WO2010092999A1 - 光触媒を担持した繊維製品およびその製造方法 - Google Patents

光触媒を担持した繊維製品およびその製造方法 Download PDF

Info

Publication number
WO2010092999A1
WO2010092999A1 PCT/JP2010/052014 JP2010052014W WO2010092999A1 WO 2010092999 A1 WO2010092999 A1 WO 2010092999A1 JP 2010052014 W JP2010052014 W JP 2010052014W WO 2010092999 A1 WO2010092999 A1 WO 2010092999A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
zirconium phosphate
photocatalyst
ions
water
Prior art date
Application number
PCT/JP2010/052014
Other languages
English (en)
French (fr)
Inventor
久尚 宇佐美
鈴木 栄二
功太 赤岩
大島 邦裕
Original Assignee
国立大学法人信州大学
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学, 倉敷紡績株式会社 filed Critical 国立大学法人信州大学
Priority to EP10741276.9A priority Critical patent/EP2397604A4/en
Priority to CN2010800089617A priority patent/CN102317536B/zh
Priority to US13/201,324 priority patent/US20120053049A1/en
Publication of WO2010092999A1 publication Critical patent/WO2010092999A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having amino or quaternary ammonium groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/55Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur trioxide; with sulfuric acid or thiosulfuric acid or their salts
    • D06M11/57Sulfates or thiosulfates of elements of Groups 3 or 13 of the Periodic Table, e.g. alums
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/68Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof
    • D06M11/70Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof with oxides of phosphorus; with hypophosphorous, phosphorous or phosphoric acids or their salts
    • D06M11/71Salts of phosphoric acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/20Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin
    • D06M14/22Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin of vegetal origin, e.g. cellulose or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr

Definitions

  • the present invention relates to a fiber product carrying a photocatalyst and a method for producing the same, and more particularly to a fiber product having a photocatalytic function excellent in washing durability.
  • photocatalysts are supported on textile products such as woven fabrics, knitted fabrics, and non-woven fabrics, and sterilization, sterilization, and fungicidal effects are imparted to textile products. That is, the photocatalyst present on the fiber surface absorbs ultraviolet rays and exhibits strong oxidizing power, decomposes pollutants and odors, and exhibits sterilization, sterilization, and fungicidal effects.
  • a photocatalyst that expresses a strong oxidizing power such as titanium oxide is used, the fiber itself constituting the fiber product is damaged, and the strength of the fiber itself is reduced and the characteristics are deteriorated.
  • Patent Document 1 discloses that titanium oxide is coated with porous calcium phosphate, and then the fiber is coated with a binder made of melamine resin.
  • a fixing technique is proposed
  • Patent Document 2 proposes a technique in which a transparent corrosion-resistant film made of a fluororesin is bonded to a fiber base material and a photocatalytic layer is formed on the outer layer of the corrosion-resistant film.
  • any of these proposals has a drawback that the original texture of the fiber product is impaired because the surface of the fiber constituting the fiber base material is coated with the resin.
  • the problem to be solved by the present invention is to provide a fiber product that has an excellent photocatalytic function, prevents optical damage to the fiber base material, and also has the original texture of the fiber, and a method for producing the same. is there. Further, the present invention provides a fiber product having an excellent photocatalytic function, having the durability to wash that the excellent photocatalytic function is not easily lowered by repeated washing, and also having the original texture of the fiber, and a method for producing the same. That is.
  • the present inventors have conducted various studies to solve the above problems, (a)
  • the crystalline zirconium phosphate (CZP) represented by the composition formula Zr (HPO 4 ) .nH 2 O (n 0 to 8) is represented by [Zr n (PO 4 ) 2n ] 2n ⁇ . It has a layered structure in which plate-like polymers are stacked on each other.
  • the crystalline zirconium phosphate (CZP) is dispersed in water, and ion exchange with an alkaline substance is performed, whereby individual plate-like polymers ( [Zr n (PO 4 ) 2n ] 2n ⁇ ) (hereinafter also referred to as “zirconium phosphate layer”) is peeled off to obtain a zirconium phosphate single layer peel dispersion, (b) the zirconium phosphate layer can be electrostatically bonded to the fiber substrate when the zirconium phosphate monolayer release dispersion is brought into contact with the fiber substrate; (c) The photocatalyst can be electrostatically fixed to the zirconium phosphate layer by contacting the zirconium phosphate layer with the aqueous dispersion of the photocatalyst (preferably electrostatically and covalently fixed); (d) When a fiber substrate having an anionic group or a cationic group introduced on the fiber surface is brought into contact with an aqueous
  • the present invention is as follows. (1) A fiber product carrying a photocatalyst, wherein a zirconium phosphate layer is electrostatically fixed to a fiber substrate, and the photocatalyst is electrostatically fixed to the surface of the zirconium phosphate layer. . (2) The fiber product according to (1) above, wherein aluminum ions or polyaluminum ions are interposed between the zirconium phosphate layer and the fiber base material.
  • a zirconium phosphate multilayer including at least one laminated portion in which two zirconium phosphate layers are laminated via aluminum ions or polyaluminum ions is electrostatically fixed to a fiber substrate,
  • the first step A method for producing a fiber product carrying a photocatalyst, comprising at least a second step of immersing the composite in a photocatalyst aqueous dispersion in which the photocatalyst is positively charged and dispersed, followed by washing with water, drying and sintering.
  • a first operation of immersing the fiber substrate in an aqueous solution of a water-soluble aluminum compound and washing with water, and a second operation of immersing the fiber substrate in a zirconium phosphate single-layer peeling dispersion and washing with water are performed second.
  • the properties of the fiber are modified because the finished product or the zirconium phosphate or water-soluble aluminum compound in contact with the fiber substrate in the production stage is a relatively inert substance. It is difficult to maintain the original texture of the fiber, and the outermost photocatalyst has no resin attached, and its photocatalytic functions (sterilization, sterilization, fungicidal effect, etc.) are efficient. It is well demonstrated.
  • the photocatalyst is electrostatically and covalently fixed to the zirconium phosphate layer (or the zirconium phosphate multilayer), a photocatalyst coating layer having high washing fastness can be formed on the outermost surface.
  • the aluminum phosphate or the polyaluminum ion is interposed between the layer (or the zirconium phosphate multilayer) and the fiber substrate, so that the zirconium phosphate layer (or the zirconium phosphate multilayer) and the fiber substrate are firmly bonded.
  • the zirconium phosphate layer (or the zirconium phosphate multilayer) is not easily removed from the fiber base material even when the textile product is washed (that is, the photocatalyst is not easily removed from the product), resulting in high washing durability. .
  • the fiber base material is less susceptible to the oxidizing power of the photocatalyst, and the weather resistance of the fiber base material itself is also improved. Since the fiber base material is more easily deteriorated, the washing durability is further improved.
  • FIGS. 1 to 3 are cross-sectional views schematically showing first to third embodiments of a fiber product carrying the photocatalyst of the present invention (hereinafter simply referred to as “fiber product”), respectively.
  • the zirconium phosphate layer 2 is electrostatically fixed to the fiber substrate 1, and the photocatalyst 3 is electrostatically fixed to the surface of the zirconium phosphate layer 2. Consists of configuration.
  • the fiber product of the second embodiment (FIG. 2) is different from the fiber product of the first embodiment in that aluminum ions or polyaluminum ions 4 are interposed between the fiber substrate 1 and the zirconium phosphate layer 2.
  • the textile product of the third embodiment has a zirconium phosphate multilayer 10 including at least one laminated portion in which two zirconium phosphate layers 2 are laminated via aluminum ions or polyaluminum ions 4.
  • the innermost zirconium phosphate layer 2 a of the zirconium phosphate multilayer 10 is electrostatically fixed to the fiber substrate 1 through aluminum ions or polyaluminum ions 4, and the outermost phosphorous layer of the zirconium phosphate multilayer 10.
  • the photocatalyst 3 is electrostatically fixed to the zirconium oxide layer 2b.
  • Photocatalytic processing may be performed on both main surfaces, or part of the photocatalytic processing (not the entire fiber substrate 1 depending on the form and use of the fiber product) (Fixation of zirconium phosphate layer, photocatalyst, etc.).
  • the “zirconium phosphate layer” is, as described above, a single plate-like polymer ([Zr n (PO 4 ) 2n ]) peeled from crystalline zirconium phosphate (CZP) having a layered structure. 2n ⁇ ).
  • a tetraalkylammonium for example, Ion exchange is performed with an alkaline agent composed of a hydroxide of tetramethylammonium,
  • aqueous dispersion of crystalline zirconium phosphate (0.15 g / 20 mL dispersion) while maintaining pH 8.
  • the resulting solution is allowed to stand and centrifuged (3000 rpm, about 10 minutes), and the supernatant is collected as a peel dispersion.
  • ⁇ -type (Zr (HPO 4 ) 2 .2H 2 O) and ⁇ -type (Zr (PO 4 ) (H 2 PO 4 ) ⁇ 2H 2 O) are known as crystalline zirconium phosphate (CZP).
  • CZP crystalline zirconium phosphate
  • the ⁇ type has a slightly narrow interlayer distance, and intercalation between layers is relatively difficult to occur.
  • the ⁇ type has a partial structure of phosphate ions and dihydrogen phosphate ions, whereas the ⁇ type consists only of a partial structure of hydrogen phosphate ions, so that the charge density on the layer surface is more uniform, It is thought that the adsorption of the water is homogeneous and distributed evenly, and a stronger bond can be expected. Therefore, it is preferable to use a zirconium phosphate layer exfoliated from ⁇ -type crystalline zirconium phosphate.
  • the zirconium phosphate layer ([Zr n (PO 4 ) 2n ] 2n ⁇ ) is negatively charged and dispersed in water. By contacting the charged fiber base material, the zirconium phosphate layer is electrostatically bonded and fixed to the fiber base material.
  • the zirconium phosphate layer 2 is interposed between the fiber substrate 1 and the photocatalyst 3, the fiber substrate 1 is protected from the oxidizing power of the photocatalyst 3.
  • the thickness of the zirconium phosphate layer (one layer) 2 is about 0.75 nm. Therefore, an embodiment in which aluminum ions or polyaluminum ions 4 are interposed between the fiber substrate 1 and the zirconium phosphate layer 2 (see FIGS. 2 and 3), and / or the zirconium phosphate layer 2 is aluminum ions or polyaluminum.
  • the distance between the photocatalyst 3 and the fiber substrate 1 is increased, and the oxidizing power of the photocatalyst 3 is increased.
  • the protective effect of the fiber base material 1 can be further enhanced, and the deterioration of the fiber base material is suppressed at a higher level. By doing so, the bonding strength of the zirconium phosphate layer 2 (or the zirconium phosphate multilayer 10) to the fiber substrate 1 is stably maintained, and the washing durability of the product is further improved.
  • Al ions or polyaluminum ions are interposed between the fiber substrate and the zirconium phosphate layer, and the zirconium phosphate layer contains aluminum ions or polyaluminum ions.
  • a multilayered zirconium phosphate layer is used, but aluminum ions or polyaluminum ions are brought into contact with an aqueous solution of a water-soluble aluminum compound such as alum on a fiber substrate or a zirconium phosphate layer and dried. Supplied.
  • the fiber substrate and the zirconium phosphate layer are electrostatically and more strongly bonded. This is presumably because aluminum ions or polyaluminum ions and phosphate groups in zirconium phosphate form a complex. Also, in the zirconium phosphate multilayer, aluminum ions or polyaluminum ions and phosphate groups in zirconium phosphate form a complex, so that adjacent zirconium phosphate layers are electrostatically and strongly bonded. .
  • water-soluble aluminum compound that is a source of aluminum ions or polyaluminum ions examples include alum, polyaluminum sulfate, aluminum sulfate, aluminum chloride, polyaluminum chloride, and the like.
  • alum weak alkaline to neutral to weakly acidic From the viewpoint of obtaining an aqueous solution that does not cause precipitation within the range, alum is preferable.
  • potassium alum As alum containing aluminum, potassium alum (AlK (SO 4 ) 2 ⁇ 12H 2 O), ammonium alum (AlNH 4 (SO 4 ) 2 ⁇ 12H 2 O), sodium alum (AlNa (SO 4 ) 2 ⁇ 12H 2 O) and the like, but potassium alum (AlK (SO 4 ) 2 ⁇ 12H 2 O) is preferable from the viewpoint of affinity with zirconium phosphate.
  • the fiber substrate and the zirconium phosphate layer are adjacent to each other.
  • the bonding strength between the zirconium phosphate layers tends to decrease, and if it is too much, aluminum ions or polyaluminum ions themselves easily fall off the fiber base material or the zirconium phosphate layer 2.
  • the amount of aluminum ions or polyaluminum ions present is preferably 10 to 100 ⁇ g / m 2 , more preferably 30 to 75 ⁇ g / m 2 .
  • zirconium phosphate multilayer In the zirconium phosphate multilayer 10, aluminum ions or polyaluminum ions are interposed between the adjacent zirconium phosphate layers 2, so that the adjacent zirconium phosphate layers are structurally stable in an electrostatically strong bond. It is a laminate.
  • the number of zirconium phosphate layers 2 in the zirconium phosphate multilayer 10 is not particularly limited, but is generally about 2 to 100 layers, more preferably about 5 to 10 layers.
  • the total thickness of the zirconium phosphate multilayer 10 is about 2 to 500 nm is preferable, about 3 to 100 nm is more preferable, and about 5 to 50 nm is particularly preferable. If the total thickness is less than 2 nm, the ability to prevent damage to the substrate due to the oxidizing power of the photocatalyst may not be sufficiently obtained. If it exceeds 500 nm, the original texture of the fiber substrate may be impaired, or the zirconium phosphate multilayer 10 becomes easy to peel, and there exists a possibility that washing durability may fall.
  • the fiber base material is a single fiber composed of various natural fibers and / or synthetic fibers, twisted yarn, composite yarn, hollow fiber, short fiber, woven fabric, knitted fabric, net, non-woven fabric, cotton, etc.
  • the type of fiber and the form of the substrate are not particularly limited.
  • natural fibers include cellulosic fibers, wool, animal hair such as cashmere and angora, and silk.
  • Cellulosic fibers include natural cellulose fibers such as cotton, hemp, kenaf, and pulp, and viscose. Examples include regenerated cellulose fibers such as rayon, cupra, and acetate.
  • Synthetic fibers include acrylic fibers such as acrylic and modacrylic, polyester fibers, nylon fibers such as nylon 6 and nylon 66, polyolefin fibers such as polyethylene and polypropylene, polyamide fibers, polyimide fibers, and polychlorinated fibers. Examples thereof include vinyl fibers, vinylon fibers, polyurethane fibers and the like.
  • the main constituent fiber of the fiber base consists of fibers that are positively charged in water (for example, nylon fibers, polyamide fibers, polyimide fibers, polyurethane fibers, wool, silk, animal hair, etc.), and the surface is positive in water.
  • the base is directly applied to a zirconium phosphate single layer peeling dispersion and dried to form a zirconium phosphate layer 2 electrostatically bonded to the base 1. can do.
  • a fiber substrate whose main constituent fiber is composed of fibers that are negatively charged in water (for example, cotton, cellulose, polyester, polyvinyl alcohol, polyether, etc.) and whose surface is negatively charged in water, as described above.
  • the base material is subjected to a zirconium phosphate single layer peeling dispersion and dried, whereby aluminum ions or polyaluminum is applied to the base material 1.
  • the zirconium phosphate layer 2 is electrostatically fixed through the ions 4.
  • the main constituent fiber is a fiber substrate made of protein fiber such as wool, cashmere, angora, or the like, as described later, polyphenols such as gallic acid are adsorbed, and further, aluminum ions or polyaluminum After the ions are adsorbed, the substrate is applied to the zirconium phosphate single layer peeling dispersion and dried, so that the zirconium phosphate layer 2 is statically bonded to the substrate 1 through aluminum ions or polyaluminum ions 4. It is fixed electronically.
  • the “main constituent fibers of the fiber base” in the above are constituent fibers that occupy 50 to 100% by mass of the entire fiber base.
  • a fiber base material with a surface treatment in which an anionic group or a cationic group is previously introduced on the fiber surface.
  • an anionic group is present on the fiber surface of the fiber substrate 1, the aforementioned complex formation is also formed between aluminum ions or polyaluminum ions, and a larger electrostatic binding force can be obtained. Conceivable.
  • a cationic group is present on the fiber surface of the fiber base material 1, for example, when the fiber base material is attached to an aqueous solution of a water-soluble aluminum compound such as an alum aqueous solution, the negative electrode derived from the water-soluble aluminum compound in the aqueous solution.
  • ions for example, sulfate ions
  • the anion is substituted with a hydroxyl group in the subsequent washing process, so that the zirconium phosphate layer is firmly adsorbed on the fiber surface after the substitution.
  • anionic group examples include a hydroxyl group, a carboxyl group, and a phosphoric acid group.
  • any known method known in the fiber processing field can be used as long as the texture of the fiber base material is not impaired. Can be used without limitation.
  • a method of generating oxidized cellulose using nitrogen peroxide or nitrogen dioxide, a method of generating oxidized cellulose by ultraviolet irradiation, a catalyst There is a method of esterifying a carboxylic acid using
  • the vinyl monomer containing a carboxyl group, a phosphate group, etc. by electron beam irradiation is used.
  • a graft polymerization method is preferred. The method may be performed by irradiating the fiber substrate with an electron beam and then contacting the vinyl monomer solution with a pre-irradiation method or a simultaneous irradiation method of irradiating an electron beam with the fiber substrate and the vinyl monomer coexisting. Can be graft polymerized.
  • Examples of the carboxyl group-containing vinyl monomer include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, maleic anhydride, itaconic anhydride, methacrylic anhydride, and the like. These may be used alone or in combination of two or more.
  • Examples of the phosphoric acid group-containing vinyl monomer include mono (2-methacryloyloxyethyl) acid phosphate, di (2-methacryloyloxyethyl) acid phosphate, mono (2-acryloyloxyethyl) acid phosphate, di (2- Acryloyloxyethyl) acid phosphate and the like. These may be used alone or in combination of two or more.
  • the vinyl monomer in the graft polymerization of the vinyl monomer, it is preferable to use the vinyl monomer as a solution, and the solvent used for preparing the solution (vinyl monomer solution) is not particularly limited.
  • the solvent used for preparing the solution is not particularly limited.
  • the concentration of the vinyl monomer solution is preferably 5 to 50% by weight, and more preferably 5 to 20% by weight.
  • the dose of electron beam applied to the fiber substrate it is preferably about 10 to 100 kGy. If the electron beam dose is less than 10 kGy, graft polymerization may not be sufficiently performed, and if the electron beam dose exceeds 100 kGy, the fiber may be deteriorated.
  • the acceleration voltage is not particularly limited and can be appropriately selected depending on the thickness of the fiber substrate to be treated, but is usually about 100 to 300 kV.
  • the electron beam irradiation atmosphere preferably has a low oxygen concentration, and is particularly preferably performed in a nitrogen atmosphere.
  • the graft ratio of the monomer in the graft polymerization is preferably about 1 to 20% by weight, more preferably about 5 to 10% by weight. If the graft ratio is less than 1% by weight, the adhesion amount of aluminum ions or polyaluminum ions or zirconium phosphate tends to decrease, and if it exceeds 20% by weight, the original texture of the fiber base material tends to decrease. .
  • the “graft ratio” in the present specification is the weight fraction of the grafted monomer with respect to the fiber base material before the graft polymerization reaction, and is obtained by the following formula.
  • Graft ratio (% by weight) [(dry weight of fiber base material after graft polymerization ⁇ dry weight of fiber base material before graft polymerization) / dry weight of fiber base material before graft polymerization] ⁇ 100
  • polyphenols having three or more hydroxyl groups in one molecule such as tannin, tannic acid, pentaploid, gallic acid and gallic acid.
  • a method of reacting the compounds is preferred. This method can be performed, for example, by immersing the fiber substrate in a 1 to 100 mM aqueous solution of polyphenols (temperature: about 10 to 100 ° C.) for about 0.25 to 2 hours.
  • the reaction amount of the polyphenols is preferably about 1 to 50% by weight with respect to the fiber base material. If it is less than 0.1% by weight, the effect of introducing a hydroxyl group may not be sufficiently obtained. If it exceeds 50% by weight, uneven adsorption occurs or it is difficult to remove excess ions during washing. Thus, the strength of the laminated film tends to decrease.
  • the cationic group examples include a quaternary ammonium base, an amino group, a quaternary phosphonium group, and the like.
  • the above-described electron beam irradiation is performed using a vinyl monomer containing such a cationic group.
  • a method of performing graft polymerization is preferred.
  • the cationic group is preferably a quaternary ammonium base, and the vinyl monomer containing the quaternary ammonium base is preferably a quaternary ammonium salt of dialkylaminoalkyl (meth) acrylate.
  • the alkyl group means one having 3 or less carbon atoms.
  • a typical example of a dialkylaminoalkyl (meth) acrylate is dimethylaminoethyl (meth) acrylate. The above ranges are followed for the reaction conditions and graft ratio in the graft polymerization reaction.
  • the photocatalyst used in the present invention is a metal oxide that can be excited by light irradiation (particularly ultraviolet irradiation) to exhibit redox ability and decompose organic substances.
  • titanium oxide titanium dioxide
  • Titanic acid titanium oxide
  • titanates titanium dioxide
  • niobic acid titanium dioxide
  • titanoniobic acids zinc oxide
  • copper oxide titanium oxide
  • titanium oxide is preferable from the viewpoint of high photocatalytic activity, and titanium dioxide or those in a lower-order oxidation state are preferable.
  • the photocatalyst preferably has an average primary particle diameter of less than 1 ⁇ m (that is, nano level), particularly high crystallinity, and an average primary particle diameter of 50 nm. The following are preferable in that they have high photocatalytic activity.
  • the lower limit of the average particle diameter of the primary particles of the photocatalyst (metal oxide) is not particularly limited, but if it is too small, the band gap widens due to the quantum size effect and the near-ultraviolet light cannot be effectively used and the reaction efficiency decreases. Therefore, 20 nm or more is preferable.
  • the “average particle diameter of the primary particles” referred to here is an average value obtained by obtaining the particle diameter from an image obtained by FE-SEM (field emission scanning electron microscope): S-4500 model manufactured by Hitachi, Ltd. . Note that a photocatalyst (metal oxide) having an average primary particle size of less than 1 ⁇ m tends to aggregate, and is usually fixed (adsorbed) to the zirconium phosphate layer in the form of secondary particles.
  • the photocatalyst 3 is electrostatically fixed to the zirconium phosphate layer 2 (the outermost zirconium phosphate layer 2b of the zirconium phosphate multilayer 10). That is, many metal oxides such as titanium oxide used as the photocatalyst 3 are positively charged in an acidic solution and negatively charged in an alkaline solution due to dissociation equilibrium of hydrophilic functional groups such as hydroxyl groups on the surface.
  • the zirconium phosphate layer 2 (2b) that negatively charges the photocatalyst (metal oxide) 3 that is positively charged in water as will be described later, by utilizing the charging tendency of the metal oxide in water.
  • the photocatalyst 3 is fixed to the outermost part of the fiber base material.
  • the phosphate group found in the partial structure of zirconium phosphate is proton-dissociated and has a permanent negative charge on the zirconium phosphate layer, and at the same time, is specifically shared with metal oxides such as titanium oxide. It has the property of bonding, and the density of the phosphate structure of zirconium phosphate is 4.1 pieces / square nm, and it exists at an extremely high density. It can be firmly fixed by electrostatic bond and specific covalent bond.
  • photocatalysts having an average primary particle size of less than 1 ⁇ m tend to aggregate and are usually fixed (adsorbed) in the form of secondary particles. Since the photocatalyst particles are adsorbed as a single particle layer, the photocatalyst layer is a thin layer having a thickness of 1 ⁇ m or less. However, there is a tendency to strongly agglomerate in the lateral direction on the surface of the product, and when the surface is observed with SEM, an agglomerated structure of several microns is observed.
  • the particle diameter of the secondary particles is preferably in the range of 50 to 5000 nm, more preferably in the range of 1000 to 3000 nm (1 to 3 ⁇ m).
  • the secondary particles of the photocatalyst are formed in an aqueous dispersion of a photocatalyst for supporting the photocatalyst on the zirconium phosphate layer 2 (2b) to form particles having an average particle diameter of 2 to 20 ⁇ m.
  • the surface of the zirconium phosphate layer 2 (2b) has a thickness of about 1 ⁇ m and a lateral aggregation size of about 1 to 3 ⁇ m. Next particles are formed.
  • the particle diameter of the photocatalyst dispersed in water is measured by a light scattering method in an aqueous dispersion of the photocatalyst.
  • the particle size variation between the secondary particles in the aqueous dispersion of the photocatalyst and the secondary particles supported on the zirconium phosphate layer is small, and the secondary particle size in the aqueous dispersion of the photocatalyst is This is directly reflected in the particle diameter of the photocatalyst supported on the zirconium oxide layer.
  • the amount of the photocatalyst 20 supported is not particularly limited as long as a single particle adsorption film or a secondary particle adsorption film of the photocatalyst is formed on the surface of the zirconium phosphate layer 2 (2b).
  • the photocatalyst associates in the photocatalyst dispersion liquid used for production to form secondary particles and electrostatically adsorb to the zirconium phosphate layer 2 (2b). Easy to form.
  • the “single particle adsorption film” is a state in which the primary particles of the photocatalyst are adsorbed (attached) at a substantially uniform density on the surface of the zirconium phosphate layer 2 (2b).
  • the “film” is a state in which the photocatalyst is adsorbed as secondary particles, or primary particles holding a single particle layer are aggregated on the surface.
  • the surface of the zirconium phosphate layer 2 (2b) may not necessarily be completely covered with the photocatalyst particles, and approximately 30% or more of the surface of the zirconium phosphate layer 2 (2b) is covered with the photocatalyst particles. Just do it.
  • the coverage by the photocatalyst on the surface of the zirconium phosphate layer 2 (2b) is preferably 30% or more, more preferably 60% or more, and particularly preferably 80% or more. If the photocatalyst is excessively adsorbed and supported on the surface of the zirconium phosphate layer 2 (2b), the fixation of the photocatalyst to the zirconium phosphate layer becomes unstable. It is not preferable.
  • the coverage can be calculated from an image of a scanning electron micrograph such as FE-SEM.
  • the concentration of the aqueous solution of the water-soluble aluminum compound is generally about 0.1 to 200 mM. When the concentration is higher than 200 mM, homogeneous adsorption becomes difficult. When the concentration is less than 0.1 mM, both the amount of adsorption and the adsorption rate decrease, and the coating tends to be insufficient.
  • the concentration of zirconium phosphate single layer release dispersion used for forming the zirconium phosphate layer is generally about 1 mg to 1 g / L, preferably 0.1 g to 1 g / L. About L.
  • the concentration of the zirconium phosphate single-layer release dispersion is more than 1 g / L, it tends to gel due to thixotropy, and if it is less than 1 mg / L, the coating tends to be insufficient.
  • the drying performed after the fiber base material is immersed in the zirconium phosphate single-layer peeling dispersion is a treatment in which the fiber base is left to stand for 12 to 24 hours in an environment of a temperature of about 5 to 30 ° C. and a humidity of 20 to 80%. It is preferable to carry out under an environment where sunlight is blocked (shade drying). This time can be shortened by a dehydration operation such as centrifugal dehydration.
  • an appropriate amount of the above-mentioned photocatalyst paste is added and dispersed in acidic water whose pH is adjusted to about 3 to 5.5 by adding hydrochloric acid or the like to distilled water to prepare an aqueous dispersion in which the photocatalyst is positively charged and dispersed.
  • the content of the photocatalyst in the dispersion is preferably about 0.05 to 5 g / L. If the concentration (content) of the photocatalyst is more than 5 g / L, it tends to be peeled off and the yield tends to decrease, and if it is less than 0.05 g / L, sufficient loading tends to be impossible.
  • the fiber base material-zirconium phosphate layer composite prepared in the above (1) is immersed in the aqueous dispersion of the photocatalyst, washed with water, and naturally dried. After drying, sintering is performed at 60 to 150 ° C. for about 1 to 3 hours.
  • the natural drying is a treatment that is allowed to stand for about 12 to 24 hours in an environment of a temperature of about 15 to 30 ° C. and a humidity of 20 to 80%, and is performed in an environment where the sunlight is blocked (shade drying). Is preferred. This time can be shortened by a dehydration operation such as centrifugal dehydration.
  • the textile product carrying the photocatalyst of the present invention can be suitably applied to textile products for various uses such as clothing, bedding, table cloth, wallpaper, curtains, carpets, sheets, interior products such as chairs, etc. Since it is possible to eliminate the problems that have been difficult to improve with conventional fiber products carrying a photocatalyst that the texture of the fiber is not impaired, it is particularly suitable for use in various clothing fabrics, whether underwear, underwear, or outerwear. be able to. In addition, because it has photocatalytic activity by irradiating the photocatalyst fiber of the present invention with weak ultraviolet light from sunlight or room light, when worn as clothes, or when used as wallpaper, sheets, cover, etc.
  • Titanium oxide has long been used as a white pigment and has sufficient resources, while zirconium phosphate is relatively safe and has few health problems.
  • Alum is also approved as a food additive such as pickles, and the danger to the human body is considered to be extremely small.
  • Dimethylaminoethyl acrylate quaternary ammonium salt treatment Electro-curtain type electron beam irradiation device EC250 / 15 / 180L (manufactured by I Electron Beam Co., Ltd.) for one side of 100% cotton plain weave mercerized fabric was irradiated with an electron beam at 20 kGy in a nitrogen atmosphere. The dough that had been irradiated with the electron beam was immersed in an aqueous solution of 10% dimethylaminoethyl acrylate quaternary ammonium salt, drawn with a mangle so that the impregnation ratio was about 70% by weight, and aged at 35 ° C. for 18 hours.
  • the other surface that was not irradiated was again irradiated with 20 kGy of an electron beam in a nitrogen atmosphere by an electro curtain type electron beam irradiation apparatus EC250 / 15 / 180L (Eye Electron Beam Co., Ltd.). After irradiation, aging treatment was performed at 35 ° C. for 2 hours. Subsequently, in order to remove an unreacted chemical
  • Acrylic acid treatment The same treatment was carried out except that acrylic acid was used as the chemical in * 1). The graft rate was 7.4%.
  • Gallic acid treatment Immersion in a 10 mM aqueous solution of gallic acid for 2 hours, followed by drying with hot air at 100 ° C.
  • Ethanol Aqueous solution of potassium alum (concentration: 30 mM) 4).
  • Zirconium phosphate monolayer release dispersion (concentration: 1 mM) * Zirconium phosphate ( ⁇ -Zr (HPO 4 ) 2 ⁇ 2H 2 O) 0.15 g is dispersed in 20 mL of water by shaking, and after ion exchange with 10% tetrabutylammonium aqueous solution (alkali agent), centrifugation is performed. The supernatant was diluted 40 times with water. 5).
  • Titanium oxide (trade name UFA manufactured by Showa Titanium Co., Ltd.): Ring-shaped ultrafine anatase-type titanium oxide
  • Example 1 Fabric 1 (dimethylaminoethyl acrylate quaternary ammonium salt-treated product) was subjected to the above photocatalytic processing.
  • Example 2 Fabric 2 (monomethacryloyloxyethyl phosphate-treated product) was subjected to the above photocatalytic processing.
  • Example 3 The above-mentioned photocatalytic processing was applied to the fabric 3 (acrylic acid-treated product).
  • Example 4 The dough 4 (gallic acid-treated product) was subjected to the above photocatalytic processing.
  • Comparative Example 1 The fabric 5 (untreated product) was used as it was.
  • the aluminum ions or polyaluminum ions adsorbed on the dough were each about 62 ⁇ g / m 2 .
  • the overall thickness of the zirconium phosphate multilayer was about 5 nm, and the thickness of the zirconium phosphate layer (one layer) was about 0.7 nm.
  • the thickness of the aluminum ion layer (one layer) was about 0.3 nm.
  • the thickness of the entire zirconium phosphate multilayer was a value determined from an image photograph of a composite cross section obtained by FE-SEM (field emission scanning electron microscope): S-4500 type manufactured by Hitachi, Ltd. It is.
  • the particle size range of the primary particles of titanium oxide fixed (adsorbed) on the outermost zirconium phosphate layer is 5 to 10 nm (average particle size: 8 nm).
  • the particle diameter range of the secondary particles in which the primary particles aggregated was 50 to 300 nm (average particle diameter: 100 nm).
  • the particle diameter of the primary particles of the titanium oxide particles is a calculated value from an image photograph of the fiber surface obtained by FE-SEM (field emission scanning electron microscope): S-4500 type manufactured by Hitachi, Ltd.
  • the average particle diameter is an average value of a plurality of particle diameters. Specifically, the magnification was first set so that 500 or more particles could enter the field of view, and then an electron micrograph was taken.Next, the area of each particle image in the photograph was calculated, and this calculation was further performed. The diameter of the circle having the same area (that is, the Haywood diameter) was calculated from the measured area to obtain the particle diameter of each particle, and the number average of the measured number was calculated to obtain the average particle diameter.
  • the particle size of the secondary particles is a light scattering particle size distribution meter (Shimadzu Corporation: SALD-200V) for particles in a sample solution (pH: 5) obtained by diluting a titanium oxide aqueous dispersion with water. Measured with The average particle diameter is an arithmetic average diameter.
  • Deodorization test 1 The following tests A and B were conducted for Examples 1 to 3 and Comparative Example 1. Irradiation intensity of the black light was 1.0 mW. The test was performed on the fabric before washing and on the fabric after 10 times of the washing test based on the test method described in Appendix Table 1 (No. 103) of JIS L0217: 1995.
  • Test A (aldehyde) 1 g of a sample was placed in a 1 L Tedlar bag, acetaldehyde was added at a predetermined concentration (18.0 ppm), irradiated with black light, and the residual gas concentrations after 2 hours and 24 hours were measured with a detector tube.
  • the deodorization rate was calculated based on the following formula on the basis of the concentration (blank test concentration) measured in a state where no sample was put.
  • Deodorization rate (%) ((Blank test concentration ⁇ Sample test concentration) / (Blank test concentration)) ⁇ 100
  • Test B hydrogen sulfide 1 g of a sample was placed in a 1 L Tedlar bag, hydrogen sulfide was added at a predetermined concentration (20.0 ppm), irradiated with black light, and the residual gas concentrations after 2 hours and 24 hours were measured with a detector tube. The deodorization rate was calculated based on the blank test concentration in the same manner as in Test A.
  • Example 4 Deodorization test 2
  • the following tests A and B were conducted for Example 4 and Comparative Example 1. The test was performed on the fabric before washing and on the fabric after 10 times of the washing test based on the test method described in Appendix Table 1 (No. 103) of JIS L0217: 1995.
  • Test A (aldehyde) The test was performed in the same manner as the test A of the deodorization test 1 except that the predetermined concentration of acetaldehyde was changed to 16.0 ppm.
  • Test B hydrogen sulfide The test was performed in the same manner as the test B of the deodorization test 1 except that the predetermined concentration of hydrogen sulfide was changed to 32.0 ppm.
  • the fiber product carrying the photocatalyst of the present invention has a protective film and a photocatalyst film laminated without impairing the texture of the fiber base material, in addition to interior decorations such as curtains and wallpaper, clothes, umbrellas, bags, carpets, etc. It can be widely applied to daily necessities. Due to the strong protective effect of zirconium phosphate, it can be used as a UV-cutting fiber, and it can also be expected as a protective film for aramid, polyamide, and nylon fibers that are weak against UV rays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Catalysts (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

 優れた光触媒機能を有し、かつ、繊維本来の風合いも兼ね備えた繊維製品を提供する。さらに、優れた光触媒機能が繰り返しの洗濯によっても低下しにくい洗濯耐久性を有し、かつ、繊維本来の風合いも兼ね備えた繊維製品を提供する。 繊維基材1に、リン酸ジルコニウム層2が静電的に固定され、リン酸ジルコニウム層2の表面に光触媒3が静電的に固定された繊維製品。好適には、リン酸ジルコニウム層2とアルミニウムイオンまたはポリアルミニウムイオン4を介して積層されたリン酸ジルコニウム多重層10を有し、リン酸ジルコニウム多重層10の最内層のリン酸ジルコニウム層2aがアルミニウムイオンまたはポリアルミニウムイオン4を介して繊維基材1に静電的に固定され、リン酸ジルコニウム多重層10の最外層のリン酸ジルコニウム層2bに光触媒3が静電的に固定された繊維製品。

Description

光触媒を担持した繊維製品およびその製造方法
 本発明は光触媒を担持した繊維製品及びその製造方法に関し、特に洗濯耐久性に優れた光触媒機能を持つ繊維製品に関する。
 近年、織物、編物、不織布等の繊維製品に光触媒を担持させて、繊維製品に殺菌、除菌、防カビ効果を付与することが盛んに行われている。すなわち、繊維表面に存在させた光触媒は紫外線を吸収して強い酸化力を発揮し、汚染物質や臭気を分解し、殺菌、除菌、防カビ効果を発現する。しかしながら、酸化チタン等の強い酸化力を発現する光触媒を使用すると繊維製品を構成する繊維自体が損傷し、繊維自体の強度低下や特性劣化を引き起こすことも知られている。
 従って、酸化チタン等の光触媒と繊維基材とを隔離する技術が種々提案されており、例えば、特許文献1は、酸化チタンを多孔質リン酸カルシウムで被覆してから、メラミン樹脂からなるバインダーで繊維に固定する技術を提案し、特許文献2は、繊維基材にフッ素樹脂からなる透明な耐食性被膜を接着し、該耐食性被膜の外層に光触媒層を形成する技術を提案している。しかしながら、これらいずれの提案も、結果的に、繊維基材を構成する繊維の表面が樹脂で被覆されるので、繊維製品が有する本来の風合いが損なわれてしまうという欠点がある。
特開2000-119957号公報 特開平10-216210号公報
 従って、本発明が解決しようとする課題は、優れた光触媒機能を有するとともに繊維基材の光損傷が防止され、かつ、繊維本来の風合も兼ね備えた繊維製品及びその製造方法を提供することである。
 また、優れた光触媒機能を有し、しかもその優れた光触媒機能が繰り返しの洗濯によっても低下しにくい洗濯耐久性を有し、かつ、繊維本来の風合いも兼ね備えた繊維製品及びその製造方法を提供することである。
 本発明者等は、上記課題を解決すべく種々の研究を行なったところ、
 (a)組成式Zr(HPO)・nHO(n=0~8)で表される結晶質リン酸ジルコニウム(CZP)は、[Zr(PO2n]2n-で表される板状の高分子が互いに積み重なった層状構造を有しており、当該結晶質リン酸ジルコニウム(CZP)を水に分散させ、アルカリ物質によるイオン交換を行なうことで、個々の板状の高分子([Zr(PO2n]2n-)(以下、「リン酸ジルコニウム層」ともいう)が剥離してリン酸ジルコニウム単層剥離分散液が得られること、
 (b)リン酸ジルコニウム単層剥離分散液に繊維基材を接触させるとリン酸ジルコニウム層が繊維基材に静電的に結合し得ること、
 (c)リン酸ジルコニウム層を光触媒の水分散液に接触させることでリン酸ジルコニウム層に光触媒が静電的に固定され得る(好適には静電的かつ共有結合的に固定され得る)こと、
 (d)繊維表面にアニオン性基又はカチオン性基を導入した繊維基材をミョウバン水溶液等の水溶性アルミニウム化合物の水溶液に接触させ、さらにリン酸ジルコニウム単層剥離分散液に接触させると、繊維基材に対してアルミニウムイオンまたはポリアルミニウムイオンを介してリン酸ジルコニウム層が静電的により強固に結合し得ること、及び
 (e)リン酸ジルコニウム層がアルミニウムイオンまたはポリアルミニウムイオンをバインダーとして多重に積層されて、隣接する層間が静電的に強固に結合した構造的に安定な積層体となり得ることを見出し、かかる知見に基づいてさらに研究を進めることにより、本発明を完成するに至った。
 すなわち、本発明は次の通りである。
(1)繊維基材に、リン酸ジルコニウム層が静電的に固定され、該リン酸ジルコニウム層の表面に光触媒が静電的に固定されてなることを特徴とする、光触媒を担持した繊維製品。
(2)リン酸ジルコニウム層と繊維基材の間にアルミニウムイオンまたはポリアルミニウムイオンが介在してなる、上記(1)記載の繊維製品。
(3)2つのリン酸ジルコニウム層がアルミニウムイオンまたはポリアルミニウムイオンを介して積層された積層部を少なくとも1つ以上含むリン酸ジルコニウム多重層が、繊維基材に静電的に固定され、該リン酸ジルコニウム多重層の最外層のリン酸ジルコニウム層に光触媒が静電的に固定されてなることを特徴とする、光触媒を担持した繊維製品。
(4)リン酸ジルコニウム多重層と繊維基材の間にアルミニウムイオンまたはポリアルミニウムイオンが介在してなる、上記(3)記載の繊維製品。
(5)光触媒が酸化チタンである、上記(1)~(4)のいずれかに記載の繊維製品。
(6)繊維基材が繊維表面にアニオン性基導入処理を施したものである、上記(1)~(5)のいずれかに記載の繊維製品。
(7)アニオン性基がリン酸基、カルボキシル基又は水酸基である、上記(6)記載の繊維製品。
(8)繊維基材が繊維表面にカチオン性基導入処理を施したものである、上記(1)~(5)のいずれかに記載の繊維製品。
(9)カチオン性基が4級アンモニウム塩基である、上記(8)記載の繊維製品。
(10)繊維基材を水溶性アルミニウム化合物の水溶液に浸漬し、水洗した後か、或いは、かかる繊維基材の水溶性アルミニウム化合物の水溶液への浸漬と水洗作業を行わずに、繊維基材をリン酸ジルコニウム単層剥離分散液に浸漬し、水洗した後、乾燥して、繊維基材にリン酸ジルコニウム層が直接、或いは、アルミニウムイオンまたはポリアルミニウムイオンを介して一体化した複合物を作製する第1工程と、
 光触媒が正帯電して分散した光触媒水分散液に前記複合物を浸漬した後、水洗し、乾燥、焼結を行う第2工程とを少なくとも有する、光触媒を担持した繊維製品の製造方法。
(11)繊維基材を水溶性アルミニウム化合物の水溶液に浸漬し、水洗する第1作業と、繊維基材をリン酸ジルコニウム単層剥離分散液に浸漬し、水洗する第2作業とを、第2作業が少なくとも2回以上行われるように、交互に繰り返し、第2作業が最終作業となるように処理された繊維基材を乾燥して、2つのリン酸ジルコニウム層がアルミニウムイオンまたはポリアルミニウムイオンを介して積層された積層部を1つ以上含むリン酸ジルコニウム多重層がアルミニウムイオンまたはポリアルミニウムイオンを介して繊維基材に一体化した複合物を得る第1工程と、
 光触媒が正帯電して分散した光触媒水分散液に前記複合物を浸漬し、水洗し、乾燥、焼結を行う第2工程とを少なくとも有する、光触媒を担持した繊維製品の製造方法。
(12)繊維基材が繊維表面にアニオン性基導入処理を施したものである、上記(10)又は(11)記載の繊維製品の製造方法。
(13)アニオン性基がリン酸基、カルボキシル基又は水酸基である、上記(12)記載の繊維製品の製造方法。
(14)繊維基材が繊維表面にカチオン性基導入処理を施したものである、上記(10)又は(11)記載の繊維製品の製造方法。
(15)カチオン性基が4級アンモニウム塩基である、上記(14)記載の繊維製品の製造方法。
(16)水溶性アルミニウム化合物がミョウバンである、上記(10)~(15)のいずれかに記載の繊維製品の製造方法。
 本発明の光触媒を担持した繊維製品においては、完成品またはその製造段階において繊維基材に接するリン酸ジルコニウムや水溶性のアルミニウム化合物が比較的不活性な物質であることから、繊維の性状が改変されにくく、繊維の本来の風合いを維持することができ、しかも、最外部の光触媒には樹脂等が付着しておらず、その光触媒機能(殺菌、除菌、防カビ等の付与効果)が効率よく発揮される。
 また、光触媒がリン酸ジルコニウム層(またはリン酸ジルコニウム多重層)に静電的且つ共有結合的に固定されるので、洗濯堅牢度の高い光触媒コーティング層を最表面に形成でき、さらに、リン酸ジルコニウム層(またはリン酸ジルコニウム多重層)と繊維基材の間にアルミニウムイオンまたはポリアルミニウムイオンが介在することで、リン酸ジルコニウム層(またはリン酸ジルコニウム多重層)と繊維基材が強固に結合するため、繊維製品を洗濯してもリン酸ジルコニウム層(またはリン酸ジルコニウム多重層)が繊維基材から脱落しにくく(すなわち、光触媒が製品から脱落しにくく)、その結果、高い洗濯耐久性が得られる。
 さらに、リン酸ジルコニウム多重層の最外層のリン酸ジルコニウム層に光触媒が固定された態様の場合、繊維基材が光触媒の酸化力の影響をより受けにくく、しかも、繊維基材そのものの耐候性も高められて、繊維基材がより劣化しにくくなることから、洗濯耐久性がさらに一層向上する。
本発明の光触媒を担持した繊維製品の第1態様の模式断面図である。 本発明の光触媒を担持した繊維製品の第2態様の模式断面図である。 本発明の光触媒を担持した繊維製品の第3態様の模式断面図である。
 以下、本発明をその好適な実施形態に即して説明する。
 図1~3は、それぞれ、本発明の光触媒を担持した繊維製品(以下、単に「繊維製品」とも略称する。)の第1~第3態様を模式的に示した断面図である。
 第1態様の繊維製品(図1)は、繊維基材1に、リン酸ジルコニウム層2が静電的に固定され、該リン酸ジルコニウム層2の表面に光触媒3が静電的に固定された構成からなる。
 第2態様の繊維製品(図2)は、繊維基材1とリン酸ジルコニウム層2との間にアルミニウムイオンまたはポリアルミニウムイオン4を介在させた点で第1態様の繊維製品と相違する。
 第3態様の繊維製品(図3)は、2つのリン酸ジルコニウム層2がアルミニウムイオンまたはポリアルミニウムイオン4を介して積層された積層部を少なくとも1つ以上含むリン酸ジルコニウム多重層10を有し、リン酸ジルコニウム多重層10の最内層のリン酸ジルコニウム層2aがアルミニウムイオンまたはポリアルミニウムイオン4を介して繊維基材1に静電的に固定され、リン酸ジルコニウム多重層10の最外層のリン酸ジルコニウム層2bに光触媒3が静電的に固定された構成からなる。
 なお、図1~3は説明の便宜のために簡略化した図であり、繊維基材1の一方の主面に対してのみ光触媒加工を行っているが、実際には、繊維基材1の両主面に対して光触媒加工(リン酸ジルコニウム層、光触媒等の固定)を行う場合もあるし、繊維製品の形態や用途に応じて繊維基材1の全体でなく、部分的に光触媒加工(リン酸ジルコニウム層、光触媒等の固定)を行うことがある。
[リン酸ジルコニウム層]
 本発明において、「リン酸ジルコニウム層」とは、前述のとおり、層状構造を有する結晶質リン酸ジルコニウム(CZP)から剥離された一層の板状の高分子([Zr(PO2n2n-)のことである。リン酸ジルコニウム層は、例えば、層状構造を有する結晶質リン酸ジルコニウム(Zr(HPO)・nHO(n=0~8))を水に振盪により分散させ、さらにテトラアルキルアンモニウム(例えば、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム等)の水酸化物等からなるアルカリ剤によってイオン交換して、結晶質リン酸ジルコニウム(CZP)から個々のリン酸ジルコニウム層([Zr(PO2n2n-)を剥離させたリン酸ジルコニウム単層剥離分散液を調製することによって得ることができる。具体的には、例えば、結晶質リン酸ジルコニウムの水分散液(0.15g/20mL分散液)に0.5Mのテトラ-n-ブチルアンモニウム水溶液1mLをpH8を保ちながらゆっくりと滴下して、最終的に得られた溶液を静置し、遠心分離(3000rpm、10分程度)することにより、その上澄みを剥離分散液として採取する。
 なお、結晶質リン酸ジルコニウム(CZP)にはα型(Zr(HPO・2HO)と、γ型(Zr(PO)(HPO)・2HO)が知られているが、γ型は、構造的に価数の層間距離が大きく、Na~Csまで層間にインターカレートすることが可能である。一方α型は層間距離が若干狭く、層間へのインターカレーションは相対的に起こり難い。また、γ型はリン酸イオンとリン酸二水素イオンの部分構造を有するのに対し、α型はリン酸水素イオンの部分構造のみからなるため、層表面の電荷密度がより均質であり、イオンの吸着も均質でムラ無く分布すると考えられ、より強固な結合を期待できる。従って、α型の結晶質リン酸ジルコニウムから剥離したリン酸ジルコニウム層を用いるのが好ましい。
 前述のリン酸ジルコニウム単層剥離分散液において、リン酸ジルコニウム層([Zr(PO2n]2n-)は水中で負に帯電して分散しており、その分散液に水中で正に帯電する繊維基材を接触させることで繊維基材にリン酸ジルコニウム層が静電的に結合して固定される。
 本発明の繊維製品では、繊維基材1と光触媒3の間にリン酸ジルコニウム層2が介在することから、繊維基材1が光触媒3の酸化力から保護される。しかし、リン酸ジルコニウム層(一層)2の厚みは0.75nm程度である。したがって、繊維基材1とリン酸ジルコニウム層2の間にアルミニウムイオンまたはポリアルミニウムイオン4を介在させた態様(図2、3参照)、及び/又は、リン酸ジルコニウム層2がアルミニウムイオンまたはポリアルミニウムイオン4を介して多重に積層されたリン酸ジルコニウム多重層10を形成した態様(図3参照)とすることで、光触媒3と繊維基材1の離間距離が大きくなり、光触媒3の酸化力からの繊維基材1の保護効果を一層高めることができ、繊維基材の劣化がより高いレベルで抑制される。こうすることで、繊維基材1に対するリン酸ジルコニウム層2(又はリン酸ジルコニウム多重層10)の結合力が安定に維持され、製品の洗濯耐久性がより向上する。
[アルミニウムイオンまたはポリアルミニウムイオン] 
 上述のように、本発明の繊維製品においては、好適には、繊維基材とリン酸ジルコニウム層間にアルミニウムイオンまたはポリアルミニウムイオンを介在させ、また、リン酸ジルコニウム層をアルミニウムイオンまたはポリアルミニウムイオンを介して積層させたリン酸ジルコニウム多重層が使用されるが、アルミニウムイオンまたはポリアルミニウムイオンはミョウバン等の水溶性アルミニウム化合物の水溶液を繊維基材やリン酸ジルコニウム層に接触させ、乾燥することによって、供給される。繊維基材とリン酸ジルコニウム層の間にアルミニウムイオンまたはポリアルミニウムイオンが介在することで、繊維基材とリン酸ジルコニウム層とが静電的により強固に結合される。これは、アルミニウムイオンまたはポリアルミニウムイオンとリン酸ジルコニウム中のリン酸基とが錯合体を形成するためと考えられる。また、リン酸ジルコニウム多重層においてもアルミニウムイオンまたはポリアルミニウムイオンとリン酸ジルコニウム中のリン酸基とが錯合体を形成することから、隣接するリン酸ジルコニウム層間が静電的に強固に結合される。
 アルミニウムイオンまたはポリアルミニウムイオンの供給源である水溶性アルミニウム化合物としては、例えば、ミョウバン、ポリ硫酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム等が挙げられ、中でも、弱アルカリ性~中性~弱酸性の範囲で沈殿を生じない水溶液が得られる観点から、ミョウバンが好ましい。なお、アルミニウムを含むミョウバンとしては、カリミョウバン(AlK(SO・12HO)、アンモニウムミョウバン(AlNH(SO・12HO)、ナトリウムミョウバン(AlNa(SO・12HO)等が挙げられるが、リン酸ジルコニウムとの親和性の点から、カリミョウバン(AlK(SO・12HO)が好ましい。
 繊維基材とリン酸ジルコニウム層間、及び、リン酸ジルコニウム多重層中の隣接するリン酸ジルコニウム層間において、アルミニウムイオンまたはポリアルミニウムイオンの介在量が少なすぎると、繊維基材とリン酸ジルコニウム層間及び隣接するリン酸ジルコニウム層間の結合力が低下する傾向となり、また、多すぎるとアルミニウムイオンまたはポリアルミニウムイオン自体が繊維基材又はリン酸ジルコニウム層2から脱落しやすくなる。従って、アルミニウムイオンまたはポリアルミニウムイオンの介在量は10~100μg/mが好ましく、より好ましくは30~75μg/mである。
[リン酸ジルコニウム多重層]
 リン酸ジルコニウム多重層10は、隣接するリン酸ジルコニウム層2の間にアルミニウムイオンまたはポリアルミニウムイオンが介在することから、隣接するリン酸ジルコニウム層間が静電的に強固に結合した構造的に安定な積層体である。リン酸ジルコニウム多重層10におけるリン酸ジルコニウム層2の層数は、特に限定はされないが、一般的には、2~100層程度が好ましく、5~10層程度がより好ましい。すなわち、リン酸ジルコニウム層の一層の厚みは前記の通り約0.75nmあるから、層間隙のアルミニウムイオンまたはポリアルミニウムイオンの厚さを考慮すると、リン酸ジルコニウム多重層10の総厚みは約2~500nmが好ましく、約3~100nmがより好ましく、約5~50nmが特に好ましい。総厚みが2nm未満では光触媒の酸化力による基材の損傷を防御する能力が十分に得られない可能性があり、500nmより大きい場合、繊維基材本来の風合いを損ねたり、リン酸ジルコニウム多重層10が剥離しやすくなって、洗濯耐久性が低下するおそれがある。
[繊維基材]
 本発明の繊維製品において、繊維基材は、種々の天然繊維及び/又は合成繊維からなる単繊維、撚糸、複合糸、中空糸、短繊維、織物、編物、ネット、不織布、わた等であり、繊維の種類や基材の形態は特に限定されない。
 天然繊維としては、例えば、セルロース系繊維、羊毛、カシミアやアンゴラなどの獣毛、絹等が挙げられ、セルロース系繊維には、綿、麻、ケナフ、パルプなどの天然セルロース繊維の他、ビスコースレーヨン、キュプラ、アセテートなどの再生セルロース繊維などが挙げられる。また、合成繊維としては、アクリルやモダアクリルなどのアクリル系繊維、ポリエステル系繊維、ナイロン6やナイロン66などのナイロン系繊維、ポリエチレンやポリプロピレンなどのポリオレフィン系繊維、ポリアミド系繊維、ポリイミド系繊維、ポリ塩化ビニル系繊維、ビニロン繊維、ポリウレタン系繊維等が挙げられる。
 繊維基材の主たる構成繊維が水中で正に帯電する繊維(例えば、ナイロン系繊維、ポリアミド系繊維、ポリイミド系繊維、ポリウレタン系繊維、羊毛、絹、獣毛等)からなる、水中で表面が正に帯電する繊維基材の場合、その基材をそのままリン酸ジルコニウム単層剥離分散液に付し、乾燥することで、基材1に対して静電的に結合したリン酸ジルコニウム層2を形成することができる。
 一方、主たる構成繊維が水中で負に帯電する繊維(例えば、綿、セルロース、ポリエステル、ポリビニルアルコール、ポリエーテル等)からなる、水中で表面が負に帯電する繊維基材の場合、上述したように、繊維基材の表面にアルミニウムイオンまたはポリアルミニウムイオンを吸着させてから、基材をリン酸ジルコニウム単層剥離分散液に付し、乾燥することで、基材1に対してアルミニウムイオンまたはポリアルミニウムイオン4を介してリン酸ジルコニウム層2が静電的に固定される。
 なお、主たる構成繊維が、羊毛、カシミアやアンゴラなどの獣毛等のタンパク質系繊維からなる繊維基材の場合、後述するように、没食子酸などのポリフェノール類を吸着させ、さらにアルミニウムイオンまたはポリアルミニウムイオンを吸着させてから、基材をリン酸ジルコニウム単層剥離分散液に付し、乾燥することで、基材1に対してアルミニウムイオンまたはポリアルミニウムイオン4を介してリン酸ジルコニウム層2が静電的に固定される。
 従って、繊維基材の水中での帯電極性にかかわらず、図2、3の態様の繊維製品を得ることができる。なお、上記における「繊維基材の主たる構成繊維」とは、繊維基材全体の50~100質量%を占める構成繊維のことである。
 本発明においては、繊維基材に対するリン酸ジルコニウム層の結合力をより高めるために、予め繊維表面にアニオン性基又はカチオン性基の導入処理を行なった表面処理付き繊維基材を使用するのが好ましい。これは、繊維基材1の繊維表面にアニオン性基が存在すると、アルミニウムイオンまたはポリアルミニウムイオンとの間にも前述した錯合体形成がなされて、より大きな静電的結合力が得られるためと考えられる。また、繊維基材1の繊維表面にカチオン性基が存在すると、例えば、ミョウバン水溶液等の水溶性アルミニウム化合物の水溶液に繊維基材が付されると、該水溶液中の水溶性アルミニウム化合物由来の陰イオン(例えば、硫酸イオン)が繊維表面に吸着され、その後の水洗過程で該陰イオンが水酸基と置換されて、該置換後の繊維表面にリン酸ジルコニウム層が強固に吸着されるためと考えられる。
 アニオン性基としては、例えば、水酸基、カルボキシル基、リン酸基等が挙げられ、導入方法としては、繊維基材の風合いが損なわれない方法であれば、繊維の加工分野で知られている公知の方法を制限なく使用できる。例えば、セルロース系繊維、タンパク質系繊維等の天然系繊維に対しては、過酸化窒素や二酸化窒素を用いて酸化セルロ-スを生成する方法、紫外線照射による酸化セルロ-スを生成する方法、触媒を用いてカルボン酸のエステル化を行う方法等がある。
 特にカルボキシル基、リン酸基等を導入する場合、各種の繊維に対して確実にカルボキシル基、リン酸基等を導入できることから、電子線照射によるカルボキシル基、リン酸基等を含有するビニルモノマーのグラフト重合方法が好適である。該方法は、繊維基材に電子線を照射したのち、ビニルモノマー溶液に接触させる前照射法、あるいは、繊維基材とビニルモノマーを共存させて電子線を照射する同時照射法などにより、ビニルモノマーをグラフト重合することができる。カルボキシル基含有ビニルモノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、マレイン酸無水物、イタコン酸無水物、メタクリル酸無水物などが挙げられる。これらは1種を単独で用いてもよく2種以上を混合して用いてもよい。また、リン酸基含有ビニルモノマーとしては、例えば、モノ(2-メタクリロイルオキシエチル)アシッドホスフェート、ジ(2-メタクリロイルオキシエチル)アシッドホスフェート、モノ(2-アクリロイルオキシエチル)アシッドホスフェート、ジ(2-アクリロイルオキシエチル)アシッドホスフェート等が挙げられる。これらは1種を単独で用いてもよく2種以上を混合して用いてもよい。
 ビニルモノマーのグラフト重合に際しては、ビニルモノマーを溶液にして用いることが好ましく、その際の溶液(ビニルモノマー溶液)の調製に用いる溶媒は特に制限はされないが、例えば、水の他に、アルコール類や二塩化エチレンなどの有機溶媒を挙げることができる。ビニルモノマー溶液の濃度は5~50重量%であることが好ましく、5~20重量%であることがより好ましい。繊維基材に照射する電子線の線量に特に制限はないが、10~100kGy程度が好ましい。電子線の線量が10kGy未満であると、グラフト重合が十分に行われないおそれがあり、電子線の線量が100kGyを超えると繊維を劣化させるおそれがある。加速電圧も特に制限はなく、処理する繊維基材の厚さなどによって適宜選択することができるが、通常は100~300kV程度である。また、電子線照射雰囲気は、酸素濃度が低いことが好ましく、窒素雰囲気下で行うことが特に好ましい。
 グラフト重合におけるモノマーのグラフト率は1~20重量%程度が好ましく、5~10重量%程度がより好ましい。グラフト率が1重量%未満では、アルミニウムイオンまたはポリアルミニウムイオン、或いは、リン酸ジルコニウムの付着量が低下する傾向となり、20重量%を超えると繊維基材が有する本来の風合いが低下する傾向となる。なお、本明細書でいう「グラフト率」とはグラフト重合反応前の繊維基材に対するグラフトしたモノマーの重量分率であり、下記式によって求められる。
 グラフト率(重量%)=[(グラフト重合後の繊維基材の乾燥重量-グラフト重合前の繊維基材の乾燥重量)/グラフト重合前の繊維基材の乾燥重量]×100
 なお、羊毛、カシミアやアンゴラなどの獣毛等のタンパク質系繊維の表面に水酸基を導入する場合、タンニン、タンニン酸、五倍子、没食子および没食子酸等の1分子中に3個以上の水酸基を有するポリフェノール類を反応させる方法が好適である。この方法は、例えば、ポリフェノール類の1~100mM水溶液(温度:10~100℃程度)に繊維基材を0.25~2時間程度浸漬することによって行うことができる。ポリフェノール類の反応量は、繊維基材に対して1~50重量%程度が好ましい。0.1重量%未満では、水酸基を導入することの効果が十分に得られない可能性があり、50重量%を超えると、吸着にむらが生じたり洗浄時に余分なイオンを除去することが困難となり、積層膜の強度が低下する傾向となる。
 カチオン性基としては、例えば、4級アンモニウム塩基、アミノ基、4級ホスホニウム基等が挙げられ、これらの導入方法としては、かかるカチオン性基を含有するビニルモノマーを用いて上述の電子線照射によるグラフト重合を行なう方法が好適である。カチオン性基は4級アンモニウム塩基が好ましく、4級アンモニウム塩基を含有するビニルモノマーとしては、ジアルキルアミノアルキル(メタ)アクリレートの4級アンモニウム塩が好適である。ここでアルキル基は炭素数3以下のものを意味する。ジアルキルアミノアルキル(メタ)アクリレートの典型例はジメチルアミノエチル(メタ)アクリレートである。グラフト重合反応における反応条件、グラフト率等は上述の範囲が踏襲される。
[光触媒]
 本発明で使用する光触媒は、光照射(特に紫外線照射)により励起して、酸化還元能力を発揮し、有機物を分解することができる金属酸化物であり、具体的には、酸化チタン(二酸化チタン)、チタン酸、チタン酸塩類、ニオブ酸、ニオブ酸類、チタノニオブ酸類、酸化亜鉛、酸化銅等、遷移金属の酸化物等が例示される。中でも、高い光触媒活性を有する点から、好ましくは酸化チタンであり、二酸化チタンあるいはより低次の酸化状態にあるものがよい。また、酸化チタンは、アナタース型、ルチル型、ブルッカイト型等の種々の結晶型のものを使用できるが、中でも、アナタース型が好ましい。また、本発明において、光触媒(金属酸化物)としては、一次粒子の平均粒子径が1μm未満(すなわち、ナノレベル)であるのが好ましく、特に結晶性が高く、一次粒子の平均粒子径が50nm以下のものが、高い光触媒活性を有する点で好ましい。なお、光触媒(金属酸化物)の一次粒子の平均粒子径の下限は特に限定はされないが、小さすぎると、量子サイズ効果によりバンドギャップが広がって近紫外光を有効利用できなくなって反応効率が低下する恐れがあるため、20nm以上が好ましい。ここでいう「一次粒子の平均粒子径」は、FE-SEM(電界放射走査型電子顕微鏡):日立製作所製S-4500型による電子顕微鏡写真観察下の画像から粒子径を求めた平均値である。なお、一次粒子の平均粒子径が1μm未満の光触媒(金属酸化物)は凝集しやすい傾向にあり、通常、リン酸ジルコニウム層に二次粒子の状態で固定(吸着)される。
 本発明の繊維製品では、光触媒3はリン酸ジルコニウム層2(リン酸ジルコニウム多重層10の最外層のリン酸ジルコニウム層2b)に静電的に固定される。すなわち、光触媒3として用いる酸化チタン等の金属酸化物は、多くは、表面の水酸基等の親水性官能基の解離平衡により、酸性溶液中で正に帯電し、アルカリ性溶液中で負に帯電する。本発明では、かかる水中での金属酸化物の帯電傾向を利用し、後述するように、水中で正に帯電させた光触媒(金属酸化物)3を負に帯電するリン酸ジルコニウム層2(2b)に静電的に吸着させて、光触媒3を繊維基材の最外部に固定させる。この際、リン酸ジルコニウムの部分構造に見られるリン酸基は、プロトン解離してリン酸ジルコニウム層の恒久的な負電荷を帯びると同時に、酸化チタン等の金属酸化物に対して特異的に共有結合する性質を有し、リン酸ジルコニウムのリン酸構造の密度は4.1個/平方nmであり、極めて高密度に存在するため、ナノ粒子状の金属酸化物であっても多点的な静電結合と特異的な共有結合により強固に固定することが可能となる。
 上記のとおり、一次粒子の平均粒子径が1μm未満の光触媒は、凝集しやすい傾向にあり、通常、二次粒子の状態で固定(吸着)される。この光触媒粒子は概ね単粒子層として吸着されるため、光触媒層の厚さは1μm以下の薄層となる。ただし、製品の表面上で横方向には強く凝集する傾向が有り、SEMにて表面観察をすると数ミクロンの凝集構造が観測される。リン酸ジルコニウム層2(2b)への担持安定性、繊維の風合い保持等の観点から二次粒子の粒子径は50~5000nmの範囲が好ましく、1000~3000nm(1~3μm)の範囲がより好ましい。なお、光触媒の二次粒子は、リン酸ジルコニウム層2(2b)に光触媒を担持させるための光触媒の水分散液中で形成され、平均粒子径2~20μmの粒子を形成する。しかし、5μm以上のサイズの粒子は担持後の水洗浄により容易に除去されるため、リン酸ジルコニウム層2(2b)の表面には厚さ約1μm、横方向の凝集サイズ1~3μm程度の二次粒子を形成する。なお、水中に分散した光触媒の粒子径は、当該光触媒の水分散液中での光散乱法によって測定される。光触媒の水分散液中における二次粒子とリン酸ジルコニウム層に担持された二次粒子との間での粒子径変動は小さく、光触媒の水分散液中での二次粒子の粒子径が、リン酸ジルコニウム層に担持された光触媒の粒子径にそのまま反映される。
 本発明の繊維製品において、光触媒20の担持量は特に限定はされず、リン酸ジルコニウム層2(2b)の表面に光触媒の単粒子吸着膜あるいは二次粒子吸着膜が形成されていればよい。本発明では、製造に使用する光触媒分散液中で光触媒が会合して二次粒子を形成してリン酸ジルコニウム層2(2b)に静電的に吸着するので、光触媒の二次粒子吸着膜が容易に形成される。ここで、「単粒子吸着膜」とは、リン酸ジルコニウム層2(2b)の表面に光触媒の一次粒子が略一様な密度で吸着(付着)している状態であり、「二次粒子吸着膜」とは、光触媒が二次粒子として吸着するか、若しくは、単一粒子層を保持した一次粒子が表面凝集した状態である。なお、必ずしもリン酸ジルコニウム層2(2b)の表面が光触媒の粒子で完全に被覆されていなくてもよく、リン酸ジルコニウム層2(2b)の表面の概ね30%以上が光触媒粒子で被覆されていればよい。すなわち、リン酸ジルコニウム層2(2b)の表面における光触媒による被覆率は30%以上が好ましく、より好ましくは60%以上であり、とりわけ好ましくは80%以上である。なお、光触媒がリン酸ジルコニウム層2(2b)の表面に過剰に吸着担持されると、かえって光触媒のリン酸ジルコニウム層への固着が不安定となり、特に水中で剥離しやすくなる傾向となるので、好ましくない。なお、上記被覆率はFE-SEM等の走査型電子顕微鏡写真の画像から算出できる。
[光触媒を担持した繊維製品の製法]
(1)繊維基材-リン酸ジルコニウム層複合物の作製
(a)図1、2に示す態様の繊維製品を製造する場合、繊維基材を水溶性アルミニウム化合物の水溶液に浸漬し、水洗した後か、或いは、かかる水溶性アルミニウム化合物の水溶液への浸漬と水洗作業を行うことなく、繊維基材をリン酸ジルコニウム単層剥離分散液に浸漬し、水洗した後、乾燥して、繊維基材にリン酸ジルコニウム層が直接、或いは、アルミニウムイオンまたはポリアルミニウムイオンを介して一体化した複合物を作製する。
(b)また、図3に示す態様の繊維製品を製造する場合は、繊維基材を水溶性アルミニウム化合物の水溶液に浸漬し、水洗する第1作業と、繊維基材をリン酸ジルコニウム単層剥離分散液に浸漬し、水洗する第2作業とを、第2作業が少なくとも2回以上行われるように、交互に繰り返し、第2作業が最終作業となるように処理された繊維基材を乾燥して、2層以上のリン酸ジルコニウム層を含むリン酸ジルコニウム多重層がアルミニウムイオンまたはポリアルミニウムイオンを介して繊維基材に一体化した複合物を作製する。
 なお、水溶性アルミニウム化合物の水溶液の濃度は一般的には、0.1~200mM程度である。濃度が200mMより多いと、均質な吸着が困難になり、0.1mM未満では吸着量及び吸着速度が共に低下するため、被覆が不十分な傾向となる。また、リン酸ジルコニウム層の形成に使用するリン酸ジルコニウム単層剥離分散液の濃度(リン酸ジルコニウム含有量)は、一般的には、1mg~1g/L程度、好ましくは0.1g~1g/L程度である。リン酸ジルコニウム単層剥離分散液の濃度が1g/Lより多いと、チクソトロピーのためにゲル化する傾向があり、1mg/L未満では被覆が不十分な傾向となる。
 繊維基材のリン酸ジルコニウム単層剥離分散液への浸漬後に行う乾燥とは、温度5~30℃程度、湿度20~80%の環境下で12~24時間程度放置する処理であり、また、日光を遮った環境下で行う(陰干し)のが好ましい。この時間は、遠心脱水等による脱水操作により短縮することができる。
(2)光触媒の担持
 まず、遊星攪拌機等を使用し、例えばジルコニアボール等を粉砕用ボールとして使用したボールミルに、ジルコニアボール等の粉砕用ボール、酸化チタン等の光触媒、及び蒸留水を入れ、300~1000rpmで、所定時間(一般に15~120分程度)攪拌後、さらに蒸留水を加えて攪拌する作業を繰り返して、光触媒含有量が100g/Lのペーストを調製する。次に、蒸留水に塩酸等を加えてpHを3~5.5程度に調整した酸性水に、上記光触媒ペーストを適量加えて分散し、光触媒が正帯電して分散した水分散液を調製する。該分散液中の光触媒の含有量は0.05~5g/L程度が好ましい。光触媒の濃度(含有量)が5g/Lより多いと、剥離しやすくなるとともに歩留まり低下の傾向となり、0.05g/L未満では十分な担持が行えない傾向となる。次にかかる光触媒の水分散液中に前記(1)で作製した繊維基材-リン酸ジルコニウム層複合物を浸漬した後、水洗し、自然乾燥する。そして、乾燥後、60~150℃で1~3時間程度焼結する。なお、ここでの自然乾燥とは、温度15~30℃程度、湿度20~80%の環境下で12~24時間程度放置する処理であり、また、日光を遮った環境下で行う(陰干し)のが好ましい。この時間は、遠心脱水等による脱水操作により短縮することができる。焼結により光触媒が最外層のリン酸ジルコニウム層に静電的に吸着して固定された、目的の光触媒を担持した繊維製品が得られる。
 本発明の光触媒を担持した繊維製品は、衣類、寝具、テーブルクロス、壁紙、カーテン、絨毯、シート、椅子などの内装品等の種々の用途の繊維製品に好適に適用することができ、中でも、繊維の風合いが損なわれないという従来の光触媒を担持した繊維製品では改善困難であった課題を解消できることから、肌着、下着、上着を問わず、種々の衣類の生地用として特に好適に使用することができる。また、本発明の光触媒繊維に太陽光または室内灯による微弱な紫外線が照射されることにより光触媒活性を持つため、衣服として着用した場合、或いは、壁紙、シーツ、カバーなどとして使用した場合には、光照射される表面層だけが活性化され、光が照射されない裏面では活性は示さない。
 酸化チタンは古くから白色顔料として利用されており、資源量も十分であり、一方、リン酸ジルコニウムも比較的安全で健康障害も少ない。ミョウバンも漬物などの食品添加物として認可されており、人体に対する危険性は極めて小さいと考えられる。
 以下、実施例と比較例を示して本発明をより具体的に説明するが、本発明は下記の実施例に限定されない。
[1]使用材料
 1.繊維基材
 綿100%平織りシルケット上がり生地(未処理品)と種々の加工処理を行った加工処理品の下記の計5種類の生地を用意した。
 生地1:ジメチルアミノエチルアクリレート4級アンモニウム塩処理品
 生地2:モノメタクリロイルオキシエチルホスフェート処理品
 生地3:アクリル酸処理品
 生地4:没食子酸処理品
 生地5:未処理品
 ※1)ジメチルアミノエチルアクリレート4級アンモニウム塩処理:綿100%平織りシルケット上がり生地の一方の面に対して、エレクトロカーテン型電子線照射装置EC250/15/180L((株)アイ・エレクトロンビーム製)により窒素雰囲気下で電子線を20kGy照射した。電子線照射した生地を10%ジメチルアミノエチルアクリレート4級アンモニウム塩の水溶液に浸漬し、マングルで生地に対して約70重量%の含浸率となるように絞り、35℃で18時間熟成処理した。更に照射しなかったもう一方の面に対して、再度、エレクトロカーテン型電子線照射装置EC250/15/180L((株)アイ・エレクトロンビーム)により、窒素雰囲気下で電子線を20kGy照射した。照射後、35℃で2時間熟成処理した。次いで、未反応の薬剤を除去するために水洗をし、乾燥した。グラフト率は2.0%であった。
 ※2)モノメタクリロイルオキシエチルホスフェート処理:※1)における薬剤にモノメタクリロイルオキシエチルホスフェートを用いた以外は、同様な処理をした。グラフト率は4.2%であった。
 ※3)アクリル酸処理:※1)における薬剤にアクリル酸を用いた以外は、同様な処理をした。グラフト率は7.4%であった。
 ※4)没食子酸処理:没食子酸の10mM水溶液に2時間浸漬後、100℃の熱風で乾燥した。
 2.エタノール
 3.カリウムミョウバンの水溶液(濃度:30mM)
 4.リン酸ジルコニウム単層剥離分散液(濃度:1mM)
 ※リン酸ジルコニウム(α-Zr(HPO・2HO)0.15gを20mLの水に振盪により分散させ、10%テトラブチルアンモニウム水溶液(アルカリ剤)によるイオン交換を実施した後に遠心分離を行い、上澄みを水で40倍に希釈したものを用いた。
 5.酸化チタン(昭和タイタニウム株式会社製の商品名UFA):リング状超微粒子アナタース型酸化チタン
[2]光触媒加工
A.繊維基材-リン酸ジルコニウム多重層複合物の作製
 (1)生地をエタノールに浸漬させて24時間洗浄する。
 (2)蒸留水で洗浄し、エタノール分を取り除く。
 (3)生地をカリウムミョウバンの水溶液に15分間浸漬する。
 (4)蒸留水中で2回洗浄し、大気下、暗所にて乾燥する。
 (5)リン酸ジルコニウム単層剥離分散液に生地を15分間浸漬する。
 (6)蒸留水中で2回洗浄する。
 (7)(3)~(6)をさらに4回繰り返し、5層のリン酸ジルコニウム層を形成する。
 (8)(7)の作業後の5層のリン酸ジルコニウム層を有するリン酸ジルコニウム多重層が吸着した繊維基材を陰干しする。
B.繊維基材-リン酸ジルコニウム多重層-酸化チタン(層)複合物の作製
 (1)酸化チタンペーストの調製
 遊星攪拌機を使用する。ジルコニアボールミルに、ジルコニアボール(直径2mm)9g、酸化チタン2g、蒸留水4mLを入れる。もう片方のボールミルの重さも同じになるようにジルコニアボールと水とで重さを調整する。450rpmで15分攪拌する。攪拌が終わったら、蒸留水を4mL加え、また同条件で攪拌する。さらに蒸留水を入れて攪拌を繰り返し、蒸留水が20mLになったところで、100g/Lペーストが完成する。
 (2)酸化チタン水分散液の調製
 300mLの蒸留水を塩酸でpH4.5に調整し、その溶液中に(1)の酸化チタンペーストを3mL分散し、1g/Lの酸化チタン分散溶液を調製する。
 (3)前記A.で作製した繊維基材-リン酸ジルコニウム多重層複合物を(2)の酸化チタン分散溶液に15分浸漬し、蒸留水で1回洗浄する。
 (4)(3)の作業後の複合物を陰干し、乾燥したら、120℃で2時間焼結させる。
実施例1
 生地1(ジメチルアミノエチルアクリレート4級アンモニウム塩処理品)に上記の光触媒加工を施した。
実施例2
 生地2(モノメタクリロイルオキシエチルホスフェート処理品)に上記の光触媒加工を施した。
実施例3
 生地3(アクリル酸処理品)に上記の光触媒加工を施した。
実施例4
 生地4(没食子酸処理品)に上記の光触媒加工を施した。
比較例1
 生地5(未処理品)をそのまま使用した。
 なお、実施例1~4において、生地に吸着したアルミニウムイオンまたはポリアルミニウムイオンは、それぞれ、約62μg/mであった。また、実施例1~4のいずれにおいても、リン酸ジルコニウム多重層の全体厚みは約5nm、リン酸ジルコニウム層(一層)の厚みは約0.7nmであった。アルミニウムイオン層(一層)の厚みは約0.3nmであった。ここで、リン酸ジルコニウム多重層全体の厚みはFE-SEM(電界放射走査型電子顕微鏡):(株)日立製作所社製 S-4500型 によって得られた複合物断面の画像写真からの判定した値である。
 また、実施例1~4のいずれにおいても、最外層のリン酸ジルコニウム層に固定(吸着)された酸化チタンの一次粒子の粒子径範囲は5~10nm(平均粒子径:8nm)であり、かかる一次粒子が凝集した二次粒子の粒子径範囲は50~300nm(平均粒子径:100nm)であった。
 酸化チタン粒子の一次粒子の粒子径は、FE-SEM(電界放射走査型電子顕微鏡):(株)日立製作所社製 S-4500型 によって得られた繊維表面の画像写真からの算出値であり、平均粒子径は複数個の粒子径の平均値である。具体的には、最初に視野に粒子が500個以上入るように倍率を設定して電子顕微鏡写真を撮影し、次に、写真に写った各粒子の像の面積を算出し、さらにこの算出された面積から同面積を持つ円の直径(すなわち、ヘイウッド径)を算出して、個々の粒子の粒子径とし、測定個数の個数平均を計算して平均粒径とした。
 また、二次粒子の粒子径(平均粒子径)は、酸化チタン水分散液を水で希釈した試料液(pH:5)中の粒子について、光散乱粒度分布計(島津製作所:SALD-200V)で測定した。なお、平均粒径は、算術平均径である。
(1)消臭試験1
 実施例1~3及び比較例1につき以下の試験A、Bを行った。ブラックライトの照射条件は照射強度を1.0mWとした。試験は、洗濯前の生地と、JIS L0217:1995の付表1(番号103)に記載される試験方法に準拠した洗濯試験を10回実施後の生地について行った。
 試験A(アルデヒド)
 1Lのテドラーバッグに試料1gを入れ、アセトアルデヒドを所定濃度(18.0ppm)投入し、ブラックライトを照射して、2時間後と、24時間後の残留ガス濃度を検知管にて測定した。なお、消臭率は試料を入れない状態で測定した濃度(空試験濃度)を基準として、以下の式に基づき算出した。
消臭率(%)=((空試験濃度-試料試験濃度)/(空試験濃度))×100
 試験B(硫化水素)
 1Lのテドラーバッグに試料1gを入れ、硫化水素を所定濃度(20.0ppm)投入し、ブラックライトを照射して、2時間後と、24時間後の残留ガス濃度を検知管にて測定した。なお、消臭率は、試験Aと同様に空試験濃度を基準として算出した。
(2)消臭試験2
 実施例4及び比較例1につき以下の試験A、Bを行った。試験は、洗濯前の生地と、JIS L0217:1995の付表1(番号103)に記載される試験方法に準拠した洗濯試験を10回実施後の生地について行った。
 試験A(アルデヒド)
 アセトアルデヒドの所定濃度を16.0ppmに変更した以外は、消臭試験1の試験Aと同様にして行った。
 試験B(硫化水素)
 硫化水素の所定濃度を32.0ppmに変更した以外は、消臭試験1の試験Bと同様にして行った。
 消臭試験1、2の結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(3)元素分析
 実施例1~4及び比較例1の各生地につき、洗濯前と洗濯後の蛍光X線分析による半定量元素分析を実施した。
 波長分散型蛍光X線分析装置:ZSX 100e((株)リガク製)
 測定条件:試料は30mmφに打ち抜き、真空雰囲気下、EZスキャン法により、測定範囲をB~Uにて実施した。
 結果を表3に示す。表中の数値の単位は質量%である。
Figure JPOXMLDOC01-appb-T000003
 表1、2から分かるように、実施例1~4の光触媒加工が施された生地は光照射下において、明確な消臭効果が認められた。また、洗濯後もその消臭効果が持続する耐久性を有していることが分かった。また、蛍光X線分析による結果(表3)から、洗濯後も光触媒が十分量担持されていることが確認できた。
(4)生地の風合い
 実施例1~4(光触媒加工品)の風合いは、官能による触感試験において比較例1(未加工品)と比較してほとんど差がなった。また、目視、色感検査などの結果においても比較例1(未加工品)と殆ど差がなく、繊維基材の風合いに光触媒加工により影響が殆どないことを確認できた。
 本発明の光触媒を担持した繊維製品は、繊維基材の風合いを損ねることなく保護膜と光触媒膜を積層しているため、カーテン、壁紙などの住宅内装のほか、衣服、かさ、かばんや絨毯などの日用品まで広く応用可能である。強固なリン酸ジルコニムによる保護効果により、紫外線カット繊維として利用できるとともに、紫外線に弱いアラミド、ポリアミド、ナイロン系繊維の保護膜としても期待できる。
 1 繊維基材
 2 リン酸ジルコニウム層
 3 光触媒
 4 アルミニウムイオンまたはポリアルミニウムイオン
 10 リン酸ジルコニウム多重層
 本出願は日本で出願された特願2009-31931を基礎としており、その内容は本明細書に全て包含される。

Claims (16)

  1.  繊維基材に、リン酸ジルコニウム層が静電的に固定され、該リン酸ジルコニウム層の表面に光触媒が静電的に固定されてなることを特徴とする、光触媒を担持した繊維製品。
  2.  リン酸ジルコニウム層と繊維基材の間にアルミニウムイオンまたはポリアルミニウムイオンが介在してなる、請求項1記載の繊維製品。
  3.  2つのリン酸ジルコニウム層がアルミニウムイオンまたはポリアルミニウムイオンを介して積層された積層部を少なくとも1つ以上含むリン酸ジルコニウム多重層が、繊維基材に静電的に固定され、該リン酸ジルコニウム多重層の最外層のリン酸ジルコニウム層に光触媒が静電的に固定されてなることを特徴とする、光触媒を担持した繊維製品。
  4.  リン酸ジルコニウム多重層と繊維基材の間にアルミニウムイオンまたはポリアルミニウムイオンが介在してなる、請求項3記載の繊維製品。
  5.  光触媒が酸化チタンである、請求項1~4のいずれか1項記載の繊維製品。
  6.  繊維基材が繊維表面にアニオン性基導入処理を施したものである、請求項1~5のいずれか1項記載の繊維製品。
  7.  アニオン性基がリン酸基、カルボキシル基又は水酸基である、請求項6記載の繊維製品。
  8.  繊維基材が繊維表面にカチオン性基導入処理を施したものである、請求項1~5のいずれか1項記載の繊維製品。
  9.  カチオン性基が4級アンモニウム塩基である、請求項8記載の繊維製品。
  10.  繊維基材を水溶性アルミニウム化合物の水溶液に浸漬し、水洗した後か、或いは、かかる繊維基材の水溶性アルミニウム化合物の水溶液への浸漬と水洗作業を行わずに、繊維基材をリン酸ジルコニウム単層剥離分散液に浸漬し、水洗した後、乾燥して、繊維基材にリン酸ジルコニウム層が直接、或いは、アルミニウムイオンまたはポリアルミニウムイオンを介して一体化した複合物を作製する第1工程と、
     光触媒が正帯電して分散した光触媒水分散液に前記複合物を浸漬した後、水洗し、乾燥、焼結を行う第2工程とを少なくとも有する、光触媒を担持した繊維製品の製造方法。
  11.  繊維基材を水溶性アルミニウム化合物の水溶液に浸漬し、水洗する第1作業と、繊維基材をリン酸ジルコニウム単層剥離分散液に浸漬し、水洗する第2作業とを、第2作業が少なくとも2回以上行われるように、交互に繰り返し、第2作業が最終作業となるように処理された繊維基材を乾燥して、2つのリン酸ジルコニウム層がアルミニウムイオンまたはポリアルミニウムイオンを介して積層された積層部を1つ以上含むリン酸ジルコニウム多重層がアルミニウムイオンまたはポリアルミニウムイオンを介して繊維基材に一体化した複合物を得る第1工程と、
     光触媒が正帯電して分散した光触媒水分散液に前記複合物を浸漬し、水洗し、乾燥、焼結を行う第2工程とを少なくとも有する、光触媒を担持した繊維製品の製造方法。
  12.  繊維基材が繊維表面にアニオン性基導入処理を施したものである、請求項10又は11記載の繊維製品の製造方法。
  13.  アニオン性基がリン酸基、カルボキシル基又は水酸基である、請求項12記載の繊維製品の製造方法。
  14.  繊維基材が繊維表面にカチオン性基導入処理を施したものである、請求項10又は11記載の繊維製品の製造方法。
  15.  カチオン性基が4級アンモニウム塩基である、請求項14記載の繊維製品の製造方法。
  16.  水溶性アルミニウム化合物がミョウバンである、請求項10~15のいずれか1項記載の繊維製品の製造方法。
PCT/JP2010/052014 2009-02-13 2010-02-12 光触媒を担持した繊維製品およびその製造方法 WO2010092999A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10741276.9A EP2397604A4 (en) 2009-02-13 2010-02-12 PHOTO CATALYST SUPPORTING FIBROUS PRODUCT AND METHOD OF MANUFACTURING THEREOF
CN2010800089617A CN102317536B (zh) 2009-02-13 2010-02-12 担载光催化剂的纤维产品和制造其的方法
US13/201,324 US20120053049A1 (en) 2009-02-13 2010-02-12 Fiber product which supports photocatalyst, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009031931A JP5325598B2 (ja) 2009-02-13 2009-02-13 光触媒を担持した繊維製品およびその製造方法
JP2009-031931 2009-02-13

Publications (1)

Publication Number Publication Date
WO2010092999A1 true WO2010092999A1 (ja) 2010-08-19

Family

ID=42561839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052014 WO2010092999A1 (ja) 2009-02-13 2010-02-12 光触媒を担持した繊維製品およびその製造方法

Country Status (7)

Country Link
US (1) US20120053049A1 (ja)
EP (1) EP2397604A4 (ja)
JP (1) JP5325598B2 (ja)
KR (1) KR20110136800A (ja)
CN (1) CN102317536B (ja)
TW (1) TW201035408A (ja)
WO (1) WO2010092999A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155252A (zh) * 2010-10-05 2013-06-12 日本戈尔有限公司 固体高分子型燃料电池
JP2017534004A (ja) * 2014-11-14 2017-11-16 ヒョソン コーポレーション 消臭性及び吸汗速乾性を有する機能性原糸の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115667134B (zh) * 2020-03-13 2024-05-31 东亚合成株式会社 磷酸锆粒子及使用该磷酸锆粒子的碱性气体除臭剂以及其制造方法
JP2021188199A (ja) 2020-06-02 2021-12-13 国立大学法人信州大学 繊維製品および繊維製品の製造方法
CN111853714B (zh) * 2020-07-07 2022-02-25 北京科技大学 一种光催化光纤灯及其制作方法
CN112297289B (zh) * 2020-09-07 2022-05-06 蒙娜丽莎集团股份有限公司 一种三维双相纤维层增强树脂基复合材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101711A (ja) * 1992-07-22 1995-04-18 Daiichi Kigenso Kagaku Kogyo Kk 結晶質リン酸ジルコニウム
JPH10216210A (ja) 1997-02-07 1998-08-18 Suzutora:Kk 消臭性布帛
JP2000119957A (ja) 1998-10-15 2000-04-25 Komatsu Seiren Co Ltd 消臭、抗菌および防汚機能を有する繊維布帛およびその製造方法
JP2003025516A (ja) * 2001-07-11 2003-01-29 Hiraoka & Co Ltd 環境汚れ防止性の高い積層シート
JP2005213686A (ja) * 2004-01-30 2005-08-11 Toray Ind Inc 再生セルロース繊維を含む繊維材料
JP2006200082A (ja) * 2005-01-21 2006-08-03 Teijin Fibers Ltd 機能性繊維構造体
JP2007136342A (ja) * 2005-11-18 2007-06-07 Tokai Senko Kk 可視光型光触媒機能性繊維布帛及びその製造方法
JP2009031931A (ja) 2007-07-25 2009-02-12 Univ Waseda 検索語クラスタリング装置、検索語クラスタリング方法、検索語クラスタリングプログラム及び記録媒体
JP2009184506A (ja) * 2008-02-06 2009-08-20 Toyota Motor Corp 車両用制動制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2201934C (en) * 1994-10-05 2008-03-18 Makoto Hayakawa Antimicrobial solid material, process for producing the same, and method of utilizing the same
US5961834A (en) * 1996-12-23 1999-10-05 Bio-Rad Laboratories, Inc. Simple micro method for concentration and desalting utilizing a hollow fiber, with special reference to capillary electrophoresis
JP2003024796A (ja) * 2001-07-13 2003-01-28 Yamaichi Washi Kogyo Kk 光触媒機能を備えたシート状部材
WO2007148773A1 (ja) * 2006-06-22 2007-12-27 Mitsubishi Paper Mills Limited 導電性材料の製造方法
JP4750662B2 (ja) * 2006-09-28 2011-08-17 大王製紙株式会社 衛生薄葉用紙
JP4891837B2 (ja) * 2006-10-02 2012-03-07 花王株式会社 繊維製品処理剤組成物
CN101144200A (zh) * 2007-10-18 2008-03-19 江苏盛虹化纤有限公司 一种具有持久抗菌除臭的乙纶纤维
JP2009184206A (ja) * 2008-02-05 2009-08-20 Fujifilm Corp インクジェット記録方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101711A (ja) * 1992-07-22 1995-04-18 Daiichi Kigenso Kagaku Kogyo Kk 結晶質リン酸ジルコニウム
JPH10216210A (ja) 1997-02-07 1998-08-18 Suzutora:Kk 消臭性布帛
JP2000119957A (ja) 1998-10-15 2000-04-25 Komatsu Seiren Co Ltd 消臭、抗菌および防汚機能を有する繊維布帛およびその製造方法
JP2003025516A (ja) * 2001-07-11 2003-01-29 Hiraoka & Co Ltd 環境汚れ防止性の高い積層シート
JP2005213686A (ja) * 2004-01-30 2005-08-11 Toray Ind Inc 再生セルロース繊維を含む繊維材料
JP2006200082A (ja) * 2005-01-21 2006-08-03 Teijin Fibers Ltd 機能性繊維構造体
JP2007136342A (ja) * 2005-11-18 2007-06-07 Tokai Senko Kk 可視光型光触媒機能性繊維布帛及びその製造方法
JP2009031931A (ja) 2007-07-25 2009-02-12 Univ Waseda 検索語クラスタリング装置、検索語クラスタリング方法、検索語クラスタリングプログラム及び記録媒体
JP2009184506A (ja) * 2008-02-06 2009-08-20 Toyota Motor Corp 車両用制動制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2397604A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155252A (zh) * 2010-10-05 2013-06-12 日本戈尔有限公司 固体高分子型燃料电池
US9711815B2 (en) 2010-10-05 2017-07-18 W. L. Gore & Associates, Co., Ltd. Polymer electrolyte fuel cell
JP2017534004A (ja) * 2014-11-14 2017-11-16 ヒョソン コーポレーション 消臭性及び吸汗速乾性を有する機能性原糸の製造方法

Also Published As

Publication number Publication date
JP2010185158A (ja) 2010-08-26
KR20110136800A (ko) 2011-12-21
TW201035408A (en) 2010-10-01
EP2397604A4 (en) 2014-04-30
US20120053049A1 (en) 2012-03-01
CN102317536A (zh) 2012-01-11
JP5325598B2 (ja) 2013-10-23
CN102317536B (zh) 2013-05-29
EP2397604A1 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
Galkina et al. The sol–gel synthesis of cotton/TiO2 composites and their antibacterial properties
JP5325598B2 (ja) 光触媒を担持した繊維製品およびその製造方法
Radetić Functionalization of textile materials with TiO2 nanoparticles
Stan et al. Designing cotton fibers impregnated with photocatalytic graphene oxide/Fe, N-doped TiO2 particles as prospective industrial self-cleaning and biocompatible textiles
Karimi et al. Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking
Farouk et al. Preparation of multifunctional cationized cotton fabric based on TiO2 nanomaterials
Wijesena et al. Slightly carbomethylated cotton supported TiO2 nanoparticles as self-cleaning fabrics
EP2492391A1 (en) Optimized layer-by-layer assemblies for indoor photo-catalytical pollutants removal
Derakhshan et al. Antibacterial and self-cleaning properties of cotton fabric treated with TiO 2/Pt
Saleem et al. Ultrasonic biosynthesis of TiO 2 nanoparticles for improved self-cleaning and wettability coating of DBD plasma pre-treated cotton fabric
JP5285017B2 (ja) 消臭性セルロース繊維構造物およびその製造方法、並びにこの消臭性セルロース繊維構造物を用いた消臭性セルロース繊維製品
Alvarez-Amparán et al. Characterization and photocatalytic activity of TiO2 nanoparticles on cotton fabrics, for antibacterial masks
US20230235502A1 (en) A textile product and a method for producing the textile product
Gulrajani Nano finishes
JP4941995B2 (ja) 光触媒機能を担持した繊維製品及びその製造方法
Scacchetti et al. A multifunctional cotton fabric using TiO2 and PCMs: introducing thermal comfort and self-cleaning properties
CN110373106A (zh) 一种新型医疗用自清洁涂层材料的制备方法
Chowdhury et al. Nanomaterials for multifunctional textiles
JP2009240990A (ja) 光触媒微粒子、光触媒分散液及び光触媒加工繊維
KR102085193B1 (ko) 항균성 및 광분해성이 향상된 직물 및 그의 제조 방법
Hashem et al. Development and evaluation of novel multifunction hybrid containing cationic softener/TiO2/herbal oil for cotton based fabrics
Mondal et al. Metal and metal oxides nanoparticles in healthcare and medical textiles
WO2023233695A1 (ja) 繊維物品の製造方法および繊維物品
Ram Nanoparticle Application by Layer-by-Layer Deposition Technique to Produce on Fabrics
KR20220040064A (ko) 하이드록시 아파타이트 물질을 이용한 항균성 직물 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008961.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117020605

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010741276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13201324

Country of ref document: US