WO2023233695A1 - 繊維物品の製造方法および繊維物品 - Google Patents

繊維物品の製造方法および繊維物品 Download PDF

Info

Publication number
WO2023233695A1
WO2023233695A1 PCT/JP2023/000185 JP2023000185W WO2023233695A1 WO 2023233695 A1 WO2023233695 A1 WO 2023233695A1 JP 2023000185 W JP2023000185 W JP 2023000185W WO 2023233695 A1 WO2023233695 A1 WO 2023233695A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
fiber
copper compound
supported
copper
Prior art date
Application number
PCT/JP2023/000185
Other languages
English (en)
French (fr)
Inventor
雅浩 宮内
信太郎 浅井
Original Assignee
株式会社ステムズ
ケイ.アンビエンテ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ステムズ, ケイ.アンビエンテ株式会社 filed Critical 株式会社ステムズ
Priority to JP2023530675A priority Critical patent/JP7440818B1/ja
Publication of WO2023233695A1 publication Critical patent/WO2023233695A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/34Copper; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/192Polycarboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials

Definitions

  • the present invention relates to a method for manufacturing a fibrous article in which inorganic fine particles are supported on a fibrous base material, and a fibrous article.
  • photocatalysts using titanium oxide are inexpensive, have excellent chemical stability, have high catalytic activity, and are harmless to the human body. It is widely used as a (virus inactivating) substance (see, for example, Patent Documents 1 and 2).
  • titanium oxide generally exhibits photocatalytic activity only under ultraviolet irradiation, it cannot exhibit sufficient catalytic activity under indoor light that contains almost no ultraviolet components. Therefore, visible light-responsive photocatalysts that exhibit photocatalytic activity even under indoor light such as fluorescent lamps have been proposed (see, for example, Patent Documents 3 and 4); however, these visible-light-responsive photocatalysts are virus-free. It has poor activation and antibacterial properties, and cannot be said to have sufficient antibacterial or antiviral effects in practical use.
  • the present invention solves the above-mentioned problems, and aims to provide a method for producing a textile article and a textile article with excellent antiviral and antibacterial properties.
  • the method for producing a fibrous article of the present invention is a method for producing a fibrous article having a fibrous base material and inorganic fine particles fixed thereto, comprising: A fiber ambivalent ionization step in which a crosslinking agent acts on a fibrous material made of the fiber base material or its raw material fiber in an aqueous medium to ambivalently ionize the fibrous material; It is characterized by comprising an inorganic fine particle fixing step of bringing the fiber material which has been both ionized in the fiber both ionization step and the inorganic fine particles into contact in an aqueous medium.
  • the crosslinking agent one containing a charge plus agent and a substance having two carboxy groups.
  • the charge plus agent (a) a quaternary ammonium salt, (b) a protein, (c) a cationic agent, (d) an epoxy-based modified substance, and (e) a porous cationic and water-soluble
  • the charge plus agent (a) a quaternary ammonium salt, (b) a protein, (c) a cationic agent, (d) an epoxy-based modified substance, and (e) a porous cationic and water-soluble
  • one containing at least one selected from the group consisting of a mixture of a substance and a surfactant having an anionic charge (a) quaternary ammonium salt, (b) a protein, (c) a cationic agent, (d) an epoxy-based modified substance, and (e) a porous cationic and water-soluble
  • the inorganic fine particles include titanium oxide having a rutile titanium oxide content of 50 mol% or more, and a monovalent copper compound and a divalent copper compound supported on the surface of the titanium oxide. It is preferable to use a copper compound-supported titanium oxide photocatalyst having a copper compound. Further, it is preferable that the copper compound-supported titanium oxide photocatalyst has an antibacterial effect against Gram-positive bacteria or Gram-negative bacteria, or an antiviral effect against viruses.
  • the proportion of the copper compound-supported titanium oxide photocatalyst to the fibrous material is preferably 0.1 to 20.0% by mass.
  • the fiber base material is preferably at least one selected from the group consisting of nonwoven fabrics, woven fabrics, knitted fabrics, and combinations thereof made of fibers.
  • the fiber article of the present invention is obtained by the above method for producing a fiber article, and includes: It is used as medical clothing.
  • the method for producing a fiber article of the present invention includes a fiber ambivalent ionization step in which the fibrous material is ambivalently ionized, and an inorganic fine particle fixing step in which the ambivalent ionized fiber material is brought into contact with the inorganic fine particles in an aqueous medium.
  • the inorganic fine particles are strongly supported on the fibers, and the detachment of the inorganic fine particles can be prevented even when the textile article obtained by this manufacturing method is washed or washed with water.
  • the textile article produced by the method for producing a textile article of the present invention is highly safe for the human body and has excellent antibacterial and antiviral properties because it contains a specific copper compound-supported titanium oxide photocatalyst. It will be done.
  • the textile article of the present invention into medical clothing such as a sanitary mask, medical gown, uniform, etc., or by using it as a material thereof, it is possible to prevent the attachment of pathogenic bacteria and viruses to medical clothing after wearing. As a result, it is possible to achieve high safety when taking off medical clothing after wearing it.
  • the textile article manufactured by the method for manufacturing a textile article of the present invention has antibacterial and antiviral effects both in the dark and in the light, so that it can have a certain degree of antibacterial action even in the dark.
  • the specific copper compound-supported titanium oxide photocatalyst is a component with reduced environmental impact, the entire textile article of the present invention can also have reduced environmental impact. Furthermore, since the specific copper compound-supported titanium oxide photocatalyst is not derived from animals, it is possible to consider animal welfare sentiments.
  • the fiber article of the present invention contains a fiber base material and inorganic fine particles fixed to the fiber base material.
  • fixation of inorganic fine particles to a fiber material made of a fiber base material or its raw material fibers means that the inorganic fine particles adhere to the fiber material by some kind of interaction, and the inorganic fine particles can also be removed from the fiber material by physical treatment such as washing with water or bleaching, or by chemical treatment. This refers to a state in which there is no detachment.
  • the textile article of the present invention can be used as textile products in general or as a material for textile products in general, but is particularly applicable to medical gowns such as surgical gowns, medical clothing such as drapes, masks, and uniforms; sheets, and gauze. It can be suitably used as a material for medical textile products such as sanitary materials.
  • a specific copper compound-supported titanium oxide photocatalyst which will be described in detail later, is used as the inorganic fine particles.
  • a specific copper compound-supported titanium oxide photocatalyst is a substance that exhibits antibacterial and antiviral properties (virus inactivation properties), and particularly exhibits its functions both in the dark and in the light.
  • exhibiting antibacterial properties refers to exhibiting performance such as bactericidal (killing microorganisms), bacteriostatic (suppressing the proliferation of microorganisms), sterilization, disinfection, antibacterial control, sterilization, antiseptic, and antifungal properties. It means to do something.
  • exhibiting antiviral properties refers to exhibiting performance such as inactivation, which kills viruses and loses their infectivity.
  • the fiber article of the present invention exhibits its function by fixing a specific copper compound-supported titanium oxide photocatalyst to a fiber base material and allowing it to exist. According to the textile article of the present invention, viruses and bacteria that become pathogens on the surface of the article are reduced, and the effect can be obtained sustainably. Moreover, the effect can be obtained to some extent even in a dark state, and even higher effects can be obtained with light irradiation, and a sufficient effect can be obtained as a whole.
  • Targets for which the textile article of the present invention exhibits antibacterial and antiviral properties include Gram-negative bacteria such as Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Moraxella bacteria, Legionella bacteria, and periodontal disease-causing bacteria; Staphylococcus aureus , methicillin-resistant Staphylococcus aureus (MRSA), Prop. acnes, and Clostridium bacteria; yeasts such as Candida, Rhodotorula, baker's yeast; fungi such as Trichophyton and other molds; influenza virus, norovirus, Examples include RNA viruses such as the new coronavirus (COVID-19); DNA viruses.
  • Gram-negative bacteria such as Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Moraxella bacteria, Legionella bacteria, and periodontal disease-causing bacteria
  • Bacteria that cause periodontal disease include Actinobacillus actinomycetemcomitans, Prophyromonas gingivalis, Prevotella intermedia, Spirochaete, and the like.
  • the method for producing a fiber article of the present invention involves applying a crosslinking agent to a fiber material made of a fiber base material or its raw material fibers in an aqueous medium to ionize the fiber material to create a positive charge and a negative charge on the surface of the fiber material.
  • a fiber ampho-ionization step to obtain ampho-ionized fibers with a fixed electric charge is carried out by contacting the ampho-ionization fiber material with inorganic fine particles in an aqueous medium with an anion penetrating agent adsorbed as necessary, and injecting the inorganic fine particles into the inside of the fiber. and a step of fixing inorganic fine particles to infiltrate the inorganic particles.
  • the inorganic fine particles can be further pushed into the fibers by performing a pushing step in which the fibers are moved by applying pressure or using a jet dyeing machine or the like. Thereafter, by washing, dehydrating, and drying, a fiber material on which inorganic fine particles are fixed can be obtained.
  • a specific copper compound-supported titanium oxide photocatalyst fixed on a textile article is difficult to detach even when subjected to friction such as washing.
  • the pH, temperature, action time, etc. of the aqueous medium in each step should be set appropriately depending on the type of fiber material (for example, cellulose fiber, protein fiber, artificial fiber, synthetic fiber, etc.) and the components of the crosslinking agent used. I can do it.
  • Inorganic fine particles such as metal or ore fine powder usually have cationic properties, so when added to an aqueous medium, the charge around the inorganic fine particles becomes negative. Therefore, if the fiber base material or the fiber material made of its raw material fiber is cationized in the aqueous medium, the inorganic fine particles can be fixed to the fiber material by ion adsorption. Generally, inorganic fine particles are often fixed using a crosslinking agent containing a charge-positive material, and the fiber material is fixed with a positive charge and the inorganic fine particles are fixed with a negative charge.
  • the inorganic particles may detach or fall off from the textile material due to friction, pressure from running water during washing, etc. .
  • the crosslinking agent used contains a substance having two carboxyl groups in addition to the charge-positive material, such as the specific crosslinking agent described below, the fiber material may contain a substance with a negative charge.
  • the inorganic fine particles are pulled into the fiber structure and fixed with positive and negative charges so that they cannot be detached from the fiber material. can do. This is a significantly higher fixing force than for typical cationized fiber materials.
  • the crosslinking agent a specific crosslinking agent that is a mixture of a charge plus agent A, a substance B having two carboxyl groups, and another substance C such as a surfactant other than A and B is preferably used.
  • the charge plus agent A is water-soluble, has an anionic charge, and is capable of cationizing the fiber material.
  • the charge plus agent A includes (a) a quaternary ammonium salt, (b) a protein such as chitosan or sericin, (c) a cationic agent, (d) an epoxy modified substance, and (e) a porous material.
  • Examples of the substance having two carboxyl groups include a cationic agent containing polyacrylic acid.
  • the fiber base material can be at least one selected from the group consisting of nonwoven fabrics, woven fabrics, knitted fabrics, and combinations thereof made of fibers.
  • Examples of the fiber material made of the fiber base material and its raw material fibers include those made of pulp fibers such as cellulose and non-pulp fibers, preferably those containing 50% by mass or more of non-pulp fibers, and more preferably. is contained in an amount of 70% by mass or more, more preferably 80% by mass or more, particularly preferably 100% by mass.
  • Non-pulp fibers include cellulose fibers such as cotton and linen, protein fibers such as silk and wool, polyesters such as nylon, vinylon, and polyethylene terephthalate, polyacrylic, polyvinyl chloride, polyolefins such as polyethylene and polypropylene, and polyurethane. Examples include synthetic fibers, recycled fibers such as rayon, and semi-synthetic fibers such as acetate, single or composite fibers, and synthetic fibers are preferably used.
  • the fiber base material preferably has a basis weight of 30 g/m 2 to 300 g/m 2 .
  • nonwoven fabric meltblown nonwoven fabric, spunbond nonwoven fabric, spunlace nonwoven fabric, thermal bonded nonwoven fabric, resin bonded nonwoven fabric, nanofiber nonwoven fabric, etc.
  • knitted fabrics include stockinette knitting, garter knitting, elastic knitting, net knitting, lace knitting, square knitting, long knitting, and ball knitting.
  • woven fabrics include plain fabrics such as oxford, broadcloth, sheeting, weather cloth, canvas, and gauze, twill fabrics such as serge, cabazine, and denim, and satin fabrics called satin.
  • Inorganic fine particles Various known inorganic particles can be used as long as they have cationic properties and the surrounding charge becomes negative when added to the aqueous medium.
  • the inorganic fine particles include fine powders of metals and ores.
  • the inorganic fine particles it is preferable to use, for example, titanium oxide, and it is particularly preferable to use the following specific copper compound-supported titanium oxide photocatalyst.
  • the copper compound site has a negative charge in an aqueous medium, and ions are adsorbed to the biionized fiber material by another ionic bond.
  • a specific copper compound-supported titanium oxide photocatalyst includes titanium oxide in which the content of rutile-type titanium oxide is 50 mol% or more, and a monovalent copper compound and a divalent copper compound supported on the surface of this titanium oxide.
  • a specific copper compound-supported titanium oxide photocatalyst one disclosed in Japanese Patent No. 5129897 can be used.
  • This specific copper compound-supported titanium oxide catalyst contains both monovalent copper compounds and divalent copper compounds, so it has antibacterial and antiviral effects in both dark and light conditions, and especially Since a divalent copper compound is supported on the surface of titanium oxide, it has excellent photocatalytic activity under visible light.
  • a specific copper compound-supported titanium oxide catalyst contains a monovalent copper compound that has better virus inactivation properties than a divalent copper compound, so it has an antibacterial effect even in the dark due to the presence of the monovalent copper compound.
  • a divalent copper compound that has excellent photocatalytic activity under visible light it has even more excellent antibacterial and antiviral effects in the light state due to the presence of the divalent copper compound. can get.
  • this specific copper compound-supported titanium oxide catalyst exhibits the above-mentioned antibacterial and antiviral effects even when exposed to ultraviolet light.
  • the main component of titanium oxide supported by a specific copper compound is rutile-type titanium oxide, it has antibacterial and antiviral properties compared to cases where the main component is anatase-type titanium oxide or brookite-type titanium oxide. Excellent in sex. Although the reason for this is not clear, it is presumed that the above-mentioned redox reaction between monovalent copper and divalent copper is carried out more efficiently in the presence of rutile-type titanium oxide. In this particular copper compound-supported titanium oxide photocatalyst, the copper compound is precipitated by heterogeneous nucleation on the surface of titanium oxide, so as shown in Figures 1 and 2, the titanium oxide and copper compound are physically combined. It is a composite particle.
  • metal oxides other than monovalent copper compounds and divalent copper compounds are not supported on the titanium oxide constituting the specific copper compound-supported titanium oxide photocatalyst. Since a specific copper compound is physically supported on titanium oxide in this way, interfacial charge transfer transition is promoted by visible light irradiation at the interface between titanium oxide and the copper compound, which is necessary to develop photocatalytic function. The effect of efficiently generating electrons and holes can be obtained.
  • a bright state is a state in the presence of any light beam.
  • the light beam may be visible light or ultraviolet light.
  • a light source such as sunlight, a mercury lamp, a xenon lamp, a white fluorescent lamp, an LED, etc.
  • L-42 optical filter manufactured by AGC Techno Glass Co., Ltd.
  • ultraviolet light irradiation sunlight, a mercury lamp, a xenon lamp, a black light, or a white fluorescent lamp can be used.
  • the dark state refers to a state in which light irradiation is extremely small or completely absent.
  • Examples of dark conditions include spaces between the skin covered by clothing, rooms at night, inside machines and refrigerator storage rooms, and hospital facilities that are dark at night or when not in use (such as waiting rooms and operating rooms). ) Indoors, etc.
  • certain copper compound-supported titanium oxide photocatalysts exhibit high antibacterial and antiviral effects even in dry conditions (for example, low humidity conditions in winter), high humidity conditions, or in the coexistence of organic matter. The effect can be obtained continuously.
  • the titanium oxide in a specific copper compound-supported titanium oxide photocatalyst contains a large amount of rutile-type titanium oxide, so it has excellent antibacterial and antiviral properties.
  • the content of rutile-type titanium oxide in the total amount of titanium oxide is preferably 50 mol% or more. If it is less than 50 mol%, the antibacterial and antiviral properties will be poor. From this point of view, the content of rutile titanium oxide is preferably 50 mol% or more, more preferably 70 mol%, still more preferably 80 mol% or more, particularly preferably 85 mol% or more. .
  • the specific surface area of titanium oxide is preferably 1 to 200 m 2 /g.
  • the lower limit of the specific surface area of titanium oxide is preferably 1 m 2 /g, more preferably 3 m 2 /g, still more preferably 4 m 2 /g, and even more preferably 8 m 2 /g. 2 /g
  • the upper limit is preferably 200 m 2 /g, more preferably 100 m 2 /g, even more preferably 70 m 2 /g, even more preferably 50 m 2 /g. be.
  • the specific surface area of titanium oxide is more preferably 3 to 100 m 2 /g, still more preferably 4 to 70 m 2 /g, particularly preferably 8 to 50 m 2 /g.
  • the specific surface area is a value measured by the BET method using nitrogen adsorption.
  • the titanium oxide it is advantageous to use commercially available titanium oxide as it is, considering the catalyst preparation process. For example, when using commercially available titanium oxide with a large specific surface area and low rutile crystallinity, it is necessary to perform calcination or the like to obtain titanium oxide having the optimum specific surface area and crystallinity. When such a firing process is performed, extra effort is required, which causes an increase in cost. Further, there may be a problem of coloring during firing. From this point of view, commercially available titanium oxide products obtained by the gas phase method and having appropriate crystallinity and specific surface area can be used as they are.
  • the content of copper compound relative to titanium oxide in a specific copper compound-supported titanium oxide photocatalyst is 0.01 to 10 parts by mass of copper ions (total of monovalent copper ions and divalent copper ions) to 100 parts by mass of titanium oxide. It is preferable that When the amount is 0.01 parts by mass or more, the antiviral effect and visible light responsiveness due to supporting the copper compound are well expressed. When the amount is 10 parts by mass or less, the titanium oxide surface is prevented from being coated, and the photocatalytic function is well expressed. On the other hand, if it exceeds 10 parts by mass, there is a risk that the specific copper compound-supported titanium oxide photocatalyst may become dark in color.
  • the lower limit of the content of copper ions is preferably 0.01 parts by mass, more preferably 0.05 parts by mass, and still more preferably 0.07 parts by mass, based on 100 parts by mass of titanium oxide.
  • the upper limit is preferably 10 parts by mass, more preferably 7 parts by mass, still more preferably 5 parts by mass, and even more preferably 2 parts by mass.
  • the content of copper ions is more preferably 0.05 to 7 parts by mass, still more preferably 0.07 to 5 parts by mass, particularly preferably 0.1 parts by mass, based on 100 parts by mass of titanium oxide. ⁇ 2 parts by weight, more particularly preferably 0.1 to 1.0 parts by weight.
  • the average particle size of the copper compound supported on titanium oxide is preferably 0.5 to 100 nm. When it is 0.5 nm or more, crystallinity improves and antibacterial and antiviral properties improve. When it is 100 nm or less, it has the following effects: (i) the specific surface area becomes large and it has excellent antibacterial and antiviral properties, and (ii) it can be supported well on the surface of titanium oxide. From these viewpoints, the average particle size of the copper compound is more preferably 0.5 to 80 nm, still more preferably 1 to 70 nm, and particularly preferably 2 to 50 nm. Note that these particle sizes can be confirmed by observing using an electron microscope.
  • the abundance ratio of monovalent copper (Cu(I)) to the total of monovalent copper (Cu(I)) and divalent copper (Cu(II)) is preferably 20 to 70 mol%. When it is 20 mol% or more, it has excellent antiviral properties (virus inactivation properties). If it is 70 mol% or less, the amount of divalent copper (Cu(II)) will be relatively large, resulting in excellent photocatalytic activity. From these viewpoints, the lower limit of the abundance ratio is preferably 20 mol%, more preferably 25 mol%, and the upper limit is preferably 70 mol%, more preferably 60 mol%. The content is more preferably 45 mol%, and even more preferably 35 mol%. The abundance ratio is more preferably 25 to 60 mol%, still more preferably 25 to 45 mol%, particularly preferably 25 to 35 mol%.
  • the monovalent copper compound is not particularly limited, but one or two of copper(I) oxide, copper(I) sulfide, copper(I) iodide, copper(I) chloride, and copper(I) hydroxide. Among them, copper(I) oxide is particularly preferably used.
  • the divalent copper compounds are not particularly limited, but include copper (II) hydroxide, copper (II) oxide, copper (II) chloride, copper (II) acetate, copper (II) sulfate, copper (II) nitrate, Examples include one or more of copper(II) fluoride, copper(II) iodide, and copper(II) bromide, and copper(II) hydroxide (Cu(OH) 2 ) is particularly preferably used. It will be done.
  • the monovalent copper compound and the divalent copper compound supported on titanium oxide preferably contain copper (I) acid value and copper (II) hydroxide; ) is also preferable.
  • the monovalent copper compound and divalent copper compound supported on titanium oxide contain copper (I) oxide and copper (II) hydroxide
  • the monovalent copper compound and divalent copper compound supported on titanium oxide contain copper(I) oxide and copper(II) hydroxide.
  • the proportion of copper (I) acid value and copper (II) hydroxide in the total amount of the compound is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more. , and even more preferably 100% by mass.
  • a specific copper compound-supported titanium oxide photocatalyst has a content of rutile-type titanium oxide of 80 mol% or more, and a monovalent content of rutile titanium oxide relative to the total of monovalent copper (Cu(I)) and divalent copper (Cu(II)).
  • the abundance ratio of copper (Cu(I)) is preferably 20 to 70 mol%.
  • a specific copper compound-supported titanium oxide photocatalyst can be produced as disclosed in Japanese Patent No. 5,129,897. Specifically, it can be produced by supporting a monovalent copper compound and a divalent copper compound on the surface of titanium oxide in which the content of rutile-type titanium oxide is 50 mol % or more.
  • monovalent copper (Cu(II)) is added to a suspension containing titanium oxide containing 50 mol% or more of rutile-type titanium oxide and a divalent copper compound.
  • a method of adding a reducing agent to reduce copper (Cu(I)) is mentioned, and a second production example includes titanium oxide containing 50 mol% or more of rutile-type titanium oxide and titanium oxide.
  • the ratio of the inorganic fine particles to the fiber base material is set to such an extent that, for example, when a specific copper compound-supported titanium oxide photocatalyst is used as the inorganic fine particles, the active ingredient exhibits at least antibacterial and antiviral properties. Specifically, it is preferably 0.1 to 20.0% by mass, more preferably 1.0 to 12.0% by mass, particularly preferably 5.0 to 10.0% by mass. be. In this application, if the content of the copper compound-supported titanium oxide photocatalyst is too large, the resulting fiber article may be deteriorated by the copper compound-supported titanium oxide photocatalyst or may have a hard feel.
  • the content of the copper compound-supported titanium oxide photocatalyst is too low, there is a risk that sufficient antibacterial and antiviral properties may not be obtained.
  • about 40% by mass of the specific copper compound-supported titanium oxide photocatalyst added during the process can be fixed inside the fiber, so that the final product obtained
  • the amount calculated from the amount of the specific copper compound-supported titanium oxide photocatalyst in the textile article may be added in the manufacturing method.
  • Example 1 Processing of polyester fiber> A penetrating material having an anionic charge was added to 20 times the amount of water to give a concentration of 0.3 to 3%/OWF. In addition, the liquid flow machine was filled with water at room temperature to 70° C. at a bath ratio of 15 times, the polyester fibers were fixed, the above-mentioned anion penetrating material was added, and the machine was run for 10 minutes. Then, as a crosslinking agent, a cationic agent exclusively for polyester (manufactured by Siontech, containing a charge positive agent and a substance having two negatively charged carboxy groups) was added at a ratio of 10 to 30%/OWF.
  • a crosslinking agent a cationic agent exclusively for polyester (manufactured by Siontech, containing a charge positive agent and a substance having two negatively charged carboxy groups) was added at a ratio of 10 to 30%/OWF.
  • Example 2 Processing of cotton> Wrap scoured and bleached 100% cotton G poplin (basis weight, 280 g/m 2 ) around the roller of a Zicker dyeing machine, apply a bath ratio to the bath, run it to add moisture, and apply an anion penetrant to 0.25 g/m 2 . I put it in a bath so that it was ⁇ 3%/1/2 of OWF and ran the dyeing machine, then added the remaining anion penetrating material and ran the dyeing machine in the reverse direction of the fabric penetration. Thereafter, 1/2 of a charge-positive agent and a 10 to 50% cross-linking agent containing a substance having two negatively charged carboxy groups were added to the front and back of the fabric, and the dyeing machine was run.
  • a charge-positive agent and a 10 to 50% cross-linking agent containing a substance having two negatively charged carboxy groups were added to the front and back of the fabric, and the dyeing machine was run.
  • ⁇ Reference example B1 Antiviral test piece> A slurry of the copper compound-supported titanium oxide photocatalyst "Will-An" (manufactured by Naka Kogyo Co., Ltd.) was made into a nonwoven fabric "6620T-20 (PP)" (manufactured by Ohmikenshi Co., Ltd., basis weight 38 g/m 2 ) with a size of 50 mm x 50 mm. A test piece [B1] was obtained by coating the nonwoven fabric in an amount of 10% by mass based on the weight of the nonwoven fabric.
  • FIGS. 1 and 2 Electron micrographs of the copper compound-supported titanium oxide photocatalyst used are shown in FIGS. 1 and 2. As shown in FIG. 1, it is confirmed that nanoparticles having a size of several nanometers (indicated by black arrows in FIG. 1) are supported on the surface of particles having a size of several hundred nanometers. Since no nanoparticles were observed in samples that were not subjected to the step of supporting a copper compound, it is thought that the particles with a size of several hundred nanometers are titanium oxide and that the nanoparticles are copper compounds. Further, FIG. 3 shows the results of analyzing points 1 and 2 circled in FIG. 2 by energy dispersive X-ray spectroscopy (EDX). As shown in FIG.
  • EDX energy dispersive X-ray spectroscopy
  • FIG. 4 shows the results using commercially available Cu 2 O and Cu(OH) 2 as standard samples of monovalent copper and divalent copper. The peak appearing at 8979 eV is attributed to monovalent copper, and the peak appearing at 8994 eV is attributed to divalent copper. It turns out that both are included.
  • test piece [B1] and comparative test piece [B1X] After preliminary irradiation (ultraviolet light (FL20S/BLB) 1.0 mW/cm 2 for 24 hours), each of the front and back sides was exposed to ultraviolet light with a wavelength of 254 nm. After sterilization by irradiation for 15 minutes each, an antiviral performance evaluation test using bacteriophage was conducted in accordance with JIS R 1756:2020.
  • a filter paper with a small amount of sterile water added is placed in a Petri dish, a glass stand with a thickness of about 5 mm is placed on top of the filter paper, and a test piece [B1] or a comparative test piece [B1X] is placed on top of the filter paper. ] was placed.
  • a QB phage (NBRC20012) [host E. coli (NBRC 106373)] suspension that had been acclimatized in advance and whose concentration (1.2 x 10 6 PFU/mL) was known was dropped and tested.
  • a 60 mm x 60 mm adhesive glass was placed over the surface.
  • This Petri dish covered with a borosilicate glass plate was used as a measurement set.
  • a plurality of similar measurement sets were prepared.
  • This measurement set was placed inside a blackout curtain for light irradiation, and a white fluorescent lamp "FL20SSW/18" with a sharp cut filter B (N169, cutting wavelengths of 380 nm or less) was used, and the illuminance was 500 lux ( The illuminance of the light was measured using "IM-600M" (manufactured by Topcon Co., Ltd.).)
  • Multiple measurement kits were placed at a position where the illuminance was measured, and after 4 hours of light irradiation, the test piece [B1] QB phages were recovered from the test piece [B1X] for comparison, serially diluted 10 times, and after culturing, the number of plaques was counted to determine the activity value.
  • Table 1 The results are shown in Table 1.
  • ⁇ V FI Antiviral activity value of the test piece according to the reference example in a bright place (illuminance conditions F and I (filter Type B, 500 lux))
  • ⁇ F Type of sharp cut filter used in the test (Type B)
  • ⁇ I Visible light illuminance used in the test (500 lux)
  • ⁇ A Average value (PFU/sample) of bacteriophage infectivity of 3 test pieces immediately after inoculation of comparative test piece (unprocessed product)
  • ⁇ B FI Average value of bacteriophage infectivity titer (PFU/sample) of 3 test pieces after irradiating comparative test pieces (unprocessed product) with light for 4 hours under illuminance conditions F and I.
  • ⁇ C FI Average value of bacteriophage infectivity titer (PFU/sample) of three test pieces after irradiating the test pieces according to the reference example with light for 4 hours under illuminance conditions F and I.
  • ⁇ V D Antiviral activity value of the test piece according to the reference example in the dark
  • ⁇ B D Bacteriophage infectivity value of the 3 test pieces after the comparison test piece (unprocessed product) was stored in the dark for 4 hours
  • ⁇ C D Average value of bacteriophage infectivity titer of 3 test pieces after storing the test piece according to the reference example in the dark for 4 hours (PFU/sample)
  • ⁇ Reference example B2 Antibacterial test piece> A slurry of the copper compound-supported titanium oxide photocatalyst "Will-An" (manufactured by Naka Kogyo Co., Ltd.) was made into a nonwoven fabric "6620T-20 (PP)" (manufactured by Ohmikenshi Co., Ltd., basis weight 38 g/m 2 ) with a size of 50 mm x 50 mm. A test piece [B2] was obtained by coating the nonwoven fabric in an amount of 10% by mass based on the weight of the nonwoven fabric.
  • test piece [B2] and comparative test piece [B2X] After preliminary irradiation (ultraviolet light (FL20S/BLB) 1.0 mW/cm 2 for 24 hours), each of the front and back surfaces was exposed to ultraviolet light with a wavelength of 254 nm. After sterilization by irradiation for 15 minutes each, an antibacterial performance evaluation test using bacteria (Staphylococcus aureus) was conducted in accordance with JIS R 1752:2020.
  • a filter paper with a small amount of sterile water added is placed in a petri dish, a glass stand with a thickness of about 5 mm is placed on top of the filter paper, and a test piece [B2] or a comparative test piece [B2X] is placed on top of the filter paper. ] was placed.
  • 0.3 mL of a suspension of Staphylococcus aureus (NBRC12732) whose concentration (1.1 x 10 5 PFU/mL) had been determined in advance was dropped onto this, and a 60 mm incline was placed to bring the bacteria into contact with the surface of the test piece. It was covered with an adhesive glass of 60 mm in size.
  • This Petri dish covered with a borosilicate glass plate was used as a measurement set.
  • a plurality of similar measurement sets were prepared.
  • This measurement set was placed inside a blackout curtain for light irradiation, and a white fluorescent lamp "FL20SSW/18" with a sharp cut filter B (N169, cutting wavelengths of 380 nm or less) was used, and the illuminance was 500 lux ( The illuminance of the light was measured with "IM-600M" (manufactured by Topcon Co., Ltd.). Multiple measurement kits were placed at a position where the light intensity was measured.
  • test piece [B2] Bacteria were collected from the and comparative test pieces [B2X], serially diluted 10 times, and after culturing, the number of colonies was counted to determine the activity value. The results are shown in Table 2.
  • ⁇ R FI Antibacterial activity value of the test piece according to the reference example in a bright place (illuminance conditions F and I (filter Type B, 500 lux))
  • F and I filter Type B, 500 lux
  • F Type of sharp cut filter used in the test
  • I Visible light illuminance used in the test (500 lux)
  • ⁇ A Average number of viable bacteria of 3 test pieces immediately after inoculation of comparative test piece (unprocessed product) (PFU/sample)
  • ⁇ B FI Average number of viable bacteria in 3 test pieces (PFU/sample) after irradiating the comparison test piece (unprocessed product) with light for 8 hours under the illuminance condition FI.
  • ⁇ C FI Average value of the number of viable bacteria in 3 test pieces after irradiating the test piece according to the reference example with light for 8 hours under the illuminance condition FI (PFU/sample)
  • ⁇ R D Antibacterial activity value of the test piece according to the reference example in the dark
  • B D Average of the number of viable bacteria in the 3 test pieces after the comparison test piece (unprocessed product) was stored in the dark for 8 hours
  • ⁇ C D Average value of viable bacteria count of 3 test pieces after storing the test piece according to the reference example in the dark for 8 hours (PFU/sample)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Environmental Sciences (AREA)
  • Dermatology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Catalysts (AREA)

Abstract

本発明は、抗ウイルス性や抗菌性に優れた繊維物品の製造方法および繊維物品を提供することを目的とする。 本発明の繊維物品の製造方法は、繊維基材と、これに固定される無機微粒子とを有する繊維物品を製造する方法であって、水系媒体中において前記繊維基材またはその原料繊維よりなる繊維材料に対して架橋剤を作用させ、前記繊維材料を両イオン化させる繊維両イオン化工程と、前記繊維両イオン化工程によって両イオン化された繊維材料と、前記無機微粒子とを水系媒体中において接触させる無機微粒子固定工程とを有することを特徴とする。

Description

繊維物品の製造方法および繊維物品
 本発明は、無機微粒子を繊維基材に担持させた繊維物品の製造方法および繊維物品に関する。
 近年、菌やウイルスの増殖による種々の問題を防止するための抗菌剤や抗ウイスル剤、これらを含有する抗菌性素材、抗ウイスル性素材の使用が拡大している。
 例えば、衛生マスクや医療用ガウン等の医療用衣類は、病原性細菌やウイルス等が浮遊する空間に曝露されたときに病原性細菌やウイルス等が、直接、着用者に付着することを防ぐ目的で用いられ、また、衛生マスクはさらに保菌者から病原性細菌、ウイルス等の飛散を防ぐ目的でも用いられている。着用後の医療用衣類は病原性細菌やウイルスが付着していることを前提として脱衣時に付着面に触れないように指導されるが、脱衣の時間的制約や場所的制約、さらには個々人の意識等によってもその効果は異なってくる。そのため、元から抗菌性の高い医療用衣類の必要性が高まっている。
 一方、酸化チタンを用いた光触媒は、安価で化学的安定性に優れ、高い触媒活性を有し、人体に無害であること等により、酸化チタンの光触媒反応を利用した抗菌性物質、抗ウイルス性(ウイルス不活化性)物質としてとして広く用いられている(例えば、特許文献1及び2参照)。
 しかしながら、酸化チタンは一般的には紫外線照射下でしか光触媒活性を発現しないため、紫外線成分を殆ど含まない室内光の下では十分な触媒活性を発現することができない。そのため、蛍光灯のような室内光下でも光触媒活性を発現する可視光応答型光触媒が提案されている(例えば、特許文献3及び特許文献4参照)が、これらの可視光応答型光触媒はウイルス不活化性や抗菌性に乏しく、実用上、十分な抗菌作用や抗ウイルス作用が得られるとは言えない。
特開2007-51263号公報 特開2006-346651号公報 特開2004-143032号公報 特開2006-232729号公報
 本発明は、上述の問題点を解決するものであり、抗ウイルス性や抗菌性に優れた繊維物品の製造方法および繊維物品を提供することを目的とする。
 本発明の繊維物品の製造方法は、繊維基材と、これに固定される無機微粒子とを有する繊維物品を製造する方法であって、
 水系媒体中において前記繊維基材またはその原料繊維よりなる繊維材料に対して架橋剤を作用させ、前記繊維材料を両イオン化させる繊維両イオン化工程と、
 前記繊維両イオン化工程によって両イオン化された繊維材料と、前記無機微粒子とを水系媒体中において接触させる無機微粒子固定工程とを有することを特徴とする。
 本発明の繊維物品の製造方法においては、前記架橋剤として、電荷プラス剤と、2つのカルボキシ基を有する物質とを含有するものを用いることが好ましい。
 また、前記電荷プラス剤として、(a)第4級アンモニウム塩、(b)タンパク質、(c)カチオン剤、(d)エポキシ系変性物質、(e)多孔質を有するカチオン系で、水溶性の物質とアニオン電荷を持つ界面活性剤を混合したもの、の群から選ばれる少なくとも一種を含有するものを用いることが好ましい。
 本発明の繊維物品の製造方法においては、前記無機微粒子として、ルチル型酸化チタンの含有量が50モル%以上である酸化チタンと、前記酸化チタンの表面に担持された一価銅化合物及び二価銅化合物とを有する銅化合物担持酸化チタン光触媒を用いることが好ましい。
 また、前記銅化合物担持酸化チタン光触媒が、グラム陽性菌またはグラム陰性菌に対して抗菌作用、或いはウイルスに対して抗ウイルス作用を有することが好ましい。
 本発明の繊維物品の製造方法においては、前記繊維材料に対する前記銅化合物担持酸化チタン光触媒の割合が、0.1~20.0質量%であることが好ましい。
 本発明の繊維物品の製造方法においては、前記繊維基材が、繊維により構成された不織布、織布、編布、およびこれらの組み合わせからなる群から選択される少なくとも1種であることが好ましい。
 本発明の繊維物品は、上記の繊維物品の製造方法によって得られるものであって、
 医療用衣類として用いられるものである。
 本発明の繊維物品の製造方法は、繊維材料を両イオン化させる繊維両イオン化工程と、両イオン化された繊維材料に無機微粒子を水系媒体中において接触させる無機微粒子固定工程とを有することによって、繊維材料に対して無機微粒子が強力に担持され、例えばこの製造方法によって得られる繊維物品を洗濯、水洗い等しても無機微粒子の脱離の発生を防止することができる。
 また、本発明の繊維物品の製造方法によって製造された繊維物品は、特定の銅化合物担持酸化チタン光触媒を含有することにより、人体への安全性が高く、優れた抗菌性および抗ウイルス性が得られる。従って、本発明の繊維物品を例えば衛生マスクや医療用ガウン、ユニフォーム等の医療用衣類とすること、またはその素材として使用することによって、着用後の医療用衣類について病原性細菌やウイルスの付着の程度を極めて低いものとすることができ、その結果、着用後の医療用衣類の脱衣に高い安全性が得られる。
 特に、本発明の繊維物品の製造方法によって製造された繊維物品は暗状態および明状態のいずれにおいても抗菌作用や抗ウイルス作用が得られるので、暗状態においてもある程度の抗菌作用が得られる。
 また、特定の銅化合物担持酸化チタン光触媒が環境負荷の低減された成分であることによって、本発明の繊維物品全体も環境負荷を低減させることができる。また、特定の銅化合物担持酸化チタン光触媒は動物由来のものではないので、動物愛護感情に配慮することが可能である。
参考例B1で用いた銅化合物担持酸化チタン光触媒の電子顕微鏡写真である。 参考例B1で用いた銅化合物担持酸化チタン光触媒の別の電子顕微鏡写真である。 銅化合物担持酸化チタン光触媒をエネルギー分散型X線分光法(EDX)で分析した結果である。 銅化合物担持酸化チタン光触媒のエックス線吸収端近傍構造の測定結果である。
 以下に、本発明の一実施形態に係る繊維物品の製造方法および繊維物品について説明する。
[繊維物品]
 本発明の繊維物品は、繊維基材と、これに固定される無機微粒子とを含有するものである。
 本発明において、繊維基材またはその原料繊維よりなる繊維材料に対する無機微粒子の固定とは、何らかの相互作用により付着し、水洗、漂白などの物理的処理又は化学的処理によっても無機微粒子が繊維材料から脱離しない状態をいう。無機微粒子の繊維材料への固定化の態様には制限はなく、物理的、化学的な吸着、反応による結合、水素結合性の相互作用による結合など、いずれの態様であっても本発明における固定化に包含される。
 本発明の繊維物品は、繊維製品全般として、或いは繊維製品全般の素材として用いることができるが、特に、術着用ガウン等の医療用ガウン、ドレープ、マスク、ユニフォーム等の医療用衣類;シーツ、ガーゼ等の衛生資材等の医療用繊維製品の素材として好適に用いることができる。
 本発明の繊維物品としては、無機微粒子として、特に、後記に詳述する特定の銅化合物担持酸化チタン光触媒が用いられているものであることが好ましい。特定の銅化合物担持酸化チタン光触媒は、抗菌性および抗ウイルス性(ウイルス不活化性)を発揮する物質であり、特に、暗状態および明状態のいずれにおいてもその機能を発揮するものである。なお、本明細書において、抗菌性を発揮するとは、殺菌(微生物を殺す)、静菌(微生物の繁殖を抑える)、滅菌、消毒、制菌、除菌、防腐、防カビ等の性能を発揮することをいう。また、抗ウイスル性を発揮するとは、ウイルスを死滅させて感染性を失わせる不活化等の性能を発揮することをいう。
 本発明の繊維物品は、特定の銅化合物担持酸化チタン光触媒を繊維基材に固定し、存在させておくことによってその機能を発揮するものである。
 本発明の繊維物品によれば、その表面における病原体となるウイルスや細菌が低減され、その効果が持続的に得られる。しかも、その効果は暗状態においてもある程度得られ、光照射があればより高い効果が得られ、全体として十分な効果が得られる。
 本発明の繊維物品が抗菌性や抗ウイルス性を発揮する対象としては、肺炎桿菌、大腸菌、緑膿菌、サルモネラ菌、モラクセラ菌、レジオネラ菌、歯周病原因菌等のグラム陰性菌;黄色ブドウ球菌、メチシリン耐性黄色ブドウ球菌(MRSA)、アクネ菌、クロストリジウム属細菌等のグラム陽性菌;カンジダ菌、ロドトルラ、パン酵母等の酵母類、白癬菌、その他のカビ類等の真菌;インフルエンザウイルス、ノロウイルス、新型コロナウィルス(COVID-19)等のRNAウイルス;DNAウイルスなどが挙げられる。また、汗腺から分泌された汗等から体臭の原因物質を作り出す種々の菌なども挙げることができる。
 歯周病原因菌には、アクチノバチルス・アクチノマイセテムコミタンス、プロフィロモナス・ジンジバリス、プレボテーラ・インテルメディア、スピロヘータ等が含まれる。
[繊維物品の製造方法]
 本発明の繊維物品の製造方法は、水系媒体中において繊維基材またはその原料繊維よりなる繊維材料に対して架橋剤を作用させ、繊維材料を両イオン化し、繊維材料表面にプラスの電荷およびマイナスの電荷が固定された両イオン化繊維を得る繊維両イオン化工程と、水系媒体中において、両イオン化繊維材料に必要に応じてアニオン浸透剤を吸着させた状態で無機微粒子を接触させてこれを繊維内部に浸透させる無機微粒子固定工程とを有する。さらに、圧力を付与したり液流染色機等を用いることによって繊維を動かす押し込み工程を行うことによって無機微粒子をさらに繊維内部に押し込むことができる。その後、洗浄、脱水、乾燥することにより、無機微粒子が固定された繊維材料を得ることができる。繊維物品に固定された特定の銅化合物担持酸化チタン光触媒は、例えば洗濯等の摩擦を与えても脱離しにくい。
 各工程における水系媒体のpHや温度、作用時間等は、繊維材料の種類(例えばセルロース繊維やたんぱく質繊維、人造繊維、合成繊維等)や用いた架橋剤の成分等によって、それぞれ適宜に設定することができる。
 金属や鉱石の微粉末等の無機微粒子は、通常、カチオン性を有するため、水系媒体中に添加されると無機微粒子の周囲の電荷がマイナスになる。そこで、水系媒体中において繊維基材あるいはその原料繊維よりなる繊維材料がカチオン化されていると、無機微粒子をイオン吸着により繊維材料に固定することができる。一般的に、電荷プラス材を含有する架橋剤を用いた無機微粒子の固定が多く行われており、繊維材料がプラスの電荷を帯び、無機微粒子がマイナスの電荷を帯びた状態で固定させる。ただし、この固定方法だと無機微粒子の固定後、繊維物品が使用される際に摩擦、洗濯時の流水での圧力などに影響され無機微粒子が繊維材料から脱離、脱落してしまうことがある。
 一方、後記する特定の架橋剤のような、使用する架橋剤の中に電荷プラス材に加えて2つのカルボキシル基を有する物質が含有されている場合には、繊維材料に電荷がマイナスの物質が固定されることとなり繊維材料を両イオン化することができ、これにより、無機微粒子が繊維構造の中に引っ張り込まれて、プラス電荷およびマイナス電荷で結合することによって繊維材料から脱離されない状態に固定することができる。これは、一般的なカチオン化を施した繊維材料に対するよりも極めて高い固定力である。
〔架橋剤〕
 本発明において、架橋剤としては、電荷プラス剤Aと、2つのカルボキシル基を有する物質Bと、A,B以外の界面活性剤等のその他の物質Cとを混ぜ合わせた特定の架橋剤を好ましく用いることができる。
 電荷プラス剤Aは、いずれも水溶性でアニオン電荷を有し、繊維材料をカチオン化することができるものである。電荷プラス剤Aとしては、具体的には、(a)第4級アンモニウム塩、(b)キトサンやセリシン等のタンパク質、(c)カチオン剤、(d)エポキシ系変性物質、(e)多孔質を有するカチオン系で、水溶性の物質とアニオン電荷を持つ界面活性剤を混合したもの、の群から選ばれる少なくとも一種を含有する。
 2つのカルボキシ基を有する物質Bを含有する。2つのカルボキシ基を有する物質としては、例えばポリアクリル酸を加えたカチオン剤を挙げることができる。
〔繊維基材〕
 繊維基材は、繊維により構成された不織布、織布、編布、およびこれらの組み合わせからなる群から選ばれる少なくとも1種を挙げることができる。繊維基材やその原料繊維よりなる繊維材料としては、セルロース等のパルプ系繊維や、非パルプ系繊維からなるものが挙げられ、非パルプ系繊維を50質量%以上含有するものが好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは100質量%含有するものである。非パルプ系繊維としては、綿、麻などのセルロース繊維、絹、毛などのタンパク質繊維、ナイロン、ビニロン、ポリエチレンテレフタレート等のポリエステル、ポリアクリル、ポリ塩化ビニル、ポリエチレンやポリプロピレン等のポリオレフィン、ポリウレタン等の合成繊維、レーヨン等の再生繊維、アセテート等の半合成繊維の単体若しくは複合繊維等が挙げられるが、合成繊維が好適に用いられる。
 繊維基材の目付量は30g/m~300g/m2のものが好ましい。
 不織布としては、メルトブローン不織布、スパンボンド不織布、スパンレース不織布、サーマルボンド不織布、レジンボンド不織布、ナノファイバー不織布等が用いられる。編布としてはメリヤス編み、ガーター編み、ゴム編み、ネット編み、レース編み、こま編み、長編み、玉編み等が挙げられる。また織布としては、オックスフォード、ブロードクロス、シーチング、ウェザークロス、キャンバス、ガーゼ等の平織物、サージ、キャバジン、デニム等の綾織物、サテンと呼ばれている繻子織物等が挙げられる。
〔無機微粒子〕
 無機微粒子としては、カチオン性を有し、水系媒体中に添加されると周囲の電荷がマイナスになるものであれば公知の種々のものを使用することができる。無機微粒子としては、金属や鉱石の微粉末を挙げることができる。
 無機微粒子としては、例えば酸化チタンを用いることが好ましく、特に、下記の特定の銅化合物担持酸化チタン光触媒を用いることが好ましい。
 特定の銅化合物担持酸化チタン光触媒は、銅化合物の部位が水系媒体中において電荷がマイナスに傾き、別のイオン結合で両イオン化された繊維材料にイオン吸着する。
[特定の銅化合物担持酸化チタン光触媒]
 特定の銅化合物担持酸化チタン光触媒は、ルチル型酸化チタンの含有量が50モル%以上である酸化チタンと、この酸化チタンの表面に担持された一価銅化合物及び二価銅化合物とを有するものであり、特定の銅化合物担持酸化チタン光触媒としては、特許第5129897号公報に開示されているものを使用することができる。
 この特定の銅化合物担持酸化チタン触媒によれば、一価銅化合物及び二価銅化合物の両方を含んでいるため、暗状態および明状態のいずれにおいても抗菌作用や抗ウイルス作用が得られ、特に、酸化チタンの表面に二価銅化合物が担持されているため、可視光による光触媒活性に優れる。すなわち、特定の銅化合物担持酸化チタン触媒は、二価銅化合物よりもウイルス不活化性に優れている一価銅化合物を含むため、暗状態においても一価銅化合物の存在に起因して抗菌作用や抗ウイルス作用が得られ、また、可視光による光触媒活性に優れる二価銅化合物を含むため、明状態においては二価銅化合物の存在に起因してより一層優れた抗菌作用や抗ウイルス作用が得られる。なお、この特定の銅化合物担持酸化チタン触媒は、紫外光によっても上記抗菌作用や抗ウイルス作用を発揮する。
 さらに、特定の銅化合物担持酸化チタン触媒は、酸化チタンの主成分がルチル型酸化チタンであるため、アナターゼ型酸化チタンやブルッカイト型酸化チタンが主成分である場合と比べて、抗菌性や抗ウイルス性に優れる。その理由は明らかではないが、前述した一価銅と二価銅との間の酸化還元反応が、ルチル型酸化チタンの存在下でより効率よく行われるためであると推測される。
 この特定の銅化合物担持酸化チタン光触媒において、銅化合物は酸化チタンの表面に不均一核生成して析出させるため、図1や図2に示すように、酸化チタンおよび銅化合物は物理的に結合している複合粒子である。また、特定の銅化合物担持酸化チタン光触媒を構成する酸化チタンには、一価銅化合物及び二価銅化合物以外の金属酸化物は担持されていない。このように特定の銅化合物が酸化チタンに物理的に担持されているため、酸化チタンと銅化合物との間の界面において可視光照射による界面電荷移動遷移が促進され、光触媒機能を発現するための電子・正孔が効率的に生成するという効果が得られる。
 明状態とは、任意の光線の存在下にある状態をいう。光線としては、可視光であってもよく、紫外光であってもよい。可視光照射では、太陽光、水銀灯、キセノンランプ、白色蛍光灯、LEDなどの光源から発する光で、L-42光学フィルター(AGCテクノグラス株式会社製)を透過した光を用いることができる。紫外光照射では、太陽光、水銀灯、キセノンランプ、ブラックライト、白色蛍光灯のいずれかを用いることができる。
 暗状態とは、光照射が極めて小さいあるいは全くない状態をいう。暗状態の例としては、衣服に覆われた皮膚と衣服との間の空間、夜間の室内、機械内部や冷蔵庫の収納室、夜間又は不使用時に暗所となる病院施設(待合室や手術室など)室内等が挙げられる。
 また、特定の銅化合物担持酸化チタン光触媒は、乾燥状態(例えば冬季などにおける低湿度の状態など)、高湿度の状態、あるいは有機物の共存下においても高い抗菌作用や抗ウイルス作用が得られ、しかも持続的にその作用が得られる。
<酸化チタン>
 特定の銅化合物担持酸化チタン光触媒中の酸化チタンは、ルチル型酸化チタンを多く含むため、抗菌性および抗ウイルス性に優れる。
 酸化チタン全量中におけるルチル型酸化チタンの含有量は、50モル%以上であることが好ましい。50モル%未満であると、抗菌性および抗ウイルス性に劣るものとなる。この観点から、ルチル型酸化チタンの含有量は、好ましくは50モル%以上であり、より好ましくは70モル%であり、更に好ましくは80モル%以上であり、特に好ましくは85モル%以上である。
 酸化チタンの比表面積は、好ましくは1~200m/gであることが好ましい。1m/g以上であることにより、比表面積が十分に確保されて抗菌性および抗ウイルス性に優れる。200m/g以下であることにより、取扱性に優れる。これらの観点から、酸化チタンの比表面積は、下限値が、好ましくは1m/gであり、より好ましくは3m/gであり、更に好ましくは4m/gであり、より更に好ましくは8m/gであり、また、上限値が、好ましくは200m/gであり、より好ましくは100m/gであり、更に好ましくは70m/gであり、より更に好ましくは50m/gである。また、酸化チタンの比表面積は、より好ましくは3~100m/gであり、更に好ましくは4~70m/gであり、特に好ましくは8~50m/gである。ここで比表面積とは、窒素吸着によるBET法にて測定した値である。
 酸化チタンとしては、市販されている酸化チタンをそのまま使用するほうが、触媒調製の工程を考えると有利である。例えば、市販品の酸化チタンのうち、比表面積が大きくルチルの結晶性が低いものを使用する場合には、焼成等を行って最適な比表面積及び結晶性を有する酸化チタンにしなければならない。このような焼成する工程を経ると、その分、余計な手間がかかり、コスト高の原因となる。また、焼成時に着色してしまうというトラブルも発生しかねない。このような観点からも、適度な結晶性と比表面積を有する、気相法で得られた酸化チタンの市販品を、そのまま使用することができる。
<銅化合物>
 特定の銅化合物担持酸化チタン光触媒における酸化チタンに対する銅化合物の含有量は、酸化チタン100質量部に対して銅イオン(一価銅イオンと二価銅イオンの合計)が0.01~10質量部であることが好ましい。0.01質量部以上の場合、銅化合物担持による抗ウイルス効果や可視光応答性が良好に発現する。10質量部以下であると、酸化チタン表面が被覆されてしまうことが防止され、光触媒の機能が良好に発現する。一方、10質量部を超えると、特定の銅化合物担持酸化チタン光触媒の色味が黒ずんだものとなるおそれがある。その結果、これを繊維基材に担持させる際に、例えば着色剤等をさらに添加しても色味のコントロールを十分な範囲で幅広く行うことが困難となることがあり、従って、例えば術着用ガウン等は所定の色のものが望まれるところ、所望の色とすることができないおそれがある。これらの観点から、銅イオンの含有量は、酸化チタン100質量部に対して、下限値が、好ましくは0.01質量部、より好ましくは0.05質量部、更に好ましくは0.07質量部、より更に好ましくは0.1質量部であり、上限値が、好ましくは10質量部、より好ましくは7質量部、更に好ましくは5質量部、より更に好ましくは2質量部である。また、銅イオンの含有量は、酸化チタン100質量部に対して、より好ましくは0.05~7質量部であり、更に好ましくは0.07~5質量部であり、特に好ましくは0.1~2質量部であり、更に特に好ましくは0.1~1.0質量部である。
 酸化チタンに担持された銅化合物の平均粒径は、好ましくは0.5~100nmである。0.5nm以上であると、結晶性がよくなり抗菌性、抗ウイルス性が向上する。100nm以下であると、(i)比表面積が大きくなり抗菌性、抗ウイルス性に優れる、(ii)酸化チタンの表面に良好に担持することができる、等の効果を有する。これらの観点から、銅化合物の平均粒径は、より好ましくは0.5~80nmであり、更に好ましくは1~70nmであり、特に好ましくは2~50nmである。なお、これらの粒子径は、電子顕微鏡を用いて観察することによって、確認することができる。
 一価銅(Cu(I))及び二価銅(Cu(II))の合計に対する一価銅(Cu(I))の存在比は、好ましくは20~70モル%である。20モル%以上であると、抗ウイルス性(ウイルス不活化性)に優れたものとなる。70モル%以下であると、相対的に二価銅(Cu(II))の量が多くなり、光触媒活性に優れたものとなる。これらの観点から、上記存在比は、下限値が、好ましくは20モル%であり、より好ましくは25モル%であり、上限値が、好ましくは70モル%であり、より好ましくは60モル%であり、更に好ましくは45モル%であり、より更に好ましくは35モル%である。当該存在比は、より好ましくは25~60モル%であり、更に好ましくは25~45モル%であり、特に好ましくは25~35モル%である。
 一価銅化合物としては、特に制限はないが、酸化銅(I)、硫化銅(I)、ヨウ化銅(I)、塩化銅(I)、及び水酸化銅(I)の1種又は2種以上が挙げられ、特に酸化銅(I)が好適に用いられる。
 二価銅化合物としては、特に制限はないが、水酸化銅(II)、酸化銅(II)、塩化銅(II)、酢酸銅(II)、硫酸銅(II)、硝酸銅(II)、フッ化銅(II)、ヨウ化銅(II)、及び臭化銅(II)の1種又は2種以上が挙げられ、特に水酸化銅(II)(Cu(OH)2)が好適に用いられる。
 なお、酸化チタンに担持された一価銅化合物及び二価銅化合物は、酸価銅(I)及び水酸化銅(II)を含むことが好ましく、酸価銅(I)及び水酸化銅(II)からなっていても好ましい。また、酸化チタンに担持された一価銅化合物及び二価銅化合物は、酸価銅(I)及び水酸化銅(II)を含み、かつ酸化チタンに担持された一価銅化合物及び二価銅化合物の総量中における酸価銅(I)及び水酸化銅(II)の割合は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは95質量%以上であり、より更に好ましくは100質量%である。
 特定の銅化合物担持酸化チタン光触媒は、ルチル型酸化チタンの含有量が80モル%以上であり、かつ一価銅(Cu(I))及び二価銅(Cu(II))の合計に対する一価銅(Cu(I))の存在比が20~70モル%であることが好ましい。
 特定の銅化合物担持酸化チタン光触媒は、特許第5129897号公報に開示されている通りに製造することができる。具体的には、ルチル型酸化チタンの含有量が50モル%以上である酸化チタンの表面に、一価銅化合物及び二価銅化合物を担持することにより製造することができる。
 第1の製造例としては、ルチル型酸化チタンの含有量が50モル%以上である酸化チタンと二価銅化合物とを配合した懸濁液に、二価銅(Cu(II))を一価銅(Cu(I))に還元するための還元剤を添加する方法が挙げられ、第2の製造例としては、ルチル型酸化チタンの含有量が50モル%以上である酸化チタンと、酸化チタンの表面に担持された二価銅化合物とを含む触媒前駆体に対して、好ましくは窒素及びアルコールを含む雰囲気中で光照射して二価銅化合物の一部を一価銅化合物に還元する工程を含む方法が挙げられる。
 本発明の繊維物品において、繊維基材に対する無機微粒子の使用割合は、例えば無機微粒子として特定の銅化合物担持酸化チタン光触媒を用いる場合は、有効成分として少なくとも抗菌性や抗ウイルス性が発揮される程度であればよく、具体的には0.1~20.0質量%とすることが好ましく、より好ましくは1.0~12.0質量%、特に好ましくは5.0~10.0質量%である。この用途において銅化合物担持酸化チタン光触媒の含有割合が過多である場合は、得られる繊維物品が銅化合物担持酸化チタン光触媒により劣化を起こしたり 、手触りが硬化したりする場合がある。一方、銅化合物担持酸化チタン光触媒の含有割合が過少である場合は、十分な抗菌性や抗ウイルス性が得られないおそれがある。
 本発明の繊維物品の製造方法においては、工程中に添加された特定の銅化合物担持酸化チタン光触媒は、例えばその40質量%程度が繊維の内部に固定させることができるので、最終的に得られる繊維物品における特定の銅化合物担持酸化チタン光触媒の量から計算される量を製造方法において添加すればよい。
 以上、本発明の実施形態を詳述したが、本発明は上記実施形態に限定されるものではなく、請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行なうことが可能である。
 以下、実施例により本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
<実施例1:ポリエステル繊維の加工>
 アニオン電荷を有する浸透材を、0.3~3%/OWFとなるよう20倍の水に投入した。また、液流機に浴比15倍の常温~70℃の水を張り、ポリエステル繊維を固定して、前述のアニオン浸透材を投入し、10分間回した。その後、架橋剤としてポリエステル専用カチオン剤(シオンテック社製、電荷プラス剤およびマイナスの電荷を有する2つのカルボキシ基を有する物質を含有するもの)を10~30%/OWFとなるよう投入し、5分間以上回し、苛性ソーダを添加して浴比pH8~11に上げ、80~130℃に昇温し、ブローした。浴比15倍の繊維重量対応に対し、銅化合物担持酸化チタン光触媒「ウィルアン」(ナカ工業株式会社製)を1~20%/OWFとなるよう投入し、110~130℃まで昇温し、0.1~0.3%のクエン酸を加え、10分間ソーピングし、ブローして洗浄した。その後、通常の脱水を行い、テンターによって繊維を整えた。
 得られた繊維物品を洗濯、水洗い等しても銅化合物担持酸化チタン光触媒の脱離は発生しなかった。
<実施例2:綿の加工>
 精練漂白された綿100%のGポプリン(目付量、280g/m)を、ジッカー染色機のローラに巻き付け、バスに浴比を張り、操行して水分を着け、アニオン浸透材を0.25~3%/OWFの1/2となるようバスに入れて染色機を回し、生地の浸透の逆から、残りのアニオン浸透材を入れて染色機を回した。その後、電荷プラス剤およびマイナスの電荷を有する2つのカルボキシ基を有する物質を含有する架橋剤10~50%を1/2ずつ、生地の前後に入れ、染色機を回した。その後、カチオン剤を溶解した液を1/4ずつ2~5%/OWFになるように、pH9~12の設定で投入し、昇温を開始して80℃まで昇温し、45~60分間バスに浴比を入れ、ソーピングし、常温で45~60分間。生地のpHが7~8までの確認後、銅化合物担持酸化チタン光触媒「ウィルアン」(ナカ工業株式会社製)を1~20%/OWFとなるよう1/2ずつ前後平均的に固着させるように投入し、80℃まで昇温し、45分間前後に回し、さらに、40分間ソーピングし、脱水した後、テンターによって繊維を整えながら乾燥させた。
 得られた繊維物品を洗濯、水洗い等しても銅化合物担持酸化チタン光触媒の脱離は発生しなかった。
<参考例B1:抗ウイルス試験片>
 銅化合物担持酸化チタン光触媒「ウィルアン」(ナカ工業株式会社製)のスラリーを、50mm×50mmの大きさの不織布「6620T-20(PP)」(オーミケンシ株式会社製、目付量38g/m)に不織布の重量に対して10質量%となるようにコーティング方法により付着させて、試験片〔B1〕を得た。
 用いた銅化合物担持酸化チタン光触媒の電子顕微鏡写真を図1および図2に示す。図1に示されるように、大きさ数百ナノメートルの粒子の表面に大きさが数ナノメートルのナノ粒子(図1において黒矢印で示す)が担持されていることが確認される。銅化合物を担持させる工程を行わない試料においてはナノ粒子が観察されないことから、大きさ数百ナノメートルの粒子が酸化チタンであり、ナノ粒子が銅化合物であると考えられる。また、図2において丸で囲ったポイント1とポイント2について、エネルギー分散型X線分光法(EDX)で分析した結果を図3に示す。図3に示されるように、EDXにおいてポイント1の銅のシグナルが大きいことから、大きさ10nm程度の銅化合物が酸化チタンの表面に担持されていることが確認された。
 次に、銅化合物担持酸化チタン光触媒(CuO/TiO)における、一価銅(Cu(I))及び二価銅(Cu(II))の存在を調べるため、エックス線吸収端近傍構造(X-ray Absroption Near Edge Structure:XANES)を測定した。一価銅、二価銅の標準試料として、市販のCuO、Cu(OH)を用いた結果を図4に示す。8979eVに現れるピークが一価銅、8994eVに現れるピークが二価銅に帰属され、本発明に係る銅化合物担持酸化チタン光触媒(CuO/TiO)には、一価銅と二価銅の両方が含まれていることがわかった。
<比較参考例B1:標準試験片>
 参考例B1において、銅化合物担持酸化チタン光触媒を付着させなかった同じサイズの不織布を、比較用試験片〔B1X〕とした。
 上記の試験片〔B1〕および比較用試験片〔B1X〕を用いて、予備照射(紫外光(FL20S・BLB)1.0mW/cmで24時間)後、表裏それぞれを波長254nmの紫外光を15分間ずつ照射して無菌化した後、JIS R 1756:2020に準拠してバクテリオファージを用いた抗ウイルス性能評価試験を行った。
 具体的には、シャーレ内に少量の滅菌水を加えたろ紙を敷き、ろ紙の上に厚さ5mm程度のガラス製の台を置き、その上に試験片〔B1〕あるいは比較用試験片〔B1X〕を置いた。この上にあらかじめ馴化しておき濃度(1.2×10PFU/mL)も明らかとなっているQBファージ(NBRC20012)〔宿主大腸菌(NBRC 106373)〕懸濁液を0.3mL滴下し、試験片表面とファージを接触させるために60mm×60mmの大きさの密着ガラスを被せた。このシャーレに硼珪酸ガラス板で蓋をしたものを、測定用セットとした。同様の測定用セットを複数個用意した。この測定用セットを光照射用暗幕の中に入れ、白色蛍光灯「FL20SSW/18」にシャープカットフィルタB(N169、380nm以下の波長をカット)を取り付けたものを使用し、照度が500ルクス(光の照度は「IM-600M」(株式会社トプコン製)で測定した。)になる位置に複数個の測定用キットを静置し、4時間の光照射を行った後、試験片〔B1〕および比較用試験片〔B1X〕からQBファージを回収し、10倍の段階希釈を行い、それぞれ培養後、プラーク数をカウントして活性値を求めた。結果を表1に示す。
 表1において、
・VF-I :明所(照度条件F及びI(フィルタTypeB、500ルクス))での参考例に係る試験片の抗ウイルス活性値
・F:試験で用いたシャープカットフィルタの種類(TypeB)
・I:試験で用いた可視光照度(500ルクス)
・A:比較用試験片(無加工品)の接種直後の3試験片のバクテリオファージ感染価の平均値(PFU/sample)
・BF-I :比較用試験片(無加工品)を照度条件F及びIで4時間光照射した後の3試験片のバクテリオファージ感染価の平均値(PFU/sample)
・CF-I :参考例に係る試験片を照度条件F及びIで4時間光照射した後の3試験片のバクテリオファージ感染価の平均値(PFU/sample)
・V:暗所での参考例に係る試験片の抗ウイルス活性値
・B:比較用試験片(無加工品)を4時間暗所に保存した後の3試験片のバクテリオファージ感染価の平均値(PFU/sample)
・C:参考例に係る試験片を4時間暗所に保存した後の3試験片のバクテリオファージ感染価の平均値(PFU/sample)
・ΔV:参考例に係る試験片の光照射による効果
であり、
式(1):VF-I =[log(BF-I /A)-log(CF-I /A)]=log(BF-I /CF-I )=log(BF-I )-log(CF-I 
式(2):V=[log(B/A)-log(C/A)] =log(B/C)=log(B)-log(C
式(3):ΔV=VF-I -V
でそれぞれ計算した。
Figure JPOXMLDOC01-appb-T000001
<参考例B2:抗菌試験片>
 銅化合物担持酸化チタン光触媒「ウィルアン」(ナカ工業株式会社製)のスラリーを、50mm×50mmの大きさの不織布「6620T-20(PP)」(オーミケンシ株式会社製、目付量38g/m)に不織布の重量に対して10質量%となるようにコーティング方法により付着させて、試験片〔B2〕を得た。
<比較参考例B2:標準試験片>
 参考例B2において、銅化合物担持酸化チタン光触媒を付着させなかった同じサイズの不織布を、比較用試験片〔B2X〕とした。
 上記の試験片〔B2〕および比較用試験片〔B2X〕を用いて、予備照射(紫外光(FL20S・BLB)1.0mW/cmで24時間)後、表裏それぞれを波長254nmの紫外光を15分間ずつ照射して無菌化した後、JIS R 1752:2020に準拠して細菌(黄色ブドウ球菌)を用いた抗菌性能評価試験を行った。
 具体的には、シャーレ内に少量の滅菌水を加えたろ紙を敷き、ろ紙の上に厚さ5mm程度のガラス製の台を置き、その上に試験片〔B2〕あるいは比較用試験片〔B2X〕を置いた。この上にあらかじめ濃度(1.1×10PFU/mL)が明らかとなっている黄色ブドウ球菌(NBRC12732)の懸濁液を0.3mL滴下し、試験片表面と細菌を接触させるために60mm×60mmの大きさの密着ガラスを被せた。このシャーレに硼珪酸ガラス板で蓋をしたものを、測定用セットとした。同様の測定用セットを複数個用意した。この測定用セットを光照射用暗幕の中に入れ、白色蛍光灯「FL20SSW/18」にシャープカットフィルタB(N169、380nm以下の波長をカット)を取り付けたものを使用し、照度が500ルクス(光の照度は「IM-600M」(株式会社トプコン製)で測定した。)になる位置に複数個の測定用キットを静置し、8時間の光照射を行った後、試験片〔B2〕および比較用試験片〔B2X〕から細菌を回収し、10倍の段階希釈を行い、それぞれ培養後、コロニー数をカウントして活性値を求めた。結果を表2に示す。
<参考例B3および比較参考例B3>
 参考例B2および比較参考例B2において、試験片〔B2〕および比較用試験片〔B2X〕と同じものを用意して、黄色ブドウ球菌の代わりに大腸菌(NBRC3972)(濃度9.4×10PFU/mL)を用いて同様に抗菌性能評価試験を行った。結果を表3に示す。
 表2、表3において、
・RF-I :明所(照度条件F及びI(フィルタTypeB、500ルクス))での参考例に係る試験片の抗菌活性値
・F:試験で用いたシャープカットフィルタの種類(TypeB)
・I:試験で用いた可視光照度(500ルクス)
・A:比較用試験片(無加工品)の接種直後の3試験片の生菌数の平均値(PFU/sample)
・BF-I :比較用試験片(無加工品)を照度条件F-Iで8時間光照射した後の3試験片の生菌数の平均値(PFU/sample)
・CF-I :参考例に係る試験片を照度条件F-Iで8時間光照射した後の3試験片の生菌数の平均値(PFU/sample)
・R:暗所での参考例に係る試験片の抗菌活性値
・B:比較用試験片(無加工品)を8時間暗所に保存した後の3試験片の生菌数の平均値(PFU/sample)
・C:参考例に係る試験片を8時間暗所に保存した後の3試験片の生菌数の平均値(PFU/sample)
・ΔR:参考例に係る試験片の光照射による効果
であり、
式(4):RF-I =[log(BF-I /A)-log(CF-I /A)]=log(BF-I /CF-I )=log(BF-I )-log(CF-I 
式(5):R=[log(B/A)-log(C/A)] =log(B/C)=log(B)-log(C
式(6):ΔR=RF-I -R
でそれぞれ計算した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 

Claims (8)

  1.  繊維基材と、これに固定される無機微粒子とを有する繊維物品を製造する方法であって、
     水系媒体中において前記繊維基材またはその原料繊維よりなる繊維材料に対して架橋剤を作用させ、前記繊維材料を両イオン化させる繊維両イオン化工程と、
     前記繊維両イオン化工程によって両イオン化された繊維材料と、前記無機微粒子とを水系媒体中において接触させる無機微粒子固定工程とを有することを特徴とする繊維物品の製造方法。
  2.  前記架橋剤として、電荷プラス剤と、2つのカルボキシ基を有する物質とを含有するものを用いることを特徴とする請求項1に記載の繊維物品の製造方法。
  3.  前記電荷プラス剤として、(a)第4級アンモニウム塩、(b)タンパク質、(c)カチオン剤、(d)エポキシ系変性物質、(e)多孔質を有するカチオン系で、水溶性の物質とアニオン電荷を持つ界面活性剤を混合したもの、の群から選ばれる少なくとも一種を含有するものを用いることを特徴とする請求項2に記載の繊維物品の製造方法。
  4.  前記無機微粒子として、ルチル型酸化チタンの含有量が50モル%以上である酸化チタンと、前記酸化チタンの表面に担持された一価銅化合物及び二価銅化合物とを有する銅化合物担持酸化チタン光触媒を用いることを特徴とする請求項1に記載の繊維物品の製造方法。
  5.  前記銅化合物担持酸化チタン光触媒が、グラム陽性菌またはグラム陰性菌に対して抗菌作用、或いはウイルスに対して抗ウイルス作用を有するものであることを特徴とする請求項4に記載の繊維物品の製造方法。
  6.  前記繊維材料に対する前記銅化合物担持酸化チタン光触媒の割合が、0.1~20.0質量%であることを特徴とする請求項4に記載の繊維物品の製造方法。
  7.  前記繊維基材が、繊維により構成された不織布、織布、編布、およびこれらの組み合わせからなる群から選択される少なくとも1種であることを特徴とする請求項1に記載の繊維物品の製造方法。
  8.  請求項1に記載の繊維物品の製造方法によって得られる繊維物品であって、
     医療用衣類として用いられるものであることを特徴とする繊維物品。
     
     
     
PCT/JP2023/000185 2022-06-01 2023-01-06 繊維物品の製造方法および繊維物品 WO2023233695A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530675A JP7440818B1 (ja) 2022-06-01 2023-01-06 繊維物品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-089764 2022-06-01
JP2022089764 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023233695A1 true WO2023233695A1 (ja) 2023-12-07

Family

ID=89025966

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/000184 WO2023233694A1 (ja) 2022-06-01 2023-01-06 アトピー性皮膚炎の改善用剤
PCT/JP2023/000185 WO2023233695A1 (ja) 2022-06-01 2023-01-06 繊維物品の製造方法および繊維物品

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000184 WO2023233694A1 (ja) 2022-06-01 2023-01-06 アトピー性皮膚炎の改善用剤

Country Status (2)

Country Link
JP (2) JPWO2023233694A1 (ja)
WO (2) WO2023233694A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273875A (ja) * 1997-03-28 1998-10-13 Kohjin Co Ltd 抗菌防臭ならびに消臭性能を有する組成物
WO2013002151A1 (ja) * 2011-06-27 2013-01-03 昭和電工株式会社 銅化合物担持酸化チタン光触媒及びその製造方法
JP2013108203A (ja) * 2011-11-18 2013-06-06 Uematsu Co Ltd 抗菌・消臭組成物の繊維素材への吸着方法
WO2014196108A1 (ja) * 2013-06-04 2014-12-11 パナソニックIpマネジメント株式会社 常温硬化型光触媒塗料、常温硬化型塗料組成物及び内装材
JP2018002597A (ja) * 2016-06-27 2018-01-11 日華化学株式会社 抗ウイルス剤及び抗ウイルス性繊維製品
CN109281161A (zh) * 2018-10-09 2019-01-29 中国石油大学胜利学院 一种多功能粘胶纤维复合材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189615A (ja) * 2002-12-06 2004-07-08 Noevir Co Ltd 抗黄色ブドウ球菌剤
US8389022B2 (en) * 2006-10-12 2013-03-05 Nm Tech Nanomaterials Microdevice Technology Ltd. Material, item and products comprising a composition having anti-microbial properties
JP5904524B2 (ja) * 2010-12-22 2016-04-13 国立大学法人 東京大学 ウイルス不活化剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273875A (ja) * 1997-03-28 1998-10-13 Kohjin Co Ltd 抗菌防臭ならびに消臭性能を有する組成物
WO2013002151A1 (ja) * 2011-06-27 2013-01-03 昭和電工株式会社 銅化合物担持酸化チタン光触媒及びその製造方法
JP2013108203A (ja) * 2011-11-18 2013-06-06 Uematsu Co Ltd 抗菌・消臭組成物の繊維素材への吸着方法
WO2014196108A1 (ja) * 2013-06-04 2014-12-11 パナソニックIpマネジメント株式会社 常温硬化型光触媒塗料、常温硬化型塗料組成物及び内装材
JP2018002597A (ja) * 2016-06-27 2018-01-11 日華化学株式会社 抗ウイルス剤及び抗ウイルス性繊維製品
CN109281161A (zh) * 2018-10-09 2019-01-29 中国石油大学胜利学院 一种多功能粘胶纤维复合材料的制备方法

Also Published As

Publication number Publication date
JPWO2023233694A1 (ja) 2023-12-07
WO2023233694A1 (ja) 2023-12-07
JP7440818B1 (ja) 2024-02-29
JPWO2023233695A1 (ja) 2023-12-07

Similar Documents

Publication Publication Date Title
CN111172749B (zh) 一种抗菌抗病毒无纺布及其制备方法、包含其的口罩
Zille et al. Application of nanotechnology in antimicrobial finishing of biomedical textiles
Andra et al. Emerging nanomaterials for antibacterial textile fabrication
Perera et al. Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles
EP1157158B1 (en) Process for making substrates with biocidal properties
US7855161B2 (en) Photocatalytic fiber and fabric using thereof, and fabric product using the fabric
WO2000025940A1 (en) Light-activated antimicrobial and antiviral materials
Ibrahim et al. Advanced materials and technologies for antimicrobial finishing of cellulosic textiles
Khani et al. In vitro bactericidal effect of ultrasonically sol–gel-coated novel CuO/TiO2/PEG/cotton nanocomposite for wound care
CN202786881U (zh) 一种抗菌布料
JP2005521797A (ja) 殺菌特性を有する有機及び/又は無機繊維系材料及びその使用
CN110670342A (zh) 一种银离子复合光触媒的纺织物及其制备方法
Nautiyal et al. ZnO-TiO2 hybrid nanocrystal-loaded, wash durable, multifunction cotton textiles
WO2023233695A1 (ja) 繊維物品の製造方法および繊維物品
JP5022561B2 (ja) 環境浄化用部材
JP2003095805A (ja) 抗菌材料及びそれを用いた抗菌製品
Rahimi et al. Photo-induced antimicrobial agents for textile applications
KR102184455B1 (ko) 항균력이 우수한 나노 은(銀) 피착방법 및 그 나노 은(銀)이 피착된 사물
JP2003213565A (ja) 難燃抗菌性繊維製品及びその製造方法
JP2005009065A (ja) 抗菌・殺菌性繊維製品及びその製造方法
CN1237223C (zh) 含有光催化杀菌剂的织物及其制备方法
KR100945425B1 (ko) 수산화 아파타이트가 표면에 결합된 이산화티탄 광촉매 및이의 제조방법, 이를 함유하는 항균성 코팅 조성물 및항균성 코팅 조성물이 적용된 의류용 원단
JPH09286615A (ja) 酸化亜鉛微粒子付着複合体及びその製造方法
CN114855448A (zh) 一种抗冠状病毒无纺布及其制备方法、包含其的口罩
JPH09296364A (ja) 繊維布帛用抗菌防臭処理剤およびそれを用いた繊維布帛の抗菌防臭処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023530675

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815459

Country of ref document: EP

Kind code of ref document: A1