み、撮影者によりレリーズボタン40bが半押しされるまで待機する。
 こうすることで、交換レンズ7を透過して、カメラ本体4内に入射した光は、シャッタユニット42を通過して、撮像ユニットUへ入射する。そして、撮像ユニットUにて結像した被写体像は画像表示部44に表示され、撮影者は画像表示部44を介して被写体の正立像を観察できる。詳しくは、ボディマイコン50は、撮像ユニット制御部52を介して撮像素子1からの電気信号を一定の周期で読み込み、読み込んだ電気信号に対して所定の画像処理を施した後、画像信号を作成し、画像表示制御部55を制御して画像表示部44にライブビュー画像を表示させる。
 また、撮像ユニットUへ入射した光の一部は、撮像素子1を透過して位相差検出ユニット30へ入射する。
 ここで、撮影者によりレリーズボタン40bが半押しされる(即ち、S1スイッチ(図示省略)がONされる)と(ステップSt5)、ボディマイコン50は、位相差検出ユニット30のラインセンサ33からの出カを増幅した後、演算回路にて演算して、合焦か非合焦かを検出する(ステップSt6)。さらに、ボディマイコン50は、前ピンか後ピンか、デフォーカス量はどの位かを求め、デフォーカス情報を取得する(ステップSt7)。その後、ステップSt10へ進む。
 ここで、本実施形態に係る位相差検出ユニット30は、9つ設けられており、即ち、位相差検出を行う測距ポイントが9つ設けられている。そして、位相差検出では、撮影者が任意に選択した測距ポイントに対応したセットのラインセンサ33の出力に基づいてフォーカスレンズ群72を駆動させる。
 あるいは、複数の測距ポイントのうち、最もカメラと被写体とが近接した測距ポイントを選択してフォーカスレンズ群72の駆動を行うように、ボディマイコン50に自動最適化アルゴリズムを設定しておいてもよい。この場合、中抜け写真などが発生する確率を低減することができる。
 一方、ステップSt6,St7と並行して、測光を行う(ステップSt8)と共に、像ブレ検出を開始する(ステップSt9)。
 すなわち、ステップSt8においては、撮像素子1によって該撮像素子1に入射してくる光の光量が測定される。つまり、本実施形態においては、撮像素子1に入射して該撮像素子1を透過した光を用いて上述の位相差検出を行っているため、該位相差検出と並行して、撮像素子1を用いて測光を行うことができる。
 詳しくは、ボディマイコン50が、撮像ユニット制御部52を介して撮像素子1からの電気信号を取り込み、該電気信号に基づいて被写体光の強度を測定することによって測光を行う。そして、ボディマイコン50は、測光の結果から、撮影モードに応じた露光時におけるシャッタスピードと絞り値を所定のアルゴリズムに従って決定する。
 そして、ステップSt8において測光が終了すると、ステップSt9において像ブレ検出を開始する。尚、ステップSt8とステップSt9とは並行して行ってもよい。
 その後、ステップSt10へ進む。尚、ステップSt9の後は、ステップSt10ではなく、ステップSt12へ進んでもよい。
 このように、本実施形態においては、撮像素子1に入射して該撮像素子1を透過した光を用いて上述の位相差に基づく焦点検出を行っているため、該焦点検出と並行して、撮像素子1を用いて測光を行うことができる。
 ステップSt10では、ボディマイコン50は、ステップSt7で取得したデフォーカス情報に基づいて、フォーカスレンズ群72を駆動する。
 そして、ボディマイコン50は、コントラストピークが検出されたか否かを判定する(ステップSt11)。コントラストピークが検出されていない(NO)ときにはフォーカスレンズ群72の駆動(ステップSt10)を繰り返す一方、コントラストピークが検出された(YES)ときにはフォーカスレンズ群72の駆動を停止して、フォーカスレンズ群72をコントラスト値がピークとなった位置まで移動させた後、ステップSt11へ進む。
 具体的には、ステップSt7で算出したデフォーカス量に基づいて合焦位置と予測される位置よりも前後に離れた位置までフォーカスレンズ群72を高速で駆動する。その後、合焦位置と予測される位置に向かってフォーカスレンズ群72を低速で駆動しながらコントラストピークを検出する。
 ここで、コントラストピークの検出には、第1光電変換部10の、無色フィルタ16wに対応する画素12,12,…の出力信号が用いられる。この無色フィルタ16wに対応する画素12,12,…においては、赤外光を含んだ光の受光光量が取得されるため、赤外光を用いてコントラストピークを検出することができる。したがって、暗闇等の環境下においても、コントラストピークを検出することができる。尚、コントラストピークの検出には、無色フィルタ16wに対応する画素12,12,…の出力信号に加えて、緑色又は青色のカラーフィルタ16g,16bに対応する画素12,12,…の出力信号や、第1撮像部1Bの画素22,22,…の出力信号を用いてもよい。あるいは、ステップSt8の測光の結果に基づいて、光量が所定の閾値よりも少ないときは、無色フィルタ16wに対応する画素12,12,…の出力信号を用いてコントラストピークを検出する一方、光量が所定の閾値以上のときには、緑色又は青色のカラーフィルタ16g,16bに対応する画素12,12,…の出力信号及び第1撮像部1Bの画素22,22,…の出力信号を用いてコントラストピークを検出するように構成してもよい。
 また、撮影者によりレリーズボタン40bが半押しされると、画像表示部44には、撮影画像と共に撮影に係る各種情報表示が表示され、撮影者は画像表示部44を介して各種情報を確認することができる。
 ステップSt12では、撮影者にレリーズボタン40bが全押しされる(即ち、S2スイッチ(図示省略)がONされる)まで待機する。撮影者によりレリーズボタン40bが全押しされると、ボディマイコン50は、シャッタユニット42を一旦、閉状態にする(ステップSt13)。こうして、シャッタユニット42を閉状態にしている間に、後述する露光に備えて、撮像素子1の受光部12,…,22,…に蓄積されている電荷を転送してしまう。
 その後、ボディマイコン50は、カメラ本体4と交換レンズ7との交信情報、又は撮影者の任意の指定情報を基に像ブレの補正を開始する(ステップSt14)。具体的には、カメラ本体4内のブレ検出部56の情報を基に交換レンズ7内のブレ補正レンズ駆動部74aを駆動する。また、撮影者の意図に応じて、(i)交換レンズ7内のブレ検出部84とブレ補正レンズ駆動部74aを用いる、(ii)カメラ本体4内のブレ検出部56とブレ補正ユニット45を用いる、(iii)交換レンズ7内のブレ検出部84とカメラ本体4内のブレ補正ユニット45を用いる、の何れかが選択可能である。
 尚、像ブレ補正手段の駆動開始は、レリーズボタン40b半押し時点から開始することで、合焦させたい被写体の動きが軽減され、AFをより正確に行うことが可能となる。
 また、ボディマイコン50は、像ブレの補正開始と並行して、ステップSt8における測光の結果から求められた絞り値となるようにレンズマイコン80を介して絞り部73を絞り込む(ステップSt15)。
 こうして、像ブレの補正が開始されると共に、絞り込みが完了すると、ボディマイコン50は、ステップSt8における測光の結果から求められたシャッタスピードに基づいてシャッタユニット42を開状態にする(ステップSt16)。こうして、シャッタユニット42を開状態にすることで、被写体からの光が撮像素子1に入射するようになり、撮像素子1では所定時間だけ電荷の蓄積を行う(ステップSt17)。
 そして、ボディマイコン50は、該シャッタスピードに基づいて、シャッタユニット42を閉状態にして、露光を終了する(ステップSt18)。露光完了後、ボディマイコン50では、撮像ユニット制御部52を介して撮像ユニットUから出力信号を読み出して画像データを生成し、所定の画像処理後、画像読み出し/記録部53を介して画像表示制御部55へ画像データを出力する。これにより、画像表示部44へ撮影画像が表示される。また、ボディマイコン50は、必要に応じて、画像記録制御部54を介して画像格納部58に画像データを格納する。
 ここで、ボディマイコン50は、第1光電変換部10の、緑色及び青色のカラーフィルタ16g,16bに対応する画素12,12,…の出力信号と、第2光電変換部20の画素22,22,…の出力信号とに基づいて画像データを生成する。つまり、ボディマイコン50は、赤外光を含まない光の色情報に基づいて色再現性の高い画像データを生成している。尚、ボディマイコン50は、ステップSt8の測光の結果、光量が少ないときには、さらに第1光電変換部10の、無色フィルタ16wに対応する画素12,12,…の出力信号を用いて画像データを生成するようにしてもよい。こうすることで、感度の高い撮像を行うことができる。
 その後、ボディマイコン50は、像ブレ補正を終了する(ステップSt19)共に、絞り部73を開放する(ステップSt20)。そして、ボディマイコン50は、シャッタユニット42を開状態とする(ステップSt21)。
 レンズマイコン80は、リセットが完了すると、ボディマイコン50にリセット完了を伝える。ボディマイコン50は、レンズマイコン80からのリセット完了情報と露光後の一連処理の完了を待ち、その後、レリーズボタン40bの状態が、押し込みされていないことを確認し、撮影シーケンスを終了する。その後、ステップSt5へ戻り、レリーズボタン40bが半押しされるまで待機する。
 尚、電源スイッチ40aがOFFされる(ステップSt22)と、ボディマイコン50は、フォーカスレンズ群72を予め設定された所定の基準位置に移動させる(ステップSt23)と共に、シャッタユニット42を閉状態にする(ステップSt24)。そして、カメラ本体4内のボディマイコン50及び各種ユニット、並びに交換レンズ7内のレンズマイコン80及び各種ユニットの作動を停止する。
 このように、本実施形態のAF動作では、まず、位相差検出ユニット30によってデフォーカス情報を取得し、これらのデフォーカス情報に基づいてフォーカスレンズ群72を駆動する。そして、撮像素子1からの出力に基づいて算出されるコントラスト値がピークとなるフォーカスレンズ群72の位置を検出し、フォーカスレンズ群72を該位置に位置させる。こうすることで、フォーカスレンズ群72の駆動前にデフォーカス情報を検出することができるため、従来のコントラスト検出方式AFのようにフォーカスレンズ群72をとりあえず駆動してみるというステップが必要ないため、オートフォーカスの処理時間を短縮することができる。また、最終的にはコントラスト検出方式AFによって焦点を合わすため、ダイレクトにコントラストピークを捕らえることが可能となり、位相差検出方式AFと異なり、開放バック補正(絞りの開口度合いによるピントズレ)などの様々な補正演算が必要ないため高精度なピント性能を得ることができる。特に繰り返しパターンのある被写体やコントラストが極端に低い被写体などに対して、従来の位相差検出方式AFよりも精度良く焦点を合わせることができる。
 そして、本実施形態のAF動作では位相差検出を含んでいるにもかかわらず、撮像素子1を透過した光を用いて位相差検出ユニット30によりデフォーカス情報を取得しているため、撮像素子1による測光と位相差検出ユニット30によるデフォーカス情報の取得とを並行して行うことができる。すなわち、位相差検出ユニット30は撮像素子1を透過した光を受けてデフォーカス情報を取得するため、デフォーカス情報を取得する際には必ず、被写体からの光が撮像素子1に照射されている。そこで、オートフォーカス時に撮像素子1を透過する光を用いて測光を行う。こうすることで、測光用のセンサを別途設ける必要がなくなると共に、レリーズボタン40bが全押しされる前に測光を行っておくことができるため、レリーズボタン40bが全押しされてから露光が完了するまでの時間(以下、レリーズタイムラグともいう)を短縮することができる。
 また、レリーズボタン40bの全押し前に測光を行う構成であっても、測光をオートフォーカスと並行して行うことによって、レリーズボタン40b半押し後の処理時間を長くしてしまうことも防止できる。その際、被写体からの光を測光用センサや位相差検出ユニットへ導くためのミラーを設ける必要がない。
 また、従来は、被写体から撮像装置に導かれる光の一部をミラー等で、撮像装置外に設けられた位相差検出ユニットへ導いていたのに対し、撮像ユニットUに導かれた光をそのまま用いて位相差検出ユニット30によって焦点状態を検出することができるため、デフォーカス情報を高い精度で取得することができる。
 尚、上記実施形態では、位相差検出をした後、コントラスト方式AFを行う、いわゆるハイブリッド方式AFを採用しているが、これに限られるものではない。例えば、位相差検出によって取得したデフォーカス情報に基づいてAFを行う位相差検出方式AFであってもよい。また、上記ハイブリッド方式AFと、位相差検出方式AFと、位相差検出を行わず、コントラスト値だけに基づいて合焦させるコントラスト検出方式AFとを、切り替えて行うようにしてもよい。
 したがって、本実施形態によれば、少なくとも第1光電変換部10の、無色フィルタ16wに対応する画素12,12,…の出力信号を用いてコントラストピークを検出することによって、暗闇等の光量が少ない環境下においても、高い感度でコントラストピークを検出することができる。
 一方、画像データの生成については、第1光電変換部10の、緑色及び青色のカラーフィルタ16g,16bに対応する画素12,12,…の出力信号と、第2フィルタ26により赤外光がカットされた光を受光する、第2光電変換部20の画素22,22,…の出力信号とを用いて行うことによって、色再現性の高い撮像を行うことができる。
 さらには、前記の出力信号に加えて、第1光電変換部10の、無色フィルタ16wに対応する画素12,12,…の出力信号を用いて画像データを生成することによって、暗闇等の光量が少ない環境下における画像認識を行うことができる。
 このように、赤外光の光量と可視光の光量とを並行して取得することができるため、可視光の光量に基づいた色再現性の高い撮像を行うと共に、暗闇等における感度の高いコントラストAFや画像認識等の、赤外光を柔軟に用いた処理を行うことができる。
 そして、第1光電変換部10を光が透過するように構成して、第1光電変換部10の背面にIRカットフィルタとして機能する第2フィルタ26と第2光電変換部20とを順に並べることによって、簡易な構成で赤外光の光量と可視光の光量とを並行して取得することができる。すなわち、IRカットフィルタの撮像素子1の前方位置への設置及び退避を絞り部73と連動させて切り換えるように構成したり、IRカットフィルタの設置及び退避を別の機構により切り換えるように構成したりする必要がない。
 また、第1光電変換部10だけでなく、第2光電変換部20も光が透過するように構成し、該第2光電変換部20の背面側に位相差検出ユニット30を設けることによって、撮像素子1による撮像を行いつつ、位相差検出ユニット30による位相差検出を行うことができる。
 《その他の実施形態》
 本発明は、前記実施形態について、以下のような構成としてもよい。
 すなわち、前記実施形態では、第2光電変換部20の受光部22,22,…は、第1光電変換部10の受光部12,12,…に比べて、4倍の面積を有するように構成されているが、これに限られるものではない。受光部22の大きさは、受光部12と同様の大きさであってもよいし、受光部12よりも小さくても、大きくてもよい。
 また、第1フィルタ16(216)及び第2フィルタ26の構成は、前記実施形態の構成に限られるものではない。例えば、第1フィルタ16を全て無色フィルタで構成して、第1光電変換部10では、赤外光を含む白色光を受光するようにして、第2フィルタ26をIRカットフィルタとしても機能するベイヤ配列の原色フィルタで構成して、第2光電変換部20で赤外光をカットした可視光を受光するようにしてもよい。すなわち、第1光電変換部10の少なくとも一部の画素で赤外光を含む光を受光し、第2光電変換部20の少なくとも一部の画素で赤外光をカットした可視光を受光する構成であれば、任意の構成を採用することができる。
 さらに、第1撮像部1Aと第2撮像部1Bとは積層されているが、両者が物理的に離れて並設される構成であってもよい。
 尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、ここに開示された技術は、光を受光して光電変換する撮像素子及びそれを備えた撮像装置について有用である。
 1,201,301 撮像素子
 10,310 第1光電変換部
 11,311 基板
 12,312 受光部
 16,216 第1フィルタ(色フィルタ)
 16g  緑色のカラーフィルタ
 16b  青色のカラーフィルタ
 16w  無色フィルタ
 20,320 第2光電変換部
 26   第2フィルタ(赤外カットフィルタ)
 216r 赤色のカラーフィルタ
 100  カメラ(撮像装置)

Claims (8)

  1.  光を受けて光電変換を行う撮像素子であって、
     赤外光を含む光を受光すると共に該光を通過させる第1光電変換部と、
     前記第1光電変換部を通過した光から赤外光を除いた光を受光する第2光電変換部とを備えている撮像素子。
  2.  請求項1に記載の撮像素子において、
     前記第1光電変換部の前面側に設けられ、異なる波長域の光を透過させる複数のカラーフィルタと、
     前記第1光電変換部の背面側であって且つ前記第2光電変換部の前面側に設けられ、少なくとも赤外光を除去する赤外カットフィルタとをさらに備えている撮像素子。
  3.  請求項2に記載の撮像素子において、
     前記複数のカラーフィルタは、少なくとも、緑色の波長域の光を透過させる緑色のカラーフィルタと、青色の波長域の光を透過させる青色のカラーフィルタと、白色光を透過させる無色フィルタとを含み、
     前記赤外カットフィルタは、赤外光を除去すると共に赤色の波長域の光を透過させるように構成されている撮像素子。
  4.  請求項2に記載の撮像素子において、
     前記複数のカラーフィルタは、少なくとも、赤色の波長域の光を透過させる赤色のカラーフィルタと、緑色の波長域の光を透過させる緑色のカラーフィルタと、青色の波長域の光を透過させる青色のカラーフィルタとを含む撮像素子。
  5.  請求項1乃至4の何れか1つに記載の撮像素子において、
     前記第2光電変換部の画素は、前記第1光電変換部の画素よりも大きい撮像素子。
  6.  請求項1乃至5の何れか1つに記載の撮像素子において、
     前記第1光電変換部は、基板と該基板に設けられた受光部とを有し、
     前記基板は、光を透過する厚さに形成されている撮像素子。
  7.  請求項1乃至6の何れか1つに記載の撮像素子と該撮像素子からの出力信号が入力される制御部とを備えた撮像装置であって、
     前記制御部は、少なくとも前記第1光電変換部からの出力信号に基づいて合焦状態を判断する一方、少なくとも前記第2光電変換部からの出力信号に基づいて画像データを生成する撮像装置。
  8.  請求項7に記載の撮像装置において、
     位相差検出を行う位相差検出部をさらに備え、
     前記第2光電変換部は、光を通過させるように構成されており、
     前記位相差検出部は、前記第2光電変換部を通過した光を受光して位相差検出を行う撮像装置。
PCT/JP2010/000613 2009-02-23 2010-02-02 撮像素子及びそれを備えた撮像装置 WO2010095374A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/202,869 US8593563B2 (en) 2009-02-23 2010-02-02 Imaging device and imaging apparatus including the same
JP2011500485A JP5190537B2 (ja) 2009-02-23 2010-02-02 撮像素子及びそれを備えた撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009039828 2009-02-23
JP2009-039828 2009-02-23

Publications (1)

Publication Number Publication Date
WO2010095374A1 true WO2010095374A1 (ja) 2010-08-26

Family

ID=42633665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000613 WO2010095374A1 (ja) 2009-02-23 2010-02-02 撮像素子及びそれを備えた撮像装置

Country Status (3)

Country Link
US (1) US8593563B2 (ja)
JP (1) JP5190537B2 (ja)
WO (1) WO2010095374A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084649A (ja) * 2010-10-08 2012-04-26 Nippon Hoso Kyokai <Nhk> 積層型撮像素子

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159858A (ja) * 2010-02-02 2011-08-18 Sony Corp 固体撮像装置およびその製造方法、電子機器
US9568606B2 (en) * 2012-03-29 2017-02-14 Canon Kabushiki Kaisha Imaging apparatus for distance detection using high and low sensitivity sensors with inverted positional relations
US9077879B2 (en) * 2013-01-09 2015-07-07 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Array camera
TWI620445B (zh) 2013-03-25 2018-04-01 Sony Corp 攝像元件及電子機器
KR102071325B1 (ko) * 2013-09-27 2020-04-02 매그나칩 반도체 유한회사 조도와 물체의 거리를 측정하는 광 센서
US9185377B1 (en) * 2014-06-26 2015-11-10 Himax Imaging Limited Color processing system and apparatus
JP6527868B2 (ja) 2014-07-22 2019-06-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および電子機器
KR20180024604A (ko) 2016-08-30 2018-03-08 삼성전자주식회사 이미지 센서 및 그 구동 방법
EP3447678A1 (en) * 2017-08-21 2019-02-27 Axis AB Method and image processing device for detecting a portion of an image
JP6878219B2 (ja) * 2017-09-08 2021-05-26 株式会社東芝 画像処理装置および測距装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227250A (ja) * 2007-03-14 2008-09-25 Fujifilm Corp 複合型固体撮像素子
WO2009022458A1 (ja) * 2007-08-13 2009-02-19 Panasonic Corporation 撮像装置およびカメラ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036807A (ja) 1999-07-19 2001-02-09 Hitachi Ltd 撮像装置
JP4586431B2 (ja) 2004-06-16 2010-11-24 カシオ計算機株式会社 撮像装置及び撮像方法
JP5070742B2 (ja) 2006-06-09 2012-11-14 ソニー株式会社 情報取得方法、情報取得装置、半導体装置、信号処理装置
JP2008078922A (ja) 2006-09-20 2008-04-03 Toshiba Corp 固体撮像装置
JP2008245217A (ja) * 2007-03-29 2008-10-09 Sony Corp 固体撮像装置及び撮像装置
JP5300344B2 (ja) * 2007-07-06 2013-09-25 キヤノン株式会社 光検出素子及び撮像素子、光検出方法及び撮像方法
JP4986761B2 (ja) * 2007-08-03 2012-07-25 キヤノン株式会社 撮像装置
JP2009159205A (ja) * 2007-12-26 2009-07-16 Panasonic Corp 撮像装置および半導体集積回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227250A (ja) * 2007-03-14 2008-09-25 Fujifilm Corp 複合型固体撮像素子
WO2009022458A1 (ja) * 2007-08-13 2009-02-19 Panasonic Corporation 撮像装置およびカメラ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084649A (ja) * 2010-10-08 2012-04-26 Nippon Hoso Kyokai <Nhk> 積層型撮像素子

Also Published As

Publication number Publication date
US20110304753A1 (en) 2011-12-15
JPWO2010095374A1 (ja) 2012-08-23
US8593563B2 (en) 2013-11-26
JP5190537B2 (ja) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5190537B2 (ja) 撮像素子及びそれを備えた撮像装置
US8319870B2 (en) Imaging apparatus
JP5097275B2 (ja) 撮像ユニット
JP4077577B2 (ja) 撮像素子
JP4323002B2 (ja) 撮像装置
US20110304765A1 (en) Imaging apparatus
JP4902892B2 (ja) 撮像装置
US8384815B2 (en) Imaging apparatus
WO2009104416A1 (ja) 撮像装置
JP4902890B2 (ja) 撮像装置
JP2010113272A (ja) 撮像装置
JP4384288B2 (ja) 焦点検出装置
JP2010113273A (ja) 撮像装置
US8068728B2 (en) Imaging apparatus
JP2009210817A (ja) 撮像装置
JPH11337815A (ja) 固体撮像装置及びカメラ用測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011500485

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13202869

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10743506

Country of ref document: EP

Kind code of ref document: A1