WO2010092982A1 - 回転体の回転制御機構とその回転体制御機構を用いたドア等の開閉装置 - Google Patents

回転体の回転制御機構とその回転体制御機構を用いたドア等の開閉装置 Download PDF

Info

Publication number
WO2010092982A1
WO2010092982A1 PCT/JP2010/051964 JP2010051964W WO2010092982A1 WO 2010092982 A1 WO2010092982 A1 WO 2010092982A1 JP 2010051964 W JP2010051964 W JP 2010051964W WO 2010092982 A1 WO2010092982 A1 WO 2010092982A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
force
wheel
sliding surface
rotation
Prior art date
Application number
PCT/JP2010/051964
Other languages
English (en)
French (fr)
Other versions
WO2010092982A9 (ja
Inventor
耕一 岡本
Original Assignee
Okamoto Koichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Koichi filed Critical Okamoto Koichi
Publication of WO2010092982A1 publication Critical patent/WO2010092982A1/ja
Publication of WO2010092982A9 publication Critical patent/WO2010092982A9/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F1/00Closers or openers for wings, not otherwise provided for in this subclass
    • E05F1/08Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings
    • E05F1/10Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings for swinging wings, e.g. counterbalance
    • E05F1/1041Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings for swinging wings, e.g. counterbalance with a coil spring perpendicular to the pivot axis
    • E05F1/1066Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings for swinging wings, e.g. counterbalance with a coil spring perpendicular to the pivot axis with a traction spring
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F1/00Closers or openers for wings, not otherwise provided for in this subclass
    • E05F1/08Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings
    • E05F1/10Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings for swinging wings, e.g. counterbalance
    • E05F1/1083Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings for swinging wings, e.g. counterbalance with a leaf or similar spring
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F1/00Closers or openers for wings, not otherwise provided for in this subclass
    • E05F1/08Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings
    • E05F1/10Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings for swinging wings, e.g. counterbalance
    • E05F1/14Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings for swinging wings, e.g. counterbalance with double-acting springs, e.g. for closing and opening or checking and closing no material
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/60Suspension or transmission members; Accessories therefor
    • E05Y2201/604Transmission members
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/60Suspension or transmission members; Accessories therefor
    • E05Y2201/622Suspension or transmission members elements
    • E05Y2201/624Arms
    • E05Y2201/626Levers
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/60Suspension or transmission members; Accessories therefor
    • E05Y2201/622Suspension or transmission members elements
    • E05Y2201/638Cams; Ramps
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/60Suspension or transmission members; Accessories therefor
    • E05Y2201/622Suspension or transmission members elements
    • E05Y2201/688Rollers

Definitions

  • the present invention relates to a rotation control mechanism for a rotator and an opening / closing device such as a door using the rotator control mechanism.
  • the "door closer with a hydraulic cylinder” is a very large device, and it is misunderstood as if the door does not rotate unless it is a very large force, but in fact it is an operation that requires little force,
  • the “force acting on the door” is less than a few percent of the spring force of the “door closer with a hydraulic cylinder”. This technology resists the “door that requires little rotating force” and makes it difficult to turn around, and has the “defect that the door feels heavy when the door is opened”.
  • the rotation range of the door is a rotation range from fully open to immediately before closing (hereinafter referred to as “(A) range”) and a rotation range from immediately before closing to fully closed (hereinafter referred to as “(I) range”. ”), And a force of a different magnitude is applied in each range so that an excessive force is not provided to the door.
  • Patent Document 1 relates to an electric door that makes the magnitude of the rotational force different from the middle of rotation and the last, and the magnitude of the rotational force is controlled by an electrical signal.
  • Electric doors can close passages during power outages.
  • the driving means and the control means are different from the present application.
  • switching range There is a clear boundary (hereinafter referred to as “switching range”) between the two rotation ranges where forces of different magnitudes work, and they automatically switch from strong to weak or from weak to strong. , “The magnitude of the acting force” suddenly changes.
  • switching range There is a clear boundary (hereinafter referred to as “switching range”) between the two rotation ranges where forces of different magnitudes work, and they automatically switch from strong to weak or from weak to strong.
  • the force having the different magnitude is expressed as “the magnitude of the rotational force M or the force F is changed by changing the magnitude of the distance L”.
  • the resistance of the spring is not made small by using resistance like the “door closer with a hydraulic cylinder”.
  • Patent Document 2 the rack and gears are meshed and the door is decelerated by the load generated at that time.
  • the fact that the rotational resistance of the gear becomes larger is utilized.
  • the door is decelerated by rotating the door largely by expansion and contraction of a small spring so that the driving force is insufficient, not by the rotational resistance of the gear.
  • Patent document 3 is a closed door cushioning mechanism in which a spring that serves as a restraining force is provided for a spring that biases the rotating body in the closing direction. Is just reduced.
  • the present application does not perform subtraction to reduce the driving force, but performs multiplication to enlarge or reduce the driving force. *
  • “Adopting resistance for the speed reduction means” means that the force acting on the door is reduced by adding a new force in the direction opposite to the direction of rotation of the rotating body and reducing the "force for energizing the rotating body". The result is the same as using a small spring force instead of a large spring force.
  • the present invention does not bother reducing the force of the large spring by resistance as described above, but uses the “means for moving the action line of the force acting on the door” to apply a large force of the small spring to the door. It uses a weaker spring than a normal door closer. By adopting bearings positively without using resistance, the door can be rotated efficiently even with a small force, solving the problems of friction resistance performance variation and deterioration, and when opening the door The problem that the door feels heavy was solved. *
  • Patent Document 4 discloses that the fulcrum and action point are The distance between them changes continuously and gives a rotational force that balances the rotational moment.
  • the rotational range can be distinguished into two, and the structure and mechanism of the device is limited to a predetermined boundary. Does not switch. *
  • the present invention relates to a link device in which a “driving unit composed of a plurality of links” is connected to an “opening / closing unit composed of a door and a door frame connected by a pivot”, and has a large opening / closing unit in “(A) range”.
  • the drive part operates small with respect to the rotation, and the drive part operates largely with respect to the small rotation of the opening and closing part in the “(range)”.
  • the latch male part of the door abuts the female part of the door frame.
  • Patent Document 5 provides a device that cushions an impact when a door is closed by a damper.
  • the rotary damper is directly connected to the door and operates with a small operation when the door is closed.
  • the rotation mechanism does not suddenly change at the end of rotation as in the present application.
  • the lid with the horizontal axis of rotation is stationary everywhere and the balance of force is kept as an issue, and the door with the vertical axis of rotation handles the movement that accelerates when the force balance is broken. There is no vertical movement of the center of gravity and there is no change in potential energy.
  • a stationary door begins to rotate with a "force slightly above the maximum static frictional force acting around the door pivot". "A force slightly exceeding the maximum static frictional force” works, as the stopped door starts to move from anywhere (hereinafter, the opening degree of the door when the door is released from the door and starts closing) is called the closing opening degree. There must be. Once the door starts to rotate, the rotational resistance around the pivot axis of the door becomes a kinetic friction force smaller than the maximum static friction force, and the magnitude is drastically reduced. The doors are accelerating wherever the static forces are balanced. *
  • the present invention operates in the “range (A)” (hereinafter, the operation in the “(A) range” is referred to as rotation work) and operates in the “(A) range” (hereinafter referred to as “( The operation of “range” is referred to as sealing work.) It consists of a sealing device and seals while decelerating before and after the “switching range”.
  • Patent Document 6 is a sealing device having a buffer function that operates only in the “(range)”, and “force acting on the door” is required to operate the device.
  • the present invention decelerates close to a state where there is no “force acting on the door” just before the closing, and is different from the point that the sealing device of the present application starts from a state where there is no force to rotate the door.
  • the sealing mechanism is based on a “rotating mechanism including a sliding surface and a wheel that moves along the sliding surface”. However, the action line of the force by which the wheel presses the sliding surface moves away from the rotating shaft of the rotating body, and the sealing force Is getting weaker. In the present application, the line of action of the pressing force is gradually brought closer to the rotating shaft of the rotating body so that the spring force weakened to the minimum at the end of rotation is sealed with a large force.
  • Patent Documents 7 to 11 relate to “a rotating mechanism including a sliding surface and a wheel that moves along the sliding surface”, and “a rotating device in which a rotating body relatively rotates around a pair of rotating shafts separated from each other”.
  • One rotating body that rotates about one rotating shaft has a sliding surface
  • the other rotating body that rotates about the other rotating shaft has a wheel attached to the tip
  • the sliding surface is A rotating device that moves while pressing along the wheel, or a rotating device that moves while pressing the wheel along the sliding surface.
  • the rotation mechanism illustrated in FIG. 4 is “the action line of the force that the sliding surface presses the wheel or the action line of the force that the wheel presses the sliding surface” and “the one rotating body or the other rotation.
  • Reference numeral 7 relates to a “door with a spring mechanism”, in which an intermediate portion of the sliding surface is an arc centered on the other rotation axis, a linear portion is provided at the end, and the action of the force that the sliding surface presses is applied.
  • the line is the radial direction of the circular motion of the wheel when the wheel is in the middle, the tangential direction of the circular motion of the wheel when the wheel is at the end, and both rotors are relative when the wheel is in the middle. It is a rotating mechanism that does not rotate automatically and rotates when the wheel is at the end.
  • the intermediate part of the sliding surface of Patent Document 6 does not rotate the door, and is irrelevant to the problem that the door accelerates. *
  • the present invention also provides a “rotating body having a sliding surface” as a lid whose rotation axis is horizontal, and a rotating mechanism in which the lid rotates up and down by the rotation of the “rotating body with a wheel attached to the tip”.
  • the lid can be rotated up and down while supporting a large lid weight in the axial direction even if the rotational force acting around the rotation axis of the “rotary body with wheels attached to the tip” is small.
  • Patent Document 8 relates to “the trunk of an automobile trunk lid”, where the gravity of the trunk lid acts as a large force in the circumferential direction of the circular motion of the wheel, and the sliding surface counteracts with the force of pressing the wheel. This is the reverse of the “rotary body with wheels attached to the tip” of the present application.
  • the present application supports a large force in the radial direction of the circular motion of the wheel and counters it with a small force acting in the circumferential direction of the circular motion of the wheel, and can support a large weight of the trunk lid with a small spring force.
  • Patent Document 9 relates to a hinge device of a document transporting and accumulating unit of a copying machine that rotates about a horizontal support shaft.
  • the spring is connected to the wheel so that the rotating shaft of the wheel moves in a long hole provided in the lid. Acting in the direction of pulling up the rotating shaft, the force of the spring is decomposed into a force that supports the lid through a force slot that presses the sliding surface, and part of the force of the spring is transmitted to the lid.
  • the change in the magnitude of the force acting on the lid is solely due to the change in the length of the spring to follow, and is not proportional to the distance between the spring axis and the rotation axis of the rotating body.
  • the “rotary body with a wheel attached to the tip” of the present application corresponds to the document conveying and accumulating unit of the copying machine of Patent Document 9, and the force acting on the door is “the force with which the wheel presses the sliding surface”,
  • the action line is the radial direction of the circular motion of the wheel B.
  • the “force acting on the door” can be adjusted from zero to infinity depending on the distance between the action line and the pivot O, and the spring force does not have to change.
  • Patent Document 9 is an open / close device in which the rotation of the lid and the expansion and contraction of the spring are related over the entire rotation range. *
  • Patent Document 10 relates to a “back door support structure”, in which a back door of an automobile is moved up and down by “a damper stay that expands and contracts by air pressure”.
  • the back door weight is supported by a stay that expands and contracts, and the back door is moved up and down by the extension of the stay.
  • the biasing means is a support that supports the weight.
  • the “rotary body with a wheel attached to the tip” in the present application is a rigid body, and the support body that supports the weight does not expand and contract.
  • the urging means rotates the rotating body without supporting the weight, and the direction in which the urging means works is substantially perpendicular to the direction in which the gravity works, and is hardly affected by the gravity.
  • Patent Document 11 relates to a undulation gate, and the undulation gate includes a door body 4 provided with a water stop plate and a door body 21 that supports the door body 21, and the door body 21 is formed on a sliding surface provided on the door body 4. It is provided with “wheels that move along” and makes the door body 4 stand up or lie down.
  • the door body 4 is perpendicular to the door body 21 in the standing state, and the door body 4 is parallel to the door body 21 in the lying state, so that the weight of the door body 4 when the door body 4 is lying down is calculated. It is supported in the direction perpendicular to the axis of the core and not in the direction of the axis.
  • the rotation biasing means of the door body 21 supports the weight of the door body 4.
  • Patent Document 12 relates to a moving device that supports a moving load on the rotating shaft of a cam body having a plurality of wheels mounted on the outer edge and a spiral curve, and the action line of a large force supported by the plurality of wheels is The cam body rotates with a small force through the vicinity of the rotating shaft of the cam body, but the rotational force acting around the rotating shaft shows the maximum value when two of the wheels are in contact with the ground, and the maximum value when one of the wheels is in contact with the ground Decrease or increase from zero to zero. The maximum value increases as the magnitude of the rotational force acting around the rotation axis pulsates.
  • the present invention provides a technique for solving the "problem that allows the door to rotate slowly and be surely and quietly sealed".
  • the problem to be solved by the prior art Provides an effective means.
  • the technology provided by the present invention can naturally be used in industrial fields other than doors.
  • a “spring-driven door” rotates slowly when closing with a small force, but the door may stop in the middle of rotation. If it is sealed without stopping in the middle, a violent impact sound will be generated at the time of sealing.
  • the “door closer with a hydraulic cylinder” rotates the door slowly so that no impact noise is generated when it is sealed. However, there is a “defect that the door feels heavy when the door is opened”.
  • the present invention has been made in order to provide a “door that does not feel heavy when opened” and a “spring-driven door” that does not emit a large impact sound when closed.
  • the spring has the property of expanding and contracting in an instant, but the spring with a small amount of expansion and contraction operates slowly, so the “spring-driven door” of the present invention operates slowly with insufficient force.
  • a loud impact sound when closing is a force that is more than necessary when closing, and the extra force is converted into sound.
  • the force that the door presses against the door is static pressure.
  • latch contact when the latch is recessed immediately before closing (hereinafter referred to as latch contact), the door has a latch resistance, a rotational resistance around the pivot axis O, and the door surface. The air resistance that is applied acts on this, and the force of the spring and the inertial force that attaches to the door (hereinafter referred to as the door inertial force) oppose each other.
  • the present invention In order to remove the influence of the inertial force of the door when the latch is recessed, the present invention is brought close to a stop state so that a device for opening and closing the door (hereinafter referred to as an opening and closing device) continues to operate even when the door is stopped.
  • an opening and closing device In order to reduce the influence of the inertial force of the door, a large force is not applied to the door. By reducing the “force applied to the door”, the force required to open the door is reduced. The door does not feel heavy when opening the door.
  • the present invention is generally “simple technology that has not been adopted for doors” and has an unprecedented effect in the field of doors. Fields other than doors that have not adopted simple technology Examples are shown in the examples.
  • the present invention solves the problem of “reducing the impact sound at the time of closing” with “a plurality of means not related to each other”, and these means contribute to a plurality of other fields not related to the door. Of course.
  • the “part 1 of the problem” to be solved by the invention is “how to apply different magnitudes of force in the two ranges before and after the latch contact”. Since the operation of indenting the latch involves the rotation of the door, the “force to indent the latch” is larger than the “force to simply rotate the door”. Rotate the door with as little force as possible so that the door that stops at any point in "(A) range” starts to move barely (the "(A) range” rotation means “ “Rotating means in” (ii) range “is called” (ii) rotating means "), and there is a possibility of stopping when the latch comes into contact.
  • switching means means for switching the magnitude of “force acting on the door” at the time of latch contact. Don't be.
  • the “part 2 of the problem” to be solved by the invention is “how to dent the latch while processing different door inertial forces depending on the closing opening degree”. Even if the “force acting on the door” is kept small in the “(A) range”, the rotation speed of the door continues to increase as long as the force continues to act, and in the above “(A) range” It increases further when a large force is applied. When the door comes into close contact with the door stop, the kinetic energy possessed by the door is converted into an impact sound. Kinetic energy is proportional to the square of the rotational speed of the door, and if there is a slight difference in the rotational speed of the door, the impact sound becomes extremely loud.
  • the door inertia force is eliminated at the time of latch contact and the door is sealed, or if the door is sealed while disappearing, the impact sound can be adjusted regardless of the door inertia force.
  • the door inertia force is participated in the sealing operation without extinguishing the door, and the door is sealed while converting the door inertia force into the sealing force.
  • the “part 3 of the problem” to be solved by the invention is “how to continue to operate the switchgear even when the door is stopped”. Since the impact sound reacts sensitively to the door inertia force, it is necessary to keep the door inertia force as small as possible and stay within a certain range at the time of latch contact.
  • the “force acting on the door” "Is kept small to reduce acceleration, and” means for decelerating the door “is taken at the end of" (A) range “or at the beginning of” (A) range ".
  • the door is rotated by “(A) rotating means” and there is no “force to dent the latch” in the opening / closing device.
  • the door stops due to the resistance of the latch. Since the opening / closing device does not have the force to rotate the door, it stops with the door when interlocking with the door.
  • the door of the present invention is in a state where the door stops or closes to the stop state when the latch comes into contact, and the opening / closing device does not interlock with the door or slightly interlocks without rotating the door or with a small force of the opening / closing device. While the door is slightly rotated, a force is provided to dent the latch after the latch contact.
  • the “part 4 of the problem” to be solved by the invention is “how to seal the door with a small force of a spring”.
  • “the greatest force in the full opening range of the door” is necessary, but “the force to dent the latch” is If it continues to act until the door stop is pressed, the door is accelerated even in a range where the amount of rotation of the door is small, and an impact sound is generated. After the latch is recessed, little force is required until the latch pops out again and fits into the door frame W.
  • the spring force is not applied to the door more than necessary so as not to accelerate in the “(A) range” or “(I) range”, and a strong spring is not used. Instead of reducing the force of the strong spring, the force of the weak spring is expanded and applied to the door. Therefore, it is important to control the “force acting on the door” at the time of sealing.
  • Doors vary in size and weight, and there is a limit to how a single switchgear can be adapted to any door and always have the same effect and operate as desired.
  • the braking force changes according to the magnitude of the force, and the applicable range is expanded by changing the structure of the switchgear. Further, in order to solve the above-described problems, a plurality of means described below are taken, but the plurality of means make up for lack of effect.
  • the “means 1” for solving “part 1 of the problem” to “part 4 of the problem” to be solved by the invention is “rotation axis O as described at the beginning of“ Mode for Carrying Out the Invention ”.
  • an “opening / closing body comprising two links D and W” and “an expansion / contraction part comprising one or more links” that rotate relative to each other, and a mounting shaft C provided on each of the two links D and W , Sw is a link device in which both ends of the expansion / contraction part are connected, and the opening / closing body is opened / closed by changing the distance between the attachment shafts C, Sw.
  • Opening and closing characterized by the transfer of the point of action of the force acting on the opening and closing body Location.
  • the opening / closing device 1 is a “link device in which any adjacent link is connected by a sliding pair” as in the embodiment of FIGS. 1 to 7, for example, in FIG.
  • One of the links W and A is provided with a sliding surface K, and a wheel B mounted on the other link A moves along the sliding surface K. It is characterized by having a passage of the wheel B far from the center O or the vicinity thereof, and when the wheel B moves along the sliding surface K, there is no or little rotation of the link of one link W.
  • the door D moves with little or no rotation.
  • the wheel B presses the sliding surface K, and a pressing force Fb acts on the contact point b.
  • the wheel B moves away from the vicinity of the center O of rotation and the action line of the pressing force Fb also moves away from the center of rotation O.
  • the working rotational moment increases.
  • the “switching means” is characterized in that the door D does not rotate at all or hardly, and the expansion / contraction part moves greatly without rotating the door or slightly, and the expansion / contraction part moves even if the door stops.
  • FIG. 1 to 7 show an embodiment in which a sliding surface K is provided on the door D or the door frame W, and the attachment portion between the opening and closing portion and the expansion / contraction portion is a sliding pair.
  • FIG. 17 and FIG. In the embodiment of the kinematic pair, if any of the connecting shafts is a sliding pair, the same operation and effect can be expected. In addition, when the leaf spring is used in FIG. 30, the same operation and effect can be expected.
  • any one adjacent link AA is a restraint release position where the action line of the pressing force Fb is restrained by holding the action line of the pressing force Fb in the vicinity of the axis O and the action line of the pressing force Fb away from the vicinity of the axis O by the contact G1 or G2 provided on the other link D or W. 1 to 7, 17 and 18, the connecting shaft PP is constrained to be in the vicinity of the center O of rotation in the “range (A)” as in the case of the sliding pair.
  • the opening / closing device 1 is characterized in that the rotation around any one of the connecting shafts is restricted or the restriction is released, and the rotation of any of the connecting shafts is restricted and the connecting shafts are connected in the middle.
  • the fact that adjacent links are relatively integrated means that the number of links and the degree of freedom of the link device are reduced by one.
  • FIG. 9 shows an opening / closing device 1-1 in which any one of the “extending / contracting portions including one or more links” of the “opening / closing device 1” is a spring. ”Is a four-joint rotation mechanism composed of four links D, W, A, and V. When the adjacent links D and A are relatively integrated, the number of links of the link device is reduced by 1 and the movement becomes impossible. Movement can be achieved by using one of the links as a spring. *
  • FIG. 9 shows the link A in FIG. 19 in place of the tension spring V.
  • the axis of rotation Zv of the spring that is, the line of action of the force crosses the axis A of the link A. Is switched and the restriction of the connecting shaft PP is released.
  • FIG. 9 is an embodiment in which the attachment portion of the opening / closing portion and the expansion / contraction portion is a rotating pair
  • FIG. 27 is an embodiment in which the other connecting shaft is a rotating pair. Then, the same operation and effect can be expected.
  • FIG. 9 is an embodiment in which the attachment portion of the opening / closing portion and the expansion / contraction portion is a rotating pair
  • FIG. 27 is an embodiment in which the other connecting shaft is a rotating pair. Then, the same operation and effect can be expected.
  • the rotation mechanism shown in FIG. 4 includes releasable restraining means for restraining the rotation of the sliding surface K around the rotation axis O, and the rotation axis O with the opening of the door when the curvature of the sliding surface K changes as a boundary.
  • An opening / closing device 1 for releasing the restriction of the surrounding rotation, and the line of action of the pressing force Fb is restricted in the vicinity of the rotation axis C of the link A in “range (A)” and works around the rotation axis C.
  • the rotational force is small, the rotation of the link A is large, and the rotation of the sliding surface K is small.
  • the opening / closing device 1 is “opening / closing device 1-2 characterized in that the opening degree of the opening / closing member that restricts or releases the rotation of any one of the connecting shafts varies depending on the rotation direction of the opening / closing member”.
  • the opening of the door when the action line of the pressing force Fb moves away from the vicinity of the rotation axis C in the process of closing the door is the opening degree of the door, and the action line of the pressing force Fb is the rotation axis C in the process of opening the door.
  • the opening / closing device 1 is “a rotating mechanism in which a rotating body rotates by a force F around a rotating shaft, and a rotational force M acting around the rotating shaft, the rotating shaft, and an action line of the force.
  • “Opening / closing device 2” is the “distance between the force action line and the rotation axis” by the movement or transition of the force action point or by the rotation of the force action line (hereinafter referred to as “the distance between the force action line and the rotation axis”
  • the switchgear 2-1 is a switchgear described in the switchgear # 2 including a rotation mechanism in which the direction of the force F acting around the rotation shaft is switched from the radial direction of rotation of the rotating body to the circumferential direction.
  • the action line of the force Fb rotates, for example, in FIGS.
  • the action line direction of the force F acting around the pivot O in the “range (A)” is directed toward the pivot O and “around the pivot O”.
  • the distance L between the action line direction of the working force F and the pivot axis O (hereinafter, the distance between the action line of the force F having a certain magnitude and the rotation axis is called the action force distance Lo) is small.
  • the rotational force Mo acting around is small, deviating from the direction of the pivot axis O in the “(range)”, and the acting force distance Lo turns large.
  • Opening / closing device No. 2-2 is described in Opening / closing device No. 2 including a rotating mechanism in which the point of action of the force F acting around the rotating shaft moves along a “passage continuing from a position close to the rotating shaft to a position far from the rotating shaft”.
  • Opening and closing device For example, FIGS. 1 to 3 include a “passage of the wheel B continuous from a position Ko close to the rotation axis O to a position Ke far away”. The same applies to FIGS. In FIG. 8, the attachment shaft Sa of the tension spring V at a position close to the rotation axis O moves along a “circular orbit continuing from a position near the rotation axis O to a position far from the rotation axis O”.
  • the switchgears 2-1 and 2 stop the operating point at a position close to the rotation axis of the rotating body in “(A) range” and move to a far position in “(A) range”. *
  • Opening / closing device 2-3 has an opening / closing mechanism provided with a rotating mechanism in which the operating point of the “(a) rotating means” is a position close to the rotation axis, and the operating point of the “(i) rotating means” is a distant position.
  • the action line of the force F is transferred, and for example, the force of the spring V acts at a position close to the pivot axis O in “range (A)” in FIG.
  • the rotating body A at a position far from the pivot axis O rotates in the “range (ii)”, and the wheel B presses the sliding surface K.
  • the rotating device V that operates at a position close to the rotating shaft is switched to the sealing device B that operates at a position far from the rotating shaft.
  • the opening / closing device 2-4 is a “rotating device in which rotating bodies separated from each other around a pair of rotating shafts rotate relatively, and one rotating shaft that rotates around one rotating shaft.
  • the rotating body includes a sliding surface, and the other rotating body that rotates about the other rotating shaft has a wheel mounted at the tip, and the wheel is pressed against the wheel or the wheel is the sliding surface.
  • the sliding surface relatively moves along the wheel while pressing the wheel, and the shape of the sliding surface is such that the wheel slides when the wheel is in the middle of the sliding surface.
  • the action line of the force that presses the surface has a small distance between one of the rotating shaft and the other rotating shaft, and the wheel presses the sliding surface when the wheel is at the end of the sliding surface.
  • the line of action of the force is a switching device in which the distance between the one rotating shaft and the other rotating shaft is a large curve. Switchgear is described in that 2.
  • Figure 4. Figure 38 (a) (b) is the distance between the other rotational shaft Fig. 38 (c) (d) changes the distance between one of the rotary shaft.
  • 38 (c) and 38 (d) are involute vortex lines. 4 (a) and 38 (b), the rotation axis of the "link A with the wheel B attached to the tip”, and in FIGS. 38 (c) and (d), the rotation axis of the sliding surface of the involute vortex line.
  • the line of action of the pressing force Fb keeps a certain distance. *
  • the switchgear 2-4 is a form in which the action point of the force F does not move in the “switching range” and the action line of the force F rotates, and FIG. 38 (a) and FIG.
  • the action line of the force with which the wheel presses the sliding surface when the wheel is in the middle of the sliding surface in “range (A)” is “attaching the wheel B to the tip.
  • the acting force distance Lo between the rotating shaft of the “link A” or “the rotating shaft of the sliding surface of the involute vortex line” is small, and the rotating force acting around the rotating shaft is small.
  • the rotation mechanism of this switchgear is in a direction (hereinafter referred to as a radial direction) toward the center of rotation of “link A for attaching wheel B to the tip” or “cam body having sliding surface of involute vortex line”. It is a rotating mechanism characterized by a large force acting and moving with a weak force in a direction perpendicular to it (hereinafter referred to as a circumferential direction).
  • the open / close devices 2-1 to 4 are such that the “force acting on the door” is proportional to the acting force distance Lo.
  • the rotational force Mo acting around the pivot axis O is small, and the force acts weakly on the rotating body.
  • the rotational force Mo acting around the pivot axis O is large and the force acts strongly on the rotating body.
  • the “force acting on the door” is inversely proportional to the distance L (hereinafter, the distance between the rotating shaft at which a constant rotational force acts and the line of force action is called the driving force distance Lv). Also observed in 1-4. *
  • the opening / closing device 2-5 has a small force at a position far from the rotation axis and a large force at a near position.
  • the “force F acting on the door” is inversely proportional to the distance L, and the radius of rotation of the line of action of the force changes.
  • the magnitude of the force F acting on the door is increased to increase the rotational force M for rotating the door.
  • the opening / closing device 2-6 is, for example, as shown in FIG. 27, “a link device for connecting an expansion / contraction portion composed of two or more links to two attachment shafts provided on each of the two opening / closing bodies”.
  • the two adjacent links in the section are disengaged from each other, and the two links that are engaged and adjacent to each other rotate relatively.
  • the two links become relatively integrated.
  • the link device of FIG. 27 is a 5-joint rotation mechanism, and operates as a 4-joint rotation mechanism when the two links are engaged and become relatively integrated, and the two links are separated and become straight.
  • the two links operate by pushing with one link, and operate as a four-bar rotation mechanism with different forms. *
  • the opening / closing device 2-7 is, for example, the “link device for connecting the expansion / contraction part composed of two links to the two mounting shafts provided on each of the two opening / closing bodies” as in the embodiment of FIGS.
  • “(A) rotating means” that moves in a state where the axial cores of the two links are not arranged in a straight line
  • “(I) rotating means that moves in a state where the axial cores of the two links are arranged in a substantially straight line”
  • a “switching means” for switching from a state where the axial cores of the two links are not arranged on a straight line to a state where they are arranged or from a state where they are arranged on a straight line to the state where they are not arranged
  • An opening / closing device characterized in that the axial cores of two links are arranged in a straight line, and the magnitude of the force acting on the axial cores of the two links increases.
  • the shaft cores of the two links extend straight from the folded state.
  • the shaft cores of the two links are folded from a state where they extend in a straight line.
  • the axis lines of the two links overlap.
  • the urging means of this link device is provided around “a connection shaft whose rotation direction does not reverse in the middle of any connection shaft of the link device”, but even if it is provided on any of the connection shafts, When the axial line turns into a straight line, the magnitude of the force acting on the axial line of the two links increases.
  • the “means part 2” for solving “part 1 of the problem” to “part 4 of the problem” to be solved by the invention is “only in the rotation range of (A)” as described in FIGS.
  • the switchgear is characterized in that the switch is switched in the “switching range”. ”
  • Each spring is “a biasing means that is valid until halfway and becomes invalid from the middle” and “a biasing means that is halfway invalid and becomes valid from the middle”.
  • the force of the spring works ineffectively, and the spring expands and contracts so that it works effectively.
  • the wheel B is not engaged with the sliding surface K, “the spring force is ineffective, and the engagement is effective.
  • Each operates independently without being influenced by the other.”
  • the movement of the “switching unit” is constant, and the time required until the latch male part Rd comes into contact with the female part Rw and begins to be recessed is constant.
  • FIG. 32 shows an opening / closing device that determines whether or not the door is suddenly stopped based on the “amount that the door rotates only by the inertial force of the door”.
  • “means part 3” for solving “part 1 of problem” to “part 4 of problem” to be solved by the invention is “relatively rotating by sharing the rotation axis O”. Both ends of the "extensible part consisting of one or more links” are connected to the "opening / closing body consisting of two links and D, W" and the mounting shafts C, Sw provided on the two links D, W respectively.
  • the mounting shafts C and Sw are rigid
  • the switchgear is biased so as to return to the “initial position when the spring is natural length” by a spring that can be set to a predetermined value from zero to infinity. ”
  • the contact point b between the wheel B and the sliding surface K is also a movable mounting shaft, and the predetermined passage is a curved track of the sliding surface K moving away from the pivot O.
  • the door may rotate.
  • the wheel B can move along the sliding surface K without accompanying.
  • the door and the telescopic part do not interlock, and the telescopic part continues to move even if the door stops.
  • the curved track of the sliding surface K rotates and is urged by the push spring U. In this case, it is possible to freely design the interlocking between the door and the extendable part as compared with the case of FIG.
  • the spring support shaft Sa is also a movable mounting shaft
  • the predetermined passage is a circular revolving track centering on the connection shaft C.
  • the opening / closing device No. 1 is the opening / closing device No. 4 in which the door and the expansion / contraction part do not interlock and the expansion / contraction part continues to move even when the door stops.
  • the switchgear 4 only limits the releasable restraining means to the mounting shaft.
  • an elastically deformable leaf spring for the link A is provided with a releasable restraining means for restraining rotation around the connecting shaft other than the mounting shaft, and is an upper opening / closing device No.
  • adding the link of the rotating body Jc increases the degree of freedom of the link device and makes the operation unstable.
  • the movable mounting shaft is at the start of the passage and at the end of the passage It operates as a different type of link device.
  • the connecting shaft C revolving around the connecting shaft Cj is a movable mounting shaft, and the predetermined passage is circularly activated.
  • the “spring that can be set to a predetermined value from zero to infinity in rigidity” is the push spring U.
  • the mounting shaft When the stiffness of the spring is set to infinity, the mounting shaft is fixed, the door and the telescopic part work together, and when the stiffness of the spring is set to zero, the mounting shaft is not fixed and can move freely Thus, the door and the telescopic part do not interlock, and the telescopic part continues to rotate independently without rotating the door.
  • the telescopic part continues to move even if the door stops when the latch abuts.
  • the door can move even if the expansion / contraction part stops, and the door is sealed not by the driving force Mv of the expansion / contraction part but by the force of the push spring U as described with reference to FIGS. As illustrated in FIG.
  • the expansion / contraction part provides a rotational force little by little to the door while greatly expanding / contracting the spring.
  • the expansion / contraction part provides the door, but even if it is large, it can be limited by setting the upper limit of the expansion / contraction of the spring.
  • the force acting on the door is the driving force Mv of the telescopic part and the inertia force of the door that is "the force that works in the direction of closing the door” and “the force in the opposite direction” around the pivot axis O Rotation resistance, air resistance, and latch resistance work, but the “switching means” is the door when no force is applied to the door with the "force acting in the direction of closing the door” set to “force in the opposite direction” or less. Regardless of the operation, the door is sealed. When the door is closed by the door inertia force regardless of the “switching means”, an impact sound is generated, which must be prevented.
  • FIG. 6 and FIG. 7 show a closing device that does not stop halfway. It moves along the door frame W simultaneously, receives a force for closing the door from the wheel B, and receives a force in the opposite direction from the door frame W.
  • the latter is a resistance according to the magnitude of the door inertia force, which is neither too effective nor at all. Sealing is prevented until the wheel B passes over the connecting shaft Cj.
  • each of the “opening / closing body comprising two links and D and W” and the above two links D and W.
  • the “means 4” for solving the “problem 4” to be solved by the invention is “a rotating device in which rotating bodies separated from each other around a pair of rotating shafts rotate relatively, One rotating body that rotates about the shaft has a sliding surface, and the other rotating body that rotates about the other rotating shaft has a wheel mounted at the tip, while the sliding surface presses the wheel.
  • the rotating device is such that the sliding surface relatively moves along the wheel while the wheel presses the sliding surface, and the shape of the sliding surface is a force with which the wheel presses the sliding surface.
  • the line of action of the switchgear is characterized in that the distance between one of the rotary shafts and the other rotary shaft is kept small or large. ”FIG. 4 In the case of FIGS.
  • the door is sealed by a large force acting in the radial direction with a small circumferential force.
  • the force acting on the connecting shaft of the two links acts on the axial core of the link, and a small force is generated in the circumferential direction of the circular orbit of the connecting shaft P. This is the same as the action of a large force in the radial direction.
  • FIGS. 35D and 35E when the distance is kept large, a large force acts in the circumferential direction and a small force acts in the radial direction. Even if the spring is strong like an accelerator pedal, the stepping force is small.
  • the “rotating device in which rotating bodies separated from each other rotate relative to each other” is changed, the positions of one rotating body and the other rotating body are switched, and the position of the acting force is also switched.
  • a strong force is applied to the door while preserving a strong force in “range (A)”.
  • the lid is moved up and down with a small force while supporting the weight of the lid with a rigid axial core wire even for the lid whose horizontal axis is horizontal. It is effective as both rotating means and moving means.
  • the “switching means” of the present invention operates without rotating the door, there is a drawback of ending the operation in an instant in a no-load state, and means for delaying the operation of the drive unit as in the embodiment of FIG. It is desirable to install and seal the door. Further, since the operation is larger than the operation of the opening / closing unit, the delay unit does not need to be strong if the delay unit operates on the driving unit instead of acting on the opening / closing unit.
  • the switchgear shown in FIG. 37 is “a switchgear provided with means for decelerating the rotation around the connecting shaft other than the pivot O in the link device of the switchgear”. In general, the collision phenomenon is a phenomenon that suddenly stops at the end of movement, but the door D of FIG. 37 moves small at the end of rotation and stops suddenly, so that the door D becomes a means for buffering the general collision. *
  • the force required to open the door is a force having the same magnitude and opposite direction as the “force acting on the door during the door closing process”.
  • the force required to open the closed door is a force having the same magnitude and the opposite direction as the “force acting on the door during the process of sealing the door”. Therefore, a door that is closed by applying a small force to the door can be opened with a small force even when it is opened, and a door that presses the door stop with a strong force requires a large force when it is opened.
  • the conventional latch moves parallel to the door surface by “a force acting on the door surface in a direction perpendicular to the door surface”, and moves by a part of a large force. It was necessary to set it large.
  • FIG. 33 reduces the resistance of the latch by rotating the latch, so that the “(i) rotating means” can be set small, and “the door closer with the hydraulic cylinder” “opens the door” 33
  • the embodiment shown in Fig. 33 is a rotating support shaft Ig provided on one of "the side of the door opposite to the door pivot" and “the side of the door frame facing it”.
  • a locking sliding surface Kf provided on the other side, and the locking rotating body Ge is rotated by the door in the closing and opening direction.
  • the force that rotates around the rotation support shaft Ig while moving along Kf and prevents rotation in the opening direction of the door is supported by the rotation support shaft Ig or the outer edge portion Re of the locking rotating body.
  • Latch device characterized.
  • the line of action of the force is a straight line passing through the contact point b between the locking rotating body Ge and the locking sliding surface Kf and the rotation support shaft Ig, and is also the axis of the locking rotating body Ge.
  • the circular motion of the contact b is “the rotation mechanism of the present invention that supports a strong force in the radial direction and moves with a weak force in the circumferential direction.”
  • the action line of the force sharing the intersection and the axis line Za of the link A cross the axis line Za of the link A. It is based on a rotating mechanism that rotates in reverse, and can be kept stationary by utilizing the change in the biasing direction of the door rotation when the door is fully open.
  • the “opening degree of the door in which the urging direction is reversed” is limited to the vicinity of the fully open position, and if the “opening degree of the door in which the urging direction is reversed” is slightly pushed in the closing direction, the door is closed arbitrarily.
  • the opening degree of the door whose urging direction is reversed is provided at two positions of the fully open position and the fully closed position.
  • the door stationary at the fully open position is pushed slightly in the closing direction, the door is selfish.
  • the door that is stationary at the fully closed position is pushed in the direction of opening a little, the door opens freely and reaches the fully open position.
  • a closing direction switching means for switching from a state of being biased in the fully opening direction to a state of being fully closed when closing, the door opening angle and the closing direction when the opening direction switching means operates Of the door when the switching means operates
  • the door is characterized in that the opening angle is different.
  • the structure is“ a fully closed direction biasing position Ga1 that is stationary when the door is biased in the fully closing direction and a stationary state that is biased in the direction of fully opening the door.
  • the swinging body A swinging between the full-opening direction biasing position Ga2 and biased by the toggle spring VV, and the swinging body A being switched from the fully-closed direction biasing position Ga1 to the full-opening direction biasing position Ga2.
  • a door comprising switching means J1 and the closing direction switching means J2 for switching the swinging body A from the fully open direction biasing position Ga2 to the fully closed direction biasing position Ga1.
  • a product called a normal door closer has the disadvantage that the door feels heavy when opening the door, and it does not open until it comes out once it enters the building, like an entrance door facing the outside of the building like a front door It is not attached to doors that are frequently used inside the building, even though it can be attached to doors with few. Even if it is installed, it is often fixed in an open state.
  • the door closer of the present invention the door is not felt heavy when the door is opened so that the difference between the case where the door closer is attached and the case where the door closer is not felt is felt.
  • a normal door closer is equipped with a strong spring and can be attached to a front door that attaches to the strong outer wall of the frame, but it should be attached to an indoor door frame that does not have the strength to support the force of the strong spring. I can't. Since the door closer of the present invention moves with a weak spring, it can be attached to a weak frame such as an indoor wooden door frame. The frame of the mounting part will not be broken and the mounting bolt will not come off. As described above, the door closer of the present invention can be used for an entrance door, but is also suitable for an indoor door. The number of doors inside the building is several times the number of doors facing the outside of the building, and the market for goods is large. *
  • the door drive unit of the present invention is moved by an electric motor, the rotation speed of the door can be made constant, and in the range from immediately before closing to the time of closing, the door requires time for large rotation of the drive unit. Rotate small.
  • the closing device of the present invention has better performance when it is moved by a motor than when it is moved by a spring, and the present invention is not limited to a spring but can be applied to a door that is moved by a motor.
  • the rotation mechanism for rotating the door of the present invention has a feature that a large force works at the end of rotation, and a small force is applied before that.
  • each of the devices disclosed in Patent Documents 1 to 12 such as “a feature in which the rotational force is large and the resistance is different between the opening direction and the closing direction” and “a feature that operates with a small force while supporting a large force”.
  • it can be used as a technique for moving the joint of the robot, as a shock absorber, or as a transport device.
  • the rotation mechanism of the present invention is not limited to doors and can be applied to other industrial fields.
  • the opening / closing device of the present invention shown in each embodiment includes an opening / closing body and an expansion / contraction section (or drive section), and the opening / closing body has two links D and W that rotate relative to each other by sharing a rotation axis O, and one is a door.
  • D the other is a door frame W
  • both ends of the telescopic portion are connected to attachment shafts C and Sw (connection shaft C and fixed support shaft Sw) provided on each of them.
  • the link device is composed of two links D and W constituting the opening / closing body and a plurality of links constituting the expansion / contraction part, and the opening / closing body opens and closes when the distance between the attachment shafts at both ends of the expansion / contraction part changes.
  • a driving force Mv acting in the direction of arrow A in the drawing around any of the connecting shafts, or an axial force or bending force acting on any of the links transmits the rotational force Mo around the pivot axis O.
  • the door frame W is fixed, the door D rotates in the direction of arrow B in the figure.
  • the link device is a non-deformable triangle and does not move.
  • two adjacent links are connected at the opposite corner, they can move.
  • one of the links is a “spring or jack of varying length”, it can move.
  • FIG. 1 shows a link device composed of three links, which constitutes a triangular link device, and can move by connecting the opening / closing body and the expansion / contraction part at the opposite corners.
  • the link device is a deformable polygon and moves.
  • the expansion / contraction part is two links, the distance between the mounting shafts at both ends of the expansion / contraction part changes as one of the links rotates, and the length of one of the links changes in the triangular link device described above. It becomes the same as the device to do.
  • the link device with three links and one of the connecting shafts is a sliding pair is provided with a “path through which the connecting shaft can reciprocate” in one link of the link device, and the length of the one link changes.
  • This is the same as the “link device in which one of the three links is a spring” in that the triangle is deformed, and all the four-joint rotation mechanisms in which the spring is changed to two links are also on one side of the triangle It is a link device that moves by changing its length. Since adjacent links rotate around one of the connecting shafts, two adjacent sides sharing one of the connecting shafts are opening / closing bodies, and the remaining one side is an expansion / contraction part. Including the four-bar rotation mechanism, this is a “deformable triangular link device”. *
  • FIG. 2 and FIG. 8 are link devices composed of four links.
  • one link is a spring in FIG.
  • the link device in which the rotation around any of the connecting shafts stops and the number of links is reduced by one is composed of four or more links, the link device can move. In the door rotation mechanism, the link device continues to move even when the door is stopped. In the case of FIG. 27, the case where two adjacent links engage with each other side by side and the two adjacent links extend in a straight line, “rotation around any connecting axis” Has stopped. " Also, as shown in FIG. 26 and FIG. 28, applying a resistance means that “the rotation around any of the connecting shafts is stopped” and the number of links is simulated by a link device having three motions.
  • the rotation mechanism having five or more nodes is provided with a releasable restraining means, so that “the rotation around any connecting shaft is restrained”. It is intended to move as a four-bar rotation mechanism, and as the number of links increases, the number of restraint points increases, and several different four-bar rotation mechanisms are possible.
  • the link device changes into different forms depending on the degree of freedom and performs different motions. Therefore, even if the door inertia force varies depending on the closing start opening, the motion of the door can be controlled accordingly.
  • the switchgear shown in each embodiment has a stopping means that keeps the “force acting on the door” small in the “(A) range” and a releasable restraining means that releases the stopping means in the “switching range”.
  • a large force acts on the door in the “range”.
  • the acting force distance Lo indicates “the distance between the pivot axis O and the acting line of the acting force Fo
  • the driving force distance Lv indicates the distance between any one of the connecting shafts and the acting line of the driving force Fv.
  • the plan view shows the upper surface of the door as D and is based on the horizontal plane on which the upper surface of the door moves, but the horizontal plane on which each link moves is not necessarily the same as the horizontal plane on which the upper surface of the door moves.
  • the connecting shaft is a common rotating shaft of adjacent links, and two links overlap on the connecting shaft in the figure
  • W is the door frame to which the door is attached or the wall surface around the door frame
  • the blank paper surface means the door frame W.
  • the addition at the end of the reference sign indicates the opening degree ⁇ d of the door, for example, D100 indicates a state of being stationary when fully opened, and D90 is closed.
  • D10 is the maximum starting opening and fully opened door, D10
  • the front door, D0 indicates a fully closed door, for example, Fig.
  • FIG. 10 (a) shows a state in which the door D is urged in the direction opposite to the arrow a in the figure and is stationary, for example, D10 shown in Fig. 5 (c).
  • D0 shown in FIG. 5 (d) indicates the state of the door in which the door D is tightly attached to the door stop Gd.
  • the door frame W is the door frame W and its surroundings. Which is a plane including the rotation axis O and the fixed support shaft SwC, and is a blank sheet surface in the drawing. It does not necessarily coincide with the “plane provided with the axis SwC”, but is a different plane parallel to the plane.
  • the angle ⁇ ak is an angle between the axis A Za of the link A and the sliding surface K, and indicates the angle on the side on which the wheel Bb moves unless otherwise specified.
  • the opening / closing device is a link device that connects the attachment portions of the opening / closing portions D, W and the expansion / contraction portion A by sliding pairs or by turning pairs, and fixing the attachment shaft that attaches to the door D to the connection shaft C and the attachment shaft that attaches to the door frame W. It will be called a support shaft Sw. *
  • FIG. 1 shows the "(A) range” rotating operation that rotates the door with a small force, the “(A) range” sealing operation that rotates the door with a large force, and the “switching range” that switches from a small force to a large force.
  • FIG. 2 is a plan view of the door operation for explaining the switching work and the predetermined opening degree of the door at which the switching work starts, and is a representative drawing detailing the outline of the present invention.
  • FIG. 1A is a state diagram when the door is fully opened
  • FIG. 1B is a state diagram when the door is fully closed. As shown in FIG.
  • the link device of FIG. 1 includes three links, ie, two opening / closing bodies D and W sharing a pivot axis O and a link A, and the link A is connected to the door D by a sliding pair.
  • the door D which is one of the two opening / closing bodies, is provided with a connecting shaft C.
  • a link A is rotatably supported around the connecting shaft C, and is connected to a wheel rotating shaft Ib provided at the tip of the link A. Is equipped with wheels B.
  • a sliding surface K is provided on the door frame W which is the other of the two opening / closing bodies, and the wheel B moves along the sliding surface K.
  • the wheel B is a slider that moves along the sliding surface K, and the wheel B shown in many embodiments is a generic name for the slider.
  • the sliding surface K is a general term for grooves in which the slider moves. *
  • connection shaft C is provided on a “rotary body Jc that is rotatably supported around a support shaft Cj provided on the door” and is movably attached to the door D.
  • a pressing spring U is interposed between the rotating body Jc and the door D, and the rigidity of the pressing spring U is adjusted in a range from zero to infinity.
  • the connection shaft C is fixed to the door D, and the presence of the rotating body Jc and the push spring U becomes irrelevant.
  • “(A) rotating means”, “switching means”, and “(I) rotating means” function, and the rotating body Jc and the pressing spring U are added. This delays the operation of these means.
  • the connecting shaft C is described as being directly fixed to the door D. To. *
  • the link A is urged to rotate in the direction of arrow A in the figure by the pulling spring V, and a rotational force Mv acts around the connection axis C.
  • the rotational force Mv is a driving force, and a bending force acts on the link A.
  • the “contact point b between the sliding surface K and the wheel B” has a “force Fb that the wheel B presses the sliding surface K” (hereinafter referred to as “contact point b”). , Referred to as a pressing force Fb).
  • the link A rotates around the connecting shaft C in the direction indicated by the arrow A in FIG.
  • FIG. 1A indicates a state in the middle of closing.
  • C10, A10, and B10 indicate the connecting shaft C, the link A, and the wheel B just before closing.
  • Just before closing indicates the vicinity where the opening of the door is approximately 10 degrees, and is near the end of “(A) range” and close to the beginning of “(A) range”. Since the tension spring V continues to shrink through the closing process, the door continues to rotate from the fully open position to the fully closed position. If the spring that provides the driving force can continue to expand and contract in one direction without stopping, the door will continue to rotate without stopping. *
  • the action line of the pressing force Fb is perpendicular to the sliding surface K and is a straight line passing through the “contact point b between the wheel B and the sliding surface K” and the wheel rotation axis Ib. Moves with the movement of the wheel B.
  • the sliding surface K is a passage that continues from a position close to the pivot axis O to a position far from the axis O, and when the wheel B moves on the sliding surface K from the base end portion Ko to the terminal end portion Ke immediately before closing, the pressing force Fb is reduced.
  • the action line also moves away from the pivot axis O, and the action force distance Lo increases. In “range (A)” shown in FIG. 1A, the acting force distance Lo is small and the driving force distance Lv is large.
  • the rotational moment Mo acting around the pivot axis O is the product of the acting force distance Lo and the pressing force Fb
  • the driving force Mv around the connecting axis C is the product of the driving force distance Lv and the pressing force Fb.
  • the rotational moment Mo decreases, and even when the driving force Mv acting around the connecting axis C is large, it is converted to a small pressing force Fb.
  • the rotation of the link A around the connection axis C is small, and the rotation of the door D around the pivot axis O is large.
  • the expansion and contraction of the spring is small in the “(A) range”, the force for moving the door is small and the acceleration is small.
  • the acceleration is large in the range of (i)” becomes a problem. Even if the door rotates with a weak force in the "(A) range", the door accelerates if the force continues to be applied to the door. Furthermore, when the vehicle is accelerated in the “range (ii)”, the rotational speed of the door reaches the maximum value when it is closed.
  • the impact sound at the time of closing is the extra energy converted into sound during the sealing operation, and the kinetic energy of the door at the time of closing is proportional to the square of the rotational speed of the door at the time of closing. "When it accelerates even a little, it will emit a loud impact sound.
  • the door of the present invention has a problem of reducing the impact sound at the time of closing, and how to prevent acceleration from becoming large in the “(range)” is an important problem. *
  • the “circumferential direction of the circular motion of the wheel B” and the sliding surface K are substantially orthogonal to each other in “range (A)” and greatly resist the movement of the wheel B.
  • the force acting on the door must be large.
  • the driving force distance Lv is large, and the force of the tension spring V is converted to a small pressing force Fb.
  • the force of the tension spring V becomes insufficient for a large resistance.
  • the spring with insufficient force expands and contracts slowly without expanding and contracting in a moment, and the wheel B moves slowly and the door D rotates slowly.
  • the “circumferential direction of the circular motion of the wheel B” and the sliding surface K are substantially parallel in the “range (ii)”, and the resistance to the movement of the wheel B is small.
  • the shape of the sliding surface K is centered on the position C10 of the connecting shaft C just before closing, and the radius is approximately “the sum of the length of the link A (the distance between the connecting shafts at both ends of the link A) and the radius of the wheel B.
  • the connecting shaft C passes the position C10, “the wheel B that has been constrained in the vicinity of the pivot O until then” reaches the terminal portion Ke of the sliding surface K in an instant. .
  • the wheel B since the wheel B is transferred without any rotation of the door D, the door remains at a position where the opening is 10 degrees.
  • the sliding surface K coincides with the arc R10 at the base end Ko, and the arc at the end Ke.
  • the wheel B leaves the base end portion Ko of the sliding surface K at the moment when the connecting shaft C passes the position C10, and the sliding surface is slightly accompanied by the rotation of the door D. It reaches the terminal end Ke of K.
  • the shape of the sliding surface K approximates a straight line with zero curvature at the base end portion Ko and the terminal end portion Ke, and the curvature shows a maximum value at the middle portion of the sliding surface K.
  • the sliding surface K stands at the base end portion Ko and the terminal end portion Ke.
  • the normal line and the axial center line Za of the link A substantially coincide with each other, the angle ⁇ ak is substantially a right angle, and the wheel B is easy to move in a state of approximating no load at the beginning and end in the “(range)”,
  • the movement of the wheel B is hardly accompanied by the rotation of the door.
  • the wheel B moves while receiving resistance, and the door is slightly rotated.
  • the wheel B becomes difficult to move in the middle, and if it passes through the middle, it becomes easy to move and reaches the end portion Ke of the sliding surface K.
  • the sliding surface K is provided with restraining means for retaining the wheel B in the vicinity of the pivot O and releasable restraining means for moving the wheel B away from the pivot O at a predetermined opening degree of the door D.
  • Rotating means (ii) has a force to rotate the door by recessing the latch, and is larger than the force of "(a) Rotating means” that simply rotates the door. If the time when the movement starts greatly is before “at the time of latch contact”, the latch male part Rd contacts the female part Rw after the "force acting on the door” is converted to a force that rotates the door. The door is sealed with a recess. In this case, after the “force acting on the door” turns into a large force, the door rotation range (ie, “(i) range”) becomes large and the door acceleration increases, resulting in a loud impact sound. .
  • the “switching range” when the latch male part Rd comes into contact with the female part Rw and at the same time the wheel B starts to move greatly, if the base end Ko of the sliding surface K is a straight line with zero curvature, the “door” Even if the force acting on the door is insufficient to rotate the door, or even if the door stops before closing, the wheel B can move and the wheel B continues to move without stopping.
  • the terminal portion Ke of the sliding surface K is reached, the “force acting on the door” grows into a force for rotating the door, and the latch is recessed to seal the door. That is, since the “switching means” is not or hardly accompanied by the rotation of the door, the wheel moves with the door almost stopped.
  • the wheel B since resistance is not applied to the movement of the wheel B when the wheel B starts to move greatly, the wheel B reaches the terminal portion Ke of the sliding surface K in an instant. Moreover, the fact that the rotation of the door does not accompany the movement of the wheel B means that there is no range in the “switching range”, and there is no passage of time between “the range of (A)” and “the range of (I)”. Absent.
  • the “switching means” further accelerates the rotational speed of the door just before closing and generates a loud impact sound.
  • “Switching means” switches the driving force Mv to a very large force even if the driving force Mv is very small, but the operation is completed with a very small force and switches to a large force in an instant. It becomes a factor to further accelerate.
  • the “switching range” starts after the latch contact, the drive unit stops and the door also stops. However, it is desirable that the door starts moving again from the state where the door has stopped and is sealed. Therefore, there is a need for a rotation mechanism for a link device that includes a drive unit that continues to move even when the two opening / closing bodies remain stationary.
  • the “(A) and (I) rotating means” and the “switching means” described above function in a state where the connecting shaft C is fixed to the door D. Next, functions in a state where they are not fixed so as to be movable will be described.
  • the means for connecting the connecting shaft C to the door D in a movable manner prevents the acceleration from increasing in the “range (ii)”.
  • the rotating body Jc is urged by the push spring U in the direction opposite to the arrow C in the figure, and rotation in the direction opposite to the arrow C in the figure is prevented by the hitting Ga.
  • the amount of rotation of the rotating body Jc changes depending on the magnitude of the pressing force Fb, but also changes depending on the rigidity of the pressing spring U, and the resistance applied to the movement of the wheel changes.
  • the rigidity of the push spring U is zero, the urging force of the spring is not transmitted to the door, and the door continues to move with inertial force.
  • the “switching range” is after the latch contact, and when the latch contact, “(A) rotating means” If the shape of the base end portion Ko of the sliding surface K is the above-mentioned circle R10, or a curved surface or straight line having a smaller curvature than the circle R10, the moment when the connecting axis C passes the position C10, The wheel B ”constrained in the vicinity of the pivot axis O reaches the end of the sliding surface K all at once, and the wheel B moves without pressing the sliding surface K. When the wheel B moves without pressing the sliding surface K, the drive unit and the door do not interlock and the door D does not rotate.
  • the sliding surface K having an obtuse angle “the angle ⁇ a between the sliding surface K and the axis A Za of the link A on the moving direction side of the wheel B” has no or little rotation of the opening / closing body.
  • Switching means ”.
  • the rigidity of the push spring U is zero or infinite, there is no spring, and the “switching means” does not involve the rotation of the opening / closing body at all or almost, and the “(i) rotation means” Accelerate ". *
  • the driving force Mv acting around the connecting shaft C is “the force that rotates the door” and “the force that expands and contracts the push spring U”.
  • the sliding surface K has a curved surface with a larger curvature than the circle R10, and the latch male part Rd contacts the female part Rw and the door stops at the moment when the connecting shaft C reaches the position C10. Even if there is no force to rotate the door in the “force acting on the door”, if the rigidity of the push spring U is set to be small, the push spring U will expand and contract while the door is stopped. Wheel B can move even when stopped. The drive and door do not work together.
  • the curvature increases from the proximal end Ko to the terminating end Ke of the sliding surface K.
  • the wheel B approaches the base end portion Ko of the sliding surface K, it receives a large resistance, but the wheel B slides toward the terminal end Ke away from the base end portion Ko of the sliding surface K with respect to the moving direction of the wheel B.
  • the gradient of the moving surface K changes to a downward gradient, and the wheel B becomes easier to move.
  • the wheel B is difficult to move at the beginning of the “(range)”, and the elapsed time of the “(range)” is extended so that the inertial force disappears.
  • the wheel B is easy to move at the end of the “(range)” and reaches the end Ke even when the spring force is weakened, the driving force distance Lv is small, the acting force distance Lo is large and the weak spring force is reduced. It comes to act strongly on the door.
  • the contact Gk attached to the terminal portion Ke of the sliding surface K is a locking means for adjusting the stop position of the wheel B.
  • the position where the push spring U is fully extended is the fully closed position of the door.
  • the door does not necessarily reach the position where it abuts against the door. This makes it possible to stop the door at “the fully closed position whether or not to contact the door stop” depending on the adjustment of the stop position of the wheel B, and the impact sound is minimized.
  • the working force on the moving door is small and the working force on the stationary door is large. Since the “force acting on the door” at the time of latch contact becomes stronger than before the time of latch contact, the push spring U starts to shrink after the latch contact. That is, the latch male portion Rd is prevented from coming into contact with the female portion Rw after the “force acting on the door” is switched to a strong force.
  • the amount of expansion / contraction of the push spring U differs depending on the magnitude of the “force acting on the door”, and there are a state in which the push spring U is extended and a state in which the push spring U is contracted at the time of latch contact. The amount is different.
  • the door inertial force The greater the inertial force attached to the door in the “(A) range” (hereinafter referred to as “the door inertial force”), the smaller the force the door can rotate, the smaller the “force acting on the door” and the lower the pressure when the latch contacts.
  • the door inertial force In a state where the spring U is extended, the “gap ⁇ jd between the rotating body Jc expanded by the pressing spring U and the door D” becomes wider.
  • the larger the door inertia force the more the push spring U needs to be contracted and the rotating body Jc needs to be rotated more greatly.
  • the deceleration effect of the push spring U is proportional to the door inertia force. *
  • the link device is equipped with a “driving unit that keeps moving even when the door is stopped” by the “means for fixing the connecting shaft C to the door D”, and “switching with little or no rotation of the door”. Means ". Further, by adding a spring to “means for movably fixing the connecting shaft C to the door D”, the “(i) rotating means” is improved so as to be tightly sealed while decelerating. *
  • the opening and closing device of FIG. 1 is designed to have a deceleration effect so that the door is stopped only by the resistance of the latch just before closing, and the driving force is maintained while the latch is in contact with the door frame and the door is stopped.
  • Mv's “force to rotate the door” causes the force to be stored in the push spring U without rotating the door at all.
  • (Ah) It is necessary to close at a low speed in the “range of” and reduce the closing speed just before the closing.
  • the means for indirectly transmitting the driving force Mv to the door D via the push spring U is “range (A)”.
  • the two springs which have a deceleration effect and urge the door in the same direction, interfere with each other and repeat expansion and contraction alternately. The deceleration effect is particularly remarkable when the door starts to close.
  • the door which has started to move rotates with a force having a magnitude close to that of the kinetic friction force.
  • the wheel B starts to move again and the amplitude at which the push spring U contracts again is repeated, and the movement of the wheel B causes the static inertia and the dynamic inertia to act alternately. .
  • This tendency is more noticeable as the force of the tension spring V and the push spring U is smaller, and this amplitude disappears in several times.
  • the push spring U is greatly extended in proportion to the magnitude of the force of “(A) Rotating means”, and “wheels” with respect to the rotation amount of the door from the time of latch contact to the fully closed state. B is accompanied by a large movement ”.
  • the wheel B is in the vicinity of the base end portion Ko of the sliding surface K at the time of latch contact, and is switched to “(i) rotating means” after the time of latch contact.
  • One side Sd is provided at a position near the rotation axis C of the link A, and the other Sa is the link A. Is provided at a position far from the rotation axis C. This reduces the expansion and contraction of the spring accompanying the rotation of the link A. The smaller the spring expansion and contraction, the smaller the acceleration of the door, so that the door will not rotate without expansion and contraction of the spring. *
  • the opening / closing device of FIG. 1 includes a speed reduction means for reducing the “force acting on the door” just before closing.
  • Closing the door while applying resistance is to reduce the “force that rotates the door” by the force in the opposite direction, and is simply a means of weakening the acting force.
  • the “force acting on the door” at a position where a large deceleration means is taken is reduced to be smaller than the force that rotates the door, and the stationary door at this position remains stationary. It is one mechanism that keeps the door open at a slightly opened position, and it can respond to an outsider with the door opened a little, but this "position to reduce the force acting on the door by applying resistance” Is the “(A) range” in the closing process, but is the “(A) range” in the opening process.
  • the range including the “(A) range” of the closing and the “(A) range” of the opening process will be referred to as the “(A) range”.
  • “Position” is a position where a large force acts on the door when the door is opened, and the door does not remain stopped even if the hand is released from the door. Therefore, it always closes when you release your hand, and it never stops and stays open.
  • the opening degree of the door that the “switching means” in the process of opening the door works depends on the case where the door is opened with a large opening and the hand is released and rotated with a weak force and then switched to a strong force. This is a position for separating the form of the closing process when rotating with a strong force.
  • the sealing operation of the present invention has a feature of a so-called wedge effect that decomposes a weak force acting in the moving direction of the connecting shaft into two strong forces acting substantially perpendicular to the moving direction.
  • the sealing operation in FIG. 1 is performed by applying a weak force in the moving direction while the rotating shaft Ib of the wheel on which the pressing force Fb acts moves along a track substantially perpendicular to the tangent of the circle centering on the pivot O of the door.
  • the weak force in the moving direction is expressed as “two strong forces approximately perpendicular to the moving direction” Convert to At the time of sealing, the wheel B moves with a weak force in the circumferential direction of the circular motion, and a large force is exerted in the radial direction.
  • the weak force in the moving direction is converted into two sealing forces close to infinity, and since the angle ⁇ ak is substantially a right angle at the time of sealing, the action lines of the two forces are arranged in a substantially straight line and substantially coincide.
  • One is supported by a rigid body A that does not move on the door and the other.
  • the sealing force becomes close to infinity because the part that supports it does not move.
  • a pressing spring U is inserted into a portion supported by the rigid body A that does not move. The pressing spring U allows a predetermined sealing force to act on the door at a predetermined rotation angle of the link A.
  • the switchgear of FIG. 1 processes a weak force of “(A) range” and a strong force of “(A) range” with one spring, and an acting force distance Lo in “(A) range”.
  • the force of the spring is kept small while reducing the force acting on the door by moving the shaft closer to the pivot axis O, and the spring force is minimized by keeping the acting force distance Lo away from the pivot axis O in the “(ii) range”.
  • a large force is applied to the door.
  • the “force acting on the door” can be freely designed according to the shape of the sliding surface K.
  • the force acting on the door when closing is the same as the force when opening the door and the direction is the opposite, the door that closes with a small force can be opened with a small force, when opening the door It feels light.
  • the wheel B that moves with a small force along the sliding surface K while applying a large force to the door at the time of closing like the opening and closing device of FIG. 1 does not reverse unless a large force is applied when the door is opened.
  • the angle ⁇ ak is an acute angle and is highly resistant to wheel movement
  • the angle ⁇ ak is an obtuse angle and not resistant to wheel movement. Despite the strong force acting on the door during the closing process, it feels light when opening the door.
  • the angle ⁇ a In order to press the door D against the door stop Gd at the terminal end Ke to which the wheel B has been transferred, the angle ⁇ a needs to be an acute angle. In addition, since the wheel B does not reverse when the angle ⁇ a is not an acute angle when opening the closed door in FIG. Even when a strong force is applied to the door during sealing, it feels light when opening the door. *
  • the door of the present invention always stops right before closing when it begins to close regardless of where the hand is released. Is not transmitted to the door at all or almost, and the door is stopped or close to it, and then the "door rotating force" is increased from zero to "the door can be sealed” In this case, the door starts to move again, and the drive unit keeps driving even if the door stops.
  • the reason for stopping without permission is the lack of power to rotate the door, which is characterized by the fact that even if the power is insufficient, it is possible to perform "sealing work that requires a large force". There is a need to prevent the door from accelerating.
  • the present invention provides a means for preventing the door from accelerating even when the closing speed before the closing is large, such as when the spring strength is too strong depending on the door, and the closing before the closing in the “(A) range”. Reduce the speed so that the latch resists the door restart in the “switching range” so that the latch is recessed with a small force, and the required time is extended in the “(range)” range so that the door inertia force disappears. It is to make. *
  • FIG. 2 is a plan view for explaining the operation of “deceleration means for preventing acceleration”.
  • the speed reduction means attached to the opening / closing device of FIG. 2 reduces the door inertia force.
  • the opening / closing device shown in FIG. 1 instead of the link A of the driving unit, the link A is composed of two links, a rotating body J, and the link A is connected to the door D by a sliding pair, and the length of the sliding surface K compared to FIG. Although it is short and small, it has the same operation and function as FIG.
  • a compressive force acts on the link A.
  • a wheel rotation axis Ib is provided at the tip of the link A, and a wheel B is mounted on the wheel rotation axis Ib.
  • the connecting shaft P at the base end of the link A is connected to the rotating body J.
  • the rotating body J is rotatably supported around a connecting shaft C provided on the door D, and is urged to rotate in the direction of arrow A in the figure by a pulling spring V.
  • the “intersection angle ⁇ aj between the axis Zz of the rotating body J and the axis A Za of the link A” decreases and the wheel B presses the “sliding surface K provided on the door frame W”.
  • the connecting shaft C moves in the direction of the arrow B in the figure on the trajectory of the circle Ro around the pivot O.
  • a compressive force acts on the link A, the wheel B can move to the obtuse angle side of the angle ⁇ ak, and the obtuse angle side movement in the recesses provided at both ends of the sliding surface K is Stop.
  • a bending force acts on the link A, and the wheel B moves on the sliding surface K irrespective of the angle ⁇ ak, and the force acts so that the angle ⁇ ak moves to an acute angle. Rotate.
  • a compressive force acts on the link A, the wheel B moves to the obtuse angle side of the angle ⁇ ak, and the obtuse angle side movement at the end of the sliding surface K is prevented.
  • the wheel B is a reversible device in which the movement of the link device is reversed only when the direction of rotation of the door is reversed.
  • the wheel B reciprocates in different paths in the closing process and the opening process, and the link device is a non-reciprocal device.
  • the angle ⁇ ak is acute in the case of FIG. 1 and the door cannot be opened if the angle is obtuse, but in the case of FIG.
  • the angle ⁇ ak is an obtuse angle
  • the rotating body J rotates in the opposite direction to the arrow A in the figure, and the angle ⁇ ak shifts to an acute angle.
  • the “crossing angle ⁇ ak between the sliding surface K and the axis A Za of the link A” in the direction in which the wheel B returns becomes an obtuse angle, and the wheel B can return to the base end portion Ko of the sliding surface K.
  • the opening degree of the door when the wheel B returns to the base end portion Ko of the sliding surface K in the opening process is the same as that when the wheel B moves away from the base end portion Ko of the sliding surface K in the closing process. It is much larger than the opening of the door. That is, the “range” is much larger.
  • the sliding surface K is provided with a releasable restraining means for stopping the wheel B at the base end Ko, and by connecting one of the connecting shafts with a sliding pair, the structure of the link device and the form of motion are “ There are two differences between “range (a)” and “range (ii)”. *
  • the point of action of the force acting on the door in the “(range)” is smaller than the distance away from the pivot O as compared with the case of FIG. Unless “Fb" is made larger than in the case of FIG. 1, the force when the latch is depressed is not the same. If the “force acting on the door” is the same, the movement of the door is the same, and the force when opening the door is the same. Regardless of the structure and operation of the link device and the force of the spring, if the resulting weak force is applied to the door, the door closes slowly so that the door does not feel heavy when opened. Become. In order to reduce the size of the device, it is necessary to increase the force of the spring.
  • the sealing wheel BB is attached to the rotating body J as shown in FIGS. 2 (c) and 2 (d), and the sliding surface Kb moving along the same is provided on the door frame W, “the wheel Bb is the sliding surface.
  • the distance Lob between the line of action of the force Fbb that presses Kb and the pivot O increases.
  • the sliding surface K is rotatably supported around the support shaft Ik, and is urged by the push spring Uk about the support shaft Ik in the direction opposite to the arrow C in the figure.
  • the force acting on the push spring Uk is also small, the push spring Uk is extended, and the sliding surface K hits Gk.
  • Engage Even if the sliding surface K does not engage with the contact Gk, the distance between the sliding surface K and the contact Gk becomes smaller, and the angle ⁇ ak becomes sharper as the door inertia force increases.
  • the inertial force of the door increases, the door moves with a smaller force, and the push spring U strongly presses the sliding surface K.
  • the larger the door inertia force at the time of latch contact the larger the push spring U extends, and the wheel B becomes difficult to move toward the terminal portion Ke of the sliding surface K.
  • "When leaving the base end Ko of the moving surface K” means delay, meaning that the sealing operation is delayed in proportion to the door inertia force, and the braking force proportional to the magnitude of the door inertia force is applied. Yes. If a resistance is applied to the movement of the door at the time of latch contact, the “force acting on the door” increases so that the voltage increases due to the resistance.
  • the “force Fb that the wheel presses the sliding surface” does not require a large force when the door moves and is in a kinematic balance state, and the above-mentioned push force is applied when the door stops and is in a structural mechanical stationary state when the latch contacts. A large force of pressure Fb is generated.
  • the difference between the kinematic balance state and the structural mechanical stationary state is the difference between the state in which the link device is easy to move and the state in which the link device does not move. The greater the power, the greater the power.
  • the push spring U contracts, the “force acting on the door” gradually grows while becoming more solid and difficult to move.
  • the mounting shaft movably attached to the door is on the door D side, and in the case of FIG. 2, it is on the door frame W side.
  • the axial center line Za of the link A rotates around the wheel rotation axis Ib throughout the closing process, but the wheel B does not move and the “action line Fb of the force acting on the door” is “sliding surface”.
  • the normal distance established at the point of contact “b” between K and the wheel B ”, and the acting force distance Lo is substantially constant.
  • the speed reduction means is attached separately from the drive unit.
  • the speed reduction means is shown on the door handle side of the opening / closing device.
  • the wheel Bb is mounted on a wheel rotation shaft Ibb provided at the distal end portion of the link Aa, and the connecting shaft Pp provided at the base end portion of the link Aa is connected to the rotating body Jj.
  • the rotating body Jj is rotatably supported around a connection shaft Cc provided on the door D, and is urged by a pressing spring Uu in a “direction in which the rotating body Jj contacts the contact Gj provided on the door D”.
  • the link Aa is urged by the pulling spring Vv in the “direction in which it abuts against the contact Ga provided on the rotating body Jj”.
  • the angle ⁇ akk changes from an acute angle to an obtuse angle according to the rotation of the rotating body Jj, and the link Aa rotates in the direction indicated by the arrow E in the figure.
  • the force Fbb that the wheel Bb presses the sliding surface Kk becomes weak and resists the door closing direction. 2 consists of two rotations, the rotation of the link Aa and the rotation of the rotating body Jj, and the speed reduction effect due to the rotation of the link Aa in the direction of arrow E in the figure shifts the angle ⁇ akk from a right angle to a slightly obtuse angle side.
  • the rotation of the rotating body Jj in the direction of arrow D in the figure keeps the angle ⁇ akk in an obtuse angle for a long time.
  • the door will rotate in the opening direction, but if the force acting in the direction of closing the door exceeds this, rotation in the opening direction of the door will be blocked. Does not function over a wide range, And can function only within the “range”.
  • the “switching range” is a small rotation range of the door, but the movement of the drive unit is large, and the speed reduction means of FIG. 2 can be incorporated. *
  • the door that rotates in the rotation range in which the speed reduction means operates has a "door closing force and door inertia force” acting in the direction in which the door closes, and in the opposite direction, “door rotation resistance and speed reduction device.
  • "Braking force” works.
  • Door rotation resistance is “the force that barely starts to move so that the door does not remain stationary”, and “the braking force of the reduction gear” from “the force that the drive unit closes the door and the door inertia force” Rotates when the "remainder force” is less than the "door rotation resistance”.
  • the “door rotation resistance” acting on the stationary door is the maximum static frictional force, which is larger than the kinetic frictional force acting on the rotating door.
  • the force that starts the stationary door is more than the maximum static friction force, and when the door starts to move, more force is applied to the door than necessary.
  • the door that begins to move is driven by a “driving force greater than the maximum static frictional force and the inertial force of the door”. “Door does not stop wherever you release your hand” does not stop when it starts moving. On the accelerated door, a “driving force greater than the maximum static frictional force and a door inertia force” act, and against this, a kinetic frictional force and “air resistance received by the door surface” act.
  • the present invention is a state in which the influence of the inertial force of the door is removed as much as possible when the door is stopped or close to the latch contact regardless of the force applied to the door before the latch contact or the closing speed of the door.
  • the challenge is to make it. Therefore, when the difference between the maximum static frictional force and the kinetic frictional force is small, or when the air resistance received by the door surface is large and the “driving force beyond the maximum static frictional force” is small, the acceleration of the door is small. It is only necessary to change the “force acting on the door” from small to large without applying a “resistance” at the time of latch contact or reducing the “driving force exceeding the maximum static frictional force”.
  • the door inertia force differs greatly depending on whether the position where the door is opened and the hand is released is the fully open position or the slightly opened position.
  • the resistance is increased to the same level as the inertial force of the door when the hand is released in the fully open position, suddenly decreasing the closing speed within a short range of “(Ai)” will cause a collision, It just means that the impact of time has been moved to the front of the door.
  • this impact is received by a spring, and the inertial force of the door disappears over time while absorbing the movement in the closing direction of the door by the expansion and contraction of the spring.
  • the “(i) rotating means” is loaded so that the stretched spring is restored and does not return in the opening direction.
  • the door inertia can be extinguished to deal with all the door inertia forces ranging from small to large regardless of the opening degree of closing. I can do it.
  • the expansion and contraction of the spring is small when the door inertia force is large and small when the door inertia force is large.
  • the “(i) rotating means” is also increased by the amount of resistance, the “(ii) rotating means” operates separately from the door. When the inertia force is large and the spring expands and contracts, the expansion and contraction is completed while suppressing the restoration of the spring.
  • the resistance loaded in “(A) range” merely weakens “(A) rotating means”, and the door movement that appears to be decelerated by loading the resistance is weak (“A”) This is the same as the operation of a door that rotates with the "rotating means”, and the resistance is ineffective with respect to the inertia force of the door.
  • the “force acting on the door” changes from small to large even if there is no change in the magnitude of the “force that the drive unit closes the door”. For example, the air resistance acting on the door surface increases as the door closes, but if the air resistance acting on the door surface is greater than the force to dent the latch before the latch contact, the air resistance is overcome and the door is rotated.
  • FIG. 22 shows this embodiment, where the movement of the drive unit stops before the latch contact, and the latch is depressed by the force of the push spring U instead of the “force of the drive unit closing the door”. If the force of the push spring U is adjusted to “the force to dent the latch” and the door inertia force is canceled out by the air resistance, the impact sound is reduced.
  • FIG. 3 provides resistance in the “(A) range” that is equivalent to this air resistance.
  • FIG. 3 is a plan view for explaining the operation in the case where the resistance is reduced by applying a resistance to the “(ii) rotating means” in the “(A) range” and the resistance disappears in the “switching range”.
  • FIGS. 3 and 4 below illustrate the "(A) range” deceleration, FIGS.
  • FIGS. 7 to 10 describe the "(A) range" deceleration.
  • the effect is so great that the speed reduction means is taken near the fully closed position, and the impact sound can be reduced only by the speed reduction means taken near the fully closed position, but it is effective in the range where the door inertia force is small. If the door inertia force is small before and there is no deceleration means, it will not be effective.
  • the closing device shown in FIGS. 1 and 2 is attached to the outer door surface of the outer door
  • FIG. 3 is attached to the inner door surface of the outer door.
  • the inner surface of the door is the surface facing the door frame W of the door, and the space area sandwiched between the inner surface of the door and the door frame W is a space where passers-by enters and exits. It has the advantage that it will not be exposed to the wind and rain, but also the security advantage.
  • the "resistance comparable to the above-mentioned air resistance" is attached to the outer surface of the door in FIG.
  • the resistance attached to the outer surface of the door shown in FIG. 3 is obtained by attaching a plurality of reduction gears shown in FIG.
  • FIG. 3 includes a speed reduction means 1 that operates at a fully open degree, a speed reduction means 2 that operates at a predetermined opening degree that is less than or equal to a fully open position, and a speed reduction means 3 that operates at an opening degree that is less than or equal to the predetermined opening degree.
  • each speed reducing means 1, 2, 3 is connected to a wheel Bb1, "links Aa1, Aa2, Aa3 rotatably supported around support shafts Pp1, p2, p3 provided on the door”. Bb2 and Bb3 are installed. *
  • Each of the speed reducing means 1, 2, and 3 resists the "force that the drive unit closes the door" when the wheels Bb1, Bb2, and Bb3 come into contact with the sliding surface KK, but the links Aa1, Aa2, and Aa3 are connected to the door surface. As it becomes parallel to the door surface from a substantially right angle state, it will not resist.
  • FIG. 3A only the wheel Bb1 presses the sliding surface KK to press the door D against the door stop Gd90, and the door stops when fully opened.
  • the wheel Bb1 comes into contact with the sliding surface KK and the speed reduction means 1 functions, and the speed reduction means 2 and 3 do not function.
  • the link Aa2 is substantially parallel to the door surface and the resistance of the speed reduction means 2 is reduced.
  • the resistance of the speed reduction means 2 is equivalent to the "force to dent the latch”
  • the “force for closing the door by the drive unit” is more than that, as the resistance of the speed reduction means 2 decreases, the “force acting on the door” increases and reaches the “force for recessing the latch”. In this case, it is not necessary to change the “force at which the drive unit closes the door” at the time of latch contact.
  • the switchgear of FIG. 3 has a “passage of the wheel B continuous from the vicinity of the pivot axis O” as in the switchgear of FIGS. 1 and 2, but the sliding surface K of the path of FIG.
  • the shaft is rotatably supported and is urged to rotate in the direction of arrow C in the figure by the pulling spring VV.
  • the wheel B is mounted on a rotation shaft Ib of a wheel provided at the distal end portion of the link A, and the link A is attached to the distal end portion of the “rotary body J that is urged to rotate in the direction of the arrow A in the figure about the fixed support shaft Sw”. It is connected to a connecting shaft P provided.
  • a bending force acts on the link A in FIG. 1
  • a compressive force acts on the link A in FIG. 2
  • a tensile force acts on the link A in FIG. *
  • the rotating mechanism around the rotating body J in FIG. 3 includes “(A) rotating means”, “(I) rotating means”, and “switching means”, and a space between the connecting shaft P and the fixed support shaft Sww.
  • the “continuous body in which the tension spring V and the link AA are connected by the connection shaft Sa” is connected.
  • the side surface around the connecting shaft PP of the link AA moves along the fixed support shaft Sw.
  • Rotational moment Mj is small, and when the distance is zero, no force acts on the rotating body J in the" range (A) ".
  • the acting force distance Lsw becomes large when the vehicle is separated.
  • the rotational moment Mj increases.
  • the movement of the pulling spring V away from the fixed support shaft Sw is interlocked with the rotation of the rotating body J, and the rotation of the rotating body J is accompanied by an increase in force.
  • the door hardly rotates while the “force acting on the door” grows.
  • the rotation mechanism around the fixed support shaft Sw is accompanied by the rotation of the rotating body J, but the rotation mechanism around the pivot axis O is not accompanied by the rotation of the door D.
  • the wheel B stays at the base end portion Ko of the sliding surface K, and “the acting force distance Lo between the pivot O and the acting line of the pressing force Fb. "Is small.
  • the wheel B moves from the base end portion Ko of the sliding surface K substantially parallel to the “closed door surface D0” toward the terminal end Ke.
  • the wheel B starts moving when the “intersection angle ⁇ ka between the axis A of the link A and the sliding surface K” becomes an obtuse angle, and stops when the angle ⁇ ka is a right angle.
  • the compressive force acts on the link A as shown in FIG. 2, the wheel B does not stop during the movement.
  • the door of the present invention requires a preparatory work for removing the inertial force of the door at the time of sealing so that the sealing work is the same in any case.
  • the door In order to prevent the door from remaining stationary wherever the door is opened and released, the door must be at least “a force slightly exceeding the maximum static friction force around the pivot axis O at any position. "Must be working. However, the door will rotate if it slightly exceeds the rotational resistance, and the excess force will be a component that accelerates the door.
  • FIG. 4 to 6 are not intended to eliminate the grown inertial force with the resistance provided at one place near the “switching range”, but before the inertial force grows over a wide range of “(A) range”. It is intended to be resolved at the time of occurrence.
  • FIG. 4 controls the magnitude of the “force acting on the door”. Instead of means for reducing the “driving force acting in the closing direction” by the force in the opposite direction such as resistance, the action line is moved. The “force acting on the door” is freely changed by changing the acting force distance Lo. 5 and 6 do not control the magnitude of “force acting on the door” but suppress the acceleration of the link device.
  • FIG. 5 delays the speed of movement of the link device by applying resistance
  • FIG. 6 changes the door inertia force to braking force.
  • rotation prevention means a means for preventing rotation
  • the rotation prevention means is a means for reducing the “force acting on the door” in any case.
  • the acceleration of the door is made as small as possible by making the magnitude of the “force acting on the door” as small as possible.
  • range (A)” and range (I) there is no boundary between “range (A)” and “range (I)”, and the magnitude of “force acting on the door” gradually increases from the middle of rotation. Because the door inertia force is kept small by suppressing acceleration in the range of "the range of the” become. *
  • FIG. 4 is an embodiment for controlling the line of action of “the force Fb at which the wheel presses the sliding surface” as in FIG. 1, and the sliding surface around each of the pair of rotating shafts O and C provided on the door frame W.
  • a cam body (hereinafter referred to as a sliding surface K) provided with K and a link A are rotatably supported, and a wheel B is mounted on a rotating shaft Ib of a wheel provided at the tip of the link A.
  • the door frame W of FIG. 4 is considered as the door D of FIG. 1, it is the rotation mechanism of the same structure.
  • the door frame W and the sliding surface K are two open / close bodies that rotate relatively.
  • the connecting shaft C is attached to the door frame and the sliding surface K is attached to the door, and the connecting shaft C is attached to the door and the sliding surface K is attached to the door frame.
  • the embodiment in which the drive unit of the switchgear of the present invention is attached to the door means that the embodiment is also attached to the door frame.
  • the rotational moment Mc ”acting around the rotational axis C can be made constant.
  • the shape of the sliding surface K according to the drawing shown in FIG. 4C always makes the “distance Lc between the line of action of the pressing force Fb and the connecting shaft C” constant.
  • the line of action of the pressing force Fb is always in contact with the “circle Rc about the rotation axis C”.
  • a solid line and a broken line shown in FIG. 4A are state diagrams when the opening degree of the link A is 60 degrees and 90 degrees, respectively, and are operation explanatory plan views of “range (A)”.
  • Kee at the end of the sliding surface K is a sliding surface that reverses the urging direction when the link A is fully opened, and is for maintaining a stationary state when the link A is fully opened.
  • the wheel B moves from the terminal end Ke of the sliding surface K toward the base end Ko, and greatly increases in the “(A) range”.
  • the sliding surface K is small in the “(A) range” and is greatly rotated in the “(A) range” with the pivot O as the axis.
  • FIG. 4 shows a rotating mechanism that moves the wheel B in the circumferential direction with a small force while preserving the large force of the spring in the radial direction of the “circular motion about the rotation axis C” of the wheel B.
  • the link A is a rigid body that can move with a small force while supporting a large force with which the sliding surface K presses the wheel B, and can store a large force in the spring while opening with a small force when the door is opened.
  • the sliding surface K in FIG. 4 has a shape in which the curvature gradually increases as it approaches the base end portion Ko of the sliding surface K, and the moving speed of the wheel B becomes slower than the constant rotational speed of the door, but the sliding surface K
  • the history of the “force acting on the door” can be designed freely according to the shape of the moving surface K.
  • the curvature is increased at the base end portion Ko of the sliding surface K to decelerate before closing, and the curvature is reduced to be large when sealed. Force can be applied.
  • the sliding surface K in FIG. 4 has the acting force while the action line of the pressing force Fb rotates greatly in the “(A) rotating means” that keeps the acting force distance Lo small and the small “switching range”.
  • the sliding surface K in FIG. 4 is a lid of a trunk room of an automobile that rotates up and down around a horizontal rotation axis O, and the urging means around the pivot axis O is moved around the connection axis C to be provided on the vehicle body.
  • the cover K is suspended from the horizontal state as shown in FIG. 4 (a).
  • the rotational moment Mc acting around the connection axis C is constant
  • the force Fb that the wheel B presses the sliding surface K is also constant
  • the lid K is suspended from the horizontal state.
  • the “distance Lf between the line of action of the force Fb and the pivot O” decreases.
  • a constant weight acts on the center of gravity of the lid K, and the direction is always kept vertical, but the line of weight action also approaches the pivot axis O as the lid K moves from the horizontal state to the suspended state. Since both the constant pressing force Fb and the constant line of action approach the pivot axis O, the moments around the pivot axis O can be balanced. In particular, when the lid K is almost horizontal, the link A is almost vertical, and the lid A supports the weight of the lid K in the axial direction of the link A, and the lid is applied even if the rotational force Mc acting on the connection axis C is small. K moves up and down.
  • the rotation mechanism in FIG. 4 is also a rotation imparting unit that provides a substantially constant rotational force to the “link A rotating on the horizontal plane”, and continuously changes to the sliding surface K that rotates in the vertical plane. It is also a means for providing a rotational force and a means for moving a large weight with a small force.
  • the moving direction of the action point changes from the circumferential direction of the circular movement of the lid to the radial direction at the time of closing, a large spring force is applied in the circumferential direction, and a partial force of the large spring force is radially applied.
  • a member that supports a large force is not a rigid body but a spring.
  • the link A that supports the weight of the lid has a characteristic of being a rigid body.
  • the center of gravity of the lid moves horizontally with the top and bottom of the lid, and the magnitude of the pressing force Fb changes, but the “distance Lc between the line of action of the pressing force Fb and the connecting shaft C” changes.
  • the shape of the sliding surface K corresponding to the moving load can be drawn by designing the “shape instead of the circle Rc with which the line of action of the pressing force Fb contacts”.
  • FIG. 4B is an explanatory view of the operation immediately before closing, in which the wheel B is in the vicinity of the proximal end Ko of the sliding surface K and is substantially stopped, and the contact b between the wheel B and the sliding surface K is a spring.
  • Around the contact area is.
  • the arc Ri is a line segment that passes through the point bi and is orthogonal to the tangent line Ti. Since the circle Ra and the circle Rb are concentric circles, the lengths aibi of the tangent line Ti are all the same, and the intersection angles of the arc Ri and the circle Rb are all the same. That is, the sliding surface K always maintains a constant gradient with respect to the moving direction of the cam wheel B.
  • the sliding surface K0K1K2K3K4K5 is the sliding surface K shown in FIGS. 4A and 4B when the contact point with the wheel B is b7.
  • FIG. 5 explains that the “switching means” is not limited to the door D, and the link device can continue to move even if the wheel B stops.
  • the sliding surface K in FIG. 5 is provided with a “passage of the wheel B away from the pivot axis O” and is substantially parallel to the “closed door surface D 0”, similar to the sliding surface K in FIG.
  • the closing device protrudes largely forward from the “closed door surface D0”, when the wall thickness to which the door is attached is large and the door is attached to the back, the portion protruding from the wall surface is small.
  • the door frame W is provided with a sliding surface K, and the wheel B moves in the direction of arrow A in the drawing along the sliding surface K, so that the door D is shown with the pivot O as the axis. Closes and rotates in the direction of arrow b.
  • a link A is rotatably supported around the connection shaft C, and a wheel B is mounted on a rotation shaft Ib of a wheel provided at the tip of the link A.
  • connection shaft C is provided on a “rotary body Jc that is rotatably supported around a support shaft Cj provided on the door” and is movably attached to the door D.
  • a pressing spring U is interposed between the rotating body Jc and the door D.
  • the urging means is a “continuous body that connects the pulling spring V and the link AA with the connecting shaft Sa” between the “support shaft Sb provided on the link A” and the “support shaft Sj provided on the rotating body Jc”. It is a structure to connect. *
  • FIG. 5A shows the operation of the link device according to the opening ⁇ d of the door D.
  • a circle Rcj is a locus of the support shaft Cj.
  • the action line of the pressing force Fb does not stay at the proximal end Ko of the sliding surface K in the “(A) range” but gradually moves away from the pivot axis O and gradually increases the acting force distance Lo.
  • the “intersection angle ⁇ af” between the wire and the axis A of the link A is large except during the sealing shown in FIG. 5D, and the “rotational moment Mc acting around the connection axis C” is converted to a small pressing force Fb.
  • 5 (b) to 5 (d) are diagrams for explaining the operation from the time of latch contact to the time of sealing.
  • the wheel B reciprocates in the vicinity of the terminal portion Ke of the sliding surface K, and the link A and the rotating body Jc are reciprocated in the middle of reciprocation. Is straight.
  • the angle ⁇ ak is the smallest and the intersection angle ⁇ af is the largest, and the door is decelerated.
  • the force that moves wheel B is the smallest, and the door stops without denting the latch.
  • the pusher spring U is in the most extended state and the wheel B starts to move in the returning direction as shown in FIG. 5C, the angle ⁇ ak increases and the wheel B moves easily, and the crossing angle ⁇ af decreases and pushes.
  • the spring U can be easily contracted.
  • FIG. 5C shows a state in which the push spring U contracts without the latch being recessed.
  • the contact Gjc shown in FIG. 5C adjusts the upper limit of the “intersection angle ⁇ jd between the door surface and the axis Zjc of the rotating body Jc”.
  • the link A and the rotating body Jc can be aligned.
  • the angle ⁇ ak increases and the crossing angle ⁇ af decreases at the time of latch contact, so that the wheel B is more easily moved and the latch is more easily recessed.
  • the wheel B moves substantially parallel to the “closed door surface D0” and the sealing force Fb0 acts at a substantially right angle.
  • the angle ⁇ ak is the largest and the crossing angle ⁇ af is the smallest. In this way, even if there is no "force to dent the latch" and a force to rotate the door at the time of latch contact, the link device continues to move even if the door is stopped if there is a force to contract the push spring U, The “acting force” grows into a force that seals the door.
  • Fig. 5 shows a link device with a link number of 4 and a sliding pair evenly connected.
  • the rotation of one connecting shaft is fixed and the number of links is set to 3, the movement is determined as one, but the rotation of one connecting shaft is fixed. If you release, exercise becomes free. If a restraining means that can be released not only on the rotation of any link of the link device but also on the movement of any of the connecting points works, a change in the form and movement of the link device is recognized when the restraint is released or restrained. Even if the door is stopped in a range where the door and the drive unit do not interlock as in the “switching range”, the link device continues to move, but the door restarts, but even in the interlocked range, the wheel B is resisted and stopped.
  • FIGS. 5E and 5F are explanatory views of the operation of the deceleration means during rotation, and show a state in which the link device can freely move when the movement of the wheel B is restricted.
  • the contact point b between the wheel B and the sliding surface K is the same position, the door opening ⁇ d and the connecting shaft C are different, and the amount of expansion and contraction of the push spring U is also different.
  • the sliding surface Kk is urged by a pressing spring Uk in the direction of the arrow C in the drawing with the "support shaft Sk provided on the door frame W" as an axis, and presses the wheel BB mounted on the connecting shaft C to move the sliding surface Kk.
  • the urging means AA and V shown in FIGS. 5 (a) to 5 (d) are not shown, but a force is applied to the door so as to start moving the stationary door anywhere. is doing.
  • FIG. 5 (e) shows a state in which the door is accelerated when the rotation speed of the door is small and the push spring Uk is contracted, and the link A, Jc is hardly moved and the push spring Uk is extended.
  • FIG. 5 (f) shows a state in which the door is decelerated when the rotation speed of the door is large and the pushing spring Uk is extended, and the pushing spring Uk is contracted while the door hardly moves.
  • the deceleration means works effectively, and when the door is decelerated, it works invalid.
  • 5 (e) and 5 (f) self-controls according to the magnitude of the door inertia force, and is a means for taking resistance in the "(A) range" where the door and the drive unit are interlocked. There is no such thing as stopping. 5 (e) and 5 (f) illustrate that any of the connecting shafts of the link device is constrained, and the same deceleration effect can be obtained no matter what the constraint is. *
  • FIG. 6 is a plan view for explaining the operation of the speed reducer in which the door inertia force acts as “a force that resists the closing rotation of the door”
  • FIG. 6A is “the range of (A)”
  • FIG. FIG. 6C shows a range from the time of latch contact to the time of sealing.
  • the rotating body J is rotatably supported around a fixed support shaft Sw provided on the door frame W, and is rotationally biased in the direction indicated by the arrow C by the torsion spring UV, so that a driving force Mv acts around the fixed support shaft Sw.
  • One end of the link AA is connected to the connecting shaft P of the rotating body J, and the other end is connected to the rotating shaft Ib of the wheel provided at the tip of the link A.
  • the link A is rotatably supported around a connection axis C provided on the door D, and the rotation of the link A in the direction opposite to the arrow D in the drawing is prevented by the contact Ga.
  • a wheel B is mounted on a rotating shaft Ib of the wheel provided at the tip of the link A.
  • the action point (wheel rotation axis Ib) moves along the sliding surface K1 provided on the door frame W, but moves substantially parallel to the door surface and the action line direction is substantially the axis O direction. And the acting force distance Lo is kept small.
  • the wheel B moves along a straight line portion in the vicinity of the pivot axis O of the sliding surface K1
  • the hitting Ga is released and the link A rotates the connection shaft C in the direction of the arrow D in the figure, but the rotation is small.
  • the resistance when a resistor or a damper is attached, the resistance is not applied directly to the door to decelerate, but a resistance is applied to one of the operations of the drive unit that rotates greatly against a slight rotation of the door just before closing. It decelerates and does not require large resistances or dampers. Especially when the resistances and dampers function in the “switching range”, the door and the drive unit do not work together, so the rotation of the drive unit affects the rotation speed of the door. It is always possible to decelerate to a predetermined speed.
  • the force with which the wheel B presses the sliding surface K1 is the “force that stops the rotation of the door” due to the door inertia force, and the pressing force increases as the door inertia force increases and increases the movement of the wheel B and the rotation of the door. Braking. When the door inertia force disappears, the pressing force disappears and the movement of the wheel B and the rotation of the door are not braked. Thus, when the door is decelerated by the “braking force due to inertial force”, the door stops or decelerates when there is a door inertial force, and when the door stops or decelerates and the door inertial force is removed, the door starts moving again. Or accelerate. The door is slowed down without remaining stationary.
  • the sliding surface K1 and the sliding surface K2 collide with the sliding surface K1 countless times, but they are separated from the sliding surface K1 and the sliding surface K2.
  • the sliding surface K1 and the sliding surface K2 can rotate and be biased by a spring, or the connection is made.
  • the shaft C is movably attached to the door D via a “rotary body Jc rotatably supported around a support shaft Cj provided on the door”, and a push spring U is interposed between the rotary body Jc and the door D.
  • the driving force Mv is greatly transmitted to the “force for pulling the wheel rotation axis Ib” and strongly presses the door against the door stop Gd.
  • a small force acts in the circumferential direction in the circular motion of the connecting shaft P, and the radial force is large. Power works. Even if the large force in the radial direction is small, the so-called wedge effect is obtained, one being decomposed into a large force Fb in which the wheel B presses the sliding surface K2, and the other in a sealing force acting in the axial direction of the link A. . Further, the pressing force Fb and the axial center line Za of the link A shift to a state in which they are arranged in a straight line.
  • the sealing mechanism of the present invention is a state in which the “pressing force Fb for sealing the door” and the axial core line Za of the link A supporting the same are arranged in a straight line, and both are formed on the “closed door surface D0”.
  • the wedge is the wheel B, one of the sliding surfaces on both sides of the wedge is the sliding surface K2, and the other is the link A that is rotatably attached to the door D.
  • the link A can be opened by rotating. However, the link A rotates as the axial center line Za of the link A is not perpendicular to the “closed door surface D0”, and as the link A is shorter and the rotation radius of the action point Ib is smaller. “Resistance of link A when opening” is small.
  • the sealing mechanism in FIG. 6 is a link A that can rotate the “sliding surface KD assumed to be fixed to the door D”.
  • the opening / closing device of FIG. 7 is adapted to remove the door inertia force at the time of sealing.
  • the opening / closing device of FIG. 7 is a device in which means applied before that are integrated into the sealing device, and the sealing device also has a rotating function.
  • the drive unit and the opening / closing unit are not or hardly interlocked, but in the “(A) range” and “(I) range”, the driving unit and the opening / closing unit are interlocked.
  • the opening / closing part moves by the driving part, and at the same time, the driving part moves by the door inertia force.
  • the drive unit moves due to the inertial force of the door
  • the opening / closing unit moves due to the door inertial force. Because it expands and contracts, it follows the door without delay. In this case, the driving part and the opening / closing part do not interfere with each other, and the driving part is free without obstructing the movement of the opening / closing part.
  • the drive unit closes the door after the “switching range”.
  • the door in which the inertial force of the door has not disappeared moves even if the drive unit is stopped in the “switching range”, so there is no “switching range”, and the door is closed regardless of the driving unit in the “(ii) range”.
  • the range of the magnitude of the door inertia force is large, so the range of the door impact sound is also large. Therefore, a situation where the door is closed by the door inertia force must be avoided.
  • sealing prevention means that prevents the airtight seal even when the latch is depressed while being accelerated by the inertial force of the door.
  • the “switching means” also has a feature that the link device operates greatly because the action line moves or rotates greatly while the door is slightly rotated.
  • both the sealing device of FIG. ⁇ The feature that operates greatly while the door is slightly rotated '' is that it operates largely in an unloaded state without rotating the door, and the operation ends instantly regardless of the size of the operation, When opening the closed door, the link device cannot be operated largely without rotating the door, and it is also impossible to open the closed door.
  • the sealing device of FIG. 7 is a device in which a sealing prevention means is added to the “switching means”, and solves the problem that the operation ends in a moment and the problem that the closed door cannot be opened. *
  • FIG. 7 The structure of FIG. 7 is the same as the structure of FIG. 2, and the door D and the door frame W are interchanged. 7, the sliding surface K in FIG. 2 is attached to the door, and the connecting shaft C in FIG. 2 is attached to the door frame W.
  • the wheel B is attached to a rotation shaft Ib of the wheel provided at the tip of the link A, and the link A is the tip of the “rotary body J that is urged to rotate in the direction of arrow A in the figure about the fixed support shaft Sw”.
  • the connecting shaft P moves “on the circumference Rsw1 around the fixed support shaft Sw in the direction of arrow A in the figure, and the wheel B presses the sliding surface K.
  • the door D rotates in the direction of arrow B in the figure.
  • the sliding surface K is rotatably supported by a connecting shaft C provided on the door D, and is urged to rotate in the direction opposite to the arrow C in the figure by a pressing spring U.
  • the sliding surface K is opposite to the arrow C in the figure. Rotation in the direction is prevented by engagement between the bottom surface of the sliding surface K and the door surface, which is rotatably supported around the connection axis C.
  • the rotating body Jc is rotatably supported around a supporting shaft Cj. *
  • the surface Kd of the sliding surface K facing the door surface is concave toward the door surface and moves along the “sliding surface Kw provided on the door frame W” immediately before closing, and slides on the sliding surface K.
  • the contact bk with the surface Kw moves while approaching the connection axis C as the door closes.
  • the wheel B moves along the “surface Kb that does not face the door surface of the sliding surface K”.
  • the acting force distance Lo is small because it stops at the base end portion Ko.
  • the sealing device of FIG. 7 includes sealing prevention means for stopping the door just before closing.
  • the wheel B starts to move when the “angle ⁇ ak between the axis A Za of the link A and the sliding surface K” becomes an obtuse angle, and the “switching means” starts when the angle ⁇ ak is a right angle. In the “switching range” shown in FIG.
  • the sealing device of FIG. 7 includes a sliding surface K that moves the action line of the pressing force Fb far away from the pivot O with little or no rotation of the door D. While the action point (the wheel rotation axis Ib) moves linearly in parallel with the “closed door surface D0”, the action line of the force Fb goes straight in the “radial direction of the door rotation” during sealing. When the action point moves without work, the spring expands and contracts in an instant, and neither the movement of the action point nor the “switching means” takes time, and from “(A) rotating means” to “(I )), The door is further accelerated.
  • FIG. 7 (e) is a state diagram when the wheel B that has reached the terminal end Ke starts to return in the process of opening the door, and shows that the opening degree of the door is larger than that in FIG. 7 (d). Since the sliding surface K is rotatable, the wheel B is easy to return when the door is opened, and “the range in which a very small force is applied in the range where the door is sealed” in the closing process is the range in which a large force is applied in the opening process. , Indicating that the door will not open and stay where it is released.
  • the link device can move while the point of action Ib remains at the terminal portion Ke of the sliding surface K, and when the door is opened, the sliding surface Kb rotates and the wheel B descends. Go back on the slope.
  • the action point Ib moves away from the connection axis C while circularly moving around the connection axis C. Moreover, it approaches the pivot axis O while circularly moving around the pivot axis O. *
  • the opening / closing apparatus of FIG. 8 includes three links of two opening / closing bodies and a spring sharing a rotation axis, and each of the two opening / closing bodies has a spring mounting shaft, and the two opening / closing bodies are relatively moved by the expansion and contraction of the spring.
  • a rotating mechanism that rotates in the direction of the shaft, and one of the mounting shafts is provided at a position close to the rotating shaft, and the other mounting shaft is provided at a position far from the rotating shaft, thereby reducing the expansion and contraction of the spring accompanying the relative rotation of the two opening / closing bodies. 8 to reduce the relative rotation acceleration of the two open / close bodies, and the open / close device of FIG.
  • the opening / closing device of FIG. 8 has one attachment shaft of the tension spring V provided on the support shaft Sa of the door D in the vicinity of the pivot O, and the other attachment shaft provided on the fixed support shaft Sw of the door frame W near the pivot O.
  • Expansion and contraction of the spring V causes the door D to close and rotate in the direction of the arrow B in the figure, and the support shaft Sa of the door D is between the restraint position near the pivot O and the restraint release position far from the pivot axis O.
  • Attached so as to be able to swing with a predetermined opening degree of the door where the axis core line Za crosses the connecting axis C to the tension spring V as a boundary, a position where the axis core line Za is close to the pivot axis O and a position far from the pivot axis O
  • Rotation characterized in that the rotational moment acting around the pivot O is changed from small to large or from large to small with little or no rotation of the door by swinging between the position and the restraint release position.
  • the link A is urged by the pulling spring V so as to rotate in the direction opposite to the arrow A in the figure with the connection axis C as the axis.
  • FIGS. Ga prevents rotation in the direction opposite to arrow A in the figure.
  • FIG. 8C in the “switching range”, the connecting shaft C crosses the axis Zv of the spring due to the closing rotation of the door D.
  • the link A is separated from the hit Ga and rotates in the direction of arrow A in the figure.
  • the “sliding surface Ga provided on the door frame W” is a releasable restraining means that engages with the side surface of the link A in the “(A) range” and disengages in the “switching range”.
  • the range A restricts the rotation of the link A, keeps the support shaft Sa in the vicinity of the pivot axis O to keep the acting force distance Lo small, and releases the constraint Sa in the range "(i)”
  • the acting force distance Lo is increased away from the vicinity.
  • a link that swings when engaged with and disengaged from the restraint position, such as link A will be referred to as a swing link.
  • the support shaft Sa fastened in the vicinity of the pivot axis O when the axial center line Za of the link A and the axial center line Zv of the spring are in a straight line.
  • the support shaft Sa is attached in the vicinity of the pivot O, and the door is rotated in the “switching range”.
  • the support shaft Sa is attached to the far side of the pivot O, and the axial center line Za of the link A and the axial center line Zv of the spring are folded back.
  • “Switching range” does not involve door rotation.
  • FIG. 8A “the contact point ba between the side surface of the link A and the sliding surface Ga” is biased in the direction in which the door opens and is farther from the pivot axis O than the spring support shaft Sa, and remains stationary when fully opened. I am doing so. *
  • the expansion / contraction part is a four-bar rotation mechanism composed of two links of the tension spring V and the link A, and since one of the links is a spring, the rotation of the opening / closing body is stopped and the tension spring V Link A can rotate.
  • the form of the link device is not constant with respect to a predetermined door opening.
  • the operation of the door may be delayed or overtaken by the operation of the drive unit.
  • FIGS. 8E to 8H show a structure in which the link A shown in FIGS. 8 (a) to 8 (d) is equipped with a sealing wheel B and a sealing prevention wheel BB. It is operation
  • the contact Ga attached to the side surface of the link A is a releasable restraining means that engages and disengages with the rotating body Jc.
  • range (A) shown in FIG.
  • the contact Ga is on the side farther than the door contact Gd and engages with the rotating body Jc.
  • the contact Ga is separated from the rotating body Jc on the side closer to the door contact Gd of the pulling spring V.
  • the link A rotates in the direction of arrow A in the figure around the connecting shaft C
  • the contact Ga separates from the rotating body Jc.
  • the wheel B and the sliding surface K are engaged, and the connecting shaft C revolves around the pivot O in the direction indicated by the arrow B.
  • FIGS. Although there is no separation, the movement of the link device precedes the door movement in the “switching range” shown in FIGS. 8E to 8H.
  • the rotation of the link A is terminated and left separated, and after the wheel B and the sliding surface K are engaged with each other.
  • the opening / closing device shown in FIGS. 8 (e) to 8 (h) sufficiently decelerates the door by closing it with a weak spring force in the “(range)” so that the door inertia force is not affected by the sealing operation.
  • the "force acting on the door” has no force to dent the latch. It is a state.
  • the history of “force acting on the door” in “range (A)” varies depending on the position of the mounting shaft Sa of the spring revolving around the pivot O.
  • the acting force distance Lo increases and the “force acting on the door” increases.
  • the “force acting on the door” increases. “It is large when fully open and small when fully closed.
  • the “force acting on the door” is larger when fully opened and larger when fully closed.
  • the former is adopted when it is better to start closing early like a toilet door, and the former is adopted when it is better to start closing late with a door passing by holding an object.
  • the inertial force of the door is extinguished by decelerating the movement speed of the driving unit and delaying the switching work time at the time of latch contact.
  • the “revolution trajectory about the pivot axis O of the wheel B” is substantially parallel to the base end portion Ko of the sliding surface K, and is substantially orthogonal to the “revolution trajectory about the connection axis C of the wheel B”.
  • the wheel B receives a large resistance at the beginning of engagement with the entrance Ko of the sliding surface K, and the resistance decreases as the wheel B enters the inside of the sliding surface K. When the wheel B is at the entrance Ko of the sliding surface K, the door is decelerated.
  • the sliding surface K that engages with and disengages from the wheel B of the present invention gradually increases in angle ⁇ ak as the wheel B enters the inside from the entrance, and is difficult to move even if the force in the moving direction of the wheel B is large at the entrance.
  • the wheel B decelerates even if the spring bias is large by moving along the “sloped sliding surface K even if the distance is short”, and the end of the “switching range”. Further, the wheel B is moved over a long distance along the sliding surface K having a gentle slope, so that the door is sealed even if the biasing force of the spring is small.
  • the speed reduction means for providing resistance at the entrance of the sliding surface K and causing a shortage of force at the beginning of the “(range)” and delaying the movement of the wheel B brakes the movement of the telescopic portion. Therefore, it is executed reliably without being affected by the inertial force of the door, and the deceleration means does not stop the door halfway.
  • the link A starts to rotate around the connecting shaft C and the wheel B moves along the sliding surface K. It revolves around the connection axis C with a very slight distance without contacting the contact Gw attached to the frame W. If the wheel B moves along the sliding surface K while the door does not decelerate and closes without being stopped just before closing, the wheel BB hits and collides with Gw. When the rotation speed of the door when the wheel BB hits and collides with Gw is relatively low, the link A continues to rotate, and when it is large, the rotation stops and the rotation of the door also stops.
  • the rotation axis Ibb of the wheel BB moves on the "circular orbit Rbb centered on the pivot O" and passes through a position farther from the pivot O than Gw. If the wheel BB hits and engages Gw without any "rotation of the link A in the direction of arrow A", the "force that the wheel BB hits and presses Gw” rotates the link A in the direction opposite to the arrow A in the figure. The link A is stopped in a state where it is integrated with the door while engaging with the contact Ga. As shown in FIG.
  • the rotation mechanism of FIG. 8 is also provided with a “drive rotary shaft C of the sealing device” on the “rotary body Jc rotatably supported around the support shaft Cj provided on the door D”.
  • the latch male portion Rd abuts against the sliding surface portion Rww as shown in FIG.
  • the link A can be obtained only by the force that the connection shaft C crosses the spring axis Zv. Begins to rotate and the "switching means" operates.
  • the sealing prevention means is a door.
  • the door is braked immediately before sealing, gradually approaching to the door stop Gd while keeping the “position until reaching the door stop”.
  • the sealing mechanism shown in FIG. 8 (h) includes means (hereinafter referred to as sandwiching means) that sandwiches the door with a sealing force and a force that prevents the opposing sealing and holds it in a predetermined position.
  • sandwiching means When the predetermined position is “a position where the latch male part Rd fits into the female part Rw and reaches the door stop”, the sandwiching means minimizes the impact sound.
  • the door closed by the wedge effect has the disadvantage that it is harder to open as the “small force in the moving direction” of the wheel is converted to “force in the direction perpendicular to the moving direction”, and when opening a closed door
  • the link A rotates, the door can be opened.
  • the link A revolves while rotating around the pivot O, but the link B rotates, so that the wheel B moves in a direction perpendicular to the “closed door surface D0” with the slight rotation of the door. Moved in a direction parallel to the door surface D0 ".
  • the link A becomes easier to rotate and returns from the position of “(i) rotating means” to the position of “(a) rotating means”.
  • the direction of the “force to close the door” approaches the direction perpendicular to the “closed door surface D0”, and the direction of the “force that the wheel presses the sliding surface” is the sliding surface.
  • the door cannot be opened when passing through the direction perpendicular to the “closed door surface D0” or the sliding surface K. Therefore, it is desirable to approach the right angle as much as possible without passing through the right angle. *
  • a closed door has a “sealing force”, and when opening the closed door, it is necessary to apply a force of the same magnitude as the “door sealing force” in the opposite direction.
  • the “force to seal the door” must be as small as possible.
  • the latch abuts against the door frame W, the door is not stationary, but the inertial force participates in the sealing operation with the door moving to a certain degree. It is better to reduce the "force sometimes required”. For this reason, it is desirable that the closing speed of the door at the time of latch contact is large enough that the above-described sealing means does not cause a collision.
  • the force of the spring for sealing is reduced by the amount of inertia force participating in the sealing work, but the wheel BB hits Gw just before closing and decelerates by contacting Gw, but if there is no inertial force, the door stops. It means that.
  • the closing process when the latch passes the position where it abuts against the door frame W, the door inertia force is attached, but when the "closed door” is opened and the latch is released from the door at the abutting position on the door frame W The door does not reach the sealing force as much as the inertia force of the door is not attached, and the door remains stopped and does not close.
  • the wheel BB hits Gw just before closing and decelerates by contacting Gw, but if there is no inertial force, the door stops. It means that.
  • the closing process when the latch passes the position where it abuts against the door frame W, the door inertia force is attached, but when the "closed door” is opened and the latch
  • the position just before closing in the closing process is the position where "(i) rotating means” works in the process of opening the door, and the door will stop regardless of where the hand is released. It will not prevent hermetic sealing.
  • FIG. 8 (f) in the closing process, just before the closing, the rotating body Jc and the link A are opened from the closed state, and the “wheel B in a state separated from the sliding surface K” is the sliding surface K.
  • FIG. 8 (h) the rotating body Jc and the link A are closed from the opened state according to the opening degree ⁇ ds of the door that changes to “wheel B in contact with the sliding surface K”.
  • the opening ⁇ do of the door that is separated from the sliding surface K is large, and “(i) rotating means” works in the range below the opening ⁇ do of the door.
  • the opening / closing device of FIG. 9 is a rotation device in which a driving force acts at a position close to the pivot O and a position near the pivot O, and a sealing device in which a driving force acts at a position far from the pivot O and far from the pivot O.
  • the operation of rotating the door with a predetermined opening of the door as a boundary is inherited from the rotating device to the sealing device.
  • the three opening / closing bodies D, W sharing the rotation axis O and the three links of the spring V are provided, and one of the attachment shafts of the spring V is located close to the rotation axis O 8 is a link device provided at a position far from the rotation shaft.
  • the attachment shaft at a position far from the rotation shaft is mounted so as to be swingable.
  • the “fulcrum Sa of the spring provided at a close position” moves, the “distance Lv between the line of action Zv of the spring force and the pivot O” greatly changes, but “from the pivot O as in the embodiment of FIG.
  • the other support shaft of the spring provided at a distant position moves, there is almost no change in the “distance Lv between the spring force action line Zv and the pivot O” due to the movement of the spring fulcrum.
  • the connecting shaft C is located far from the pivot axis O, and the link supported by the connecting shaft C rotates significantly in the “(range)”. This large rotation is observed at a position far from the pivot axis O. Similar to the opening and closing device of FIG. 8, this large rotation causes the driving force to act at a position far from the pivot axis O.
  • the link A has a connecting shaft C in the middle and a sealing wheel B and a spring support shaft Sa at one end and a sealing prevention wheel BB at the other end.
  • the wheel B is mounted on the rotating shaft Ib
  • the wheel BB is mounted on the rotating shaft Ibb
  • the rotating body Jc is rotatably supported around the “support shaft Cj provided on the door”
  • the connecting shaft C is movable to the door. Mounted.
  • the state of “(A) range” before the connecting axis C crosses the axial axis Zv of the spring is indicated by a broken line
  • the state of “(A) range” after that is indicated by a solid line.
  • the support shaft fixed to the door frame W by the spring support shaft is referred to as a fixed support shaft
  • the non-fixed support shaft is referred to as a revolving support shaft, as shown in FIG.
  • the biasing direction of the spring changes with the straight line Tv as a boundary, and the change in the amount of expansion and contraction of the spring occurs when the revolution support shaft is on the side farther from the pivot O and the revolution support shaft is on the side closer to the pivot O.
  • the region between the arc Ro and the arc Rs indicates the amount of expansion and contraction of the spring.
  • the rotation of the door in the direction indicated by the arrow B is caused by the pulling spring VV which is “(A) rotating means”, and the rotation of the link A in the direction indicated by the arrow A is caused by the pulling spring V which is “the rotating means (I)” Made.
  • the tension spring VV is shortened and the door is rotated in the closing direction, and the tension spring V is lengthened and biased in the direction of opening the door.
  • the magnitude of the force acting on the door can be designed to be unique in the rotation work and the sealing work, regardless of the acting force distance Lo. Since the size can be adjusted according to the strength of the spring, the device can be miniaturized by increasing the strength of the spring so that the operating point is close to the pivot axis O. In FIGS. 9B and 9C, the illustration of the spring is omitted. *
  • a support shaft near the pivot O of the tension spring V is attached to the door frame W, a support shaft far from the pivot O is attached to the door D, a support shaft near the pivot O of the tension spring VV is attached to the door D, and a support shaft far from the pivot O is attached to the door frame W. Since the door D and the door frame W are two opening / closing bodies that share the pivot O and rotate relatively, both are pivots close to the pivot O and the other is a far pivot. There is no substitute, and it is the same as closing the spring as a biasing means. However, only the operation differs depending on the mounting position.
  • FIG. 9B is a state diagram of the link device with the door opening degree being 15 degrees, 11 degrees, and 10 degrees, and shows the state before the closing dimension, before the latch contact, and at the beginning of the latch contact, respectively.
  • the link A passes over the sliding surfaces K2 and K3 under the sliding surface K1 while the door opening is between 15 and 11 degrees.
  • the opening degree is between 11 degrees and 10 degrees, the link A rotates and moves on the sliding surface K2, and then moves on the sliding surface K3.
  • 9C is a state diagram of the link device in which the door opening degree is 10 degrees, 9 degrees, and 8 degrees, and shows a state at the beginning of the latch contact, after the latch contact, and immediately before the fully closed state.
  • the wheel B simultaneously moves on the sliding surface K1 and the wheel BB moves on the sliding surface K3, and closes and rotates the door while preventing sealing.
  • the connecting shaft C moves in the direction indicated by the arrow B in the figure, and the rotating body Jc rotates in the direction indicated by the arrow C in the figure so as to be integrated with the door D to be fully closed.
  • FIG. 9 shows a “rotation mechanism in which the action point is shifted from a position close to the pivot axis O to a position far from the pivot axis O”.
  • the “force for sealing the door” in the “(range)” increases as much as the sliding surface K is moved away from the pivot axis O.
  • the “rotation mechanism in which the action point shifts from a position close to the pivot axis O to a position far from the pivot axis O” can adjust the ratio of “the force for rotating the door” and “the force for sealing the door” between zero and infinity.
  • the tension spring VV has one support shaft Sa2 attached to the door D and the other support shaft Sw2 attached to the door frame W, and the “switching means” operates to “open the door when the force acting on the door is lost”. It plays the role of getting close to a predetermined position to start.
  • one of the links of the four-bar rotation mechanism is a link device that replaces the spring
  • the rotation of the link A and the rotation of the door D are operated independently of each other, and the door D is stopped when the latch comes into contact.
  • the rotating body Jc rotates in the direction indicated by the arrow C in the figure.
  • the wheel BB slides. Locked to the door frame W via K3, the rotating body Jc rotates in the direction opposite to the arrow C in the drawing and engages with G2 to become integral with the door D and stop the door.
  • 9C is a means for restraining the rotation of the link A by engaging with the wheel B in the middle of the rotation of the link A.
  • the wheel B moves on the sliding surface K1.
  • the revolution of the connecting shaft C around the pivot axis O substantially stops, and when the door D continues to rotate, the wheel B engages with the wheel B.
  • the rotational speed of the door due to the inertial force of the door and the rotational speed of the door due to the rotation of the link A are different.
  • the speed reducing means of the sliding surface Kd is such that the braking means works when it deviates from the predetermined motion by the door inertia force. Become. *
  • FIGS. 9D to 9G illustrate the role of the spring when the spring is attached to the sealing device of FIGS. 9D to 9G.
  • the sealing device shown in FIGS. 9D to 9G is such that the sealing prevention wheel BB has a sealing function, and the wheel B can be omitted.
  • the sealing sliding surface K3 and the sealing sliding surface K1 are provided on the “sliding surface K rotatably supported around the support shaft Sk provided on the door frame W”.
  • Push springs U1 and U2 are attached to both sides of the.
  • the sliding surface K2 is omitted.
  • the pressing spring U3 biases the rotating body Jc in the direction of arrow C in the figure.
  • the rotation of the rotating body Jc in the direction of the arrow C in the figure is prevented by the contact between the side surface of the rotating body Jc and the door surface.
  • the rotation axis Cj of the rotating body Jc is provided at a position close to the pivot axis O, the restoring force of the push spring U3 acts in the direction of opening the door, so the rotation axis Cj of the rotating body Jc is provided at a position away from the pivot axis O.
  • FIG. 9D shows a state in which the rotation axis C of the link A crosses the axial center line Zv of the spring, and the link A is separated from G1 and is about to rotate in the direction indicated by the arrow A in FIG. Indicates.
  • the door inertia force is large, and the state where the wheel BB is in contact with the sliding surface K3 without hitting the link A and coming off from G1 is shown. Since the angle ⁇ ak is an acute angle, the rotation of the link A is prevented and the rotation of the door D in the direction indicated by the arrow B in the figure continues, the sliding surface K rotates in the direction indicated by the arrow D in the figure, and the push spring U2 is contracted. .
  • the door inertia force is absorbed by the push spring U2, and the door is decelerated. *
  • FIG. 9 (e) shows a state in which the compressed spring U2 is extended.
  • the sliding surface K rotates about the support shaft Sk in the direction opposite to the arrow D in the figure
  • the rotating body Jc rotates about the rotation axis Cj in the direction opposite to the arrow C in the figure
  • the push spring U3 does not contract.
  • the angle ⁇ ak shifts from an acute angle to an obtuse angle
  • the link A can rotate about the connection axis C in the direction of arrow A in the figure.
  • FIG. 9 (f) shows that the wheel BB moves from the sliding surface K3 to the sliding surface K1 and presses the sliding surface K1 due to the rotation of the link A in the direction of arrow A in FIG.
  • the push spring U1 is rotated in the direction opposite to the arrow D and the compressed state is shown.
  • the push spring U2 is separated from the door frame W and becomes invalid.
  • the rotating body Jc is rotated in the direction of arrow C in the figure.
  • FIG. 9G shows that the link A further rotates while the door is stopped at the time of latch contact, the side surface of the rotating body Jc contacts the door surface, and the rotating body Jc and the door D are relatively integrated.
  • the sliding surface K is further rotated to further contract the pressing spring U1, and a state in which “the force for indenting the latch” is stored in the pressing spring U1 is shown.
  • FIG. 10 is a plan view for explaining the rotation mechanism and the impact noise elimination effect of the “opening / closing device in which the connecting shaft C is movably attached to the door”.
  • the rotating device in FIG. 10 is the rotating body Jc in FIGS.
  • the driving force transmitted to the first door in the “(A) range” is insulated in the “switching range” and in the “(A) range”.
  • the “biasing force prepared for the second door” seals the door and relays from the rotating operation to the sealing operation.
  • the structure is the same as that in FIG.
  • the door shown in FIGS. 10E and 10F is a door including a first door A, a second door D, and biasing means V and U, and a tension spring V as a biasing means of the first door A. Is used as a biasing means for the second door D.
  • the solid line in FIG. 10 (e) shows a state where the latch male part Rd abuts against the sliding surface part Rww of the female part Rw and the door is stationary.
  • the pull spring V has a force to rotate the door, but there is no “force to dent the latch”.
  • the contact Ga prevents the force of the pulling spring V from acting on the door by preventing the "rotation of the link A in the direction of arrow A in the figure" at the time of latch contact.
  • the push spring U extends to rotate the door D in the direction of arrow B in the figure.
  • the force for sealing the door is determined by the length of the push spring U when the link A is hit and locked to Ga as shown in FIG. The door is pressed against the door with a force corresponding to the length of the push spring U when it abuts.
  • the link A is locked to the contact Ga because the spring does not expand or contract greatly to reach the “force to seal the door” or “force to press the door against the door”.
  • the length of the push spring U is significantly different from the natural length.
  • the force of the pulling spring V is the “force to dent the latch” when the latch contacts, and the “spring to dent the latch” is stored in the push spring U as shown in FIG. You have to be ready.
  • the spring force is excessive in the “range (A)”, the door inertia force becomes large, and the door is sealed without being decelerated at the time of latch contact.
  • the “force acting on the door” needs to be switched from small to large while the door stops or slightly rotates just before closing.
  • the door is switched from small to large with no or little rotation of the door at the predetermined opening degree of the door at the time of latch contact.
  • the stiffness of the spring When the stiffness of the spring is set to infinity, the mounting shaft is fixed, the door and the telescopic part work together, and when the stiffness of the spring is set to zero, the mounting shaft is not fixed and can move freely Thus, the door and the telescopic part do not interlock, and the telescopic part continues to rotate independently without rotating the door.
  • the rigidity of the spring When the rigidity of the spring is set to be small, the expansion / contraction part provides a rotational force little by little to the door while greatly expanding and contracting the spring. The expansion / contraction part provides the door, but even if it is large, it can be limited by setting the upper limit of the expansion / contraction of the spring.
  • the state at the time of latch contact shown in FIG. 10 (f) includes a case where the push spring U latch is extended and the latch contact is reached, and a case where the push spring U is contracted and the latch contact is reached.
  • the air resistance applied to the door surface before latching and abutting is large, and the air resistance disappears when the latch abuts. This is the case when the spring U is contracted and reaches the latch contact.
  • FIGS. 10 (a) to 10 (d) show an embodiment in which the latter push spring U is contracted and reaches the time of latch contact, and the force acting on the door gradually increases as in the former case. is there. 10 (a) to 10 (d), the pulling spring V merely pulls the “mounting shaft Sa attached to the door via the link A” as shown in FIG. As shown in FIG. 10A, in “range (A)”, “rotating body J that is rotatably supported around a supporting shaft Cj provided on door D and has wheel B attached to the tip” is provided.
  • the speed reducing means prevents the door inertia force from disappearing at the end of the closing rotation so that an impact load is not applied.
  • the operating point Sa of “the force that rotates the door” is closer to the pivot O than the operating point b of “the force that causes the latch to be depressed”, and the sealing device is the rotating device. It is closer to the pivot axis O.
  • the door can be sealed by the wheel B pressing the sliding surface K3, but before the wheel B presses the sliding surface K3, the “arrow in the drawing of the rotating body J” is displayed.
  • the rotation in the direction “b” is prevented by Gj.
  • the wheel Bb follows the sliding surface K3.
  • FIG. 11 is a link device in which “link A in which bending force acts as shown in FIG. 1” is connected by a slip pair, and it is possible to release the action point of “force acting on the door” from the vicinity of the pivot O to the far side. It is operation
  • FIG. 11A shows a solid line when fully closed, and a broken line showing the operation immediately after the fully opened state.
  • FIG. 11 is provided with “switching means” that continues to operate even when the door is stopped without using the tension spring V as a component of the link device as in FIGS.
  • the rotating body J rotates about the fixed support shaft Sw in the direction of the arrow A in the figure, and the wheel B is mounted at a position far from the fixed support shaft Sw and a wheel BB is mounted at a position substantially perpendicular to the fixed support shaft Sw. It moves along a “sliding surface K provided on the door D at a position close to the pivot O” and a “sliding surface KK provided on the door D at a position far from the pivot O”.
  • the wheel B presses the sliding surface K
  • the wheel BB separates from the sliding surface KK.
  • the wheel BB presses the sliding surface KK, and the wheel B separates from the sliding surface K.
  • FIG. 11A as in FIG.
  • the wheel B presses the sliding surface K while the angle ⁇ ak is an acute angle as in FIG. 1, and the door D rotates about the pivot O in the direction of arrow B in the figure.
  • the action point is stopped at a position close to the pivot axis O, and the action force distance Lo is made small and the drive force distance Lv is kept large.
  • the wheel B separates from the sliding surface K when the angle ⁇ ak is a right angle in the “switching range”, and the “restraint means for stopping the action point at a position close to the pivot axis O” is released.
  • the wheel BB presses the sliding surface KK while moving along the sliding surface KK.
  • the acting force distance Lo is large and the driving force distance Lv is small.
  • FIG. 11A is an explanatory view of the operation of the door D rotating around the pivot O in a state where the door frame W is fixed
  • FIGS. 11B and 11C are views of the pivot O in a state where the door D is fixed.
  • the fixed support shaft Sw revolves around the pivot axis O.
  • the fixed support shaft Sw is rotatably attached to the door frame W on a “rotary body Jsw that rotates about the fixed support shaft Sw provided on the door frame W”.
  • FIG. 11B is an operation explanatory diagram in the case where the position of the fixed support shaft Sw is not retracted from the door
  • FIG. 11C is an operation explanatory view in the case where the fixed support shaft Sw is retracted from the door.
  • the rotating body Jsw is rotated in the direction indicated by the arrow C in the figure by the push spring U, and the fixed support shaft Sw moves backward from the door as shown in FIG.
  • the wheel BB it is difficult for the wheel BB to move on the sliding surface KK due to a large frictional resistance from the sliding surface KK just before sealing.
  • the push spring U contracts, the fixed support shaft Sw approaches the door, and the wheel BB easily moves on the sliding surface KK.
  • the wheel BB reaches the end portion KKE of the sliding surface K after the door is closed.
  • the wheel BB reaches the end portion KKe of the sliding surface K and the door is closed.
  • the sliding surface Kbb shown in FIG. 11B is “supported rotatably around the support shaft Sd on which the door D is provided, and is urged by the pressing spring Ubb to face the sliding surface KK.
  • the sliding surface KK form a passage through which the wheel BB barely passes.
  • the sliding surface Kbb engages with the door immediately before fully closed, and the push spring Ubb contracts to absorb the door inertia force.
  • the inertia force when the inertia force is large, the impact sound can be sufficiently reduced by preventing the wheel BB from reaching the terminal end KKe of the sliding surface K after the door is closed.
  • the wheel BB When restoring, the door is urged in the direction of opening, but the wheel BB immediately follows the sliding surface KK, so the door closes soon after opening.
  • the force toward the center of BB revolution even if it is large, it is great for moving the wheel BB Not intended to be resistance.
  • the means for decelerating the door does not decelerate the door, but decelerates the movement of the wheel BB, and works effectively over a wide range of the magnitude of the door inertia force.
  • FIGS. 12 to 16 are plan views for explaining the operation of the opening / closing device inherited from the “rotating device having a position close to the pivot O as an action point” to the “sealing device having a position far from the axis O as an action point”.
  • the switchgear is a device that reduces the size of the device despite the large area in which the device operates.
  • the switchgear in FIGS. 12 to 15 adds a sealing device to the switchgear in FIGS. 1 to 3
  • the switchgear in FIG. 16 adds a sealing device to the switchgear in FIG.
  • the sealing means is provided with a "link A2 with the wheel B2 attached to the tip” and a sliding surface K2 that moves along the axis O, and the wheel presses the sliding surface in the same way as in FIGS. Therefore, the link A1 and the link A2 are connected by the link A3.
  • the link A2 is urged by a pulling spring V, and one end of the pulling spring V is attached to the support shaft Sa at the tip of the link AA and the other is attached to the support shaft Sww provided with the door frame W.
  • the link AA swings between G1 and G2 and is pivotally supported by the link A2.
  • the “switching means provided in the vicinity of the pivot axis O” of the switchgear of FIG. 12 is a “switching means” that keeps the acting force distance Lo small in the “range (A)” and switches greatly when sealed, similarly to the switchgear of FIG. With this portion alone, the switchgear is sufficiently established. When this is increased to increase the acting force distance Lo, the opening / closing device of FIG. 1 is obtained, or when the spring force is increased, the opening / closing device of FIG. 1 is reduced.
  • the switchgear in FIG. 12 is made smaller than the switchgear in FIG. 1 so that only “(A) rotating means” and “switching means” are provided, and “(I) rotating means” is handled by the sealing device.
  • the size of the apparatus is reduced by greatly shifting the point of action, and the point of action gradually moves away from the pivot axis O as shown in FIGS. 1 to 7, or “the rotation axis is moved away from the pivot axis O as shown in FIGS.
  • the operating body of the device is smaller than that of the “rotating body provided at a distant position” compared to the rotating and sealing operations, and can be accommodated in an elongated case along the door frame W when fully closed.
  • the large movement of the “switching means” causes the sealing device at a position far away from the pivot axis O to move greatly, and within the slight rotation range of the door of “(range)”, “sealing while decelerating”
  • the operation with a long passage of time such as “the operation to reach the door” or “the operation to reach the seal while the force acting on the door is gradually performed” is performed.
  • the base end Ko1 of the sliding surface K1 shown in FIG. 12 is provided with a dent, and the dent engages the wheel B to bring the wheel B in the vicinity of the pivot O in the “range (A)” as shown in FIG. Keep on.
  • the locking means is released at a predetermined opening, and the wheel B is momentarily detached from the pivot O.
  • the rotation of the link A is small while being locked in the recess, and is large after the link A is detached from the recess.
  • the cause of the impact sound at the closing time is further acceleration of the “(range)”, and it is desirable that the range of rotation with as strong a force as possible is small. As shown in FIG.
  • the latch when the drive unit and the door are indirectly attached via the first door, the latch can come into contact with the door frame and wait before the “switching unit” operates.
  • the latch does not always come into contact with the door frame and wait before the “switching means” operates.
  • the opening degree of the door when the “switching means” is started can be within a certain range when the angle ⁇ ak is a right angle, but cannot be determined to a limited value. In this case, the opening degree of the door when the wheel B which is relatively locked is separated is determined to some extent. Also, it must be ensured that the locked wheel B does not stop when it comes off.
  • the door rotation range from the contact of the latch to the fully closed state is small and the opening degree of the door on which the “switching means” operates is determined as small as possible.
  • the “means for disengaging the dent and the wheel B” shown in FIG. 12 is such that the opening degree of the door when the “switching means” starts is made as small as possible so as to be close to the time of latch contact.
  • the “sealing device provided near the pivot axis O” includes a sliding surface K2 that engages with and disengages from the wheel B2, and the sliding surface K2 is rotatable around a connection axis C provided on the door. Is pivotally supported.
  • the pressing spring U attached to the “surface facing the door frame W of the base end portion Ko2 of the sliding surface K2” engages with the door frame W in the “(range)” and disengages in the “(range)”.
  • the wheel B 2 and the sliding surface K 2 engage with each other in the “switching range” and “(range)”, and the push spring U engages with the door frame W.
  • the sliding surface K2 is sandwiched between the pressing spring U and the wheel B2 and cannot move.
  • the sliding surface K2 is fixed to the door frame W, and the door is also fixed to the door frame W via the sliding surface K2 and is stationary.
  • the pressing spring U is provided in the vicinity of the base end portion Ko2 of the sliding surface K2.
  • the force Fb "acts in the direction in which the connecting shaft C rotates in the direction indicated by the arrow C in the figure with the pressing spring U as a fulcrum, and the sliding surface K2 acts as a lever that springs up the connecting shaft C with the pressing spring U as a fulcrum.
  • the door is returned to the opening direction by the restoring force of the contracted spring, as shown in FIG. 12C, when the wheel B2 reaches the terminal portion Ke2 of the sliding surface K2 and the contact Gk contacts the door surface.
  • the wheel B2 prevents the "rotation returning to the door opening direction.
  • the push spring U contracts but does not extend.
  • the retracted spring will not be restored without restoring the door.
  • the door rotates in proportion to the amount by which the push spring U contracts, and seals.
  • the force of the pulling spring V is reduced in proportion to the amount by which the pressing spring U contracts, and the “(i) rotating means” must be increased.
  • the push spring U When the door is closed and rotated while the push spring U is contracted, the push spring U resists the door inertia force and functions as a deceleration means. Receiving the inertial force with a spring causes the reaction force of the door inertial force to work in the direction of opening the door. In this way, the door inertial force is absorbed into the spring while allowing the door to move, and the spring is restored and the door is restored. If the door is not pushed back, the door inertia force is converted into the braking force.
  • 12 to 14 is also a sealing preventing means, and the driving force by “spring acting in the direction of closing the door” and resistance by “spring acting in the direction of opening the door” When the door is closed, the door is closed between the door closing force and the door stop Gd. It is something to sandwich. 12 to 14, the rotating device plays a role of preventing the door from rotating in the opening direction by rotating the door in the “(range)”.
  • the force of the tension spring V is set so that the movement of the wheel B2 stops on the way to the end portion Ke2 even when there is no door inertia force.
  • the door inertia force increases, the door D rotates more in the direction indicated by the arrow B in the figure, the sliding surface K2 rotates about the connection axis C in the direction opposite to the arrow C in the figure, the angle ⁇ ak increases, and the push spring U Since the amount of shrinkage increases, a large resistance is given to the movement of the wheel B2.
  • the door inertia force disappears, the door does not return in the opening direction, and thus the large resistance does not decrease.
  • the pressing spring U does not affect the movement of the wheel B2, but "the force Fb that the wheel B2 presses the sliding surface K2" Even if is large, “the force acting in the direction in which the wheel B moves on the sliding surface K2” is small. This means that the movement of the wheel B does not stop no matter how large the inertia force of the push spring U is. means.
  • the sealing device shown in FIG. 12 stops the door no matter how large the door inertia force is. Rather than blocking the seal, the door is temporarily stopped before it is sealed.
  • the amount by which the push spring U contracts when fully closed is the maximum and is constant regardless of the magnitude of the door inertia force. Regardless of whether the door stops in the middle or not, the link AA rotates in the direction indicated by the arrow D in the figure and reaches the acting force distance Lo2 in the middle of reaching the end portion Ke2.
  • the force of the tension spring V is set so as to overcome the maximum force of the push spring U and reach the wheel B2 to the end portion Ke2 of the sliding surface K2.
  • the switchgear 12 is moved parallel to the vicinity of the pivot axis O, and the recess of the base end portion Ko1 of the sliding surface K1 is attached to the base end portion of the sliding surface K2. If it matches, it will be fully established as a switching device.
  • the switchgear is also a “sealing device” with “(a) rotating means” added. As described above, various kinds of switchgears including the rotation device, the switching device, and the sealing device are taken out by taking out any of the rotation device, the switching device, and the sealing device from each of the switching devices shown in the plurality of embodiments. It is natural to be done. *
  • the sealing device shown in FIG. 12 increases the “force acting on the door” by shifting the point of action farther, and further increases the time between latch contact and fully closed. By adding a slight force, the “force to dent the latch” is finely adjusted so that the door closes quietly. If the door is fully closed in an instant after the latch contact, the operation of closing the door again will not be permitted. While the door is rotating slightly, the "force acting on the door” is insufficient to the “force to dent the latch” and the door stops, and the "force acting on the door” with the door stopped still gradually In order for the operation to grow and dent the latch to be executed over time, the door must be stopped immediately before the fully closed state. In the case of FIG. 12, the door is stopped regardless of the opening degree of the closing, whether it is closed from the fully opened position or from the slightly opened position, and this resistance is overcome and the door is sealed. *
  • the sealing device starts first, and the “switching means” close to the pivot O follows with a delay. If the shape from the depression of the sliding surface K1 to the terminal end Ke1 is a curve having a larger curvature than the “circular orbit Rb1 at the furthest point from the fixed support shaft Sw1 of the wheel B1,” the movement direction of the wheel B when the door is opened The angle ⁇ ak becomes an acute angle to reversely rotate the link device. In this case, the door and the drive unit are interlocked in all rotation ranges, and are not “switching means” that does not involve any rotation of the door, but “switching means” that hardly accompany it.
  • the drive unit interlocks with the door, so that the“ spring which is expanded and contracted by the door inertia force ”is restored and the door is prevented from rotating in the opening direction.
  • the“ spring which is expanded and contracted by the door inertia force ” is restored and the door is prevented from rotating in the opening direction.
  • the end portion Ke2 of the sliding surface K2 is disposed on the side close to the pivot axis O and the connection shaft C is disposed on the far side
  • the movement of the sliding surface K2 pushing up the connection shaft C is not blocked by the pivot axis O.
  • the door rotates in the opening direction.
  • the drive unit is interlocked with the door, the force to open the door is also prevented by the link A1 of the “switching means provided in the vicinity of the pivot axis O”, and the door is not returned in the opening direction.
  • FIGS. 12 (d) to 12 (f) show the rotating device of FIGS. 12 (a) to 12 (c) separately from the energizing means of the sealing device.
  • A2 is biased by a toggle spring VV so that different forces are applied to the door in the “(A) range” and “(A) range”.
  • the connecting portion between the link A2 and the link A3 is attached so that the rotation axis Ib2 of the wheel at the end of the link A2 can reciprocate along the long hole H provided in the link A3.
  • the torsion spring UV is relayed to the toggle spring VV.
  • the wheel B2 When the link A2 is in contact with the contact GA21 and is in a standby state, the wheel B2 is not in contact with the sliding surface K2, and when the link A1 is in contact with the contact GA21, the sliding surface K2 is in contact with the wheel B2. The position is in contact. Before the link A1 hits the GA21, the standby state is canceled and the wheel B is located closer to the door frame W than the sliding surface K2 to prevent the door from closing. It is at a position far from “the center of rotation Sw2 of A2”. As shown by the broken line in FIG. 12D, the “(A) rotating means” is in a standby state with a large force so that the axis of the toggle spring VV moves greatly and crosses the “rotation center Sw2 of the link A2”. In the "(A) range", the wheel B1 presses a position near the pivot axis O of the sliding surface K1, so that a large force acts on the door smallly. *
  • the sliding surface K3 is rotatably supported around the “support shaft Ik3 provided on the door”, and is urged by the torsion spring UV3 in the direction indicated by the arrow D in FIG.
  • the sliding surface K3 rotates greatly in the opposite direction to the arrow D in the figure until the link A2 rotates and the wheel B2 presses the sliding surface K2, and the angle ⁇ ak increases to increase the angle of the wheel B.
  • FIG. 12 (f) shows a state in which the wheel B3 is separated from the sliding surface K3 when sealed, and the wheel B2 “presses the sliding surface K2 in contact with the door D”.
  • the magnitude of the inertial force of the door just before closing and the rotational speed of the door differ greatly depending on the opening degree of the closing. If the form of the link device changes depending on the magnitude of the door inertia force just before closing, the magnitude of the braking force can be changed by changing the form. If the magnitude of the door inertia force can be measured by changing the length of the spring, the magnitude of the braking force can be changed by the length of the spring. 12 (d) to 12 (f), “(ii) Rotating means” stands by in “(A) range”, and “Switching range” is started by “(A) rotating means”. In the range, set a certain period of time during which the “force acting on the door” does not work. The braking force according to “the magnitude of the inertial force of the door just before closing and the rotational speed of the door” is applied to the moving distance of the door within a certain time. *
  • the door speed immediately before closing is within a certain range. Only when the door is adjusted to a specific state. In order for the door closer to adapt to various doors, the spring must be strengthened. It must be closed with a strong spring, and even if the speed of the door immediately before closing becomes high, it must be decelerated and sealed. Even if it is sealed with a strong spring, it must be prevented from accelerating in the “(range)” range so that no large force is applied when fully closed. In addition, it must correspond to the “door inertia force immediately before closing” which varies depending on the opening degree of closing.
  • the speed reducer of the opening and closing device shown in FIGS. 13 and 14 changes the magnitude of the braking force in accordance with the magnitude of the door inertia force.
  • the magnitude of “force” falls within a certain range.
  • the rotating means and switching means of the opening / closing device shown in FIG. 13 are provided with the opening / closing device of FIG. 7 in the vicinity of the pivot O.
  • Rotating body J that is rotatably supported ”and“ Link A1 with wheel B1 attached to the tip ” are connected by connecting shaft P, and wheel B1 presses sliding surface K1 in the same manner as in FIGS.
  • the link A1 has a compressive force.
  • the sealing means is provided in the vicinity of the pivot O, and the “link A2 with the wheel B2 attached to the tip” is rotatably supported around the fixed support shaft Sw2, and the link A3 connects the link A1 and the link A2.
  • the link A2 is rotated in the direction of arrow C in the figure.
  • the sliding surface K2 that moves along the wheel B2 is attached to the door D via the rotating body Jc.
  • a broken line shown in FIG. 13A is an operation explanation plan view of “range (A)”, and a solid line shows a state just before closing.
  • the sliding surface K1 moving along the wheel B1 is rotatably supported around the connection axis C, and rotation in the direction of the arrow in the figure is prevented by the contact Gc.
  • a recess provided in the base end portion K1o of the sliding surface K1 keeps the acting force distance Lo small by locking the wheel B1 in the “range (A)”.
  • the sliding surface K1 remains in contact with the contact Gc from the fully open state to the middle of closing, and as shown by C30 in the figure, the sliding surface K1 starts from the contact Gc.
  • the “side surface of the sliding surface K opposite to the side on which the wheel B1 moves” moves along the wheel BK provided on the door frame W.
  • the opening degree of the door from which the wheel B1 is detached from the recess can be freely designed.
  • FIG. 13C when the door is opened by making the sliding surface K1 rotatable, the “wheel B1 staying at the terminal end K1e of the sliding surface K1” returns to the base end K1o. The door opening can be reduced.
  • the “switching means” of the present invention changes the “force acting on the door” abruptly to move the action point or action line far from the pivot axis O. In the process of opening the door as the instantaneous movement distance increases. When the “(i) rotating means” returns to “(a) rotating means”, the opening of the door increases. It is desirable that the range of rotation with as strong a force as possible is small.
  • the releasable restraining means described in FIGS. 13 and 14 increases the instantaneous moving distance as much as possible and returns as soon as possible when the door is opened. *
  • the rotating body Jc is urged by an urging means (not shown) around the connecting shaft Cj in the direction of the arrow D in the drawing and is pivotally supported so that Gj is prevented from rotating in the same direction.
  • the sliding surface K2 is weakly biased by a biasing means (not shown) in the direction of arrow E in the figure around a connecting shaft Ck provided at the tip of the rotating body Jc and is rotatably supported. G1 prevents rotation in the same direction.
  • One side moving away from the door frame W with the connecting axis Ck of the sliding surface K2 in the middle is the sliding surface K2 on which the wheel B2 moves, and the wheel B3 is attached to the other tip end approaching the door frame W.
  • the state diagram at the time of latch contact shown in FIGS. 13A and 13B is a state diagram in which the wheel B1 is detached from the concave portion of the sliding surface K1 and is moving toward the terminal portion Ke1 in the direction indicated by the arrow G in FIG.
  • the link A2 rotates in the direction of arrow C in the figure and the wheel B2 presses the sliding surface K2 to overcome the weak urging force in the direction of arrow E in the figure to rotate in the direction opposite to that of E. is there.
  • FIG. 13A shows a state in which the door inertia force is small, and the door is stationary when the latch is in contact.
  • the wheel B3 does not contact the sliding surface K3 provided on the door frame W and moves around the connection axis Ck.
  • the wheel B2 reaches the terminal portion Ke2 of the sliding surface K2.
  • rotation of the sliding surface K2 in the direction opposite to the direction of h is prevented by the contact G2
  • rotation of the rotating body Jc in the direction of the arrow D is blocked by the contact Gj, so that the sliding surface K2 and the rotating body Jc And the door is sealed by the force Fb2 that the wheel B2 presses the sliding surface K2.
  • FIG. 13A shows a state in which the door inertia force is small, and the door is stationary when the latch is in contact.
  • the wheel B3 does not contact the sliding surface K3 provided on the door frame W and moves around the connection axis Ck.
  • the wheel B2 reaches the terminal portion Ke2 of the sliding surface K
  • 13B shows a state in which the door inertia force is large and the door continues to rotate when the latch is in contact.
  • the wheel B3 is in contact with the sliding surface K3, and the rotating body Jc is turned around the connecting shaft Cj. And the angle ⁇ ak shifts from a right angle to an acute angle.
  • the rotating body Jc rotates more, the angle ⁇ ak becomes more acute, and the wheel B3 becomes difficult to move on the sliding surface K3 in the direction indicated by the arrow in the figure.
  • FIG. 14 is similar to FIG. 13 in that the rotating means and the switching means in the vicinity of the pivot axis O have a structure in which the rotating body J and the link A1 are connected by a connecting shaft P. Wear.
  • a torsion spring UV is attached around the connecting shaft P to bias the wheel B1 away from the fixed support shaft Sw1.
  • a compressive force is acting on the link A1.
  • the rotating body J is rotatably supported around the fixed support shaft Sw1, but the rotation direction is not constant in the closing process.
  • the “intersection angle ⁇ aj between the axis core line Zj of the rotating body J and the axis axis line Za of the link A” continues to increase during the closing process.
  • the biasing means of the switchgear according to the present invention biases the rotation around any of the connecting shafts of the link device, but the “intersection angle of the axis lines of adjacent links” continues to increase or decrease. Limited to location.
  • the wheel B1 moves along the sliding surface K1 provided on the door D, and G1 hits the end of the sliding surface K1 close to the pivot axis O and G2 hits the end far from the pivot O.
  • a broken line shown in FIG. 14A is a plan view for explaining the operation of “range (A)”, and a solid line shows a state just before closing.
  • the wheel B1 remains in contact with G1 from the time of full opening until just before closing, and the wheel B1 is restrained in the "(A) range” and acting force Keep the distance Lo small.
  • "Straight line T passing through fixed support shaft Sw1 and wheel rotation axis Ib” and sliding surface K The wheel B1 moves away from the hit G1 or the hit G2 when the intersection angle ⁇ tk with 1 is a right angle.
  • the wheel B1 moves away from G1 and moves away from the pivot axis O, and as shown by B1-20, the wheel B1 moves away from G2 and returns to the vicinity of the pivot axis O in the process of opening the door.
  • One end of the link A2 is rotatably connected to the link A1, and a wheel B2 is attached to the other end.
  • the middle part of the link A2 passes through the ball spline Jc.
  • the ball spline Jc is “a rotating body Jc that is rotatably supported around the connection axis C and provided with a groove H that moves along the axial direction of the link A2.” It is.
  • the sealing means of FIG. 14 is provided with a sliding surface K2 that receives the pressing force Fb of the wheel B2 and “the reaction force of the door inertia force in the opposite direction” at the same time as in FIG.
  • the surface K2 is rotatably supported around a support shaft Ik provided at the front end portion of the “rotary body Jk that is rotatably supported by the fixed support shaft Sw2 of the door frame”.
  • the sliding surface K2 is connected to the fixed support shaft Sww by the pulling spring VV, and the rotating body Jk is urged around the fixed support shaft Sw2 in the direction indicated by the arrow E in the figure, and rotation in the same direction is prevented by Gj.
  • FIGS. 14 (a) and 14 (b) are state diagrams at the time of latch contact, in which the wheel B1 is separated from G1 on the sliding surface K1 and is moving toward the contact G2, and the link A2 is illustrated.
  • FIG. 4 is a state diagram in which the wheel B2 moves in the direction of the middle arrow C and presses the recess Ko2 of the sliding surface K2.
  • FIG. 14A shows a state in which the door inertia force is small and the door is stationary when the latch is in contact, and the terminal portion Ke2 of the sliding surface K2 does not contact the sliding surface K3 provided on the door frame W.
  • the sliding surface K2 rotates around the support shaft Ck in the direction opposite to the arrow D in the figure, and the door is sealed by the force Fb2 that the wheel B2 presses the sliding surface K2 as shown in FIG.
  • the line of action of the pressing force Fb2 and the "axis axis Zk of the sliding surface K2 passing through the support shaft Ck and the action point b" are arranged in a substantially straight line, and the reaction force of the pressing force Fb2 is based on the connecting shaft C as a support point.
  • FIG. 14B shows a state in which the door inertia force is large and the door continues to rotate at the time of latch contact.
  • the rotating body Jk is separated from Gj and is opposite to the arrow e in the figure around the fixed support shaft Sw2.
  • the terminal portion Ke2 of the sliding surface K2 contacts the sliding surface K3.
  • the sliding surface K2 acts in two directions around the support shaft Ck, and the wheel B2 resists the force Fb2 that presses the sliding surface K2.
  • the sliding surface K2 rotates around the support shaft Ck in the opposite direction from the middle of the rotation of the rotating body Jk, and the end portion Ke2 of the sliding surface K2 contacts the sliding surface K3. Touch.
  • the opening and closing apparatus described in FIGS. 13 and 14 absorbs and stores the door inertia force in the spring, and simultaneously applies a force to close the door so that the door does not return in the opening direction when the spring storing the door inertia force returns.
  • the door is sealed.
  • the speed reducer described in FIGS. 13 and 14 is such that the sealing device shifts to a form in which it is more difficult to move in accordance with the magnitude of the inertia force of the door, causing a situation where the sealing force is insufficient, and the door is fully closed. The closer to the point, the greater the resistance to prevent sealing.
  • FIGS. 13 and 14 (a) the form in the sealed system is broken by the inertial force in FIGS.
  • FIGS. 13 and 14 when the form collapsed by the small movement of the wheel B ⁇ b> 2 in the direction of arrow C in the drawing is restored, the force is insufficient due to the restoration with a large operation.
  • the speed reducer described in FIGS. 13 and 14 converts door inertia force into braking force, and greatly resists doors that accelerate by opening the doors to a large extent, and resists small resistances by opening small doors that do not accelerate. To do. Like a "decelerator that tries to handle with a certain resistance", it does not work at all for doors that open and accelerate with a large opening, and keeps the doors stopped for doors that open with small opening and do not accelerate is not. *
  • the rotation means and switching means of the switchgear shown in FIG. 15 are the same as in FIG. 13 except that the switchgear of FIG. 7 is provided in the vicinity of the pivot O, and the sliding surface K1 is pivotally supported around the connection axis C. The rotation in the direction of the arrow in the figure is prevented by the hit Gc.
  • the link A1 is equipped with a “wheel B1 moving along the sliding surface K1” at one end and a sealing wheel B2 at the other end.
  • An intermediate portion of the link A1 passes through the ball spline Jc, and the ball spline Jc is rotatably supported around the fixed support shaft Sw, and is provided with a groove H that moves along the axial direction of the link A1.
  • the tension spring V is urged in the direction of the arrow C in the figure so that the wheel B1 presses the sliding surface K1, and a tensile force is applied to the link A1.
  • the sliding surface K1 remains in contact with Gc from the time of full opening to the middle of closing in the “range (A)”.
  • a recess provided in the base end portion Ko1 of the sliding surface K1 locks the wheel B1 and keeps the acting force distance Lo small.
  • the sliding surface K1 comes off from Gc in the middle of closing, and the “side surface of the sliding surface K opposite to the side where the wheel B1 moves” is provided on the door frame W.
  • the sliding surface K1 While moving along the surface K3, in the process of opening the door, the sliding surface K1 moves away from the sliding surface K3 and at the same time "the wheel B1 staying at the terminal portion Ke1 of the sliding surface K1" returns to the base end portion Ko1. become.
  • the sliding surface K1 rotatable in the process of opening the door, the opening degree of the door when the “wheel B1 staying at the terminal portion Ke1 of the sliding surface K1” returns to the base end portion Ko1 is reduced.
  • the sliding surface K1 indicated by a broken line indicates the initial contact with the sliding surface K3, and the solid line indicates the subsequent.
  • the wheel B2 presses the sliding surface K2.
  • the sliding surface K2 stands upright to the door surface.
  • the sliding surface K2 standing perpendicular to the door surface is a tangential direction of the circular motion with the pivot axis O as the axis.
  • the distance between the “contact point b between the wheel B2 and the sliding surface K2” and the door surface is the acting force distance Lo, and the magnitude of the “force acting on the door” is designed according to the height of the sliding surface K2. it can.
  • the wheel B2 moves in a portion perpendicular to the door surface of the sliding surface K and the line of action of the pressing force Fb is parallel to the door surface, it can be rotated by "(A) rotating means" If the door stops once before contact, the door rotates slowly.
  • FIG. 15 (d) when the wheel B2 reaches each corner of the end portion Ke2 of the sliding surface K2, the action line of the pressing force Fb suddenly changes its direction and the "force for rotating the door” is "latched".
  • the moving distance of the wheel B2 is small and the amount of expansion and contraction of the spring is small, so that the force of the spring does not weaken.
  • the longer the parallel part of the sliding surface is, the smaller the force in the moving direction of the wheel, the larger the force
  • the speed of wheel movement is determined by the degree to which the pressing force is insufficient, regardless of the length of the parallel part of the sliding surface.
  • a vertical sliding surface is preferred. Even if the force that presses the vertical sliding surface is very strong, the moving speed of the wheel does not increase, so that it can be sealed quietly.
  • the sliding surface K when the sliding surface K stands upright to the door surface and the corner portions are provided at the terminal end Ke, the sliding surface K can be sealed even with a weak force.
  • the sealing device that uses a vertical sliding surface and stops once before closing closes the impact sound even when a strong spring is used, and can be applied to any door.
  • FIG. 16 is a plan view for explaining the operation of the switching device relayed from the rotating device to the sealing device with the switching device described in FIG. 8 as a “switching means”.
  • the sealing device is controlled according to the magnitude of the door inertia force.
  • Sealing prevention means for increasing power is provided. 1 to 3, when the wheel B is mounted on the support shaft Ib at the tip of the link A, or when the spring is attached to the support shaft Sa at the tip of the link A as described in FIG.
  • the link A rotates about the rotation axis C, and the rotation direction of the link A is determined depending on which side of the axial line Za of the link A the force action line passing through the support shaft at the tip portion is.
  • the restraining means capable of releasing the “switching means” is provided in the vicinity of the pivot O, and the rotating body J is rotatably supported around the connection axis C, and is urged by the pulling spring V in the direction of the arrow a in the figure.
  • the rotation of the rotating body J in the opposite direction to A is prevented by the hit Gj.
  • One of the tension springs V is attached to the “spring support shaft Sj provided on the rotating body J” and the other is attached to the fixed support shaft Sw.
  • FIGS. 16 (a) and 16 (b) show a state in which the connecting shaft C crosses the spring axis Zv and the hit Gj leaves the door D and the rotating body J tries to rotate in the direction of arrow A in the figure.
  • FIG. 16 (c) shows that the rotating body J rotates in the direction of the arrow a in FIG. Indicates the state to be performed.
  • the support shaft Sj and the connection shaft P are arranged radially from the connection shaft C.
  • the support shaft Sj moves in a direction perpendicular to the “closed door surface D0” and the connection shaft P moves in a parallel direction, so that the wheel B moves. It moves greatly in parallel with “closed door surface D0”.
  • the point of action of the force Fb at which the wheel B presses the sliding surface K moves to a position far from the pivot axis O and increases the distance Lo. It is pivotally supported around a connecting shaft Ck provided on the sliding surface K or the door D, and is urged by an urging means (not shown) in the opposite direction to the arrow D in the figure and is rotated in the direction opposite to the arrow D. Blocked by G2.
  • the wheel Bb is rotatably supported around a fixed support shaft Sww provided on the door frame W and is urged by a push spring U in the direction of arrow E in the figure. .
  • FIG. 16A shows a state in which the door inertia force is small, and the door is stationary when the latch is in contact.
  • the wheel B presses the sliding surface K and the sliding surface K is connected without contacting the wheel Bb. It rotates around the axis Ck in the direction of arrow D in the figure.
  • FIG. 13 (c) the rotation of the sliding surface K in the direction indicated by the arrow D is prevented by the contact G1, and the sliding surface K and the door D are relatively integrated with each other, so that the wheel B moves the sliding surface K.
  • the door is sealed by the pressing force Fb.
  • 16B shows a case where the door inertia force is large, and the door continues to rotate at the time of latch contact, the wheel B contacts the sliding surface K, and the sliding surface K moves around the connecting shaft Ck in the direction of the arrow D in FIG.
  • the link AA rotates in the opposite direction to the arrow E in the figure, and the push spring U contracts.
  • the sliding surface K is simultaneously subjected to the “force acting in the direction of closing the door” by the wheel B and the force “in the direction opposite to the closing direction” by the push spring U, and in the drawing around the pivot axis O of the connecting shaft Ck. Revolution of arrow b is suppressed and the door is decelerated.
  • the rotation of the sliding surface K is delayed with respect to the rotation of the door, the link AA further rotates, and the resistance of the movement of the wheel B in the direction indicated by the arrow C in FIG.
  • FIGS. 17 and 18 are examples illustrating that the link device continues to operate while the door is stopped, regardless of the position of the connecting shaft of the sliding pair, which is not limited to the “mounting shaft of the opening / closing body and the extendable portion”. is there.
  • the rotating body J is located far from the pivot axis O, and the operating region remains in an elongated region slightly separated from the door surface. It rotates greatly in the “switching range”, and the door is sealed by “a large rotation far from the pivot axis O”. Is a structure that can continue to rotate.
  • FIG. 17 is a link device in which the expansion / contraction part is composed of two links J and A.
  • the link A is attached to the fixed support shaft Sw that fixes one side to the door frame W, and the other is attached to the rotating body J via the wheels B.
  • the wheel B is a slider that moves along the sliding surface K, and the sliding surface K is “the inner surface on the side far from the pivot O of the long hole provided in the rotating body J”.
  • the rotating body J is rotatably supported around a connecting shaft C provided on the door D and rotates in the direction of arrow A in the figure to rotate the door D in the direction of arrow B in the figure.
  • a compressive force acts on the link A. Illustration of the urging means for the telescopic part is omitted.
  • the wheel B is movable in the direction indicated by the arrow C in the figure where the “intersection angle ⁇ ak between the sliding surface K and the axis A Za of the link A” becomes an obtuse angle, and the range “(A)” shown in FIG. ”Stays at the tip portion Ke of the sliding surface K, and as shown in FIG. 17B, the wheel B leaves the tip portion Ke at the intersection angle ⁇ a as a right angle.
  • FIG. 17C shows a state where the sliding surface KK attached to the rotating body J moves along the wheel BB attached to the door frame W.
  • FIG. 17D shows a sealed state when the wheel BB is movably attached to the door frame W.
  • FIG. 17 (b) the acting force distance Lo is minimized just before closing and the door is substantially stationary.
  • the wheel B is locked at a position closer to the rotation axis C of the rotating body J, the rotating body J and the door are not interlocked, and the rotating body J rotates with the door held at a stationary position.
  • the link device continues to move while the door is stopped at the time of latch contact, and the “force acting on the door” increases.
  • the structure of the embodiment shown in FIG. 18 is similar to FIG. 17 in that the wheel BB, which is the connecting shaft between the link A and the rotating body J, can move in the long hole Hj when the door is at a stationary position. And the door can keep rotating.
  • the wheel BB moves along the sliding surface K on the inner side surface close to the door D of the long hole Hj provided in the rotating body J, and the sliding surface K includes the start end K1, the straight portion K2, and the end K3.
  • the link A is attached to the connecting shaft C of the door D and the other is attached to the rotating body J via the wheel B.
  • the rotating body J is rotatably supported around the fixed support shaft Sw of the door frame W.
  • Rotating body J rotates in the direction of arrow A in the figure to rotate door D in the direction of arrow B in the figure.
  • a tensile force acts on the link A. Illustration of the urging means for the telescopic part is omitted.
  • the wheel BB stays at the starting end K1 in the “range (A)”.
  • the axial center line of the link A and the straight line portion K2 are orthogonal to each other at the position of D10 where the sealing operation starts, and when the position of D10 is passed as shown in FIG.
  • the intersection angle between the shaft core line and the straight line portion K2 exceeds 90 degrees, and the wheel BB begins to move on the straight line portion K2 in the direction indicated by the arrow C in the figure, and moves away from the recess K1 to the end portion K3.
  • the rotating body J rotates and the wheel B is located far from the pivot axis O of the door and rides on the sliding surface K attached to the door D to seal the door.
  • the connecting shaft C is attached to “a rotating body Jc that is rotatably supported around the connecting shaft Cj provided on the door D”.
  • a wheel BB is mounted on the rotating body Jc, and the rotating body J is urged by a pressing spring U in the direction of arrow D in the figure.
  • the rotating body Jc rotates in the direction opposite to the arrow D in the drawing and closes the push spring U to approach the door D, the wheel BB moves away from the pivot O.
  • the sliding surface KK is an arc centered on the pivot axis O.
  • the wheel BB moves away from the pivot axis O, the wheel BB moves along the sliding surface KK, and the traction force of the link A is supported by the door D and the sliding surface KK. And decentralized, the door slows down.
  • FIG. 18 (a) when the hand is released from the door, the maximum static frictional force is applied to the door, so the "force acting on the door” increases and the push spring U contracts, and when the door starts moving, The frictional force is changed to the kinetic frictional force, and the “force acting on the door” is reduced, and the push spring U is extended.
  • a push spring U having a weak force is employed, even when the hand is released from the fully opened position as shown in FIG. 18A, the push spring U does not extend until closing and the latch is in a contracted state. Abut. That is, the larger the closing start opening, the longer the wheel BB moves along the sliding surface KK, and the door is decelerated.
  • the acceleration when starting to move from a stop state where the speed is zero is larger than the acceleration after that. Not allowed in the driving range.
  • FIG. 18 shows the speed reduction means applied at the beginning of the rotation at low speed, not at the end of the rotation at high speed. *
  • the push spring U is inserted between the first door and the door as in FIG. 10, and the length of the push spring U varies depending on the magnitude of the “force acting on the door”. As the force increases, the “force acting on the door” decreases, and the length of the push spring U increases. In the case of FIG. 18 as well as in the case of FIG. 10, the length of the push spring U changes remarkably immediately after the start of closing, but the rotation range in which the door accelerates greatly is small, and the “force acting on the door” Balanced with the kinetic frictional resistance around O and the acceleration of the door is small, so that it is constant and a large difference in the length of the push spring U is not recognized.
  • FIG. 18 shows a speed reduction means in which the length of the “distance where the braking force acts” changes depending on the length of the “door movement is calm”, and corresponds to the magnitude of the door inertia force of different sizes. . *
  • FIG. 19 shows a link mechanism in which two links of a link A and a rotating body J form a crank mechanism.
  • the two links replace the tension spring V shown in FIGS. 8 to 10, and the link shafts at both ends of the two links are connected. It is the same as a spring in that the distance between them can change.
  • FIG. 9 is an operation explanatory plan view of the switchgear in which the “switching means” operates with the rotation axis Sw of the link AA crossed by the axis A of the link A as in FIG. 8.
  • An opening / closing device that transmits the driving force Mv of the rotating body J in the direction indicated by the arrow B to the rotational force Mo of the door D in the direction indicated by the arrow B in the drawing. Device.
  • 19 (a) and 19 (b) show a case where the rotating body J is supported on a fixed support shaft Sw provided on the door frame W, and FIGS. The case where it is done is shown.
  • the link A is provided with a connecting shaft PP at one end and a connecting shaft P at the other end, the rotating body J is connected by the connecting shaft P, and the swing link AA is connected by the connecting shaft PP.
  • a torsion spring UV is attached around the fixed support shaft Sw, biases the rotating body J, and a tensile force acts on the link A.
  • a torsion spring UV urges the rotating body J around the connection axis C, and a compressive force acts on the link A.
  • the hits G1 and G2 are in contact with the swing link AA, and respectively prevent the rotation of the swing link AA in the direction opposite to the arrow C in the figure and the rotation of the swing link AA in the direction of the arrow C in the figure.
  • the contact G1 comes into contact with the swing link AA and keeps the position of the connecting shaft PP in the vicinity of the pivot axis O of the door within the “(range)”.
  • the swing link AA is separated from G1 just before closing and is rotated in the direction of the arrow C in the drawing and comes into contact with G2.
  • FIG. 19 (a) and 19 (c) show the middle of the closing process with broken lines, the solid line shows the state just before closing, and the state immediately after the axial center line Za of the link A crosses the center of rotation of the swing link AA, The beginning of the “switching means” is shown.
  • FIG. 19 (c) the axial center line Za100 of the link A indicated by a broken line crosses over the pivot O and shows a state in which the door D is urged in the direction opposite to the arrow B in the figure. The door is urged in the opening direction, and the door is pressed against the “door opening in the opening direction (not shown)” to be stationary.
  • the door opening angle ⁇ d that changes from the closing direction to the opening direction becomes smaller.
  • the solid line indicates the closed state
  • the middle of the process of opening the closed door is indicated by the broken line.
  • An axis core line Za of the acting body A indicated by a broken line indicates a state immediately after crossing the center of rotation of the swing link AA again, that is, an initial state returned to “the rotating means in the range (A)”.
  • the opening angle ⁇ d of the door when returning to the “rotating means in the range (A)” in the opening process is the door opening angle ⁇ d when switching to the “rotating means in the range (I)” in the closing process. Larger than the opening angle ⁇ d.
  • the axial force acting on the link A becomes infinite as the axial center line of the link A and the rotating body J approaches a straight line. Get closer. *
  • a rotating body Jsw shown in FIGS. 19C and 19D is rotatably supported around a fixed support shaft Sww provided on the door frame W, and has a fixed support shaft Sw at the tip thereof to move the fixed support shaft Sw.
  • the first door described in FIG. 10 is attached not to the door D but to the door frame W.
  • the rotating body Jsw is urged around the fixed support shaft Sww by a pushing spring U in the direction opposite to the arrow D in the figure, and the rotation of the rotating body Jsw in the direction opposite to the arrow D is blocked by Gj.
  • the door D and the door frame W are two opening / closing bodies that share the pivot O and rotate relatively, and the door frame W is rotated when the door frame W is viewed from the door on the assumption that the door is still.
  • FIGS. 20 and 21 are link devices in which the number of links is 5 and the pairs are connected to each other. Similar to FIG. 19, adjacent links are disengaged in the “switching range”. As shown in FIG. 19, the connecting shaft between adjacent links is not an “attachment shaft between the opening / closing body and the expansion / contraction part”, and is an embodiment of the link device that continues to operate while the door is stopped.
  • the link device with the number of links of 5 can move even if the number of links is reduced by one, and the “switching means” moves regardless of whether or not the door rotates with a structure in which the “switching means” does not interlock with the door. Also, the door does not rotate due to the movement of the “switching means”.
  • the door and the expansion / contraction part all stop the link device, but the direction of the "force acting on the door” just before closing.
  • the sealing operation is proceeded simultaneously while maintaining the state of being directed toward the pivot axis O of the door, and the “switching means” is started by temporarily stopping the door just before closing. Do not use a speed reducer with resistance.
  • the operating region remains in a long and narrow region slightly away from the door surface, and the rotating body J is far from the pivot axis O and rotates greatly in the “switching range”.
  • the door is sealed by “a large rotation far from O”.
  • the link A of FIG. 19 is replaced with “a continuous body in which two links A and AA are connected in series”, and the link device of FIG. 21 has a link AA in parallel with the rotating body J of FIG. It is something to attach.
  • FIG. 20 shows the middle of the closing process with a broken line, and the solid line shows the state when the axial center line Za of the link A crosses the center of rotation of the link AA before the closing dimension.
  • the link A and the link AA keep a straight line and pull the door, but the link A comes into contact with the rotating body J just before the closing, and the rotating body J overlaps with it.
  • the link A and the rotating body J are relatively integrated and continue to rotate.
  • the “wheel B mounted on the connecting shaft P” presses the sliding surface K provided on the door frame W, and the door is sealed. If the lengths of the link A and the rotating body J are the same, and the positions of the connecting shaft P and the connecting shaft C coincide with each other, the link AA is stationary, and the door is sealed while keeping the “force acting on the door” constant. Will do. If the length of the link A is made slightly longer than that of the rotating body J so that the positions of the connecting shaft P and the connecting shaft C do not coincide with each other, the link AA pulls the door in the direction of pulling the door toward the pivot O, and the “door The door is sealed while increasing the "stopping force”. *
  • FIG. 21B is a state diagram immediately before closing, and when the axis A Za of the link A coincides with the straight line T, the link device does not move at all while the link A pulls the pivot O.
  • the “direction of the line of force acting on the door” moves toward the pivot axis O, the rotational resistance around the pivot axis O increases and the door decelerates. In the case of FIGS.
  • the door is pulled in the direction away from the pivot axis O, the gap between the latch male part Rd and the female part Rw is narrowed, and the resistance of the latch is increased. Further, the upper part of the door is tilted away from the pivot O and the lower part of the door is closer to the pivot O, and the wear of the pivot O is promoted in the same direction as the tilt due to its own weight. On the other hand, in the case of FIGS. 20 and 21, the door is pulled in the direction approaching the pivot axis O, the gap between the latch male part Rd and the female part Rw is increased, and the resistance of the latch is reduced. Further, the rotational resistance around the pivot axis O is decreased in the direction opposite to the inclination due to its own weight. Does not promote wear of the pivot O. *
  • the link AA is rotatably supported around the “rotary axis Ia provided on the rotating body J”, and the rotating axis Ia traverses the axis Zv of the spring by the rotation of the rotating body J.
  • the wheel B moves along the sliding surface K so that the AA rotates away from the Gaa and rotates in the direction of the arrow C in the figure.
  • the sliding surface K is rotatably supported around a rotation axis Ik provided on the door frame W and is urged in the direction indicated by the arrow D by a pressing spring U.
  • the contact Gk prevents rotation of the sliding surface K in the direction opposite to the arrow D in the figure, and comes into contact with the door frame W when sealed.
  • 21C is a state diagram at the time of sealing.
  • the link AA is rotated away from Gaa and the wheel B moves along the sliding surface K
  • the sliding surface according to the magnitude of the door inertia force.
  • K rotates around the rotation axis Ik in the direction of the arrow D in the figure, and “the angle ⁇ ak on the side where the wheel B moves at the intersection angle between the sliding surface K and the axis Aa of the link AA” decreases, and the wheel B It becomes difficult to move on the sliding surface K.
  • the sliding surface K inclined by the door inertia force increases the upward gradient with respect to the moving direction of the wheel B to stop the movement of the wheel B, but when the door inertia force disappears, the sliding surface K becomes It rotates around the rotation axis Ik in the direction opposite to the arrow D in the figure and tries to rotate it in the direction to open the door, but the wheel B overcomes this and rotates in the direction of the arrow C in the figure.
  • FIG. 22 is a link device in which the expansion / contraction part is composed of two links of the link A and the rotating body J, and the opening / closing device that strongly presses the door in a straight line from the bent state of the axis of the rotating body J and the link A when sealed.
  • FIG. 22 is a plan view of the operation of the opening / closing device shown in FIG. 22 with the first door Jc interposed between the expansion / contraction portion and the opening / closing portion as described in FIG.
  • the door D After stopping, the door D starts to close only by “the force of the push spring U interposed between the door D and the first door Jc”, and the “force acting on the door” before the latch contact Whatever the history, and even if the door before the latch contact is rotating at high speed, the door almost stops at the time of latch contact and the “force acting on the door” is almost “the force to dent the latch”. If so, explain that the door is slowly sealed.
  • FIG. 22 (a) “the crossing angle ⁇ aj between the axis core line Za of the link A and the axis core line Zj of the rotating body J” is reduced, and the door is urged in the opening direction.
  • FIG. 22A shows a fully open state in which the door D comes into contact with the door stop Gd90 and is stationary. As shown in FIG.
  • FIG. 22 (b) when the axial center line Zv of the spring crosses the connecting axis P, the biasing direction of the spring changes to a direction for closing the door, and the door D rotates in the direction of arrow B in the figure.
  • the broken line shown in FIG. 22 (c) moves along the operation of the connecting shaft P that moves along the "circular orbit Rsw centered on the fixed support shaft Sw" and the "circular orbit Ro about the pivot axis O".
  • the operation of the connecting shaft C and the operation of each link in the closing process are shown.
  • FIG. 22C is a state diagram at the time of latch contact
  • FIG. 22D is a state diagram at the time of sealing. *
  • the driving force distance Lv decreases as the shaft cores of the rotating body J and the link A are bent from the bent state, and the driving force Mv around the connecting shaft P becomes “the link A that works along the shaft core Za of the link A”.
  • To the axial force Fa ".
  • the “switching range” that does not involve any rotation of the door is represented by a boundary line between “(A) range” and “(A) range”. As shown in FIG.
  • the “switching range” that hardly accompanies is represented by a range between “(A) range” and “(I) range”.
  • the door in which the first door Jc is interposed between the extendable part and the opening / closing part is “the rotation mechanism in which the extension part rotates the first door Jc” and “the rotation mechanism in which the first door Jc rotates the opening / closing part.
  • the former becomes a door as shown in FIGS. 1, 8, and 10.
  • FIG. 22 simplifies the former structure. The door stops if no more force is applied at the time of latch contact, so the former is a rotation mechanism in which a large force is applied at the end of rotation. Whatever the former, the door is operated by the latter rotation mechanism, and the movement of the door varies depending on the history of the force acting on the push spring U.
  • the door is fully closed without stopping.
  • the sum of the force accumulated in the push spring U and the inertial force of the door is equal to or less than the “force that causes the latch to be depressed”, and more than that thereafter. It will be. *
  • a history of force acting on the push spring U will be described.
  • the push spring U contracts and accumulates force.
  • the push spring U loosens and transmits the force to the door.
  • the push spring U contracts while the door is stopped, and the force acting on the push spring U reaches the "maximum static frictional force around the pivot axis O".
  • the door starts moving and the push spring U loosens. It will be.
  • a moving frictional force that is smaller than the maximum static frictional force acts on the door that has started to move, and a force greater than the moving frictional force accelerates the door. At the beginning of the door movement, the door repeatedly accelerates and decelerates and moves slowly.
  • the “force required to move the door” decreases and the push spring U loosens. Therefore, the force stored in the push spring U decreases as the push spring U contracts, and the latch spring comes into contact. It will be smaller than "the force to dent the latch".
  • the door inertia force is large, the door is closed without stopping. If it is smaller, the door stops at the same time as the latch abuts against the door frame W. Even when the door inertia force is not large, when the door receives a large amount of air resistance just before closing, and the door decelerates, the force stored in the push spring U contracts to “the force that can dent the latch”.
  • the stop position of the “rotating mechanism in which the expansion / contraction part rotates the first door Jc” prevents “rotation in the direction indicated by the arrow a in FIG. However, it is adjusted by the hit Ga. Designed so that the door D can be sealed with only the force of the contracted push spring U, both when the "rotation of the link A about the connecting shaft P" is prevented before and after the latch contact. Is done. When blocking before the latch contact, the door D can be sealed only by the force of the push spring U contracted before the latch contact. When blocking after the latch contact, when the latch contact Thereafter, the door D can be sealed only by the force of the pressing spring U contracted.
  • the sealing does not occur.
  • the position where the rotating core J and the link A are locked in a bent state and the natural length of the push spring U. Means that it is possible to stop the door at a position where the sealing does not occur, and it is possible to stop the door at the same time as the sealing is reached.
  • the contact Ga the door can be stopped at a position where the impact sound is not generated at a position where the door does not hit the door by fitting into the concave portion of the door frame facing the latch. Or you can stop the door at a position close to it.
  • the position for stopping the door and the force for sealing the door can be adjusted by the push spring UU. Further, by adjusting the amount of contraction of the push spring U at the time of sealing, the force for sealing the door can be adjusted, and the magnitude of the impact sound and the force for opening the door can be reduced.
  • FIG. 23 is a plan view for explaining the operation of the switchgear which is a four-joint rotation mechanism in which the expansion / contraction part is composed of two links of the link A and the rotating body J as in FIG. It is.
  • the switchgear which is a four-joint rotation mechanism in which the expansion / contraction part is composed of two links of the link A and the rotating body J as in FIG. It is.
  • means for preventing the restraining means from being released is provided to ensure that the "switching means" starts after the latch contact.
  • the broken line shown in FIG. 23A is an operation explanatory diagram of “range (A)”, and the solid line shows the state of the door D100 that is stationary when fully opened.
  • the rotating body J is rotatably supported around the fixed support shaft Sw and is connected to the link A and the connecting shaft P.
  • the connecting shaft P revolves around the fixed support shaft Sw by the driving force Mv in the direction of arrow A in the figure.
  • a link A is connected to the connecting shaft P, and the link A is rotatably supported around the connecting shaft C.
  • the connecting shaft C is movably attached to the door D via the rotating body Jc, and the four-node rotating mechanism is a five-node rotating mechanism.
  • each of the connecting shaft C and the fixed support shaft Sw is the door D and the door frame. The operation of the four-bar rotation mechanism fixed to W will be described. *
  • the “angle ⁇ aj between the two links” remains in a state where it is bent to some extent from the time of full opening until just before closing, but the axis of the rotating body J and link A is bent.
  • the angle ⁇ aj suddenly increases immediately before closing as shown in FIGS.
  • the longer one of the two links is made shorter and the other is shortened, the longer the smaller link rotates while the shorter link rotates, and the force acting in the axial direction of the shorter link suddenly changes greatly.
  • the distance between the mounting shafts Sw, C at both ends of the extendable portion is small, and the door rotation angle is also small.
  • the product of the axial force Fa acting along the axial line Za of the link A and the “distance between the acting line of the axial force Fa and the fixed support shaft Sw” is the fixed support shaft.
  • the rotational force Mj acting around Sw is largely converted into the axial force Fa.
  • the product of the axial force Fa acting along the axial core line Za of the link A and the “distance Lv between the acting line of the axial force Fa and the connecting axis C” is The rotational force Mj acting around the connecting shaft C is balanced, and the rotational force Mj is largely converted into the axial force Fa even if it is small.
  • the door D and the door frame W are connected by “two links A and J having different lengths”, and the attachment shafts at both ends of the two links A and J move away as they are closed.
  • the two links A and J are bent in a state where the “force acting on the door” is restrained to a small extent, and the restraint is released in the “switching range” and the bent two links A and J are almost free from the door.
  • the attachment axis C of the link A and the door D is provided at the tip of the “rotary body Jc rotatably supported around the connection axis Cj provided by the door”.
  • the attachment shaft C can rotate around the connection shaft Cj.
  • a push spring U is attached around the connecting shaft Cj.
  • the door closes while the push spring U is contracted.
  • the rotation of the rotating body J remains stopped by the “means for preventing release of the restraining means”, and the compressed spring U contracted as shown by the broken line in FIG.
  • link A and door D move and the door rotates.
  • the link AA is rotatably supported around a rotation axis Ia provided on the door frame W, and is urged by a pulling spring V in the direction of arrow D in the figure.
  • the wheel B is attached to the tip of the link AA and is closed from the fully opened state as shown in FIGS. 23 (a) to 23 (b)
  • the wheel B is a sliding surface of a recess provided on the side surface of the rotating body J
  • the sliding surface K is pressed while moving along K.
  • the rotating body J rotates about the fixed support shaft Sw in the direction of the arrow A in the figure, and the connecting shaft P moves on a circumference Rsw centered on the fixed support shaft Sw.
  • the “sliding surface KK attached to the door D” closes the path of the wheel B just before closing, “movement along the wheel B sliding surface K” and “on the circumference Rsw of the connecting shaft P”. Movement "is stopped. The force Fb that the wheel B presses the sliding surface KK works in the direction of closing the door, so the door does not stop. Further, with the connecting shaft P stopped on the circumference Rsw, the rotating body Jc is rotated in the direction opposite to the arrow C in the figure by the pressing spring U as indicated by the broken line in FIG. Door D continues to move. As shown in FIG. 23C, the “sliding surface KK attached to the door D” is removed from the path of the wheel B at the position where the latch male part Rd contacts the female part Rw, and the wheel B becomes the sliding surface K. It can move along. *
  • the gradient of the sliding surface K becomes smaller with respect to the direction of movement of the wheel B, and the state shifts to a state where it is easier to move.
  • the rotating body J rotates without stopping and the door is sealed.
  • the link device will move even if the rotation of the rotating body J stops before the axis cores of the rotating body J and the link A become linear.
  • the latch male part Rd can be brought into contact with the female part Rw to be in a standby state.
  • the two links are in a straight line after the door stops at the time of latch contact and "the force to dent the latch" is applied, the door will always be fully closed with no inertial force. The magnitude of the impact sound can always be reduced.
  • FIG. 24 is a plan view for explaining the operation of the four-joint rotation mechanism composed of an expansion / contraction part in which two links of the two opening / closing bodies D and W, the link A, and the rotating body J are chained as in FIGS.
  • the door is strongly pressed in a straight line from the state in which the shaft cores of the rotating body J and the link A are folded when sealed.
  • the force becomes insufficient at the beginning when the straight line starts to be bent.
  • the door is folded from the straight state, and the door is strongly pressed.
  • the latter is a straight line with two axial cores overlapping. It is the same in that the door is strongly pressed and strongly presses the door.
  • FIG. 24 is a plan view for explaining the operation of the four-joint rotation mechanism composed of an expansion / contraction part in which two links of the two opening / closing bodies D and W, the link A, and the rotating body J are chained as in FIGS.
  • the door is strongly pressed in a straight line from the
  • the link A and the rotating body J are connected by a connecting shaft P, the connecting shaft C of the connecting shaft opposite to the connecting shaft P of the link A is fixed to the door D, and the connecting shaft opposite to the connecting shaft P of the rotating body J is fixed.
  • the support shaft Sw is attached to the door frame W.
  • a torsion spring UV is attached around the connection axis C, and the link A rotates around the connection axis C in the direction of arrow A in the figure. Further, a driving force Mv works around the connection axis C.
  • One support shaft Sj of the torsion spring UV is fixed to the rotating body Jc, and the other support shaft Sa moves in a groove H provided in the link A.
  • the groove H is a position far from the position near the center C of the rotation of the link A.
  • the support shaft Sa is located at a position Ho close to the center of rotation C in the “(A) range” and moved away from the distant position He in the “switching range”.
  • the rotational force Mj suddenly increases at the time of sealing, which compensates for the lack of rotational force at the time of sealing.
  • FIG. 24A shows the middle of the closing process with a broken line, and the solid line shows the state when fully opened.
  • the connecting shaft C moves on the circumference Ro centering on the pivot O.
  • the door D rotates about the pivot O in the direction of arrow B in the figure.
  • the connecting shaft P hardly moves and stays in the vicinity of the pivot O in the “range (A)” and keeps the acting force distance Lo small.
  • the connecting shaft C hardly moves and the connecting shaft P is “circumference Rsw centered on the fixed support shaft Sw”. Move "Up”.
  • the driving force Mv is largely converted into the axial force Fj, and at the same time, the axial force Fj gradually works at right angles to the “closed door surface D0”.
  • the link device moves in a direction in which the “intersection angle ⁇ aj between the axis A Za of the link A and the axis Z J of the rotating body J” decreases, and the axis A Za of the link A and the rotating body J
  • the shaft core line Zj gradually shifts to the overlapping state. From the balance of moments around the connecting axis C, the greater the crossing angle ⁇ aj is, the smaller the driving force Mv is converted into the axial force Fj acting on the axis Zj of the rotating body J. Moreover, as the two links are overlapped and the crossing angle ⁇ aj becomes smaller, the conversion becomes larger.
  • the door D and the door frame W are connected to “two phosphorus having substantially the same length.
  • the connection axis P is constrained to the vicinity of the pivot O in the "(A) range” and the “switching range”.
  • a releasable restraining means for releasing the restraint and moving away from the pivot O is provided, and the link device operates greatly while the door is slightly rotated in the “switching range”, and switches from a weak force to a strong force when closed.
  • the connecting shaft C is provided on the rotating body Jc, and the rotating body Jc swings around the connecting shaft Cj on which the door D is provided between a position where it contacts G1 and a position where it contacts G2.
  • the fixed support shaft Sw is provided on the rotating body Jsw, and the rotating body Jsw is urged around the fixed support shaft Sww provided with the door frame W by a push spring Usw in the direction of the arrow C in the drawing so as to be rotatably supported.
  • the rotation of the rotating body Jsw in the direction of the arrow C is prevented by the hit Gsw.
  • FIG. 25 is a plan view for explaining the operation of the mechanism for controlling the “force acting on the door” during the slight rotation of the door until the latch male part Rd contacts the female part Rw and is fully closed.
  • the force required when the latch male part Rd comes into contact with the female part Rw is the maximum over the entire rotation range from the fully open to the fully closed state. Little force is required to move the to fully close. If the "force acting on the door” rises within this rotation range and the door accelerates, the inertial force is proportional to the square of the speed, so the impact sound cannot be ignored even if the "sealed door speed” is small. It becomes size.
  • the opening / closing device of FIG. 25 has the same structure as that of the embodiment of FIG.
  • FIG. 25A is a plan view for explaining a series of operations from fully open to fully closed, and illustrates the state of the link A at each time point.
  • the connecting shaft C moves in the direction indicated by the arrow B in the drawing on the “circumference Ro around the pivot axis O” while approaching the rotating shaft Sw of the rotating body J, and “the connecting shaft P connecting the two links J and A”. Is urged by the tension spring V and moves on a circumference Rsw centered on the fixed support shaft Sw in the direction of the arrow a in the figure.
  • a large force acts in the axial direction of the two links J and A.
  • the two links J and A overlap and become relatively united.
  • the two links J and A will work as levers.
  • the driving force Mv acting around the fixed support shaft Sw increases as “the force acting on the door” increases as the operating point C approaches the support point Sw.
  • the rotation axis C of the link A approaches the rotation axis Sw, the approach speed decreases, and the rotation axis C and the rotation axis Sw substantially coincide with each other just before closing.
  • the link A bends in the middle, and the corner portion Ak moves circularly around the rotation axis C.
  • the center C of the circular movement approaches the rotation axis Sw, the approach speed decreases, and the locus of the corner portion Ak is the “switching range”. From a circular arc close to a straight line, it becomes “a circle centered on a substantially fixed support shaft Sw”. *
  • a wheel BB is mounted on the corner portion Ak, and the wheel BB and the sliding surface KK are disengaged.
  • the sliding surface KK is rotatably supported around a support shaft Skk provided on the door frame W, and is urged around the support shaft Skk by a push spring U in the direction of the arrow in the figure, and the arrow G in the figure by the contact Gk. Prevent direction rotation.
  • the sliding surface KK is composed of a base end portion Ko of the linear portion and a terminal portion Ke that greatly changes the curvature, and when the wheel BB moves circularly, the wheel BB moves while pressing the sliding surface KK and the push spring U is contracted.
  • the sliding surface KK does not transmit the driving force Mv of the telescopic portion after the latch contact, but rotates the door with the force of the push spring U. If the wheel BB is moved on the sliding surface KK until the driving force Mv of the expansion / contraction portion is at a right angle ⁇ ak, the sliding surface KK is moved when the latch male portion Rd moves on the sliding surface portion Rww of the female portion Rw.
  • the force of the tension spring V is reduced in the same manner as the push spring U shown in FIG.
  • the push spring U absorbs the inertia force of the door while contracting, and the force stored in the push spring U works to close the door instead of pushing the door back.
  • the door inertia force is converted into a sealing force.
  • the door inertia force acts in the circumferential direction of rotation of the sliding surface KK, and the force acting in the moving direction of the wheel BB is in the radial direction. Even if the push spring U is strengthened and a large door inertia force is received by the sliding surface KK, the push spring U has little influence on the moving speed of the wheel BB.
  • the pressing spring U absorbs the inertia force of the door and contracts, but the wheel BB moves while pressing the sliding surface KK. Therefore, the pressing spring U is not restored and is not pushed back in the opening direction.
  • the sliding surface KK simultaneously receives the pressing force Fb and the door inertia force in the opposite direction, and is sandwiched between two forces as in the sliding surface K2 shown in FIG.
  • the force that presses the surface KK is the same as the force that the wheel B2 shown in FIG. *
  • the urging means of the rotating body J indicates that when the latch male part Rd moves on the sliding surface part Rww of the female part Rw by the restoring force of the pushing spring U, the driving force Mv becomes invalid for the rotation of the door.
  • the link AA is rotatably supported around a support shaft Ia provided on the rotating body J, is bent at a right angle in the middle, is provided with one support shaft Sa of a spring at each corner, and has a wheel at the tip. B is attached.
  • the other support shaft Sww of the spring is provided on the door frame W.
  • the link AA rotates while the side surface is in contact with the fixed support shaft Sw in the "(A) range", and the spring support shaft Sa revolves around the fixed support shaft Sw slightly. .
  • the link AA and the tension spring V are the “connecting body of the tension spring V and the link AA” as in FIG. 2, and the “continuum AV of the tension spring V and the link A” in FIG.
  • the constraint is released when the spring axis Zv is in a straight line, the constraint is not released when the axis A Zaa of the link A and the axis Zv of the spring are in a straight line in FIG. As shown in FIG.
  • the outer edge of the sliding surface K3 is “an arc centered on the fixed support shaft Sww, and the length of the tension spring V changes when the wheel B moves along the sliding surface K3.
  • the pulling force of the pulling spring V does not act on the door, and the force of the pressing spring U is a rotating body only at the moment when the wheel B moves away from the sliding surface K1 and becomes straight from the bent state of the two shaft cores.
  • the sliding surface K3 is fixed to the door frame W as shown in FIG.
  • the sliding surface K3 can be fixed at a predetermined rotation angle by being supported by the support shaft Sk, and the wheel B is moved in the direction indicated by the arrow D in the figure along the arc Rsww1 to move along the arc Rsww1.
  • the door will decelerate when sealed because of resistance in the direction of movement. Since the rotating body J for a small rotation of the A D rotates largely, freely operating the "force acting on the door” in a large rotation range of the rotating body J. When the door D comes into contact with the door contact Gd, the “force acting on the door” does not work, and the spring force of the latch male part Rd causes the impact sound to be fitted into the female part Rw. Is the smallest.
  • the means applied when the door D abuts against the door contact Gd is the most effective for minimizing the impact sound, and the last applied means no matter how effective the means applied so far works. If is not effective, the impact sound will not be reduced. *
  • FIG. 6 is a plan view for explaining the operation of the switchgear having a five-bar rotation mechanism composed of three links; In the “range (A)”, the link A and the link AA are aligned and operate as one link, and in the “(range)”, the link A and the rotating body J are relatively integrated. Operates as one link.
  • range (A) the link A and the link AA are aligned and operate as one link
  • range the link A and the rotating body J are relatively integrated. Operates as one link.
  • the links attached to the opening / closing part abut against and separate from the opening / closing part, and adjacent links contact and separate from each other except for the attachment part of the opening / closing part and the expansion / contraction part.
  • a branch point is recognized in the process of movement of the link device, and it is divided into two forms, when the link device stops and when it continues.
  • the opening / closing device described so far the door is temporarily stopped when the latch comes into contact.
  • the opening / closing device shown in FIGS. 26 and 27 allows the door to be stopped before the time when the latch comes into contact. Stops the door at an unopened position and prevents a finger jamming accident when hit by a strong wind.
  • the opening / closing device of FIGS. 26 and 27 is a link device of a five-bar rotation mechanism that connects the attachment shaft C provided on the door D and the attachment shaft Sw provided on the door frame W by three links J, A, AA.
  • link A “the two links in which the link A and the link AA are connected by the connecting shaft PP” is “the connecting shaft P provided at the tip of the rotating body J that is rotatably supported around the fixed supporting shaft Sw”.
  • a connecting shaft C The connecting shaft PP traverses the "straight line Tc passing through the fixed support shaft Sw and the connecting shaft C" twice and reciprocates.
  • the axial center line Za of the link A is a straight line passing through the connecting shaft P and the connecting shaft PP, and the link device of FIG.
  • the 26 is configured so that the axial center line Za of the link A crosses the fixed support shaft Sw.
  • the device is attached with a spring Vpp around the connecting shaft PP or around the connecting shaft C as shown in FIG. 27 so that the link A and the link AA are closed in the direction of the arrow D in the figure around the connecting shaft PP.
  • the connecting shaft PP reciprocates across the straight line Tc.
  • FIGS. 26 and 27 (a) are operation explanatory views before the connecting shaft PP crosses the “straight line Tc passing through the fixed support shaft Sw and the connecting shaft C”. Are always on the same straight line ZZ, and the two links A and AA operate as one link, and the rotating body J rotates around the fixed support shaft Sw in the direction of arrow A in the figure.
  • the door D is rotated by the urging means (not shown), the door D is pulled through the two links A and AA and rotates in the direction of the arrow B in FIG. In the case of FIG.
  • the spring Vpp is stretched by the force that the rotating body J pulls the link A in the “range (A)”, and the link A and the link AA are in a straight line.
  • the force is weakened, the link A and the link AA are closed in the direction of the arrow D in the figure around the connection axis PP, and the link A and the link AA are operated as one link while being folded.
  • FIGS. 26 and 27 (b) are operation explanatory views after the connecting shaft PP has reciprocated twice across the “straight line Tc passing through the fixed support shaft Sw and the connecting shaft C” twice.
  • the link A and the rotating body J are relatively integrated to form one link AJ, and one link AJ operates.
  • the axis line Zaj of one link AJ is “a straight line passing through the fixed support shaft Sw and the connecting axis PP.
  • the connecting shaft PP rotates about the fixed support shaft Sw in the direction indicated by the arrow C in the figure, and after being integrated, the connecting shaft PP rotates in the direction opposite to the arrow C in the figure. To do. Since the connecting shaft PP reverses the moving direction when the link A and the rotating body J are relatively integrated, the “force acting on the door” instantaneously becomes zero, and the link A and the link AA are connected to the connecting shaft PP. Rotate in the closing direction in the direction indicated by arrow D in the figure.
  • FIG. 27 (c) and 27 (d) show a link device having a structure in which the connecting shaft C is attached to the door D via the first door Jc.
  • the first door Jc and the door D are closed in an open state, and when the link A and the rotating body J are relatively integrated just before the closing, the connecting shaft PP reverses the moving direction. “The first door Jc and the door D in the opened state” begin to close due to the door inertia force.
  • FIG. 27C shows a state where the door rotates at a low speed and the door inertia force is small, and the first door Jc and the door D are open and the connecting shaft PP crosses the straight line Tc again. The door is closed without rotating in the opening direction.
  • FIG. 27 (d) shows a case where the door rotates at a high speed and a large inertial force is exerted.
  • the door can be opened.
  • the link A Since the shaft core line Za of the link A crosses the fixed support shaft Sw, the shaft core line Za of the link A once crossed cannot be returned.
  • the axial center line Za of the link A and the “side surface where the link A and the rotating body J abut each other” are opposite to each other with the fixed support shaft Sw in the middle.
  • FIGS. 26 (c) to 26 (e) are explanatory views of an apparatus for opening the door even when the axial center line Za of the link A crosses once.
  • the wheel B is mounted at a position different from the connecting shaft PP of the link A.
  • the sliding surface K is rotatably supported around the fixed support shaft Sw.
  • the sliding surface K has such a shape that the wheel B moves away from the fixed support shaft Sw when the wheel B moves from the proximal end Ko of the sliding surface K toward the terminal end Ke, and the wheel B is fitted to the terminal end Ke.
  • a recessed portion is provided.
  • FIG. 26 (c) shows a state in which the axial center line Za of the link A has traversed for the first time, and the connecting shaft P is in a position to rotate in the direction of arrow A in FIG.
  • the wheel B engages with the proximal end Ko of the sliding surface K.
  • FIG. 26 (d) shows a state of sealing, and the sliding surface K is stopped in the direction indicated by the arrow E in the drawing and stopped by Gk, and the wheel B is stopped from the proximal end Ko of the sliding surface K to the end portion.
  • the connecting shaft PP moves around the fixed support shaft Sw in the direction opposite to the arrow C, not only a force for rotating the door in the opening direction is required, but also the rotating body J linked with the side surfaces is linked.
  • FIG. 26 (e) shows a state when the door is opened. While the wheel B is fitted in the recess, the sliding surface K moves away from Gk and rotates in the direction opposite to the arrow H in the drawing, The state where the wheel B escapes from the recess and the door opens is shown.
  • the connecting shaft P is in the direction opposite to the arrow a in the figure when a force is applied to the connecting shaft PP to open the door.
  • FIGS. 26 and 27 are a 5-joint rotating mechanism shown in FIGS. 26 and 27, and the door D and the door frame W are connected by three links J, A and AA.
  • the wheel BB at the corner Ak is slid.
  • This is a link device in which the side surface of the link A moves along the wheel B as it moves along the surface KK.
  • the “force acting on the door” before the “switching means” is insufficient and the vehicle can be decelerated. .
  • the rotating body J is urged by the tension springs V1 and V2, and one of the respective supporting shafts is attached to the supporting shafts Sj1 and Sj2 provided on the rotating body J and the other is attached to the supporting shafts Sw1 and Sw2 provided on the door frame W.
  • the tension spring V1 works effectively in the “(range)” and the tension spring V2 works in the “(range)”.
  • the rotating body J and the link A are connected by a connecting shaft P, and the link A and the link AA are connected by a connecting shaft PP.
  • the rotating shafts Sw and Swb of the rotating body J and the wheel B are provided on the “rotating body Jc rotatably supported by the fixed supporting shaft Sww”.
  • the push spring U is urged to rotate in the direction opposite to the direction indicated by the arrow D in FIG. However, the movement of the link device does not stop. *
  • FIG. 28C is a plan view for explaining a series of operations from fully open to fully closed, and illustrates the position of the link member at each time point.
  • the connecting shaft C moves on the circumference Ro centering on the pivot axis O in the direction of arrow B in the figure, and the connecting shaft P moves on the circumference Rsw centering on the fixed support shaft Sw in the direction of arrow i in the figure.
  • the link A and the link AA are in a straight line for a while from the fully opened state, and when the side surface of the link A comes into contact with the wheel B, the link A and the link AA start to bend.
  • the lever with the connecting shaft P as the applied point and the connecting shaft PP as the operating point functions using the “contact point between the side surface of the link A and the wheel B” as a fulcrum. Even if the distance between the fulcrum action points decreases and the distance between the fulcrum application points increases, the axial center line Zaa of the link AA is the action line of the force that pulls the door, and the direction is directed to the axis O just before closing. The “force to rotate the door” is reduced. Even if the force acting on the applied point is large, the door acts small.
  • the latch male part Rd contacts the female part Rw
  • the side surface of the link A contacts the wheel B
  • the connecting shaft PP approaches the wheel B as shown in FIG.
  • the “switching means” operates greatly with respect to slight rotation of the door.
  • the tension spring V1 loses the force to rotate the rotating body J
  • the axial center line Zv of the tension spring V2 gradually moves away from the center of rotation Sw of the rotating body J.
  • the wheel B is temporarily stopped because the force for rotating the rotating body J is close to zero.
  • the rotation shaft Swb of the wheel B is rotatably supported around the fixed support shaft Sww and is urged by the push spring U in the direction opposite to the arrow D direction in the figure. While the movement of the wheel B is stopped, the link A, the rotating body J, and the rotating body Jc are relatively integrated to rotate in the direction opposite to the direction of the arrow C in the figure, and in the direction of closing the door. Can resist rotation.
  • the crossing angle ⁇ aa begins to increase, and “the force that rotates the door” begins to increase. That is, the “switching means” accompanies the acceleration of the door. However, the crossing angle ⁇ aa still tends to become sharper when an external force is applied.
  • FIG. 28 (c) when the axial center line Zaa of the link AA is brought close to the pivot axis O just before closing, the crossing angle ⁇ a between the axial center line Za of the link A and the axial center line Zaa of the link AA is “the switching range”. It turns out that the crossing angle ⁇ a has a minimum value in the middle. As shown in FIG.
  • the link device of FIG. 22 restrains the rotation of the second connecting shaft so that the pivot O of the five-bar rotation mechanism is the first, and the door D is the first link, and the first door Jc is the second. In this case, the first link and the second link are disengaged.
  • the link device of FIG. 28 is also a 5-joint rotation mechanism, and the engagement and disengagement of Ga on the side surface of the link AA restrains the rotation of the third connecting shaft so as to be releasable. The third link is disengaged.
  • the restraint or semi-restraint means can be provided around the connecting shaft of the link device to control the operation of the link device.
  • the motion differs depending on the place of restraint and plays a different role. For example, when the third link and the fourth link are disengaged in the five-joint rotation mechanism shown in FIGS. 26A and 26B, the magnitude of the driving force Mv changes from small to large. In FIG.
  • FIG. 2 shows a state where the fifth connecting shaft is semi-constrained.
  • the sliding surface K in FIG. 2 is the first door Jc in FIG. 22, and FIG. 2 shows that the fifth connecting shaft and the second connecting shaft in FIG. They are the same and play the same role.
  • the link A acts as a lever and constantly presses the wheel B strongly, the frictional resistance acting around the rotation axis Swb of the wheel B is large, and the “movement of the link A along the wheel B” is braked.
  • the wheel BB is mounted on the support shaft Skk provided on the door frame W, and the position of the wheel BB and the sliding surface KK is changed so that the wheel BB moves along each corner Ak of the link A. In this case, if frictional resistance acts around the rotation axis Skk of the wheel BB, the brake is applied to “movement of the corners Ak of the link A along the wheel BB”.
  • FIG. 25 the wheel BB is mounted on the support shaft Skk provided on the door frame W, and the position of the wheel BB and the sliding surface KK is changed so that the wheel BB moves along each corner Ak of the link A.
  • the door is further decelerated by attaching a delay device such as a damper around the rotation axis Swb of the wheel B or around the rotation axis Skk of the wheel BB in FIG.
  • the closing device of the present invention does not apply a resistance directly to the door to delay the rotation of the door, but applies a resistance to the driving unit to indirectly delay the rotation of the door.
  • the “force acting on the door” does not interlock with the door, and can be set to a constant magnitude.
  • the wheel B moves along the side surface of the link A over a long distance and takes a long time until the latch male part Rd comes into contact with the female part Rw and begins to be depressed. Disappear.
  • the time required for the “switching means” is delayed by shifting the plurality of operations described above from inertia to dynamic inertia. During this time, the movement of the expansion / contraction part is not transmitted to the opening / closing movement of the door, so that the door runs idle and the “force for rotating the door” is attenuated.
  • the “switching means” in FIG. 29 applies a “load that accumulates force on the sealing device” while rotating the door slightly or without rotating the door due to the continuous operation of many springs and a plurality of operations.
  • the action of the “means” is delayed, and the “power stored in the sealing device” gradually grows, and when the “force for closing the door” is reached, the sealing device is activated to seal the door. At this time, force acts on the door without excess or deficiency, and the door is sealed. Since the impact sound at the time of sealing is proportional to the magnitude of the extra force, the impact sound at the time of sealing becomes the smallest. *
  • FIG. 29 (a) is “range (A)”, and the wheel B attached to the door D moves “on the circumference Ro around the pivot axis O in the direction indicated by the arrow C in the figure, and the door D pivots.
  • a series of operations that rotate in the direction of the arrow B in the figure is described about the axis O.
  • the sliding surface K is urged in the direction of the arrow A in the figure about the rotation axis Ik by the pulling springs V1 and V2, and the wheel B
  • the shape of the sliding surface K is shown in FIG. 4C so that the distance between the "operation line of the force Fb that the wheel presses the sliding surface” and the pivot O is substantially constant.
  • the “rotation mechanism in which the wheel moves along the sliding surface” means that the “wheel moves along the sliding surface” no matter how large the “force Fb (ie, the force acting in the radial direction of rotation) of the wheel pressing the sliding surface”.
  • the force to be moved (that is, the force acting in the radial direction of rotation) has a feature that can be reduced as much as possible by reducing the distance between the "operation line of the force Fb that the wheel presses the sliding surface” and the pivot O, When this feature is used for a door, no matter how strong a spring is used, it does not affect the opening and closing of the door.
  • the means for enabling the drive shaft to move in the “switching means” and the means for allowing the sliding surface K to rotate increase the operation of the “switching means” and “force acting on the door”. ”Increases the expansion and contraction of the spring until reaching the force that seals the door, resulting in a decrease in the rigidity of the spring, and the“ force acting on the door so that the wheel B is loose and has a long gradient ” Is to grow slowly. As shown in FIG.
  • the rotation axis Ik of the sliding surface K is provided at the tip of the shaft Sh, and the shaft Sh is moved along a groove H provided in the rotating body Jsw.
  • the rotating body Jsw is rotatably supported around a fixed support shaft Sw provided on the door frame W, and the rotation in the direction indicated by the arrow D in the figure is controlled by a wheel BB attached to the end of the shaft Sh.
  • the shaft Sh is pulled in the direction of the arrow in the drawing by the pulling springs V1 and V2, and is pulled out by the contact Gjc. 29 (b), when the wheel B approaches the base end portion Ko of the sliding surface K before the closing dimension, as shown in FIG.
  • the passage is blocked and the progress of the wheel B is prevented.
  • the shaft Sh retreats and the sliding surface K rotates around the wheel B in the direction indicated by the arrow G in the figure.
  • the wheel BB moves from the sliding surface KK1 to KK2 and descends the step.
  • the rotating body Jc rotates in the direction indicated by the arrow D in the drawing to seal the door as shown in FIG.
  • the “(i) rotating means” includes an operation in which the shaft Sh moves backward and rotates, and an operation in which the sliding surface K rotates. The operation time of the "rotating means” is delayed. *
  • the wheel B is mounted on a rotation axis Ib of a wheel provided on the link A, and the link A is rotatably supported around a connection axis C provided on the door D.
  • the push spring U is inserted between the link A and the door D, and urges the link A in the direction opposite to the arrow E in the figure, and the contact Ga prevents this rotation.
  • the rigidity of the push spring U is zero, the link A is rotatably supported around the connection axis C, and the expansion / contraction part continues to move even when the door is stopped.
  • the “switching means” involves no or little door rotation. When the normal “switching means” operates without rotating the door, no load is applied to the operation of the closing device, and no load is applied to the spring.
  • the “switching means” switches from “small” to “large” continuously and “accelerates the door” without requiring much time. In the case of FIG. 29, since the “switching means” involves a plurality of operations, the “switching means” takes time.
  • the “switching means” does the work of contracting the push spring U instead of rotating the door, and the loaded spring does not expand and contract instantly.
  • the movement of the telescopic part is transmitted to the door, but when the latch comes into contact with the door frame, the push spring U “ There is no "rotating force”. Wait while the latch is in contact with the door frame.
  • the magnitude of the force accumulated in the push spring U reaches the “force for indenting the latch”, the door is sealed by the extension of the push spring U.
  • the expansion / contraction part does not move and only the push spring U extends, and the force of the expansion / contraction part is not transmitted to the door.
  • the force acting on the latch at the time of sealing is not excessive and insufficient, and the impact sound at the time of closing is minimized.
  • the telescopic part moves again and strongly presses the door against the door.
  • 30 and 31 are plan views for explaining the operation of a rotating mechanism in which a spring working in the “(A) range” and a spring working in the “(A) range” are prepared separately and switched in the “switching range”. . 30 and 31 is a device relayed from a rotating device working in “range (A)” to a sealing device working in “range (ii)”. FIGS.
  • FIGS. 30 (a) to 30 (c) consolidate the urging means of the rotating body J around the rotation axis Sw in order to reduce the size of the apparatus.
  • 30 (a) to 30 (c) two springs having different rigidity work in series around the rotation axis Sw, and FIGS. 30 (d) to 30 (f) work in parallel.
  • FIGS. 30 (a) to 30 (c) each of the springs having different rigidity is affected by the other in the rotation range of the divided separate doors in FIG. . 30 (d) to (f) are not affected. *
  • FIG. 30A is a fully opened state
  • FIG. 30B is a state diagram in the middle of closing
  • FIG. 30C is a state diagram in closing.
  • the rotating bodies J1 and J2 have the same rotating shaft and are rotatably supported around the fixed supporting shaft Sw.
  • the torsion spring UV1 and the torsion spring UV2 are connected by a rotating body J1, and one of the continuous bodies of the torsion spring UV1 and the torsion spring UV2 is a spring support shaft S1 provided on the door frame W, and the other is a spring support shaft S2 provided on the rotation body J2. Attach to.
  • the torsion spring UV1 and the torsion spring UV2 are both U-shaped elastic bodies that are biased in the direction in which the support shafts at both ends approach each other, and the rigidity of the torsion spring UV1 is small and the expansion / contraction is set large.
  • the rigidity of the torsion spring UV2 is large and the expansion and contraction is small.
  • FIG. 30 (c) shows a state in which the spring is most relaxed, and the rotating body J1 comes into contact with the contact G1 provided on the rotating body J2, and the rotation of the rotating body J1 in the direction of arrow A in the drawing is prevented.
  • the rotating body J2 comes into contact with the contact G2 where the door frame W is provided, and the rotating body J2 is prevented from rotating in the direction indicated by the arrow B in the figure.
  • 30 (d) to 30 (f) are embodiments in which two different springs operate independently without being influenced by the other in the “divided separate door rotation range”.
  • 30 (d) is a state diagram at the time of closing, and shows a state where the spring has returned to its natural shape.
  • FIG. 30E is a state diagram in the middle of closing
  • FIG. 30F is a state diagram when fully opened.
  • the rotating body J is rotatably supported around the fixed supporting shaft Sw
  • the springs U1 and U2 are elastic bodies formed in a U shape
  • one supporting shaft is the door frame W
  • the other supporting shaft is the rotating body. Attach to J.
  • one of the support shafts is a fixed end and the other support shaft is a moving end, and a slider S is attached to each of the moving ends.
  • the slider S moves along the groove H provided in the rotating body J or the door frame W, and swings between the start end Hs and the end He of the groove H.
  • the slider S1 of the spring U1 is accommodated in a groove H1 provided in the rotating body J, and the other end of the spring U1 is attached to a spring support shaft Sv1 provided in the door frame W.
  • the slider S2 of the spring U2 is accommodated in a groove H2 provided in the door frame W, and the other end of the spring U2 is attached to a spring support shaft Sv2 provided in the rotating body J.
  • the slider S1 is in contact with the terminal end He1 of the groove H1 in the most loose state at the beginning of rotation shown in FIG.
  • the slider S2 is in an intermediate portion between the start end HS2 and the end HE2 of the groove H2 with the spring shown in FIG. 30 (d) in the most relaxed state, and when the rotating body J rotates in either the arrow A or B direction in the figure, At the beginning of the rotation, the slider S2 is kept in a state where it does not come into contact with the start end Hs2 or the end HE2 of the groove H2, and the force by which the spring U2 rotates the rotating body J does not work.
  • channel H2 in a figure is circular arc shape centering on the rotary body rotating shaft Q. FIG. Further, the rotating body J rotates and moves along the groove H1, and reaches the start end Hs2 or the end He2.
  • the spring U2 changes from a state where the force for rotating the rotating body J does not work.
  • the force is stored in the spring U1 in the process of FIGS. 30D to 30E, and the force is not stored in the spring U2.
  • the transition from the state where the spring U2 is loosened to the state where the force is stored in the spring shown in FIG. 30 (f) is a process of opening the door, and the process of closing the door is a spring.
  • This is a time when the state shown in FIG. 30 (f) where the force is stored shifts to the state shown in FIG. 30 (d) where the spring is loosened.
  • the opening / closing device shown in FIGS. 30D to 30F biases the rotating body with different strengths in different magnitudes within the rotation range distinguished by the rotating body.
  • FIG. 31 shows an urging means for linear reciprocating motion comprising “rotating means in the range of (A)”, “rotating means in the range of (ii)”, and “switching means”.
  • the passage body Sz is provided with a passage in which the action body A linearly reciprocates, and an end portion is attached to the fixed support shaft Sw.
  • the action body A is inserted into a through hole Hz provided in the passage body Sz, and is attached to the passage body Sz so as to be movable in the axial direction.
  • FIG. 31A shows a state in which the working body A is inserted most deeply into the passage body Sz
  • FIG. 31B shows a state in which the working body A is most separated from the passage body Sz.
  • One end of the tension spring V1 is attached to a spring support shaft Vz provided in the passage body Sz, and the other end is attached to the working body A via a through bolt Va.
  • the through bolt Va is inserted into a through hole H provided in the working body A and attached to the working body A so as to be movable in the axial direction.
  • the contact Ga attached to the head of the through bolt Va contacts the end of the through hole H in the “range (A)” and engages with the acting body A to pull the spring V1. Expands and contracts.
  • Wheels B are mounted on the acting body A, and sliding surfaces K1, K2 that move along the wheels B are provided on the sliding body KK.
  • One end of the sliding body KK is rotatably supported around a connecting shaft P provided in the passage body Sz, and the other end is urged in a direction of pressing the wheel B by a pulling spring V2.
  • FIG. 31 (a) when the wheel B moves along K2, the "force Fb that the wheel presses the sliding surface” moves the action body A in the direction of arrow A in the figure.
  • FIG. 31 (b) when the wheel B moves along K1, "the force Fb that the wheel presses the sliding surface” works at right angles to the moving direction of the acting body A and does not move the acting body A.
  • FIG. 31B shows “rotating means in the range of (A)”.
  • the contact Ga of the through bolt Va engages the acting body A, and the pulling spring V1 urges the acting body A in the direction of arrow A in the figure. .
  • the tension spring V2 works ineffectively.
  • FIG. 31 (a) shows “rotating means in the range of (i)”.
  • the wheel B moves along K2, and the pulling spring V2 urges the acting body A in the direction of arrow A in the figure.
  • the contact spring Ga of the through bolt Va moves away from the acting body A, and the tension spring V1 works ineffectively. *
  • the passage Sz shown in FIGS. 31 (c) and 31 (d) has a shaft SH1 at its center and SH2 on both sides, and the shafts SH1 and SH2 are attached to the free body AA.
  • the through-hole HAA of the free body AA moves along the shafts SH1 and SH2 so that the shaft SH2 penetrates the through-hole HA provided in the action body A, and the shaft SH2 moves along the shafts SH1 and SH2.
  • the through hole HA is adapted to move along the shaft SH2.
  • the loose body AA engages and separates from the contact G1 provided at the head of the shaft SH1, and the action body A engages and separates from the contact G2 provided at the head of the shaft SH2. Further, the contact Ga provided to the acting body A is engaged with and separated from the free body AA.
  • the rigidity of the push spring U1 is large, and the rigidity of the push spring U2 is small. *
  • the process from FIG. 31 (d) to FIG. 31 (c) is a process in which the "distance between the fixed support shaft Sw and the connecting shaft C" is reduced by contracting the push spring U, and the push spring having a small rigidity.
  • U2 has little “increase in the force stored in the spring” even if the distance is greatly reduced, and the force stored in the push spring U2 slightly shrinks the highly rigid push spring U1, but as shown in FIG. If A and the free body AA come into contact with each other through Ga and the distance does not decrease, the push spring U2 does not contract.
  • 31D is a process in which the “distance between the fixed support shaft Sw and the connecting shaft C” is increased by the restoring force of the pressing spring U, and the pressing with a large rigidity is performed.
  • the spring U1 loses its force with a slight increase in the distance.
  • the push spring U2 having a small rigidity does not change the spring force even if the distance is greatly increased.
  • both of the pressing springs U1 and U2 are extended simultaneously. This is due to the pressing spring U1.
  • the highly rigid push spring U1 is suitable for “(a) rotating means” in which the door rotates greatly with respect to a small movement of the drive unit and is operated by the force of the large spring.
  • the push spring U1 loses force only by a slight increase in the distance, and thereafter the distance increases only by expansion and contraction of the push spring U2.
  • the push spring U2 having a small rigidity is suitable for “(i) rotating means” because the door rotates slightly with respect to a large movement of the drive unit and the force is not attenuated even by a small spring force. Thus, it is sufficient as a biasing means for the door by simply connecting the springs having different rigidity in series.
  • FIGS. 31 (e) and 31 (f) are provided with a passage body Sz, an action body A, and a free body AA between them, and a tension spring V1 between the passage body Sz and the free body AA, It is a structure that is connected by a pulling spring V2, and includes shafts SH1, SH2, through holes HAA, HA, and G1, G2 as in FIGS. 31 (c) and 31 (d).
  • the rigidity of the tension spring V1 is small and the rigidity of the tension spring V2 is large.
  • the hits Ga and Gs are non-return devices that stop the movement of the free body AA in the direction of the arrow a in the “switching range”, and the hits Ga and Gs are rotatably supported by the passage body Sz and the action body A, Energized by the torsion spring UV, rotation in the energizing direction is prevented by the hit GG and the free body AA.
  • the distance starts to increase from the state in which both the tension springs V1 and V2 shown in FIG. 31 (c) are contracted, both the tension springs V1 and V2 are simultaneously expanded. This is due to the tension spring V1 having low rigidity.
  • 31 (f) is a process in which both the tension springs V1 and V2 are stretched to increase the “distance between the fixed support shaft Sw and the connection shaft C”.
  • the tension spring V2 with high rigidity hardly expands and contracts, and the tension spring V1 with low rigidity expands and contracts so that the free body AA comes into contact with G1.
  • the free body AA hits and comes into contact with G1
  • the expansion and contraction of the tension spring V1 is blocked and only the tension spring V2 expands and contracts.
  • the hits Ga and Gs rotate in the biasing direction of the torsion spring UV so that the free body AA does not return in the direction of arrow A in the figure.
  • the apparatus of FIG. 31 includes a rotating device that transmits rotation to the door only in “(A) rotation range” and a sealing device that transmits rotation to the door only in “(I) rotation range”.
  • the urging means that becomes ineffective from the middle and the urging means that becomes invalid from the middle and becomes valid from the middle.
  • the restraining means that works effectively in each rotation range is released in the “switching range”, and the spring force is If there is no expansion / contraction of the spring, it works ineffective, and the expansion / contraction of the spring occurs to make it work effectively.
  • the biasing means of the opening / closing device of the present invention is an elastic body such as a pulling spring V, a pressing spring U, a torsion spring UV, a leaf spring, a molding spring, etc.
  • the “force acting on the door” can be freely designed. I can do it.
  • the device of FIG. 32 transmits the rotation to the door only in the “(A) rotation range” from the fully open state to just before closing, and the door only in the “(A) rotation range” from immediately before closing to the fully closed state. It is equipped with a sealing device that transmits rotation.
  • the “link A1 for mounting the wheel B1” is pivotally supported around the “connection shaft C provided on the door D”, and is urged by the torsion spring UV1 in the direction of the arrow A in the figure.
  • the rotating body J is rotatably supported around the fixed support shaft Sw, and is urged by the torsion spring UV2 in the direction indicated by the arrow C in the figure.
  • a link A2 is connected to the connecting shaft P provided at the tip.
  • the wheel B2 is attached to the tip of the link A2. As shown in FIG. 32 (a), in the “range (A)”, the wheel B1 moves along the sliding surface K1 in the direction indicated by the arrow D in FIG. It rotates in the direction of arrow B in the figure. Before the closing, the rotation of the link A1 in the direction of the arrow a in the drawing is prevented by Ga, and at the same time, the door is not rotated by the wheel B1, and the door is rotated only by dynamic inertia.
  • the wheel B2 is pushed by the wheel B1 as shown in FIG. 32 (a) and moves from the sliding surface K11 to the sliding surface K2 as shown in FIG. 32 (b). At this time, the wheel B1 does not contact the sliding surface K11 and the door can be freely closed and rotated. *
  • the rotating body J, the link A2, and the wheel B2 indicated by solid lines in FIG. 32 (a) show a standby state, and support a strong pressing force in the direction of the axis A of the link A, while being perpendicular to the direction of the axis A of the link A. It can move with a weak force.
  • the toggle spring VV shown in FIGS. 12D to 12F the stronger the toggle spring VV, the harder the link A2 rotates, and the “(a) rotating means” is released. Need to be powerful.
  • the axis line of the toggle spring VV is close to the link “A2 rotation center Sw2”, and the axis line of the toggle spring VV slightly moves so as to cross the “link A2 rotation center Sw2”.
  • the standby state is kept very unstable.
  • the angle ⁇ ak is sufficiently obtuse as shown by the solid line in FIG. Even if it exists, the standby state is canceled by a small force acting in the circumferential direction of the circular motion of the wheel B2, and the standby state becomes very stable.
  • a solid line shown in FIG. 32A shows a state in which a pressing force is applied along the axial center line of the link A2 by the rotational force of the rotating body J in the direction indicated by the arrow C in FIG.
  • the crossing angle ⁇ a2 between the axial center line Za2 of the link A2 and the sliding surface K11 is an obtuse angle, and the rotation of the link A2 in the direction indicated by arrow E in the drawing is prevented by Gj1.
  • the axial center line Zj of the rotating body J, the axial center line Za of the link A, and the wheel B2 indicated by broken lines are pushed out of the sliding surface K11 by the movement of the wheel B1 in the direction indicated by the arrow D in the figure. Indicates the state.
  • a step is provided between the sliding surfaces K11 and K2, and when the rotation axis of the wheel B2 passes the step, half of the wheel diameter moves by itself while dropping the step.
  • the intersection angle ⁇ a2 turns to an acute angle, and the wheel B2 tends to move in the direction of the arrow in the drawing along the sliding surface K2.
  • the sliding surface K2 is rotatably supported around a connecting shaft Cj provided on the door D and is urged by a push spring U3 in the direction indicated by an arrow H in the figure, and rotation in the direction indicated by the arrow H is prevented by Gk2. .
  • the sliding surface K2 rotates around the connection axis Cj in the opposite direction to the arrow H in the drawing, and the gradient of the sliding surface K2 is The wheel B2 becomes smaller and can move on the sliding surface K2 toward the terminal end Ke2.
  • the wheel B2 is transferred onto the sliding surface K2, it is before the wheel B2 moves over the connection axis Cj, and the “push spring U attached around the connection axis Cj” is the door D as in the case of FIG. Energize in the direction to open.
  • the force that the rotating device acts on the door is the force that the wheel B1 presses the sliding surface K1 by the torsion spring UV1
  • the force that the sealing device acts on the door is that the wheel B2 slides on the sliding surface K2 by the torsion spring UV2. It is the force which presses.
  • the rotating device and the sealing device each have their own force, and the magnitude of each force can be freely adjusted by changing the strength of the torsion springs UV1 and UV2, regardless of the position of the action point. Also, since the rotating device operates separately in the “(A) range” and the sealing device operates separately in the “(A) range”, the force acting on the door in the “(A) range” and the “(A) range”.
  • the force acting on the door can be freely adjusted by changing the magnitude of the force of the torsion springs UV 1 and UV 2 regardless of the position of the action point.
  • the position of the force acting on the door in the “(range)” is the position of the force acting on the door in the “(range)”.
  • the case where it is farther from the pivot axis O can also be considered.
  • FIG. 32 (c) shows a state when the wheel B2 returns to the sliding surface K11 in the process of opening the door. In the process of opening the door, “the opening degree of the door when the wheel B2 reaching the terminal end Ke starts to return” is shown.
  • ⁇ do indicates that it is larger than "the door opening ⁇ ds when the wheel B2 is transferred onto the sliding surface K2" in the process of closing the door.
  • the door that starts to close from the opening ⁇ do of the door has an inertial force until the opening of the door reaches ⁇ ds, and the wheel B1 can push the wheel B2 from the sliding surface K11. Since the door B starts to close from the opening degree of the door smaller than ⁇ do, the door is sealed because the wheel B2 is on the sliding surface K2 and is within the range where the sealing device operates.
  • the sealing device 32 is a device that relays from the rotating device to the sealing device immediately before closing, and when relaying from the rotating device to the sealing device, it works to move the stationary sealing device, so that the door decelerates. Since the sealing device starts without rotating the door, the distance that the door moves with dynamic inertia while relaying from the rotating device to the sealing device is proportional to the rotational speed of the door, and the greater the door inertia force, the more the movement between large.
  • a link A3 is attached to the end of the sliding surface K2, and a wheel B3 is attached to the tip of the link A3.
  • a link A3 is in an upright state.
  • the sliding surface K3 is rotatably supported around a support shaft Sk3 provided on the door frame W, and is urged by a pressing spring U3 in the opposite direction to the arrow G in the drawing, and the rotation in the direction opposite to the arrow G in the drawing hits Gk3. Blocked by.
  • the wheel B3 When the door rotates at a low speed, the amount of rotation of the door is small “while relaying from the rotating device to the sealing device”, the wheel B3 abuts on the sliding surface K3, and the sliding surface K3 rotates in the direction indicated by the arrow in the figure.
  • the amount is small, the intersection angle ⁇ a3 of the axis A3 of the link A3 and the sliding surface K3 is an acute angle, and the wheel B3 can move in the direction of the arrow in the figure.
  • FIG. 32 (b) when the wheel B2 moves on the sliding surface K2 and gets over the connecting shaft Cj, the link A3 falls.
  • FIG. 33 is a plan view for explaining the operation of the latch.
  • the spring force to rotate the door is small, and a large sealing force is applied to the closed door.
  • the force required to open the door is the magnitude of the sealing force, and a door with a small sealing force is felt lightly when the door is opened. If a magnetic catch is installed instead of a latch, the force of the spring to seal the door is not necessary, and it will be felt lightest when the door is opened.
  • the resistance of the latch is small at the time of sealing, the door can be sufficiently rotated with a force slightly exceeding the maximum static friction force until it hits the door. In other words, the object of the present invention “slowly closing and always sealing” is made more possible.
  • FIG. 33 is a plan view for explaining the operation of the latch.
  • the 33 provides a latch that has a low resistance when the door is closed and prevents the door from reversing, and reduces the force when opening the closed door by reducing the sealing force.
  • the force of the spring that presses the door at the time of sealing is set to a force that keeps the door airtight, and it is not stronger than that.
  • FIG. 33 is a horizontal cross-sectional view of a latch male portion E attached to the side surface of the door D opposite to the pivot and a latch female portion F facing it and attached to the side surface of the door frame.
  • FIGS. 33 (a), (b), and (c) show the states when closing, immediately before closing, and when opening.
  • the latch male part E includes a recess He that accommodates the claw Ge, and the rotation support shaft Ig is provided in the recess He.
  • a claw Ge is rotatably supported on the rotation support shaft Ig, and a sliding surface Ke of the claw Ge includes a front end portion Pg and a front sliding surface Pk continuous thereto.
  • the latch female portion F is provided with a recess Hf that accommodates the claw Ge when the door is closed.
  • the peripheral portion of the latch female portion F has an inlet Kf that moves along the front sliding surface Pk of the claw Ge. And a circumferential portion Rf that moves along the tip portion Pg.
  • the shape of the circumferential portion Rf is centered on “the position of the rotation support shaft Ig0 of the claw Ge at the time of closing”, and “a distance rr between the rotation support shaft Ig and the tip portion Pg of the claw Ge” has a radius. It is a part. *
  • FIG. 33A is a state explanatory view when a force in the opening direction acts on the door at the closing time and the claw Ge receives a reaction force from the latch female portion F.
  • FIG. The action line of “force Fg to prevent reverse rotation of the door when closed” is a straight line passing through the rotation support shaft Ig and the tip portion Pg of the claw Ge, and “force Fg to prevent reverse rotation” is the rotation support shaft Ig. Supported. For this reason, it is necessary to increase the cross-sectional area of the rotating support shaft Ig. However, in the latch device shown in FIG.
  • a circumferential portion Re is provided in the concave portion He that accommodates the claw Ge, so It is supported not in the rotation support shaft Ig but in the range (a) of the circumferential portion Re.
  • the periphery of the claw Ge opposite to the tip portion Pg is provided with a circumferential portion Rg, and the circumferential portion Rg is a part of a circle having a radius r with the rotation support shaft Ig as a center, and the circumference of the recess He
  • the part Re is a part of a circle having a radius equal to or larger than the radius r with the rotation support shaft Ig as a center.
  • the push spring U is attached to the concave portion He of the latch male part E, and urges the claw Ge about the rotation support shaft Ig in the direction of arrow A in the figure.
  • the tip portion Pg of the claw Ge protrudes from the recess He in a state away from the door frame W.
  • the tip portion Ree in the range (A) of the circumferential portion Re and the periphery thereof serve as a hit for preventing the claw Ge from rotating in the direction of arrow A in the figure. It does not prevent the claw Ge from rotating by providing a small protrusion.
  • FIG. 33 (c) when the door D moves from the state separated from the door frame W to the state immediately before closing shown in FIG.
  • the surface Ke is in contact with the inlet Kf, the claw Ge rotates about the rotation support shaft Ig in the direction of the arrow B in the figure, and is accommodated in the recess He provided in the latch male part E, and the claw Ge is accommodated inside the door.
  • the claw tip Pg moves on the circumferential portion Rf of the recess Hf after passing over the inlet portion Kf of the latch female portion F as shown in FIG.
  • the latch device of the present invention makes the moving direction of the latch and the direction of the force acting on the latch close to each other by rotating the latch. In this way, the force for denting the latch is reduced, and the sealing force acting on the closed door can be reduced.
  • the force is directed toward the rotation axis, and the portion that supports this is supported by the outer edge of the latch, not the rotation axis of the latch, and is supported by the large contact portion. Even if the door frame does not enter deeply, it does not come out of the door frame, and the greater the force that opens the door, the greater the braking force.
  • 33 (d) to 33 (f) are the ones in which the claw Ge of FIGS. 33 (a) to (c) is replaced with “claw Gb whose outer edge portion is a spiral curve”.
  • the outer edge is the outer edge from the rotation axis Ig. It is a spiral curve in which the distance to becomes gradually larger.
  • the distance Lb between the “contact point b between the claw Gb and the latch female portion F” and the rotation axis Ig increases as the claw Gb rotates in the direction opposite to the arrow B in the figure.
  • 33 (d) to 33 (f) have a large sealing force in the radial direction as in the “sealing mechanism in which the wheel B presses the sliding surface K”.
  • the “switching means” of the present invention is such that the line of force acting on the “support shaft provided at the tip of the rotating body rotating about the rotating shaft” crosses the rotating shaft at the “predetermined opening of the rotating body”.
  • a releasable restraining means for preventing the rotation of one of the rotators is provided, such as a rotation mechanism in the door closing process.
  • FIG. 34 is a “switching means” that does not include a restraining means.
  • the “switching means” is provided so that the urging direction reverses and opens to the fully open position without permission, and a door that opens fully when it is slightly opened and fully closes when it is slightly closed is provided.
  • One of the tension springs V is attached to a support shaft Sd provided at the door, and the other is attached to a support shaft Sa provided at the tip of the link A, and the door is pulled to rotate.
  • the link A is urged by the toggle spring VV and swings between the positions where the fixed support shaft Sw contacts the shaft Ga1 and the contact Ga2 as shown in FIG. 34 (a)
  • the door D is contacted with the contact Ga1. It rotates in the direction of arrow A in the figure around the pivot axis O, and fully contacts with the door stop Gd1.
  • the door D rotates in the direction opposite to the arrow A in the figure, and contacts the door contact Gd2 and is fully closed.
  • the rotating bodies J1 and J2 are means for swinging the link A by contacting and separating from the wheel B mounted on the link A, and are rotatable around fixed support shafts Sw1 and Sw2 provided on the door frame W, respectively. It is pivotally supported, and is biased by the torsion springs UVj1 and UVj2 in the direction of the arrow C in the figure, and is in contact with Gj1 and Gj2 and stands by. Further, the sliding surfaces KK1 and KK2 are provided in the radial direction and the vortex line in the circumferential direction, and the sliding surfaces KKK1 and KKK2 are provided in the radial direction opposite to the sliding surfaces KK1 and KK2. As shown in FIG. 34A, the wheel B is in a region sandwiched between the sliding surfaces KK1 and KK2, and reciprocates between the standby positions of the rotating bodies J1 and J2. *
  • the sliding surfaces K1 and K2 are vortex lines that gradually move away from the rotation shafts Sw1 and Sw2 from the base ends Ko1 and Ko2 to the terminal ends Ke1 and Ke2, respectively, and the ratchet claws AA1 and AA2 that are attached to the door D slide.
  • the end portions Ke1 and Ke2 are engaged with the surfaces KKK1 and KKK2 and retracted in the direction opposite to the arrow B in the figure, and moved forward in the direction of the arrow B in the figure while retracting from the sliding surfaces K1 and K2.
  • the ratchet claws AA1 and AA2 are rotatably supported around the support shafts S1 and S2 provided on the door D, respectively, are urged by the torsion springs UVaa1 and UVaa2, and abut against the contact Gaa1 and Gaa2 to stand by.
  • the ratchet pawl AA1 when fully closed, the ratchet pawl AA1 is engaged with the sliding surface KKK1, and the wheel B is in contact with the sliding surface KK1.
  • the ratchet pawl AA2 engages with the sliding surface KKK2 and the wheel B contacts the sliding surface KK2 when fully opened. *
  • One of the toggle springs VV is attached to the link A, while the other is attached to the door frame W on the “straight line T passing through the pivot O and the fixed support shaft Sw”.
  • the end portion Ke2 of the sliding surface K1 approaches the pivot axis O as the rotating body J1 rotates in the opposite direction to the arrow C in the figure, and the rotation of the arrow c in the figure of the ratchet pawl AA1 is prevented by Gaa1 Therefore, after the link A contacts the contact Ga2, the ratchet pawl AA1 moves away from the sliding surface KKK1, and the rotating body J1 is returned by the torsion spring UVj1 as shown in FIG. Wait in contact. *
  • FIG. 34 (c) shows a state in which the ratchet claw AA2 moves along the sliding surface K2.
  • the ratchet claw AA2 hits against the urging of the torsion spring UVj2 in the direction indicated by the arrow C and moves away from Gaa2 and slides. It moves forward in the direction of arrow B in the figure while retracting from the moving surface K2.
  • FIG. 34 (d) shows a state in which the ratchet claw AA2 has climbed over the end portion Ke2.
  • the ratchet claw AA2 is rotated in the direction opposite to the arrow C in the figure by the torsion spring UVj2, and after contact with Gaa2, Engages with sliding surface KKK2.
  • FIG. 35 shows that “the wheel B attached to the tip end of the link A moves on the sliding surface K” and “the crossing angle ⁇ ak between the sliding surface K and the axis A of the link A” moves to the obtuse angle side.
  • FIG. 35 (a) to FIG. 35 (c) are operation explanatory diagrams employed in a shoe
  • FIG. ), (c) are explanatory diagrams of the operation adopted for the foot pedal.
  • the shoe shown in FIG. 35 has no resistance when the forefoot lands, and has the maximum force to kick the ground when the rear foot leaves the ground. The energy of the rear foot kicking the ground when the foot lands. There is a feature to store.
  • FIG. 35 The shoe illustrated in FIG. 35 is divided into a shoe D and a shoe sole W in two parts, upper and lower, and connected by a pivot O.
  • FIG. 35 (a) shows a state where the shoes have landed
  • FIG. 35 (b) shows a state where the shoe is about to leave the ground
  • FIG. 35 (c) shows a state at the moment when the shoe leaves the ground.
  • the link A is twisted about the connecting shaft C of the shoe D and is urged by the spring UV in the direction of arrow A in the figure, and the wheel B attached to the tip of the link A is a sliding surface K provided on the shoe sole W. And the shoe D is rotated in the direction of arrow B in the figure.
  • the process from FIG. 35 (a) to FIG. 35 (c) is the process from the landing of the shoe to the kicking up of the foot. 1 is difficult to stand still, but in the shoe employing the spring rotation mechanism of FIG. 1, the spring force hardly acts on the shoe at the time of landing, as shown in FIG. As shown in the figure, even if the shoe rotates and the shoe sole opens slightly, the “distance between the force acting line Fb and the pivot O” does not change. Therefore, there is a sense of crushing something at the time of landing, but there is no sense of attaching a spring to the shoe sole in the process from landing to kicking up the foot. As shown in FIG. 35 (c), when the shoe leaves the ground, a large force Fb acts on the shoe sole and kicks the ground.
  • the spring rotation mechanism shown in the embodiment of FIG. 35 is the spring rotation mechanism shown in FIG. 1 in which the magnitude of the force is switched at a predetermined opening degree of the shoe at the moment when the shoe leaves the ground. It is added to the robot's feet.
  • the process from FIG. 35 (a) to FIG. 35 (c) is “the angle ⁇ ak on the moving direction side of the wheel B (in the direction of arrow E in the figure) at the angle between the sliding surface K and the axial center line Za of the link A”. Is an acute angle, resists movement of the wheel B, and works to open the two open / close bodies D and W on the pivot O-axis, but in the process from FIG. 35 (c) to FIG.
  • FIGS. 35 (d) and (e) are explanatory views of the operation of the foot pedal adopting the spring rotation mechanism shown in the embodiment of FIG. 1.
  • a spring with strong restoring force there is a spring with strong restoring force.
  • 35 (d) and heel (e) like the shoes of FIGS. 35 (a) to 35 (c), have a feature that the force when stepping on is small, and it is difficult to get tired even if it is stepped on many times.
  • the foot pedal D is rotatably supported around a pivot O provided on the vehicle body W, and a link A is connected to a connection shaft C provided at the tip.
  • FIG. 35D is a state diagram in which the foot is separated from the foot pedal D
  • FIG. 35E is a state diagram in which the foot pedal D is separated by the foot.
  • the angle ⁇ ak on the moving direction side of the wheel B at the crossing angle between the axial center line Za of the link A and the sliding surface K is an obtuse angle, and no resistance is applied to the movement of the wheel B.
  • 35 (d) to FIG. 35 (e)) is a process in which the foot pedal D is released by releasing the foot pedal D
  • FIG. 35 (e) is a state in which the foot pedal is fully depressed.
  • the acting force distance Lo is maximized, the pushing spring U is maximally contracted, and the acting line of the pushing force Fb is substantially perpendicular to the sliding surface K.
  • the force of the spring is the maximum, the direction of the force is the most effective, and the “angle ⁇ ak on the moving direction side of the wheel B” is an acute angle. Just as resistance is applied, power is transmitted to the foot pedal. *
  • the “rotating mechanism in which the wheel B attached to the tip of the link A rotating about the connecting shaft C presses the sliding surface K” is a strong spring in “range (A)”.
  • the “force acting on the pedal” is small while using a strong spring force so as to surely return so that the “force acting on the door” is small while using the force.
  • the state shown in FIG. 35 (e) corresponds to the “range (A)” shown in FIG. 1 (a) and is a state where the wheel B is held and restrained in the vicinity of the pivot axis O.
  • the process leading to d) is a “switching range” in which the foot pedal D is slightly rotated to return to a position far from the pivot axis O with a slight rotation.
  • 35 (d) and FIG. 35 (e) use only the “switching range” of the rotating mechanism of FIG. *
  • the sliding surface KK indicated by the broken line in FIG. 35 (d) is similar to the sliding surface K shown in FIG. 4 and “the line of action of the force Fb that the wheel B presses the sliding surface K” 4 to make the pedaling force as uniform as possible from the beginning to the end.
  • the sliding surface K shown in FIG. 4 keeps the acting force distance Lo small and the link A has a large force.
  • the sliding surface KK indicated by the broken line in FIG. 35 (d) keeps the acting force distance Lo large and facilitates movement of the wheel B even if the axial force of the link A is small. . *
  • FIG. 36 shows an embodiment in which the “rotation mechanism in which the“ switching means ”starts when the rotation axis C of the link A crosses the axis Zv of the spring A” described in FIG.
  • FIGS. 36 (a) to 36 (c) are explanatory views of the operation of the robot arm using the feature that the “switching means” is not accompanied by the rotation of the opening / closing body of the opening / closing body.
  • FIGS. It is operation
  • FIG. 36 (a) shows the moment when the egg Egg is gripped by the tips of the two arms D and W.
  • the link A rotates about the connection axis C in the direction of the arrow A in the figure to move the spring axis Zv away from the pivot O and increase the force to grip the egg Egg.
  • the state in which the opening degree ⁇ d of the arm D and the gap Le are not changed is maintained, and only “the force Fe to grip the egg” can be increased without crushing the egg.
  • FIG. 36 (a) shows the connection shaft while engaging with the swing link A and the contact Ga1 in the "(A) range” and maintaining the "distance Lo between the rotation axis O and the spring axis Zv" small.
  • C is a state diagram in which C moves on the circular orbit R0 in the direction indicated by the arrow B in the drawing and crosses the axis Zv of the pulling spring V.
  • FIG. 36 (b) is a state diagram in which the connecting shaft C crosses the axial center line Zv of the spring, the urging direction of the pulling spring V changes, and the link A rotates in the direction of the arrow A in the figure. It swings from the pressing position to the position where Ga2 is pressed, the distance Lo increases, and the force Fe pressing the egg Egg also increases.
  • the rotation of the link A in the direction of arrow A in the drawing is not related to the door at all and is executed even when the door is stopped.
  • the swing link A moves around the rotation support shaft C in the direction of the arrow a in the figure.
  • the distance between the line of action Zv of the spring force and the rotation spindle C is kept small, the expansion and contraction of the spring accompanying the rotation of the swing link A is small, and the acceleration of the swing link A is small.
  • the factor that accelerates the swing link A is not the strength of the spring but the amount of expansion and contraction of the spring, and is “the difference between the spring force at the beginning and end of movement”.
  • a push spring U is attached to the tip Dw of the robot arm W.
  • the push spring U has a function similar to that of the push spring U in FIG. 1, and the rotation of the arm D stops before the connection shaft C crosses the axial center line Zv of the pull spring V as shown in FIG.
  • the push spring U can be contracted by the “(A) rotating means” with a small force, and the door rotates so that the connection axis C is the axis of the spring. It crosses Zv.
  • a broken line Das in FIG. 36A shows the arm D when the egg Egg is small, and the “switching means” starts to operate when the connecting shaft C crosses the axis A of the link A before the push spring U contracts.
  • the “switching means” operates while the push spring U is contracted regardless of whether it is before or after the press spring U is contracted.
  • the force Fe for gripping the egg Esg indicated by the broken line “Is larger, but” the force Fe that holds the egg Egg "is proportional to the contraction of the push spring U.
  • the stiffness of the push spring U is small, most of the decrease in the distance Le is the shrinkage of the push spring U and the egg Egg is less shrunk.
  • FIG. 36 (a) to contact b) only “the force Fe to grip the egg Egg” increases without deforming the egg.
  • the “range (ii)” including the “switching range” is narrow, and the link device moves greatly against a slight rotation of the door just before the door closes.
  • it is highly resistant to rotate the link device greatly in the reverse direction by opening the door slightly and return from “(i) rotating means” to “(a) rotating means”. It will be.
  • the opening when the wheel B far from the pivot O is returned to the vicinity of the pivot O when the door is opened is larger than the opening degree of the door when the wheel B which is in the vicinity of the pivot O immediately before closing starts moving. The degree is great.
  • 36 (d) and 36 (e) are explanatory views of the operation of the closing machine in which the string St always binds the item box with a constant force.
  • the “switching means” starts at a predetermined opening, but if the opening degree at which the “switching means” starts is proportional to the magnitude of the force, the “switching means” starts when the predetermined force is reached. It becomes like this.
  • 36 (a) to (c) if the size of the egg Egg is constant, the predetermined opening degree at which the “switching means” starts is determined by the amount of contraction of the push spring U.
  • 36 (d) and 36 (e) have the same rotation mechanism as that of FIGS.
  • 36 (a) to 36 (c) and the “switching means” starts when the distance Le is a predetermined size.
  • the predetermined size of the distance Le is also determined by the amount of contraction of the push spring U, and the amount of contraction of the push spring U is determined by the tension acting on the string St that binds the item box.
  • the “switching means” is started.
  • 36 (a) to (c) correspond to the structures shown in FIGS. 8 (a) to (d)
  • the structures of FIGS. 36 (d) and 36 (e) correspond to FIGS. 8 (e) to (f). Corresponds to the structure shown in. *
  • one end of the string St is fixed to a take-up roller Rol that attaches to the arm D, passes between the two arm tip portions Da and Wa, and surrounds the periphery of the product box.
  • the item box is bound through the two arm tips Da and Wa.
  • the arm distal end portion Wa is “the distal end portion of the rotating body J that is rotatably supported around the support shaft Sj provided on the arm W, and the proximal end portion is provided with the support shaft Sw of the tension spring V.
  • the rotation mechanism of the present invention has a feature that the operation of the drive unit is small in the “(A) range” and the door rotates greatly, and in the “(A) range”, the rotation of the door is small and the drive unit operates largely.
  • the damper is “(A) It works ineffectively in the “range”, works effectively in the “(range)”, buffers the collision that occurs at the end of the rotation, and does not resist the previous rotation.
  • FIG. 37 attaches a damper to the door drive unit shown in FIG. 27 so that the “switching means” does not end the operation in an instant when there is no load. Therefore, if the spring for rotating the door is removed from the opening / closing device in FIG. 37, the device can be widely used as a shock absorbing device.
  • FIG. 37 has the same structure as FIG. 27, and removes the spring urging around the connecting shaft PP in FIG. 27 so that the connecting shaft PP does not cross the “straight line passing through the connecting shaft C and the fixed support shaft Sw”.
  • FIG. 37A is an operation explanatory diagram of “range (A)”
  • the process from FIG. 37 (a) to contact b) is an operation explanatory diagram of “switching range”.
  • the door rotates slightly and the rotating body J rotates significantly.
  • FIG. 37 (b) there is provided means for changing the direction of the link AA in the direction of the pivot O and a pressing spring U sandwiched between the link A and the rotating body J.
  • the arm Ab is rotatably supported around a rotation support shaft Ia provided at an intermediate portion of the link A, and the wheel BB is mounted on a rotation support shaft Ib provided at the tip of the arm Ab.
  • the arm Ab is biased by the pulling spring VV, and the approach angle of the arm Ab to the sliding surface KK is adjusted by the hitting Gab. As shown in FIG.
  • the wheel BB enters the sliding surface KK in a direction perpendicular to the sliding surface KK, moves on the sliding surface KK in the parallel direction as shown in FIG. 37 (c), and the tension spring VV extends.
  • the force is stored and the rotation of the rotating body J is decelerated.
  • a large rotational moment acts on the arm Ab, but the arm Ab further rotates and the tension spring VV extends.
  • the rotational moment acting on the arm Ab is small and does not resist the subsequent rotation of the link A.
  • the damper is mainly composed of a cylinder Sl and a piston Ps.
  • the end of the cylinder Sl is rotatably supported around a support shaft Slw provided on the door frame W, and the end of the shaft Pss of the piston Ps is provided on the rotating body J.
  • the opening at one end of the cylinder Sl is blocked by a sealing lid Sla, and the lid Slb having a through hole through which the shaft Pss passes is attached to the other end to allow the air to enter and exit.
  • the cylinder S1 is separated by a piston Ps into a sealed chamber Sli on the sealed lid side and an outer pressure chamber Slo on the lid side having a through hole, and the sealed chamber Sli is pressurized or depressurized by the reciprocating motion of the piston.
  • the piston Ps has a through-hole through which the shaft Pss passes in the center, and the piston Ps is mounted so as to be able to reciprocate along the shaft Pss.
  • Pa per tip is provided at the tip of the shaft, and Pb is provided per intermediate portion at a position away from Pa per tip by a distance equal to or greater than the thickness of the piston.
  • the piston Ps reciprocates between Pa per tip and Pb per intermediate part. *
  • Pa per tip is a valve that shuts off the intake air to the sealed chamber Pli. It moves and comes into close contact with Pa per tip, blocking the air in and out of the sealed chamber Sli and depressurizing the sealed chamber Sli.
  • Pb per intermediate portion is a valve that shuts off the exhaust from the sealed chamber Sli. It moves and comes into close contact with Pb per intermediate part, blocks air from entering and exiting the sealed chamber Sli, and pressurizes the sealed chamber Sli.
  • the link A By attaching a “simple damper that cannot be said to be strong” in this way to the drive unit of the link device shown in the other embodiments as well as the link device of FIG. It can absorb and relieve the big impact on the door.
  • the big impact on the door means the impact caused by the collision at the end of every movement.
  • the link A is very slowly. It becomes a door to be sealed, and it also becomes a shock absorber using the door D as an impact absorbing portion.
  • the “rotating mechanism in which the wheel B attached to the tip of the link A presses the sliding surface K at a substantially right angle” is small along the sliding surface K in the “range (ii)”.
  • the force is converted into a large force in the direction of the axis line Za, and the door is sealed.
  • a direction along the sliding surface K while supporting a large force in the direction of the axis line Za of the link A is used as a moving means that moves while supporting a large weight in industrial fields other than doors.
  • a transmission means that exerts a large force on the door such as “rotating means in the range (a)” is a means that acts on a door with a small force when used from the opposite standpoint. It can be used for the device to do.
  • This moving means is a moving means that rotates with a small force while supporting a large force in the axial direction, and has a feature that supports the weight of the object.
  • FIG. 38 explains the “rotation mechanism in which the wheel B attached to the tip end portion of the link A presses the sliding surface K at a substantially right angle” as in FIG. 4, and shows the drawing method of the shape of the sliding surface K.
  • . 4 shows a case where the sliding surface K is a concave surface
  • FIGS. 38A and 38B show a case where the sliding surface K is a convex surface
  • FIGS. 4 and 38A and FIG. 38 (c) and (d) are the cases where the rotation axis is on the inside of the sliding surface K
  • FIGS. 4 shows a case where the sliding surface K is a concave surface
  • FIGS. 38A and 38B show a case where the sliding surface K is a convex surface
  • FIGS. 4 and 38A and FIG. 38 (c) and (d) are the cases where the rotation axis is on the inside of the sliding surface K
  • FIGS. 38B and 38D are operation explanatory views of FIGS. 38A and 38C, respectively.
  • the action line of the force Fb that the wheel B presses the sliding surface K maintains a certain distance from the connecting shaft C in FIGS. 38 (a) and 38 (b) and the pivot O in FIGS. 38 (a) and 38 (c).
  • FIG. 38 (b) when the arc R4 centered on the contact point a4 passing through the point b4 is rotated about the cam body rotation axis Qk, the arc R4 is centered on the contact point a5 so as to be continuous with the start point b5.
  • the arc R5 and the arc R4 form one arc, and the start point b4 moves to the start point k4 of the arc K4 that has been rotated.
  • the continuous arc is an arc K4, the arc R3 is moved to the starting point k4 of the arc K4, the arc K3 is continued, and the arc R2 is further moved to continue the arc K2 to draw the shape of the sliding surface KA. .
  • the sliding surface KA is drawn by successively continuing R5, K4, K3,.
  • the sliding surface KA in the figure is a sliding surface K that rotates about O, and is the sliding surface K when it contacts the wheel B at the point b5.
  • the sliding surface continuous to the contact bi is “the action line Fb and the virtual.
  • the virtual circle moves and the shape of the sliding surface K changes depending on the position of the rotation axis of the link A.
  • FIGS. 38 (c) and 38 (d) the center of the virtual circle is shown. Since it is the rotation axis of the sliding surface K, the shape of the sliding surface K is determined by the size of the virtual circle Ra, and no matter where the point bi is located on the circles Ro1, Ro2 and Ro3, the “wheel B Keeps a constant distance between the line of action of the force Fb that presses the sliding surface K and the pivot axis O. In addition, regardless of the movement of the cam wheel B, the "driving force acting around the pivot axis O" Thus, the pressing force Fb on the wheel B becomes constant.
  • the direction of the action line of the pressing force Fb changes, and the action line of the weight.
  • the “driving force acting around the pivot axis O” is initially large when the wheel B moves, and is finally reduced to eight. If the wheel B moves on the vertical line, the line of action of the pressing force Fb always coincides with the vertical line, and when the wheel B moves, a constant force is applied from the beginning to the end. Can minimize the maximum force required.
  • FIG. 39 shows a case where the rotating mechanism shown in FIGS. 38 (c) and 38 (d) is used for a moving device in the vertical direction of the weight in the same manner as in the embodiment in FIG. It is operation
  • movement description elevation which changes from the lying state shown to Fig.39 (a) (b) to the standing state shown to FIG.39 (c) (d).
  • the action line of the pressing force Fb and the action line of gravity are parallel when the lid is nearly horizontal, and the action line of the pressing force Fb rotates and becomes not parallel as the lid is suspended.
  • the action line of the pressing force Fb and the action line of gravity are parallel to each other.
  • the cam body KK has a sliding surface K on the outer edge portion, and is rotatably supported around a “connection axis C provided on a lid D that is rotatably supported around the pivot axis O”. Rotate in the direction to raise the lid D in the direction of arrow B in the figure.
  • the carriage is provided with a “contact surface KAA that is a friction surface in contact with the sliding surface K” on the upper surface and moves on a horizontal plane H to which both ends are supported by the wheels BB and the pivot O is attached.
  • the position on the contact surface KAA is ba0
  • the position on the sliding surface K is bb0
  • the sliding surface K rotates in the direction of arrow A in the figure
  • the position bb0 passes through the connecting axis C.
  • the length of the outer edge of the sliding surface K that reaches the contact b and the position bb0 in FIG. 39B is longer than the “distance r between the vertical line Z and the contact b”.
  • FIGS. 39A to 39D show an embodiment in which blades are applied to both the outer edge portion of the sliding surface K of the cam body and the contact surface KAA to engage with each other, but FIGS. 39 (b) and 39 (c) show the blades. This is an example that has not been applied. *
  • FIG. 39 (d) shows a relationship in which the cam bodies KK shown in FIGS.
  • the lid D is not rotated at a position where the force action line Fb passes through the rotation axis Q as shown in FIG. Throughout the entire process in which the lid D transitions from the lying down to the standing state, the magnitude of the force Fb that balances the rotational moment in the direction opposite to the arrow B in the figure due to gravity approaches infinity in FIG. 39 (d), and FIG. It approaches infinity and small in ⁇ (c).
  • the force for rotating the lid D in the direction indicated by the arrow B in FIG. 39 (d) is largely necessary and insufficient in FIG. 39 (d), and becomes excessive in FIGS. 39 (a) to (c). *
  • the differential element of the spiral wheel is a line segment perpendicular to the radial direction. This is because it is on the side farther from the connecting axis C than the differential element Ri of the arc shown in FIG.
  • the degree of convergence to a circle increases, more closely approximates a circle, and the increase of the rotation axis C accompanying the rotation of the cam body is small.
  • the rotation of the rotating shaft C accompanying the rotation of the cam body in FIGS. 39 (a) to (c) is large, and the cam body in FIGS.
  • the two opening / closing bodies D and W rotate relative to each other with the pivot O as an axis.
  • the operation of fixing one of the two opening / closing bodies D and W and rotating the other around the pivot O as an axis is In other words, when viewed from the other side, the other side is fixed and one side rotates about the pivot axis O.
  • the other rotating around O as an axis is a door D or a sliding surface K
  • one fixed side is a door frame W, which is a paper surface.
  • FIG. 40 is an operation explanatory view in which the cover K is fixed in FIG. 4 and one side of the paper frame, which is the door frame W, rotates about O as an axis.
  • the link A for attaching the wheel B to the rotation axis Ib of the wheel at the tip portion is rotatably supported around the “connection axis C provided on the lid D”.
  • the lid D rotates about the pivot O fixed to the fixing portion W, and the axis of the pivot O is horizontal.
  • the lid D0 indicates the standing state, and indicates the state where the “rotational moment Mo around the pivot axis O due to the gravity of the lid door D” is the smallest.
  • the lid D3 indicates a lying state, and indicates a state where the “rotational moment Mo around the pivot axis O due to the gravity of the lid D” is the largest.
  • the rotation moment Mc acts on the connecting shaft C around the connecting shaft C in the direction indicated by the arrow A in the figure by the urging means (not shown), and the rotation moment Mc opposes the rotation moment Mo to keep the lid D stationary.
  • FIGS. 40A and 40B are elevational views for explaining the operation in which the wheel B moves along the sliding surface K in the direction of arrow A in the figure and the lid D rotates in the direction of arrow B in the figure.
  • the shape of the sliding surface K approximates to an arc. Therefore, in FIGS. 40A and 40B, when the shape of the sliding surface K is an arc, the center of the arc is set to the virtual point Q.
  • the action line of “the force Fb that the wheel B presses the sliding surface K” passes through the “contact point b between the wheel B and the sliding surface K”, the wheel rotation axis Ib, and the virtual point Q. Unlike the case of FIG.
  • the “intersection angle ⁇ f between the link A and the vertical line on the sliding surface K” varies depending on the position of the wheel B.
  • 40 (c) and 40 (d) show, instead of “link A and sliding surface K in FIGS. 40 (a) and 40 (b)”, “rotating body J that rotates about a fixed support shaft Sw provided on fixed portion W. ”And“ Link A connected to the rotating body J and connected to the lid D ”.
  • the rotational axis Ib of the wheel moves circularly around the virtual point Q.
  • the force Fb by which the wheel presses the sliding surface acts on the axis of the rotating body J and acts on the fixed support shaft Sw.
  • FIG. 40A is an operation explanatory diagram in which the lid D and the link A shift from an orthogonal state to an overlapping state.
  • the lid D rises and is linked. A moves slightly horizontally from the vertical state.
  • the link A is kept in a substantially vertical state and substantially parallel to the line of gravity, the wheel B moves along the sliding surface K with the “circumferential force of a small circular motion” and moves to the axis of the link A. Supports the radial force of large circular motion. Further, the crossing angle ⁇ f between the link A and the line of action of the force Fb increases.
  • the rotational moment Mc is transmitted to the “force acting on the axis of the link A” to a small extent, and the “rotational moment Mo around the pivot axis O due to the gravity of the lid door D” decreases as the lid D0 stands up. .
  • the sliding surface K of the arc is movable without being fixed, the “intersection angle ⁇ f between the cam wheel rotating body Jg and the normal standing on the sliding surface K” is set to the position of the wheel B on the sliding surface K, or Depending on the opening degree of the lid D, the action line direction of the pressing force Fb can be designed in a desired direction.
  • the shape of the sliding surface K is not limited to the arc but is the same as when the sliding surface K having a free shape is fixed. *
  • FIG. 40B is an operation explanatory view after moving the sliding surface K, and the rate at which the intersection angle ⁇ f increases is small.
  • FIGS. 40C and 40D respectively correspond to FIGS. 40A and 40B, and what can be said about FIGS. 40A and 40B is also true of FIGS. 40C and 40D.
  • the fixed support shaft Sw is movably attached, or if the length of the rotating body J changes, for example, when the connecting point of the surrounding pair is a sliding pair, the degree of freedom of the link device increases, and the link device moves. It can be freely adjusted, and further desired balance is achieved by changing the spring force. Further, the link A is rotated with a small force while supporting a large force so that the axial line Za of the link A and the force acting line are close to each other.

Landscapes

  • Closing And Opening Devices For Wings, And Checks For Wings (AREA)
  • Power-Operated Mechanisms For Wings (AREA)

Abstract

【課題】ドアを開くときにドアが重たく感じられない特徴を持ち、ゆっくりと回転し、しかも強く密閉するドアであり、閉止時の衝撃音を小さくし、ドアに強く急激な力が作用したとき一旦停止して指詰め事故を防止するドアを提供する。また少し開くと全開し、少し閉めると全閉する機能を備える。【解決手段】油の粘性抵抗や摩擦抵抗を使わず減速する構造を持ち、力の方向を変えることによって閉止速度を制御し、バネの力を最小限に設定しドアを回転させ、閉止直前ではドアが止まっても装置は回り続けてバネの力を最大限に拡大し、第1のドアを介して密閉し衝撃音を小さくする。

Description

回転体の回転制御機構とその回転体制御機構を用いたドア等の開閉装置
本発明は回転体の回転制御機構とその回転体制御機構を用いたドア等の開閉装置に関する。
ドアを開く時にバネに力が蓄えられ、ドアから手を離したときに勝手に閉まるドアは、弱いバネを採用すると途中で止まり閉止に至らず、強いバネを採用すると閉止時に大きな衝撃を伴う問題があって、またドアを開くほどバネの力が大きくなり閉止時の閉止速度は大きくなる問題があった。ドアが閉止したとき大きな衝撃音を発しないようにするため、多くのドアクローザは摩擦抵抗や空気或いは油の粘性抵抗など「抵抗を負荷することによってドアを減速するもの」であって、抵抗を大きくすればドアを止めることになり、小さくすれば減速しない結果となり、「油圧シリンダを備えるドアクローザ」は「バネの力が必要を遥かに上回り、これに対抗する抵抗も非常に大きい環境下」においてのみこの課題を解決している。「油圧シリンダを備えるドアクローザ」は非常に大掛かりな装置であって、非常に大きな力でなければドアは回転しないかのように誤解されるが、実際は殆んど力が要らない作業であって、「ドアに作用する力」は「油圧シリンダを備えるドアクローザ」のバネの力の数パーセントにも満たない。この技術は「回転させる力が殆んど要らないドア」に抵抗をかけてわざわざ回り難くするものであって、「ドアを開くときにドアが重たく感じられる欠点」があった。 
「ドアが閉止する以前にドアに作用する力」はドアを回転させるだけであって、ドアが閉止するときにはドアを単に回転させるだけでなく「ドアの取手側側面に取り付くラッチ」をドア内部に凹ませる作業を伴う。そのため本発明はドアの回転範囲を全開から閉止直前に至る回転範囲(以下、「(あ)の範囲」と言う。)と閉止直前から全閉に至る回転範囲(以下、「(い)の範囲」と言う。)との2つに区分して、それぞれの範囲において異なる大きさの力を作用させ、必要以上の力をドアに提供しないようにしている。特許文献1は回転力の大きさを回転の途中と最後と異なるようにする電動ドアに関するもので、回転力の大きさは電気信号によって制御される。電動ドアは停電時に通路を閉鎖することになりかねない。本願とは駆動手段と制御手段が異なる。異なる大きさの力が働く2つの回転範囲には明確な境界(以下、「切替範囲」と言う。)があって、自動的に強い力から弱い力へ或いは弱い力から強い力に切り替わるもので、「作用する力の大きさ」が突如として変化するところに特徴がある。回転軸の周りに力Fが働いて回転体が回転する回転機構において、上記回転軸の周りに働く回転力Mと上記回転軸と上記力Fの作用線との間の距離Lとの間に(M=F×L)なる関係が成立するが、本発明は上記異なる大きさの力を「上記距離Lの大きさを変化させることによって上記回転力Mまたは力Fの大きさを変化させるものである。「油圧シリンダを備えるドアクローザ」ように抵抗を用いてバネの力を小さく作用させるのではない。 
特許文献2はラックと歯車を噛み合わせてそのとき発生する負荷により扉を減速するもので、回転数が小さい歯車で或いはラックの小さく移動で回転数が大きい歯車を回転させるとき、速比が大きくなるほど歯車の回転抵抗が大きくなることを利用するものである。本願は小さなバネの伸縮でドアを大きく回転させて駆動力不足の状態にすることでドアを減速するもので歯車の回転抵抗によるものではない。特許文献3は回転体を閉方向に付勢するバネに対し抑制力となるバネを配した閉戸緩衝機構であるが、閉方向と反対方向に抑制力を作用させることは単に閉方向の力を減じただけである。本願は駆動力を減じる引き算をするのではなく、掛け算をして駆動力を拡大或いは縮小するものである。 
「減速手段に抵抗を採用すること」は回転体が回転する方向と反対方向に力を新たに追加して「回転体を付勢する力」を減じてドアに作用する力を小さくするだけであって、大きなバネの力の代わりに小さなバネの力を使用した場合と同じ結果になる。本発明はこのように大きなバネの力を抵抗によってわざわざ小さくするのではなく、「ドアに作用する力の作用線を移動させる手段」を用いてが小さいバネの力を大きくドアに作用させるものであって、通常のドアクローザに比べて弱いバネを使用している。本発明は抵抗を採用せず積極的にベアリングを採用することによって、小さな力でもドアを効率よく回転させることが出来、摩擦抵抗の性能のバラツキや劣化の問題を解決し、更にドアを開くときにドアが重たく感じられる欠点を解消した。 
回転軸が水平である蓋が上下に回転するとき、水平方向に重心が移動して回転軸回りの回転モーメントが変化するが、特許文献4はテコの支点が移動することによって支点と作用点の間の距離が連続的に変化し該回転モーメントに釣り合う回転力を付与するものであるが、本願のように回転範囲が2つに区別でき、所定の境界を境にして装置の構造や機構が切り替わらない。 
本発明は「枢軸で連結されるドアとドア枠とからなる開閉部」に「複数のリンクからなる駆動部」が接続するリンク装置であって、「(あ)の範囲」で開閉部の大きな回転に対して駆動部が小さく動作し、「(い)の範囲」で開閉部の小さな回転に対して駆動部が大きく動作するもので、ドアのラッチ雄部がドア枠の雌部に当接してドアが戸当たりに当接するまでのドアが僅かな回転を、駆動部がの大きな動作によって精密に制御するものである。特許文献5は扉の閉鎖時の衝撃をダンパによって緩衝する装置を提供するもので、回転ダンパは扉に直結し、扉の閉鎖時の小さな動作で動作する。特許文献5は本願のように回転の最後に回転機構が突然変化しない。本願は開閉部の小さな動作ではなく駆動部の何れかのリンクの大きな動作を遅延させて衝撃を緩衝する。 
回転軸が水平である蓋は何処においても静止し力の釣り合いを保つことを課題とし、回転軸が鉛直である扉は動き出すと力の釣り合い崩れて加速する運動を取り扱う。重心の上下移動はなく位置エネルギーの変化はない。静止したドアは「ドアの枢軸の周りに働く最大静止摩擦力を僅かに上回る力」で回転し始める。止まったドアが何処からでも動き出す(以後、ドアから手を離して閉止し始めるときのドアの開度を閉止開始開度と言う。)ように「最大静止摩擦力を僅かに上回る力」が働かなければならない。ドアが一旦回転し始めると、ドアの枢軸周りの回転抵抗は上記最大静止摩擦力より小さい運動摩擦力となり大きさは激減する。ドアは何処においても静的力の釣り合い崩れて加速している。 
いくら小さな力でもドアに作用し続ければ、ドアは加速し閉止時にドアの回転速度は最大になる。本発明は「(あ)の範囲」で動作する(以後、「(あ)の範囲」の動作を回転作業と言う。)回転装置と「(い)の範囲」で動作する(以後、「(い)の範囲」の動作を密閉作業と言う。)密閉装置からなり、「切替範囲」前後で減速しながら密閉するものである。特許文献6は「(い)の範囲」でのみ動作する緩衝機能を備えた密閉装置で、作動させるためには「ドアに作用する力」が必要になる。本発明は閉止寸前に「ドアに作用する力」が全くない状態に近づけて減速するもので、本願の密閉装置がドアを回転させる力ない状態から始まる点と異なっている。また密閉機構は「摺動面とそれに沿って移動する車輪とを備える回転機構」によるものであるが、車輪が摺動面を押圧する力の作用線が回転体の回転軸から遠ざかり、密閉力が次第に弱くなっている。本願は上記押圧する力の作用線を回転体の回転軸に漸次近づけることによって、回転の最後に最小に衰弱したバネの力でも大きな力で密閉するものである。 
特許文献7~11は、「摺動面とそれに沿って移動する車輪とを備える回転機構」に関するもので、「互いに離間した一対の回転軸の周りに回転体が相対的に回転する回転装置であって、片方の回転軸を軸に回転する片方の回転体は摺動面を備え、他方の回転軸を軸に回転する他方の回転体は先端部に車輪を装着し、上記摺動面が上記車輪に沿って押圧しながら移動する回転装置或いは上記車輪が上記摺動面に沿って押圧しながら移動する回転装置」である。図4に説明する回転機構は「上記摺動面が上記車輪を押圧する力の作用線或いは上記車輪が上記摺動面を押圧する力の作用線」と「上記片方の回転体或いは他方の回転体の回転軸」との間の距離を制御して「上記片方の回転体或いは他方の回転体の回転軸」の周りに働く回転力を制御するものである。図4においてドアが何処においても「最大静止摩擦力を僅かに上回る力」が働くように、上記力の作用線と「上記回転体の回転軸との間の距離を一定にしている。特許文献7は「スプリング機構を備えた扉」に関するもので、摺動面の中間部が他方の回転軸を中心とする円弧であって端部に直線部を備え、摺動面が押圧する力の作用線は車輪が中間部にあるとき車輪の円運動の半径方向であって、車輪が端部にあるとき車輪の円運動の接線方向であり、車輪が中間部にあるとき双方の回転体は相対的に回転せず、車輪が端部にあるとき回転する回転機構である。特許文献6の、摺動面の中間部はドアを回転させるものではなくドアが加速する課題と無関係である。 
「摺動面とそれに沿って移動する車輪とを備える回転機構」において「摺動面と車輪との間に働く押圧力の作用線」が「先端部に車輪を装着した回転体」の軸芯線(以後、両端の支軸を通る直線を軸芯線と言う。)とが一直線状に配される状態に近似するようにすると、軸芯線方向に大きな力が作用しても回転体の回転軸回りに働く回転力は小さい。この特徴をドアに利用すると、「(あ)の範囲」でドアの枢軸方向に強いバネの力が作用してもドアの開閉に大きな力が作用せず、ドアを開くときに非常に軽く感じられる効果をもたらす。また本発明は「摺動面を備えた回転体」を回転軸が水平である蓋であって、「先端部に車輪を装着した回転体」の回転によって蓋が上下に回転する回転機構であって、「先端部に車輪を装着した回転体」の回転軸周りに働く回転力は小さくても、軸芯線方向に大きな蓋の重量を支持しながら蓋を上下に回転することが出来る。 
特許文献8は「自動車のトランクリッドのヒンジ」に関するもので、トランクリッドの重力が大きな力として車輪の円運動の周方向に作用し、摺動面が車輪を押圧する力で対抗するもので、本願の「先端部に車輪を装着した回転体」と逆である。本願は車輪の円運動の径方向に大きな力を支持し、車輪の円運動の周方向に働く小さな力で対抗するもので、小さなバネの力でとトランクリッドの大きな重量を支持できる。特許文献9は水平の支軸を軸に回動する複写機の原稿搬送集積ユニットのヒンジ装置に関するもので、車輪の回転軸が蓋に設けた長穴内を移動するようにして、バネが車輪の回転軸を引き上げる方向に働き、バネの力は摺動面を押圧する力長穴を介して蓋を支持する力に分解され、バネの力の一部が蓋に伝わる。蓋に作用する力の大きさの変化は専ら従うバネの長さの変化によるものであって、バネの軸芯線と回転体の回転軸との間の距離に比例しない。本願の「先端部に車輪を装着した回転体」が特許文献9の複写機の原稿搬送集積ユニットに相当し、ドアに作用する力は「車輪が摺動面を押圧する力」であって、その作用線は車輪Bの円運動の径方向である。その作用線と枢軸Oとの距離によって「ドアに作用する力」はゼロから無限大に調節可能であって、バネの力が変化しなくても良いものである。特許文献9は全回転範囲に亘って蓋の回転とバネの伸縮とが関係する開閉装置であって、本願はドアの回転がバネの伸縮ではなく枢軸Oとの距離と関係する。 
特許文献10は「バックドアの支持構造」に関するもので、自動車のバックドアを「空気圧によって伸縮するダンパステー」によって上下させるものである。バックドアの重量を伸縮するステーで支持し、ステーの伸縮でバックドアを上下させる。付勢手段が重量を支持する支持体である。本願の「先端部に車輪を装着した回転体」は剛体であって
、重量を支持する支持体が伸縮しない。付勢手段は重量を支持することなく回転体を回転させるもので、付勢手段の働く方向は重力が働く方向に略直角であり、重力に殆んど影響されない。特許文献11は起伏ゲートに関するもので、起伏ゲートは止水板を備える扉体4とそれを支持する扉体21とからなり、扉体21は先端部に「扉体4に設ける摺動面に沿って移動する車輪」を備え、扉体4を起立或いは倒伏させるものである。しかしながら特許文献11は扉体4が起立状態で扉体21と直交し、扉体4が倒伏状態で扉体21と平行となるので、扉体4の倒伏時に扉体4の重量を扉体21の軸芯と直角方向に支持し、軸芯方向に支持しない。扉体21の回転付勢手段が扉体4の重量を支持することになる。従って倒伏時の扉体4を起立させる付勢力は大きくなる。特許文献12は「外縁部に複数の車輪を装着した外周が渦巻き曲線形状のカム体」の回転軸に移動荷重を支持する移動装置に関するもので、複数の車輪が支持する大きな力の作用線はカム体の回転軸近傍を通り、カム体が小さな力で回転するが、回転軸周りに働く回転力は複数の車輪の2つが接地するとき最大値を示し、車輪の1つが接地するとき最大値からゼロまで減少或いは増加する。回転軸周りに働く回転力の大きさが脈動するだけ最大値が大きくなる。本願の場合設置店を1点に限るのでそれだけ該最大値は小さくなる。本発明は「ドアがゆっくり回転し、しかも確実に且つ静かに密閉されるようにする課題」を解決する技術を提供するものであるが、以上に説明したように従来技術が解決しようとした課題に対しても有効な手段を提供している。このように本発明が提供する技術は当然ドア以外の産業分野において利用することができることは言うまでもない。 
特開2006-9547 特開2005-273199 特開平9-177425 特開平11-50734 特開2006-145068 特開2007-177459 特開2006-306359 特開昭62-59785 実開昭61-86732 特開平4-325314 特開2007-70924 特開2006-306368
「バネで動くドア」は、小さな力で閉止するときゆっくり回転するが、回転の途中でドアが停止する場合もある。途中で止まらず必ず密閉されるようにすると密閉時に激しい衝撃音が発生する。「油圧シリンダを備えるドアクローザ」はドアをゆっくり回転させ、密閉時に衝撃音が発生しないようにするものであるが、「ドアを開くときにドアが重たく感じられる欠点」があった。本発明は、「開くときに重たく感じらないドア」で、しかも閉止時に大きな衝撃音を発しない「バネで動くドア」を提供するためになされたものである。バネは一瞬にして伸縮する特性があるが、伸縮量がを小さく負荷が掛かったバネはゆっくりと動作するので、本発明の「バネで動くドア」は、力不足の状態にしてゆっくりと動作するようにしたものである。「閉止時の大きな衝撃音」は閉止時に必要以上の力が作用し、余分な力が音に変換されたもので、室内の機密を保つため「ドアが戸当たりを押圧する力が静的圧力としてではなく、衝撃荷重として作用するところに原因がある。閉止直前にラッチが凹むとき(以下、ラッチ当接時と言う。)、ドアにはラッチの抵抗と枢軸O周りの回転抵抗とドア面が受ける空気抵抗とが作用し、これにバネによる力とドアに取り付く慣性力(以下、ドア慣性力と言う。)が対抗する。枢軸O周りの回転抵抗はドアが止まっている場合と動いている場合で異なるだけでなくドアによって様々であり、ドア慣性力も大きく開いて手を離す場合と小さく開いて手を離す場合とでは大きく異なるが、本発明はあらゆる場合においてもまたあらゆるドアに対してもラッチが凹むときに「ドアに作用する力」が過不足なく作用するものである。 
本発明はラッチが凹むときにドア慣性力の影響を取り除くために、停止状態に近づけるもので、ドアが止まったままでもドアを開閉する装置(以下、開閉装置と言う。)が動き続けるようにするもので、またドア慣性力の影響を少なくするためにドアに大きな力を作用させないようにするもので、「ドアに作用する力」を小さくすることによってドアを開くときに必要な力が小さくなり、ドアを開くときにドアが重たく感じられないようにある。本発明は広く一般的には「単純な技術であってドアに採用されなかった技術」でドアの分野にこれまでにない効果を挙げるもので、単純な技術を採用しなかったドア以外の分野について、数例を実施例に示すものである。また本発明は「閉止時の衝撃音を小さくする」と言う課題を「互いに関連のない複数の手段」で解決するもので、これらの手段がドアと関係がないその他の複数の分野で貢献するのは当然である。
「バネで動くドアの閉止時の衝撃音」を小さくするためには、複数の課題を解決する必要がある。発明が解決しようとする「課題のその1」は「ラッチ当接時とそれ以前の2範囲において異なる大きさの力をどのように作用させるか」である。ラッチを凹ませる作業にはドアの回転を伴うので、「ドアを単に回転させるだけの力」より「ラッチを凹ませる力」は大きい。「(あ)の範囲」の何処からでも止まったドアが辛うじて動き始めるように、出来るだけ小さな力でドアを回転させる(以後、「(あ)の範囲」の回転手段を「(あ)の回転手段」と言う。また「(い)の範囲」の回転手段を「(い)の回転手段」と言う。)と、ラッチ当接時に停止する可能性があり、また「(あ)の範囲」でラッチ当接時に停止しないように大きな力でドアを回転させると、閉止時の衝撃音が大きくなる。そのためラッチ当接時に「ドアに作用する力」の大きさが小から大に切り替わる(以後、「ドアに作用する力」の大きさを切り替える手段を「切替手段」と言う。)ようにしなければならない。 
発明が解決しようとする「課題のその2」は「閉止開始開度によって異なるドア慣性力をどのように処理しながらラッチを凹ませるか」である。「(あ)の範囲」で「ドアに作用する力」が小さく維持しても、力が作用し続ける以上ドアの回転速度は増加の一途を辿り、更に上述の「(い)の範囲」で大きな力が作用すると更に増加する。ドアが戸当たりに密着するとき、ドアが保有する運動エネルギーが衝撃音に変換される。運動エネルギーはドアの回転速度の2乗に比例し、ドアの回転速度に僅かな差があれば衝撃音は極端に大きくなる。ラッチ当接時に「ドアが止まった状態でラッチを凹ませる力」は大きくても、ドアが運動している状態は、ドアの密閉作業にドア慣性力が僅かに参加するだけで「ラッチを凹ませる力」を小さくする。ドアの速度が一定値以上になると、「ドアに作用する力」がなくてもドア慣性力だけでドアは全閉する。ドア慣性力だけでドアが全閉するときの衝撃音は、ドアの速度が一定値を僅かに大きくなるだけで無視できない大きさになる。ラッチ当接時にドア慣性力を消滅させてドアを密閉すると、或いは消滅させながらドアを密閉するとドア慣性力に関係なく衝撃音を調節できる。本発明はドア慣性力を消滅させずに密閉作業に参加させ、ドア慣性力を密閉力に変換しながらドアを密閉するもので、「ラッチを凹ませる力」を小さくし、ドアを開くときに必要な力を小さくする。 
発明が解決しようとする「課題のその3」は「ドアが止まったままでも開閉装置どのようにして運転し続けるようにするか」である。衝撃音はドア慣性力に敏感に反応するので、ラッチ当接時にドア慣性力を出来るだけ小さくして一定の範囲内に留まる必要があり、「(あ)の範囲」で「ドアに作用する力」を小さく維持して加速を少なくし、「(あ)の範囲」の終わりにおいて或いは「(い)の範囲」の初めにおいて「ドアを減速する手段」を講じられる。ラッチ当接時は「(あ)の回転手段」でドアが回転し開閉装置に「ラッチを凹ませる力」はない。ドアが十分に減速された状態であれば、ラッチの抵抗でドアは停止する。開閉装置にドアを回転させる力がないので、ドアと連動する場合はドアと共に停止する。本発明のドアはラッチ当接時にドアが停止し或いは停止に近い状態になり、開閉装置がドアと連動せずに或いは僅かに連動して、ドアを回転させることなく或いは開閉装置の小さな力でドアを僅かに回転させながら、ラッチ当接時以後にラッチを凹ませる力がある状態にするものである。 
ドアの回転の最後にラッチを凹ませる最大の力が必要になるが、バネの力は減衰して最小になる。発明が解決しようとする「課題のその4」は「バネの小さな力で如何にしてドアを密閉するか」である。ドアが戸当たりを押圧する以前にドアのラッチ雄部を凹ませるために「ドアの全開点範囲において最も大きな力」が必要であるが、「ラッチを凹ませる力」がラッチ当接時からドアが戸当たりを押圧するまで作用し続けると、このドアの回転量が小さい範囲でもドアは加速して衝撃音が発生する。ラッチが凹んでからは、ラッチが再び飛び出してドア枠Wに嵌まり込むまで殆んど力は必要としない。「ドアの全開点範囲において最も大きな力」はラッチ当接時に限って、最小に働くようにすることが望ましい。本発明は「(あ)の範囲」でも「(い)の範囲」でも加速しないようにバネの力を必要以上にドアに作用させないもので、強い力のバネを使用しない。強い力のバネの力を減じてではなく、弱いバネの力を拡大してドアに作用させるものである。そのため密閉時の「ドアに作用する力」の制御が重要になる。 
ドアは大きさも重量も様々で、1つの開閉装置があらゆるドアに適応して、常に同様の効果を発揮し、所望の動作するようにするには限界があるが、本発明の装置はドア慣性力の大きさに応じて制動力が変化し、開閉装置の構造形態が変化することによって適応範囲を広げたものである。また以上の課題を解決するために、以下に説明する複数の手段が講じられるが、複数の手段は互いに効果不足を補うものである。
発明が解決しようとする「課題のその1」~「課題のその4」を解決する「手段その1」は、「発明を実施するための形態」の冒頭で説明するように、「回転軸Oを共有し相対的に回転する「2つのリンクD,Wからなる開閉体」と「1以上のリンクからなる伸縮部」とを備え、上記2つのリンクD,Wのそれぞれに設けられる取付軸C,Swに上記伸縮部の両端が接続されるリンク装置であって、上記取付軸C,Swの間の距離が変化することによって開閉体が開閉する開閉装置で、上記リンク装置の何れかの連結軸の周りの回転を拘束する解除可能な拘束手段を備え、上記解除可能な拘束手段は上記開閉体の所定の開度を境にして上記何れかの連結軸の回転を拘束する或いは拘束を解除して、上記開閉体に働く力の作用点が移転することを特徴とする開閉装置。 
開閉装置その1は、例えば図1~図7の実施例のように「何れかの隣合うリンクが滑り対偶で連結されるリンク装置」である場合、例えば図1において「何れかの隣合うリンクW,Aの片方のリンクWには摺動面Kを備え、他方のリンクAに装着する車輪Bが摺動面Kに沿って移動し、摺動面Kは「片方のリンクWの回転の中心O或いはその近傍から遠さかる車輪Bの通路」を備え、車輪Bが摺動面Kに沿って移動するとき片方のリンクWのリンクの回転を全く或いは殆んど伴わないことを特徴にする。例えば図1~図7においてドアDの回転を全く或いは殆んど伴わずに移動する。車輪Bは摺動面Kを押圧してその接点bには押圧力Fbが働き、車輪Bが回転の中心Oの近傍から遠さかると共に押圧力Fbの作用線も遠ざかり、回転の中心Oに働く回転モーメントが増加する。 
「(あ)の範囲」で車輪Bが回転の中心Oの近傍に拘束され、回転の中心Oに働く回転モーメントは小さく、ドアDの回転は大きくリンクAの回転は小さい。「(い)の範囲」で車輪Bが回転の中心Oの近傍から遠く離れて、回転の中心Oに働く
回転モーメントは大きく、ドアDの回転は小さくリンクAの回転は大きい。「切替範囲」で押圧力Fbの作用線がリンクAの軸芯線Zaを横切ることによってリンクAの回転方向が切り替わり車輪Bの拘束が解除される。「切替手段」はドアDの回転を全く或いは殆んど伴わないことを特徴とし、ドアを回転させずに或いは少しだけ回転させて伸縮部は大きく運動し、ドアが止まっても伸縮部は運動し続ける。図1~図7はドアDまたはドア枠Wに摺動面Kが設けられ、開閉部と伸縮部との取付部が滑り対偶の実施例で、図17図18はそれ以外の連結軸がすべり対偶の実施例であって、何れかの連結軸が滑り対偶であれば同様の動作と効果が期待できる。また図30において板バネを使用した場合も同様の動作と効果が期待できる。 
開閉装置その1は、例えば図19の実施例のように「何れかの隣合うリンクが回り対偶で連結されるリンク装置」である場合、例えば図19において「何れかの隣合うの片方のリンクAAは他方のリンクDまたはWに設けられる当たりG1、G2によって、押圧力Fbの作用線を枢軸O近傍に留めて拘束する位置と押圧力Fbの作用線を枢軸O近傍にから離れる拘束解除位置との間を揺動する。図1~図7、図17図18の連結軸がすべり対偶の場合と同様に、「(あ)の範囲」で連結軸PPが回転の中心Oの近傍に拘束され、回転の中心Oに働く回転モーメントは小さく、ドアDの回転は大きくリンクAの回転は小さい。「(い)の範囲」で連結軸PPが回転の中心Oの近傍から遠く離れて、回転の中心Oに働く回転モーメントは大きく、ドアDの回転は小さくリンクAの回転は大きい。「切替範囲」でリンクAの軸芯線Za即ち力の作用線がリンクAAの軸芯線Zaaを横切ることによってリンクAの回転方向が切り替わり連結軸PPの拘束が解除される。 
開閉装置その1の「上記何れかの連結軸の周り回転を拘束する或いは拘束を解除することを特徴」は何れかの連結軸の回転を拘束されて、その連結軸を中間にして連結される隣合うリンクが相対的に一体になり、拘束解除して隣合うリンクが回転可能になることを意味している。隣合うリンクが相対的に一体になることはリンク装置のリンク数と自由度が1つ減ることである。図8図9は、「開閉装置その1の「1以上のリンクからなる伸縮部」の何れかのリンクがバネである開閉装置その1-1。」で、4つのリンクD,W,A,Vからなる4節回転機構であり、隣合うリンクD,Aが相対的に一体になるとリンク装置のリンク数が1つ減り、運動できなくなる。リンクの1つをバネにすることによって運動可能となる。 
図8図9は図19のリンクAが引きバネVに代わるもので、「切替範囲」でバネの軸芯線Zv即ち力の作用線がリンクAの軸芯線Zaを横切ることによってリンクAの回転方向が切り替わり連結軸PPの拘束が解除される。図3に示す付勢手段の「引きバネVとリンクAAを連結軸Saで連結する連続体」についても同様である。図8図9図19は開閉部と伸縮部との取付部が回り対偶の実施例で、図27はそれ以外の連結軸が回り対偶の実施例であって、何れかの連結軸が回り対偶であれば同様の動作と効果が期待できる。図27は5節回転機構であって、隣合うリンクJ,Aが相対的に一体になっても、運動可能で、リンク装置の構造形態が変わるが、「(あ)の範囲」で連結軸PPが回転体Jの回転軸Swの近傍から離れて拘束されない状態で、回転軸Swの周りに働く回転力はドアを牽引する力に小さく変換され、ドアDの回転は小さく回転体Jの回転は大きい。「(い)の範囲」で連結軸PPが回転体Jの回転軸Swの近傍に拘束されて、回転軸Swの周りに働く回転力はドアを牽引する力に大きく変換され、ドアDの回転は小さく回転体Jの回転は大きい。「切替範囲」でリンクAと回転体Jが相対的に一体になることによって連結軸PPの公転半径が小さく拘束される。 
図4の回転機構は摺動面Kの回転軸O周りの回転を拘束する解除可能な拘束手段を備え、摺動面Kの曲率が変化するときのドアの開度を境にして回転軸O周りの回転を拘束解除する開閉装置その1であって、「(あ)の範囲」で押圧力Fbの作用線がリンクAの回転軸Cの近傍に拘束されて、回転軸Cの周りに働く回転力は小さく、リンクAの回転は大きく摺動面Kの回転は小さい。「(い)の範囲」で押圧力Fbの作用線がリンクAの回転軸Cの近傍から離れて拘束解除されて、回転軸Cの周りに働く回転力は大きく、リンクAの回転は小さく摺動面Kの回転は大きい。「切替範囲」でリンクAの回転を殆んど伴わず摺動面Kが大きく回転する。図22~24の回転機構も図4と同様に開閉装置その1であって、連結軸Pの周りの回転を拘束する解除可能な拘束手段を備え、リンクAの軸芯線Zaと回転体Jの軸芯線Zjとが一直線状に配されるときのドアの開度を境にして回転軸O周りの回転を拘束解除する或いは拘束する。「(あ)の範囲」で押圧力Fbの作用線が枢軸Oの近傍に拘束されて、回転軸Cの周りに働く回転力は小さく、ドアDの回転は大きくリンクAの回転は小さい。「(い)の範囲」で押圧力Fbの作用線がリンクAの回転軸Cの近傍から離れて拘束解除されて、回転軸Cの周りに働く回転力は大きく、ドアDの回転は小さくリンクAの回転は大きい。「切替範囲」でドアDと回転を殆んど伴わずリンクAが大きく回転する。 
開閉装置その1は「上記何れかの連結軸の回転を拘束する或いは拘束を解除する上記開閉体の開度は上記開閉体の回転方向によって異なることを特徴とする開閉装置その1-2」であり、開閉装置その1はドアが閉止する過程において押圧力Fbの作用線が回転軸Cの近傍から離れるときのドアの開度が、ドアを開く過程において押圧力Fbの作用線が回転軸Cの近傍に戻るときのドアの開度より小さい特徴があり、閉止直前でラッチ当接時以前の回転範囲は閉止過程で「(あ)の回転手段」が働くが、ドアを開いて手を離すとき、ラッチ当接時以前の回転範囲は「(い)の回転手段」が働き、この範囲に抵抗が設けられてもドアは止まることなく全閉する。閉止直前でラッチ当接時以前に抵抗を掛けてドアが止まるようにしても、「ドアに作用する力」をゼロにしてドア慣性力だけで回転するようにしてドア慣性力がラッチを凹ませる力」を小さくするようにしても、ドアが開いて手を離す位置が何処であっても止まったままになることはない。このように開閉装置その1は「課題のその1」~「課題のその4」を解決する 
また開閉装置その1は「回転軸の周りに力Fが働いて回転体が回転する回転機構であって、上記回転軸の周りに働く回転力Mと上記回転軸と上記力の作用線との間の距離Lとの間に成立する関係(M=F×L)に従って、上記距離Lの大きさを変化させることによって上記回転力Mまたは力Fの大きさが変化する回転制御機構であって、上記回転体を小さな力で回転させる「(あ)の回転手段」と、上記回転体を大きな力で回転させる「(い)の回転手段」と、上記「(あ)の回転手段」から「上記(い)の回転手段」にまたは上記「(い)の回転手段」から上記「(あ)の回転手段」に切り替える「切り替え手段」とを備え、上記「切り替え手段」は上記回転体の所定の開度を境にして上記回転体の回転を全く或いは殆んど伴わずに、上記距離Lを小から大にまたは大から小に切り替えることを特徴とする回転制御機構を備える開閉装置その2」でもある。 
「開閉装置その2」は力の作用点が移動することによって、或いは転移することによって、或いは力の作用線が回転することによって「力の作用線と回転軸との間に距離」(以後、距離Lと言う。)が変化するもので、上記距離Lが変化する形態には、以下の開閉装置その1-1~7がある。開閉装置その2-1は、上記回転軸の周りに働く力Fの方向が上記回転体の回転の径方向から周方向に切り替わる回転機構を備える開閉装置その2に記載する開閉装置。力Fbの作用線が回転する形態であって、例えば図1~9において「(あ)の範囲」で枢軸Oの周りに働く力Fの作用線方向が枢軸Oに向かい「枢軸Oの周りに働く力Fの作用線方向と枢軸Oとの間の距離L(以下、一定の大きさの力Fの作用線と回転軸との間の距離を作用力距離Loと言う。)は小さく枢軸Oの周りに働く回転力Moは小さく、「(い)の範囲」で枢軸O方向から外れて作用力距離Loは大に転じる。 
開閉装置その2-2は、上記回転軸の周りに働く力Fの作用点が「回転軸に近い位置から遠い位置に連続する通路」に沿って移動する回転機構を備える開閉装置その2に記載する開閉装置。力Fの作用線が移動する形態であって、例えば図1~3は「回転軸Oに近い位置Koから遠い位置Keに連続する車輪Bの通路」を備える。図6,7においても同様である。図8において、回転軸Oに近い位置にある引きバネVの取付軸Saは「回転軸Oに近い位置から遠い位置に連続する円軌道」に沿って移動する。開閉装置その2-1、2は作用点を「(あ)の範囲」で回転体の回転軸に近い位置に停留させて、「(い)の範囲」で遠い位置に移動させる。 
開閉装置その2-3は、上記「(あ)の回転手段」の作用点は回転軸に近い位置であり、「(い)の回転手段」の作用点は遠い位置である回転機構を備える開閉装置その2に記載する開閉装置。力Fの作用線が転移する形態であって、例えば図9において「(あ)の範囲」で枢軸Oの近い位置にバネVの力が作用する。「(い)の範囲」で枢軸Oの遠い位置にある回転体Aが回転して、車輪Bが摺動面Kを押圧する。「切替範囲」で回転軸に近い位置に作用する回転装置Vから、回転軸にから遠い位置に作用する密閉装置Bに切り替わる。図11~18においても同様である。 
開閉装置その2-4は、図4に示すように「一対の回転軸の周りに互いに離間した回転体が相対的に回転する回転装置であって、片方の回転軸を軸に回転する片方の回転体は摺動面を備え、他方の回転軸を軸に回転する他方の回転体は先端部に車輪を装着し、上記摺動面が上記車輪を押圧しながら或いは上記車輪が上記摺動面を押圧しながら上記摺動面が上記車輪に沿って相対的に移動する回転装置であって、上記摺動面の形状は上記車輪が上記摺動面の中間部にあるとき、車輪が摺動面を押圧する力の作用線は上記片方の回転軸と上記他方の回転軸の何れかとの距離が小さく、上記車輪が上記摺動面の端部にあるとき、車輪が摺動面を押圧する力の作用線は上記片方の回転軸と上記他方の回転軸の何れかとの距離が大きい曲線である開閉装置その2に記載する開閉装置。」図4図38(a)(b)は他方の回転軸との距離が図38(c)(d)は片方の回転軸との距離が変化する。図38(c)(d)の摺動面形状はインボリュート渦線である。図4図38(a)(b)の場合は「先端に車輪Bを装着するリンクA」の回転軸と、図38(c)(d)の場合はインボリュート渦線の摺動面の回転軸と押圧力Fbの作用線は一定の距離を保つ。 
開閉装置その2-1~3と異なり、ドアが閉止するとき車輪Bは摺動面Kに沿って回転軸に遠い位置から近い位置に移動する。図4図38(a)(b)の場合は上記摺動面が一定の回転力で回転するとき、上記車輪を押圧する力は車輪が上記片方(摺動面を備える回転体)の回転軸に近づくに従い大きくなるが、押圧力と上記他方(車輪を装着する回転体)の回転軸との間の距離Lは小さく拘束され、上記他方(車輪を装着する回転体)の回転軸の周りに働回転力は小さく保たれる。車輪が上記片方(摺動面を備える回転体)回転軸に近い位置にあって、押圧力と回転軸との間の距離Lが大に転じるとき、上記他方(車輪を装着する回転体)に働く力はテコの原理も働いて大きくなる。 
開閉装置その2-4は、「切替範囲」で力Fの作用点が移転せず力Fの作用線が回転する形態であって、図4図38(a)(b)の場合も図38(c)(d)の場合も「(あ)の範囲」で上記車輪が上記摺動面の中間部にあるとき車輪が摺動面を押圧する力の作用線は「先端に車輪Bを装着するリンクA」の回転軸或いは「インボリュート渦線の摺動面の回転軸」との作用力距離Loは小さく該回転軸周りに作用する回転力は小さい。上記車輪が上記摺動面の端部にあるとき「切
替範囲」で押圧力Fbの作用線が回転して「(い)の範囲」で作用力距離Loが大きくなるように摺動面渦線の曲率を変化させるので、該回転軸周りに作用する回転力は大きい。「(あ)の範囲」で車輪Bは摺動面K上を大きく移動して「(い)の回転手段」で移動が小さくなるが、摺動面Kは「(あ)の範囲」で小さく回転して「切替範囲」で大きく回転する。この開閉装置の回転機構は、「先端に車輪Bを装着するリンクA」或いは「インボリュート渦線の摺動面を備えるカム体」の回転の中心に向かう方向(以後、径方向と言う。)に大きな力が働き、それと直角方向(以後、周方向と言う。)に弱い力で移動することを特徴とする回転機構である。 
開閉装置その2-1~4は「ドアに作用する力」が作用力距離Loに比例するもので、例えば図1において同じ大きさの力Fがドアに作用する場合、枢軸Oから遠い位置は動き易く近い位置は動き難い。関係式(W=FXL)において、上記力の作用点が枢軸Oに近い位置にあるとき枢軸Oの回りに働く回転力Moは小さく上記力は回転体に弱く働く、上記力の作用点が枢軸Oから遠い位置にあるとき枢軸Oの回りに働く回転力Moは大きく上記力は回転体に強く働く。「ドアに作用する力」が距離L(以後、一定の回転力が働く回転軸と力の作用線との間の距離を駆動力距離Lvと言う。)に反比例するものは開閉装置その2-1~4においても認められる。 
開閉装置その2-5は、例えば図1図11において、回転体の回転軸回りに働く同じ大きさの回転力と釣り合う力は回転軸から遠い位置において小さく、近い位置において大きい。以下の開閉装置その2-5~7は「ドアに作用する力F」が距離Lに反比例するもので、力の作用線の回転半径が変化するものである。ドアに作用する力Fそのものの大きさを大きくしてドアを回転させる回転力Mを大きくする。 
開閉装置その2-6は、例えば図27の実施例のように「2つ開閉体のそれぞれに設ける2つの取付軸に2つ以上のリンクからなる伸縮部を連結するリンク装置」で、「伸縮部の何れかの隣合う2つのリンク」が互いに係合離脱し、係合して隣合う2つのリンクが相対的に一体になって回転するもので、2つのリンクが相対的に一体になったときの回転の中心からの力Fの作用線との距離はそれ以前の駆動力距離Lvより小さくなって、該回転の中心の周りに働く回転力は該力Fに大きく変換される。図27のリンク装置は5節回転機構であって、2つのリンクが係合して相対的に一体になることで4節回転機構として動作し、2つのリンクが離脱して一直線状になることで2つのリンクは1つのリンクと押して動作し、形態が異なる4節回転機構として動作する。 
開閉装置その2-7は、例えば図22~24の実施例のように「2つ開閉体のそれぞれに設ける2つの取付軸に2つのリンクからなる伸縮部を連結するリンク装置」で、上記2つのリンクの軸芯線が一直線上に配されない状態で運動する「(あ)の回転手段」と上記2つのリンクの軸芯線が略一直線上に配される状態で運動する「(い)の回転手段」と、上記2つのリンクの軸芯線が一直線上に配されない状態から配される状態にまたは一直線上に配される状態から配されない状態に切り替わるようにする「切り替え手段」とを備え、上記2つのリンクの軸芯線が一直線上に配されて、上記2つのリンクの軸芯線に働く力の大きさが増加することを特徴とする開閉装置。」図22,23の実施例の場合2つのリンクの軸芯線が折り畳まれた状態から一直線状に伸びる。図24の実施例の場合2つのリンクの軸芯線が一直線状に伸びた状態から折り畳まれる。この場合2つのリンクの軸芯線は重なる。このリンク装置の付勢手段は「リンク装置の何れかの連結軸で回転方向が途中で逆転しない連結軸」の周りに設けられるが、何れかの連結軸に設けられても上記2つのリンクの軸芯線が一直線状に転じるとき、上記2つのリンクの軸芯線に働く力の大きさは増加する。 
「ドアに作用する力の大きさ」を抵抗を用いて制御する場合も、「回転軸と力の作用線との間の距離」が変化する手段によって制御する場合も、「ドアに作用する力の大きさ」の時間的変化が同じであればドアの動作は同じになる。回転作業と密閉作業を1つの装置の一連の動作で処理する場合も、回転作業と密閉作業に携わる別々の装置があって、それぞれの装置が2つの異なる回転範囲で「ドアに作用する力」が大きさが異なり、「切替範囲」での大きさが変化するような場合、「ドアに作用する力」の大きさを「回転軸と力の作用線との間の距離」の変化によって制御しなくても、「ドアに作用する力の大きさ」の時間的変化が結果的にドアの動作は同じになる。発明が解決しようとする「課題のその1」~「課題のその4」を解決する「手段その2」は、図30~32で説明するように、「「(あ)の回転範囲」においてのみドアに回転を伝える回転装置と、「(い)の回転範囲」においてのみドアに回転を伝える密閉装置を備え、「(あ)の範囲」で働くバネと「(い)の範囲」で働くバネとが「切替範囲」で交替することを特徴とする開閉装置その3。」 
それぞれのバネは「途中まで有効で途中から無効になる付勢手段」と「途中まで無効で途中から有効になる付勢手段」であって、図30図31においてバネの伸縮がないようにしてバネの力は無効に働き、バネの伸縮が生じて有効に働くようにする。図32において車輪Bが摺動面Kと係合しないようにして「バネの力は無効に働き、係合して有効に働くようにする。それぞれ他方の影響を受けずに単独に動作する「切替範囲」においてドアと駆動部が連動しない場合、「切替手段」の運動は一定であって、ラッチ雄部Rdが雌部Rwに当接して凹み始めるまでの所要時間は一定である。ドアはドア慣性力だけで回転するので、上記所要時間内にドアが回転する量はドア慣性力の大きさによって大きく異なる。図32は上記「ドアがドア慣性力だけで回転する量」によってドアを急停止させるかどうかを判別する開閉装置である。 
発明が解決しようとする「課題のその1」~「課題のその4」を解決する「手段その3」は、図8図22で説明するように、「回転軸Oを共有し相対的に回転する「2つのリンクとD,Wでからなる開閉体」と、上記2つのリンクD,Wのそれぞれに設けられる取付軸C,Swに「1以上のリンクからなる伸縮部」の両端が接続されるリンク装置であって、上記取付軸C,Swが所定の通路に沿って移動可能であって、通路始端と通路終端との間を揺動する開閉装置で、上記取付軸C,Swは剛性がゼロから無限大までの所定の値に設定可能なバネによって「バネが自然長であるときの初期の位置」に復帰するように付勢されることを特徴とする開閉装置その4。」 
図1において、車輪Bと摺動面Kとの接点bも移動可能な取付軸であって上記所定の通路は枢軸Oから遠ざかる摺動面Kの曲線軌道で、曲線軌道によってはドアの回転を伴わずに車輪Bが摺動面Kに沿って移動可能である。ドアと伸縮部は連動せずドアが止まっても伸縮部は動き続ける。図2図7において摺動面Kの曲線軌道は回転し、押しバネUで付勢される。この場合は図1の場合よりドアと伸縮部との連動を自由に設計できる。図8(a)~(d)において、バネの支軸Saも移動可能な取付軸であって上記所定の通路は接続軸Cを中心とする円の公転軌道である。このように開閉装置その1はドアと伸縮部は連動せずドアが止まっても伸縮部は動き続ける開閉装置その4である。開閉装置その4は上記解除可能な拘束手段を取付軸に限っているだけに過ぎない。図28においてリンクAを弾性変形可能な板バネにするものは取付軸以外の連結軸の周りの回転を拘束する解除可能な拘束手段を備え、上開閉装置その1であるが、ドアと伸縮部は連動せずドアが止まっても伸縮部は動き続け、密閉時には伸縮部の運動が停止しても板バネの力で密閉できるようにするものである。 
図1図8図22において、回転体Jcのリンクを追加することによってリンク装置の自由度が増し動作が不安定になるが、移動可能な取付軸が通路始端にあるときと通路終端にあるときに異なる形態のリンク装置として動作する。図1図8図22において、接続軸Cjの周りを公転する接続軸Cは移動可能な取付軸であって上記所定の通路は円起動である。「剛性がゼロから無限大までの所定の値に設定可能なバネ」は押しバネUである。バネの剛性が無限大に設定されるとき、取付軸は固定された状態で、ドアと伸縮部は連動し、バネの剛性がゼロに設定されるとき取付軸は固定されない状態で自由に運動可能で、ドアと伸縮部は連動せず、伸縮部はドアを回転させることなく独自に回転し続ける。ラッチ当接時にドアが止まっても伸縮部は動き続ける。またこれとは逆に、伸縮部が止まってもドアが運動可能で、図8図10図22で説明するようにドアは伸縮部の駆動力Mvではなく押しバネUの力で密閉される。また図10に説明するように、バネの剛性が小さく設定されるとき伸縮部はバネを大きく伸縮させながら少しずつ回転力をドアに提供する。伸縮部がドアに提供するが大きくてもバネの伸縮の上限を設定することで制限できる。 
閉止直前から密閉時に至る過程において、ドアに作用する力は伸縮部の駆動力Mvとドア慣性力の「ドアを閉める方向に働く力」と、「これと反対方向の力」で枢軸O回りの回転抵抗と空気抵抗とラッチの抵抗とが働くが、「ドアを閉める方向に働く力」を「これと反対方向の力」以下にしてドアに力が作用しない状態で、「切替手段」がドアと関係なく動作しドアが密閉される。「切替手段」に関係なくドア慣性力によってドアが閉止すると衝撃音が発生するので、これを阻止しなければならない。ドア慣性力に反対方向の力をドアに作用させるとよいことになるが、反対方向の力が一定である場合、例えば一定の抵抗が作用する場合、閉止開始開度によってドアを止めてしまう場合と抵抗が全く効かない場合がある。本発明はドアを止めてしまわずに抵抗を受けながら密閉する密閉装置を提供するもので、例えば図6図7は途中で止まることのない閉止装置であるが、摺動面Kは車輪Bとドア枠Wに同時に沿って移動し、車輪Bからドアを閉止する力を受け、ドア枠Wからそれと反対方向の力を受ける。後者はドア慣性力の大きさに従う抵抗であって、効き過ぎることも全くかないこともない。また車輪Bが接続軸Cj上を通過するまで密閉は阻止される。 
発明が解決しようとする「課題のその2」を解決する「手段その4」は、「2つのリンクとD,Wでからなる開閉体」と、上記2つのリンクD,Wのそれぞれに設けられる取付軸C,Swに「1以上のリンクからなる伸縮部」の両端が接続されるリンク装置であって、上記取付軸C,Swにドアに作用する力とそれと反対方向の力が、即ち上記開閉体の回転させる力と上記開閉体の回転を阻止する力が同時に作用することを特徴とする開閉装置その5。」図8において「開閉体と伸縮部との取付軸C」に2つの車輪が取付けられ、それぞれに密閉する力と密閉を阻止する力が同時に働く。密閉を阻止する力はドア慣性力が無視できる場合に働くことはなく、大きい場合のドアを止める。時間が経過してドア慣性力がなくなればドアは再び動き出す。図12~図14は制動力の大きさがドア慣性力の大きさにしたがって大きくなる実施例である。 
発明が解決しようとする「課題のその4」を解決する「手段その4」は、「一対の回転軸の周りに互いに離間した回転体が相対的に回転する回転装置であって、片方の回転軸を軸に回転する片方の回転体は摺動面を備え、他方の回転軸を軸に回転する他方の回転体は先端部に車輪を装着し、上記摺動面が上記車輪を押圧しながら或いは上記車輪が上記摺動面を押圧しながら上記摺動面が上記車輪に沿って相対的に移動する回転装置であって、上記摺動面の形状は、車輪が摺動面を押圧する力の作用線は上記片方の回転軸と上記他方の回転軸の何れかとの距離が小さく或いは大きく保たれることを特徴とする開閉装置その5。」図4図38(a)(b)の場合は「先端に車輪Bを装着するリンクA」の回転軸と、図38(c)(d)の場合はインボリュート渦線の摺動面の回転軸と押圧力Fbの作
用線は一定の距離を保つ。それぞれの場合において「車輪Bと摺動面Kとの接点b」と回転軸とを通る軸芯線と「車輪Bが摺動面Kを押圧する力Fb」の作用線とが一致する状態に近いとき、図4図38に説明するように該距離が小さく保たれる場合は周方向に小さな力が作用して、径方向に大きな力が働き、しかも径方向の力は剛体にて支持される。周方向の小さな力で径方向に働く大きな力によってドアを密閉する。上述の隣合う2つのリンクの軸芯線が一直線状に配されるとき、2つのリンクの連結軸に作用する力がリンクの軸芯線に働き、連結軸Pの円軌道の周方向に小さな力が作用して径方向に大きな力が働くことと同様である。また図35(d)(e)に説明するように、該距離が大きく保たれる場合は周方向に大きな力が作用して、径方向に小さな力が働く。アクセルペダルのようにバネが強くても踏み込む力は小さくて済む。「互いに離間した回転体が相対的に回転する回転装置」は見方を変えれば、片方の回転体と他方の回転体は立場が入れ替わり、作用する力の立場も入れ替えわる。図4図29に説明するように回転軸が鉛直であるドアに対しては、「(あ)の範囲」で強い力を温存しながらドアに小さく作用させる。図39図40に説明するように回転軸が水平である蓋に対しても、蓋の重量を剛体の軸芯線で支持しながら小さな力で蓋を上下させる。回転手段としても移動手段としても有効である。 
本発明の「切替手段」はドアを回転させることなく動作するので無負荷状態で一瞬にて動作を終了する欠点があり、図37の実施例のように駆動部の動作を遅延させる手段」を取り付けてドアを密閉することが望ましい。また開閉部の動作に比べて大きく動作するので、遅延手段が開閉部に作用するのではなく駆動部に作用するようにすると、遅延手段が強力である必要がなくなる。図37に示す開閉装置は「開閉装置のリンク装置において、枢軸Oではない連結軸周りの回転を減速する手段を設けた開閉装置」である。一般に衝突現象は移動の最後に急停止する現象であるが、図37のドアDは回転の最後に小さく移動し急停止するので、ドアDは上記一般の衝突を緩衝する手段となる。 
ドアを開くときに必要な力は「ドアを閉止する過程にドアに作用する力」と大きさが同じで方向が反対の力である。また閉止したドアを開くときに必要な力は「ドアを密閉する過程にドアに作用する力」と大きさが同じで方向が反対の力である。したがって、ドアに小さく力が作用して閉まるドアは開くときも小さな力で開くことが出来、強い力で戸当たりを押圧するドアは開くときに大きな力が必要になる。従来のラッチは「ドア面に直角方向に作用する力」によってドア面に平行に移動するもので、大きな力の一部によって移動するため、本発明においても「(い)の回転手段」を格別に大きく設定する必要があった。そのため、ドアを開いてからドアが軽く感じられても、開き初めにおいて「ドアが何かに引っ掛かるような感覚」を受ける。図33の実施例はラッチが回転することによって、ラッチの抵抗を軽減するもので、「(い)の回転手段」を小さく設定することが出来、「油圧シリンダを備えるドアクローザ」の「ドアを開くときに重たく感じられる欠点を除去することが出来る。図33の実施例は「「ドアの枢軸と反対側のドアの側面」と「それに対面するドア枠側面」の片方に設けられる回転支軸Igに回転自在に軸支される係止回転体Geと、他方に設けられる係止摺動面Kfとを備え、ドアの閉開方向の回転によって上記係止回転体Geが上記係止摺動面Kfに沿って移動しながら上記回転支軸Igを軸に回転し、ドアの開方向の回転を阻止する力は上記回転支軸Ig或いは上記係止回転体の外縁部Reによって支持されることを特徴とするラッチ装置。」であって、力の作用線は係止回転体Geと係止摺動面Kfとの接点bと回転支軸Igとを通る直線で係止回転体Geの軸芯線でもある。接点bの円運動は「径方向に強い力を支持し、周方向の弱い力で移動する本発明の回転機構でもある。 
本発明のリンク機構は、交点を共有する力の作用線とリンクAの軸芯線Zaとがって、交点に作用する力の作用線がリンクAの軸芯線Zaを横切ってリンクAの付勢方向が逆転する回転機構を基礎とするもので、ドアの全開位置ではドアの回転の付勢方向が変わることを利用して、静止状態保つようにすることが出来る。この場合は「付勢方向が逆転するドアの開度」は全開位置付近に限られ、「付勢方向が逆転するドアの開度」で少し閉止方向に押すとドアは勝手に閉止する。図34の実施例は「付勢方向が逆転するドアの開度」を全開位置と全閉位置との2箇所に設けるドアで、全開位置で静止するドアを少し閉止方向に押すとドアは勝手に閉止して全閉に至り、全閉位置で静止するドアを少し開く方向に押すとドアは勝手に開いて全開に至るドアであって、「全開位置と全閉位置との間を往復回転するドアであって、上記全閉位置からドアを開くとき、全閉する方向に付勢された状態から全開する方向に付勢される状態に切り替わる開方向切り替え手段と、上記全開位置からドアを閉めるとき、全開する方向に付勢された状態から全閉する方向に付勢される状態切り替わる閉方向切り替え手段とを備え、上記開方向切り替え手段が動作するときのドアの開き角度と上記閉方向切り替え手段が動作するときのドアの開き角度とが異なることを特徴とするドア。」構造は「ドアを全閉する方向に付勢する状態で静止する全閉方向付勢位置Ga1とドアを全開する方向に付勢する状態で静止する全開方向付勢位置Ga2との間を揺動しトグルバネVVで付勢される揺動体Aと、上記揺動体Aを全閉方向付勢位置Ga1から全開方向付勢位置Ga2に切り替える上記開方向切り替え手段J1と、上記揺動体Aを全開方向付勢位置Ga2から全閉方向付勢位置Ga1に切り替える上記閉方向切り替え手段J2とを備えるドア。」
通常のドアクローザと呼ばれる商品は、ドアを開くときドアが重く感じられる欠点があり、玄関ドアのように建物の外部に面する出入り口のように、一度建物に入ると出るまで開くことはない使用頻度の少ないドアには取付けられても、建物内部の使用頻度の多いドアには取付けられていない。たとえ取付けられていたとしても多くの場合、開放したままの状態で固定されている。本発明のドアクローザはドアクローザが取り付いた場合と取り付かない場合と差が感じられないほど、ドアを開くときドアが重く感じられない。 
通常のドアクローザが強力なバネが仕込まれていて、骨組の強度が強い外壁に取り付く玄関ドアに取付けることはできても、強力なバネの力を支持する強度がない室内のドア枠には取付けることはできない。本発明のドアクローザは弱いバネでドアが動くので屋内の木製のドア枠などの強度が弱い骨組にも取付けることができる。取付け部分の骨組が壊れたり取付けボルトが抜けたりすることはない。このように本発明のドアクローザは玄関ドアに使用できることはもちろんであるが、室内ドアにも適している。建物の外部に面する出入り口のドアが1つであるのに対して建物内部のドアの数はその数倍に及び、それだけ商品の市場は大きい。 
性能面においては磨耗による性能の劣化が少なく故障が少なく寿命が長い点において優秀であり、部位数が少なく材料に強度が求められないこともあって安価であり、動作範囲がドア面から突き出ない細長い範囲、或いはドアの枢軸に近い部分の小さな円内であるため、装置か小さなケースに収納できる点においても優秀である。本発明のドアの駆動部を電動機で動くようにすると、ドアの回転速度を一定にすることができ、閉止直前から閉止時に至るまでの範囲においては駆動部の大きな回転に時間を要してドアが小さく回転する。本発明の閉止装置は電動機で動く方がバネで動く場合より性能がよく、本発明はバネに限らず電動機でも動くドアにも応用される。 
本発明のドアを回転させる回転機構は、「回転終了時に大きな力が働き、それ以前に働く力は小さい特徴」「回転終了時に大き駆動し、それ以前の動作は小さい特徴」「回転を伴うことなく回転力が大きくなる特徴」「開方向と閉方向との抵抗が違う特徴」「大きな力を支持しながら小さな力で動作する特徴」などがあって、例えば特許文献1~12のそれぞれの装置を改良できるだけでなく、図面に例示するようにロボットの関節を動かす技術として或いは緩衝装置として、或いは運搬装置として利用できる。このように本発明の回転機構はドアに限らずその他の産業分野に応用可能である。
滑り対偶の取付軸を備える開閉装置の動作説明図 車輪が摺動面を押圧する開閉装置の動作説明図 車輪が摺動面を牽引する開閉装置の動作説明図 車輪が摺動面に沿って移動する回転機構の動作説明図 車輪が往復する密閉装置の動作説明図 密閉摺動面と密閉阻止摺動面を備える密閉装置の動作説明図 摺動面が回転する密閉装置の動作説明図 リンクの1つがバネである開閉装置の動作説明図 作用点が転移する開閉装置の動作説明図 第1のドアを介して密閉する密閉装置の動作説明図 密閉用車輪と回転用車輪を備えた駆動回転体の動作説明図 密閉装置と回転装置のバネを別にする開閉装置の動作説明図 慣性力を制動力に変換する減速装置の動作説明図 摺動面が車輪を押圧する密閉装置の動作説明図 直動型付勢手段を備える開閉装置の動作説明図 ドア面に垂直な摺動面を備える密閉装置の動作説明図 「切替手段」を備える駆動回転体の動作説明図 始動時に動作する減速手段の動作説明図 リンクの軸芯線が回転軸を横切る拘束解除手段の動作説明図 取付軸以外ですべり対偶で連結されるリンク装置の動作説明図 ドアの回転を止める力が働いたまま密閉するドアの動作説明図 ラッチ当接時に極大値に力が作用する密閉機構の動作説明図 2つのリンクの軸芯線が一直線になる効果の説明図 リンクの軸芯線と力の作用線が重なる効果の説明図 ラッチが凹んでからの密閉力制御装置の動作説明図 指詰め防止装置の動作説明図 2つのリンクが係合離脱する回転機構の動作説明図 リンクを板バネにした密閉装置の動作説明図 複数の動作を伴う密閉装置の動作説明図 切替手段を備える回転型付勢装置の動作説明図 切替手段を備える直動型付勢装置の動作説明図 リレー時に空走するドアの急停止装置の動作説明図 ラッチ装置の動作説明図 少し開くと全開し少し閉めると全閉するドアの動作説明図 ハイブリッドシューズの動作説明図 ロボットの指関節の動作説明図 緩衝装置の動作説明図 インボリュート渦線の作図例 外縁部がインボリュート渦線であるカム体の移動装置 蓋の起立倒伏を支持する装置の実施
各実施例に示す本発明の開閉装置は開閉体と伸縮部(または駆動部)からなり、開閉体とは回転軸Oを共有し相対的に回転する2つのリンクD,Wで、片方はドアDで他方はドア枠Wであって、それぞれに設けられる取付軸C,Sw(接続軸C、固定支軸Sw)に伸縮部の両端が接続される。開閉体を構成する2つのリンクD,Wと伸縮部を構成する複数のリンクからなるリンク装置であって、伸縮部の両端の取付軸の間の距離が変化することによって開閉体が開閉する。何れかの連結軸周りに図中矢印イ方向に働く駆動力Mvが、或いは何れかのリンクに働く軸方向力或いは曲げ力が、枢軸Oの周りに回転力Moを伝える。ドア枠Wを固定するとドアDは図中矢印ロ方向に回転する。伸縮部が長さに変化のない1つのリンクである場合はリンク装置は変形しない3角形であって運動しない。隣合う2つリンクを滑り対隅で連結すると運動可能になる。またはリンクの1つが「長さが変化する
バネやジャッキ」である場合で運動可能になる。例えば図1は3つのリンクからなるリンク装置で、3角形のリンク装置を構成するが、開閉体と伸縮部とが滑り対隅で連結されることによって運動可能になる。伸縮部が2以上のリンクで構成される場合、リンク装置は変形可能な多角形であって運動する。伸縮部が2つのリンクである場合、その片方が回転することによって伸縮部の両端の取付軸の間の距離が変化する装置で、上述の3角形のリンク装置でリンクの1つの長さが変化する装置と同じになる。 
「リンク数が3で連結軸の1つが滑り対偶であるリンク装置」は、リンク装置の1つのリンクに「連結軸が往復可能な通路」を設けて、該1つのリンクの長さが変化して3角形が変形する点において、「リンク数が3リンクの1つがバネであるリンク装置」と同じであり、該バネが2つのリンクに変わる4節回転機構も全て、3角形の1辺の長さが替わることによって運動するリンク装置である。何れかの連結軸周りにおいて隣合うリンク同士は相対的に回転するので、何れかの連結軸を共有し隣合う2辺が開閉体であり、残りの1辺が伸縮部である。4節回転機構も含めて「変形可能な3角形のリンク装置」と言うことになる。 
4つ以上のリンクからなるリンク装置を構成する隣合う2つリンクが互いに接触して相対的に一体となるとき、隣合う2つリンクは1つのリンクとして扱われリンク数が1つ減ったリンク装置が運動する。4つのリンクD,W,J,Aからなるリンク装置において、ドアの運動が止められてドアDとドア枠Wが一体になるときリンク装置は運動しない3角形のリンク装置となる。この場合においてもリンクの1つをバネにする或いは隣合う2つリンクを滑り対隅で連結すると運動可能になる。例えば図2,図8は4つのリンクからなるリンク装置で、図2の場合は伸縮部の取付軸Swを滑り対隅で連結することによって、図8の場合は1つのリンクがバネであって、リンクの長さが変化することによってドアの回転が停止しても伸縮部は運動し続けることができる。 
何れかの連結軸周りの回転が停止してリンク数が1つ減ったリンク装置が4つ以上のリンクからなるとき運動可能である。ドアの回転機構においては、ドアが停止したままでもリンク装置は運動し続けることを意味する。図27の場合、隣合う2つのリンクが互いに側面同士を係合しあい相対的に一体になる場合も、隣合う2つのリンクが一直線に伸びきった場合も、「何れかの連結軸周りの回転が停止」したことになる。また図26図28のように抵抗を掛けることは「何れかの連結軸周りの回転が停止」させて、リンク数を3の運動しないリンク装置に擬似させることである。本発明の「4つ以上のリンクからなるリンク装置」で5節以上の回転機構は解除可能な拘束手段を備えることによって、「何れかの連結軸周りの回転が拘束止」された状態にして4節回転機構として運動するようにするものであってリンク数が増えるに従い拘束箇所が増え、異なる形態の4節回転機構が数通り可能となる。このようにリンク装置は自由度によって異なる形態に変化し異なる運動をするので、閉止開始開度によってドア慣性力が異なっても、それに応じてドアの運動を制御することが出来る。 
各実施例に示す開閉装置は「(あ)の範囲」において「ドアに作用する力」を小さく保つ停留手段と、「切替範囲」において停留手段を解除する解除可能な拘束手段を有し、「(い)の範囲」でドアに大きな力が働く。作用力距離Loは「枢軸Oと作用力Foの作用線との間の距離を示し、駆動力距離Lvは該何れかの連結軸と駆動力Fvの作用線との間の距離を示す。各動作説明図のうち平面図はドアの上面をDで示し、ドアの上面が運動する水平面を規準とするが、各リンクが運動する水平面はドアの上面が運動する水平面と必ずしも同じではない。また連結軸は隣合うリンクの共通の回転軸であって、図中の連結軸において2枚のリンクが重なっている。またWはドアを取り付けるドア枠或いはドア枠周辺の壁面であって、各動作説明図において白紙の紙面上はドア枠Wを意味する。各動作説明図において図中符号末尾の添時はドアの開度Θdを表し、例えばD100は全開時に静止する状態を示し、D90は閉止開始開度の最大値であって全開時のドア、D10は閉止寸前のドア、D0は全閉時のドアを示す。例えば図10(a)にドアDが図中矢印イと反対方向に付勢され静止する状態を示す。例えば図5(c)に示すD10は「、ラッチ当接時のドアの状態を示し、図5(d)に示すD0はドアDが戸当たりGdに強く密着されるドアの状態を示す。ドア枠Wはドア枠Wとその周辺の壁面であって、回転軸O,固定支軸SwCを備える平面であって、図面においては白紙面上である。図示するリンク装置の各リンクがそれぞれ動作する平面は「回転軸O,固定支軸SwCを備える平面」と必ずしも一致するものではなく、それと平行な異なる平面である。角度ΘakはリンクAの軸芯線Zaと摺動面Kとの間の角度で、特に指定しない場合は車輪Bbが移動する側の角度を示す。開閉装置は開閉部D,Wと伸縮部Aとの取付部を滑り対偶で或いは回り対偶で連結するリンク装置で、ドアDに取り付く取付軸を接続軸C、ドア枠Wに取り付く取付軸を固定支軸Swと言うことにする。 
図1はドアを小さな力で回転させる「(あ)の範囲」の回転作業と、大きな力で回転させる「(い)の範囲」の密閉作業と、小さな力から大きな力に転換する「切替範囲」の切替作業と、切替作業が始まるドアの所定の開度とについて説明するドアの動作説明平面図で、本発明の概略を詳述する代表図面である。図1(a)はドアの全開時の状態図で、図1(b)はドアの全閉時の状態図である。図1(a)に示すようにドアが全開位置から全閉位置まで回転し続ける回転範囲は、ドアが単に回転するだけの「(あ)の範囲」とラッチを凹ませながら回転する「(い)の範囲」とに分割される。図1のリンク装置は枢軸Oを共有する2つの開閉体D,WとリンクAの3つのリンクからなり、リンクAがドアDに滑り対偶で連結される。2つの開閉体の片方であるドアDには接続軸Cが設けられ、接続軸Cの周りにリンクAが回転自在に軸支されて、リンクAの先端部に設けられる車輪の回転軸Ibには車輪Bが装着される。2つの開閉体の他方であるドア枠Wには摺動面Kが設けられ、摺動面Kに沿って車輪Bが移動する。車輪Bは摺動面Kに沿って移動するスライダであって多くの実施例に図示する車輪Bはスライダの総称である。摺動面Kはスライダが移動する溝の総称である。 
接続軸Cは「ドアに設けられる支軸Cjの周りに回転自在に軸支される回転体Jc」に設けられ、ドアDに移動可能に取付けられる。回転体JcとドアDとの間に押しバネUが介在し、押しバネUの剛性はゼロから無限大の範囲で調整される。押しバネUの剛性が無限大のとき接続軸CはドアDに固定された状態で、回転体Jcと押しバネUの存在は無関係になる。接続軸CがドアDに直接固定された状態で、「(あ)の回転手段」と「切替手段」と「(い)の回転手段」は機能し、回転体Jcと押しバネUを追加することによって、これらの手段の動作が遅延される。以下、「(あ)の回転手段」と「切替手段」と「(い)の回転手段」の機能を説明するときは、接続軸CがドアDに直接固定された状態で説明していることにする。 
リンクAは引きバネVによって図中矢印イ方向に回転付勢され、接続軸Cの周りに回転力Mvが働く。回転力Mvは駆動力であって、リンクAに曲げ力が作用し、「摺動面Kと車輪Bとの接点b」には「車輪Bが摺動面Kを押圧する力Fb」(以後、押圧力Fbと言う。)が働く。図1(a)に示す全開時から図1(b)に示す全閉時に至る閉止過程において、リンクAが接続軸Cの周りを図中矢印イ方向に回転し、車輪Bが摺動面Kの基端部Koから終端部Keに移動し、接続軸Cが枢軸Oを中心とする円Roに沿って図中矢印ロ方向に移動する。図1(a)に示す破線は閉止途中の状態を示し、例えばC10、A10、B10は閉止寸前の接続軸C、リンクA、車輪Bを示す。閉止寸前とはドアの開度が概ね10度である付近を示し、「(あ)の範囲」の終わりに近く「(い)の範囲」の始まりに近い領域である。閉止過程を通じて引きバネVが縮み続けるので、ドアは全開位置から全閉位置まで回転し続ける。駆動力を提供するバネが止まることなく1方向に伸縮し続けることが可能であれば、ドアは止まることなく回転し続ける。 
押圧力Fbの作用線は摺動面Kに垂直であって、「車輪Bと摺動面Kとの接点b」と車輪の回転軸Ibとを通る直線であるので、押圧力Fbの作用線は車輪Bの移動と共に移動する。摺動面Kは枢軸Oに近い位置から遠い位置に連続するの通路であって、閉止直前に車輪Bが摺動面K上を基端部Koから終端部Keに移動すると、押圧力Fbの作用線も枢軸Oから遠ざかり作用力距離Loは増加する。図1(a)に示す「(あ)の範囲」では作用力距離Loは小さく、駆動力距離Lvは大きい。枢軸Oの周りに作用する回転モーメントMoは作用力距離Loと押圧力Fbとの積で、接続軸Cの周りの駆動力Mvは駆動力距離Lvと押圧力Fbとの積であるので、押圧力Fbの作用線が枢軸Oに近づくほど回転モーメントMoは小さくなり、接続軸Cの周りに働く駆動力Mvが大きい場合でも押圧力Fbに小さく変換される。また接続軸Cの周りのリンクAの回転は小さく、枢軸Oの周りのドアDの回転は大きい。また「(あ)の範囲」でバネの伸縮は小さいので、ドアを運動させる力は小さく加速も小さい。図1(b)に示す「(い)の範囲」では作用力距離Loは大きく、駆動力距離Lvは小さい。同じ大きさの押圧力Fbが働く場合、枢軸Oの周りに作用する回転モーメントMoは作用力距離Loに比例し、同じ大きさの駆動力Mvが働く場合、押圧力Fbは駆動力距離Lvに反比例するので、車輪Bが枢軸Oから遠ざかるほど接続軸Cの周りに働く駆動力Mvが小さい場合でもドアの回転に大きく作用する。また接続軸Cの周りのリンクAの回転は大きく、枢軸Oの周りのドアDの回転は小さい。「(い)の範囲」でバネの伸縮は大きく、ドアを運動させる力は大きく加速も大きい。 
ここで「(い)の範囲で加速が大きいこと」が問題になる。「(あ)の範囲」で弱い力でドアが回転するとしても、ドアに力が掛かり続けるとドアは加速する。更に「(い)の範囲」で加速すると閉止時にドアの回転速度は最高値に達する。閉止時の衝撃音は密閉作業に余分なエネルギーが音に変換されたもので、閉止時のドアの運動エネルギーは閉止時のドアの回転速度の2乗に比例するので、「(い)の範囲」で僅かでも加速すると大きな衝撃音にを発するようになる。本発明のドアは閉止時の衝撃音を小さくすることを課題とするもので、如何に「(い)の範囲」で加速が大きくならないようにするかが重要な課題となる。 
図1(a)に示す「(あ)の範囲」ではリンクAは車輪の回転軸Ibを中心に回転し、車輪Bの移動は小さくドアDの回転は大きい。図1(b)に示す「(い)の範囲」ではリンクAは接続軸Cを中心に回転し、車輪Bの移動は大きくドアDの回転は小さい。車輪Bは接続軸Cを中心に円運動をし、車輪Bの移動方向は該円運動の周方向であって、車輪Bの移動は摺動面Kによって抑制される。車輪Bの移動を抑制する力はドアを回転させる。図1(a)に示すように「(あ)の範囲」において「車輪Bの円運動の周方向」と摺動面Kとは略直交し、車輪Bの移動に大きく抵抗する。車輪Bを移動させるためにはドアに働く力が大きくなければならない。しかも駆動力距離Lvは大きく、引きバネVの力は押圧力Fbに小さく変換される。その結果、引きバネVの力は大きな抵抗に対して力不足になる。力不足になったバネは一瞬にして伸縮せずにゆっくりと伸縮し、車輪Bはゆっくりと移動しドアDもゆっくりと回転する。 
図1(b)に示すように「(い)の範囲」において「車輪Bの円運動の周方向」と摺動面Kとは略平行であって、車輪Bの移動に抵抗が少ない。「摺動面KとリンクリンクAの軸芯線リンクAの軸芯線Zaとの間の角度で車輪Bの移動方向側の角度Θak」が鋭角から直角に近づくほど、車輪Bの移動は大きくドアDの回転
は小さくなる。角度Θakが直角から鈍角になると、車輪Bは摺動面Kから離脱して自由に移動する。摺動面Kの形状が閉止寸前の接続軸Cの位置C10を中心にして、半径が略「リンクAの長さ(リンクAの両端の連結軸の間の距離)と車輪Bの半径の和」である円弧R10であるとした場合、接続軸Cが位置C10を通過した瞬間に「それまで枢軸Oの近傍に拘束された車輪B」は一瞬にして摺動面Kの終端部Keに至る。この場合ドアDの回転を全く伴わずに車輪Bが転移するので、ドアは開度が10度である位置に止まったままである。円弧R0が閉止時の接続軸Cの位置C0を中心にして、半径を円弧R10と同じくする円弧であるとして、摺動面Kが基端部Koで円弧R10に一致し、終端部Keで円弧R0に一致する凹面であるとした場合、接続軸Cが位置C10を通過した瞬間に車輪Bは摺動面Kの基端部Koを離れて、ドアDの回転を僅かに伴いながら摺動面Kの終端部Keに至る。摺動面Kの形状は基端部Koと終端部Keで曲率ゼロの直線に近似し、摺動面Kの中間部に曲率は極大値を示すので、基端部Koと終端部Keに立てた法線とリンクAの軸芯線Zaとが略一致し、角度Θakは略直角であって、「(い)の範囲」で車輪Bは初めと終わりに無負荷に近似する状態で動き易く、車輪Bの移動にドアの回転を殆んど伴わないことになる。中間部では車輪Bは抵抗を受けながら移動しドアの回転を僅かに伴う。車輪Bは中間で動き難い状態になり中間を過ぎれば動き易くなって摺動面Kの終端部Keに至る。このように摺動面Kは車輪Bを枢軸Oの近傍に留める拘束手段とドアDの所定の開度で車輪Bを枢軸Oから遠ざける解除可能な拘束手段を備える。 
「(い)の回転手段」はラッチを凹ませてドアを回転させる力を備え、単にドアを回転させるだけの「(あ)の回転手段」の力より大きく、「切替範囲」で車輪Bが大きく移動を始めるときが「ラッチ当接時」以前である場合は「ドアに作用する力」がドアを回転させる力に転換してからラッチ雄部Rdが雌部Rwに当接するので、ラッチを凹ませてドアは密閉される。この場合「ドアに作用する力」が大きな力に転換してからのドアの回転範囲(即ち「(い)の範囲」)が大きくドアの加速は大きくなって、大きな衝撃音を発することになる。「切替範囲」でラッチ雄部Rdが雌部Rwに当接すると同時に車輪Bが大きく移動を始める場合、摺動面Kの基端部Koが曲率ゼロの直線であれば、閉止寸前に「ドアに作用する力」がドアを回転させるには力不足であっても、また閉止寸前にドアが止まってしまった場合でも車輪Bは移動可能であって車輪Bは止まることなく運動を継続し、摺動面Kの終端部Keに至れば「ドアに作用する力」がドアを回転させる力に成長し、ラッチを凹ませてドアは密閉される。即ち「切替手段」にドアの回転を全く或いは殆んど伴わないので、ドアが殆んど止まったままで車輪が移動する。この場合車輪Bが大きく移動を始めるとき車輪Bの移動に抵抗が掛からないので、車輪Bは一瞬にして摺動面Kの終端部Keに至る。しかも車輪Bの移動にドアの回転が伴わないことは「切替範囲」に範囲がないことを意味し、「(あ)の範囲」と「(い)の範囲」との間に時間の経過がない。「切替手段」は閉止寸前のドアの回転速度を更に加速し大きな衝撃音を発することになる。 
「切替範囲」でラッチ雄部Rdが雌部Rwに当接した後に車輪Bが大きく移動を始める場合、ラッチ雄部Rdが雌部Rwに当接したとき、「(い)の回転手段」に切り替わる以前の「(あ)の回転手段」の力ではラッチを凹ませることが出来ないのでドアは密閉に至らず止まってしまうことになる。図1(b)に示すように摺動面Kの終端部Keに至った状態は「車輪Bの円運動の周方向」と摺動面Kとは略平行であって、押圧力FbとリンクAの軸芯線Zaとが略一致し、駆動力距離Lvが短い状態である。接続軸Cの周りの駆動力Mvと「押圧力Fbと駆動力距離Lvとの積」が釣り合うことから、駆動力距離Lvがゼロに近づくと押圧力Fbは無限大になる。「切替手段」は駆動力Mvが非常に小さい力であっても非常に大きな力に切り替えるものであるが、非常に小さい力で動作を完了し、一瞬にして大きな力に切り替わるので、閉止速度を更に加速する要因となる。「切替範囲」が始まるときがラッチ当接時以後である場合、駆動部が止まりドアも止まるが、ドアが止まった状態から再び動き始めて密閉に至ることが望ましい。そのために2つの開閉体が止まったままでも、動き続ける駆動部を備えるリンク装置の回転機構が必要である。 
以上に説明した「(あ)と(い)の回転手段」と「切替手段」は接続軸CがドアDに固定された状態で機能する。次に移動可能に固定さない状態での機能について説明する。接続軸Cを移動可能にドアDに接続する手段は「(い)の範囲」で加速が大きくならないようにする。駆動部と開閉部が連動する場合、駆動部と開閉部の片方が止まると両方が止まる。連動しない場合、駆動部と開閉部の片方が止まっても、他方は動き続ける可能性がある。図1に示すように回転体Jcが「ドアに設けられる支軸Cj」の周りに回転自在に軸支され、接続軸Cがドアに移動可能に取付けられるようにすると、駆動部の力がドアを回転させる力に不足しドアが止まったままになる場合でも、「車輪Bが摺動面Kを押圧する反力」によって回転体Jcが図中矢印ハ方向に回転する。 
回転体Jcは押しバネUによって図中矢印ハと反対方向に付勢され、図中矢印ハと反対方向の回転は当たりGaによって阻止される。押圧力Fbの大きさによって回転体Jcの回転量は変化するが、押しバネUの剛性によっても変化し、車輪の移動に掛かる抵抗が変化する。押しバネUの剛性がゼロのとき、ドアにバネの付勢力が伝わらず、ドアは慣性力で動き続ける。「切替範囲」が始まるときがラッチ当接時以前であるか以後であるかに関係なく押圧力Fbが小さくても回転体Jcは回転し、リンクAも僅かながら回転することで「摺動面KとリンクAの軸芯線Zaとの間の角度Θa」が鈍角側に移行する。摺動面Kは車輪Bの移動方向に対して下り勾配側に変化し、車輪Bが移動するほどより移動しやすくなり、ドアDが回転しないまま摺動面Kの末端部Keに至る。駆動部と開閉体との取付軸を移動可能にすると開閉体の回転を全く或いは殆んど伴わない「切替手段」を備えることになる。 
押しバネUの剛性が無限大であって駆動部と開閉体との取付軸が移動しないとき、「切替範囲」がラッチ当接時以後である場合でラッチ当接時に「(あ)の回転手段」が働く場合でも、摺動面Kの基端部Koの形状が上記円R10、或いは上記円R10より曲率が小さい曲面或いは直線であれば、接続軸Cが位置C10を通過した瞬間に「それまで枢軸Oの近傍に拘束された車輪B」は一気に摺動面Kの端部に至り、車輪Bは摺動面Kを押圧せずに移動する。車輪Bが摺動面Kを押圧せずに移動する場合は駆動部とドアとが連動せず、ドアDは回転しない。「摺動面KとリンクAの軸芯線Zaとの間の角度で車輪Bの移動方向側の角度Θa」が鈍角である摺動面Kは開閉体の回転を全く或いは殆んど伴わない「切替手段」である。このように押しバネUの剛性がゼロ或いは無限大のときはバネがないときであって、「切替手段」が開閉体の回転を全く或いは殆んど伴わなず「(い)の回転手段による加速」を招くことになる。 
押しバネUの剛性によっては車輪Bの移動とドアDの回転は僅かに連動し、接続軸Cの周りに働く駆動力Mvは「ドアを回転させる力」と「押しバネUを伸縮させる力」とに分散するが、摺動面Kの形状が円R10より曲率が大きい曲面であって、接続軸Cが位置C10に到達した瞬間にラッチ雄部Rdが雌部Rwに当接しドアが止まる場合で、「ドアに作用する力」にドアを回転させる力がない場合でも、押しバネUの剛性を小さく設定すると、ドアが止まったままの状態で押しバネUが伸縮するようになり、ドアが止ったままでも車輪Bは動くことが出来る。駆動部とドアが連動しない。例えば摺動面Kの形状が図1(a)に示す円弧R10の場合、或いは円弧R10の場合より直線に近づく場合、摺動面Kの基端部Koから終端部Keに向かうに従い曲率が大きくなる。車輪Bが摺動面Kの基端部Koに近づくとき大きな抵抗を受けているが、摺動面Kの基端部Koから離れて終端部Keに向かうほど車輪Bの移動方向に対して摺動面Kの勾配は下り勾配に変化し、車輪Bはより移動しやすくなる。車輪Bは「(い)の範囲」の初めに動き難く「(い)の範囲」の経過時間が延長されて慣性力を消滅するようになる。また車輪Bは「(い)の範囲」の終わり動き易く、バネの力が衰弱した段階でも終端部Keに至り、駆動力距離Lvが小さく、作用力距離Loが大きくなって弱いバネの力がドアに強く作用するようになる。 
車輪Bが摺動面Kを押圧しながら摺動面Kの末端部Keに向かって移動するとき、回転体Jcを回転させながら押しバネUを縮めるようになり、車輪は負荷が掛かった状態でゆっくりと移動する。押しバネUに力が蓄えられて、押しバネUの力がラッチを凹ませる力に到達すると、車輪Bが摺動面Kの末端部Keに至る以前であってもラッチが凹んでドアが再び動き始める。ラッチが凹むとき押しバネUの長さが伸びてドアが動く。車輪Bの移動は緩慢となり、駆動力Mvの「ドアを回転させる力」は殆んど増加することなく、ラッチは押しバネUの力で凹むことになる。ラッチを凹ませる力に過不足がなく衝撃音も小さくなる。摺動面Kの終端部Keに取り付けた当たりGkは車輪Bの停止位置を調節する係止手段であって、車輪Bの移動を止めることによって押しバネUの伸縮だけで密閉するようにして、押しバネUが伸びきった位置をドアの全閉位置とするもので、押しバネUが伸びきった位置によっては必ずしもドアが戸当たりに当接する位置まで至るとは限らない。このことは車輪Bの停止位置の調節次第でドアを「戸当たりに当接するかしないかの全閉位置」で停止させることが可能となり、衝撃音を最も小さくするようになる。 
運動するドアに働く力は小さく止まったドアの働く力は大きい。ラッチ当接時に「ドアに作用する力」はラッチ当接時以前より強くなるので、押しバネUはラッチ当接時以後に縮み始める。即ち「ドアに作用する力」が強い力に切り替わった後にラッチ雄部Rdが雌部Rwに当接するようなことが防がれる。「ドアに作用する力」の大きさによって押しバネUの伸縮量は異なり、ラッチ当接時に押しバネUが伸びた状態と縮んだ状態とがあり、縮んだ状態でも押しバネUの剛性によって縮み量は異なる。「(あ)の範囲」でドアに取り付く慣性力(以後、ドア慣性力と言う。)が大きいほどドアは小さな力で回転出来るため「ドアに作用する力」は小さくなり、ラッチ当接時に押しバネUが伸びた状態で「押しバネUによって拡げられる回転体JcとドアDとの間隙δjd」が広くなる。ドア慣性力が大きいほど押しバネUを大きく縮めて回転体Jcを大きく回転させる必要があって、押しバネUの減速効果がドア慣性力に比例することになる。 
押しバネUが縮んでラッチが凹み始めるようになるとき、リンクAの回転を止めるようにすると、ラッチが凹み始めてドアが全閉されるまでリンク装置が動くことなく、押しバネUが伸びるだけの動作でドアは密閉される。ラッチ当接時に押しバネUが縮んだ状態で、伸びた押しバネUを縮ませる過程がない場合でも、押しバネUが伸びて密閉する動作には長い時間を要し十分にドアは減速されて密閉に至る。このように「接続軸CをドアDに移動可能に固定する手段」によってリンク装置は「ドアが止まったままでも動き続ける駆動部」を備え、「ドアの回転を全く或いは殆んど伴わない切替手段」を備えるようになる。また「接続軸CをドアDに移動可能に固定する手段」にバネを追加することによって、「(い)の回転手段」が減速しながら強く密閉するように改善される。 
図1の開閉装置は閉止寸前にラッチの抵抗だけでドアが止まってしまうほど減速効果が働くようにするものであって、ラッチがドア枠に当接しドアが止まったままの状態で、駆動力Mvの「ドアを回転させる力」が全くドアの回転させずに押しバネUに力を蓄えるようにするものである。そのためには「(あ)
の範囲」で低速で閉止し、閉止寸前の閉止速度を小さくする必要がある。「接続軸CをドアDに移動可能に固定する手段」にバネを追加することによって、駆動力Mvを押しバネUを介してドアDに間接的に伝える手段は「(あ)の範囲」でも減速効果があって、ドアを同方向に付勢する2つのバネは互いに干渉し合い、交互に伸縮を繰り返す。特にドアが閉止し始めるときの減速効果は顕著である。 
ドアが閉止し始めるとき引きバネVによってリンクAが回転するが、ドアに静慣性が働いているのでドアを回転させずに押しバネUを縮める。静止するドアの枢軸Oに働く回転抵抗は枢軸Oの周りの最大静止摩擦力であって、押しバネUの力が最大静止摩擦力に達するまで縮むとドアは動き始め、枢軸Oの周りの最大静止摩擦力は運動摩擦力に激減する。これにより押しバネUの力が運動摩擦力に減少するまで伸びることになる。この間リンクAの回転と車輪Bの移動は殆んど止まったままの状態で、押しバネUが伸びることによってドアは運動する。即ち動き始めたドアは運動摩擦力に近似する大きさの力で回転する。ドアが動き始めた当初は押しバネUが伸びて力がなくなると車輪Bが動き始めて再び押しバネUが縮む振幅を繰り返し、車輪Bの移動は静慣性と動慣性が交互に作用することになる。この傾向は引きバネVと押しバネUの力が小さいほど顕著に認められ、この振幅は数回で消滅する。ラッチ当接時には押しバネUは「(あ)の回転手段」の力の大きさに比例して大きく伸びた状態で、ラッチ当接時から全閉時までのドアの回転量に対して「車輪Bの大きな移動」を伴うようになる。これによりラッチ当接時には車輪Bが摺動面Kの基端部Ko付近にあるようになり、ラッチ当接時以後に「(い)の回転手段」に切り替わるようになる。 
「(あ)の範囲」の途中において押しバネUが縮んで、ドアに作用する力が「枢軸Oの周りの運動摩擦力とドアが受ける空気抵抗との和」と釣り合う力である場合にドアは加速のない等速運動をし、ドアに作用する力がそれ以上であるとドアは加速する。「(あ)の範囲」の途中の加速を小さくするために、弱い力でドアを回転させることが好ましい。またバネの歪エネルギーがドアの運動に替わるものであるから、ドアの加速を小さくするためにはバネの伸縮量を出来るだけ小さくすることが望ましい。図1に示す引きバネVの両端の支軸は片方Sdを回転体Jcに他方SaをリンクAに取り付けられるが、片方SdはリンクAの回転軸Cの近い位置に設け、他方SaはリンクAの回転軸Cから遠い位置に設けられる。これによりリンクAの回転に伴うバネの伸縮を小さくしている。バネの伸縮がなければドアが回転しないように、バネの伸縮を小さくすればするほどドアの加速は小さくなる。 
図1のようにリンクAに曲げ力が作用する場合摺動面Kと車輪Bとの接点bは、「接続軸Cを中心とする車輪Bの図中矢印イ方向の円運動」を摺動面Kが阻止する点であって、「(あ)の範囲」で接続軸Cが円軌道Ro上を図中矢印ロ方向に移動するとき、接点bは必ずしも摺動面Kの基端部Koから終端部Keに向かって移動するとは限らない。「(あ)の範囲」で、車輪Bは概ね枢軸Oの近傍に停留するが、リンクAは「(あ)の範囲」の当初に車輪の回転軸Ibを中心に回転し、「(あ)の範囲」の終わりに平行移動して戸当たりGdに近づく。場合によっては車輪Bが接続軸Cと共に摺動面Kの基端部Koに近づく。リンクAの運動が回転移動から平行移動に移行するに従い、「リンクAの接続軸Cを中心とする図中矢印イ方向の回転」は次第に減少し、引きバネVの縮み量も減少する。場合によってはリンクAは図中矢印イ方向と逆方向に回転し、引きバネVを引き伸ばすようになり、引きバネVはドアを開く方向に付勢する。また車輪Bが摺動面Kの基端部Koに近づくことは作用力距離Loを小さくすることで、ドアの回転に力不足の状態を招くようなる。摺動面Kの形状を車輪Bに向かって凹面であって摺動面Kの基端部Koから終端部Keに向かうに従い曲率が大きくした場合、ラッチ当接時以前に車輪Bが閉止寸前に摺動面Kの基端部Koに近づくようになり、また「(い)の範囲」で車輪Bが終端部Keに近づくに従い、車輪Bの移動方向に対して摺動面Kは登り勾配となって「ドアを回転させる力」が不足する。このように図1の開閉装置は閉止寸前に「ドアに作用する力」を小さくする減速手段を備える。 
抵抗を負荷しながらドアを閉止することは「ドアを回転させる力」を反対方向の力で減ずることであって、単に作用する力を弱める手段である。大きな減速手段を講じる位置において「ドアに作用する力」は、ドアを回転させる力より小さく減じられていて、この位置で静止するドアは止まったままになることになる。ドアを少し開いた位置で開いたままになるのも1つの機構であって、ドアを少し開いたまま外来者と応対できるが、この「抵抗を負荷してドアに作用する力を減じる位置」は閉止過程において「(あ)の範囲」であるが、開く過程においては「(い)の範囲」であって、閉止したドアを開いてこの位置で手を離したとしても「抵抗を負荷して減じられた大きさ」よりも大きな力がドアに働く。図1のドアには押しバネUが取り付くため、開く当初に押しバネUが縮んで、その後に車輪Bが摺動面Kに沿って逆戻りする。従って開く過程で車輪Bが摺動面Kの基端部Koの戻るときのドアの開度と、閉止過程において車輪Bが摺動面Kの基端部Koから離れるときのドアの開度とは異なり、閉止過程において車輪Bが摺動面Kの終端部Keにある「(い)の範囲」より、開く過程において車輪Bが摺動面Kの終端部Keにある「(い)の範囲」が大きくなる。(以後、閉止「(あ)の範囲」と開く過程の「(い)の範囲」とを含む範囲を「(あい)の範囲」と言うことにする。)「閉止過程において大きな減速手段を講じる位置」はドアを開くときには大きな力がドアに作用している位置であって、ドアから手を離してもドアは止まったままにならない。従って何処から手を離しても必ず閉止し、途中で止まって開いたままになることはない。ドアを開く過程においての「切替手段」が働くドアの開度は、ドアを大きく開いて手を離して弱い力で回転した後強い力に切替わる場合と、ドアを小さく開いて手を離して強い力のまま回転する場合とに、閉止過程の形態を分別する位置である。このように押しバネUを追加することによってリンク装置の自由度が増し、駆動部の動きにドアの動きが従う場合とドアの動きに駆動部の動きが従う場合と形態が異なるようになって、ドアが閉まるときと開くときにリンク装置の形態に違いが認められるようになる。 
「(い)の範囲」においても加速を小さくするためには「(い)の回転手段」の力を出来るだけ小さくする方がよく、小さなバネの力を大きな密閉力に変換することが望ましい。本発明の密閉作業は、連結軸の移動方向に働く弱い力を移動方向に略直角に働く2つの強い力に分解する所謂クサビ効果の特徴を備える。図1の密閉作業は、押圧力Fbが作用する車輪の回転軸Ibがドアの枢軸Oを中心とする円の接線に略直角な軌道に沿って移動しながら、移動方向の弱い力を移動方向に略直角に働く2つの力に分解され、2つの力の片方をドアDによって他方をドア枠Wによって支持するもので、移動方向の弱い力を「移動方向に略直角な強い2つの力」に変換する。密閉時には車輪Bが円運動の周方向に弱い力で移動し、径方向に大きな力が働くようになる。移動方向の弱い力は2つの無限大に近い密閉力に変換され、密閉時に角度Θakが略直角であるので、2つの力の作用線は略一直線状に配され略一致する。片方はドアに他方は動かない剛体Aによって支持される。密閉力はそれを支持する部分が動かないことで無限大に近い大きさになる。動かない剛体Aの支持する部分に押しバネUが挿入されるが、押しバネUはリンクAの所定の回転角で所定の密閉力がドアに作用するようにする。 
図1の開閉装置は「(あ)の範囲」の弱い力と「(い)の範囲」の強い力を1本のバネで処理するもので、「(あ)の範囲」で作用力距離Loを枢軸Oに近づけることによりドアに作用する力を小さくしながら大きなバネの力を温存し、「(い)の範囲」で作用力距離Loを枢軸Oから遠ざけることにより、バネの力が最小になった回転の最後に大きな力がドアに作用するようになる。1本のバネであっても摺動面Kの形状によって「ドアに作用する力」を自由に設計することが出来る。また閉止時にドアに作用する力はドアを開くときの力と大きさを同じくし、方向を反対にするものであって、小さな力で閉まるドアは小さな力で開くことが出来、ドアを開くときに軽く感じられる。図1の開閉装置のように、閉止時に大きな力をドアに作用させながら摺動面Kに沿って小さな力で移動する車輪Bは、ドアを開くときに、大きな力を作用させなければ逆戻りしない。しかしながらドアが閉止する過程において角度Θakは鋭角で車輪の移動に大きな抵抗を受け、ドアが閉止する過程において角度Θakは鈍角で車輪の移動に抵抗を受けない。閉止過程においてドアに強い力が作用するにも拘らず、ドアを開くときに軽く感じられる。車輪Bが転移した終端部KeにおいてドアDを戸当たりGdに押圧するためには角度Θaが鋭角である必要がある。また図1の開閉装置は閉止したドアを開くとき角度Θaが鋭角でなければ車輪Bが逆戻りしないので、ドアが閉止する過程において角度Θaは直角を過ぎて鈍角にならないようにしなければならない。密閉時にドアに強い力が作用してもドアを開くときに軽く感じられる。 
上述するように本発明のドアは、どの位置で手を離しても、ドアが閉まり始めると閉止直前に勝手に止まって必ず密閉に至るものであって、閉止寸前に「ドアを回転させる力」が全く或いは殆んどドアに伝わらないようにして、ドアが停止する状態に或いはそれに近い状態にして、その後「ドアを回転させる力」をゼロから「ドアを密閉することが出来る力」に成長させてドアを再び動き始めるようにするものであって、ドアが停止しても駆動部は運転し続けるようにするドアである。勝手に止まる要因がドアを回転させる力の不足であって、力不足でも「大きな力が必要な密閉作業」が可能にするところに特徴があるが、ドアが加速することによって力不足でも閉止寸前に止まらない場合があり、ドアが加速しないようにする手段が必要である。本発明はドアによってはバネの強さが強すぎる場合などに閉止寸前の閉止速度が大きくても、ドアが加速しないようにする手段を講じて、「(あ)の範囲」において閉止寸前の閉止速度を小さくし、「切替範囲」においてラッチがドアの再起動に抵抗してラッチが小さな力で凹むようにし、「(い)の範囲」において所要時間を延長してドア慣性力が消滅するようにするものである。 
図2は「加速しないようにする減速手段」について説明する動作説明平面図で、図2の開閉装置に付属する減速手段はドア慣性力を小さくするものであって、図2に示す開閉装置は、図1の駆動部のリンクAに代わって、リンクAと回転体Jの2つのリンクからなり、リンクAが滑り対偶でドアDに連結され、図1に比べて摺動面Kの長さが短く小型でありながら、図1と同様の動作と機能を備える。リンクAには圧縮力が作用する。リンクAの先端部に車輪の回転軸Ibが設けられ、車輪の回転軸Ibには車輪Bが装着される。リンクAの基端部の連結軸Pは回転体Jに接続される。回転体JはドアDに設けられた接続軸Cの周りに回転自在に軸支され、引きバネVによって図中矢印イ方向に回転付勢される。ドアが閉止する過程において、「回転体Jの軸芯線ZjとリンクAの軸芯線Zaとの交差角度Θaj」が減少して、車輪Bが「ドア枠Wに設ける摺動面K」押圧しながら、接続軸Cは枢軸Oを中心とする円Roの軌道を図中矢印ロ方向に移動する。 
図2の場合は図1の場合と異なり、リンクAに圧縮力が働き、車輪Bは角度Θakの鈍角側に移動可能で、摺動面Kの両端部に設けられる凹部において鈍角側の移動は阻止さる。図1の場合リンクAに曲げ力が働き、車輪Bは摺動面K上を角度Θakに関係なく移動し、角度Θakが鋭角である方に移動するように力が働
き、移動しながらドアを回転させる。これに対して図2の場合はリンクAに圧縮力が働き、車輪Bは角度Θakの鈍角側に移動し、摺動面Kの端部において鈍角側の移動は阻止さる。摺動面Kの何れかの端部に停留し、摺動面Kの途中で止まることはない。図2の場合は角度Θakが鈍角である方に移動するように力が働き、移動が阻止されてにドアが回転する。図2(a)(b)に示すように「(あ)の範囲」において角度Θakが鋭角に保たれ、車輪Bは摺動面Kの基端部Koに停留する。「切替範囲」においてドアDの回転に伴い角度Θakが90度を超えることによって、図2(c)に示すように車輪Bは鈍角側に移動し始め摺動面Kの終端部Keに向かう。車輪Bの移動の移動に従い角度Θakは増加し、図2(d)に示すように車輪Bが摺動面Kの終端部Keに到達するとき更に鈍角になる。図2(a)の破線は全開時の状態を示し、押圧力Fb90はドアを開く方向に付勢し、図示しない前回側戸当たりでドアを開く方向を止めることによって、静止状態を保つことが出来る。 
閉止過程と開く過程とにおいて図1の場合は車輪Bは同じ通路を往復し、ドアの回転方向が逆になればリンク装置の運動が逆になるだけの可逆装置であって、図2の場合は閉止過程と開く過程とにおいて車輪Bは異なる通路を往復し、リンク装置は非可逆装置である。車輪Bが摺動面Kの終端部Keにあるとき図1の場合角度Θakが鋭角であって、鈍角であるとドアを開くことが出来なくなるが、図2の場合摺動面Kの終端部Keにおいて角度Θakが鈍角であって、回転体Jが図中矢印イと反対方向に回転して角度Θakが鋭角に移行する。車輪Bが戻る方向の「摺動面KとリンクAの軸芯線Zaとの交差角度Θak」は鈍角になって、車輪Bは摺動面Kの基端部Koに戻ることが出来る。図1の場合と異なり開く過程において車輪Bは摺動面Kの基端部Koに戻るときのドアの開度は、閉止過程において車輪Bが摺動面Kの基端部Koから離れるときのドアの開度より遥かに大きい。即ち「(あい)の範囲」が遥かに大きい。 
「(あ)の範囲」において車輪Bは摺動面Kの基端部Koに停留し、連結軸Pは基端部Koに停留する車輪の回転軸Ibを中心とする円Rkoに沿って移動する。「(い)の範囲」におい車輪Bは摺動面Kの終端部Keに停留し、連結軸Pは終端部Keに停留する車輪の回転軸Ibを中心とする円Rkeに沿って移動する。図2(a)に示すように「(あ)の範囲」において作用力距離Loは小さく駆動力距離Lvは大きい。従って「ドアに作用する力」は小さい。また図2(d)に示すように「(い)の範囲」において作用力距離Loは大きく駆動力距離Lvは小さい。従って「ドアに作用する力」は大きい。図2の場合、車輪Bが枢軸Oから遠ざかることによって作用力距離Loが大きくなるだけではなく、リンクAの軸芯線Zaと回転体Jの軸芯線Zjとが一直線状に配されるようになることによって駆動力距離Lvが小さくなり、密閉時に「ドアに作用する力」は大きくなる。このように摺動面Kは車輪Bを基端部Koに停留させる解除可能な拘束手段を備え、連結軸の1つを滑り対偶で連結することで、リンク装置の構造と運動の形態が「(あ)の範囲」と「(い)の範囲」とでは異なり2つになる。 
図2に示すように「(い)の範囲」でドアに作用する力の作用点は枢軸Oから離れる距離が図1の場合に比べて小さく、「車輪Bが摺動面Kを押圧する力Fb」を図1の場合より大きくしなければラッチを凹ませるときの力は同じにならない。「ドアに作用する力」が同じであればドアの運動は同じとなり、ドアを開くときの力も同じになる。リンク装置の構造や動作が異なってもまたバネの力が異なっても、ドアに結果的に弱い力が作用するようにすると、ドアはゆっくりと閉まり、開くときにドアが重たく感じられないようになる。装置を小型化するためにはバネの力を大きくする必要があって、バネの力を大きくすることによってリンクの各連結軸に働く回転抵抗と車輪Bの回転軸周りの転がり摩擦とが大きくなってリンク装置は動き難くなる。その結果更にバネの力を大きくしなければならなくなる。バネの力を大きくするとバネの力を支持する部分を頑丈にする必要があり、また装置を小型化してドアに作用する力を大きくすると「装置をドア或いはドア枠に取り付ける部分」に大きな力が作用するので、取り付ける部分のドア或いはドア枠が頑丈にする必要がある。 
図2(c)(d)に示すように回転体Jに密閉用車輪BBを取り付け、それに沿って移動する摺動面Kbをドア枠Wに設ける場合を考えると、「車輪Bbが摺動面Kbを押圧する力Fbb」の作用線と枢軸Oとの間の距離Lobは大きくなる。密閉時に「ドアに作用する力」の作用点が枢軸O近傍から遠くに離れた位置に転移することによって小さなバネの力を大きくドアに作用させることが出来、回転体Jに密閉用車輪BBを取り付けない場合に比べて、バネの強さを小さくすることが出来る。 
摺動面Kは支軸Ikの周りに回転自在に軸支され、押しバネUkによって支軸Ikを軸に図中矢印ハと反対方向に付勢される。図2(a)に示すように「(あ)の範囲」でドアを回転させる力が小さいとき、押しバネUkに働く力も小さく押しバネUkは伸びた状態で、摺動面Kは当たりGkに係合する。摺動面Kは当たりGkに係合しない場合でも摺動面Kと当たりGkとの間隔が小さくなり、ドア慣性力が大きいほど角度Θakが鋭角になる。ドアが閉止するに従いドア慣性力は大きくなり、ドアはより小さな力で動くようになって押しバネUが摺動面Kを強く押圧するようになる。図2(b)に示すようにラッチ当接時にドア慣性力が大きいほど押しバネUが伸びる大きさが大きく、車輪Bが摺動面Kの終端部Keに向かって移動し難くなって「摺動面Kの基端部Koを離れるとき」が遅れることを意味し、ドア慣性力に比例して密閉作業が遅延され、ドア慣性力の大きさに比例した制動力が働くことを意味している。ラッチ当接時にドアの運動に抵抗が掛かると電圧が抵抗によって大きくなるように、「ドアに作用する力」が大きくなる。図2(c)に示すようにラッチ当接時にドアを回転させる力がなく押圧力Fbが小さくても、摺動面Kが僅かながら回転することで角度Θakが直角から鈍角側に移行する。摺動面Kは車輪Bの移動方向に対して下り勾配側に変化し、車輪Bが移動するほどより移動しやすくなり、ドアDが回転しないまま図2(d)に示すように車輪Bは一瞬にして摺動面Kの終端部Keまで移動して停止する。 
車輪Bが摺動面K上を移動するとき、図1の場合摺動面Kを押圧しながら移動し押しバネUの伸縮が同時に進行し、車輪Bの移動と押しバネUの伸縮とに時間経過を伴うが、図2の場合摺動面Kを殆んど押圧せずまた押しバネUを縮めることなく一瞬にして移動し、押しバネUの伸縮が遅れて進行する。車輪Bが終端部Keに停止して、「ドアに作用する力」が「ドアを密閉出きる力」に達してから押しバネUの伸縮が始まる。「車輪が摺動面を押圧する力Fb」はドアが運動し運動力学的釣り合い状態にあるとき大きな力を必要とせず、ラッチ当接時にドアが停止し構造力学的静止状態にあるとき上記押圧力Fbの大きな力が発生する。運動力学的釣り合い状態と構造力学的静止状態との違いは、リンク装置が動き易い状態と動かない状態との違いで、リンク装置が動き難いほど大きな力が発生し、大きな力を受け止める部分が堅固であるほど大きな力を伝えることが出来る。押しバネUが縮むことでより堅固で動き難い状態になりながら「ドアに作用する力」が徐々に成長する。ドアに移動可能に取り付ける取付軸が図1の場合はドアD側であって、図2の場合はドア枠W側であるが、図1の場合も図2の場合も縮んだ押しバネUが伸びることによってラッチが凹み始めるようにするもので、密閉作業が遅延される。 
図2の場合、閉止過程全体を通じてリンクAの軸芯線Zaは車輪の回転軸Ibを中心に回転するが、車輪Bの移動はなく「ドアに作用する力の作用線Fb」が「摺動面Kと車輪Bの接点b」に立てた法線であって作用力距離Loは略一定である。図1の場合のように、閉止寸前で作用力距離Loを小さくしたり車輪Bが摺動面Kに沿って移動するとき抵抗を受けたりすることによって、閉止速度を減速する手段を備えない。図2の場合は減速手段が駆動部とは別途に取り付いている。図2において減速手段は開閉装置よりドアの取手側に図示される。車輪BbはリンクAaの先端部に設けられる車輪の回転軸Ibbに装着され、リンクAaの基端部の設けられる連結軸Ppは回転体Jjに接続される。回転体JjはドアDに設けられる接続軸Ccの周りに回転自在に軸支され、押しバネUuによって「回転体JjがドアDに設けられる当たりGjに当接する方向」に付勢される。リンクAaは引きバネVvによって「回転体Jjに設けられる当たりGaに当接する方向」に付勢される。 
図2(a)に示すように車輪Bbが摺動面Kkに当接しないときは、「(あ)の範囲」で回転体Jjは当たりGjに、リンクAaは当たりGaに当接して待機する。図2(b)に示すように車輪Bbが摺動面Kkに当接すると、当接した当初は「リンクAaの軸芯線Zaaと摺動面Kkの間の角度で車輪Bbが移動する側の角度Θakk」が鋭角であって、リンクAaの図中矢印ホ方向の回転はなく回転体Jjの図中矢印ニ方向の回転が先行する。図2(c)に示すように回転体Jjの回転に従い角度Θakkが鋭角から鈍角に移行しリンクAaが図中矢印ホ方向に回転する。図2(d)に示すようにリンクAaの軸芯線Zaaと摺動面Kkとが略平行になると「車輪Bbが摺動面Kkを押圧する力Fbbが弱くなってドアの閉止方向に抵抗しなくなる。図2の減速手段はリンクAaの回転と回転体Jjの回転の2つの回転からなり、図中矢印ホ方向のリンクAaの回転による減速効果は角度Θakkが直角から僅かに鈍角側に移行する間に限られるため、図中矢印ニ方向の回転体Jjの回転によって角度Θakkが鈍角である状態を長く保つようにしている。2つの回転は復元力を持ち、2つの回転の復元力でドアは開く方向に回転することになるが、ドアを閉める方向に働く力がこれを上回る場合は、ドアの開く方向の回転は阻止される。また図2の減速手段はドアの大きな回転範囲に亘って機能するものではなく、狭く限られた範囲において機能し、「(あい)の範囲」内に限って機能するように出来る。「切替範囲」はドアの小さな回転範囲であるが、駆動部の運動は大きく図2の減速手段を組み込むことが可能である。 
減速手段が働く回転範囲において回転するドアは、ドアが閉まる方向に「駆動部がドアを閉める力とドア慣性力」とが働き、これに対抗して開く方向に「ドアの回転抵抗と減速装置の制動力」が働く。「ドアの回転抵抗」は「ドアが止まったままにならないように辛うじて動き始めるようにする力」であって、「駆動部がドアを閉める力とドア慣性力」から「減速装置の制動力」を減じた「余りの力」が「ドアの回転抵抗」より大きい場合に回転する。ドアを開いて手を離した位置ではドア慣性力がなく、「駆動部がドアを閉める力」から「減速装置の制動力」を減じた「余りの力」が「ドアの回転抵抗」より大きい場合に止まったままにならずに回転する。「減速装置の制動力」をゼロとした場合は、「駆動部がドアを閉める力」が「ドアの回転抵抗」より大きい場合に止まったままにならずに回転する。また「減速装置の制動力」をゼロではなく大きくすれば「減速装置の制動力を大きくした分」だけ「駆動部がドアを閉める力」を大きくしなければ、ドアが止まったままになる。このように減速装置の制動力を大きくすればするほど「大きくした減速装置の制動力」を加算して「駆動部がドアを閉める力」を限りなく大きくしなければ、ドアを開いて何処で手を離しても止まったままにならないように出来ない。減速装置の制動力を大きくすることはドア慣性力と無関係であり、ドア慣性力を小さくする効果は全くないことになる。 
「減速装置の制動力」をゼロとして考える。止まったドアに働く「ドアの回転抵抗」は最大静止摩擦力であって、回転しているドアに働く運動摩擦力より大きい。止まったドアを始動させる力は最大静止摩擦力以上の力で、ドアが動
き始めると必要以上に力がドアに働くことになる。動き始めるドアには「最大静止摩擦力以上の駆動力とドア慣性力」とが働き、これに対抗して運動摩擦力が働く。「何処で手を離しても止まったままにならないようにしたドア」は動き出すと止まらない。加速したドアには「最大静止摩擦力以上の駆動力とドア慣性力」とが働き、これに対抗して運動摩擦力と「ドア面が受ける空気抵抗」とが働く。「ドア面が受ける空気抵抗」が大きくなって前者と後者が釣り合うようになると加速のない等速運動になる。この時僅かに抵抗を作用させると「最大静止摩擦力以上の駆動力とドア慣性力」より「運動摩擦力とドア面が受ける空気抵抗と抵抗との和」が大きくなり等速運動が減速する。更に大きな抵抗を作用させてドアが停止したときは「最大静止摩擦力以上の駆動力」より「抵抗」が大きくなっている。「抵抗」の代わりに「最大静止摩擦力以上の駆動力」を減じた場合も結果は同様である。 
本発明はラッチ当接時以前のドアに働く力或いはドアの閉止速度がどのようであっても、ラッチ当接時にドアが停止或いはそれに近い状態でドア慣性力の影響が出来るだけ取り除かれた状態にすることを課題にしている。それ故、最大静止摩擦力と運動摩擦力との差が少ない場合、或いはドア面が受ける空気抵抗が大きい場合で、「最大静止摩擦力以上の駆動力」が小さい場合はドアの加速は少なく、ラッチ当接時に「抵抗」を掛ける或いは「最大静止摩擦力以上の駆動力」を減じる処置を講じることなく、「ドアに作用する力」を小から大に転じるだけでよい。しかしながら最大静止摩擦力と運動摩擦力との差が大きくドア面が受ける空気抵抗が小さい場合で、「最大静止摩擦力以上の駆動力」が大きい場合はドアの加速は大きく、ラッチ当接時に「抵抗」を掛ける或いは「最大静止摩擦力以上の駆動力」を減じる処置を講じて、ドアを停止或いはそれに近い状態にする必要がある。「(あい)の範囲」で抵抗を作用させて、運動しているドアを止めることになっても、閉まる過程の「(あ)の範囲」で抵抗を作用させた位置は開く過程の「(い)の範囲」で「(い)の回転手段」が作用する位置であって、抵抗が「(い)の回転手段」より小さければ、ドアを開いて手を離す位置が何処であっても、ドアが止まったままになることはない。このような場合に限って抵抗がドア慣性力を取り除く働きをする。 
ドア慣性力はドアを開いて手を離す位置が全開位置である場合と少し開いた位置とでは大きく異なる。全開位置で手を離したときのドア慣性力と同等に抵抗を大きくした場合、「(あい)の範囲」の短い範囲で閉止速度を急激に減少させることは衝突を起こすことであって、閉止時の衝撃をドア寸前の手前に移しただけのことになる。本発明はこの衝撃をバネで受け止めるもので、ドアの閉止方向の運動をバネの伸縮で吸収しながら時間を掛けてドア慣性力が消滅する。また伸縮したバネが復元してドアが開く方向に戻らないために「(い)の回転手段」を負荷するものである。全開位置で手を離したときのドア慣性力と同等に抵抗を大きくすると、閉止開始開度に関係なく小から大に及ぶ全てのドア慣性力に対処して消滅することができドアを止めることが出来る。バネの伸縮はドア慣性力が大きいとき大きく小さいとき小さいが、「(い)の回転手段」も抵抗を大きくした分だけ大きくすると、「(い)の回転手段」はドアとは別に動作して、慣性力が大きくバネの伸縮が大きいときバネの復元を抑えながら伸縮を完了させる。また慣性力が小さくバネの伸縮が小さいときでもバネの伸縮を完了させる。ドアを開くときは伸縮したバネが開く方向に付勢するので「開くときに必要な力」を大きくしない。ドアと駆動部が連動しない「切替範囲」で大きな抵抗を掛けて、抵抗を大きくしただけ「(い)の回転手段」を大きくすれば、大きな抵抗がドアの閉止開始開度に関係なくドア慣性力を消滅し、駆動部は止まることなく「(い)の回転手段」が大きな抵抗に打ち勝ってドアを密閉するまで動き続けることが出来る。 
「(あ)の範囲」で負荷される抵抗は単に「(あ)の回転手段」を弱めるだけであって、抵抗を負荷することによって減速されるように見えるドアの運動は弱い「(あ)の回転手段」で回転するドアの動作と同じであって、抵抗はドア慣性力に対して無効であるが、「切替範囲」において「(あ)の範囲」で負荷した抵抗を「(い)の範囲」で取り除くと、「駆動部がドアを閉める力」の大きさに変化がなくても「ドアに作用する力」が小から大に転じる。例えばドア面に作用する空気抵抗はドアが閉まるに従い大きくなるが、ラッチ当接時以前にドア面に作用する空気抵抗がラッチを凹ませる力より大きくなる場合、空気抵抗に打ち勝ってドアを回転させる「駆動部がドアを閉める力」がラッチを凹ませる力より大きく、ラッチがドア枠Wに当接して同時にドアが減速して空気抵抗が次第に減少すると、「ドアに作用する力」がゼロから次第に「ラッチを凹ませる力」に成長する。但しラッチ当接時に「駆動部がドアを閉める力とドア慣性力の和」が「空気抵抗とラッチを凹ませる力との和」より小さく、ラッチがドア枠Wに当接して同時にドアがラッチを凹ませない場合に成立する。 
図22はこの実施例であって、ラッチ当接時以前に駆動部の運動が停止し、「駆動部がドアを閉める力」に変わって押しバネUの力でラッチを凹ませる。押しバネUの力を「ラッチを凹ませる力」に調節し、ドア慣性力が空気抵抗に打ち消されるならば衝撃音は小さくなる。図3はこの空気抵抗に匹敵する抵抗を「(あ)の範囲」に設けるものである。図3は「(あ)の範囲」で「(い)の回転手段」に抵抗をかけて小さくし、「切替範囲」で抵抗がなくなる場合についての動作説明平面図である。以下の図3,4には「(あ)の範囲」の減速、図4~6にはラッチ当接時以前の減速、図7~10には「(い)の範囲」の減速について説明する。減速手段が全閉に近い位置で講じられるほど効果は大きく、全閉に近い位置で講じられる減速手段だけで衝撃音を小さく出来るが、ドア慣性力が小さい範囲で効力を発揮するもので、それ以前にドア慣性力を小さく減速手段がなければ効力を発揮しない。 
図1、2の閉止装置は外開きドアの室外側のドア外面に取り付き、図3は外開きドアの室内側のドア内面に取り付く。ドア内面はドアのドア枠Wと対面する面で、ドア内面とドア枠Wとの間に挟まれる空間領域は通行人が出入りする空間であって、ドア内面に取り付く閉止装置は通行の邪魔になるが風雨にさらされない利点と、保安上の利点を備える。図3のドア外面に「上述の空気抵抗に匹敵する抵抗」が取り付き、ドア内面にドアを閉める駆動部が取り付く。図3のドア外面に取り付く抵抗は図2の減速装置を複数個取り付けたもので、それぞれは異なるドアの開度で始動する。図2の減速手段が全開の開度で動作する場合、ドアを全開したときにだけ機能し、閉止開始開度が全開以下の場合に機能しない。閉止開始開度が全開以下の開度で減速手段が動作する場合も、閉止開始開度がその開度以上のとき機能し、その開度以下のとき機能しない。図3は全開の開度で動作する減速手段1と全開以下の所定の開度で動作する減速手段2と、更に図示されない該所定の開度以下の開度で動作する減速手段3とを備える減速装置の実施例で、それぞれの減速手段1,2,3は「ドアに設けられる支軸Pp1,p2,p3の周りに回転自在に軸支されるリンクAa1,Aa2,Aa3」に車輪Bb1,Bb2,Bb3を装着している。 
車輪Bb1,Bb2,Bb3が摺動面KKに沿って移動しながら図中矢印ニ方向に回転するとき、引きバネVv1,Vv2,Vv3を引き伸ばすことによって「駆動部がドアを閉める力」に抵抗する。リンクAa1,Aa2,Aa3は引きバネVv1,Vv2,Vv3によって図中矢印ニと反対方向に付勢され、図示されない当たりGによってドア面と略直角な状態で係止されている。それぞれの減速手段1,2,3は車輪Bb1,Bb2,Bb3が摺動面KKに当接当初に「駆動部がドアを閉める力」に抵抗するが、リンクAa1,Aa2,Aa3がドア面と略直角な状態からドア面に平行になるに従い抵抗しなくなる。図3(a)において車輪Bb1だけが摺動面KKを押圧してドアDを戸当たりGd90に押圧し、全開時にドアが静止する。全開時からドアが閉止するとき車輪Bb1が摺動面KKに当接して減速手段1が機能し、減速手段2,3は機能しない。更にドアが閉止すると、車輪Bb2が摺動面KKに当接して減速手段2が機能し、に当接して減速手段1,3は機能しない。このように順次車輪Bb1,Bb2,Bb3が摺動面KKに当接して順次減速手段1,2,3が機能する。減速手段1,2,3が機能する範囲はそれぞれ限られていて、「駆動部がドアを閉める力」に抵抗する形態が閉止開始開度によって異なるようになり、ラッチ当接時のドアの回転速度と「ドアに作用する力」の大きさが閉止開始開度によって異なることなく略一定する。 
図3(b)においてリンクAa2がドア面と略平行になって減速手段2の抵抗が減少するが、減速手段2の抵抗が「ラッチを凹ませる力」と同等であって、ラッチ当接時に「駆動部がドアを閉める力」がそれ以上であるとき、減速手段2の抵抗が減少するに従い、「ドアに作用する力」が増加し「ラッチを凹ませる力」に到達する。この場合ラッチ当接時に「駆動部がドアを閉める力」が変化する必要がない。ラッチ当接時に「駆動部がドアを閉める力」が「ラッチを凹ませる力」以下であるとき、ドアは止まることになるが、ドア内面に取り付く駆動部が「切替範囲」で止まることなく動き続けてドアを閉める。図3の開閉装置は図1と図2の開閉装置と同様に「枢軸Oの近くから遠くに連続する車輪Bの通路」を有するが、図3の通路の摺動面Kは接続軸Cに回転可能に軸支され、引きバネVVによって図中矢印ハ方向に回転付勢される。車輪BはリンクAの先端部に設けられる車輪の回転軸Ibに装着され、リンクAは「固定支軸Swを軸に図中矢印イ方向に回転付勢された回転体J」の先端部に設けられる連結軸Pに接続される。図1のリンクAには曲げ力が、図2のリンクAには圧縮力が、図3のリンクAには引張力が働く。 
図3の回転体Jの周りの回転機構は「(あ)の回転手段」と「(い)の回転手段」と「切替手段」とを備え、連結軸Pと固定支軸Swwとの間を「引きバネVとリンクAAを連結軸Saで連結する連続体」で連結する構造である。リンクAAの連結軸PP周辺の側面は固定支軸Swに添って移動し、図3(a)に示すようにリンクAAと固定支軸Swとが当接するとき、「回転軸Swとバネの軸芯線Zvとの間の作用力距離Lsw」は小さく、「(あ)の範囲」で固定支軸Swと連結軸Saとの間の距離が小さいほど「回転体Jに働く固定支軸Swの周りの回転モーメントMj」は小さく、該距離がゼロのとき「(あ)の範囲」で回転体Jに力は作用しない。図3(c)に示すように離脱するとき作用力距離Lswは大きくなる。作用力距離Loの増加に伴い回転モーメントMjが増加する。引きバネVが固定支軸Swから離れる動作は回転体Jの回転と連動していて、力の増加に回転体Jの大きな回転を伴う。しかしながら「ドアに作用する力」が成長する間にドアは殆んど回転しない。固定支軸Swの周りの回転機構は回転体Jの回転を伴うものであるが、枢軸Oの周りの回転機構はドアDの回転を伴うものでない。 
図3(a)に示すように「(あ)の範囲」では車輪Bは摺動面Kの基端部Koに留まり、「枢軸Oと押圧力Fbの作用線との間の作用力距離Lo」は小さい。図3(b)に示すように「切替範囲」では車輪Bが「閉止したドア面D0」に略平行となる摺動面Kの基端部Koから終端部Keに向かって移動する。車輪Bは「リンクAの軸芯線Zaと摺動面Kとの交差角度Θka」が鈍角となって移動し始め、角度Θkaが直角であるとき停止する。図2のようにリンクAに圧縮力が作用する場合は車輪Bが移動の途中で停止するようなことはない。引きバネVVによる図中矢印ハ方向の回転付勢は車輪Bの移動に従い弱くなるが、引きバネVに蓄えられる「ドアを密閉する力」は増加する。摺動面Kが回転可能に取付けられることによって、ドアが停止しても車輪Bが交差角度Θaを鈍角にすれば移動を開始し閉止装置は
運転を継続する。図3(c)に示すように車輪Bが摺動面Kの終端部Keに到達すると作用力距離Loは大き九なりドアを密閉する。 
本発明のドアは如何なる場合も密閉作業が同じであるように、密閉時にドア慣性力が取り除かれた状態にする準備作業が必要である。回転軸が鉛直であるドアの回転運動には重心の上下方向の移動はなく、「枢軸O周りの最大静止摩擦力」を僅かに上回る力で回転する。ドアを開いて手を離す位置が何処であっても、ドアが止まったままにならないようにするには、ドアがどの位置においても最低限「枢軸O周りの最大静止摩擦力を僅かに上回る力」が働いていなければならない。しかしながらドアは回転抵抗を僅かに上回れば回転し、上回る力がドアを加速する成分となる。僅かな力でも作用し続ける以上加速されたドアが更に加速されて閉止寸前に大きな慣性力がドアに取り付く。慣性力は速度の2乗に比例するので慣性力は閉止速度が僅かに大きくなるだけ極度に大きくなり、僅かに小さくなるだけ極度に小さくなる。それに対抗する抵抗の大きさも極度に大きく或いは極度に小さくならなければ、全く効かない場合と効き過ぎてドアを止めてしまう場合の何れかになる。一定の大きさの抵抗では広い範囲に及ぶ慣性力に対処できない。 
図4~6は成長した慣性力を「切替範囲」付近の1箇所に設ける抵抗で解消しようとするものではなく、「(あ)の範囲」の広い範囲に亘って慣性力が成長する以前の発生時点で解消しようとするものである。図4は「ドアに作用する力」の大きさを制御するものであって、抵抗などの反対方向の力によって「閉まる方向に働く駆動力」を減じる手段の代わりに、作用線を移動して作用力距離Loを変化させることによって「ドアに作用する力」を自由に変化させるものである。図5、6はドアに作用する力」の大きさを制御するものではなく、リンク装置の加速を抑制するものである。図5は抵抗を掛けることによって、図6はドア慣性力を制動力に変えることによって、リンク装置の運動速度を遅延するものである。図5、6は回転手段と回転を阻止する手段(以下、回転阻止手段と言う。)とを備え、回転阻止手段は何れの場合も「ドアに作用する力」を減じる手段であるが、ドアが止まってしまうことはない。また図4~6はラッチ当接時以前にドア慣性力が取り除かれる点において同じであって、「ドアに作用する力」がそれまで如何なるものであっても密閉作業が同じになることを説明している。図4において「ドアに作用する力」の大きさを出来るだけ小さくすることによって、ドアの加速を出来るだけ小さくする。図5,6において「(あ)の範囲」と「(い)の範囲」とに境界はなく、「ドアに作用する力」の大きさは回転の途中から漸次増加するが、「(あ)の範囲」で加速を抑えてドア慣性力が小さく抑えられているので、ラッチ当接時に「ドアに作用する力」の大きさが切り替わらなくても「ラッチを凹ませる力」であればよいことになる。 
図4は図1と同じく「車輪が摺動面を押圧する力Fb」の作用線を制御する実施例で、ドア枠Wに設けられる一対の回転軸O,Cのそれぞれの周りに摺動面Kを備えたカム体(以後、摺動面Kと言う。)とリンクAが回転自在に軸支され、リンクAの先端部に設けられる車輪の回転軸Ibに車輪Bを装着し、車輪Bが摺動面Kに沿って移動することによって、ドア枠Wと摺動面Kとが共通の回転軸Oを軸に相対的に回転する回転機構である。図4のドア枠Wを図1のドアDと考えると、同じ構造の回転機構である。図4のドア枠Wは回転軸O,Cを備えるリンクで図4の白紙面上である。図4においてドア枠Wと摺動面Kとが相対的に回転する2つの開閉体であることは、2つの開閉体をドアにたとえる場合、ドア枠Wと摺動面Kのどちらかがドアであることを意味し、接続軸Cがドア枠に取り付き摺動面Kがドアに取り付く場合と接続軸Cがドアに取り付き摺動面Kがドア枠に取り付く場合とがあって、ドアとドア枠とが置換しても同じ回転機構であることを意味している。このようなことから本発明の開閉装置の駆動部がドアに取り付く実施例は、本ドア枠に取り付く実施例でもあることを意味している。 
車輪Bが摺動面Kに沿って移動しながら車輪Bが図中矢印ロ方向に公転して摺動面Kが図中矢印イ方向に回転する過程において、「該押圧力Fbと枢軸Oとの間の距離Lf」が減少しバネVの力も減少するが、「バネの軸芯線Zvと枢軸Oとの間の距離Ls」を摺動面Koの形状によって調節して該押圧力Fbを一定にすることが出来る。引きバネVは片方の端部を「摺動面Kに設ける支軸Sk」に他方をドア枠Wに設ける支軸Swv」に取り付け、中間部は摺動面KKに沿って接触する。摺動面Kが図中矢印イ方向に回転するに従い、引きバネVは摺動面KKから剥離し、「バネの軸芯線Zvと枢軸Oとの間の距離Ls」が減少することによって、車輪Bが摺動面Kの基端部Koに近づいても該押圧力Fbが増加しないようにしている。「該押圧力Fbの作用線と回転軸Cとの間の距離Lc」を制御することによって「回転軸Cの周りに働く回転モーメントMc」を自由に変えることができるが、このように該押圧力Fbを一定にして、図4(a)に示すように「車輪Bが摺動面Kを押圧する力Fbの作用線」と接続軸Cとの間の距離Lcは常に一定にすると、「回転軸Cの周りに働く回転モーメントMc」を一定にすることができる。図4(c)に示す作図による摺動面Kの形状は「該押圧力Fbの作用線と接続軸Cとの間の距離Lc」を常に一定にする。該押圧力Fbの作用線は常に「回転軸Cを中心とする円Rc」に接する。 
図4(a)に示す実線と破線はそれぞれリンクAの開度が60度と90度のときの状態図で、「(あ)の範囲」の動作説明平面図である。摺動面Kの終端部のKeeはリンクAの全開時に付勢方向を逆転する摺動面で全開時に静止状態を保つためのものである。図1の場合と異なり、図4の場合はドアが閉止するに従い車輪Bは摺動面Kの終端部Keから基端部Koに向かって移動し「(あ)の範囲」で大きく「(い)の範囲」で小さく移動する。しかし摺動面Kは枢軸Oを軸に「(あ)の範囲」で小さく,「(い)の範囲」で大きく回転する。図1の場合車輪が摺動面を押圧してドアを回転させるが、図4の場合リンクAをドアDとすると、摺動面が車輪を押圧してドアを回転させる。図1の場合車輪が摺動面を押圧してドアを回転させるが、「切替範囲」で該押圧力Fbの作用線が大きく運動する点において図4と図1とは同じである。図4は車輪Bの「回転軸Cを中心とする円運動」の径方向にバネの大きな力を温存しながら小さな力で車輪Bを周方向に移動する回転機構であって、密閉時に大きな力を発揮する。またリンクAは摺動面Kが車輪Bを押圧する大きな力を支持しながら小さな力で移動できる剛体であって、ドアを開くとき小さな力で開きながらバネに大きな力を蓄えることが出来る。 
図4の摺動面Kは摺動面Kの基端部Koに近づくに従い次第に曲率は大きくなる形状であって、ドアの一定の回転速度に対して車輪Bの移動速度は遅くなるが、摺動面Kの形状によって「ドアに作用する力」の履歴を自由に設計でき、摺動面Kの基端部Koで曲率を大きくして閉止寸前に減速し、曲率を小さくして密閉時に大きな力を作用させることが出来る。このようにして図4の摺動面Kは作用力距離Loを小さく拘束し続ける「(あ)の回転手段」と、小さな「切替範囲」で押圧力Fbの作用線が大きく回転しながら作用力距離Loが大に転じ「切替手段」と、作用点が「回転軸Cを中心とするリンクAの円運動の径方向」に移動し、作用線が該円運動の周方向となって、作用点が該径方向に移動するための小さな力を該周方向に大きな力に変換する「(い)の回転手段」とを備えることになる。 
図4の摺動面Kが水平の回転軸Oを軸に上下に回転する自動車のトランクルームの蓋であって、枢軸Oの周りの付勢手段を接続軸C周りに移設して、車体に設けた支軸Cを軸に「先端に車輪Bを装着したリンクAが回転するようにして、蓋Kが図4(a)に示すように水平状態から図4(b)に示すように懸垂状態に移行すると仮定する。「接続軸Cの周りに働く回転モーメントMc」が一定であるとき「車輪Bが摺動面Kを押圧する力Fb」も一定であって、蓋Kが水平状態から懸垂状態移行するに従い「力Fbの作用線と枢軸Oとの間の距離Lf」が減少する。蓋Kの重心には一定の重量が作用し常に方向を鉛直に保つが重量の作用線も蓋Kが水平状態から懸垂状態移行するに従い枢軸Oに近づく。一定の押圧力Fbと一定の重量の作用線がともに枢軸Oに近づくので、枢軸Oの周りのモーメントが釣り合うように出来る。特に蓋Kが水平に近い状態ではリンクAが鉛直に近い状態であって、リンクAの軸芯線方向に蓋Kの重量を支持し、接続軸Cの周りに働く回転力Mcが小さくても蓋Kが上下に動く。蓋Kが懸垂状態に近い範囲では「枢軸Oの周りのモーメントの釣り合い」が保たれないが、バネの強さを変化させる或いは力Fbの作用線と接続軸Cとの間の距離」を変化させることによって、即ち仮想円を楕円状にすることによって或いは摺動面Kの形状を変化させることによって調節可能である。このように図4の回転機構は、「水平面上で回転するリンクA」に略一定の回転力を提供する回転付与手段でもあり、鉛直面内で回転する摺動面Kに連続的に変化する回転力を提供する手段でもあって、小さな力で大きな重量を移動する手段となる。 
特許文献10,11において付勢手段が重力方向に働き重量と同じ力で対抗するので強い付勢手段が必要になる。図4の回転機構においては蓋Kが水平に近い状態では付勢手段が重力方向に直角に働き重力を支持せず小さな力で蓋を上下できる。蓋Kが懸垂状態に近い範囲では蓋の回転に力が要らなくなるので小さな力で回転可能であり、上述したように僅かに調整することによって改善できる。特許文献9は閉止時に作用点の移動方向が蓋の円運動の周方向から径方向に転じ、周方向に大きなバネの力を作用させ、大きなバネの力の一部の分力を径方向に作用させるもので、密閉力の作用において本願と異なる。また大きな力を支持する部材が剛体ではなくバネである。本願の回転機構が蓋を支持する場合は枢軸Oを共有する2つの開閉体K,Wの何れかが蓋であって、リンクAが蓋の重量を支持しながら車輪BがリンクAの円運動の径方向に小さな力で移動することによって蓋を上下させる。蓋の重量を支持するリンクAは剛体である特徴を有している。蓋の上下に伴って蓋の重心が水平に移動し、押圧力Fbの大きさが変化するが、「該押圧力Fbの作用線と接続軸Cとの間の距離Lc」が変化する「該押圧力Fbの作用線が接する円Rcに代わる形状」を設計することによって該移動荷重に対応する摺動面Kの形状を作図することが出来る。 
枢軸Oは「ドア枠Wに設けられる回転軸Swwの周りに回転自在に軸支される回転体Jc」の先端部に設けられ、枢軸Oは回転体Jcを介してドア枠Wに移動可能に取付けられる。回転体Jcは「(あ)の範囲」で当たりG1に係止される位置と「(い)の範囲」で当たりG2に係止される位置との間を揺動する。図4(b)は閉止寸前の動作説明図で、車輪Bが摺動面Kの基端部Ko付近にあって略停止状態であって、車輪Bと摺動面Kとの接点bがバネの軸芯線Zvを横切るようになると、摺動面Kが車輪Bを中心に回転し、該押圧力Fbの作用線の方向が回転することによって「回転軸Cとの間の距離Lc」が急激に増加し「回転軸Cの周りに働く回転モーメントMc」を大きくする。図4(b)に示す実線と破線はそれぞれ回転後と回転前の状態を示す。 
図4(c)において、回転軸Cを中心とする円Rb上に点bi(i=0,1,2,・・・)を等分に配する。点bi(i=0,1,2,・・・)は摺動面Kと車輪Bとの時時刻刻移動する接点である。点biを通る接線Ti(i=0,1,2、・・・)は回転軸Cを中心とする仮想円Raの接点ai(i=0,1,2、・・・)に接する。円弧Ri(i=0,1,2,・・・)は上記接点aiを中心とし半径をaibiとする円弧で、円Rb上を移動する車輪Bに時時刻刻接触するカム体摺動面Kの接触部分の周辺で
ある。但し円Rb上の点bi(i=0,1,2,・・・)を細かく無数に等分に配する場合は、円弧Riは点biを通り接線Tiに直交する線分になる。円Raと円Rbは同心円であるので、接線Tiの長さaibiは全て同じで、円弧Riと円Rbの交差角度は全て同じになる。即ち摺動面Kはカム車輪Bの移動方向に対して常に一定の勾配を保つ。点bi(i=0,1,2,・・・)を通り回転軸Oを中心とする円弧を円弧Oi(i=0,1,2,・・・)として、円弧Ri-1(i=0,1,2,・・・)との交点をCi(i=0,1,2,・・・)として、円弧bi-1Ciを回転軸Oを中心として円弧Ki-1(i=0,1,2,・・・)に回転移動すると、円弧R0,R1,Rb2,・・はR5に連続する1つの摺動面K0K1K2K3K4K5を形成することになる。摺動面K0K1K2K3K4K5は車輪Bとの接点がb7であるときの図4(a)(b)に示す摺動面Kである。摺動面Kは基端部Koに近づくに従い曲率が大きくなり、リンクAの回転に対して車輪Bの移動距離は小さくなる。(押圧力Fbの作用線と回転軸Cとの間の距離を常に一定にするについての詳細は参考文献4図1~28とそれに関連する明細書の記載に参照する。) 
図5は「切替手段」がドアDに限らず車輪Bが止まってもリンク装置は動き続けえることを説明するもので、「(あい)の範囲」の範囲で抵抗を掛けてもドアが止まったままにならないように、「(あ)の範囲」でも車輪Bの移動に抵抗を掛けた場合にドアが止まったままにならずに減速されることを説明する。図5の摺動面Kは図1の摺動面Kと同じく「枢軸Oから遠ざかる車輪Bの通路」を備え「閉止したドア面D0」と略平行である。閉止装置は「閉止したドア面D0」から前方に大きく張り出しているが、ドアを取り付ける壁厚が大きくドアが奥まって取付けられる場合、壁面から突き出る部分は少ない。構造は図1と同じく、ドア枠Wに摺動面Kが設けられ、摺動面Kに沿って車輪Bが図中矢印イ方向に移動することによって、ドアDは枢軸Oを軸に図中矢印ロ方向に閉止回転する。接続軸Cの周りにリンクAが回転自在に軸支されて、リンクAの先端部に設けられる車輪の回転軸Ibには車輪Bが装着される。接続軸Cは「ドアに設けられる支軸Cjの周りに回転自在に軸支される回転体Jc」に設けられドアDに移動可能に取付けられる。回転体JcとドアDとの間に押しバネUが介在する。付勢手段は図3と同じく「リンクAに設ける支軸Sb」と「回転体Jcに設ける支軸Sj」との間を「引きバネVとリンクAAを連結軸Saで連結する連続体」で連結する構造である。 
図5(a)にドアDの開度Θdに従うリンク装置の動作を示す。円Rcjは支軸Cjの軌跡である。押圧力Fbの作用線は「(あ)の範囲」で摺動面Kの基端部Koに停留せず漸次枢軸Oから離れて作用力距離Loを漸次増加させるが、「押圧力Fbの作用線とリンクAの軸芯線Zaとの交差角度Θaf」は図5(d)に示す密閉時以外は大きく、「接続軸Cの周りに働く回転モーメントMc」は押圧力Fbに小さく変換される。図5(b)~(d)はラッチ当接時から密閉時までの動作説明図で、車輪Bは摺動面Kの終端部Ke付近で往復し、往復の途中でリンクAと回転体Jcは一直線状になる。図5(b)に示すラッチ当接時にリンクAと回転体Jcとが一直線状になるとき、角度Θakは最も小さく交差角度Θafは最も大きくなりドアは減速される。車輪Bを移動させる力が最も小さくラッチを凹ますことなくドアは停止する。押しバネUは最も伸びた状態で、図5(c)に示すように車輪Bが戻る方向に移動し始めると、角度Θakが増加して車輪Bは動き易く、交差角度Θafが減少して押しバネUを縮め易くなる。図5(c)はラッチが凹むことなく押しバネUが縮む状態を示す。図5(c)に示す当たりGjcは「ドア面と回転体Jcの軸芯線Zjcとの交差角度Θjd」の上限を調節するもので、交差角度Θjdの上限を小さく調節することで、ラッチ当接時以前にリンクAと回転体Jcとが一直線状になるように出来る。この場合ラッチ当接時に角度Θakは増加し交差角度Θafは減少するので、車輪Bはより移動し易く、ラッチはより凹み易くなる。図5(d)に示す密閉時には車輪Bが「閉止したドア面D0」に略平行に移動し略直角に密閉力Fb0が働く。密閉時に角度Θakは最も大く交差角度Θafは最も小さい。このようにラッチ当接時に「ラッチを凹ませる力」とドアを回転させる力がなくても、押しバネUを縮め力があればドアが止まったままでもリンク装置は運動し続けて「ドアに作用する力」がドアを密閉する力に成長する。 
図5はリンク数4で滑り対偶の連結1のリンク装置で、1つの連結軸の回転を固定してリンク数3にした場合に運動は1つに決まるが、1つの連結軸の回転を固定を解除すると運動は自由になる。リンク装置の何れかのリンクの回転に限らず何れかの連結点の移動に解除可能な拘束手段が働くと、拘束解除時或いは拘束時にリンク装置の形態と運動に転換が認められる。「切替範囲」のようにドアと駆動部が連動しない範囲でドアを止めてしまってもリンク装置は動き続けドアは再起動するが、連動する範囲でも車輪Bに抵抗を掛けて止めてしまってリンク装置は動き続け車輪Bは再起動する。図5(b)(c)に示すようにラッチ当接時にドアが止まった状態でも車輪Bの位置とリンクA,Jcの回転が自由であって、回転途中でドアが止まったときも駆動部は自由に運動する。図5(e)(f)は回転途中の減速手段の動作説明図で、車輪Bの移動を拘束したときリンク装置が自由に運動出来る状態を示している。 
図5(e)(f)において車輪Bと摺動面Kとの接点bは同じ位置で、ドアの開度Θdと接続軸Cの位置が異なり押しバネUの伸縮量も異なっている。摺動面Kkは「ドア枠Wに設けられた支軸Sk」を軸に図中矢印ハ方向に押しバネUkによって付勢され、接続軸Cに装着された車輪BBを押圧して、その移動に抵抗を与える。図5(e)(f)において図5(a)~(d)に図示する付勢手段AA,Vの図示を省略するが、何処においても止まったドアを動き出すようにする力がドアに作用している。図5(e)はドアの回転速度が小さく押しバネUkが縮んでいて、リンクA,Jcは殆んど動かずに押しバネUkが伸びることによって、ドアが加速される状態を示す。図5(f)はドアの回転速度が大きく押しバネUkが伸びていて、ドアは殆んど動かずに押しバネUkが縮むことによって、ドアが減速される状態を示す。ドアが加速されると減速手段が有効に働き、減速されると無効に働く。図5(e)(f)の減速手段はドア慣性力の大きさに応じて自己制御し、ドアと駆動部が連動する「(あ)の範囲」に抵抗を講じる手段でありながら、ドアが止まってしまうようなことはない。また図5(e)(f)はリンク装置の連結軸の何れを拘束しても、またこの拘束が何時であっても同様の減速効果をもたらすことを説明している。 
図6はドア慣性力が「ドアの閉止回転に抵抗する力」として働く減速装置の動作説明平面図で、図6(a)は「(あ)の範囲」、図6(b)は閉止寸前、図6(c)はラッチ当接時から密閉時まで範囲を示す。回転体Jはドア枠Wに設ける固定支軸Swの周りに回転自在に軸支され、捩りバネUVによって図中矢印ハ方向に回転付勢され、固定支軸Swの周りに駆動力Mvが働く。リンクAAは片方を回転体Jの連結軸Pに接続し他方をリンクAの先端部に設けられる車輪の回転軸Ibに接続する。リンクAはドアDに設けられる接続軸Cの周りに回転自在に軸支されて、リンクAの図中矢印ニと反対方向の回転は当たりGaによって阻止される。リンクAの先端部に設けられる車輪の回転軸Ibには車輪Bが装着される。 
図6(a)に示す「(あ)の範囲」においてリンクAとドアDは相対的に一体になって車輪の回転軸IbはドアDに固定された状態になる。回転体JがリンクAAを介して車輪の回転軸Ibを図中矢印イ方向に牽引し、ドアDは枢軸Oを軸に図中矢印ロ方向に閉止回転する。車輪Bはドアの開度が大きい範囲では枢軸Oを中心に円運動し、作用点(車輪の回転軸Ib)が枢軸O近傍に停留する。開度が小さい範囲では作用点(車輪の回転軸Ib)はドア枠Wに設けられた摺動面K1に沿って移動するが、ドア面と略平行に移動し作用線方向は略枢軸O方向に維持され作用力距離Loが小さく保たれる。車輪Bが摺動面K1の枢軸O近傍の直線部分に沿って移動するとき、当たりGaが離脱してリンクAが接続軸Cを図中矢印ニ方向に回転するが回転は小さい。 
図6(b)に示す閉止寸前に車輪Bが摺動面K1の円弧部に沿って移動するとき、リンクAAが車輪の回転軸Ibを牽引する力は摺動面K1によって抑制されるが、ドア慣性力がリンクAを介して車輪の回転軸Ibを牽引し、車輪Bが摺動面K1の円弧部に沿って移動しながらドアの回転を制止する。また「(あ)の範囲」で駆動力距離Lvは大きく、駆動力Mvは「車輪の回転軸Ibを牽引する力」に小さく伝えられ、車輪Bが摺動面K1の円弧部に当接する当初は連結軸Pが殆んど停止した状態にあって駆動部がドアに作用する力は小さく、ドアに作用する力の殆んどがドア慣性力となる。車輪Bが摺動面K1の円弧部を移動するようになると、ドアの回転のドアDが閉止するに従い、リンクAは接続軸Cの円軌道(ロ)の半径方向から接線方向に移行し、「ドアの回転を制止する力」は増加する。ドアが回転しようとすると、車輪Bが接続軸Cの円軌道(ロ)の接線方向に移動して半径方向に追従することなくドアの回転を制止する。このように閉止寸前に力不足して車輪Bが減速するほど車輪Bが摺動面K1の円弧部を移動するときドア慣性力が摺動面K1を強く押圧して減速する。閉止寸前に「新たに何らかの車輪の移動に抵抗を掛ける手段」を講じると力不足して車輪Bが停止し摺動面K1の円弧部を移動する時間が遅れる。また固定支軸Swの周りにダンパを取り付けて回転体Jの回転に抵抗を掛けると、慣性力による減速効果がより顕著に現れる。本発明において抵抗やダンパを取り付ける場合は、ドアに直接抵抗を掛けて減速するのではなく、閉止寸前のドアの僅かな回転に対して大きく回転する駆動部の動作の何れかに抵抗を掛けて減速するもので、大きな抵抗やダンパは必要でなく、特に「切替範囲」で抵抗やダンパが機能するようにすると、ドアと駆動部が連動しないので、駆動部の回転がドアの回転速度に影響されずに常に所定の速度に減速することが出来る。 
車輪Bが摺動面K1を押圧する力はドア慣性力による「ドアの回転を制止する力」であって、押圧力はドア慣性力が大きければ大きくなり車輪Bの移動とドアの回転を大きく制動する。ドア慣性力がなくなると押圧力は消滅し車輪Bの移動とドアの回転を制動しないようになる。このように「慣性力による制動力」によってドアを減速すると、ドア慣性力があるときドアが停止し或いは減速し、ドアが停止し或いは減速してドア慣性力が取り除かれると、ドアが再び動き出し或いは加速する。ドアは止まったままにならずに減速される。また減速効果が働く以前にドア慣性力が如何に大きくても対処出来、減速効果が効き過ぎたり全く効かなかったりすることはない。ドアが減速されて慣性力がなくなると、車輪Bは摺動面K1から離れて「摺動面K1に対面する摺動面K2」に沿って移動し図6(b)に示すようにドアを回転させる。。車輪Bが摺動面K2を押圧する力はドアを回転させる力であってドアを加速する。ドアが加速されて慣性力が取り付くと、車輪Bは摺動面K2から離れて対面する摺動面K1に沿って移動する。車輪Bが摺動面K1上の移動と摺動面K2上の移動の移動を交互に繰り返され、ドアに加速と減速が交互に作用する。 
車輪Bが摺動面K1と摺動面K2の間を往復するとき摺動面K1と摺動面K2とに無数回の衝突することになるが、摺動面K1と摺動面K2から離れる度に車輪は無負荷状態で摺動面Kの終端部Keに転移しようとするが、摺動面K1と摺動面K2が回転可能でバネで付勢される図示されない状態にすると、或いは接続軸Cが「ドアに設けられる支軸Cjの周りに回転自在に軸支される回転体Jc」を介してドアDに移動可能に取付けられ、回転体JcとドアDとの間に押しバネ
Uが介在するようにすると、摺動面K1と摺動面K2の間を往復するとき、摺動面K1と摺動面K2に取り付く図示されないバネ或いは押しバネUを振幅させることになり、該無数回の衝突がドアに伝わらず、しかも車輪が摺動面K2の終端部Keに転移する動作が遅延される。図6(c)に示すように車輪が摺動面K2の終端部Keに近づくに従い、回転体Jの軸芯線ZjとリンクAAの軸芯線Zaaとが重なる方向に移行し駆動力距離Lvが減少し、駆動力Mvは「車輪の回転軸Ibを牽引する力」に大きく伝えられドアを戸当たりGdに強く押圧する。リンクAAの軸芯線Zaaと「車輪の回転軸Ibを牽引する力」とが一直線状に配される状態に移行するとき連結軸Pの円運動において周方向に小さな力が働き、径方向に大きな力が働く。該径方向の大きな力は小さくても所謂クサビ効果で、1つは車輪Bが摺動面K2を押圧する大きな力Fbに、もう1つはリンクAの軸方向に働く密閉力に分解される。また押圧力FbとリンクAの軸芯線Zaとは一直線状に配される状態に移行する。 
そもそも本発明の密閉機構は「ドアを密閉する押圧力Fb」とそれを支持するリンクAの軸芯線Zaとが一直線状に配される状態であって、双方とも「閉止したドア面D0」に直交する状態にして、且つ押圧力Fbの作用点Ibを「閉止したドア面D0」に平行に移動することによって作用点の移動方向の小さな力を作用点の移動方向と直角方向の大きな力に変換する機構であって、クサビ効果が働く密閉機構である。図6の密閉機構はクサビが車輪Bであって、クサビの両側の摺動面の片方が摺動面K2であり、他方がドアDに回転可能に取り付くリンクAである。「押圧力Fbを支持するリンクAの軸芯線Za」が「閉止したドア面D0」に直角であればあるほど、密閉時に強い力がドアDに働き、開くときリンクAが抵抗する。リンクAが回転することによって開くことが出来るが、リンクAの軸芯線Zaが「閉止したドア面D0」に直角でないほど、またリンクAが短く作用点Ibの回転半径が小さいほどリンクAは回転しやすく「開くときのリンクAの抵抗」は小さい。ドアDに図示しない摺動面KDを固定し、ドア枠Wに固定された摺動面K2との間をクサビの車輪Bが進入すると仮定すると、摺動面KDと摺動面K2との間を広げることが出来るが、摺動面KDと摺動面K2との間を狭めることによって、クサビの車輪Bを押戻すことは出来ない。このようにクサビの両側の摺動面の片方が移動可能でなければ両側の摺動面の間を狭められても拡げることはできない。図6の密閉機構は「ドアDに固定すると仮定した摺動面KD」を回転可能したものであってリンクAである。 
図7の開閉装置はラッチ当接時にドア慣性力が取り除かれなかった場合でも、密閉時にはドア慣性力が取り除かれるようにするもので、「(あ)の回転手段」と「切替範囲」と「(い)の回転手段」とを備えなくとも良い開閉装置である。ラッチ当接時以前にドアが止まるまで減速したとしても、ラッチ当接時から全閉時までのドアが僅かに回転する間おいて、強い力が作用すると大きな慣性力がドアに取り付き、閉止時の衝撃音が無視出来ない大きさになる。逆にドアが高速回転してラッチに当接する場合でも密閉までに減速すれば閉止時の衝撃音が無視出来る大きさになる。「ドアに作用する力」が密閉以前に「ラッチを凹ませる力」以下であろうと以上であろうと、密閉時に「ラッチを凹ませる力」を僅かに上回る力が作用するようにすれば閉止時の衝撃音の問題は解決される。またラッチが凹みながら減速する図7のような開閉装置は、密閉以前に「ドアに作用する力」が減少しながら密閉時に「ラッチを凹ませる力」になる場合も、或いは密閉以前に増加しながら密閉時に「ラッチを凹ませる力」になる場合も、密閉以前の「ドアに作用する力」の履歴にい関係なく閉止時の衝撃音を同じくする。衝撃音を小さくするために施される手段はドアの回転の最後に近いほど効果が大きく、それ以前に施される手段はドアの回転の最後に施される手段が最も効果的に働くようにするためのものである。図7の開閉装置はそれ以前に施される手段を密閉装置に集約し、且つ密閉装置が回転機能を兼備するようにしたものである。 
図1~6の「切替範囲」では駆動部と開閉部は全く或いは殆んど連動しないが、「(あ)の範囲」と「(い)の範囲」では駆動部と開閉部は連動し、駆動部によって開閉部が運動すると同時に、ドア慣性力によって駆動部が動く。ドア慣性力によって駆動部が動く場合、ドア慣性力によって開閉部が動き、開閉部が勝手に動くことによって駆動部が開閉部を動かす必要がなくなり、無負荷状態で運動し、バネが一瞬にして伸縮するのでドアに遅れることなく追従する。この場合駆動部と開閉部は互いに干渉しあうのではなく、駆動部は開閉部の運動を妨げることもなく自由にする。ドア慣性力が閉止寸前で消滅するドアは「切替範囲」以降で駆動部がドアを閉止する。ドア慣性力が消滅しなかったドアは「切替範囲」で駆動部が止まったままでも運動するので「切替範囲」はなく、「(い)の範囲」で駆動部に関係なくドアが閉止する。ドア慣性力によってドアが閉止する場合、ドア慣性力の大きさの範囲が大きいためドア衝撃音の大きさの範囲も大きくなるので、ドア慣性力によってドアが閉止する事態は避けなければならない。図7の開閉装置は、ドア慣性力によって開閉部が動く場合に駆動部と関係なく開閉部が動くのではなく、ドアが閉止する全範囲でドア慣性力による開閉部の動作が駆動部の運動を妨げるものであって、またドア慣性力で加速された状態でラッチが凹む状態であっても密閉に至らないようにする手段(以下、密閉阻止手段と言う。)を備える。 
「ドアが僅かに回転する間に急激に減速すること」は衝突に近い衝撃を伴うことであって、密閉阻止手段が密閉される以前に衝撃を緩和する緩衝手段をも備えるものであれば、ラッチを凹ませたときにドアが高速回転している場合でも、閉止時に激しい衝撃が働くことなくドアが密閉される。図7の密閉装置は衝撃をバネで吸収するため、バネの復元力でドアが開く方向に跳ね返らないように密閉阻止手段と密閉作業は同時進行する。図7の密閉装置はドアが僅かに回転する間にリンク装置が大きく動作するようにして、大きな動作がゆっくりと進行して遅延する間にドア慣性力が消滅するようにするものである。「切替手段」もドアが僅かに回転する間に作用線が大きく移動或いは回転するものであるためリンク装置が大きく動作する特徴があるが、図7の密閉装置においても「切替手段」においても「ドアが僅かに回転する間に大きく動作する特徴」はドアを回転させずに無負荷状態で大きく動作することであって、動作の大きさに関係なく一瞬にして動作が終了するものでもあり、閉止したドアを開くときドアを回転させずにリンク装置を大きく動作させることが出来ないことでもあって、閉止したドアを開くことが出来ないことでもある。図7の密閉装置は「切替手段」に密閉阻止手段を追加した装置で、一瞬にして動作が終了する課題も閉止したドアを開くことが出来ない課題も解決する。 
図7の構造は図2の構造と同じであって、ドアDとドア枠Wが入れ替わっている。図7において図2の摺動面Kはドアに取り付き、図2の接続軸Cはドア枠Wに取り付く。て車輪BはリンクAの先端部に設けられる車輪の回転軸Ibに装着され、リンクAは「固定支軸Swを軸に図中矢印イ方向に回転付勢された回転体J」の先端部に設けられる連結軸Pに接続される。連結軸Pは「固定支軸Swを中心とする円周Rsw1上を図中矢印イ方向に移動し車輪Bが摺動面Kを押圧する。これによってドアDは図中矢印ロ方向に回転する。摺動面KはドアDに設ける接続軸Cに回転可能に軸支され、押しバネUによって図中矢印ハと反対方向に回転付勢される。摺動面Kの図中矢印ハと反対方向の回転は摺動面Kの底面とドア面とが係合して阻止されている。摺動面Kは接続軸Cの周りに回転自在に軸支され、接続軸Cは「ドアD設けられる支軸Cjの周りに回転自在に軸支される回転体Jc」に設けられる。 
摺動面Kのドア面と向かい合う面Kdはドア面に向かって凹面であって、閉止直前で「ドア枠Wに設けられる摺動面Kw」に沿って移動し、摺動面Kと摺動面Kwとの接点bkはドアは閉止するに従い接続軸Cに近づきながら移動する。車輪Bは「摺動面Kのドア面と向かい合わない面Kb」に沿って移動するが、図7(a)に示すように「(あ)の範囲」で枢軸Oに近い摺動面Kの基端部Koに停留し作用力距離Loは小さい。図7(b)に示すように閉止寸前で摺動面Kdが摺動面Kwに当接するとき押圧力Fbの作用点bは「接点bkの接続軸Cより遠い側」にあって押圧力Fbは接続軸Cをドア枠Wに近づく方向から遠ざける方向に付勢しドアを制止する。このように図7の密閉装置は閉止寸前にドアを停止させる密閉阻止手段を備える。車輪Bは「リンクAの軸芯線Zaと摺動面Kとの間の角度Θak」が鈍角となって移動し始め、角度Θakが直角であるときを境にして「切替手段」が始動する。図7(b)に示す「切替範囲」では、摺動面Kdが摺動面Kwに当接するとき角度Θakは鈍角であって車輪Bが「閉止したドア面D0」に略平行となる摺動面Kの終端部Keに向かって移動する。「車輪Bが摺動面Kを押圧する力の作用線Fb」が枢軸Oから遠ざかる。 
図7の密閉装置はドアDの回転を全く或いは殆んど伴わずに押圧力Fbの作用線を枢軸Oから大きく遠ざける摺動面Kを備える。作用点(車輪の回転軸Ib)は「閉止したドア面D0」と平行に直線的に移動しながら、密閉時に力Fbの作用線は「ドアの回転の径方向」に直行する。作用点が仕事を伴わずに移動すると、バネは一瞬にして伸縮し、作用点の移動にも「切替手段」にも時間が掛からないことになり「(あ)の回転手段」から「(い)の回転手段」へ時間が掛からず切り替わるので、ドアは更に加速されることになる。図7においては「作用点Ibが回転の中心Oから遠ざかる通路K」を回転可能に軸支することによって、また「作用点Ibの直線的な軌道」を曲線的に且つ上り勾配とすることによって作用点Ibの移動に抵抗が掛かるようにしている。また「押しバネUに密閉力を蓄える仕事」によってドアを減速している。図7の密閉装置も本発明の「切替手段」も作用点Ibの移動に負荷を掛けることによってによって、作用点Ibが時間経過を伴って転移するようにするものである。 
また図7(c)に示すように押圧力Fbの作用点bが「接点bkの接続軸Cに近い側」に移動すると、回転体Jcが接続軸Cjを軸に図中矢印ハ方向に回転し、同時に摺動面Kも接続軸Cを軸に図中矢印ハ方向に回転し押しバネUを縮める。車輪Bが摺動面Kの始端部Koにあるとき交差角度Θaは直角に近似し、車輪Bは摺動面Kを強く押圧するが、交差角度Θaは大きく鈍角に移行すると、車輪Bは摺動面Kを殆んど押圧することなく一気に通過するようになるが、押しバネUが縮むことによって車輪Bの移動速度が減じられる。図7(d)に示すように車輪Bが摺動面Kの終端部Keに至ると、「車輪Bと摺動面Kとの接点b」が摺動面Kの回転軸Cを乗り越えて通過するので、摺動面Kは接続軸Cを軸に図中矢印ハ方向に回転し押しバネUを縮める。押しバネUが縮むことによって「ドアが受ける衝撃」は緩和されドア慣性力が減少する。摺動面Kに「ドアを回転させる力」と「これに抵抗する力」が同時に働き、押圧力Fbがドアを密閉するまでドアの密閉を阻止する。このように摺動面KとドアDは2つの力に挟まれながら閉止方向に移動する。次に摺動面Kの回転は当たりGkによって阻止され、摺動面KはドアDの固定された状態になる。また摺動面Kdが摺動面Kwから離れて押圧力Fbの全てがドアを密閉する力に変わる。このとき当たりGjはリンクAと当接して回転体JとリンクAとは相対的に一体になる。固定支軸Swを中心とする作用点Ibの回転半径は小さくなり、回転の最後にテコの原理が働き駆動力Mvは押圧力Fbに大きく変換される。 
ドアが密閉されるとき押しバネUが縮みながら「ドアを閉止する方向と反対方向の力が増加し駆動部がドアを密閉する力はそれだけ大きくなるが、密閉時にドアに作用する力が同じであれば
密閉動作も衝撃音も同じになる。またドアを開くときにおいても該反対方向の力は「ドアを開く力」を小さくする。このように押しバネUによる密閉時の抵抗は「密閉するときドアに作用する力」も「ドアを開くとき必要な力」も増加させるものではない。このようなことから図7(d)に示す密閉時の摺動面Kの回転は当たりGkによって阻止されず、また摺動面Kdが摺動面Kwから離れない状態で、押圧力Fbがドアとドア枠とを同時に押圧したとしても「密閉するときドアに作用する力」も「ドアを開くとき必要な力」も増加しない。 
図7(e)はドアを開く過程において終端部Keに至った車輪Bが戻り始めるときの状態図で、図7(d)よりドアの開度は大きいことを示す。摺動面Kが回転可能であることでドアを開くとき車輪Bが戻りやすくなり、閉止過程において「ドアを密閉する範囲で非常に小さい力が働く範囲」は開く過程において大きい力が働く範囲で、ドアは開いて何処で手を離しても止まったままにならないことを示している。図7においてはドアを開く当初は作用点Ibが摺動面Kの終端部Keに留まったままリンク装置は運動可能で、しかもドアを開くときに摺動面Kbが回転して車輪Bが下り勾配を戻るようになる。作用点Ibは接続軸Cの周りを円運動しながら接続軸Cから遠ざかる。また枢軸Oの周りを円運動しながら枢軸Oに近づく。 
図8の開閉装置は回転軸を共有する2つ開閉体とバネの3つのリンクからなり、2つ開閉体のそれぞれにバネの取付軸を設けて、バネの伸縮によって2つ開閉体が相対的に回転する回転機構を備え、取付軸の片方を回転軸から近い位置に、他方の取付軸を回転軸から遠い位置に設けることによって2つ開閉体の相対的回転に伴うバネの伸縮を小さくして2つ開閉体の相対的回転の加速を小さくし、また図8の開閉装置は回転軸から近い位置の取付軸を揺動可能に取り付けて、バネの軸芯線が回転軸から近い位置に拘束し、2つ開閉体の所定の開度を境にして拘束解除して遠い位置に移動させて、2つ開閉体に作用する力が2つ開閉体の相対的回転を全く或いは殆んど伴うことなく小から大に或いは大から小に転じることを特徴としている。図8の開閉装置は引きバネVの片方の取付軸を枢軸O近傍のドアDの支軸Saに、他方の取付軸を枢軸O遠傍のドア枠Wの固定支軸Swに設けて、引きバネVの伸縮によってドアDが図中矢印ロ方向に閉止回転し、ドアDの支軸Saが枢軸Oから近い位置の拘束位置と遠い位置の拘束解除位置との間を接続軸Cを軸に揺動可能に取り付けて、引きバネVに軸芯線Zaが接続軸Cを横切るドアの所定の開度を境にして、引きバネVに軸芯線Zaが枢軸Oから近い位置の拘束位置と遠い位置の拘束解除位置との間を揺動することによって、枢軸O周りに働く回転モーメントをドアの回転を全く或いは殆んど伴うことなく小から大に或いは大から小に転じることを特徴とする回転機構を備える。 
先ず図8(a)~(d)に示すリンク装置の動作について説明する。リンクAは接続軸Cを軸に図中矢印イと反対方向に回転するように引きバネVによって付勢され、図8(a)(b)に示すように「(あ)の範囲」では当たりGaによって図中矢印イと反対方向の回転は阻止されている。図8(c)に示すように「切替範囲」ではドアDの閉止回転によって接続軸Cがバネの軸芯線Zvを横切るようになり、図8(d)に示すように「(い)の範囲」ではリンクAは当たりGaから離脱して図中矢印イ方向に回転する。「ドア枠Wに設けた摺動面Ga」はリンクAの側面と「(あ)の範囲」で係合し、「切替範囲」で離脱する解除可能な拘束手段であって「(あ)の範囲」でリンクAの回転を拘束して、支軸Saを枢軸O近傍に留めて作用力距離Loを小さく維持し、「(い)の範囲」で拘束を解除して支軸Saを枢軸O近傍から遠ざけて作用力距離Loを大きくする。(リンクAのように拘束位置と係合離脱して揺動するリンクを以後、揺動リンクと言うことにする。)図8の揺動リンクと引きバネVとの連続体AVは図3,5の「引きバネVとリンクAとの連続体AV」と同様にリンクAの軸芯線Zaとバネの軸芯線Zvとが一直線状になるときを境にして枢軸O近傍に留めた支軸Saを拘束解除して作用力距離Loを大きく増加するものであるが、図3,5の場合、支軸Saは枢軸O近傍に取り付き、「切替範囲」でドアの回転を伴う。図8の場合、支軸Saは枢軸O遠傍に取り付き、リンクAの軸芯線Zaとバネの軸芯線Zvとが折り返される。「切替範囲」でドアの回転を伴わない。図8(a)において「リンクAの側面と摺動面Gaとの接点ba」はバネの支軸Saより枢軸Oから遠い側にあってドアが開く方向に付勢され全開時に静止状態を保つようにしている。 
「切替範囲」においてドアを回転させる力がゼロであってもリンクAを図中矢印イ方向に回転させる力は接続軸Cがバネの軸芯線Zvを横切った時点から徐々に増加する。リンクAが接続軸Cを軸に回転するとき、バネの伸縮量は回転当初は小さく回転するに従い大きくなる。リンクAの回転速度はバネの伸縮量に比例するので回転当初は非常にゆっくりと回りだす。バネの固定側の支軸SwがリンクAの回転の中心に近いほどゆっくりと回りだす。図8(d)は密閉時の状態を示し、接続軸Cが枢軸Oから離れることで、リンクAが大きく回転しなくても距離Loが大きくなるようにしている。リンクAの長さとバネの長さを長くして、バネの支軸が接続軸Cに近づけると、リンクAが回転するときバネの伸縮量は小さくなる。リンクAの回転に伴うバネの強さの変化は小さいので、リンクAは当たりGaから離れてゆっくりと動き始める。リンクAの回転速度にバネの強さは関係しないので、強いバネを使用して「バネの枢軸Oに近い側の支軸Sa」を限りなく枢軸Oに近づけることによって「(あ)の回転手段」がドアに小さく作用するようにして、閉止時のリンクAの回転を小さくすると、閉止時に装置は小さくなり、閉止時の装置は小さく収容することができる。 
また「切替範囲」においてドアが止まった状態でもドア慣性力で回り続ける場合でも、ドアの回転に関係なく伸縮部A,Vは運動し続ける。このことはリンクAが回転し始めるときのドアの開度も、回転し終えるときのドアの開度も僅かに一定しないことを意味している。「(い)の範囲」において伸縮部が引きバネVとリンクAの2つのリンクからなる4節回転機構となり、リンクの1つがバネであるため開閉体の回転が停止したままで引きバネVとリンクAとが回転出来る。このことは所定のドアの開度に対してリンク装置の形態が一定しないことを意味している。ドア慣性力によってはドアの動作が駆動部の動作に遅れる場合と追い越す場合があることになる。 
次に図8(e)~(h)に示す開閉装置について説明する。図8(e)~(h)は図8(a)~(d)に示したリンクAに密閉用の車輪Bと、密閉阻止用の車輪BBとを装備させた構造であって、密閉手段と密閉阻止手段を備える開閉装置の動作説明平面図である。リンクAの側面に取り付けた当たりGaは回転体Jcと係合離脱する解除可能な拘束手段であって、図8(e)に示す「(あ)の範囲」では接続軸Cが「引きバネVの戸当たりGdより遠い側にあって当たりGaは回転体Jcと係合する。図8(f)~(h)に示す「切替範囲」と「(い)の範囲」では接続軸Cが「引きバネVの戸当たりGdより近い側にあって当たりGaは回転体Jcと離脱する。リンクAが接続軸Cを軸に図中矢印イ方向に回転して当たりGaが回転体Jcと離脱すると、車輪Bと摺動面Kとが係合し接続軸Cが枢軸Oを軸に図中矢印ロ方向に公転する。図1~7において車輪Bと摺動面Kとは終止係合して離脱することはないが、図8(e)~(h)に示す「切替範囲」においてリンク装置の運動がドア運動に先行する場合と遅れる場合があって、車輪Bと摺動面Kとは係合する以前にリンクAの回転が終了して離脱したままになる場合と、車輪Bと摺動面Kとは係合した以後にリンクAの回転が始まり、リンクAの回転が終了しないままにドアが密閉に至る場合も考えられる。前者の場合は図8(f)に示すように「接続軸Cが引きバネVの軸芯線Zvを横切って車輪Bと摺動面Kとが係合する位置b10」と摺動面Kの基端部Koとの間の距離を延長することによって解決できる。後者の場合密閉時にドア慣性力の影響がないように「駆動部よってではなくドア慣性力によってドアが密閉されることを防ぐ密閉阻止手段」を備えることによって解決できる。密閉阻止手段はドア慣性力が密閉以前に消滅し切れない場合に、リンク装置の運動を全て停止するものであって、ドア慣性力がある場合にドアも駆動部も全停止し、ドア慣性力がなくなると再び動き始めるものである。 
図8(e)~(h)に示す開閉装置は密閉作業にドア慣性力の影響がないように「(あ)の範囲」で弱いバネの力で閉止することにより十分にドアを減速し、密閉作業の初めにおいて力不足でドアが停止する或いはそれに近い状態にするようにして、ラッチ雄部Rdが雌部Rwに当接したとき「ドアに作用する力」にラッチを凹ませる力がない状態にするものである。図8(f)に示すように「(あ)の範囲」の「ドアに作用する力」の履歴は枢軸Oを軸に公転するバネの取付軸Saの位置によって変化する。取付軸Saの位置が枢軸Oから遠ざかるほど作用力距離Loは大きくなり「ドアに作用する力」は大きくなるが、取付軸Saaのように取付位置がドア面に近づくほど「ドアに作用する力」全開時に大きく全閉時に小さくなり、早く閉まり始めて閉まるに従い減速される。取付軸Saaaのように取付位置がドア面から遠ざかるほど「ドアに作用する力」全開時に大きく小さく全閉時に大きくなり、遅く閉まり始めて閉まるに従い加速される。便所の扉のように早く閉まり始める方がよい場合は前者を、物を持って通過する扉で遅く閉まり始める方がよい場合は前者を採用する。図8(e)~(h)に示す摺動面Gaの形状は閉止寸前に取付軸Saをドア面に近づけるようにしたもので、閉止寸前に枢軸O周りに働く力の作用線を枢軸O方向にすることによって「ドアに作用する力」をゼロに近づけるものである。 
図8(f)に示すようにラッチ当接時に駆動部の運動速度を減速し切替作業時間を遅延することによってドア慣性力を消滅する。「車輪Bの枢軸Oを軸とする公転軌道」は摺動面Kの基端部Koはと略平行であって、「車輪Bの接続軸Cを軸とする公転軌道」と略直交する。車輪Bは摺動面Kの入り口Koと係合する当初において大きな抵抗を受け、摺動面Kの内部に侵入するに従い抵抗は減少する。車輪Bが摺動面Kの入り口Koにあるときドアは減速され、摺動面Kの終端部Keに近づくに従いバネの力が小さくても大きな密閉力が働くようになる。本発明の車輪Bと係合離脱する摺動面Kは車輪Bが入り口から内部に進入するに従い角度Θakが次第に増加し、入り口において車輪Bの移動方向の力が大きくても移動し難く、内部に進入するに従い車輪Bの移動方向の力が小さくても移動し易くなる。「切替範囲」の初めに車輪Bが「距離が短くても急勾配の摺動面K」に沿って移動することによってバネの付勢力が大きくてもドアを減速し、「切替範囲」の終わりに車輪Bが緩い勾配の摺動面Kに沿って長い距離を移動することによってバネの付勢力が小さくてもドアを密閉する。 
「切替範囲」で車輪Bが摺動面Kの上り勾配を移動するとき、上り勾配が緩いほど「車輪Bの移動方向に働く小さな力」を「移動方向と直角方向に働く大きな力に変換するが、バネで動くドアは上り勾配が緩いほど移動速度は速くなる。通常の減速手段は一定速度が保たれるため弱い力を強い力に変換するとき減速するが、バネで動くドアは「ドアを僅かに回転させるための車輪Bの移動距離」が長いにも拘らず、一瞬にして通過し終える。車輪Bの移動速度を遅くするには移動距離が短くても上り勾配を急にして、出来るだけ弱い力で車輪Bが移動するようにして、車輪Bが移動する力が不足する状態にすることが必要である。このように摺動面Kの入り口に抵抗を設けて「(い)の範囲」の始まりに力不足を招いて車輪Bの移動を遅延する減速手段は、伸縮部の運動を制動するものであってドアを制動しよ
うとするものではないので、ドア慣性力の影響を受けることなく確実に実行され、減速手段がドアを途中で止めてしまうようにはならない。 
図8(a)~(d)の場合は「切替範囲」でリンクAの回転とドアの回転とが連動しないのでドアの回転が止まったままでもリンクAは接続軸Cを軸に回転可能で、バネの力がドアを回転させる力がなくてもドアは密閉される。図8(f)~(h)の場合は車輪Bが摺動面Kに沿って移動するときリンクAの回転とドアの回転とが僅かに連動するが、「切替範囲」でドアの回転が止まったままで、バネの力がドアを回転させる力がなくても「密閉用の車輪Bが摺動面Kに沿って摺動面Kの終端部Keまで移動する力」があれば、車輪Bが摺動面Kを押圧して接続軸Cが枢軸Oを軸に公転する。図8(h)に示すように「(い)の範囲」で「ドアに作用する力」の作用線が2つあって、1つはバネの軸芯線Zvであり枢軸Oから遠く離れる。もう1つは車輪Bが摺動面Kを押圧する力Fbの作用線であり枢軸Oから遠い位置に突如として出現する。摺動面Kを枢軸Oから遠く離れた位置に設けるほど押圧力Fbの作用線と枢軸Oとの間の距離は大きくなりドアがより強く密閉される。また密閉阻止用の車輪BBはドア枠Wに設けた当たりGwの周りに沿って移動することにより、リンクAが接続軸Cを軸に自転しないままではドアが密閉されないようにしている。 
閉止寸前にドアが停止し、或いはドアが十分に減速された状態で、リンクAが接続軸Cの周りを回転し始めて車輪Bが摺動面Kに沿って移動する場合は、車輪BBはドア枠Wに取り付けた当たりGwに接触することなく非常に僅かな間隔を保って接続軸Cの周りを公転する。閉止寸前にドアが停止しない状態で、ドアが減速せずに閉止しながら車輪Bが摺動面Kに沿って移動する場合は、車輪BBが当たりGwに衝突する。車輪BBが当たりGwに衝突するときのドアの回転速度が比較的小さい場合はリンクAは回転し続けて、大きい場合は回転停止してドアの回転も停止する。「切替範囲」においてドア慣性力によってドアが回転する速度が「リンクAの回転によってドアが閉止する速度」より速い場合は、図8(f)に示すリンクAが当たりGaから離れないままラッチ雄部Rdが雌部Rwに当接しラッチが凹むことになるが、車輪BBが当たりGwを押圧して駆動部もドアも回転しないようになり、しかもドアDはラッチ雄部Rdが雌部Rwに嵌まり込むまでの位置で停止する。 
図8(e)に示すように車輪BBの回転軸Ibbは「枢軸Oを中心とする円軌道Rbb上」を移動し当たりGwより枢軸Oから遠い位置を通過するため、ドアが高速回転して「リンクAの図中矢印イ方向の回転」が全くないまま車輪BBが当たりGwに係合すると「車輪BBが当たりGwを押圧する力」はリンクAを図中矢印イと反対方向に回転させ、リンクAが当たりGaと係合したままドアと互いに一体になった状態で停止する。図8(g)に示すようにドアが高速回転してラッチが凹む間に「リンクAの図中矢印イ方向の回転」が少ないほど駆動部もドアも回転が阻止される。車輪BBが当たりGwを押圧する状態が続いている間にドア慣性力は消滅して駆動部もドアも再び回転するようになる。図8(h)に示すように密閉時には車輪BBは当たりGwから離脱し、車輪Bが摺動面Kを押圧する力Fbの全てがドアに作用する。密閉にドア慣性力が参加すると、ドア慣性力の大きさが一定しないので閉止時の衝撃音も一定しないが、リンクAに密閉用の車輪Bと密閉阻止用の車輪BBとを兼備する構造は「ドア慣性力によるドアの回転」が「リンクAの回転によるドアの回転」より先行することを防ぎながらリンクAの回転によってドアを閉止する構造であって、密閉にドア慣性力が影響しない。 
図8の回転機構も図1と同様に「密閉装置の駆動回転軸C」を「ドアD設けられる支軸Cjの周りに回転自在に軸支される回転体Jc」に設けて、ドアDに移動可能に取り付け、駆動回転軸CとドアDとの間にバネUを挿入すると、図8(f)に示すようにラッチ雄部Rdが摺動面部Rwwに当接してドアが停止したままの状態で、しかも「(あ)の回転手段」がドアを回転させる力がなくても、バネUを縮める力があれば、接続軸Cがバネの軸芯線Zvを横切る力があるだけでリンクAは回転し始め「切替手段」が動作する。接続軸Cとバネの軸芯線Zvとの間の距離Lv」が大きく変化し、駆動軸Cの回りに働く回転力Mcは増加し、「(い)の回転手段」の力は徐々に増加し、バネUが伸縮して「バネUに蓄えられる力」がドアを密閉する力に到達する。「バネUに蓄えられる力」がドアを密閉する力に到達すると同時にバネUの復元力でラッチが凹み始める。このときリンクAの回転は殆んどなくバネUが大きく復元する。バネUが復元することによって停止したままのドアが再び回転し始めて密閉に至る。 
図8(f)に示すようにラッチ雄部Rdが雌部Rwの摺動面部Rwwに当接して凹み始めるときに「最も大きな力」が必要で、図8(g)に示すようにそれ以後ラッチが凹んだまま摺動面部Rwwに沿って移動し、図8(h)に示すようにラッチが再び飛び出してドア枠Wに嵌まり込むときには殆んど力は必要としない。「ラッチが凹むときに必要な最も大きな力」が図8(f)~(h)に示す過程において働き続けると、ラッチが凹んだ以後に密閉に至るまでに該最も大きな力に抵抗する力はなく、ラッチが凹んだまま摺動面部Rwwに沿って移動する間にもドアは加速する。ドアが停止してから「切替手段」が作用する場合でも密閉時に大きな衝撃音を発することになる。ラッチが凹んだ瞬間にリンクAの接続軸Cの周りの回転を止めるような処置を施すと、図8(g)に示すようにラッチ雄部Rdが凹んで、図8(h)に示すようにラッチ雄部Rdが飛び出すまでのドアの回転は「伸縮したバネUが復元する力」で駆動する。ラッチ雄部Rdが飛び出して雌部Rwに嵌まり込むときドアが回転してバネUが緩むようになり、「ドアに作用する力」は減少し「閉止したドア」に働く力も非常に小さくなる。ドアを開くときに必要な力も非常に小さくなって、ドアが軽く感じられるようになる。又閉止時に必要以上の余分な力が働かないので衝撃音は小さくなる。 
図8(h)に示すように密閉時には車輪Bが摺動面Kに車輪BBが摺動面Kwに沿って移動し、車輪Bと車輪BBとが「閉止したドア面D0」と平行に移動するように拘束されドアの回転を阻止することになる。図7においてと同様に閉止寸前に車輪Bが「閉止したドア面D0」と略平行な溝に沿って移動しながら車輪Bが「閉止したドア面D0」に近づく動きが阻止されるようにすると、ドアの回転を止めることになる。接続軸Cは「車輪Bが摺動面Kを押圧する力Fb」と「車輪BBが摺動面Kwを押圧する力」の2つの力で挟まれる状態になり、接続軸Cの枢軸Oの周りの公転が略止められた状態でリンクAが回転する。接続軸Cの公転とドアDの回転とがバネUを介して連動しているので、接続軸Cの公転の係止とドアDの回転の係止とが略一致し、密閉阻止手段はドアを「戸当たりに至るまでの位置」に留めながら、徐々に戸当たりGdに近づけて、密閉直前にドアを急制動する。図8(h)に示す密閉機構は密閉する力とこれに対抗する密閉を阻止する力でドアを挟み込んで所定の位置に留める手段(以後、挟み込み手段と言う。)手段を備える。所定の位置を「ラッチ雄部Rdが雌部Rwに嵌まり込む位置で戸当たりに至るまでの位置」とするとき、挟み込み手段は衝撃音を最も小さくする。 
図8の場合も図6で説明したように「車輪Bの移動方向に働く小さな力」はドアDを戸当たりGdに密着させる力と車輪が摺動面を押圧する力に分解され、所謂クサビ効果によってドアは密閉される。分解される2つの力が一直線上に配される状態に近づく程、2つの力の大きさは大きくなるが、閉止したドアを開くときに抵抗となる。ドアを開く動きに従い車輪Bは「閉止したドア面D0と直角方向」に移動しようとするが摺動面K或いは回転軸Cがこれを阻止する。「クサビ効果で密閉されたドア」は車輪の「移動方向の小さな力」を「移動方向と直角方向の力」に大きく変換すればするほど開き難いという欠点があって、閉止したドアを開くときにリンクAに回転が起きることによってドアは開放可能になる。リンクAは枢軸Oの回りを自転しながら公転するが、リンクAが回転することによって、ドアの僅かな回転に伴って車輪Bは「閉止したドア面D0」と直角方向に移動しながら「閉止したドア面D0」と平行方向に移動する。リンクAが回転するに従いリンクAはより回転しやすくなって「(い)の回転手段」の位置から「(あ)の回転手段」の位置に戻ることになる。ドアを閉止する過程において「ドアを密着する力」の方向が「閉止したドア面D0」に対して直角方向に近づくほど、また「車輪が摺動面を押圧する力」の方向が摺動面Kに対して直角方向に近づくほど、弱い力を強い力に変換するが、「閉止したドア面D0」に対して或いは摺動面Kに対して直角方向を通り過ぎるとドアを開くことが出来なくなるので、直角方向を通り過ぎずに出来るだけ直角方向に近づくことが望ましい。 
図8の密閉阻止手段はラッチが凹んだままドア枠Wに沿って移動する間の非常に僅かな時間内に働いて、ドアの閉止速度を減じるものであって、急激な速度の低下は衝突であって、単に密閉時の衝突を密閉以前に起こしたことに過ぎない。急激な速度の低下を起こさないためにはラッチがドア枠Wに当接するときのドアの閉止速度が小さく十分に減速された状態でなければならない。ラッチがドア枠Wに当接したときドアが静止している状態ではなく、ドアが運動しながらラッチがドア枠Wに衝突して、ドアの重量が衝撃荷重として働くようになると、ドアに取り付いた慣性力は「ラッチがドア枠Wに当接して凹むときに必要な力」を小さくする。閉止したドアには「ドアを密閉する力」が働いていて、閉止したドアを開くとき「ドアを密閉する力」と同じ大きさの力を反対方向に働かせる必要がある。閉止したドアを開くときに要する力を出来るだけ小さくするには「ドアを密閉する力」を出来るだけ小さくしなければならない。そのためにはラッチがドア枠Wに当接したときドアが静止している状態ではなく、ドアがある程度運動した状態で密閉作業に慣性力が参加して「ラッチがドア枠Wに当接して凹むときに必要な力」を小さくするようにするとよい。そのためラッチ当接時のドアの閉止速度は上述の密閉手段が衝突を起こさない程度に大きいほうが望ましい。閉止寸前にドアが運動した状態で、車輪BBがドア枠Wに取り付けた当たりGwに接触することなく接続軸Cの周りを公転するような場合はラッチが十分な減速手段となり、ラッチが凹むことによって慣性力が減じられ、ラッチがゆっくりと凹むことによってドアは減速される。 
密閉作業に慣性力が参加した分だけ密閉のためのバネの力は減じられるが、また閉止寸前に車輪BBが当たりGwに接触して減速されるが、慣性力がなければドアが止まってしまうことを意味している。閉止過程においてはラッチがドア枠Wに当接する位置を通過するときドア慣性力が取り付いているが、「閉止したドア」を開いてラッチがドア枠Wに当接位置でドアから手を離す場合、ドアはドア慣性力が取り付いていない分だけ密閉する力に及ばないことになり停止したままで密閉には至らない。しかしながら図1で説明したように閉止過程で閉止寸前の位置はドアを開く過程においては「(い)の回転手段」が働く位置で、何処の位置でドアから手を離しても、ドアは停止したままで密閉には至らないようにはならない。図8(f)に示すように閉止過程において閉止寸前に、回転体JcとリンクAとが閉じた状態から開いて、「摺動面Kと離れた状態にある車輪B」が摺動面Kに乗り移るドアの開度Θdsより、開く過程において図8(h)に示すように回転体JcとリンクAとが開いた状態から閉じて、「摺動面Kに接触した状態にある車輪B」が摺動面Kから離れるドアの開度Θdoは大きく、該ドアの開度Θdo以下の範囲では「(い)の回転手段」が働く。 
ドアを全開して手を離すと慣性力が密閉作業に利用される。ドアを少し開いて手を離すと、強い「
(い)の回転手段」が該慣性力を上回り、該慣性力が取り付かない状態から閉止し始まるにも係らずドアが止まったままにならない。またドアを全開して手を離すとき密閉以前に減速手段が動作するが、少し開いて手を離すと動作せず、動作する場合でも強い「(い)の回転手段」が減速手段を上回る。このように4節回転機構のリンクの1つがバネに代わることによってリンク装置の自由度が増し、ドアが閉まるときと開くときにリンク装置の形態に違いが認められるようになる。 
図9の開閉装置は枢軸Oから近い位置にあって枢軸Oから近い位置に駆動力が作用する回転装置と、枢軸Oから遠い位置にあって枢軸Oから遠い位置に駆動力が作用する密閉装置とを備え、ドアの所定の開度を境にしてドアを回転させる作業が回転装置から密閉装置に受け継がれる実施例である。図8の開閉装置と同じく回転軸Oを共有する2つ開閉体D,WとバネVの3つのリンクからなり、バネVの取付軸の片方を回転軸Oから近い位置に、他方の取付軸を回転軸から遠い位置に設けるリンク装置であるが、図8の開閉装置と異なり回転軸から遠い位置の取付軸を揺動可能に取り付けるもので、図8の実施例のように「枢軸Oから近い位置に設けるバネの支点Sa」が移動する場合は「バネの力の作用線Zvと枢軸Oとの間の距離Lv」が大きく変化するが、図9の実施例のように「枢軸Oから遠い位置に設けるバネの他方の支軸」が移動する場合はバネの支点の移動によって「バネの力の作用線Zvと枢軸Oとの間の距離Lv」の変化は殆んどない。しかしながら図2,8において接続軸Cは枢軸Oから遠い位置にあって接続軸Cに軸支されるリンクが「(い)の範囲」で大きな回転をするように、図9の開閉装置においてもこの大きな回転が枢軸Oから遠い位置に認められる。図8の開閉装置と同様に、この大きな回転で枢軸Oから遠い位置に駆動力が作用するようにする。 
バネの片方の支軸Swはドア枠Wに設けられ、他方の支軸SaはドアDにリンクAと回転体Jcとを介して取付けられ、固定支軸Swは枢軸Oに近く位置し支軸Saは遠くに位置する。リンクAは接続軸Cを中間にして片方の端部に密閉用車輪Bとバネの支軸Saを、他方の端部に密閉阻止用車輪BBを取り付ける。車輪Bは回転軸Ibに、車輪BBは回転軸Ibbに装着され、回転体Jcは「ドアに設けられる支軸Cj」の周りに回転自在に軸支され、接続軸Cはドアに移動可能に取付けられる。図9(a)に接続軸Cがバネの軸芯線Zvを横切る以前の「(あ)の範囲」の状態を破線で示し以後の「(い)の範囲」の状態を実線で示す。バネの支軸でドア枠Wに固定される支軸を固定支軸、固定されない支軸を公転支軸と言うことにすると、図9(a)に示すように枢軸Oと固定支軸とを通る直線Tvを境にしてバネの付勢方向が変わり、バネの伸縮量の変化は公転支軸を枢軸Oから遠い側とするときの方が公転支軸を枢軸Oから近い側とするときの方より小さくなる。円弧Roは枢軸Oを、円弧Rsは固定支軸を中心とする円とすると円弧Roと円弧Rsの間の領域はバネの伸縮量を示している。ドアの図中矢印ロ方向の回転は「(あ)の回転手段」である引きバネVVによって、リンクAの図中矢印イ方向の回転は「(い)の回転手段」である引きバネVによってなされる。「(あ)の範囲」で引きバネVVは短くなりドアを閉止方向に回転させ、引きバネVは長くなってドアを開く方向に付勢する。このように回転作業に携わるバネと密閉作業に携わるバネを別にすることにより、ドアに作用する力の大きさを回転作業と密閉作業において独自の大きさに設計でき、作用力距離Loによらずにバネの強さによって大きさを調節することが出来るので、バネの強さを大きくして作用点を枢軸Oの近くにすることによって装置を小型化することが出来る。図9(b)(c)においてバネの図示は省略する。 
引きバネVの枢軸Oに近い支軸はドア枠Wに、遠い支軸はドアDに取り付き、引きバネVVの枢軸Oに近い支軸はドアDに、遠い支軸はドア枠Wに取り付く。ドアDとドア枠Wとは枢軸Oを共有し相対的に回転する2つの開閉体であることから、どちらも片方が枢軸Oに近い支軸であって、他方が遠い支軸であることにな代わりがなく、バネを付勢手段として閉止することには同じである。但し取付位置によって動作が異なるだけである。このようにドアDとドア枠Wが置換しても同じ回転機構であることから、図9においてドアが固定され、ドア枠が枢軸Oの周りを回転すると考えれば、ドア枠Wに取り付いた接続軸Cの周りに車輪Bを装着したリンクAが回転し、ドアに摺動面K1~K3が取り付いた場合も図9に示す実施例と同様であることが理解できる。このようなことから本発明のその他の実施例においても、ドアDとドア枠Wが置換しても同じ回転機構であり、例えば密閉機構において車輪Bを装着したリンクAと摺動面KとがドアDとドア枠Wとのどちらに取り付けても構わないということになる。 
リンクAの図中矢印イと反対方向の回転は当たりG1によって阻止され、回転体Jcは接続軸Cjを軸に当たりG2に係止される位置と当たりG3に係止される位置との間を揺動する。図9(a)に実線で示すように、接続軸Cがバネの軸芯線Zvを横切ると、リンクAは接続軸Cを軸に図中矢印イ方向に回転する。車輪BはリンクAの表面に、車輪BBはリンクAの裏面にそれぞれリンクAを挟んで取り付けられ、それぞれとリンクAが動作する水平面は異なる。摺動面K1は車輪Bと係合離脱し、摺動面K2,K3は車輪BBと係合離脱する。摺動面K1と摺動面K2,K3はリンクAが動作する水平面を挟んでそれぞれ反対側にある水平面に設けられる。図9(b)はドアの開度が15度、11度、10度のリンク装置の状態図で、それぞれ閉止寸前、ラッチ当接時以前、ラッチ当接時当初、の状態を示す。ドアの開度が15度から11度の間にリンクAが摺動面K1の下で摺動面K2,K3の上を通過する。開度が11度から10度の間にリンクAが回転して摺動面K2上を移動し、その後摺動面K3上を移動する。図9(c)はドアの開度が10度、9度、8度のリンク装置の状態図で、それぞれラッチ当接時当初、ラッチ当接時以後、全閉止寸前の状態を示す。車輪Bが摺動面K1上を、車輪BBが摺動面K3上を同時に移動し、密閉を阻止しながらドアを閉止回転させる。接続軸Cが図中矢印ロ方向に移動し、回転体Jcが図中矢印ハ方向に回転してドアDと相対的に一体となりドアが全閉される。 
車輪Bが摺動面K1に沿って移動するとき、所謂クサビ効果で「車輪Bの移動方向に働く小さな力」は車輪Bが摺動面K1を押圧する力とリンクAの軸芯線に沿って働く軸力に分解され、後者をラッチが支持する。ラッチが支持する力は車輪BBが摺動面K3上を移動するとき接続軸Cが略停止した状態になるので徐々に増加し、やがてラッチが凹むことになる。図9は「作用点が枢軸Oに近い位置から遠い位置に転移する回転機構」であって、「(あ)の範囲」で「ドアを回転させる力」は固定支軸Swを枢軸Oに近づけることによって限りなくゼロに近づき、「(い)の範囲」で「ドアを密閉する力」は摺動面Kを枢軸Oから遠ざけることによって限りなく大きくなる。作用点が枢軸Oに近い位置から遠い位置に転移する回転機構」は「ドアを回転させる力」と「ドアを密閉する力」との比率をゼロから無限大の間で調節できる。 
閉止寸前で「ドアに作用する力の作用線」を枢軸Oに限りなく近づけて「ドアに作用する力」がなくなるようにすると、ドアは閉止寸前で減速する。全開してドアから手を離す場合も、途中から手を離す場合も「ドアの枢軸Oと取付軸Swとを通る直線Tv」とバネの軸芯線Zvとが一致する位置でドアは停止する。引きバネVVは片方の支軸Sa2をドアDに、他方の支軸Sw2をドア枠Wに取り付けて、「ドアに作用する力がなくなるときのドアの開度」を「切替手段」が動作し始める所定の位置に近づける役目をしている。「(あ)の回転手段」の動作が小さいことに比してドアの回転は大きく、「ドアが停止する位置」を「ラッチがドア枠に当接する位置」に調節することは困難であるが、接続軸Cを取り付ける回転体Jcとドア面との間の角度Θjcを調整することによって、また回転体Jcとドア面との間に押しバネUを挿入することによって、ドアを「ラッチがドア枠に当接する位置」に停止させ待機させることが出来る。図1,8と同様に回転体Jcを押しバネUによって図中矢印ハと反対方向に付勢し、当たりG2によって図中矢印ハと反対方向の回転を阻止すると、押しバネUは図1,8と同様の機能を有し、閉止寸前に「ドアに作用する力」がなくなっても「(あ)の回転手段」から「(い)の回転手段」へ切り替わるようになる。 
4節回転機構のリンクの1つがバネに代わるリンク装置であるので、リンクAの回転とドアDの回転とが連動せず別々に動作し、ドアDがラッチ当接時に停止してリンクAの回転する場合は回転体Jcが図中矢印ハ方向に回転するが、ドアDがラッチ当接時に高速回転してリンクAの回転がドアDの回転に遅れる場合には、車輪BBが摺動面K3を介してドア枠Wに係止され、回転体Jcが図中矢印ハと反対方向に回転して当たりG2に係合してドアDと相対的に一体となりドアを停止させる。また図9(c)に示すドアDに取り付く摺動面KdはリンクAの回転の途中で車輪Bに係合してリンクAの回転を抑制する手段で、車輪Bが摺動面K1上を車輪BBが摺動面K3上を同時に移動するとき、接続軸Cの枢軸Oの周りの公転が略停止しドアDが回転し続けるとき、車輪Bに係合する。このように駆動部とドアDとが連動せず別々に動作するとき、ドア慣性力によるドアの回転速度と、リンクAの回転によるドアの回転速度とが異なり、リンク装置は時間経過と共に所定の運動から外れた運動をするようになる。摺動面Kdの減速手段はドア慣性力によって所定の運動から外れると制動手段が働くようにするもので、ドア慣性力がなくなるとリンク装置は所定の運動に復帰し制動手段が働かないようになる。 
図9(d)~(g)は図9(d)~(g)の密閉装置にバネを取り付けた場合にバネが果たす役割について説明するもので、ドア慣性力によって伸縮したバネは復元するときドアを開く作用があるが、ドア慣性力でバネが伸縮すると同時に密閉力が働くことによってドアが開くようにはならないことを説明する。図9(d)~(g)の密閉装置は密閉阻止用の車輪BBが密閉機能を兼ね備えるようにしたもので車輪Bは省略できる。密閉阻止用の摺動面K3と密閉用の摺動面K1は「ドア枠Wに設けられる支軸Skの周りに回転自在に軸支される摺動面K」に設けられ、摺動面Kの両側には押しバネU1、U2が取付けられる。摺動面K2は省略される。押しバネU3は回転体Jcを図中矢印ハ方向に付勢する。回転体Jcの図中矢印ハ方向の回転は回転体Jcの側面とドア面とが当接することによって阻止される。回転体Jcの回転軸Cjを枢軸Oに近い位置に設けると押しバネU3の復元力がドアを開く方向に作用するので、回転体Jcの回転軸Cjは枢軸Oから離れた位置に設ける。図9(d)はリンクAの回転軸Cがバネの軸芯線Zvを横切った状態で、リンクAが当たりG1から離脱して回転軸Cを軸に図中矢印イ方向に回転しようとしている状態を示す。またドア慣性力が大きい場合であって、ンクAが当たりG1から離脱しないまま車輪BBが摺動面K3に当接した状態を示す。角度Θakが鋭角であるので、リンクAの回転は阻止されドアDの図中矢印ロ方向の回転は継続し、摺動面Kが図中矢印ニ方向に回転し、押しバネU2が縮んでいる。ドア慣性力が押しバネU2に吸収されて、ドアは減速される。 
図9(e)は縮んだ押しバネU2が伸びる状態を示している。摺動面Kが支軸Skを軸に図中矢印ニと反対方向に回転し、回転体Jcは回転軸Cjを軸に図中矢印ハと反対方向に回転し、押しバネU3が縮無。同時に角度Θakが鋭角から鈍角に移行し、リンクAが接続軸Cを軸に図中矢印イ方向に回転可能になる。図9(f)はリンクAの図中矢印イ方向の回転によって、車輪BBが摺動面K3から摺動面K1に移動して摺動面K1を押圧することによって、摺動面Kを更に図中矢印ニと反対方向に回転させ押しバネU1が縮無状態を示す。押しバネU2はドア枠Wから
離れて無効になる。また回転体Jcを図中矢印ハ方向に回転させる。図9(g)はラッチ当接時にドアが止まったままリンクAが更に回転して、回転体Jcの側面とドア面とが当接して、回転体JcとドアDとが相対的に一体になり、摺動面Kを更に回転させて押しバネU1を更に縮め、押しバネU1に「ラッチを凹ませる力」が蓄えられた状態を示す。 
バネに力が蓄えられるとき負荷がかかっていくときで時間が掛かるが、バネが緩むときは負荷がなくなるときで時間が掛からない。図9(d)~(g)に示す動作はドアが僅かに回転する間にリンクAと回転体Jcとが交互の回転し密閉装置が複数の動作をし、しかもこれらの動作がドアの回転に関係なく、一瞬にしてではなく時間を掛けて行われるので、ドアの僅かな回転に長い時間が掛かることになって、ドアが停止に近い状態まで減速されることになる。これらの密閉装置の複数の動作は押しバネU1,U2,U3が非常に弱いバネであっても、或いは押しバネが取り付かない場合でも可能である。 
図10は「接続軸Cをドアに移動可能に取り付けた開閉装置」について回転機構と衝撃音解消効果とを説明する動作説明平面図で、図10の回転装置は図1,8の回転体Jcを第1のドアとしドアDを第2のドアとするとき、「(あ)の範囲」で第1のドアに伝わる駆動力は「切替範囲」で絶縁され、「(い)の範囲」で「第2のドアに準備された付勢力」がドアを密閉し、回転作業から密閉作業へリレーするものである。構造は図9と同じく回転装置のバネと密閉装置のバネとを別にするもので、作用力距離Loではなく、バネの強さによって「(あ)の範囲」と「(い)の範囲」とで異なる大きさの力がドアに作用するようにするもので、密閉装置のバネを強くすることによって作用力距離Loを小さくして装置を小型化するものである。また駆動部とドアとの間に第1のドアを取り付けることによって、ラッチがドア枠に当接したまま「(あ)の回転手段」でドアが回り続けて、「切替手段」がラッチがドア枠に当接したあとに動作するように出来る。 
先ず図10(e),(f)によって回転機構を説明する。図10(e),(f)に示すドアは第1のドアAと第2のドアDと付勢手段V,Uとを備えるドアで、第1のドアAの付勢手段として引きバネVを、第2のドアDの付勢手段として押しバネUを採用する。図10(e)の実線はラッチ雄部Rdが雌部Rwの摺動面部Rwwに当接してドアが静止した状態を示す。引きバネVはドアを回転させる力はあっても「ラッチを凹ませる力」はない。引きバネVの力を大きくしてリンクAを接続軸Cを軸に図中矢印イ方向に回転して押しバネUを縮めると、押しバネUに「ラッチを凹ませる力」が蓄えられる。図10(e)の実線で示す「押しバネUが伸びた状態での引きバネVの力」は「ドアを回転させるだけの力」であって非常に弱く、これに比べて図10(e)の破線で示す「押しバネUが縮んだ状態での引きバネVの力」は「ラッチを凹ませる力」であって非常に強い。引きバネVの力を「ドアを回転させるだけの力」に設定して閉止する場合、図10(e)の実線で示す状態で静止する。引きバネVの力を「ラッチを凹ませる力」に設定して閉止する場合、図10(e)の破線で示す状態となって、その後ラッチを凹ませるようになる。 
図10(f)に示すように当たりGaは、ラッチ当接時に「リンクAの図中矢印イ方向の回転」を阻止して引きバネVの力がドアに作用しないようにするもので、ラッチ当接時以後は押しバネUが伸びることによってドアDを図中矢印ロ方向に回転させる。ドアを密閉する力は引きバネVの力に関係なく、図10(f)に示すようにリンクAが当たりGaに係止されたときの押しバネUの長さによって決まり、ドアが戸当たりに当接したときの押しバネUの長さに対応する力でドアを戸当たりに押圧する。押しバネUの剛性を小さく設定すると、バネが大きく伸縮しなければ「ドアを密閉する力」或いは「ドアを戸当たりに押圧する力』に到達しないので、リンクAが当たりGaに係止されたときの押しバネUの長さは自然長に比べて大きく異なる。押しバネUの剛性大きく設定すると、リンクAがドアDに固定された状態に近づき、押しバネUの剛性を小さく設定するときのように、押しバネUが大きく伸縮しながら少しずつ回転力をドアに提供するようのにはならない。 
ドアを密閉するためには引きバネVの力がラッチ当接時に「ラッチを凹ませる力」であって、図10(f)に示すように押しバネUに「ラッチを凹ませる力」が蓄えられる状態にならなければならない。この場合「(あ)の範囲」でバネの力が過剰であって、ドア慣性力が大きくなりラッチ当接時にドアが減速されずに密閉される。このようなことから、閉止寸前にドアが停止する或いは僅かに回転する間に「ドアに作用する力」が小から大に切り替わる必要がある。以上の実施例においても、ラッチ当接時のドアの所定の開度を境にして、ドアの回転を全く或いは殆んど伴うことなく小から大に切り替わっている。 
バネの剛性が無限大に設定されるとき、取付軸は固定された状態で、ドアと伸縮部は連動し、バネの剛性がゼロに設定されるとき取付軸は固定されない状態で自由に運動可能で、ドアと伸縮部は連動せず、伸縮部はドアを回転させることなく独自に回転し続ける。バネの剛性が小さく設定されるとき伸縮部はバネを大きく伸縮させながら少しずつ回転力をドアに提供する。伸縮部がドアに提供するが大きくてもバネの伸縮の上限を設定することで制限できる。 
図10(f)に示すラッチ当接時の状態は、押しバネUラッチが伸びたままラッチ当接時に至る場合と、押しバネUが縮んだままラッチ当接時に至る場合とがあって、後者は図22に後述するようにラッチ、当接時以前にドア面に受ける空気抵抗が大きくラッチ当接時に空気抵抗が消失する場合や、或いはドアに静慣性が取り付いたまま動き難い場合で、押しバネUが縮んだままラッチ当接時に至る場合である。力が釣り合い等速運動する状態から過剰な力が作用すると加速するが、「静慣性が取り付いたまま動き難い場合」とは過剰な力が作用しても問題になるほど加速しない場合であって、(あ)の範囲」でバネに「ラッチを凹ませる力」が過剰に作用しても、ドアがおもむろに動くようなとき、前者のようにラッチ当接時に押しバネUが縮み始めるのではなく、またドアに作用する力が次第に増加するのではなく、予め押しバネUに「ラッチを凹ませる力」の最大値の力が蓄えられ、ラッチ当接時当初から最大値の力が作用し、ラッチが凹むと「ドアに作用する力」は減少し、ドアは密閉される。 
図10(a)~(d)は後者の押しバネUが縮んだままラッチ当接時に至る場合の実施例であって、前者の場合のようにドアに作用する力が次第に増加する実施例である。図10(a)~(d)の回転装置は図10(a)に示すように引きバネVが「リンクAを介してドアに取り付く取付軸Sa」を牽引するだけであって、密閉装置は図10(a)に示すように「(あ)の範囲」においては、「ドアDに設けられる支軸Cjの周りに回転自在に軸支され先端部に車輪Bを装着した回転体J」がトグルバネVVによって図中矢印イと反対方向に付勢され同方向の回転を当たりGjが阻止するもので、図10(b)に示すようにラッチ当接時に車輪Bが摺動面K1に当接し、ドア慣性力によって回転体Jが図中矢印イ方向に回転しトグルバネVVが支軸Cjを横切ると、図10(c)に示すように車輪BがリンクAの側面に添って移動することにより、リンクAが図中矢印ロと反対方向の回転をして、引きバネVが引き伸ばされるようになり、且つ作用力距離Loが増加して、引きバネVの力が「ドアを回転させるだけの力」から「ラッチを凹ませる力」に転じるようにするものである。 
引きバネVの力が「ラッチを凹ませる力」に到達すると同時にラッチが凹むが、閉止装置とドアDは図10(c)に示す相対的に一体になった状態のまま図中矢印ロ方向に回転する。図10(c)に示す状態のまま回転して密閉に至る過程は図示しないが、単に引きバネVが縮む動作が認められる。引きバネVが縮むことによって、ラッチが凹んでラッチ雄部Rdが雌部Rwに嵌まり込むまでの過程において「ドアに作用する力」が増加するのではなく減少する。「ラッチ雄部Rdが雌部Rwに嵌まり込む閉止回転の最後」に衝撃的な荷重がかからないことが閉止時の衝撃音を小さくするために最も重要であって、閉止回転の最後までに施される減速手段は、閉止回転の最後にドア慣性力が消滅しきれずに衝撃的な荷重が掛からないようにするものである。また図10(a)~(d)の開閉装置は「ドアを回転させるだけの力」の作用点Saが「ラッチを凹ませる力」の作用点bより枢軸Oに近く、密閉装置が回転装置より枢軸Oに近い位置にある。このように開閉装置の機能を枢軸O近傍に集約することによって装置は小型化される。 
車輪Bが摺動面K1に当接したとき、ドア慣性力が大きいほどリンクAが車輪Bを押圧する力は大きく回転体Jの回転が遅れる。またリンクAの図中矢印ロ方向の回転は止まり、「ドアに作用する力」はゼロになって、ドアは急激に減速される。トグルバネVVの力が強くても密閉時に作用する力は「引きバネVの引き伸ばされたときの力」であって、「ラッチを凹ませる力」を必要最小に設定することで、ドアを開くときにドアが重たく感じられることはない。図10(c)に示すように車輪Bが摺動面K3を押圧することによってドアを密閉することも出来るが、車輪Bが摺動面K3を押圧する以前に「回転体Jの図中矢印イ方向の回転」を当たりGjで阻止するようにしている。回転体Jの車輪Bが取り付く面と反対側に車輪の回転軸Ibを共有する車輪Bbが装着され図10(c)に示すようにドアを開く過程において、車輪Bbが摺動面K3に沿って移動することにより回転体Jが図中矢印イと反対方向に回転し、トグルバネVVが再び支軸Cjを横切ると密閉装置は図10(a)に示す状態に復帰する。トグルバネVVが再び支軸Cjを横切るまでの範囲は閉止過程における「(い)の範囲」であって、この範囲で手を離したとしてもドアは密閉に至る。トグルバネVVが再び支軸Cjを横切ってから手を離したとしても、ラッチ当接時までにドア慣性力が成長し、回転体Jを図中矢印イ方向に回転させる。 
図11は「図1のように曲げ力が働くリンクA」が滑り対偶で連結されるリンク装置で、「ドアに作用する力」の作用点を枢軸O近傍から遠傍に転移させる解除可能な拘束手段を備える開閉装置の動作説明平面図である。図11(a)に全閉時を実線で、全開時から閉止直前の動作を破線で示す。図11は図8,9のようにリンク装置の構成部材に引きバネVを採用せずに、ドアが止まったままでも動作し続けりる「切替手段」を備える。回転体Jは固定支軸Swを軸に図中矢印イ方向に回転し、固定支軸Swから遠い位置に車輪Bを近い位置に車輪BBを装着し、それぞれは互いに固定支軸Swから略直角方向に配せられ、「枢軸Oに近い位置でドアDに設ける摺動面K」と「枢軸Oから遠い位置でドアDに設ける摺動面KK」とに沿って移動する。「(あ)の範囲」で車輪Bは摺動面Kを押圧して、車輪BBは摺動面KKと離脱している。「(い)の範囲」で車輪BBは摺動面KKを押圧して、車輪Bは摺動面Kと離脱している。図11(a)において車輪Bは図1と同様に、角度Θakが鋭角である間は車輪Bが摺動面Kを押圧して、ドアDは枢軸Oを軸に図中矢印ロ方向に回転する。「(あ)の範囲」で作用点を枢軸Oに近い位置に停留させ、作用力距離Loを小さく駆動力距離Lvを大きく維持する。「切替範囲」で角度Θakが直角であるときを境にして車輪Bは摺動面Kと離脱し「作用点を枢軸Oに近い位置に停留させる拘束手段」は解除される。「(い)の範囲」では車輪BBが摺動面KKに沿って移動しながら摺動面KKを押圧する。作用力距離Loは大きく駆動力距離Lvは小さくなる。 
ドアDとドア枠Wは回転軸Oを共有して相対的に回転する。図11(a)はドア枠Wが固定された状態で枢軸Oの周りをドアDが回転する動作説明図で、図11(b)(c)はドアDが固定された状態で枢軸Oの周りをドア枠Wが回転す
る動作説明図で、固定支軸Swは枢軸Oの周りを公転している。図11(b)に示すように固定支軸Swは「ドア枠Wに設ける固定支軸Swを軸に回転する回転体Jsw」にドア枠Wに回転可能に取付けられる。図11(b)は固定支軸Swの位置がドアから後退しない位置である場合の動作説明図で、図11(c)は固定支軸Swがドアから後退した場合の動作説明図である。ドアを回転させる力が弱い「(あ)の範囲」では押しバネUによって回転体Jswが図中矢印ハ方向に回転して、図11(c)に示すように固定支軸Swがドアから後退し、密閉寸前において車輪BBは摺動面KKから大きな摩擦抵抗を受けて摺動面KK上を移動し難くなる。密閉するに従い押しバネUは縮まり固定支軸Swはドアに接近し、車輪BBは摺動面KK上を移動し易くなる。 
全閉時直前にドア慣性力が大きい場合はドアが閉まってから車輪BBは摺動面Kの終端部KKeに至る。ドア慣性力が大きい場合は車輪BBは摺動面Kの終端部KKeに至ってドアが閉まる。図11(b)に示す摺動面Kbbは「ドアDの設けられる支軸Sdの周りに回転自在に軸支され、押しバネUbbによって付勢され摺動面KKと対面する。摺動面Kbbと摺動面KKとの間は車輪BBが辛うじて通過する通路を形成している。摺動面Kbbは全閉時直前にドアと係合して、押しバネUbbが縮んでドア慣性力を吸収するが、慣性力が大きい場合にドアが閉まってから車輪BBは摺動面Kの終端部KKeに至る様なことが起こらないようにするだけで十分に衝撃音を小さく出来る。押しバネUbbが復元するときドアを開く方向に付勢するが、車輪BBが直ちに摺動面KKに沿うようになるため、ドアは開く間もなく閉止する。「摺動面KKが車輪BBを押圧する力」は車輪BBの公転の中心に向かう力であって、大きくても車輪BBの移動に大きく抵抗するものではない。このようにドアを減速する手段はドアを減速するのではなく車輪BBの移動を減速するものであって、ドア慣性力の大きさの広い範囲に亘って有効に働く。 
図12~16は「枢軸Oに近い位置を作用点とする回転装置」から「枢軸Oから遠い位置を作用点とする密閉装置」に受け継がれる開閉装置の動作説明平面図であって、これらの開閉装置は装置が動作する領域が大きいにも拘らず装置を小型化するものである。図12~15の開閉装置は図1~3の開閉装置に密閉装置を付け加えるもので、図16の開閉装置は図8開閉装置に密閉装置を付け加えるものである。図12に示す開閉装置の回転手段と切替手段は、枢軸O近傍に摺動面K1と「先端部に車輪B1を装着したリンクA1」とを設けるもので、図1,11と同様に車輪が摺動面を押圧しながら移動するもので、リンクAには曲げ力が働いている。また密閉手段は枢軸O遠傍に「先端部に車輪B2を装着したリンクA2」とそれに沿って移動する摺動面K2を設けるもので、図1,11と同様に車輪が摺動面を押圧するもので、リンクA1とリンクA2とはリンクA3で連結される。リンクA2は引きバネVによって付勢され、引きバネVの片方はリンクAAの先端部の支軸Saに他方はドア枠Wの設けられる支軸Swwに取付けられる。リンクAAは当たりG1とG2の間を揺動しリンクA2に軸支される。 
図12の開閉装置の「枢軸O近傍に設けた切替手段」は図1の開閉装置と同様に「(あ)の範囲」で作用力距離Loを小さく保ち、密閉時に大きく切り替える「切替手段」とを備え、この部分だけで開閉装置として十分に成立するものである。これを大きくして作用力距離Loを大きくすると図1の開閉装置であり、或いはバネの力を大きすると小型化した図1の開閉装置である。図12の開閉装置は図1の開閉装置を小さくして「(あ)の回転手段」と「切替手段」だけにして、「(い)の回転手段」は密閉装置が受け持つようにするもので作用点を大きく転移することによって装置を小型化するものであって、図1~7のように作用点が枢軸Oから次第に遠ざかるものや、図8~11のように「回転軸を枢軸Oから遠い位置に設けた回転体」が回転作業と密閉作業をするものに比べて装置の動作範囲が小さくなり、全閉時にはドア枠Wに沿った細長いケース内に収容できる。また「切替手段」の大きな動作で枢軸Oから遠く離れた位置の密閉装置が大きく動くようにするもので、「(い)の範囲」のドアの僅かな回転範囲内において、「減速しながら密閉に至る動作」や「ドアに作用する力が徐々にしながら密閉に至る動作」など長い時間経過を伴う動作をさせるようにするものである。 
図12に示す摺動面K1の基端部Ko1は窪みを備え、窪みは車輪Bを係止して図12(a)に示すように「(あ)の範囲」で車輪Bを枢軸O近傍に留める。図12(b)に示すように所定の開度で係止手段は解放され、車輪Bは瞬間的に枢軸Oから離脱する。リンクAの回転は窪みに係止される間は小さく、窪みから離脱してからは大きい。閉止時の衝撃音の要因は「(い)の範囲」の更なる加速であって、出来るだけ強い力のまま回転する範囲は小さいことが望ましい。図10に説明したように駆動部とドアとが第1のドアを介して間接的に取り付く場合は、「切替手段」が動作する以前にラッチがドア枠に当接して待機するように出来るが、駆動部とドアとが直接取り付けられる場合は「切替手段」が動作する以前にラッチがドア枠に当接して待機するとは限らない。また「切替手段」が始動するときのドアの開度は、角度Θakが直角であるときとする場合は一定の範囲内に収めることは出来ても、限られた値に確定できない。この場合と比較的して係止された車輪Bが離脱するときのドアの開度はある程度確定される。また係止された車輪Bが離脱するとき止まらないようにしなければならない。何れにしてもラッチ当接時から全閉までのドアの回転範囲は小さく「切替手段」が動作するドアの開度は出来るだけ小さく確定されることが望ましい。図12に示す「窪みと車輪Bとが係合離脱する手段」は、「切替手段」が始まるときのドアの開度を出来るだけ小さくしてラッチ当接時の近くにするものである。 
「枢軸O遠傍に設けた密閉装置」は図8~11のように車輪B2と係合離脱する摺動面K2を備え、摺動面K2はドアに設けられる接続軸Cの周りに回転自在に軸支される。「摺動面K2の基端部Ko2のドア枠Wと対面する面」に取り付く押しバネUはドア枠Wと「(あ)の範囲」で係合し「(い)の範囲」で離脱する。図12(b)に示すように切替範囲」と「(い)の範囲」で車輪B2と摺動面K2は係合し、また押しバネUはドア枠Wと係合する。押しバネUはドア枠Wに支持され車輪B2はリンクA2を介してドア枠Wに支持されるので摺動面K2が押しバネUと車輪B2とで挟まれて動けない状態になっている。摺動面K2はドア枠Wに固定された状態になり、ドアも摺動面K2を介してはドア枠Wに固定された状態になって静止する。押しバネUは摺動面K2の基端部Ko2付近に設けられ、車輪B2が押しバネUより枢軸Oから遠い位置の摺動面K2を押圧するとき、「車輪B2が摺動面K2を押圧する力Fb」は押しバネUを支点として接続軸Cが図中矢印ハ方向に回転する方向に働き、摺動面K2は押しバネUを支点として接続軸Cを跳ね上げるテコとして働く。縮んだバネが復元する力によってドアが開く方向に戻されるが、図12(c)に示すように車輪B2が摺動面K2の終端部Ke2に到達して当たりGkがドア面に当接すると、ドアDと摺動面K2とが相対的に一体なると、車輪B2が「ドアが開く方向にも戻される回転」を阻止する。 
車輪B2が摺動面K2の終端部Ke2に到達するまで、押しバネUは縮む一方で伸びることはない。縮んだバネが復元することなくドアが開く方向に戻されない。車輪B2が摺動面K2上を移動して枢軸Oから遠ざかると、押しバネUが縮む量に比例してドアは回転し密閉に至る。押しバネUが縮む量に比例して引きバネVの力は減じられることになり、「(い)の回転手段」を大きくしなければならないが、押しバネUが縮んで押しバネUに蓄える力はドアを開くときドアを開く方向に働きドアを軽くする。単にドアを回転させる力を減じただけとしても、ドアを開くときドアを重たくしない。押しバネUが縮みながらドアが閉止回転するとき、押しバネUはドア慣性力に抵抗し減速手段として機能する。慣性力をバネで受け止めることはドア慣性力の反力がドアを開く方向に働くことになるが、このようにドアの移動を許しながらドア慣性力をバネに吸収し、バネが復元してドアが押し戻されないようにすればドア慣性力を制動力に変換したことになる。図12~14の「密閉直前に動作する減速装置」は密閉阻止手段でもあり、「ドアを閉める方向に働くバネ」による駆動力と「ドアを開く方向に働くバネ」による抵抗でドアを前後の力で挟み込むものであって、密閉時にドアがドアを閉める力と戸当たりGdの間に挟まれる状態を、ドアが戸当たりに至る以前に、ドアの回転をある程度許しながらドアを前後の力で挟み込むものである。図12~14において回転装置は「(い)の範囲」で、ドアを回転させることより、ドアを開く方向に回転することを阻止する役割を果たしている。 
引きバネVの力はドア慣性力がない場合でも終端部Ke2に至る途中で車輪B2の移動が停止するように設定されている。ドア慣性力が大きいほどドアDが図中矢印ロ方向に大きく回転し摺動面K2が接続軸Cを軸に図中矢印ハと反対方向に回転し、角度Θakが大きくなり、且つ押しバネUが縮む量は大きくなるので車輪B2の移動に大きな抵抗を与える。上述のようにドア慣性力が消失してもドアが開く方向に戻らないため大きな抵抗は減少しない。車輪B2が押しバネUより枢軸Oから遠い位置の摺動面K2上を移動するに従い車輪B2の移動に押しバネUが影響しなくなるが、「車輪B2が摺動面K2を押圧する力Fb」が大きくても「車輪Bが摺動面K2上を移動する方向に働く力」は小さいと言うことは、押しバネUが如何に大きな慣性力を受け止めても車輪Bの移動が止まらないことを意味する。図12に示す密閉装置はドア慣性力が如何に大きくてもドアを制止するものである。密閉を阻止するというよりドアは密閉に至る前で一旦止められる。全閉時に押しバネUが縮む量は最大であってドア慣性力の大きさに関係なく一定している。ドアが途中で止まる止まらないの如何に係らず終端部Ke2に至る途中でリンクAAが図中矢印ニ方向に回転して作用力距離Lo2が大きくなる。これにより引きバネVの力は押しバネUの最大の力に打ち勝って車輪B2を摺動面K2の終端部Ke2に至るように設定している。図12(c)に示すように当たりGkがドア面に当接すると、摺動面K2とドアDは相対的に一体となり、ドアは密閉される。図12の密閉装置を「枢軸O近傍に平行移動して摺動面K2の基端部に摺動面K1の基端部Ko1の窪みを取り付けて「(あ)の範囲」でも離脱せず係合するようにすると開閉装置として十分に成立する。開閉装置は密閉装置に「(あ)の回転手段」を追加したものでもある。このように複数の実施例に示す開閉装置のそれぞれから回転装置と切替え装置と密閉装置の何れかを取り出して、これを組み合わせることによって回転装置と切替え装置と密閉装置とを備える開閉装置が種々考えられることは当然である。 
図12に示す密閉装置は作用点を遠くに転移することで「ドアに作用する力」を大きくし、ラッチ当接時から全閉時までの間で更に大きくするもので、全閉時直前に僅かな力を追加することによって「ラッチを凹ませる力」を微調整してドアが静かに閉止するようにするものである。ラッチ当接時から一瞬のうちに全閉するのではドアを再び閉めなおす動作が認められるようにはならない。ドアが僅かに回転する間に「ドアに作用する力」が「ラッチを凹ませる力」に不足してドアが停止する動作と、ドアが停止したまま「ドアに作用する力」が更に徐々に成長してラッチを凹ませる動作とが時間を掛けて実行されるためには、全閉時直前に必ずドアが停止する必要がある。図12の場合は全開位置から閉止する場合も僅かに開いた位置から閉止する場合も閉止開始開度に関係なくドアを停止させ、この抵抗に打ち勝ってドアを密閉するようにしている。 
閉止の最後に枢軸Oから遠い密閉装置でド
アを回転させた場合は、ドアを開くとき、密閉装置が先に始動し、枢軸Oに近い「切替手段」は遅れて従う。摺動面K1の窪みから終端部Ke1までの形状を「車輪B1の固定支軸Sw1から最も遠い点の円軌道Rb1」より曲率が大きい曲線にすると、ドアを開くときに車輪Bの移動方向に角度Θakが鋭角になってリンク装置を逆回転させる。この場合、全ての回転範囲においてドアと駆動部は連動し、ドアの回転を全く伴わない「切替手段」ではなく殆んど伴わない「切替手段」であって、「切替範囲」と「(い)の範囲」で駆動部がドアと連動することによって、「ドア慣性力によって伸縮したバネ」が復元してドアが開く方向に回転することを防いでいる。例えば摺動面K2の終端部Ke2を枢軸Oに近い側に、接続軸Cを遠い側にして前後入れ替えて配置すると、摺動面K2が接続軸Cを押し上げる運動は枢軸Oによって阻止されずにドアが開く方向に回転する。この場合駆動部がドアと連動することによって、ドアが開こうとする力は「枢軸O近傍に設けた切替手段」のリンクA1によっても阻止され、ドアが開く方向に戻されない。 
図12(d)~(f)は図12(a)~(c)の回転装置と密閉装置の付勢手段を別にするもので、回転装置のリンクA1を捩りバネUVで、密閉装置のリンクA2をトグルバネVVで付勢して「(あ)の範囲」と「(い)の範囲」で異なる力がドアに作用するようにしている。トグルバネVVを強くすることによって密閉装置を枢軸Oに近づけて装置を小型化できる。リンクA2とリンクA3との連結部分は、リンクA2の端部の車輪の回転軸Ib2がリンクA3に設けた長穴Hに沿って往復可能に取り付き、「切替範囲」の当初に付勢手段を捩りバネUVからトグルバネVVへリレーするようにしている。「(あ)の範囲」で車輪B1が摺動面K1を押圧することによってドアが回転するが、図12(d)に示すように、リンクA1の回転が当たりGA1によって係止されると、車輪B1が摺動面K1を離れてリンクA1の回転がドアに伝わらなくなる。また同時に車輪の回転軸Ib2が長穴Hの基端部Hoによって押し出され、図12(d)の破線に示すように当たりGA21に当接して待機状態にあるリンクA2が実線に示すように図中矢印イ方向に回転する。トグルバネVVはリンクA2の回転軸Swを横切って、リンクA2は当たりGA21に当接するまで回転を続けるようになる。 
リンクA2は当りGA21に当接して待機状態にあるとき、車輪B2は摺動面K2と当接しない位置にあって、リンクA1が当りGA21に当接したとき、摺動面K2が車輪B2と当接する位置あるようにしている。リンクA1が当りGA21に当接する以前に、待機状態が解除されて車輪Bが摺動面K2よりドア枠Wに近い位置にあってドアが閉まらなくなる事故を防ぐため、トグルバネVVの軸芯線がリンク「A2の回転の中心Sw2」から遠い位置にある。「(あ)の回転手段」は図12(d)に破線で示すようにトグルバネVVの軸芯線が大きく移動して「リンクA2の回転の中心Sw2」を横切るように、大きな力で待機状態が解除するもので、「(あ)の範囲」では車輪B1が摺動面K1の枢軸Oの近い位置を押圧することによって、大きな力がドアに小さく作用するようにしている。 
トグルバネVVがリンクA2の回転軸Swを横切った当初はトグルバネVVの伸縮は小さく、リンクA2はドアと絶縁されているが非常にゆっくりと回転し始める。この間にドアは動慣性で回転し続ける。リンクA2の回転速度は一定であって、ドアの回転速度は閉止開始開度によって異なる。閉止開始開度が大きい場合、リンクA2が回転して車輪B2が摺動面K2を押圧するまでの間にドアは大きく回転し、図12(e)に示すように車輪Bが摺動面K3に押圧されるようになる。摺動面K3はの「ドアに設けられる支軸Ik3」の周りに回転自在に軸支され、図中矢印ニ方向に捩りバネUV3によって付勢され同方向の回転が当たりGK3によって阻止される。リンクA2が回転して車輪B2が摺動面K2を押圧するまでドアが大きく回転するほど摺動面K3は図中矢印ニと反対方向に大きく回転し、角度Θakが大きくなって車輪Bの図中矢印ホ方向の移動に大きく抵抗する。即ちドアの閉止直前の回転速度が大きいほど、制動力が大きく働く。図12(f)は密閉時に車輪B3が摺動面K3から離れて、車輪B2が「ドアDに当接した摺動面K2を押圧する状態を示す。 
閉止開始開度によって「閉止寸前のドア慣性力の大きさとドアの回転速度」は大きく異なる。閉止寸前のドア慣性力の大きさによってリンク装置の形態が変化するものであれば、形態の変化によって制動力の大きさを変えることが可能となる。またドア慣性力の大きさをバネの長さの変化によって測定可能であれば、バネの長さによって制動力の大きさを変えることが可能となる。図12(d)~(f)は「(い)の回転手段」が「(あ)の範囲」で待機して、「切替範囲」で「(あ)の回転手段」によって始動し、「切替範囲」で「ドアに作用する力」が働かない一定の時間を設けるもので、一定の時間内のドアの移動距離で「閉止寸前のドア慣性力の大きさとドアの回転速度」を測定して、一定の時間内のドアの移動距離で「閉止寸前のドア慣性力の大きさとドアの回転速度」に応じた制動力が働くようにするものである。 
図11(b)に示す摺動面Kbbのように、全閉時直前に講じられる減速手段だけで衝撃音が小さくなる場合は、閉止直前のドアの速度が一定の範囲内に収まっている場合で、特定のドアに特定の状態に調節された場合に限られる。ドアクローザが種々ドアに適応するためにはバネを強くしなければならない。強いバネで閉止して閉止直前のドアの速度が高速になっても減速して密閉するものでなければならない。強いバネで密閉しても「(い)の範囲」で加速せず全閉時に大きな力が作用しないようにしなければならない。また閉止開始開度によって異なる「閉止直前のドア慣性力」に対応するものでなければならない。図13,14の開閉装置の減速装置はドア慣性力の大きさに応じて制動力の大きさが変化するもので、全閉時直前に更に減速することによって、全閉時に「ドアに作用する力」の大きさを一定の範囲内に収めるものである。図13に示す開閉装置の回転手段と切替手段は、図7の開閉装置を枢軸O近傍に設けるもので、「固定支軸Sw1の周りに図中矢印イ方向に図示しない付勢手段によって付勢され回転自在に軸支される回転体J」と「先端部に車輪B1を装着したリンクA1」とが連結軸Pで連結され、図1,11と同様に車輪B1が摺動面K1を押圧しながら移動するもので、リンクA1には圧縮力が働いている。密閉手段は枢軸O遠傍に設けられ、「先端部に車輪B2を装着したリンクA2」が固定支軸Sw2の周りに回転自在に軸支され、リンクA3はリンクA1とリンクA2とを連結し、リンクA2を図中矢印ハ方向に回転させる。車輪B2に沿って移動する摺動面K2は回転体Jcを介してドアDに取り付く。 
枢軸O近傍の回転手段と切替手段について説明する。図13(a)に示す破線は「(あ)の範囲」の動作説明平面図で、実線は閉止寸前の状態を示す。車輪B1に沿って移動する摺動面K1は接続軸Cの周りに回転自在に軸支され、図中矢印ヘ方向の回転は当たりGcによって阻止される。摺動面K1の基端部K1oに設ける凹部は「(あ)の範囲」で車輪B1を係止し作用力距離Loを小さく保つ。図中C90が示すように全開時から閉止途中までは摺動面K1は当たりGcと当接したままの状態を保ち、図中C30が示すように閉止途中からは摺動面K1は当たりGcから離脱し、「摺動面Kの車輪B1が移動する側と反対側の側面」がドア枠Wに設ける車輪BKに沿って移動するようにしている。車輪BKの位置によって車輪B1が凹部から離脱するドアの開度を自由に設計できる。図13(c)に示すように摺動面K1を回転自在にすることによって、ドアを開く過程において、「摺動面K1の終端部K1eに留まる車輪B1」が基端部K1oに戻るときのドアの開度を小さくすることが出来る。本発明の「切替手段」は「ドアに作用する力」を急激に変化させ作用点或いは作用線を枢軸Oから遠くに瞬間移動させるものであって、瞬間移動距離が大きいほどドアを開く過程において「(い)の回転手段」が「(あ)の回転手段」に戻るときのドアの開度は大きくなる。出来るだけ強い力のまま回転する範囲は小さいことが望ましい。図13,14に示すに説明する解除可能な拘束手段は、瞬間移動距離を出来るだけ大きくするものであって、しかもドアを開くときに出来るだけ早く復帰するものである。 
枢軸O遠傍の密閉手段と減速手段について説明する。回転体Jcは接続軸Cjの周りに図中矢印ニ方向に図示しない付勢手段によって付勢され回転自在に軸支され、同方向の回転を当たりGjが阻止する。摺動面K2は回転体Jcの先端部に設けられた接続軸Ckの周りに図中矢印ホ方向に図示しない付勢手段によって弱く付勢され回転自在に軸支される。同方向の回転を当たりG1が阻止する。摺動面K2の接続軸Ckを中間にしてドア枠Wから遠ざかる片方は車輪B2が移動する摺動面K2であって、ドア枠Wに近づく他方の先端部には車輪B3が装着される。図13(a)(b)に示すラッチ当接時の状態図は、車輪B1が摺動面K1の凹部から離脱して終端部Ke1に向かって図中矢印ト方向に移動しようとしている状態図で、リンクA2が図中矢印ハ方向に回転して車輪B2が摺動面K2を押圧して図中矢印ホ方向の弱い付勢力に打ち勝ってホと反対方向に回転させようとしている状態図である。 
図13(a)はドア慣性力が小さい場合で、ラッチ当接時にドアが静止した状態図で、車輪B3がドア枠Wの設けた摺動面K3に当接することなく接続軸Ckの周りをホと反対方向に公転し、図13(c)に示すように車輪B2が摺動面K2の終端部Ke2に至る。このとき摺動面K2のホと反対方向の回転は当たりG2によって阻止され、回転体Jcの図中矢印ニ方向の回転は当たりGjによって阻止されて、摺動面K2と回転体JcはドアDと相対的に一体となり、車輪B2が摺動面K2を押圧する力Fb2によってドアは密閉される。図13(b)はドア慣性力が大きい場合で、ラッチ当接時にドアが回転し続けた状態図で、車輪B3が摺動面K3に当接し、回転体Jcが接続軸Cjの周りをニと反対方向に回転し、角度Θakが直角から鋭角に移行する。ドア慣性力が大きいほどドアは回転し続け、回転体Jcがより大きく回転し、角度Θakがより鋭角になって、車輪B3が摺動面K3上を図中矢印リ方向に移動し難くなる。また角度Θakがより鋭角になるほど、車輪B3の摺動面K3上の移動に伴い、回転体Jcがニと反対方向により大きく回転し、車輪B2が摺動面K2を押圧する力の作用点が摺動面K2の回転軸Ckに近づく。このようなことによりドア慣性力が大きいほど、摺動面K2のホと反対方向の回転に抵抗が大きく働きドアは減速される。 
図14は図13と同じく枢軸O近傍の回転手段と切替手段は回転体JとリンクA1とを連結軸Pで連結した構造で、リンクA1の先端部に設けられる車輪の回転軸Ibに車輪B1を装着する。連結軸Pの周りに捩りバネUVが取り付き車輪B1を固定支軸Sw1から遠ざける方向に付勢する。リンクA1には圧縮力が働いている。回転体Jは固定支軸Sw1の周りに回転自在に軸支されるが、閉止過程において回転方向は一定しない。連結軸Pの周りにおいて「回転体Jの軸芯線ZjとリンクAの軸芯線Zaとの交差角度Θaj」は閉止過程において増加の一途を辿る。本発明の開閉装置の付勢手段はリンク装置の何れかの連結軸の周りの回転を付勢するものであるが、「隣合うリンクの軸芯線の交差角度」が増加或いは減少の一途を辿る場所に限られる。車輪B1はドアDに設けられる摺動面K1に沿って移動し、摺動面K1の枢軸Oに近い端部に当たりG1が、枢軸Oに遠い端部に当たりG2が取り付く。 
図14(a)に示す破線は「(あ)の範囲」の動作説明平面図で、実線は閉止寸前の状態を示す。図中B1-90、B1-10が示すように全開時から閉止直前までは車輪B1は当たりG1と当接したままの状態を保ち「(あ)の範囲」で車輪B1を拘束して作用力距離Loを小さく保つ。「固定支軸Sw1と車輪の回転軸Ibとを通る直線T」と摺動面K
1との交差角度Θtkが直角であるときを境にして車輪B1は当たりG1または当たりG2から離れる。B1-10が示すように閉誌直前に車輪B1は当たりG1から離れて枢軸Oから遠ざかり、B1-20が示すようにドアを開く過程において当たりG2から離れて枢軸O近傍に戻る。リンクA2は片方の端部をリンクA1に回転自在に接続し、他方の端部に車輪B2を装着する。リンクA2の中間部はボールスプラインJcを貫通し、ボールスプラインJcは「接続軸Cの周りに回転自在に軸支され、リンクA2の軸方向に沿って移動する溝Hを設けた回転体Jc」である。 
図14の密閉手段は、図13と同じく車輪B2の押圧力Fbと「これと反対方向のドア慣性力の反力」とを同時に受ける摺動面K2が枢軸O遠傍に設けられ、摺動面K2は「ドア枠の固定支軸Sw2に回転可能に軸支される回転体Jk」の先端部に設けられる支軸Ikの周りに回転自在に軸支される。摺動面K2は固定支軸Swwと引きバネVVによって連結され、回転体Jkは固定支軸Sw2の周りに図中矢印ホ方向に付勢され同方向の回転は当たりGjによって阻止される。また同時に摺動面K2は支軸Ckの周りに図中矢印ニ方向に付勢され同方向の回転は当たりGkによって阻止される。図14(a)(b)はラッチ当接時の状態図で、車輪B1が摺動面K1の当たりG1から離脱して当たりG2に向かってに移動しようとしている状態図で、リンクA2が図中矢印ハ方向に移動して車輪B2が摺動面K2の凹部Ko2を押圧している状態図である。 
図14(a)はドア慣性力が小さい場合で、ラッチ当接時にドアが静止した状態図で、摺動面K2の終端部Ke2がドア枠Wの設けた摺動面K3に当接することなく摺動面K2が支軸Ckの周りを図中矢印ニと反対方向に回転し、図13(c)に示すように車輪B2が摺動面K2を押圧する力Fb2によってドアは密閉される。押圧力Fb2の作用線と「支軸Ckと作用点bとを通る摺動面K2の軸芯線Zk」とは略一直線状に配せられ、押圧力Fb2の反力は接続軸Cを支点とするテコA2によって支持される。図14(b)はドア慣性力が大きい場合で、ラッチ当接時にドアが回転し続けた状態図で、回転体Jkは当たりGjから離れて固定支軸Sw2の周りに図中矢印ホと反対方向に回転し摺動面K2の終端部Ke2が摺動面K3に当接する。摺動面K2が支軸Ckの周りをニ方向の回転力が働き、車輪B2が摺動面K2を押圧する力Fb2に抵抗する。ドア慣性力が大きくない場合は回転体Jkの回転の途中から摺動面K2が支軸Ckの周りをニと反対方向に回転し、摺動面K2の終端部Ke2が摺動面K3に当接する。ドア慣性力が大きいほどドアは回転し続け、回転体Jkがより大きく回転し、摺動面K2の終端部Ke2が摺動面K3上を移動する距離が長くなる。このようなことによりドア慣性力が大きいほど、摺動面K2のニと反対方向の回転に抵抗が大きく働きドアは減速される。 
図13,14に説明した開閉装置はドア慣性力をバネに吸収して蓄え、ドア慣性力を蓄えたバネが復帰するときドアが開く方向に戻されないように、ドアを閉める力を同時に作用させながらドアを密閉するものである。図13,14に説明した減速装置はドア慣性力の大きさに応じて密閉装置がより動き難い形態に移行し、密閉する力がより不足する事態を招くようにするもので、ドアが全閉に近づくほど密閉に至らないようにする抵抗が増加するものである。図13,14(a)において密閉体制にある形態が図13,14(b)において慣性力にによって崩れて図13,14(c)において復帰するが、図13,14の何れにおいても摺動面K2がその回転の中心軸Ckを「図13,14(a)において密閉体制にある位置」に向かって戻りながら回転するときは、その回転の中心軸Ckが動かないまま回転するときに比べて、車輪B2の図中矢印ハ方向の移動を押戻すように働き、図中矢印ハ方向の移動がそれだけ遅れることになる。通常の減速機においては大きな変位を小さな変位に変えるとき小さな変位がゆっくりとしかも力強く動くようにするものであるが、バネで動くドアにおいては、「大きな力で小さく動く動作」を「小さな負荷が掛かる大きな動作」に変換するとき力不足することによって動作が遅延するようにする。図13,14においては車輪B2の図中矢印ハ方向の小さな移動で崩れた形態を復帰させるとき、大きな動作を伴って復帰するため力不足する。図13,14に説明した減速装置はドア慣性力を制動力に変換するもので、ドアを大きく開いて加速するドアに対しては大きく抵抗し、小さく開いて加速しないドアに対しては小さく抵抗する。「一定の抵抗で処理しようとする減速装置」のように、ドアを大きく開いて加速するドアに対しては全く効かず、小さく開いて加速しないドアに対してはドアを止まったままにするものではない。 
図15に示す開閉装置の回転手段と切替手段は、図13と同様に図7の開閉装置を枢軸O近傍に設けるもので、摺動面K1は接続軸Cの周りに回転自在に軸支され、図中矢印ヘ方向の回転は当たりGcによって阻止される。リンクA1は片方の端部に「摺動面K1に沿って移動する車輪B1」を装着し、他方の端部に密閉用車輪B2を装着する。リンクA1の中間部はボールスプラインJcを貫通し、ボールスプラインJcは固定支軸Swの周りに回転自在に軸支され、リンクA1の軸方向に沿って移動する溝Hを設ける。引きバネVは車輪B1が摺動面K1を押圧するように図中矢印ハ方向に付勢し、リンクA1には引張力が働いている。図15(a)に示すように「(あ)の範囲」で全開時から閉止途中までは摺動面K1は当たりGcと当接したままの状態を保つ。摺動面K1の基端部Ko1に設ける凹部は車輪B1を係止し作用力距離Loを小さく保つ。図15(b)に示すように閉止途中からは摺動面K1は当たりGcから離脱し、「摺動面Kの車輪B1が移動する側と反対側の側面」がドア枠Wに設ける摺動面K3に沿って移動するが、ドアを開く過程において、摺動面K1が摺動面K3から離れると同時に「摺動面K1の終端部Ke1に留まる車輪B1」が基端部Ko1に戻ることになる。摺動面K1を回転自在にすることによって、ドアを開く過程において、「摺動面K1の終端部Ke1に留まる車輪B1」が基端部Ko1に戻るときのドアの開度を小さくする。図15(b)に破線に示す摺動面K1は摺動面K3に当接する当初を示し、実線は以後を示す。車輪B1は図中矢印ハと反対方向に移動し引きバネVは引きの離れ、「ドアに作用する力」は正から負に転じてドアは減速される。摺動面K1が摺動面K3に当接すると同時に角度Θakが鈍角になるように設計すると負になることはない。このようにラッチ当接時以前に「ドアに作用する力」が極少値になってドアは減速する。 
図15(c)に示すように車輪B1が摺動面K1の終端部Ke1に移動すると車輪B2が摺動面K2を押圧する。摺動面K2はドア面に垂直に立てられる。ドア面が枢軸Oを含む平面であるとき、ドア面に垂直に立てられた摺動面K2はドア面が枢軸Oを軸にする円運動の接線方向であるから、ドア面から離れた位置を枢軸Oから離れる方向(図中矢印ハ方向)に車輪B2が押圧すると、車輪B2はドア面から離れる方向に(図中矢印ニ方向)に移動し、ドアDは閉止方向に回転する。車輪B2がドア面から離れるに従いドアは加速する。また逆に車輪B2がドア面から離れた位置を枢軸Oに近づく方向(図中矢印ハと反対方向)に押圧すると、車輪B2はドア面に近づく方向(図中矢印ニと反対方向)に移動し、ドアはに開く方向に回転する。車輪B2がドア面に近づくに従いドアは減速する。 
「車輪B2と摺動面K2との接点b」とドア面との間の距離が作用力距離Loであって、摺動面K2の高さによって「ドアに作用する力」の大きさを設計できる。車輪B2が摺動面Kのドア面に垂直な部分を移動し押圧力Fbの作用線がドア面と平行である範囲においては「(あ)の回転手段」で回転させることが出来、ラッチ当接時以前にドアが一旦停止するとすればドアはゆっくりと回転する。図15(d)に示すように車輪B2が摺動面K2の終端部Ke2の隅各部に至るとき、押圧力Fbの作用線が急激に方向を変えて「ドアを回転させる力」が「ラッチを凹ませる力」に成長する。図15の密閉装置は車輪B2の移動距離は小さく、バネの伸縮量が小さいので、バネの力が衰弱することがない。密閉時に車輪が「閉止したドア面D0」に平行な摺動面を押圧しながら移動するとき、摺動面の平行な部分が長いほど車輪の移動方向の力が小さくても大きな力でドアを密閉するようになるが、車輪の移動速度は摺動面の平行な部分の長さに関係なく押圧力が力不足する度合いによって決まるので、密閉時に減速する場合は図15のようにドア面に垂直な摺動面が好ましい。また垂直な摺動面を押圧する力が非常に強い力であっても車輪の移動速度は大きくならないので、静かに密閉することが出来る。また摺動面Kがドア面に垂直に立てられ終端部Keに隅各部を設ける場合、弱い力でも密閉できる。垂直な摺動面を採用し閉止寸前に一旦停止する密閉装置は、強いバネを使用しても衝撃音が小さくなり、どのようなドアにも対応できる。 
図16は図8に説明した開閉装置を「切替手段」にして回転装置から密閉装置にリレーされる開閉装置の動作説明平面図であって、密閉装置はドア慣性力の大きさに応じて制動力が増加する密閉阻止手段を備える。図1~3に説明したようにリンクAの先端部の支軸Ibに車輪Bを装着する場合も、図8に説明したようにリンクAの先端部の支軸Saにバネを取り付ける場合も、リンクAは回転軸Cを軸に回転し、先端部の支軸を通る力の作用線がリンクAの軸芯線Zaのどちら側にあるかによってリンクAの回転方向が決まり、「力の作用線Zvが回転の中心Cを横切るとき」を境にして回転方向が切り替わる点おいて同じである。また図1~3の場合も、図8の場合も「(あ)の範囲」でリンクAの片方の回転を拘束する手段を備え、「切替範囲」で拘束を解除する点おいて同じである。 
「切替手段」の解除可能な拘束手段は枢軸O近傍に設けられ、回転体Jは接続軸Cの周りに回転自在に軸支され、引きバネVによって図中矢印イ方向に付勢される。回転体Jのイと反対方向の回転は当たりGjによって阻止される。引きバネVの片方は「回転体Jに設けられるバネの支軸Sj」に他方は固定支軸Swに取付けられる。「(あ)の範囲」で回転体Jに取り付く当りGjがドアDと係合することによってバネの支軸SjがドアDに固定された状態になって枢軸Oの周りを公転する。ドアに作用する力の作用線はバネの軸芯線Zvであって、「(あ)の範囲」で距離Loは小さく維持される。図16(a)(b)は接続軸Cがバネの軸芯線Zv横切るときで当りGjがドアD離脱して回転体Jが図中矢印イ方向に回転しようとする状態を示している。ドアに作用する力の作用線Zvの方向をドアの枢軸Oに向かうようにすることによって「ドアに作用する力を減じる手段」が講じられ、閉止寸前でドアが静止する或いはそれに近い状態にしている。 
リンクAの片方の端部は回転体Jに設けられる連結軸Pに接続され、他方の端部に設ける車輪Bの回転軸Ibに車輪Bが装着される。図16(c)は回転体Jが図中矢印イ方向に回転して、車輪Bの回転軸Ibはドア枠Wに設けられる溝Hに沿って移動して車輪Bが摺動面Kを押圧する状態を示す。支軸Sjと連結軸Pは互いに接続軸Cから放射状に配せられ、支軸Sjが「閉止したドア面D0」と垂直方向に移動し連結軸Pが平行方向に移動することによって車輪Bは「閉止したドア面D0」と平行に大きく移動する。「(い)の範囲」で車輪Bが摺動面Kを押圧する力Fbの作用点は枢軸Oから遠い位置に移動し、距離Loを大きくする。摺動面KかドアDに設けられる接続軸Ckの周りに揺動可能に軸支され、図中矢印ニと反対方向に図示しない付勢手段によって付勢され矢印ニと反対方向の回転は当たりG2によって阻止される。車輪Bbは「ドア枠Wに設ける固定支軸Swwの周りに回転自在に軸支され、図中矢印ホ方向に押しバネUによって付勢される。矢印ホ方向の回転は当たりGaによって阻止される。 
図16(a)はドア慣性力が小さい場合で、ラッチ当接時にドアが静止した状態図で、車輪Bが摺動面Kを押圧して摺動
面Kは車輪Bbに当接することなく接続軸Ckの周りを図中矢印ニ方向に回転する。図13(c)に示すように摺動面Kの図中矢印ニ方向の回転は当たりG1によって阻止され、摺動面KとドアDと相対的に一体となり、車輪Bが摺動面Kを押圧する力Fbによってドアは密閉される。図16(b)はドア慣性力が大きい場合で、ラッチ当接時にドアが回転し続け車輪Bが摺動面Kに当接して、摺動面Kが接続軸Ckの周りを図中矢印ニ方向に回転しながら車輪Bbに当接する状態図で、リンクAAが図中矢印ホと反対方向に回転し、押しバネUが縮む。摺動面Kは車輪Bによって「ドアを閉止する方向に働く力」と押しバネUによって「閉止方向と反対方向」の力を同時に受けることになり、接続軸Ckの枢軸Oの周りの図中矢印ロの公転は抑制されドアは減速される。ドア慣性力が大きいほど摺動面Kの回転はドアの回転に遅れて、リンクAAがより大きく回転し車輪Bの図中矢印ハ方向の移動に抵抗が大きく働きドアは減速される。 
図17,18は滑り対偶の連結軸が「開閉体と伸縮部との取付軸」に限らずどの位置であっても、ドアが止まったままリンク装置は運転し続けることを説明する実施例である。図2(c)(d)と同様に回転体Jは枢軸Oから遠い位置にあって動作する領域はドア面から少し離れた細長い領域に留まる。「切替範囲」で大きく回転し、「枢軸Oから遠い位置の大きな回転」でドアを密閉する。が回転を続けることが出来るようにした構造である。図17は伸縮部が2つのリンクJ,Aで構成されるリンク装置で、リンクAは片方をドア枠Wに固定する固定支軸Swに、他方を車輪Bを介して回転体Jに取り付ける。車輪Bは摺動面Kに沿って移動するスライダであって、摺動面Kは「回転体Jに設けられる長穴の枢軸Oから遠い側の内側面」である。回転体JはドアDに設けられる接続軸Cの周りに回転自在に軸支され図中矢印イ方向に回転しドアDを図中矢印ロ方向に回転させる。リンクAには圧縮力が作用する。伸縮部の付勢手段の図示は省略する。車輪Bは「摺動面KとリンクAの軸芯線Zaとの交差角度Θak」が鈍角になる図中矢印ハ方向に移動可能であって、図17(a)に示す「(あ)の範囲」では摺動面Kの先端部Keに留まり、図17(b)に示すように交差角度Θaが直角を境にして車輪Bは先端部Keを離れる。車輪Bが先端部Keを離れることによって図17(c)に示すように「切替範囲」では回転体Jが図中矢印イ方向に大きく回転する。図17(c)は回転体Jに装着される摺動面KKがドア枠Wに取り付ける車輪BBに沿って移動する状態を示す。図17(d)は車輪BBを移動可能にドア枠Wに取り付ける場合の密閉時の状態を示す。図17(b)に示すように閉止寸前で作用力距離Loは極小になりドアは略静止する。車輪Bが回転体Jの回転軸Cに近い位置に係止されるほど、回転体Jとドアとは連動せず、ドアを静止する位置に留めて回転体Jが回転する。ラッチ当接時にドアが停止したままリンク装置は運動を続けて「ドアに作用する力」は増加する。 
図18に示す実施例の構造は図17と同じくドアが静止する位置にある時リンクAと回転体Jとの接続軸である車輪BBが長穴Hj内を移動できるようにして、回転体Jとドアとが回転を続けることが出来るようにした構造である。図18において、車輪BBは回転体Jに設けられる長穴HjのドアDに近い内側側面の摺動面Kに沿って移動し、摺動面Kは始端部K1と直線部K2と終端部K3からなり、リンクAは片方をドアDの接続軸Cに、他方を車輪Bを介して回転体Jに取り付ける。回転体Jはドア枠Wの固定支軸Swの周りに回転自在に軸支される。回転体Jは図中矢印イ方向に回転しドアDを図中矢印ロ方向に回転させる。リンクAには引張力が作用する。伸縮部の付勢手段の図示は省略する。図18(a)(b)に示すように「(あ)の範囲」で車輪BBは始端部K1に留まる。図18(c)に示すように密閉作業が開始するD10の位置でリンクAの軸芯線と直線部K2とは直交し、図18(d)に示すようにD10の位置を過ぎればリンクAの軸芯線と直線部K2との交差角度が90度を超え、車輪BBは直線部K2上を図中矢印ハ方向に移動し始め、凹部K1から離れて終端部K3に移動する。この時ドアDが静止しても回転体Jは回転し車輪Bがドアの枢軸Oから遠い位置にあってドアDに取付けられた摺動面Kに乗り上げてドアを密閉するようになる。 
接続軸Cは「ドアDに設けた接続軸Cjの周りに回転自在に軸支される回転体Jc」に取り付けられる。回転体Jcには車輪BBが装着され、回転体Jは押しバネUによって図中矢印ニ方向に付勢される。回転体Jcが図中矢印ニと反対方向に回転して押しバネUを縮めながらドアDに近づくと、車輪BBは枢軸Oから遠ざかるようになる。摺動面KKは枢軸Oを中心とする円弧で、車輪BBが枢軸Oから遠ざかるとき車輪BBは摺動面KKに沿って移動し、リンクAの牽引力がドアDと摺動面KKとによって支持され分散されるので、ドアは減速する。車輪BBが摺動面KK上で減速すると押しバネUが伸びることによって車輪BBは摺動面KKから離れてドアが加速する。ドアが減速するとき「ドアに作用する力」は大きくなり押しバネUが縮み、ドアが加速するとき「ドアに作用する力」は小さくなり押しバネUが伸びることになり、図18の減速装置はドアが減速すると車輪BBは摺動面KKから離れてドアを加速し、加速ドアが加速すると車輪BBは摺動面KKに沿って移動し、ドアを減速する。 
図18(a)に示すようにドアから手を離したときドアに最大静止摩擦力が働いているので「ドアに作用する力」は大きくなり押しバネUが縮み、ドアが動き始めると大静止摩擦力が運動摩擦力に変わって「ドアに作用する力」は小さくなり押しバネUが伸びることになる。弱い力の押しバネUを採用すると図18(a)に示すように全開位置からドアから手を離した場合でも、閉止までに押しバネUが伸びることはなく縮んだ状態でラッチがドア枠Wに当接する。即ち閉止開始開度が大きいほど車輪BBが摺動面KKに沿って長い距離を移動してドアを減速する。速度がゼロの停止状態から動き始めるときの加速は以後の加速に比べて大きく、静慣性から動慣性或いは動慣性から静慣性が交互に働く現象は低速で運転する範囲は認められても、高速で運転する範囲では認められない。図18は高速運転する回転の終わりに施すのではなく、低速運転する回転の初めに施すの減速手段である。 
図18の場合も図10と同様に第1のドアとドアとの間に押しバネUが挿入され、押しバネUの長さは「ドアに作用する力」の大きさによって変化し、ドア慣性力が大きくなると「ドアに作用する力」が小さくなるの押しバネUの長さは長くなる。図18の場合も図10の場合と同様に閉止開始直後に押しバネUの長さが顕著に変化するが、ドアが大きく加速する回転範囲は少なく「ドアに作用する力」は空気抵抗と枢軸Oの周りの運動摩擦抵抗と釣り合い、ドアの加速が少ないので一定していて押しバネUの長さに大きな差異が認められなくなる。閉止開始開度によって「閉止寸前のドア慣性力の大きさとドアの回転速度」は大きく異なるが、「閉止寸前のドア慣性力の大きさとドアの回転速度」をバネの長さで判別して、押しバネUの長さの変化によって制動力の大きさを変えることは困難である。図18は「ドアの運動が落ち着いた状態」の長さに違いによって「制動力が作用する距離」の長さが変化する減速手段で、異なる大きさのドア慣性力の大きさ対応している。 
図19はリンクAと回転体Jの2つのリンクがクランク機構を形成するもので、2つのリンクが図8~10の引きバネVに代わるリンク装置で、該2つのリンクの両端の連結軸の間の距離が変化可能する点においてバネと同じである。図8と同様にリンクAAの回転軸SwをリンクAの軸芯線Zaが横切るときを境にして「切替手段」が動作する開閉装置の動作説明平面図である。回転体Jの図中矢印イ方向の駆動力MvをドアDの図中矢印ロ方向の回転力Moに伝達する開閉装置で、接続軸Cと固定支軸Swとを3つのリンクで連結するリンク装置である。図19(a)(b)は回転体Jがドア枠Wに設けられる固定支軸Swに軸支する場合を示し、図19(c)(d)は回転体Jが接続軸Cに軸支される場合を示す。リンクAは片方の端部に連結軸PPを他方の端部に連結軸Pを設けて、回転体Jを連結軸Pで連結し、揺動リンクAAを連結軸PPで連結する。図19(a)(b)においては固定支軸Swの周りに捩りバネUVが取り付き、回転体Jを付勢し、リンクAには引張力が働く。図19(c)(d)においては接続軸Cの周りに捩りバネUVが取り付き回転体Jを付勢し、リンクAには圧縮力が働く。当たりG1、G2は揺動リンクAAと当接し、それぞれ図中矢印ハと反対方向の揺動リンクAAの回転を、図中矢印ハ方向の揺動リンクAAの回転を阻止する。当たりG1は揺動リンクAAと当接して連結軸PPの位置を「(あ)の範囲」でドアの枢軸O近傍に留める。揺動リンクAAは閉止寸前で当たりG1と離脱して図中矢印ハ方向に回転し当たりG2に当接して、「(い)の範囲」で連結軸PPの位置をドアの枢軸Oから遠ざける。 
図19(a)(c)は閉止過程の途中を破線で示し、実線は閉止寸前の状態を示し、リンクAの軸芯線Zaが揺動リンクAAの回転の中心を横切った直後の状態、即ち「切替手段」の最初を示している。図19(c)において破線で示すリンクAの軸芯線Za100は枢軸Oの上を横切りドアDを図中矢印ロと反対方向に付勢する状態を示す。ドアを開く方向に付勢しドアを「図示しない開く方向の戸当たり」に押圧して静止させる。固定支軸Swの位置を移動して連結軸PPの停留位置を図中矢印X方向に移動すると、付勢方向が閉まる方向から開く方向に変化するドアの開き角度Θdは小さくなる。図19(b)(d)において実線は閉止状態を示し、閉止したドアを開く過程の途中を破線で示す。破線で示す作用体Aの軸芯線Zaは揺動リンクAAの回転の中心を再び横切った直後の状態、即ち「(あ)の範囲の回転手段」に復帰した最初の状態を示している。図19(b)において開く過程の「(あ)の範囲の回転手段」に復帰するときのドアの開き角度Θdは、閉まる過程の「(い)の範囲の回転手段」に切り替わるときのドアの開き角度Θdに比べて大きい。図19(b)(d)に実線で示す閉止状態において、リンクAと回転体Jの軸芯線が一直線上に位置する状態に近づくほど、リンクAに働く軸方向力の大きさは無限大に近づく。 
図19(c)(d)に示す回転体Jswはドア枠Wに設ける固定支軸Swwの周りに回転自在に軸支され、先端部に固定支軸Swを備えて、固定支軸Swを移動可能にするもので、図10に説明した第1のドアをドアDにではなく、ドア枠Wに取り付けたものである。回転体Jswは固定支軸Swwの周りに図中矢印ニと反対方向に押しバネUによって付勢され、回転体Jswの矢印ニと反対方向の回転は当たりGjによって阻止される。ドアDとドア枠Wは枢軸Oを共有し相対的に回転する2つの開閉体で、ドアがとまたままと仮定してドア枠Wをドアから見れば、ドア枠Wが回転している。図10において「ドアに作用する力」が第1のドアを介して伝わるように、図19(c)(d)においては「ドア枠に作用する力」が回転体Jswを介して伝わる。図10における第1のドアと図19(c)(d)における回転体Jswはドアの回転に同じ作用をし、第1のドアをドアにつける場合もドア枠につける場合も同じ効果が認められる。 
図20,21はリンク数5の回り対偶の連結されるリンク装置で、図19と同様に「切替範囲」において隣合うリンク同士が係合離脱する。図19のように隣合うリンク同士の連結軸が「開閉体と伸縮部との取付軸」ではなく、ドアが止まったまま運転し続けるリンク装置の実施例である。リンク数5のリンク装置はリンク数を1つ減らしても運動可能で、「切替手段」がドアと連動しない構造でドアが回転するか否かに関係なく「切替手段」は運動する。また「切替手段」の運動でドアが回転しない。「ドアに作用する力の作用線方向」を枢軸Oに向けたまま運転し続けるとドア
も伸縮部もリンク装置の全てが停止さするが、閉止寸前で「ドアに作用する力」の作用方向がドアの枢軸Oに向かうようにした状態を維持しながら密閉作業を同時に進行させるものであって、閉止寸前でドアを一旦停止状態にして「切替手段」が始動するようにするものである。抵抗などによる減速装置は使用しない。図2(c)(d)と同様に、動作する領域はドア面から少し離れた細長い領域に留まり、回転体Jは枢軸Oから遠い位置にあって「切替範囲」で大きく回転し、「枢軸Oから遠い位置の大きな回転」によってドアを密閉する。図20,21は「枢軸Oに近い作用点と遠い作用点を備える回転機構」であって閉止時の装置をドア枠Wに沿って細長くドア面から突出しないケースに収容でき、装置の小型化に貢献する。図20のリンク装置は図19のリンクAが「2つのリンクA,AAが直列に連鎖する連続体」に代わるもので、図21のリンク装置は図19の回転体Jに並列にリンクAAが取り付くものである。 
図20に示す実施例はリンクAがドア枠Wの固定支軸Swと「ドアDの接続軸Cを軸に回転する回転体Jの先端部に設けた接続軸P」とを連結して、回転体Jの図中矢印イ方向の回転をドアDに伝達するものである。図20(a)は閉止過程の途中を破線で示し、実線は閉止寸前にリンクAの軸芯線ZaがリンクAAの回転の中心を横切るときの状態を示している。閉止過程の途中ではリンクAとリンクAAは一直線状を保ち、ドアを牽引するが、閉止寸前でリンクAが回転体Jに取り付く当たりGaに当接し、回転体Jとが重なり合うようになっていて、リンクAと回転体Jとが相対的に一体となり回転し続ける。「連結軸Pに装着した車輪B」がドア枠Wに設けた摺動面Kを押圧してドアは密閉される。リンクAと回転体Jの長さを同じくして、連結軸Pと接続軸Cの位置が一致するようにするとリンクAAは静止し、「ドアに作用する力」を一定に保ちながらドアを密閉することになる。リンクAの長さを回転体Jより僅かに長くして、連結軸Pと接続軸Cの位置が僅かに一致しないするようにすると、リンクAAはドアを枢軸Oに引き寄せる方向に牽引し「ドアに停止する力」を増加しながらドアを密閉することになる。 
図21の回転装置は「接続軸Cの周りに回転自在に軸支される回転体J」と「固定支軸Swの周りに回転自在に軸支されるリンクA」とが連結軸Pで連結され、回転体の回転によって連結軸PがリンクAを牽引するもので、図21(a)に示すように「枢軸Oと固定支軸Swとを通る直線T」を境にして全開側の「(あ)の範囲」ではドアが閉まる方向に回転し、全閉側の「(い)の範囲」ではドアが開く方向に回転する。リンクAAとドアの設ける支軸Saとは「紐sと引きバネV1とを連結した連結体」で連結され紐Sは滑車BKに沿って移動する。このようにして伸縮部の大きな運動に対して長いバネを採用することが出来、バネの伸縮量を小さくする。また紐Sの断面は、紐Sが滑車BKに沿って移動するときは押しつぶされ、滑車BKに沿って移動しないときは復帰し、変形と復帰を繰り返すことによって「紐Sが滑車BKに沿う移動」が減速される。図21(b)は閉止寸前の状態図で、リンクAの軸芯線Zaが直線Tと一致するときリンクAが枢軸Oを牽引したままリンク装置は全く動かないようになる。「ドアに作用する力の作用線方向」が枢軸Oに向かうと、枢軸O周りの回転抵抗が増加してドアは減速する。図17,18の場合ドアを枢軸Oから離れる方向に牽引し、ラッチ雄部Rdと雌部Rwとの間隙を狭めるようになり、ラッチの抵抗は大きくなる。またドア上部が枢軸Oから離れドア下部が枢軸Oに近づくように傾き、自重による傾きと同方向で枢軸Oの磨耗を助長することになる。これに対して図20,21の場合ドアが枢軸Oに近づく方向に牽引し、ラッチ雄部Rdと雌部Rwとの間隙を拡げるようになり、ラッチの抵抗は小さくなる。また自重による傾きと反対方向に傾け枢軸O周りの回転抵抗を減少する。枢軸Oの磨耗を助長しない。 
図21の密閉装置はリンクAAが「回転体Jに設ける回転軸Ia」の周りに回転自在に軸支され、回転体Jに回転によって回転軸Iaがバネの軸芯線Zvを横切ることによって、リンクAAが当たりGaaから離れて図中矢印ハ方向に回転するようにして、車輪Bが摺動面Kに沿って移動するようにしたものである。摺動面Kはドア枠Wに設ける回転軸Ikの周りに回転自在に軸支され押しバネUによって図中矢印ニ方向に付勢されている。当たりGkは摺動面Kの図中矢印ニと反対方向の回転を阻止するもので、密閉時にドア枠Wと当接する。図21(c)は密閉時の状態図で、リンクAAが当たりGaaから離れて回転し、車輪Bが摺動面Kに沿って移動するとき、ドア慣性力の大きさに応じて摺動面Kは回転軸Ikの周りを図中矢印ニ方向に回転し、「摺動面KとリンクAAの軸芯線Zaaとの交差角度で車輪Bが移動する側の角度Θak」は減少し車輪Bは摺動面K上を移動し難くなる。このようにドア慣性力によって傾斜した摺動面Kは車輪Bの移動方向に対して上り勾配を大きくして車輪Bの移動を制止するがドア慣性力がなくなってくると、摺動面Kは回転軸Ikの周りを図中矢印ニと反対方向に回転し、ドアを開く方向に回転させようとするが、車輪Bがこれに打ち勝って図中矢印ハ方向に回転する。車輪Bが図中矢印ハ方向に回転するに従い「摺動面KとリンクAAの軸芯線Zaaとの交差角度Θak」は次第に直角に近づき、「車輪が摺動面を押圧する力の作用線Fb」とリンクAAの軸芯線Zaaとが一致する状態に近づく。このことは車輪Bがより容易に摺動面K上を移動するようになると同時に、「作用線Fbと回転軸Ibとの間の距離Lb」が小さくなって、図1に説明したように「回転軸Ibのまわりに働く回転力Mi」は密閉力Fbに大きく変換される。図1においても図21においても車輪Bは「公転ハ」の周方向に小さな力で公転し、リンクAAは「公転ハ」の径方向の大きな力を支持する。即ちドアは非常に小さい力で密閉することになる。 
リンクAの先端部に装着した車輪Bが摺動面Kを押圧しながら移動するとき、押圧力Fbの作用線とリンクAの軸芯線Zaとが一直線状に近づくほど車輪BはリンクAの回転軸を中心に小さな力で公転し、リンクAの軸芯方向に大きな力を支持する。このようなドアが非常に小さい力で密閉する機構と同様に、連結軸Pで連結された2つのリンクの軸芯線Zaが一直線状に近づくほど連結軸Pは「連結軸Pと反対側のリンクの回転軸」を中心に小さな力で公転し、リンクの軸芯方向に大きな力を支持する。図22は伸縮部がリンクAと回転体Jの2つのリンクからなるリンク装置で、密閉時に回転体JとリンクAの軸芯線が折れ曲がった状態から一直線状になって強くドアを押圧する開閉装置の動作説明平面図で、図22の開閉装置は図10で説明したように伸縮部と開閉部の間に第1のドアJcが介在して、ラッチ当接時以前にリンク装置の動作が終了して停止した後に「ドアDと第1のドアJcの間に介在する押しバネUの力」だけでドアDが閉まり始める特徴があり、ラッチ当接時以前の「ドアに作用する力」の履歴がどうであれ、またラッチ当接時以前のドアが高速回転する場合であっても、ラッチ当接時にドアが略停止し「ドアに作用する力」が略「ラッチを凹ませる力」であれば、ドアがゆっくりと密閉されることを説明する。 
引きバネVの片方Saは連結軸P近傍のリンクAに取付き、他方Swは連結軸P遠傍の回転体Jに取付く。バネの軸芯線Zvは連結軸Pから見てドア枠Wに近い側にあるときドアDは閉まる方向に、ドア枠Wから遠い側にあるときドアDは開く方向に回転する。図22(a)において「リンクAの軸芯線Zaと回転体Jの軸芯線Zjとの交差角度Θaj」を減少させる側にあって、ドアを開く方向に付勢する。図22(a)はドアDが戸当たりGd90に当接して静止する全開時の状態を示す。図22(b)に示すようにバネの軸芯線Zvが連結軸Pを横切るとバネの付勢方向がドアを閉止する方向に変わり、ドアDは図中矢印ロ方向に回転する。図22(c)に示す破線は「固定支軸Swを中心とする円軌道Rsw」に沿って移動する連結軸Pの動作と、「枢軸Oを中心とする円軌道Ro」に沿って移動する接続軸Cの動作と閉止過程の各リンクの動作を示す。図22(c)はラッチ当接時の、図22(d)は密閉時の状態図である。 
回転体JとリンクAの軸芯線が折れ曲がった状態から一直線状になるにしたがい駆動力距離Lvは小さくなり、連結軸P周りの駆動力Mvは「リンクAの軸芯線Zaに沿って働くリンクAの軸方向力Fa」に大きく変換される。回転体Jの長さに対してリンクAの長さが短いほど、ドアが僅かに回転する間にリンクAは大きく回転し軸方向力Faが急激に増加する。ドアの回転を全く伴わない「切替範囲」は「(あ)の範囲」と「(い)の範囲」との境界線で表されるが、図22(c)に示すようにドアの回転を殆んど伴わない「切替範囲」は「(あ)の範囲」と「(い)の範囲」との間の範囲で表される。図22の開閉装置は「ドアに作用する力」がラッチ当接時以前に大きく切り替わるが、軸方向力Faを駆動力距離Lvに反比例してゼロから無限大の大きさに変化させることが出来る。図4において摺動面Kの基端部Koで曲率を小さくして密閉時に大きな力を作用させる場合も「(あ)の範囲」と「(い)の範囲」との間の範囲でドアの回転を殆んど伴わなずに押圧力Fbが大きく切り替わる。この場合も押圧力Fbは作用力距離Loに比例する。 
「伸縮部と開閉部の間に第1のドアJcが介在するドア」は「伸縮部が第1のドアJcを回転させる回転機構」と「第1のドアJcが開閉部を回転させる回転機構」からなり、前者によって図1,8,10などのドアになるが、図22は前者の構造を簡単にするものである。ラッチ当接時にそれまで以上の力が働かなければドアは止まってしまうことになるので、前者は回転の最後に大きな力が働く回転機構となる。前者が何であれドアは後者の回転機構によって動作するもので、押しバネUに働く力の履歴によってドアの運動が異なるようになる。ラッチ当接時に押しバネUに蓄えられた力とドア慣性力との和が「ラッチを凹ませる力」以上であればドアは止まらずに全閉する。ラッチ当接時に一旦停止してから閉止するようにするには押しバネUに蓄えられた力とドア慣性力との和が「ラッチを凹ませる力」以下であって、その後以上になればよいことになる。 
押しバネUに働く力の履歴について説明する。ドアが止まると或いは減速すると押しバネUは縮んで力を蓄える。またドアが動くと或いは加速すると押しバネUは緩んで力をドアに伝える。ドアから手を離したときドアが止まっている間は押しバネUが縮み、押しバネUに働く力が「枢軸O回りの最大静止摩擦力」に到達した同時にドアが動き始めて押しバネUは緩むことになる。動き始めたドアには最大静止摩擦力より小さな運動摩擦力が働き、運動摩擦力以上の力がドアを加速する。ドアが動き始める当初ではドアは加速と減速を繰り返し低速に運動する。ドア慣性力の増加分だけ「ドアが動くために必要な力」減少し押しバネUが緩むことになるので、押しバネUが縮んで押しバネUに蓄えられる力は小さくなり、ラッチ当接時に「ラッチを凹ませるだけの力」より小さいことになる。ドア慣性力が大きい場合はドアは止まらずに全閉する。小さい場合はラッチがドア枠Wに当接すると同時にドアは停止する。ドア慣性力が大きくない場合でも、閉止寸前にドアが空気抵抗を大きく受けてドアが減速するとき、押しバネUが縮んで押しバネUに蓄えられる力がに「ラッチを凹ませるだけの力」より大きくなる場合があって、ラッチ当接時にドアが止まって空気抵抗がなくなるとき、押しバネUが伸び始めてドアを閉めることになる。この場合は「伸縮部が第1のドアJcを回転させる回転機構」が全停止しても「第1のドアJcが開閉部を回転させる回転機構」だけでドアを密閉することになる。ラッチ当接時に押しバネUに蓄えられる力がに「ラッチを凹ませるだけの力」より小さい場合、「伸縮部が第1のドアJcを回転させる回転機構」が停止ぜず、押しバネUに蓄えられる力がに「ラッチを凹ませるだけの力」より大きく
なるまで動く必要がある。 
「伸縮部が第1のドアJcを回転させる回転機構」の停止位置は、図22(c)に示すように「リンクAの連結軸Pを軸とする図中矢印イ方向の回転」を阻止するが当たりGaによって調整される。「リンクAの連結軸Pを軸とする回転」をラッチ当接時以前に阻止する場合も以後に阻止する場合も、縮んだ押しバネUの力だけでドアDを密閉できるようにように設計される。ラッチ当接時以前に阻止する場合、ラッチ当接時以前に縮んだ押しバネUの力だけでドアDを密閉できるようになっていて、ラッチ当接時以後に阻止する場合、ラッチ当接時以後に縮んだ押しバネUの力だけでドアDを密閉できるようにする。何れにしてもラッチが当接した状態で回転体JとリンクAの運動が停止するとき、縮んだ押しバネUが伸びる間はドアDが停止状態にあって、ラッチ当接時から縮んだ押しバネUが伸びる時間だけ密閉が遅れる。「ドアに作用する力」はラッチ当接時に最大である必要があって、図5(c)(d)に示すようにラッチが凹んでしまうとラッチが対面するドア枠の凹部に嵌まり込むまで殆んどいらない。ラッチ当接時以前に以後に関係なく、ラッチが凹み始める位置が「リンクAの連結軸Pを軸とする回転」を阻止する位置であって、押しバネUの長さが自然長になるまで伸びきった位置で、ドアの回転が停止する。ドアの回転が停止する位置によっては密閉に至らない場合があって、このことは「回転体JとリンクAの軸芯線が折れ曲がった状態のまま係止される位置と押しバネUの自然長によっては、密閉に至らない位置でドアを止めることが可能であり、且つ密閉に至ると同時にドアを止めることが可能である。」ことを意味している。このように当たりGaを調整することによってラッチが対面するドア枠の凹部に嵌まり込んでドアが戸当りに当たらない位置で衝撃音が発せられない位置でドアを止めることができる。またはそれに近い位置でドアを止めることができる。或いは押しバネUUによってドアを止める位置とドアを密閉するときの力を調節することが出来る。また密閉時の押しバネUの縮み量を調節することによって、ドアを密閉するときの力を調節することが出来、衝撃音の大きさもまたドアを開くときの力も小さく出来る。 
図23は図22と同じく伸縮部がリンクAと回転体Jの2つのリンクからなる4節回転機構であるが、ラッチ当接時以後に一直線状になるようにした開閉装置の動作説明平面図である。解除可能な拘束手段だけでなく拘束手段の解除を阻止する手段を備えて、「切替手段」がラッチ当接時以後に始動することを確実にするものである。図23(a)に示す破線は「(あ)の範囲」の動作説明図で、実線は全開時に静止したドアD100の状態を示す。回転体Jは固定支軸Swの周りに回転自在に軸支されリンクAと連結軸Pで接続される。、回転体Jは図中矢印イ方向の駆動力Mvによって連結軸Pが固定支軸Swの周りを公転する。連結軸PにリンクAが接続され、リンクAは接続軸Cの周りに回転自在に軸支される。接続軸CはドアDに回転体Jcを介して移動可能に取付けられ、4節回転機構は5節回転機構になるが、先ず接続軸Cと固定支軸SwのそれぞれがドアDとてドア枠Wに固定された状態の4節回転機構について動作説明する。 
「2つのリンクの間の角度Θaj」は図23(a)に示すように全開時から閉止直前まである程度折り曲げられたままの状態を維持するが、回転体JとリンクAの軸芯線が折れ曲がった状態から一直線状に移行する過程において、図23(b)~(c)に示すように閉止直前に角度Θajは突如として増加する。2つのリンクの片方を長く他方を短くすればするほど、長い方のリンクが小さく回転する間に短い方のリンクが大きく回転し、短い方のリンクの軸方向に働く力は突如として大きく変化する。また伸縮部の両端の取付軸Sw,Cの間の距離の増加は少なく、ドアの回転角も小さくなる。「(い)の範囲」が非常に狭くなり、閉止寸前のドアの僅かな回転に対して「ドアに作用する力」は急激に増加することになる。図23(b)に示すように、回転体JとリンクAの軸芯線が一直線状に配されようとするときは、ラッチが凹み始めようとするときであって、「(あ)の回転手段」が、ドアの回転を継続するために力不足であると同時に、長い方のリンクの回転を継続するために力不足である。この力不足は閉止寸前にドアを一旦停止させる。 
図23(c)に示すようにリンクAの軸芯線Zaに沿って働く軸力Faと「該軸力Faの作用線と固定支軸Swとの間の距離」との積は、固定支軸Swの周りに働く回転力Mjと釣り合い、回転力Mjは軸力Faに大きく変換される。図23(c)に場合も同様であって、リンクAの軸芯線Zaに沿って働く軸力Faと「該軸力Faの作用線と接続軸Cとの間の距離Lv」との積は、接続軸Cの周りに働く回転力Mjと釣り合い、回転力Mjは小さくても軸力Faに大きく変換される。図1において車輪Bが摺動面Kを押圧してドアを密閉した場合に、車輪Bの円運動の周方向に働く力が小さくても「車輪が摺動面を押圧する力Fb」が大きくなって、ドアを強く戸当たりGdに密着させたときと同様に、リンクAの軸芯線Zaと「リンクAの回転軸と反対側で円運動する連結軸に作用する力の作用線」とが一直線状に配されるとき連結軸Pの円運動の周方向に働く力は小さくてもリンクAの軸方向に大きな力Faが発生する。このようにドアDとドア枠Wとを「長さが異なる2つリンクA,J」で連結し、閉止するに従いに2つリンクA,Jの両端の取付軸が遠ざかる4節回転機構は、「切替範囲」以前は2つリンクA,J折れ曲がった状態で「ドアに作用する力」を小さく拘束し、「切替範囲」で拘束解除されて、折れ曲がった2つリンクA,Jはドアが殆んど回転することなく一瞬にして一直線状にる。「切替範囲」でドアが僅かに回転する間にリンク装置が大きく動作し、ドアに作用する力」が力不足の状態から強い力に切り替わるようになる。 
次に接続軸CはドアDに回転体Jcを介して移動可能に取付けた5節回転機構について動作説明する。リンクAとドアDの取付軸Cは「ドアの設ける接続軸Cjの周りに回転自在に軸支される回転体Jc」の先端部に設けられる。取付軸Cは接続軸Cjの周りを回転可能となる。接続軸Cjの周りに押しバネUが取付けられ、図23(a)に示すように「(あ)の範囲」では押しバネUが縮んだ状態のままドアが閉止する。図23(b)に実線で示すように回転体Jの回転が「拘束手段の解除を阻止する手段」によって止まったままとなり、図23(b)に破線で示すように縮んだ押しバネUが伸びることによってリンクAとドアDが運動してドアが回転する。リンクAAはドア枠Wの設けた回転軸Iaの周りに回転自在に軸支され、引きバネVによって図中矢印ニ方向に付勢される。リンクAAの先端部に車輪Bが装着され、図23(a)~(b)に示すように全開時から閉まる過程においては、車輪Bが回転体Jの側面に設けられた凹部の摺動面Kに沿って移動しながら摺動面Kを押圧する。回転体Jは固定支軸Swを軸に図中矢印イ方向に回転し、連結軸Pは固定支軸Swを中心とする円周Rsw上を移動する。図23(b)に示すように閉止寸前に「ドアDに取り付く摺動面KK」が車輪Bの進路を塞ぎ「車輪B摺動面Kに沿う移動」と「連結軸Pの円周Rsw上の移動」が止められる。車輪Bが摺動面KKを押圧する力Fbはドアを閉める方向に働くのでドアは停止しない。また連結軸Pが円周Rsw上で停止した状態で図23(b)の破線が示すように押しバネUによって回転体Jcが図中矢印ハと反対方向に回転しリンクAと回転体JcとドアDが運動を続ける。図23(c)に示すようにラッチ雄部Rdが雌部Rwに当接した位置で「ドアDに取り付く摺動面KK」が車輪Bの進路から排除され、車輪Bが摺動面Kに沿って移動可能となる。 
図23(b)に示すようにドアが一旦停止しても、「(あ)の回転手段」の小さな力でも押しバネUが再び縮むことによって、ドアD以外のリンクJ,Aは運動可能であって。また図23(b)に示すように「(あ)の範囲」で固定支軸Swの近傍に留まっていた車輪Bが、図23(c)に示すように「切替範囲」で遠い側に移動する。リンクAAの軸芯線Zaと「車輪Bが摺動面Kを押圧する力Fb」とが重なる方向に移行し、回転体Jを回転させる力を増加する。同時に車輪Bの移動方向に対して摺動面Kの勾配が小さくなりより移動しやすい状態に移行する。回転体Jはこのようにして止まることなく回転してドアが密閉される。このように回転体Jcを追加してリンク数5のリンク装置にすることによって、回転体JとリンクAの軸芯線が一直線状になる以前に回転体Jの回転が止まってもリンク装置は運動可能となり、ラッチ雄部Rdが雌部Rwに当接して待機状態にするように出来る。またラッチ当接時にドアが停止した後に、2つのリンクが一直線状になって「ラッチを凹ませる力」が作用するようにすると、つねにドア慣性力がなくなった状態で全閉することになり、衝撃音の大きさを常に小さくすることができる。 
図24は図22、23と同じく2つの開閉体D,WとリンクAと回転体Jの2つのリンクが連鎖する伸縮部からなる4節回転機構の動作説明平面図である。図22、23の場合は密閉時に回転体JとリンクAの軸芯線が折りたたまれた状態から一直線状になって強くドアを押圧する。また折れ曲がった状態から一直線状になり始める当初において力不足になる。図24の場合は一直線状の状態から折りたたまれる状態になって強くドアを押圧する。後者は2つの軸芯線が重なって一直線状になる。密閉時に一直線状になって強くドアを押圧する点において同じである。図24の場合は重なって一直線状になり始める当初において力不足にならない。リンクAと回転体Jは連結軸Pで連結され、リンクAの連結軸Pと反対側の連結軸の接続軸CはドアDに、回転体Jの連結軸Pと反対側の連結軸の固定支軸Swはドア枠Wに取付けられる。接続軸Cの周りに捩りバネUVが取り付き、リンクAは接続軸Cを軸に図中矢印イ方向に回転すせる。また接続軸Cの周りに駆動力Mvが働く。捩りバネUVの片方の支軸Sjは回転体Jcに固定され、他方の支軸SaはリンクAに設ける溝H内で移動する、溝HはリンクAの回転の中心Cに近い位置から遠い位置に連続する溝であって、支軸Saは「(あ)の範囲」で回転の中心Cに近い位置Hoにあって、「切替範囲」で遠い位置Heに遠ざかることによって、接続軸Cの周りの回転力Mjが密閉時に突如として増加し、密閉時の回転力不足を補う。 
接続軸CはドアDに回転体Jcを介して、固定支軸Swは回転体Jswを介してドア枠Wに、それぞれ移動可能に取付けられ、4節回転機構は6節回転機構になるが、先ず接続軸Cと固定支軸SwのそれぞれがドアDとてドア枠Wに固定された状態の4節回転機構について動作説明する。図24(a)は閉止過程の途中を破線で示し、実線は全開時の状態を示している。図24(a)に示すように全開時から閉まる過程においては、接続軸Cは枢軸Oを中心とする円周Ro上を移動する。ドアDは枢軸Oを軸に図中矢印ロ方向に回転する。連結軸Pは殆んど移動せず、「(あ)の範囲」で枢軸Oの近傍に留まり、作用力距離Loを小さく保つ。図24(b)に示すようにリンクAと回転体Jとが次第に重なる状態に移行すると、接続軸Cは殆んど移動せず連結軸Pが「固定支軸Swを中心とする円周Rsw上」を移動する。駆動力Mvは軸力Fjに大きく変換され、同時に軸力Fjは「閉止したドア面D0」に次第に直角に働くようになる。 
全開時から閉まる過程において、リンク装置は「リンクAの軸芯線Zaと回転体Jの軸芯線Zjとの交差角度Θaj」が減少する方向には運動し、リンクAの軸芯線Zaと回転体Jの軸芯線Zjとが次第に重なる状態に移行する。接続軸Cの周りのモーメントの釣り合いから交差角度Θajが大きい程、駆動力Mvは回転体Jの軸芯線Zjに働く軸力Fjに小さく変換される。また2つのリンクが重なる状態に移行して交差角度Θajが小さくなるほど程、大きく変換される。図24(b)に示す円弧Raは接続軸Cを固定してリンクAが回転したときの「リンクAの先端部の
連結軸Pの軌跡で、円弧Rjは固定支軸Swを固定して回転体Jが回転したときの「回転体Jの先端部の連結軸Pの軌跡であって、片方のリンクの先端部の連結軸Pが他方の軌跡に沿って移動するときを考えると、双方の軌跡は一致するほど双方の回転軸の間の距離の変化は少ない。リンクAと回転体Jの長さが同じであるほど、リンクAと回転体Jの回転の中心(C、Sw)の位置が一致するほど、開閉体の回転を全く或いは殆んど伴わずに、リンクAと回転体Jとが相対的に一体になって大きく回転し、連結軸Pはその円運動の周方向に小さな力で移動し径方向に大きな力を作用させる。このようにドアDとドア枠Wとを「長さが略等しい2つリンクA,J」で連結した4節回転機構は、閉止寸前に回転軸が接近するようにすると、連結軸Pを「(あ)の範囲」で枢軸O近傍に拘束して「切替範囲」で拘束解除して枢軸Oから遠ざける解除可能な拘束手段を備え、「切替範囲」でドアが僅かに回転する間にリンク装置が大きく動作し、閉止時に弱い力から強い力に切り替わるようになる。 
次に6節回転機構について動作説明する。接続軸Cは回転体Jcに設けられ、回転体JcはドアDの設けられる接続軸Cjの周りに、当たりG1に当接する位置とG2に当接する位置との間で揺動する。固定支軸Swは回転体Jswに設けられ、回転体Jswはドア枠Wの設けられる固定支軸Swwの周りに図中矢印ハ方向に押しバネUswによって付勢され回転自在に軸支される。回転体Jswの矢印ハ方向の回転は当たりGswによって阻止される。回転体Jに働く軸力Fjが小さい間は、回転体Jcは当たりG2に当接し、回転体Jswは当たりGswに当接した状態を保っている。2つのリンクが重なり回転体Jに働く軸力Fjが大きくなると、回転体Jcは当たりG1に当接し、回転体Jswは当たりGswから離れて、固定支軸Swが接続軸Cに近づく。図24(b)に示すようにリンクAと回転体Jとが相対的に一体になって大きく回転する場合に、押しバネUswの強さを変えることによってリンク装置の形態を変えて運動速度を変えることができる。実線で示すようにリンクAと回転体Jの回転の中心(C、Sw)の位置が略一致した状態では、小さなバネの力で回転することが出来、リンクAと回転体Jの回転の中心(C、Sw)の位置が離れた状態では、バネの力が大きくなければ回転することが出来ない。押しバネUswを強くすると「切替範囲」の当初に力不足が生じてリンク装置の運動速度が遅くなる。このように伸縮部A,Jと開閉体D,Wの取付軸を移動可能にしてリンク数6のリンク装置にすることによって、回転作業時と密閉作業時とにおいてリンク装置の形態が替わり、「ドアに作用する力」の大きさが切り替わるようにできる。「(あ)の範囲」では伸縮部の強い力が開閉体に小さく作用する形態を保ち、「(い)の範囲」では伸縮部の弱い力が開閉体に大きく作用する形態に転換する。 
図25はラッチ雄部Rdが雌部Rwに当接して全閉するまでのドアの僅かの回転の間に「ドアに作用する力」を制御する機構の動作説明平面図である。ラッチ雄部Rdが雌部Rwに当接したときに必要な力は、ドアが全開から全閉するまでの全回転範囲を通じて最大であり、ラッチ雄部Rdが雌部Rwの摺動面部Rww上を移動して全閉するまでに必要な力は、殆んどいらない。この回転範囲で「ドアに作用する力」が上昇してドアが加速すると、慣性力は速度の2乗に比例することから「密閉時ドアの速度」が僅かであっても衝撃音は無視できない大きさになる。図25の開閉装置は図24の実施例と同じ構造でドアDの設ける取付軸Cとドア枠Wに設ける取付軸Swの間を2つのリンクJ,Aで連結し、2つのリンクJ,Aが重なるようにして大きな密閉力が働くようにするもので、図23の実施例において摺動面KKが車輪Bの通路を塞いだように、摺動面Kによって車輪Bの移動に抵抗をかけながらドアを減速している。 
図25(a)は全開から全閉に至る一連の動作を説明する平面図で、各時点のリンクAの状態を図示している。接続軸Cは回転体Jの回転軸Swに近づきながら「枢軸Oを中心とする円周Ro」上を図中矢印ロ方向に移動し、「2つのリンクJ,Aを連結する連結軸P」は引きバネVに付勢されて固定支軸Swを中心とする円周Rsw上を図中矢印イ方向に移動する。閉止寸前に2つのリンクJ,Aが重なるようになると2つのリンクJ,Aの軸方向に大きな力が働くようになると同時に、2つのリンクJ,Aが重なって相対的に一体になることによって2つのリンクJ,Aはテコとして働くようになる。固定支軸Swの周りに働く駆動力Mvは、作用点Cが支点Swに近づくことによって「ドアに作用する力」は大きくなる。リンクAの回転軸Cが回転軸Swに近づくに従い接近速度は小さくなり、閉止寸前で回転軸Cと回転軸Swとは略一致する。リンクAは途中で折れ曲がり隅角部Akは回転軸Cを中心に円運動し、円運動の中心Cは回転軸Swに近づくに従い接近速度は小さくなり、隅角部Akの軌跡は「切替範囲」で直線に近い円弧から「略固定支軸Swを中心とする円」になる。 
図25(b)に示すように隅角部Akには車輪BBが装着され、車輪BBと摺動面KKとは係合離脱する。摺動面KKはドア枠Wに設けられる支軸Skkの周りに回転自在に軸支され、支軸Skkの周りに図中矢印ト方向に押しバネUによって付勢され当たりGkによって図中矢印ト方向の回転を阻止する。摺動面KKは直線部の基端部Koと曲率を大きく変える終端部Keからなり、車輪BBが円運動するとき車輪BBが摺動面KKを押圧しながら移動し押しバネUを縮める。車輪BBが基端部KKoを移動する途中で、角度Θakが直角であるときを境にして、縮んだ押しバネUが伸び始めて摺動面KKが車輪BBを押圧して移動させる。摺動面KKは図10に説明した第1のドアと同じく、ラッチ当接時以後に伸縮部の駆動力Mvはドアに伝わることなく、押しバネUの力でドアを回転させたように、伸縮部の駆動力Mvが角度Θakが直角になるまで車輪BBを摺動面KKを移動させるならば、ラッチ雄部Rdが雌部Rwの摺動面部Rww上を移動するとき、摺動面KKを付勢する押しバネUの力だけでドアを回転させ、図25(c)に示すように車輪BBが摺動面KKの終端部KKeに至ると車輪BBが円運動の周方向に押圧力Fbが作用してドアDを戸当たりGdに押圧する。 
図12に示した押しバネUと同じく引きバネVの力を減じることになり、「(い)の回転手段」をそれだけ大きくしなければならないが、ラッチの抵抗が大きい場合と同じである。押しバネUは縮みながらドア慣性力を吸収し、押しバネUに蓄えられる力がドアを押し戻す働きをす代わりに、ドアを閉める方向に働くようになる。最終的にドア慣性力が密閉力に変換される。ドア慣性力は摺動面KKの回転の周方向に働き車輪BBの移動方向に働く力は径方向である。押しバネUを強くして大きなドア慣性力を摺動面KKによって受け止めても、車輪BBの移動速度に押しバネUの影響は少ない。また押しバネUを強くしてもドアを開く方向に跳ね返すことはない。押しバネUはドア慣性力を吸収して縮むが、車輪BBが摺動面KKを押圧しながら移動するので復元することはなく、ドアが開く方向に押戻されることはない。摺動面KKは押圧力Fbとそれと反対方向のドア慣性力とを同時に受け止めて、図12に示す摺動面K2のように2つの力に挟まれた状態にあって、車輪BBが摺動面KKを押圧する力は図12に示す車輪B2が摺動面K2を押圧する力と同じく、ドアと共にドア慣性力の反力をも同時に押さえ込むものである。 
図25において回転体Jの付勢手段は、押しバネUの復元力でラッチ雄部Rdが雌部Rwの摺動面部Rww上を移動するようになると、駆動力Mvはドアの回転に無効になるものである。図25においてリンクAAは回転体Jに設けられる支軸Iaの周りに回転自在に軸支され、途中で直角に曲げられ、隅各部にバネの片方の支軸Saを設けて先端部には車輪Bが装着される。バネの他方の支軸Swwはドア枠Wに設けられる。図25(a)に示すように、「(あ)の範囲」でリンクAAは側面が固定支軸Swに接触したまま回転し、バネの支軸Saは固定支軸Swの周りを小さく公転する。リンクAAと引きバネVは図2と同じく「引きバネVとリンクAAの連結体」であって、図2の「引きバネVとリンクAとの連続体AV」はリンクAの軸芯線Zaとバネの軸芯線Zvとが一直線状になるとき拘束が解除されるが、図25においてリンクAの軸芯線Zaaとバネの軸芯線Zvとが一直線状になるとき拘束が解除されない。図25(a)に示すようにリンクAAの側面が固定支軸Swから離れると車輪Bは摺動面K1に沿って移動し、バネの支軸Saは固定支軸Swの周りを小さく公転し続ける。ラッチ当接時に車輪Bは摺動面K1から離れて、バネの支軸Saは固定支軸Swから遠ざかり、駆動力Mvは大きくなる。2つの軸芯線が折れ曲がったままでバネの支軸Saの拘束が解除される。 
図25(c)に示すように摺動面K3の外縁部は「固定支軸Swwを中心とする円弧で、車輪Bが摺動面K3に沿って移動するとき引きバネVの長さは変化せず、引きバネVの引張力はドアに作用しない。車輪Bは摺動面K1から離れて、2つの軸芯線が折れ曲がった状態から一直線状になる瞬間だけ、押しバネUの力は回転体Jに作用するが、ラッチ雄部Rdが雌部Rwの摺動面部Rww上を移動するとき以後は無効になる。図25(b)に示すように摺動面K3はドア枠Wに設ける固定支軸Skに軸支され、摺動面K3を所定の回転角で固定できる。固定支軸Skを中心に図中矢印ニ方向移動して円弧Rsww1に沿うようにすると車輪Bの図中矢印ホ方向の移動に抵抗が掛かり密閉時にドアは減速する。円弧Rsww2に沿うようにするとドアは加速する。このようにドアDの小さな回転に対して回転体Jが大きく回転するので、回転体Jの大きな回転範囲において「ドアに作用する力」を自由に操作できる。ドアDが戸当たりGdに当接するとき「ドアに作用する力」が働かずない様にして、ラッチ雄部Rdが保有するバネの力で雌部Rwの凹部に嵌まり込むようになると衝撃音が最も小さくなる。ドアDが戸当たりGdに当接するときに施される手段は衝撃音を最も小さくするために最も効果があり、それまでに施される手段が如何に有効に働いても最後に施される手段が有効でなければ衝撃音が小さくならない。 
図26,27は図22~24の伸縮部がリンクAと回転体Jの2つのリンクからなる4節回転機構にリンクを1つ追加して、伸縮部がリンクAと回転体JとリンクAAの3つのリンクからなる5節回転機構にした開閉装置の動作説明平面図である。「(あ)の範囲」でリンクAとリンクAAとは一直線状になって1つのリンクとして動作し、「(い)の範囲」でリンクAと回転体Jとが相対的に一体になって1つのリンクとして動作する。図8,19において開閉部に取り付くリンクが開閉部と当接離脱するのと異なり、開閉部と伸縮部との取付部以外において隣合うリンク同士が互いに当接離脱する。5節回転機構にすることによって、リンク装置の運動の過程に分岐点が認められ、リンク装置の運動が停止する場合と継続する場合の2つの形態に別れるようになる。これまでに説明した開閉装置はラッチ当接時にドアが一旦停止をするものであったが、図26,27の開閉装置はドアの停止位置をラッチ当接時以前にすることが出来、指を詰めない開度でドアを停止し、ドアガ強風に煽られたとき指詰め事故を防止出来る。 
図26,27の開閉装置はドアDの設ける取付軸Cとドア枠Wに設ける取付軸Swの間を3つのリンクJ,A、AAで連結する5節回転機構のリンク装置で、図22のリンクAに代わって「リンクAとリンクAAを連結軸PPで連結した2つのリンク」が「固定支軸Swの周りに回転自在に軸支される回転体Jの先端部に設ける連結軸P」と接続軸Cとに接続される構造である。連結軸PPが「固定支軸Swと接続軸Cとを通る直線Tc」を2度に亘って横切り、往復することを特徴にしている。リンクAの軸芯線Zaは連結軸Pと連結軸PPとを通る直線であって、図26のリンク装置はリンクAの軸芯線Zaが固定支軸Swを横切るようにしていて、図27のリンク
装置はリンクAとリンクAAが連結軸PPを中心にして図中矢印ニ方向に閉じられるように、連結軸PPの周りを或いは図27に図示するように接続軸Cの周りをバネVppで付勢していて、連結軸PPが直線Tcを横切り往復するようにしている。 
図26のリンクAは先端がL型に曲がり、図27のリンクAは先端がL型に曲がっていない。図26,27(a)は連結軸PPが「固定支軸Swと接続軸Cとを通る直線Tc」を横切る以前の動作説明図で、「(あ)の範囲」で2つのリンクA,AAの連結点P,PP,Cは常に同一直線ZZ上にあって、2つのリンクAとAAとは1つのリンクとして動作し、回転体Jがの固定支軸Swの周りに図中矢印イ方向に図示しない付勢手段によって回転すると、ドアDは2つのリンクAとAAを介して牽引され枢軸Oを軸に図中矢印ロ方向に回転する。図27の場合は「(あ)の範囲」で回転体JがリンクAを牽引する力によってバネVppが引き伸ばされ、リンクAとリンクAAとが一直線状になるが、ドアが加速しだすと牽引する力は弱まり、リンクAとリンクAAとが連結軸PPを中心にして図中矢印ニ方向に閉じられるようになり、リンクAとリンクAAと折れまがったまま1つのリンクとして動作する。 
2つのリンクJ,Aが係合しない「(あ)の範囲」では連結軸Pが「一直線状になった1つのリンクA,AA」を牽引するが、2つのリンクJ,Aが係合する「(い)の範囲」では連結軸PPがリンクAAを牽引する。2つのリンクJ,Aが係合するとき2つのリンクJ,Aはテコとして働き、固定支軸Swがテコの支点となり連結軸PPが作用点となる。「(い)の範囲」で回転の中心Swと作用点PPとの間の距離が「回転の中心Swと作用点Pとの間の距離」より小さくなることで、固定支軸Swの周りに働く駆動力Mvが大きく「ドアに作用する力」に変換される。図8の揺動リンクAが「切替範囲」でドアDと離脱して拘束が解除されるのと異なり図26,27の場合は「切替範囲」で2つのリンクJ,Aが係合して拘束される。回転体Jが図中矢印イと反対方向に回転する場合も、連結軸PPが往復する方向を反対にすれば、同様の効果が得られる。 
連結軸PPが「固定支軸Swと接続軸Cとを通る直線Tc」を横切ると、リンクAと回転体Jとは互いに側面同士を当接しあい相対的に一体になる。図26,27(b)は連結軸PPが「固定支軸Swと接続軸Cとを通る直線Tc」を2度に亘って横切り往復した後の動作説明図である。リンクAと回転体Jとが相対的に一体となり1つのリンクAJを形成し、1つのリンクAJが動作する。1つのリンクAJの軸芯線Zajは「固定支軸Swと連結軸PPとを通る直線である。連結軸PPが往復して2度目に直線Tcを横切るとき、軸芯線ZajとリンクAの軸芯線Zaaとは折れ曲がった状態から一直線状に伸びて、「固定支軸Swと接続軸Cとの間の距離」が増加する。一直線状に伸びた状態から再び折れ曲がり、「固定支軸Swと接続軸Cとの間の距離」が減少する。これに伴いドアは一旦開いて再び閉まるようになる。ドアが一旦開く回転量は当たりGaによって調節でき2つのリンクJ,Aが係合するまで軸芯線Zajと軸芯線Zaaとが一直線状に伸びたままにすればするほどドアが一旦開かなくなる。 
リンクAと回転体Jとが相対的に一体となる以前では連結軸PPは固定支軸Swを中心に図中矢印ハ方向に回転し一体となった以後は図中矢印ハと反対方向に回転する。リンクAと回転体Jとが相対的に一体となるとき連結軸PPは移動方向を逆転するので、「ドアに作用する力」は瞬間的にゼロになり、リンクAとリンクAAが連結軸PPを中心にして図中矢印ニ方向に閉じ方向に回転する。この閉じ方向の回転を当たりGaによって阻止すると、1つのリンクAJの図中矢印イ方向の回転によってドアは動くが、ドアを押して閉めようとしても動かなくなる。これはドアが低速回転するときドアは駆動力Mvによって閉止するが、ドアが急速に回転してドア慣性力によって閉止するときドアを急停止させることを意味している。 
図27(c)(d)は接続軸Cが第1のドアJcを介してドアDに取り付けた構造のリンク装置で、図27(c)に示すように「(あ)の範囲」で第1のドアJcとドアDとは開いた状態を保って閉止し、閉止寸前でリンクAと回転体Jとが相対的に一体となるとき連結軸PPは移動方向を逆転する。「開いた状態の第1のドアJcとドアD」はドア慣性力によって閉じ始める。図27(c)はドアが低速回転するときでドア慣性力が小さい場合で、第1のドアJcとドアDとは開いた状態で連結軸PPが直線Tcを再び横切る状態を示している。ドアが開く方向に回転せずに閉止する状態を示している。連結軸PPが図中矢印ハと反対方向に移動するとき、連結軸PPの周りに取り付けた引きバネVを引き伸ばす以外の負荷がかからないため、連結軸PPは図中矢印ハと反対方向の移動を一瞬にして終えるようになる。本発明の「切替手段」は無負荷で動作が一瞬にして終わる問題点があり、この動作に掛ける負荷を減速或いは密閉のために利用する対策が講じられるが、そもそもバネでドアが動くのではなく、一定の速度が保たれる電動アクチュエータを採用すると問題は一挙に解決される。図27(d)はドアが高速回転してドア慣性力が大きく働く場合で、連結軸PPが直線Tcを再び横切る前に第1のドアJcとドアDとが閉じた状態となり相対的に一体になりドアが急停止した状態を示す。時間経過した後でドア慣性力が消滅すると、ドアが一旦開く方向に回転してその後閉止する。このように4節回転機構に1つリンクを追加することによって、リンク装置は大きさが異なるドア慣性力に対して異なる形態を示すようになり、ドア慣性力におおじて制動力が働くようになる。 
ドアDが閉止方向に回転して連結軸PPが直線Tcを横切り、リンクAと回転体Jとが相対的に一体になるとき、回転体JとリンクAは連結軸Pを中心に閉じ方向に回転する。図26、27(a)に示すように回転体JとリンクAとが閉じた状態でドアを開くとき、相対的に一体になったリンクAと回転体Jと連結軸Pを中心に開く方向に回転する。図27(a),(b)に示す場合はドアを開くとリンクAとリンクAAは一直線になって、リンクAと回転体Jとが連結軸Pを中心に開きながら、回転体Jが図中矢印イと反対方向に回転する。ドアは開くことが可能である。図26(a),(b)に示す場合は、ドアDが閉止方向に回転して連結軸PPが直線Tcを横切ってリンクAと回転体Jとが相対的に一体になるとき、リンクAの軸芯線Zaが固定支軸Swを横切るので、一旦横切ったリンクAの軸芯線Zaは戻ることは出来なくなる。図26(a),(b)に示すようにリンクAの軸芯線Zaと「リンクAと回転体Jとが互いに当接しあう側面」とが固定支軸Swを中間にして互いに反対側にある場合は、連結軸PPに働きドアを開く方向の力は連結軸Pをドアの閉じ方向に回転させ、リンクAと回転体Jとが互いに離間する方向ではなく当接しあう方向に回転し、ドアは開かなくなる。 
図26(c)~(e)はリンクAの軸芯線Zaが一旦横切った場合でもドアが開くようにする装置の説明図で、車輪BはリンクAの連結軸PPと異なる位置に装着され、摺動面Kは固定支軸Swの周りに回転自在に軸支され、図中矢印ホ方向の回転は当たりGkによって阻止される。摺動面Kは、車輪Bが摺動面Kの基端部Koから終端部Keに向かって移動するとき、固定支軸Swから遠ざかるような形状であって、終端部Keに車輪Bが嵌まり込む凹部が設けられる。図26(c)はリンクAの軸芯線Zaがはじめて横切った状態を示し、連結軸Pは連結軸PPにドアを開く方向の力が働くと図中矢印イ方向に回転する位置にある。車輪Bが摺動面Kの基端部Koに係合する。図26(d)は密閉時の状態を示し、摺動面Kは図中矢印ホ方向の回転が当たりGkによって阻止され停止した状態で車輪Bが摺動面Kの基端部Koから終端部Keに向かって移動する。連結軸PPは固定支軸Swの周りに矢印ハと反対方向に移動するとき、ドアを開く方向に回転させる力が必要になるだけではなく、側面同士が係合しあった回転体JとリンクAとは互いに相手を引き離す方向に回転し、回転体JとリンクAとの間を拡げながら車輪Bが移動するので、車輪Bの移動に負荷がかかり、連結軸PPは一瞬にして矢印ハと反対方向に移動することなく、ゆっくりと移動する。凹部に車輪Bが嵌まりこむと、連結軸Pは連結軸PPにドアを開く方向の力が働くと図中矢印イと反対方向、即ちドアが開く方向に回転する位置にある。図26(e)はドアを開いたときの状態を示し、凹部に車輪Bが嵌まり込んだまま、摺動面Kが当たりGkから離れて摺図中矢印ホと反対方向にの回転し、凹部から車輪Bが脱出してドアが開く状態を示す。連結軸Pは連結軸PPにドアを開く方向の力が働くと図中矢印イと反対方向方向 
図28は図26,27に示した5節回転機構でドアDとドア枠Wとの間を3つのリンクJ,A、AAで連結し、図25において隅角部Akの車輪BBが摺動面KKに沿って移動したように、リンクAの側面が車輪Bに沿って移動するようにしたリンク装置である。図26,27に示した5節回転機構に車輪Bを追加することによって「(あ)の範囲」で一直線状であったリンクAとリンクAAと閉止寸前で折り曲げることが出来、リンクAAの軸芯線Zaaを枢軸Oに近づけることによって、「切替手段」以前に「ドアに作用する力」が不足して減速することが出来る。。回転体Jは引きバネV1、V2で付勢され、それぞれの片方の支軸を回転体Jの設ける支軸Sj1,Sj2に、他方をドア枠Wに設ける支軸Sw1、Sw2に取り付ける。引きバネV1は「(あ)の範囲」で引きバネV2は「(い)の範囲」で有効に働く。回転体JとリンクAは連結軸Pで、リンクAとリンクAAとは連結軸PPで連結される。図28(a)(b)に示すように回転体Jと車輪Bの回転軸Sw、Swbは「固定支軸Swwに回転可能に軸支された回転体Jc」に設けられ、回転体Jcは押しバネUによって図中矢印ニ方向と反対方向に回転付勢されるが、車輪Bが図中矢印ニ方向に移動することによって「ラッチ当接時」に「ドアに作用する力」が不足してもリンク装置の運動が停止しない。 
図28(c)は全開から全閉に至る一連の動作を説明する平面図で、各時点のリンク部材の位置を図示している。接続軸Cは枢軸Oを中心とする円周Ro上を図中矢印ロ方向に移動し、連結軸Pは固定支軸Swを中心とする円周Rsw上を図中矢印イ方向に移動する。リンクAとリンクAAとは全開時から暫らくの範囲では一直線状になり、リンクAの側面が車輪Bに当接すると折れ曲がり始める。リンクAの側面が車輪Bに当接した状態は「リンクAの側面と車輪Bとの接点」を支点として、連結軸Pを加力点、連結軸PPを作用点とするテコが機能するが、支点作用点間距離が減少し支点加力点間距離が増加しても、リンクAAの軸芯線Zaaはドアを牽引する力の作用線であって、閉止寸前で方向を枢軸Oに向けるようになり「ドアを回転させる力」は小さくなる。加力点に働く力が大きくてもドアには小さく作用する。リンクAの側面が車輪Bに当接すると折れ曲がり始めてから連結軸PPが車輪Bに近づき、リンクAAが「閉止したドア面D0」に対して直角になるまで車輪BはリンクAの側面に沿って長い距離を移動するが、この間のドアの回転は小さい。 
図28(a)に示すようにラッチ雄部Rdが雌部Rwに当接して、リンクAの側面が車輪Bに当接し、図28(b)に示すように連結軸PPが車輪Bに近づいて、ラッチ雄部Rdが凹み始めるようにすると、ドアの僅かな回転に対して「切替手段」が大きく動作することになる。「切替手段」の動作の途中で、引きバネV1は回転体Jを回転させる力を失い、引きバネV2の軸芯線Zvは回転体Jの回転の中心Swから徐々に離れる。軸芯線Zvが固定支軸Swに近いとき、回転体Jを回転させる力がゼロに近い状態にあって車輪Bは一旦停止状態になる。このように閉止寸前に駆動部はドアを回転させる力が少なく、緩慢に動く。これに対してドアが勢いよく回転する場合、図28(b)に示すようにリンクAAが図中矢印ハ方向に回転し回転体Jが
図中矢印イ方向に回転して駆動部が急速に回転させられることになるが、たとえばリンクAが板バネからなり湾曲して車輪Bを強く押圧する場合で車輪Bの移動が止まったままになる場合、リンクAAが図中矢印ハと反対方向に回転し回転体Jが図中矢印イと反対方向に回転して、ドアの閉止方向の回転に抵抗する。また図28(b)に示すように、車輪Bの回転軸Swbが固定支軸Swwの周りに回転可能に軸支され押しバネUによって図中矢印ニ方向と反対方向に付勢されることによって、車輪Bの移動が止まったまま、リンクAと回転体Jと回転体Jcとが相対的に一体になって固定支軸Sww図中矢印ハ方向と反対方向に回転し、ドアの閉止方向の回転に抵抗することが出来る。 
このように車輪Bの移動がドアの閉止回転に対して遅れるようになると、「ドアD面とリンクAAの軸芯線Zaaとの交差角度Θaa」は鋭く鋭角になり、ドアに慣性力が働くと更に鋭角となってドアを減速する。このようにして慣性力を制動力に変換することが出来る。手で強くドアを押し込む時や突風などの急激な力がドアに作用する時にはドアは急速に回転することになるが、これらの外力が大きいほど制動力は大きく働き急ブレーキがドアにかかるようになる。「切替範囲」の始まりから交差角度Θaaは増加し始め「ドアを回転させる力」は増加し始める。即ち「切替手段」はドアの加速を伴う。しかしながら交差角度Θaaは外力が働くと更に鋭角となる傾向が残っている。図28(c)に示すようにリンクAAの軸芯線Zaaを閉止寸前で枢軸Oに近づくようにすると、リンクAの軸芯線ZaとリンクAAの軸芯線Zaaとの交差角度Θa」は「切替範囲」の途中において増加から減少に転じ、交差角度Θaは途中極小値を持つことが認められる。図28(a)に図示するように交差角度Θaを制限する当たりGaを取り付けると、当たりGaがリンクAAの側面に係合離脱することによって閉止寸前に減速し密閉時に減速が解除される。当たりGaがリンクAAの側面に係合した状態のまま手で強くドアを押し込む時や突風などの急激な力がドアに作用する時にはリンクAとリンクAAとは相対的に一体になって押し込まれ、回転体Jの図中矢印イ方向の回転を逆にする。 
図22のリンク装置は5節回転機構の枢軸Oを1番目として2番目の連結軸の回転を解除可能に拘束するものであり、ドアDを1番目のリンクとして第1のドアJcを2番目のリンクとするとき1番目のリンクと2番目のリンクとが係合離脱するものである。図28のリンク装置も5節回転機構であって、当たりGaがリンクAAの側面に係合離脱することは3番目の連結軸の回転を解除可能に拘束するものであり、2番目のリンクと3番目のリンクとが係合離脱するものである。このように5節回転機構が4節回転機構になると図25のリンク装置と同じ構造になり、図25のリンク装置も図28のリンク装置も1番目のリンクに摩擦手段を設ける点においても同じであって、運動可能な4節回転機構の1つのリンクを拘束することで運動不能な状態に近づけている。図27(a),(b)の5節回転機構の3番目の連結軸に引きバネVを取り付けて半拘束状態にする場合と同様である。このようにリンク装置の連結軸周りに拘束或いは半拘束手段を設けてリンク装置の動作を制御することが出来るが、それぞれ拘束する場所によって運動は異なり、異なる役割を果たしている。例えば図26(a),(b)の5節回転機構において3番目のリンクと4番目のリンクとが係合離脱することによって駆動力Mvの大きさが小から大に転換する。図2において摺動面Kを4番目のリンクとするとドア枠Wは5番目のリンクであって、図2は5番目の連結軸を半拘束した状態である。図2の摺動面Kは図22の第1のドアJcであって、図2は5番目の連結軸も図22の2番目の連結軸も「伸縮部との取付軸」であることで同じであって、同じ役割を果たしている。 
リンクAがテコとして働き常に車輪Bを強く押圧するので車輪Bの回転軸Swbの周りに働く摩擦抵抗は大きく、「リンクAの車輪Bに沿う移動」にブレーキをかける。図25においてドア枠Wに設けた支軸Skkにと車輪BBを装着し、車輪BBがリンクAの隅各部Akに沿って移動するようにして、車輪BBと摺動面KKとの立場を入れ替えた場合に、車輪BBの回転軸Skkの周りに摩擦抵抗が働くと「リンクAの隅各部Akの車輪BBに沿う移動」にブレーキをかける。図28において車輪Bの回転軸Swbの周りに、或いは図25において車輪BBの回転軸Skkの周りにダンパなどの遅延装置を取り付けることによってドアは更に減速される。本発明の閉止装置はドアに直接抵抗を掛けてドアの回転を遅延するものではなく、駆動部に抵抗を掛けてドアの回転を間接的に遅延するものある。 
ドアに直接抵抗を掛けてドアを減速する手段が、ドアの回転を止めてしまうか減速手段が全く効かないかのどちらかであったように、駆動部や「切替手段」の動作を遅延する手段としてダンパや摩擦抵抗を使用することは、駆動部や「切替手段」が非常に小さな力で動作するので、駆動部や「切替手段」の動作を止めてしまうか全く効かないかのどちらかの結果を招く。図28のように車輪Bの回転軸Swbの周りに摩擦抵抗を大きくする手段は、駆動部や「切替手段」の動作を止めてしまわない程度に「ドアに作用する力」を強くすることで解決できる。この場合の「ドアに作用する力」はドアと連動しないので、一定の大きさに設定できる。このようにラッチ雄部Rdが雌部Rwに当接して凹み始めるまでの間に車輪BはリンクAの側面に沿って長い距離をしかも長い時間を要して移動し、この間にドア慣性力が消滅する。 
図29の実施例では上述の複数の動作が靜慣性から動慣性に移行することによって「切替手段」の所要時間が遅延する。この間に伸縮部の動きがドアの開閉運動に伝わらないことによって、ドアは空走して「ドアを回転させる力」は減衰する。図29の「切替手段」には多くのバネと複数の動作が連続することによってドアを回転させずに或いはドアを僅かに回転させながら、「密閉装置に力を蓄える負荷」をかけて「切替手段」の動作を遅延させるものであって、「密閉装置に蓄える力」は徐々に成長して「ドアを密閉する力」に達したとき密閉装置が作動してドアを密閉する。このとき過不足なく力がドアに作用してドアが密閉される。密閉時の衝撃音は余分に作用する力の大きさに比例するので密閉時の衝撃音は最も小さくなる。 
図29(a)は「(あ)の範囲」で、ドアDに装着される車輪Bが「枢軸Oを中心とする円周Ro上を図中矢印ハ方向に移動して、ドアDが枢軸Oを軸に図中矢印ロ方向に回転する一連の動作を説明している。摺動面Kは引きバネV1とV2によって回転軸Ikを軸に図中矢印イ方向に付勢され、車輪Bを押圧しながら回転する。「車輪が摺動面を押圧する力Fbの作用線」と枢軸Oとの距離が略一定するように、摺動面Kの形状は図4(c)に示した作図法に準じて設計されていて、「(あ)の範囲」で小さな力がドアに作用するようにしている。「車輪が摺動面に沿って移動する回転機構」は「車輪が摺動面を押圧する力Fb(即ち回転の径方向に働く力)」がいくら大きくても「車輪を摺動面に沿って移動させる力(即ち回転の径方向に働く力)」は「車輪が摺動面を押圧する力Fbの作用線」と枢軸Oとの距離を小さくすることによっていくらでも小さく出来る特徴があって、この特徴をドアに利用すると、いくら強いバネを使用してもドアの開閉に影響せずドアを開くときに非常に軽く感じられる効果をもたらす。 
図29の場合は「切替手段」の動作が大きく複数であるためバネの伸縮が大きい必要があり、そのため「(あ)の範囲」ではバネの力が大きく働いている。また部品数を増加して滑り対偶或いは回り対偶で連結される連結部分の数が増加するため、装置全体の摩擦抵抗が大きくなり強いバネを使用しなければならなくなる。「車輪が摺動面に沿って移動する回転機構」を採用することによって、強いバネの力は図29(a)に示すように「(あ)の範囲」で温存されドアに小さく働き、図29(b)(c)に示すように「(い)の範囲」でドアに大きく働く。「切替手段」が進行するに従いバネの力は減衰するが、小さな力でもより装置が動き易い状態に移行すると同時に、小さな力でもより大きくドアに作用するようにしなければならない。多くの実施例に認められるように「切替手段」において駆動軸を移動可能にする手段や摺動面Kを回転可能にする手段は「切替手段」の動作を大きくして「ドアに作用する力」が「ドアを密閉する力に到達するまでのバネの伸縮」を大きくするものであって、バネの剛性が小さくなる結果となり、車輪Bが緩く長い勾配を上るように「ドアに作用する力」がゆっくりと成長するようにするものである。図29(a)に示すように「(あ)の範囲」で車輪Bは摺動面Kに沿って終端部Keから基端部Koに大きく移動するが、上記力Fbの作用線の向く方向は枢軸Oに略一定していて、回転軸Ikを軸に回転する摺動面Kの図中矢印イ方向の回転は小さい。即ち閉止装置の回転は小さくドアの回転は大きい。「(い)の範囲」では車輪Bは基端部Ko付近に留まり移動は少ないが、上記力Fbの作用線の向く方向は大きく回転する。図29(b)(c)に示すように回転軸Ikを軸に回転する摺動面Kの図中矢印イ方向の回転は大きい。即ち閉止装置の回転は大きくドアの回転は小さい。 
摺動面Kの回転軸IkはシャフトShの先端部に設けられ、シャフトShは回転体Jswに設けられる溝Hに添って移動するようにしている。回転体Jswはドア枠Wに設ける固定支軸Swの周りに回転自在に軸支され、シャフトShの末端部に装着される車輪BBによって図中矢印ニ方向の回転が制御される。図29(a)に示すようにドアを回転させる力が弱い「(あ)の範囲」では、シャフトShは引きバネV1とV2によって図中矢印ヘ方向に引き出され、当たりGjcによって引き出された状態に静止させられているので、図29(b)に示すように閉止寸前に車輪Bが摺動面Kの基端部Koに近づくと、車輪Bの進行方向(図中矢印チ方向)前方の通路は塞がれて車輪Bの進行は阻止される。図29(b)に示すような状態ではシャフトShが後退して摺動面Kが車輪Bの周りを図中矢印ト方向に回転する。同時に車輪BBが摺動面KK1からKK2に移動して段差を降りる。このようにして回転体Jcは図中矢印ニ方向に回転して図29(c)に示すようにドアを密閉する。「(い)の回転手段」はシャフトShが後退して回転する動作と摺動面Kが回転する動作とを伴い、「複数の靜から動に移行する動作」を伴うことによって「(い)の回転手段」の動作時間が遅延する。 
車輪BはリンクAに設けられる車輪の回転軸Ibに装着され、リンクAはドアDに設ける接続軸Cの周りに回転自在に軸支される。押しバネUはリンクAとドアDとの間に挿入され、リンクAを図中矢印ホと反対方向に付勢し、当たりGaがこの回転を阻止している。押しバネUの剛性がゼロであるときリンクAは接続軸Cの周りに回転自由に軸支された状態であって、ドアが止まった状態でも伸縮部は運動し続ける。「切替手段」はドアの回転を全く或いは殆んど伴うことはない。通常の「切替手段」がドアを回転させずに動作するとき、閉止装置の動作に負荷が掛からなくなりバネにも負荷の掛からなくなる。バネは一瞬にして伸縮するので「切替手段」は殆んど時間を要することなく「ドアに作用する力」連続して小から大に切り替わりドアの加速を伴うことになる。図29の場合「切替手段」が複数の動作を伴うので「切替手段」は時間を要することになる。 
押しバネUの剛性が小さいとき、「切替手段」はドアを回転させる代わりに押しバネUを縮める仕事をすることになり、負荷のかかるバネは一瞬にして伸縮しない。押しバネUを縮めて押しバネUに「ドアを回転させる力」を蓄積する過程において、伸縮部の動きがドアに伝わるが、ラッチがドア枠に当接した当初は押しバネUに「ドアを回転させる力」はなく。ラッチがドア枠に当接した状態で待機する。押しバネUに蓄積される力の大きさが「ラッチを凹ませる力」に大きさに到
達すると同時に、押しバネUが伸びることによってドアが密閉される。この時伸縮部は動くことなく押しバネUが伸びるだけであり、伸縮部の力はドアに伝わらない。密閉時にラッチに作用する力は過不足がなく、閉止時の衝撃音も最小になる。ドアが密閉されると伸縮部は再び動き、ドアを戸当たりに強く押圧する。 
押しバネUの剛性が大きいときリンクAはドアDに固定された状態であって、伸縮部の動きとドアの開閉運動とは連動する。図29(b)(c)に示すように摺動面Kに対面して摺動面KKを追加して、摺動面Kと摺動面KKとの間に車輪Bが辛うじて往復出来る通路を設けると、伸縮部の動きがドアの運動に伝わると同時に、ドアの運動が伸縮部の動きに伝わる。伸縮部の動きがドアの開閉運動に伝わってドアが回転する速度と、ドアが慣性力で回転する速度と同じでないので、伸縮部の動きとドアの回転運動とが互いに干渉し合うようになる。摺動面Kがドアを回転させる動きと摺動面KKがドアの密閉を阻止する動きが互いに干渉し合うようになる。またドアが閉止に至るには上述の「複数の靜から動に移行する動作」を運動させる必要があって、複数の動作が終了するまで密閉が阻止される状態であってドアは密閉されない。 
ドアの回転に伴う「ドアに作用する力」の変化が同じであれば、ドアの運動は同じになる。ドアのそれぞれの回転範囲において、それぞれ異なる力がドアに作用するようにする場合、1つのバネの力を制御するより、異なる力と異なる剛性のバネをそれぞれの回転範囲において用いる方が、設計は簡単になる。図30,31は「(あ)の範囲」で働くバネと「(い)の範囲」で働くバネとを別々に用意して、「切替範囲」で交替する回転機構の動作説明平面図である。また図30,31の開閉装置は「(あ)の範囲」で働く回転装置から「(い)の範囲」で働く密閉装置にリレーされる装置である。図30、31は装置を小型化するため、回転体Jの付勢手段を回転軸Swの周りに集約するものである。図30(a)~(c)は剛性の異なる2つのバネが回転軸Swの周りに直列に働き、図30(d)~(f)は並列に働く。閉止したドアを少し開くとき図30(a)~(c)において、剛性の弱い捩りバネUV1から伸縮し、区分した別々のドアの回転範囲において、剛性が異なるバネのそれぞれが他方の影響を受ける。図30(d)~(f)においては影響を受けない。 
図30(a)~(c)において図30(a)は全開時、図30(b)は閉止途中の状態図、図30(c)は閉止時の状態図である。回転体J1とJ2は回転軸を同じくし共に固定支軸Swの周りに回転自在に軸支される。捩りバネUV1と捩りバネUV2は回転体J1で連結され、捩りバネUV1と捩りバネUV2の連続体の片方はドア枠Wの設けるバネ支軸S1に、他方は回転体J2に設けるバネ支軸S2に取り付く。捩りバネUV1と捩りバネUV2はともに両端の支軸が近づく方向に付勢するU形に成形された弾性体で、捩りバネUV1の剛性は小さく伸縮は大きく設定している。捩りバネUV2の剛性は大きく伸縮は小さく設定している。図30(c)にバネが最も緩んだ状態を示し、回転体J1は回転体J2に設けられる当たりG1に当接して、回転体J1の図中矢印イ方向の回転が阻止される。回転体J2はドア枠Wの設けられる当たりG2に当接して、回転体J2の図中矢印ロ方向の回転が阻止される。図30(b)に示すように回転体J2を図中矢印イ方向に回転させると、捩りバネUV1と捩りバネUV2はともに伸ばされて、捩りバネUV2は剛性が大きいので殆んど伸縮せず、回転体J1が当たりG1から僅かに離れる。回転体J1が「ドア枠Wの設けられる当たりG11」に当接するまで大きく回転して、捩りバネUV1が大きく伸縮する。回転体J1が当たりG11に当接して更に図中矢印イ方向に回転するとき、図30(a)に示すように回転体J1は止まったまま回転体J2だけが回転し、捩りバネUV1は伸縮することなく捩りバネUV2だけが伸縮する。このようにして「区分した別々のドアの回転範囲」において異なる力がドアに作用する。 
図30(d)~(f)は、異なる2つのバネが「区分した別々のドアの回転範囲」において、それぞれ他方の影響を受けずにそれぞれが単独に動作するように実施例であり、図30(d)は閉止時の状態図で、バネが自然の形に戻った状態を示している。図30(e)は閉止途中の状態図、図30(f)は全開時の状態図である。回転体Jは固定支軸Swの周りに回転自在に軸支され、バネU1,U2はU形に成形された弾性体で、それぞれ片方の支軸がドア枠Wに他方の支軸が回転体Jに取り付く。ともに片方の支軸は固定端で他方の支軸が移動端であって、移動端のそれぞれはスライダSが取り付く。スライダSは回転体J或いはドア枠Wに設ける溝Hに添って移動し、溝Hの始端Hsと終端Heとの間を揺動する。 
バネU1のスライダS1は回転体Jに設けた溝H1の内部に収容され、バネU1の他方の端部はドア枠Wに設けるバネ支軸Sv1に取り付く。バネU2のスライダS2はドア枠Wに設けた溝H2の内部に収容され、バネU2の他方の端部は回転体Jに設けるバネ支軸Sv2に取り付く。スライダS1は図30(d)に示す回転当初に最も緩んだ状態で溝H1の終端He1に当接している。回転体Jが図中矢印イ或いはロ方向のどちらでも回転すると図30(e)に示すように、溝H1の終端He1に当接したまま伸縮する。更に回転体Jが回転すると図30(f)に示すように終端He1から離れて溝H1に沿って移動し始端Hs1に到達する。終端He1は固定支軸Swから遠い位置にあって、スライダS1が終端He1に当接しているときは回転体Jを回転させる力は強く働く。始端Hs1は固定支軸Swから近い位置にあってスライダS1が始端Hs1に当接しているときは回転体Jを回転させる力は弱く働く。始端Hs1が固定支軸Swの位置であるならばスライダS1が始端Hs1に当接しているときは回転体Jを回転させる力はゼロである 
スライダS2は図30(d)に示すバネが最も緩んだ状態で溝H2の始端HS2と終端HE2との中間部にあって、回転体Jが図中矢印イ或いはロ方向のどちらでも回転すると、回転当初はスライダS2は溝H2の始端Hs2或いは終端HE2とのに当接しない状態を保ち、バネU2が回転体Jを回転させる力は働かない状態である。図中の溝H2の形状例は回転体回転軸Qを中心とする円弧状である。更に回転体Jが回転して溝H1に沿って移動し始端Hs2或いは終端He2に到達する。始端Hs2或いは終端He2に当接した状態で回転体Jが更に回転すると、バネU2が回転体Jを回転させる力が働かない状態から働く状態になる。ドアを開く過程において図30(d)~図30(e)の過程においてバネU1に力が蓄えられ、バネU2に力が蓄えられない。スライダS2が溝H2の始端Hs2或いは終端He2に当接するとき、スライダS1が始端He1から離れて固定支軸Swの位置に当接するようにすると、バネU2だけに力が蓄えられるようになる。 
図30(d)に示すようにバネU2が緩んだ状態から図30(f)に示すバネに力が蓄えられる状態に移行するときはドアを開く過程であって、ドアが閉まる過程はバネに力が蓄えられた図30(f)に示す状態から、バネが緩んだ図30(d)に示す状態に移行するときである。ドアが閉まる過程において図30(f)に示す状態からバネU2が緩んで図30(e)に示すようにスライダS2が溝H2の始端Hs2或いは終端He2を離れるとき、固定支軸Swの位置にあったスライダS1が始端HS1から離れるようにすると、バネU2によって回転していた回転体JはバネU1によって回転するようになる。ドアが閉まる過程においてスライダS1が始端Hs1から離れるときのドアの開度は、ドアが開く過程においてスライダS1が終端He2から離れるときのドアの開度より小さい。このようにして図30(d)~(f)の開閉装置は回転体の区別した回転範囲において回転体を異なる大きさの別々の強さで付勢することになる。 
図31は「(あ)の範囲の回転手段」と「(い)の範囲の回転手段」と「切り替え手段」とを備える直線往復運動する付勢手段で、図30の場合と同様に、この付勢手段だけをドアに取付けた場合で、その他の閉止装置をドアに取付けた場合とドアに働く回転力が同じであればドアは同じ動作をする。従ってこの付勢手段だけを取付けたドアは最も単純にして同じ効果を発揮する。通路体Szは作用体Aが直線往復運動する通路を備え固定支軸Swに端部が取り付く。作用体Aは通路体Szに設けられる貫通穴Hzに差し込まれ、通路体Szに軸方向に移動可能に取付けられる。図31(a)は通路体Szに作用体Aが最も深く差し込まれた状態を示し、図31(b)通路体Szから作用体Aが最も引き離された状態を示す。引きバネV1の片方の端部は通路体Szに設けるバネ支軸Vzに取り付き、他方の端部は貫通ボルトVaを介して作用体Aに取付けられる。貫通ボルトVaは作用体Aに施された貫通穴Hに差し込まれ作用体Aに軸方向に移動可能に取付けられる。貫通ボルトVaの頭部に取付けられる当たりGaは、図31(b)に示すように「(あ)の範囲」で貫通穴Hの端部に当接して作用体Aと係合し引きバネV1が伸縮する。図31(a)に示すように「(い)の範囲」で貫通穴Hの端部と離間して作用体Aから分離すると引きバネV1は伸縮しない。貫通ボルトVaの当たりGが作用体Aと係合したり離間したりして引きバネV1の力を作用体Aに伝えたり、伝えないようにしたりする。 
作用体Aには車輪Bが装着され、通路体Szには車輪Bに添って移動する摺動面K1、K2が摺動体KKに設けられる。摺動体KKの片方の端部は通路体Szに設けられる連結軸Pの周りに回転自在に軸支され、他方の端部は引きバネV2によって車輪Bを押圧する方向に付勢される。図31(a)に示すように、車輪BがK2に沿って移動するとき「車輪が摺動面を押圧する力Fb」は作用体Aを図中矢印イ方向に移動させる。図31(b)に示すように、車輪BがK1に沿って移動するとき「車輪が摺動面を押圧する力Fb」は作用体Aの移動方向と直角に働き作用体Aを移動させない。図31(b)は「(あ)の範囲の回転手段」で、貫通ボルトVaの当たりGaが作用体Aと係合して引きバネV1が作用体Aを図中矢印イ方向に付勢する。車輪BがK1に沿って移動するので引きバネV2は無効に働く。図31(a)は「(い)の範囲の回転手段」で、車輪BがK2に沿って移動して引きバネV2が作用体Aを図中矢印イ方向に付勢する。貫通ボルトVaの当たりGaが作用体Aから離れて引きバネV1は無効に働く。 
図31(c)(d)は通路体Szと作用体Aとその中間に遊離体AAとを備え、通路体Szと遊離体AAの間に押しバネU1を、作用体Aと遊離体AAの間に押しバネU2を挟みこんだ構造体であって、図31(c)(d)に示す通路体Szは中央にシャフトSH1を両側にSH2を装着し、シャフトSH1とSH2は遊離体AAに設けられる貫通穴HAAを貫通し、シャフトSH2は作用体Aに設けられる貫通穴HAを貫通するようにして、遊離体AAの貫通穴HAAはシャフトSH1とSH2に沿って移動し、作用体Aの貫通穴HAはシャフトSH2に沿って移動するようにしたものである。遊離体AAはシャフトSH1の頭部に設けられる当たりG1と係合離間し、作用体AはシャフトSH2の頭部に設けられる当たりG2と係合離間する。また、作用体Aに設ける当たりGaは遊離体AAと係合離間する。押しバネU1の剛性は大きく押しバネU2の剛性は小さい。 
図31(d)から図31(c)に至る過程は、押しバネUを縮めて「固定支軸Swと接続軸Cとの間の距離」が減少する過程であって、剛性の小さな押しバネU2は該距離が大きく減っても「バネに蓄える力の増加」が少なく、押しバネU2に蓄える力によって剛性の大きな押しバネU1が僅かに縮むが、図31(c)に示ように作用体Aと遊離体AAとが当たりGaを介して係合して該距離が減少しなければ、押しバネU2は縮まない。図31(c)から図31(d)に至る過程は、押しバネUの復元力で「固定支軸Swと接続軸Cとの間の距離」が増加する過程であって、剛性の大きな押しバネU1は該距離が僅かに増えるだけで力を失い。剛性の小さな
押しバネU2は該距離が大きく増えてもバネの力に変化がない。図31(c)に示す押しバネU1とU2との双方が縮んだ状態から該距離が増え始める当初は、押しバネU1とU2との双方が同時に伸びることになるが、力の変化は主に押しバネU1によるものである。剛性の大きな押しバネU1は駆動部の小さな動きに対してドアが大きく回転し、大きなバネの力によって動作する「(あ)の回転手段」に適している。該距離が僅かに増えるだけで押しバネU1は力を失い、以後は押しバネU2の伸縮だけで該距離が増加する。剛性の小さな押しバネU2は駆動部の大きな動きに対してドアが小さく回転し、小さなバネの力でも力が減衰しないので「(い)の回転手段」に適している。このように剛性の異なるバネを直列に連結するだけでドアの付勢手段として十分である。 
図31(e)(f)は通路体Szと作用体Aとその中間に遊離体AAとを備え、通路体Szと遊離体AAの間を引きバネV1で、作用体Aと遊離体AAの間を引きバネV2で連結した構造体であって、図31(c)(d)と同じくシャフトSH1,SH2、貫通穴HAA,HA、当たりG1,G2を備える。引きバネV1の剛性は小さく引きバネV2の剛性は大きい。当たりGa,Gsは「切替範囲」において遊離体AAの図中矢印イ方向の移動を止める逆止装置で、当たりGa,Gsのそれぞれは通路体Szと作用体Aに回転自在に軸支され、捩りバネUVによって付勢され、付勢方向の回転は当たりGGと遊離体AAによって阻止される。図31(c)に示す引きバネV1とV2との双方が縮んだ状態から該距離が増え始める当初は、引きバネV1とV2との双方が同時に伸びることになるが、力の変化は主に剛性が小さい引きバネV1によるものである。図31(e)から図31(f)に至る過程は、引きバネV1とV2との双方を引き伸ばして「固定支軸Swと接続軸Cとの間の距離」が増加する過程であって、当初は剛性の大きな引きバネV2は殆んど伸縮せずに剛性の小さな引きバネV1が伸縮して遊離体AAが当たりG1に当接するようになる。遊離体AAが当たりG1に当接すると引きバネV1の伸縮は阻止され引きバネV2だけが伸縮する。当たりGa,Gsは捩りバネUVの付勢方向に回転し、遊離体AAが図中矢印イ方向に戻らないようにする。図31(f)から図31(e)に至る過程は、引きバネVを縮めて「固定支軸Swと接続軸Cとの間の距離」が減少する過程であって、遊離体AAが図中矢印イ方向に戻らないので引きバネV2だけが伸縮する。引きバネV2が伸縮する力で当たりGa,Gs同士が当接して、遊離体AAの逆止装置が解除され、剛性の大きな引きバネV2は殆んど伸縮せず、剛性の小さな引きバネV1が伸縮するようになる。 
図31の装置は「(あ)の回転範囲」においてのみドアに回転を伝える回転装置と、「(い)の回転範囲」においてのみドアに回転を伝える密閉装置を備え、「途中まで有効で途中から無効になる付勢手段」と「途中まで無効で途中から有効になる付勢手段」とを備え、それぞれの回転範囲で有効に働く拘束手段は「切替範囲」で解除され、バネの力はバネの伸縮がなければ無効に働き、バネの伸縮が生じて有効に働くようにする。このように本発明の開閉装置の付勢手段は引きバネV、押しバネU、捩りバネUV、板バネ、成形バネ、など弾性体であれば「ドアに作用する力」を自由に設計することが出来る。 
「切替範囲」においてドアと駆動部が連動しない場合、「切替手段」の運動は一定であって、「ドアに作用する力」が「ラッチ雄部Rdを凹ませる力」になるまでの所要時間は一定である。またラッチ雄部Rdが雌部Rwに当接して凹み始めるまでの所要時間は一定である。ドアがドア慣性力だけで回転するとすれば、ドアの回転量はドア慣性力の大きさに比例し、「(あ)の回転手段」から「(い)の回転手段」に切り替わるまでの所要時間の間にドアが回転する量はドア慣性力の大きさによって大きく異なる。図32は「切替範囲」において「(あ)の回転手段」が「(い)の回転手段」を切り替えるだけで、ドアに作用しない場合に、ドアがドア慣性力だけで回転する量によってドアを急停止させる装置を働くようにするかしないかを判別する開閉装置の動作説明平面図である。 
図32の装置は全開時から閉止直前までの「(あ)の回転範囲」においてのみドアに回転を伝える回転装置と、閉止直前から全閉時までの「(い)の回転範囲」においてのみドアに回転を伝える密閉装置を備える。「車輪B1を装着するリンクA1」は「ドアDに設けられる接続軸C」の周りに軸支され、捩りバネUV1によって図中矢印イ方向に付勢されている。また回転体Jは固定支軸Swの周りに回転自在に軸支され、捩りバネUV2によって図中矢印ハ方向に付勢されていて、先端部に設けられる連結軸PにはリンクA2が接続され、リンクA2の先端部に車輪B2を装着する。図32(a)に示すように「(あ)の範囲」では、車輪B1が摺動面K1に沿って図中矢印ニ方向に移動し、摺動面K1を押圧することによって、ドアDが図中矢印ロ方向に回転する。閉止寸前にリンクA1の図中矢印イ方向に回転は当たりGaによって阻止され、同時に車輪B1によってドアが回転しなくなり、ドアは動慣性だけで回転するようになる。車輪B2は図32(a)に示すように車輪B1に押し出されて摺動面K11上から、図32(b)に示すように摺動面K2上に移動する。このとき以後車輪B1は摺動面K11に当接せず、ドアは自由に閉止回転できる。 
図32(a)に実線で示す回転体JとリンクA2と車輪B2は待機状態を示し、リンクAの軸芯線Za方向に強い押圧力を支持しながら、リンクAの軸芯線Za方向と直角方向の弱い力で移動可能な状態である。図12(d)~(f)に示すトグルバネVVによって静止状態を保つ場合は、トグルバネVVが強くなればなるほど、リンクA2が回転し難くなり、静止状態を解除するため「(あ)の回転手段」が強力である必要がある。そのためトグルバネVVの軸芯線がリンク「A2の回転の中心Sw2」に近い位置にあって、トグルバネVVの軸芯線が僅かに移動することによって「リンクA2の回転の中心Sw2」を横切るようにするので、待機状態は非常に不安定に保たれる。これに対して図32(a)のように「車輪B2が摺動面K2を押圧する回転機構」を採用する場合は、図32(a)に実線で示すように角度Θakが十分に鈍角であっても、車輪B2の円運動の周方向に小さな力が働くことによって待機状態が解除され、待機状態は非常に安定する。 
図32(a)に示す実線は回転体Jの図中矢印ハ方向の回転力によってリンクA2の軸芯線に沿って押圧力が作用し、車輪B2が摺動面K11を押圧する状態を示す。リンクA2の軸芯線Za2と摺動面K11の交差角度Θa2は鈍角であって、リンクA2の図中矢印ホ方向の回転は当たりGj1によって阻止される。図32(a)に破線で示す回転体Jの軸芯線ZjとリンクAの軸芯線Zaと車輪B2は、車輪B1の図中矢印ニ方向の移動によって、車輪B2が摺動面K11から押し出される状態を示している。摺動面K11とK2の間には段差が設けられ、車輪B2はその回転軸が段差を通過すると、段差を落下しながら車輪径の半分は自力で移動する。該交差角度Θa2は鋭角に転じ、車輪B2は摺動面K2に沿って図中矢印ヘ方向に移動しようとする。摺動面K2はドアDに設けられる接続軸Cjの周りに回転自在に軸支され図中矢印チ方向に押しバネU3によって付勢され、図中矢印チ方向の回転は当たりGk2によって阻止される。車輪B2が摺動面K2に沿って図中矢印ヘ方向に移動するに従い、摺動面K2は図中矢印チと反対方向は接続軸Cjの周りに回転して、摺動面K2の勾配は小さくなり、車輪B2が摺動面K2上を終端部Ke2に向かって移動可能な状態になる。車輪B2が摺動面K2上に乗り移った当初は車輪B2が接続軸Cj上を乗り越える以前であって、図7の場合と同様に「接続軸Cjの周りに取り付けられる押しバネU」はドアDを開く方向に付勢する。車輪B2が摺動面K2の回転軸Cj上あるとき基端部Ko2がドア枠Wから離れて車輪B2の押圧力の全てがドアDを押圧する。車輪B2は終端部Ke2に向かって移動し、「車輪B2が摺動面K2を押圧する力の作用線Fb」が枢軸Oから遠ざかる。 
回転装置がドアに作用する力は、捩りバネUV1によって車輪B1が摺動面K1を押圧する力であって、密閉装置がドアに作用する力は、捩りバネUV2によって車輪B2が摺動面K2を押圧する力である。回転装置と密閉装置はでそれぞれ独自の力を保有し、それぞれの力の大きさは作用点の位置に関係なく捩りバネUV1,2の力の大きさをかえることによって自由に調節できる。また回転装置は「(あ)の範囲」で、密閉装置は「(い)の範囲」で別々に動作するので、「(あ)の範囲」でドアに作用する力と「(い)の範囲」でドアに作用する力は作用点の位置に関係なく捩りバネUV1,2の力の大きさをかえることによって自由に調節できる。捩りバネUV1,2の力の大きさによっては、「(あ)の範囲」でドアに作用する力の作用転の位置が「(い)の範囲」でドアに作用する力の作用点の位置より枢軸Oから遠い場合も考えられる。図32(c)はドアを開く過程において車輪B2が摺動面K11上に戻るときの状態を示し、ドアを開く過程において「終端部Keに至った車輪B2が戻り始めるときのドアの開度Θdo」はドアが閉まる過程において「車輪B2が摺動面K2上に乗り移るときのドアの開度Θds」より大きいことを示している。ドアの開度Θdoから閉まり始めるドアはドアの開度がΘdsになるまでに慣性力が取り付き、車輪B1が車輪B2を摺動面K11上から押し出せるようになる。Θdoより小さいドアの開度から閉まり始めるドアは車輪B2が摺動面K2上にあって、密閉装置が動作する範囲内にあるのでドアは密閉に至る。 
図32の開閉装置は閉止直前に回転装置から密閉装置にリレーする装置であって、回転装置から密閉装置にリレーするとき静止状態の密閉装置を運動させる仕事をするので、ドアは減速する。密閉装置はドアを回転させずに始動するので、回転装置から密閉装置にリレーする間にドアが動慣性で移動する距離はドアの回転速度に比例し、ドア慣性力が大きいほどこの間の移動は大きい。「回転装置から密閉装置にリレーする間」とは、車輪B1の一部が車輪B2を摺動面K11上から押し出したあとから車輪B2が接続軸Cj上を乗り越えるまでの間で、車輪B1の一部が車輪B2を摺動面K11上から押し出したあとは、車輪B1はドアを回転させない。また車輪B2が段差を落下し摺動面K2上に乗り移って接続軸Cj上を乗り越えるまでは、車輪B2はドアを回転させない。 
摺動面K2の末尾にリンクA3が取り付き、リンクA3先端部に車輪B3が装着される。図32(d)に示すように密閉寸前に摺動面K2の先端部K2oがドア枠Wに当接したとき、リンクA3は起立した状態である。摺動面K3はドア枠Wに設ける支軸Sk3の周りに回転自在に軸支され図中矢印トと反対方向に押しバネU3によって付勢され、図中矢印トと反対方向の回転は当たりGk3によって阻止される。ドアが低速回転するとき「回転装置から密閉装置にリレーする間」のドアの回転量は小さく、車輪B3が摺動面K3上に当接して摺動面K3が図中矢印ト方向に回転する量が小さく、リンクA3の軸芯線Za3と摺動面K3の交差角度Θa3は鋭角であって、車輪B3は図中矢印リ方向に移動できる。図32(b)に示すように車輪B2は摺動面K2上を移動し接続軸Cj上を乗り越えると、リンクA3は倒伏する。ドアが高速回転するとき「回転装置から密閉装置にリレーする間」のドアの回転量はおおきく、車輪B3が摺動面K3上に当接して摺動面K3が図中矢印ト方向に回転する量が大きく、リンクA3の軸芯線Za3と摺動面K3の交差角度Θa3は鈍角であって、車輪B3の図中矢印リ方向の移動は阻止される。図32(d)に示すように車輪B3は摺動面K3上を移動せずにリンクA3は起立したままになる。車輪B2が摺動面K2上を図中矢印ヘ方向に移動することが出来ない状態となり、ドアは停止し密閉が阻止される。 
図33はラッチについて説明する動作説明平面図で
ある。ドアを回転させるだけのバネの力は小さく、閉止したドアには大きな密閉力が作用している。ドアを開くときに必要な力は密閉力の大きさであって、密閉力が小さいドアはドアを開くときに軽く感じられる。ラッチの代わりにマグネットキャッチを装着させるとするならば、ドアを密閉するためのバネの力は必要ではなく、ドアを開くとき最も軽く感じられるようになる。このように密閉時にラッチの抵抗が小さければ、静止最大摩擦力を少し上回る力で十分にドアを戸当りに当たるまで回転させることが出来る。即ち「ゆっくりと閉止ししかも必ず密閉する」という本発明の目的をより可能にする。図33はドアが閉止するとき抵抗が少なくドアの逆転を防止するラッチを提供するもので、密閉力を小さくすることによって閉まったドアを開くときの力をより小さくするものである。密閉時にドアを押圧するバネの力はドアの気密を保つほどの力に設定され、それ以上に強くしない。 
図33はドアDの枢軸と反対側の側面に取り付けられるラッチ雄部Eと、それに対面しドア枠側面に取付けられるラッチ雌部Fの水平断面図である。図33(a)(b)(c)はそれぞれ閉止時、閉止直前、開放する時の状態を示す。ラッチ雄部Eは爪Geを収容する凹部Heを備え、凹部Heに回転支軸Igが設けられる。回転支軸Igに爪Geが回転自在に軸支され、爪Geの摺動面Keは先端部Pgとそれに連続する前部摺動面Pkとを備える。ラッチ雌部Fはドアが閉止したとき爪Geを収容する凹部Hfを備え、その周縁部には爪Geの前部摺動面Pkに沿って移動する入口部Kfと、それに連続し爪Geの先端部Pgに沿って移動する円周部Rfとを備える。円周部Rfの形状は「閉止時の爪Geの回転支軸Ig0の位置」を中心とし、「回転支軸Igと爪Geの先端部Pgとの間の距離rr」を半径とする円の一部である。 
図33(a)は閉止時のドアに開く方向の力が作用し、爪Geがラッチ雌部Fから反力を受けるときの状態説明図である。「閉止時にドアの逆転を防止する力Fg」の作用線は、回転支軸Igと爪Geの先端部Pgとを通る直線であって、「逆転を防止する力Fg」は回転支軸Igで支持される。このため回転支軸Igの断面積を大きくする必要があるが、図33に示すラッチ装置は爪Geを収容する凹部Heに円周部Reが設けられ、「逆転を防止する力Fg」の殆んど回転支軸Igにではなく、円周部Reの(あ)の範囲で支持される。爪Geの先端部Pgと反対側の周辺部には円周部Rgを備え、円周部Rgは回転支軸Igを中心にして半径rの円の一部であって、凹部Heの円周部Reは回転支軸Igを中心にして半径が上記半径r以上である円の一部である。「爪Geを収容する円周部Reの(あ)の範囲」は「爪Geの円周部Rg」と接触しながら「爪Geを軸とする回転軸受け」としても機能し、回転支軸Igに代わって反力Fgを支持することになる。従って回転支軸Igに期待する強度は少なくなる。 
押しバネUはラッチ雄部Eの凹部Heに取り付き、爪Geを回転支軸Igを中心に図中矢印イ方向に付勢している。図33(c)に示すようにドア枠Wから離れている状態では爪Geの先端部Pgは凹部Heから突出している。また円周部Reの(あ)の範囲の先端部Reeとその周辺は、爪Geの図中矢印イ方向の回転を阻止する当りとして働く。小さな突起の当りを設けて爪Geの回転を阻止するものではない。図33(c)に示すようにドア枠Wから離れている状態から、ドアDが図中矢印ホ方向に移動し図33(b)に示す閉止直前の状態に移るとき、爪Geの摺動面Keは入口部Kfに接触し、爪Geは回転支軸Igを中心に図中矢印ロ方向に回転して、ラッチ雄部Eに設ける凹部Heに収容され、爪Geはドア内部に収容される。ドアDが更に回転すると、図33(a)に示すように爪の先端部Pgはラッチ雌部Fの入口部Kf上を通過した後、凹部Hfの円周部Rf上を移動する。円周部Rfの形状は閉止時の爪Geの回転支軸Ig0の位置を中心とし、回転支軸Igと爪Geの先端部Pgとの間の距離を半径rrとする円であるとき、ドアDが戸当たりGwに設けた緩衝部Gzに当接して、ドアが図中矢印ニ方向に移動しようとするとき、回転支軸Igは爪Geの先端部Pgを中心に図中矢印ハ方向に公転しようとして、爪Geがラッチ雌部Fの凹部Hfに奥深く進入しない場合でも、ドアは矢印ニ方向に動くことはない。 
通常のラッチ装置は、ラッチがドア枠Wに当接するとき、ドア面と平行に移動し移動方向と直角方向に力が働く。ドアの逆転を阻止する力はせん断力であり、これを支持する部分はラッチ側面の大きな接触部分で支持される。ラッチに働く力の方向を直角に変えることとラッチ側面に摩擦抵抗が働くことで大きな力が必要となる。これに対して本発明のラッチ装置はラッチが回転することによって、ラッチの移動方向とラッチに働く力の方向を平行に近づけている。このようにしてラッチが凹ませるための力は小さくなり、閉止したドアに働く密閉力を小さくすることが出来る。ラッチにおいては回転軸に向かう力であって、これを支持する部分はラッチの回転軸ではなくラッチの外縁部で力を支持し、大きな接触部分で支持される。またドア枠深く進入しなくても、ドア枠から抜けるものではなく、どあを開こうとする力が大きくかかるほど大きな制動力が働く。 
図33(d)~(f)は図33(a)~(c)の爪Geを「外縁部の形状が渦巻き曲線である爪Gb」に取り替えたもので、外縁のは回転軸Igから外縁までの距離が漸次大きくなる渦巻き曲線である。図33(a)に示すように、「爪Gbとラッチ雌部Fとの接点b」と回転軸Igとの距離Lbは、爪Gbを図中矢印ロと反対方向に回転するほど大きくなるので、図33(b)に示す状態からドアを開くときドアを開けば開くほど「間隙Lgを拡張する方向に働く力」が大きくなり、枢軸Oの回りに抵抗がかかって開かなくなる。ドアを閉めるとき爪Gbは図中矢印ロ方向に回転し、「爪Gbとラッチ雌部Fとの接点b」と回転軸Igとの距離Lbは小さくなり、抵抗が殆んどかからずに、ドアを戸当たりに当てることが出来る。図33(d)~(f)に示すラッチ装置は図33(a)~(c)に示すラッチ雌部Fに凹部Hfが不要であって、起伏のない平面であっても良い。図33(a)~(c)の爪Geと図33(d)~(f)の爪Gbは「車輪Bが摺動面Kを押圧する密閉機構」と同様に、径方向に大きな密閉力を支持して、小さな周方向の力で回転するラッチであって、ドアが閉まるときに抵抗が少なく、開く方向に大きく抵抗する。 
本発明の「切替手段」は「回転軸を軸に回転する回転体の先端部に設けられる支軸」に作用する力の作用線が「回転体の所定の開度」で回転軸を横切ることによって、回転体の付勢方向が逆転するものであって、ドアの閉止過程の回転機構のように回転体の片方の回転を阻止する解除可能な拘束手段を備えるときは、他方の回転力の大きさが切り替わり、拘束手段を備えないときは、ドアが全開位置で静止するときのように付勢方向が逆転する。図34は拘束手段を備えない「切替手段」で、全開位置で静止するドアを少し閉止方向に回転させると付勢方向が逆転して勝手に全閉位置まで閉止するように、全閉位置においても付勢方向が逆転して勝手に全開位置まで開くように「切替手段」を設けるもので、少し開くと全開し少し閉めると全閉するドアを提供する。 
引きバネVの片方はドアに設けられる支軸Sdに、他方はリンクAの先端部に設けられる支軸Saに取り付きドアを牽引して回転させる。リンクAはトグルバネVVに付勢され、固定支軸Swを軸に当たりGa1と当たりGa2に当接する位置の間を揺動し、図34(a)に示すように当たりGa1に当接するとき、ドアDは枢軸Oを軸に図中矢印イ方向に回転し、戸当りGd1に当接して全開する。当たりGa2に当接するとき図34(d)に示すようにドアDは図中矢印イと反対方向に回転し、戸当りGd2に当接して全閉する。回転体J1とJ2はリンクAに装着される車輪Bに当接離間してリンクAを揺動させる手段であって、それぞれドア枠Wに設けられる固定支軸Sw1,Sw2の周りに回転自在に軸支され、捩りバネUVj1,UVj2によって図中矢印ハ方向に付勢され当たりGj1,Gj2に当接して待機している。また径方向に摺動面KK1,KK2と周方向に渦線上のとを備え、摺動面KK1,KK2と反対側の径方向に摺動面KKK1,KKK2を備える。車輪Bは図34(a)に示すように摺動面KK1とKK2とに挟まれる領域にあって、回転体J1とJ2の待機位置の間を往復する。 
摺動面K1,K2はそれぞれ基端部Ko1,Ko2から終端部Ke1,Ke2に至る間は漸次回転軸Sw1,Sw2から遠ざかる渦線であって、ドアDに取り付くラチェット爪AA1,AA2は摺動面KKK1,KKK2と係合して終端部Ke1,Ke2を図中矢印ロと反対方向に後退させ、摺動面K1,K2から退避しながら図中矢印ロ方向に前進する。ラチェット爪AA1,AA2はそれぞれドアDに設けられる支軸S1,S2の周りに回転自在に軸支され、捩りバネUVaa1,UVaa2によって付勢され当たりGaa1,Gaa2に当接して待機している。図34(a)に示すように全閉時にはラチェット爪AA1は摺動面KKK1に係合し、車輪Bが摺動面KK1に当接している。図34(d)に示すように全開時にはラチェット爪AA2は摺動面KKK2に係合し、車輪Bは摺動面KK2当接する。 
図34(b)に示すように全閉位置で静止するドアを少し開く方向図中矢印イと反対方向)に回転させると、摺動面KKK1に係合したラチェット爪AA1は回転体J1を図中矢印ハと反対方向に回転させ、摺動面KK1が車輪Bを押圧してリンクAは図中矢印ニ方向に回転し、破線で示すように引きバネVの軸芯線ZvとリンクAの軸芯線Zaとが一致する状態を過ぎると、リンクAはトグルバネVVによって当たりGa2に当接する位置まで回転して静止する。引きバネVの付勢方向が閉める方向から開く方向に逆転して勝手に全開位置まで開くようになる。トグルバネVVの片方はリンクAに取付けられるが、他方は「枢軸Oと固定支軸Swとを通る直線T」上のドア枠Wに取付けられる。摺動面K1の終端部Ke2は回転体J1が図中矢印ハと反対方向に回転するに従い枢軸Oに近づくようになり、ラチェット爪AA1の図中矢印ハの回転は当たりGaa1によって阻止されているので、リンクAが当たりGa2に当接した後にラチェット爪AA1は摺動面KKK1から離れて、図34(c)に示すように回転体J1は捩りバネUVj1によって戻され、当たりGj1,Gj2に当接して待機する。 
図34(c)はラチェット爪AA2が摺動面K2に沿って移動する状態を示し、ラチェット爪AA2は捩りバネUVj2の図中矢印ハ方向の付勢に抗して当たりGaa2から離れて、摺動面K2から退避しながら図中矢印ロ方向に前進する。図34(d)はラチェット爪AA2が終端部Ke2を乗り越えた状態を示し、ラチェット爪AA2は捩りバネUVj2によって図中矢印ハと反対方向に回転し、当たりGaa2に当接した後回転体J2の摺動面KKK2に係合する。全開位置から全閉位置に戻る過程は上述の過程の逆を辿るもので、全開位置で静止するドアを少し閉止方向に回転させると付勢方向が逆転して勝手に全閉位置まで閉止する。図34の開閉装置はリンクAの回転軸は枢軸Oから遠い位置にあって揺動幅を小さくし、ラチェット爪は枢軸Oから遠い位置であってドアの回転角に対して移動距離が大きくして、全開位置或いは全閉位置でドアを僅かに回転するだけでドアの付勢方向が逆転するようにしている。 
図35は図1で説明した「リンクAの先端部に装着される車輪Bが摺動面K上を「摺動面KとリンクAの軸芯線Zaとの交差角度Θak」が鈍角側に移動し易く鋭角側に移動し難い特性」をドア以外の産業分野に応用した実施例の動作説明図で、図35(a)~(c)は靴に採用した動作説明図で、図35(d),(c)は足踏みペダルに採用した動作説明図である。図35に図示する靴は前足が着地するときに抵抗がなく、後足が地面から離れるときに地面を蹴る力が最大になるもので、足が着地するときに後足が地面を蹴るエネルギを蓄える特徴がある。2足歩行において後足が地面から離れて前足だけで立つ瞬間は、静止力学的に力が釣り合っていない状態で、運動加速度によって釣り合っている。したがって後足が地面を蹴る
とき、最も大きく力が必要になる。押しバネの場合は後足が地面から離れるに従い伸びることによって力が最小になっている。図35に図示する靴は靴Dと靴底Wとに上下2つに分割され、枢軸Oで連結される。図35(a)は靴が着地した状態を、図35(b)は地面から離れようとする状態を、図35(c)は地面から離れる瞬間の状態を示す。リンクAは靴Dの接続軸Cを軸に捩じりバネUVによって図中矢印イ方向に付勢され、リンクAの先端部に装着される車輪Bが靴底Wに設けた摺動面Kに沿って押圧しながら移動し、靴Dを図中矢印ロ方向に回転させる。 
図35(a)から図35(c)に至る過程は靴が着地してから足を蹴り上げるまでの過程であって、「単に靴底にバネを装着する靴」は立って姿勢を保つときに不安定であって、静止するのは困難であるが、図1のバネの回転機構を採用する靴は、着地時にバネの力が靴に殆んど作用せず、図35(b)に示すように靴が回転して、靴底との間が少々開いても「力の作用線Fbと枢軸Oとの間の距離」に変化がない。従って着地時に何かを踏み潰す感覚はあるが、着地時から足を蹴り上げるまでの過程では靴底にバネを装着した感覚はない。図35(c)に示すように靴が地面から離れる瞬間に、大きな力Fbが靴底に作用し地面を蹴ることになる。図35の実施例に示すバネの回転機構は、靴が地面から離れる瞬間の靴の所定の開度で力の大きさが切り替わる図1に示したバネの回転機構であって、足を蹴り上げて前方に運ぶ動作に加勢するものであって、ロボットの足に装着される。図35(a)から図35(c)に至る過程は「摺動面KとリンクAの軸芯線Zaとの間の角度で車輪Bの移動方向(図中矢印ホ方向)側の角度Θak」は鋭角であって、車輪Bの移動に抵抗が掛かり、枢軸O軸に2つの開閉体D,Wを開く仕事をするが、図35(c)から図35(a)に至る過程で、空中にある靴が着地するまでの過程では車輪Bの移動方向が逆(図中矢印ホと反対方向)になり、「車輪Bの移動方向側の角度Θak」は鈍角となり、車輪Bの移動に抵抗が掛からなくなる。「単に靴底にバネを装着する靴」は着地するに従い抵抗が掛かる感覚を受けるが、図35に図示する靴を履いて歩くとき、着地するときも地面から離れるときも通常の歩行と感覚的に変るところがなく、バネが動作するにも拘らず違和感がない。 
図35(d), (e)は図1の実施例に示すバネの回転機構を採用した足踏みペダルの動作説明図で、確実にもとの位置に戻るためにはバネの力を強くする必要があって、復元力が強いバネを使用する。図35(d), (e)は図35(a)~図35(c)の靴と同様に、踏むときの力は小さく、何回も踏み続けてもど疲れ難い特徴がある。足踏みペダルDは車体Wに設ける枢軸Oの周りに回転自在に軸支され、先端部に設ける接続軸CにリンクAが接続される。リンクAは接続軸Cの周りに図中矢印イ方向に押しバネUによって付勢され,リンクAの同方向の回転は当たりGaによって阻止される。リンクAの先端部に設ける車輪の回転軸Ibに車輪Bが装着され、車輪Bは摺動面Kに沿って移動する。図35(d)は足踏みペダルDから足が離れている状態図で、図35(e)は足踏みペダルDを足で離みつけた状態図である。 
図35(d)から図35(e)に至る過程において、足踏みペダルDを足で踏みつけ枢軸Oを軸に図中矢印ロと反対方向に回転させると、押しバネUが縮んでリンクAが接続軸Cを軸に図中矢印イと反対方向に回転し、車輪Bが摺動面Kに沿って図中矢印ホ方向に移動する。リンクAが図中矢印イと反対方向に回転するに従い作用力距離Loが大きくなり、接続軸Cの周りに働く駆動力Mvと釣り合う押圧力Fbが小さくなって、「足踏みペダルDを足で踏む力」が小さくなる。また「リンクAの軸芯線Zaと摺動面Kとの交差角度で車輪Bの移動方向側の角度Θak」は鈍角であり、車輪Bの移動に抵抗が掛からない。図35(d)から図35(e)に至る過程)は足踏みペダルDから足が離して足踏みペダルDが復帰する過程であって、図35(e)は足踏みペダルを最大限に踏み込んだ状態を示す。作用力距離Loは最大になるが、押しバネUは最大限に縮み、押圧力Fbの作用線が摺動面Kに略直交する。図35(d)の位置に戻るためにバネの力は最大で、力の方向が最も効果的であって、「車輪Bの移動方向側の角度Θak」は鋭角であり、車輪Bの移動に抵抗が掛かるだけ、足踏みペダルに力が伝わる。 
自動車のアクセルペダル等の場合においても、足踏みペダルから足を離した瞬間に足踏みペダルが復帰方向に動き始めるときの初速が大きいほど好ましく、摺動面Kが平面上である場合、足踏みペダルから足を離した瞬間に足踏みペダルに作用する力が最大である。図1の「接続軸Cを軸に回転するリンクAの先端部に装着した車輪Bが摺動面Kを押圧する回転機構」においても、また図22~24に示す「回転体JとリンクAとが連結軸Pで連結される回転機構」においても「接続軸C或いは連結軸Pを通るリンクAの軸芯線Zaと力の作用線Fb」とが重なる状態に近いときリンクAの軸芯線Za方向に大きな力が作用しても直角方向の小さな力で移動するが、これと反対に、「接続軸C或いは連結軸Pを通るリンクAの軸芯線Zaと力の作用線Fb」と野間の角度が大きいとき、リンクAの軸芯線Zaと直角方向に大きな力が作用しても軸芯線Za方向の小さな力で移動する。「接続軸Cを軸に回転するリンクAの先端部に装着した車輪Bが摺動面Kを押圧する回転機構」は、図4のドアの場合、「(あ)の範囲」で強いバネの力を使用しながら「ドアに作用する力」が小さいように、図35の足踏みペダルの場合、確実に復帰するように強いバネの力を使用しながら「ペダルに作用する力」は小さい。図35 (e)の状態は図1(a)に示す「(あ)の範囲」に対応し車輪Bが枢軸O近傍に留められて拘束された状態であって、図35 (e)から(d)に至る過程は、足踏みペダルDの僅かな回転を伴いながら枢軸Oから遠い位置に一瞬にして戻ろうとする「切替範囲」である。図35(d), (e)の実施例は図1の回転機構の「切替範囲」だけを使用するものである。 
リンクAが摺動面Kに対して直角になるまで起立すると、足踏みペダルDが図35(d)の状態に戻る力は強くなって、足踏みペダルDを踏み込む力が大きく必要になるので、摺動面Kが平面である場合は図35(d)に示すように角度Θakが直角になる以前にリンクAの図中矢印イ方向の回転を当たりGaによって止めなければならない。摺動面Kが平面である場合は踏み足に掛かる抵抗は踏み初めのに大きく以後次第に小さくなるが、摺動面Kの形状を図35(d)に破線で示す摺動面KKのように、「車輪Bと摺動面Kとの接点b」と接続軸Cとの間の距離が漸次大きくなる凹面にすれば踏み初めもの抵抗を小さく出来る。図35(d)に破線で示す摺動面KKは図4に示す摺動面Kと同様に「車輪Bが摺動面Kを押圧する力Fbの作用線」とリンクAの回転の中心との間の距離Loを一定に近づけて、ペダルを踏む力を初めから終わりまで出来るだけ均一にするもので、図4に示す摺動面Kは作用力距離Loを小さく保ってリンクAが大きな力を支持するものであるが、図35(d)に破線で示す摺動面KKは作用力距離Loを大きく保ってリンクAの軸方向力が小さくても車輪Bが移動し易くするものである。 
図36は図8で説明した「リンクAの回転軸Cがバネの軸芯線Zvを横切ることによって「切り替え手段」が始動する回転機構」をドア以外の産業分野に利用する実施例であって、図36(a)~(c)は「切替手段」が開閉体の開閉体の回転を全く伴わない特徴を利用するロボットアームの動作説明図で、図36(d),(e)は「切替手段」が開閉体の所定の開度で始動す特徴を利用する荷締め機の動作説明図である。図35がロボットアームの足であるなら図36(a)~(c)はロボットアームの指であって、図36(a)~(c)はに示すアームD、Wは枢軸Oを共有し、枢軸Oを共有し1本の引きバネVで連結され、引きバネVの伸縮によってアームDが図中矢印ロ方向に回転するものであって、ロボットアームD、Wの先端部Da,Dwが卵Eggを掴む実施例である。図36(a)は2つのアームD,Wの先端部で卵Eggを掴んだ瞬間を示している。通常のものを挟んで掴む装置は、掴む力が増すと同時に2つのアームD,Wが閉じ方向に回転し、卵を潰してしまうことになるが、図36(a)~(b)の過程が示すように2つのアームD,Wの回転が止まったままでもリンク装置は運動し続ける。図36(b)に示すようにリンクAは接続軸Cを軸に図中矢印イ方向に回転しバネの軸芯線Zvを枢軸Oから遠ざけて、卵Eggを掴む力を大きくする。このようにアームDの開度Θdと間隙Leが変化しない状態を保ち、卵を潰すことなく「卵を掴む力Fe」だけが大きく出来る。 
バネの片方の支軸SwをアームWに設けて他方の支軸Saを揺動リンクAの先端部に設ける。揺動リンクAはアームWに設ける回転支軸Cの周りに回転自在に軸支され、「揺動リンクAと係合離脱する当りGa1, Ga2」を回転支軸Cの周りに揺動リンクAの両側に設ける。図36(a)は「(あ)の範囲」で揺動リンクAと当りGa1と係合し「回転軸Oとバネの軸芯線Zvとの間の距離Lo」を小さく維持しながら、接続軸Cが円軌道R0上を図中矢印ロ方向に移動して引きバネVの軸芯線Zv横切ろうとする状態図で、距離Loは小さく卵Eggを押圧する力Feは小さい。図36(b)は接続軸Cがバネの軸芯線Zvを横切り、引きバネVの付勢方向が変化してリンクAが図中矢印イ方向に回転する状態図で、リンクAは当りGa1を押圧する位置から当りGa2を押圧する位置に揺動し、距離Loが大きくなって卵Eggを押圧する力Feも大きくなる。リンクAの図中矢印イ方向の回転はドアと全く関係なく、ドアが停止していても実行される。バネの片方の支軸Swを揺動リンクAの回転支軸Cから近くに他方の支軸Saを遠くに設けることによって、揺動リンクAが回転支軸Cの周りを図中矢印イ方向に回転するとき、バネの力の作用線Zvと回転支軸Cと間の距離は小さく保たれ、、揺動リンクAの回転に伴うバネの伸縮は小さくなり、揺動リンクAの加速は小さくなる。揺動リンクAを加速する要因はバネの強さではなくバネの伸縮量であって、「運動の始まりと終わりのバネの力の差」である。 
ロボットアームWの先端部Dwには押しバネUが装着される。押しバネUは図1の押しバネUと同様の機能を有し、図36(a)に示すように、接続軸Cが引きバネVの軸芯線Zvを横切る前にアームDの回転が停止する場合、リンクAが当りGjに当接したままの状態でも、小さな力の「(あ)の回転手段」で押しバネUは縮むことが出来、ドアが回転して接続軸Cがバネの軸芯線Zvを横切るようになる。図36(a)の破線Dasは卵Eggが小さい場合のアームDを示し、押しバネUが縮む前に接続軸CがリンクAの軸芯線Zaを横切って「切替手段」が動作し始めるときが実線で示す場合よりも早くなる。「切替手段」は押しバネUが縮む以前であるか以後であるかに関係なく、押しバネUが縮みながら動作し、作用力距離Loの増加に伴って「破線で示す卵Esgを掴む力Fe」は大きくなるが、「卵Eggを掴む力Fe」と押しバネUの縮みが比例する。押しバネUの剛性が小さい場合、距離Leが減少分の殆んどは押しバネUの縮みであって卵Eggの縮みは少ない。図36(a)~接点b)の過程において卵を変形させずに「卵Eggを掴む力Fe」だけが大きくなる。図36(b)の破線は卵Eggが小さい場合のアームDを示し、引きバネVの伸縮量が実線で示す場合よりも小さくなる。それだけ押しバネUが縮みも少なく「破線で示す卵Esを掴む力Fe」も小さくなるが、破線で示すアーム先端部Dasの変位に対して基端部の変位は小さく、引きバネVの剛性が小さい場合で卵の大きさに大きな差異がない場合は殆んど「卵Eggを掴む力Fe」は最終的に一定する。 
「切替範囲」を含めて「(い)の範囲」は狭く、ドアが閉まる寸前においてドアの僅かな回転に対してリンク装置は大きく運動する。閉止したドアを開くとき、ドアを僅かに開くだけでリンク装置を逆方向に大きく回転させて、「(い)の回転手段」から「(あ)の回転手段」に戻すことは大きな抵抗を受けることになる
。図1において、閉止寸前に枢軸Oの近傍にあった車輪Bが移動を始める時のドアの開度より、ドアを開くとき枢軸Oから遠く離れた車輪Bを枢軸Oの近くに戻すときの開度は大きい。図36(c)はアームDを開く過程において、リンクAが当たりGj2に当接した状態のまま接続軸Cが再びバネの軸芯線Zvを横切り、当たりGj1に当接する状態に戻る時のドアの開度Θdoは、図36(a)に示すΘdsに比べて大きいことを示している。このように「(い)の回転手段」の大きな力はドアを開くとき大きなドアの回転を伴うことによって容易にしている。 
図36(d),(e)は紐Stが常に一定の力で品物Boxを縛るようにした荷締め機の動作説明図である。「切替手段」は所定の開度で始動するが「切替手段」が始動する開度が力の大きさに比例するならば、所定の力の大きさに達したとき「切替手段」が始動するようになる。図36(a)~(c)において卵Eggの大きさが一定であるならば、「切替手段」が始動する所定の開度は押しバネUの縮み量で決まることになる。図36(d),(e)は図36(a)~(c)と回転機構は同じで、距離Leが所定の大きさで「切替手段」が始動する。距離Leの所定の大きさも押しバネUの縮み量で決まり、押しバネUの縮み量が品物Boxを縛る紐Stに働く張力で決まるので、品物Boxを縛る紐Stに働く張力が所定の力に達したとき「切替手段」が始動することになる。図36(a)~(c)の構造は図8(a)~(d)に示した構造に対応し、図36(d),(e)の構造は図8(e)~(f)に示した構造に対応する。 
図36(d)に示すように紐Stは片方をアームDに取り付く巻き取りローラRolに固定し、2つのアーム先端部Da、Waの間を通って品物Boxの周囲を周って、再び2つのアーム先端部Da、Waの間を通って品物Boxを縛っている。アーム先端部Waは「アームWに設けられる支軸Sjの周りに回転自在に軸支される回転体Jの先端部で、基端部には引きバネVの支軸Swが設けられる。紐Stの他方を引くことによって紐Stがアーム先端部Waを押圧し、押しバネUを縮めて回転体Jを図中矢印ハ方向に回転させ、同時に引きバネVの支軸Swが支軸Sjの周りを公転してバネの軸芯線Zvが接続軸Cを横切るようになる。図36(e)は車輪Bが図中矢印イ方向に移動してアームDが図中矢印ロ方向に回転して、2つのアーム先端部Da、Waが閉じた状態を示している。アーム先端部Da、Waには圧着機能を有する部分DWと切断機能を有する部分WDが取り付き、、2つのアーム先端部Da、Waが閉じると同時に紐Stを圧着して切断する。 
本発明の回転機構は「(あ)の範囲」で駆動部の動作は小さくドアが大きく回転し、「(い)の範囲」でドアの回転が少なく駆動部が大きく動作する特徴を備えるので、本発明の回転機構の「切替範囲」でドアを駆動部が僅かに連動する場合で、殆んどドアの回転を伴わない切替手段の駆動部にダンパを取り付けた場合、ダンパは「(あ)の範囲」で無効に働き「(い)の範囲」で有効に働き、回転の最後に起きる衝突を緩衝し、それまでの回転には抵抗しない。図37は図27に示すドアの駆動部にダンパを取り付けて、「切替手段」が無負荷状態で一瞬にして動作を終了しないようにするものであるが、図37の開閉装置は回転の最後だけに衝撃を緩衝する装置でもあるので、図37の開閉装置からドアを回転させるバネを取り除くと、衝撃緩衝装置として広く一般に使用できる。 
図37は図27と構造を同じくし、図27の連結軸PP周りを付勢するバネを取り除いて、連結軸PPが「接続軸Cと固定支軸Swとを通る直線」を横切らないようにしている。図37(a)は「(あ)の範囲」の動作説明図で図37(a)から接点b)に至る過程は「切替範囲」の動作説明図である。「切替範囲」ではドアが僅かに回転し、回転体Jが大きく回転している。回転体Jの動作を緩慢にする手段として、図37(b)に示すようにリンクAAが枢軸O方向に向きを変える手段と、リンクAと回転体Jとの間に挟まれる押しバネUを縮める手段とがあるが、これとは別に回転体Jの回転に抵抗を掛ける手段が採用されている。これらの手段を単独で使用しても、それぞれ効果に差があってもドアDを減速する。回転体Jの回転に抵抗を掛ける手段の1つを説明する。アームAbはリンクAの中間部に設けられた回転支軸Iaの周りに回転自在に軸支され、車輪BBはアームAbの先端部に設けた回転支軸Ibに装着される。アームAbは引きバネVVによって付勢され、当たりGabによって、アームAbの摺動面KKへの進入角度が調節される。図37(b)に示すように車輪BBが摺動面KKに直角方向に侵入して、図37(c)に示すように平行方向に摺動面KK上を移動し、引きバネVVが伸びて力が蓄えられ、回転体Jの回転は減速される。車輪BBが摺動面KKに直角方向に侵入して引きバネVVが伸び始める当初はアームAbに大きな回転モーメントが作用するが、アームAbが更に回転して引きバネVVが伸びた状態になってもアームAbに作用する回転モーメントは小さく、以後のリンクAの回転に抵抗しない。 
次に回転体Jの回転に抵抗を掛けるダンパについて説明する。図37においてダンパの構造を断面図で示す。ダンパは主にシリンダSlとピストンPsからなり、シリンダSlの端部はドア枠Wに設ける支軸Slwの周りに回転自在に軸支され、ピストンPsのシャフトPssの端部は回転体Jに設ける支軸Pssjに接続される。シリンダSlの片方の端部の開口部は密閉蓋Slaによって、空気の出入りを遮断し、他方の端部はシャフトPssが貫通する貫通穴を有する蓋Slbが取り付き、空気の出入りを許している。シリンダSlはピストンPsによって密閉蓋側の密閉室Sliと貫通穴を有する蓋側の外気圧室Sloに分離され、ピストンの往復運動によって密閉室Sliは加圧或いは減圧される。ピストンPsは中心にシャフトPssが貫通する貫通穴が施され、ピストンPsはシャフトPssに沿って往復可能に装着される。シャフトの先端部に先端部当たりPaを設けて、先端部当たりPaからピストンの厚み以上の距離を離した位置に中間部当たりPbを設ける。ピストンPsは先端部当たりPaと中間部当たりPbの間を往復する。 
先端部当たりPaは密閉室Pliへの吸気を遮断する弁であって、シャフトPssがシリンダSl内から引く抜かれる方向に移動するとき、ピストンPsはシャフトPssに沿って先端部当たりPaに向かって移動し先端部当たりPaと密着し、密閉室Sliへの空気の出入りを遮断して密閉室Sliを減圧する。中間部当たりPbは密閉室Sliからの排気を遮断する弁であって、シャフトPssがシリンダSl内へ押し込まれる方向に移動するとき、、ピストンPsはシャフトPssに沿って中間部当たりPbに向かって移動し中間部当たりPbと密着し、密閉室Sliへの空気の出入りを遮断して密閉室Sliを加圧する。 
図27のリンク装置に限らずその他の実施例に示すリンク装置の駆動部に、このように「決して強力とは言えない簡易なダンパ」を取り付けて「切替手段」どあ差を遅延することによって、ドアに働く大きな衝撃を吸収して緩和することが出来る。ドアに働く大きな衝撃とはあらゆる運動の最後に起きる衝突による衝撃を意味する。例えば図1において図37のシリンダSlの端部を接続する支軸をドアDに設けて支軸にピストンPsのシャフトPssの端部を接続する支軸をリンクAに設けると、非常にゆっくりと密閉するドアとなり、ドアDを衝撃吸収部とする緩衝装置にもなる。 
図4に説明したように、「リンクAの先端部に装着した車輪Bが摺動面Kを略直角に押圧する回転機構」は「(い)の範囲」において摺動面Kに沿って小さな力を軸芯線Za方向の大きな力に変換してドアを密閉するが、「(あ)の範囲」では略リンクAの軸芯線Za方向に大きな力を支持しながら、摺動面Kに沿う方向の小さな力で移動するので、ドア以外の産業分野においては大きな重量を支持しながら移動する移動手段として利用できる。このように「(あ)の範囲の回転手段」のように大きな力がドアには小さく作用する伝達手段は、逆の立場から使用すると、小さな力でも大きく作用する手段であって、物体を移動する装置に利用できる。この移動手段は軸方向に大きな力を支持しながら小さな力で回転する移動手段であって、物体の重量を支える特徴がある。 
図38は図4と同様な「リンクAの先端部に装着した車輪Bが摺動面Kを略直角に押圧する回転機構」を説明するもので、摺動面Kの形状の作図法を示す。図4は摺動面Kが凹面である場合であるなら、図38(a)(b)は摺動面Kが凸面である場合で、図4と図38(a)(b)がリンクAの回転軸は摺動面Kの内側である場合であるならば、図38(c)(d)は外側である場合である。図38(a)(c)においてドア枠Wは枢軸Oと接続軸Cとを備え、カム体KKは摺動面Kを備えて枢軸Oを軸に回転し、リンクAは先端部に車輪Bを装着して接続軸Cを軸に回転する。図38(b)(d)はそれぞれ図38(a)(c)の動作説明図である。車輪Bが摺動面Kを押圧する力Fbの作用線は図38(a)(b)において接続軸Cと、図38(a)(c)において枢軸Oと一定の距離を保つ。 
図38(b)(d)において、円Rbは摺動面Kと車輪Bとの接点bの円軌道であって、円Rb上に等分に配された各点bi(i=1,2,3,・・・)を通る直線Tは車輪Bが摺動面Kを押圧する力Fbの作用線であって、仮想円Raとai(i=1,2,3,・・・)で接し、各点bi(i=1,2,3,・・・)を始点とする直線Tは円弧Ri(i=1,2,3,・・・)はai(i=1,2,3,・・・)を中心として半径が距離aibi(i=1,2,3,・・・)である円弧であって、車輪Bが各点bi(i=1,2,3,・・・)の位置にあるとき、接点b近傍の摺動面Kの形状を示している。図38(b)において、点b4を通り接点a4を中心とする円弧R4をカム体回転軸Qkを中心に回転移動して、接点a5を中心とする円弧R5の始点b5に連続するようにすると、円弧R5と円弧R4とは1つの円弧を形成し、始点b4は回転移動した円弧K4の始点k4に移る。連続させた円弧を円弧K4とし、円弧K4の始点k4に円弧R3を移動して円弧K3を連続させ、更に円弧R2を移動して円弧K2を連続して摺動面KAの形状が作図される。このように順次R5,K4,K3,・・・を連続することによって摺動面KAが作図される。図中の摺動面KAはOを中心に回転する摺動面Kであって、車輪Bと点b5で接触したときの摺動面Kである。図38(d)において、車輪Bが摺動面Kと接点bi(i=1,2,3,・・・)に接するとき、接点biに連続する摺動面は、「作用線Fbと仮想円Raとの接点a」を中心とする円弧Ri(i=1,2,3,・・・)である。円Roi(i=1,2,3,・・・)は枢軸Oを中心とし接点biを通る円であって円弧Riと交点ci(i=1,2,3,・・・)で交わる。円Roiによって分断された円弧biciを枢軸O中心に順次回転してR0に連続するようにすると1つの曲線R0K1K2K3・・・が形成される。この曲線はインボリュートである。 
図4と図38(a)(b)はリンクAの回転軸の位置によって仮想円が移動し摺動面Kの形状が変化するが、図38(c)(d)は仮想円の中心が摺動面Kの自身の回転軸であるので、摺動面Kの形状は仮想円Raの大きさによって決定し、点biが円Ro1,Ro2,Ro3上のどの位置にあっても「車輪Bが摺動面Kを押圧する力Fbの作用線と枢軸Oとは一定の距離を保つ。またカム車輪Bが如何なる運動をしても関係なく、「枢軸Oの周りに働く駆動力」に対して車輪Bに押圧力Fbは一定になる。例えば車輪Bの回転軸が重量を支持する場合で図38(c)に示すように車輪Bが円軌道に沿って移動するとき押圧力Fbの作用線の方向が変化して、重量の作用線方向の分力が変化して、「枢軸Oの周りに働く駆動力」は車輪Bが移動するとき初めは大きく最後八小さくなる。車輪Bが鉛直線上を移動するとすれば押圧力Fbの作用線も常に鉛直線と一致し、車輪Bが移動するとき初めから最後まで一定の力が作用することになり、重量の上下方向の移動に必要な力の最大値を最小にすることが出来る
。 
図39は「図1で自動車のトランクの蓋を上下させた実施例」と同様に図38(c)(d)の回転機構を重量の上下方向の移動装置に利用するもので、蓋Dを図39(a)(b)に示す倒伏状態から図39(c)(d)に示す起立状態にする動作説明立面図である。図1の実施例において蓋が水平に近い状態では押圧力Fbの作用線と重力の作用線は平行であって、蓋が懸垂するに従い押圧力Fbの作用線が回転して平行でなくなったが、図39の実施例では押圧力Fbの作用線と重力の作用線は平行である範囲が大きい特徴がある。カム体KKは外縁部に摺動面Kを備えて「枢軸Oの周りに回転自在に軸支される蓋Dに設けられる接続軸C」の周りに回転自在に軸支され、図中矢印イ方向に回転して蓋Dを図中矢印ロ方向に起立させる。台車は上面に「摺動面Kと接触する摩擦面である接触面KAA」を備え、両端部を車輪BBで支持し枢軸Oが取り付く水平面H上を移動する。接触面KAAが摺動面Kを押圧する力Fbの作用線は「摺動面Kと接触面KAAとの接点b」を通り「半径rの仮想円Ra」に接して接続軸Cを通る重力の作用線と並行で一定の距離rを保っている。 
図39(a)において接触面KAA上の位置をba0、摺動面K上の位置をbb0とし、摺動面Kが図中矢印イ方向に回転して位置bb0が接続軸Cを通る鉛直線Z上にあるとき、図39(b)において接点bと位置bb0に至る摺動面Kの外縁部の長さは「鉛直線Zと接点bとの間の距離r」より長く、摺動面Kが図中矢印イ方向に回転することによって台車KAAは図中矢印ハ方向に移動することになる。カム体KKの外縁部が台車KAAを介さずに直接水平面Hと接する場合はカム体KKの外縁部と水平面Hとの間に滑りが生じて摩擦が起こり、カム体KKの回転に大きな抵抗がかかることになるが、図39(a)~(d)においてカム体KKの回転に伴い水平面Hが移動することによって、図39(e)~(g)においてカム体KKの外縁部と水平面Hとが車輪Bを介して接触することによって、カム体KKの回転に大きな抵抗がかからないようにしている。図39(a)はカム体摺動面Kの外縁部と接触面KAAとの双方に刃を施して噛合うようにしている実施例であるが、図39(b)(c)は刃を施していない実施例である。 
蓋Dが倒伏に近い状態において蓋Dの回転に対して「重力の作用線と枢軸Oとの間の距離Lw」と「力の作用線Fbとoの間の距離Lf」との比率が略一定であるので、接続軸Cの周りに略一定の回転力を働き続けることによって蓋Dを回転させて重心を上昇させることが出来る。蓋Dが倒伏に近い状態において重心が上昇するとき回転力が均一であるほど必要な力の最大値は小さくなる。図39(d)は図39(a)~(c)に図示するカム体KKを互いに裏返しに取り付けた関係にあって、「カム体KKが摺動面Hを押圧する力の作用線Fb」は図39(d)において、重力の作用線Zより枢軸Oに近い側あって、図39(a)~(c)において遠い側にある。蓋Dが倒伏から起立状態に移行するとき、重力の作用線と枢軸Oとの間の距離Lwと力の作用線Fbと枢軸Oとの間の距離Lfとは共に減少するが、図39(d)において上記距離Lfはゼロに近づき、力Fbがいくら大きくてもの蓋Dを回転させる力はなくなっていく。図39(d)に示すように力の作用線Fbが回転軸Qを通る位置では、蓋Dを回転させない。蓋Dが倒伏から起立状態に移行する全過程を通じて、重力による図中矢印ロと反対方向の回転モーメントに釣り合う力Fbの大きさは図39(d)において無限大に近づき、図39(a)~(c)において無限小に近づく。蓋Dが起立に近い状態では蓋Dを図中矢印ロ方向に回転させる力は図39(d)において大きく必要として不足し、図39(a)~(c)において過剰となる。 
図39(e)(f)は図39(a)~(c)のカム体KKに代わって特許文献12に記載される渦巻き車輪を取り付けたもので、渦巻き車輪は回転の中心を頂点として高さが仮想円Raの半径である直角三角形を順次重ね合わせていくことによって形成されるもので、前の直角三角形の斜辺が次の直角三角形の底辺となる。直角三角形の形状は仮想円Raの半径によって決定し、渦巻き車輪の形状は図39(a)~(c)のカム体KKの形状と同様に仮想円Raの半径によって決定する。同じ仮想円によって作図される渦巻き車輪の形状と摺動面Kの形状とを比較すると、図39(e)(f)の場合、渦巻き車輪の微分要素は半径方向に直角な線分であって、図38(d)に示す円弧の微分要素Riより接続軸Cに遠い側にあるため。接点bが回転軸Cから離れるに従い円に収束する度合いが大きくなって、より円に近似し、カム体の回転に伴う回転軸Cの上昇は少ない。とくに蓋Dが倒伏から起立状態に移行する過程の始まりにおいて図39(a)~(c)のカム体の回転に伴う回転軸Cの上昇は大きく、図39(e)(f)のカム体の回転に伴う回転軸Cの上昇は、カム体の回転し始めてすぐに激減する。このように同じ仮想円によって作図される曲腺が明らかに異なり、図39(a)~(c)の摺動面Kの形状はインボリュート曲線であり、図39(e)(f)の曲線はインボリュート曲線ではない。 
2つの開閉体D,Wは枢軸Oを軸にして相対的に回転するもので、2つの開閉体D,Wの片方を固定して他方が枢軸Oを軸にして回転する動作は、見方を変えて他方から見れば他方を固定して片方が枢軸Oを軸にして回転する動作である。例えば図4,図38においてOを軸に回転する他方はドアD或いは摺動面Kであり、固定される片方はドア枠Wであって紙面である。他方のドアD或いは摺動面Kを固定すると、ドア枠Wであって紙面である片方がOを軸に回転する。図40は図4において蓋Kを固定して、ドア枠Wであって紙面である片方がOを軸に回転するようにした動作説明図で、本発明の密閉機構のように「車輪Bが摺動面Kを略直角方向に押圧するとき、摺動面Kに略平行な力が小さくても移動しやすく摺動面Kに略直角な大きな力を車輪の回転軸が支持する特性。」を上下に起立倒伏する蓋に応用するものである。 
図40(a)において「先端部の車輪の回転軸Ibに車輪Bを装着するリンクA」は「蓋Dに設けられる接続軸C」の周りに回転自在に軸支される。蓋Dは固定部Wに固定される枢軸Oを軸に回転し、枢軸Oの軸芯は水平である。蓋D0は起立状態を示し「蓋ドアDの重力による枢軸Oの周りの回転モーメントMo」が最も小さい状態を示す。蓋D3は倒伏状態を示し「蓋Dの重力による枢軸Oの周りの回転モーメントMo」が最も大きい状態を示す。接続軸Cの周りに図示されない付勢手段で回転モーメントMcが図中矢印イ方向に働き、回転モーメントMcは回転モーメントMoに対抗して蓋Dを静止させている。 
図40(a)(b)は車輪Bが摺動面Kに沿って図中矢印イ方向に移動して蓋Dが図中矢印ロ方向に回転する動作説明立面図で、図4の蓋Kが水平に近い範囲では摺動面Kの形状が円弧に近似することから図40(a)(b)において摺動面Kの形状が円弧であるとする場合、円弧の中心を仮想点Qとする「車輪Bが摺動面Kを押圧する力Fb」の作用線は「車輪Bと摺動面Kとの接点b」と車輪の回転軸Ibと仮想点Qを通る。図4の場合と異なり車輪Bの位置によって「リンクAと摺動面Kに立てた垂線との交差角度Θf」が変化する。図40(c)(d)は「図40(a)(b)のリンクAと摺動面K」に代わって、「固定部Wに設けられる固定支軸Swを軸に回転する回転体J」と「回転体Jに連結され蓋Dに接続されるリンクA」を取り付けたもので、図40(a)(b)において車輪の回転軸Ibが仮想点Qを中心に円運動することから、図40(a)(b)に示す「車輪が摺動面を押圧する力Fb」が回転体Jの軸芯に働き、固定支軸Swに作用する。 
図40(a)は蓋DとリンクAとが、直交した状態から重なる状態に移行する動作説明図で、車輪Bが摺動面Kに沿って枢軸Oに近づくに従い、蓋Dが起立しリンクAは鉛直状態から僅かに水平に移行する。リンクAは略鉛直状態で重力の作用線と略平行に保たれる間は車輪Bは「小さな円運動の周方向の力」で摺動面Kに沿って移動しリンクAの軸芯に「大きな円運動の径方向の力」を支持する。またリンクAと力Fbの作用線との交差角度Θfは増加する。回転モーメントMcは「リンクAの軸芯に働く力」に小さく伝わり、蓋D0が起立するにしたがい「蓋ドアDの重力による枢軸Oの周りの回転モーメントMo」が減少することに対応している。上記円弧の摺動面Kを固定せず移動可能にすると「カム車輪回転体Jgと摺動面Kに立てた法線との交差角度Θf」を摺動面K上の車輪Bの位置、或いは蓋Dの開度に応じて、上記押圧力圧力Fbの作用線方向を所望の方向に設計できる。上記円弧の摺動面Kが固定されない支軸を軸に回転すると、摺動面Kの形状が円弧に限らず自由な形状を持つ摺動面Kが固定された場合と同じになる。 
また一定の形状の摺動面Kを回転に限らず移動することによって「蓋ドアDの重力による枢軸Oの周りの回転モーメントMo」の変化に対応するように、摺動面Kを固定した場合でも摺動面Kの形状を変えることによって「蓋ドアDの重力による枢軸Oの周りの回転モーメントMo」の変化に対応するように出来る。図40(b)は摺動面Kを移動した後の動作説明図で、上記交差角度Θfが増加する割合は小さくなる。このように摺動面Kを回転に限らず移動することによって、カム車輪の位置に応じて該交差角度Θkを出来るだけ一定にすることも可能で、蓋Dが起立する状態のときも枢軸Oの周りのモーメントの釣り合いを維持することが可能である。図40(c)(d)はそれぞれ図40(a)(b)に対応し、図40(a)(b)について言えることは、図40(c)(d)についても言えることである。固定支軸Swを移動可能に取付ける、或いは周り対偶の連結点を滑り対偶にして例えば回転体Jの長さが変化するようにすると、リンク装置の自由度が増えることによって、リンク装置の運動を自由に調節可能となり、更にバネの力を変化させることによって、さらに所望の釣り合い状態が実現する。またリンクAの軸芯線Zaと力の作用線とが重なる状態に近づくけるようにして、リンクAが大きな力を支持しながら小さな力で回転するようにする。
A  回転体あるいはアームB  車輪C  円の中心D  ドア或いはドアに取り付く金具G  当たりI  回転軸或いは回転支軸K  カム体或いはカム体摺動面O  カム体の回転軸Q  回転体の回転軸R  円弧S  バネ端部の接続軸T  垂線U  押しバネV  引きバネW  ドア枠に取り付く金具或いはプレート

Claims (10)

  1. 枢軸を共有し相対的に回転する「2つのリンクからなる開閉体」と、「1以上のリンクからなる伸縮部」とを備え、上記2つのリンクのそれぞれに設けられる取付軸に上記伸縮部の両端が接続されるリンク装置であって、上記取付軸の間の距離が変化することによって上記開閉体が開閉する開閉装置で、上記リンク装置の何れかの連結軸の周りの回転を拘束する解除可能な拘束手段を備え、上記開閉体の所定の開度を境にして上記開閉体に働く力の作用点が移転することを特徴とする開閉装置。
  2. 回転軸の周りに力Fが働いて回転体が回転する回転機構であって、上記回転軸の周りに働く回転力Mと上記回転軸と上記力Fの作用線との間の距離Lとの間に成立する関係(M=F×L)に従って、上記距離Lの大きさを変化させることによって上記回転力Mまたは力Fの大きさが変化する回転制御機構であって、上記回転体の所定の開度を境にして上記距離Lを小から大にまたは大から小に切り替える「切り替え手段」を備え、上記「切り替え手段」は上記回転体の回転を全く或いは殆んど伴わないことを特徴とする回転制御機構を備える開閉装置。
  3. 枢軸を共有し相対的に回転する「2つのリンクからなる開閉体」と、上記2つのリンクのそれぞれに設けられる取付軸に「1以上のリンクからなる伸縮部」の両端が接続されるリンク装置であって、上記「1以上のリンクからなる伸縮部」の何れかのリン
    クがバネである請求項1或いは2に記載する開閉装置。
  4. 「枢軸を共有し相対的に回転する2つのリンクからなる開閉体」のそれぞれに設ける2つの取付軸に「2つのリンクからなる伸縮部」を連結するリンク装置で、上記2つのリンクの軸芯線が一直線上に配されない状態で運動する「(あ)の回転手段」と上記2つのリンクの軸芯線が略一直線上に配される状態で運動する「(い)の回転手段」と、上記2つのリンクの軸芯線が一直線上に配されない状態から配される状態にまたは一直線上に配される状態から配されない状態に切り替わるようにする「切り替え手段」とを備え、上記2つのリンクの軸芯線が一直線上に配されて、上記2つのリンクの軸芯線に働く力の大きさが増加することを特徴とする開閉装置。
  5. 回転軸Oを共有し相対的に回転する「2つのリンクとD,Wでからなる開閉体」と、上記2つのリンクD,Wのそれぞれに設けられる取付軸に「1以上のリンクからなる伸縮部」の両端が接続されるリンク装置であって、上記取付軸が所定の通路に沿って移動可能であって、通路始端と通路終端との間を揺動する開閉装置で、上記取付軸は「剛性がゼロから無限大までの所定の値に設定可能なバネ」によって「バネが自然長であるときの初期の位置」に復帰するように付勢されることを特徴とする請求項1~4の何れか1項に記載する開閉装置。
  6. 枢軸を共有し相対的に回転する「2つのリンクからなる開閉体」と、上記2つのリンクのそれぞれに設けられる取付軸に「1以上のリンクからなる伸縮部」の両端が接続されるリンク装置であって、上記取付軸に上記開閉体の回転させる力と上記開閉体の回転を阻止する力が同時に作用することを特徴とする請求項1~5の何れか1項に記載する開閉装置。
  7. 枢軸を共有し相対的に回転する「2つのリンクからなる開閉体」と、上記2つのリンクのそれぞれに設けられる取付軸に「1以上のリンクからなる伸縮部」の両端が接続されるリンク装置であって、枢軸ではない連結軸周りの回転を減速する手段を設けた請求項1~6の何れか1項に記載する開閉装置。
  8. 一対の回転軸の周りに互いに離間した回転体が相対的に回転する回転装置であって、片方の回転軸を軸に回転する片方の回転体は摺動面を備え、他方の回転軸を軸に回転する他方の回転体は先端部に車輪を装着し、上記摺動面が上記車輪を押圧しながら或いは上記車輪が上記摺動面を押圧しながら上記摺動面が上記車輪に沿って相対的に移動する回転装置であって、車輪が摺動面を押圧する力の作用線は上記片方の回転軸と上記他方の回転軸の何れかとの距離が小さく或いは大きく保たれることを特徴とする開閉装置。
  9. 「ドアの枢軸と反対側のドアの側面」と「それに対面するドア枠側面」の片方に設けられる回転支軸に回転自在に軸支される係止回転体と、他方に設けられる係止摺動面とを備え、ドアの閉止方向の回転によって上記係止回転体が上記係止摺動面に沿って移動しながら上記回転支軸を軸に回転し、ドアの開方向の回転を阻止する力は上記回転支軸或いは上記係止回転体の外縁部によって支持されることを特徴とするラッチ装置。
  10. 全開位置と全閉位置との間を往復回転するドアであって、上記全閉位置からドアを開くとき、全閉する方向に付勢された状態から全開する方向に付勢される状態に切り替わる開方向切り替え手段と、上記全開位置からドアを閉めるとき、全開する方向に付勢された状態から全閉する方向に付勢される状態切り替わる閉方向切り替え手段とを備え、上記開方向切り替え手段が動作するときのドアの開き角度と上記閉方向切り替え手段が動作するときのドアの開き角度とが異なることを特徴とするドアであり、ドアを全閉する方向に付勢する状態で静止する全閉方向付勢位置とドアを全開する方向に付勢する状態で静止する全開方向付勢位置との間を揺動しトグルバネで付勢される揺動体と、上記揺動体を全閉方向付勢位置から全開方向付勢位置に切り替える上記開方向切り替え手段と、上記揺動体を全開方向付勢位置から全閉方向付勢位置に切り替える上記閉方向切り替え手段とを備えるドア。
PCT/JP2010/051964 2009-02-10 2010-02-10 回転体の回転制御機構とその回転体制御機構を用いたドア等の開閉装置 WO2010092982A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-028291 2009-02-10
JP2009028291 2009-02-10
JP2009051479 2009-03-05
JP2009-051479 2009-03-05
JP2009-232608 2009-10-06
JP2009232608 2009-10-06

Publications (2)

Publication Number Publication Date
WO2010092982A1 true WO2010092982A1 (ja) 2010-08-19
WO2010092982A9 WO2010092982A9 (ja) 2011-03-17

Family

ID=42561823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051964 WO2010092982A1 (ja) 2009-02-10 2010-02-10 回転体の回転制御機構とその回転体制御機構を用いたドア等の開閉装置

Country Status (2)

Country Link
JP (2) JP4695214B2 (ja)
WO (1) WO2010092982A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111593979A (zh) * 2020-06-22 2020-08-28 扬州工业职业技术学院 一种家用气体定门器
CN114043524A (zh) * 2021-12-10 2022-02-15 上海锐数微医疗科技发展有限公司 一种可折叠且能够锁止的机械臂

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129741A (ja) * 2001-10-30 2003-05-08 Inaba Seisakusho Co Ltd 開き戸の開閉装置
JP2008248482A (ja) * 2007-03-29 2008-10-16 Koichi Okamoto バネで動くドア

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248842A (ja) * 2007-03-30 2008-10-16 Mitsubishi Motors Corp 内燃機関のピストン

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129741A (ja) * 2001-10-30 2003-05-08 Inaba Seisakusho Co Ltd 開き戸の開閉装置
JP2008248482A (ja) * 2007-03-29 2008-10-16 Koichi Okamoto バネで動くドア

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111593979A (zh) * 2020-06-22 2020-08-28 扬州工业职业技术学院 一种家用气体定门器
CN114043524A (zh) * 2021-12-10 2022-02-15 上海锐数微医疗科技发展有限公司 一种可折叠且能够锁止的机械臂
CN114043524B (zh) * 2021-12-10 2023-12-26 上海锐数微医疗科技发展有限公司 一种可折叠且能够锁止的机械臂

Also Published As

Publication number Publication date
JP4695214B2 (ja) 2011-06-08
WO2010092982A9 (ja) 2011-03-17
JP2011122427A (ja) 2011-06-23
JP2011099311A (ja) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5572861B2 (ja) マルチリンクヒンジ
JP7321581B2 (ja) 下向きに曲げる翼部を動かすメカニズム
JP6412885B2 (ja) 緩衝機能を有するマルチリンクヒンジ
JP2016518177A (ja) 可動家具部の駆動装置
CN104067023B (zh) 用于缓冲可移动支承的部件的运动的装置
WO2010092982A1 (ja) 回転体の回転制御機構とその回転体制御機構を用いたドア等の開閉装置
US6669315B2 (en) Lift method for storage bin door
JP5893494B2 (ja) スライド式ドア用自動閉扉装置
KR101423933B1 (ko) 가구용 슬라이드 도어의 댐퍼 시스템
EP2761118B1 (en) Safety device to prevent the sudden closing of a movable element
CN107354685A (zh) 缓冲铰链、门盖和洗衣机
CN210095136U (zh) 开启机构
JP5105255B2 (ja) 回転体の回転制御機構とその回転体制御機構を用いたドア等の開閉装置
JP2672791B2 (ja) 引戸閉鎖装置
JP4513109B2 (ja) バネの力で付勢されて相対的に接近する2つの移動体の移動速度を減速する装置。
JP5365893B2 (ja) 回転装置
JP3992709B2 (ja) 扉用減速装置
JPH11117599A (ja) 昇降折戸装置
JP5201501B2 (ja) ドア
JP5201504B2 (ja) バネで動くドア
JP2010133135A (ja) 引戸装置
JP5142053B2 (ja) ドア
KR101228318B1 (ko) 차량 문 개폐장치
WO2019003344A1 (ja) エレベータのドア装置、エレベータドアのリンク
JPH032630Y2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10741259

Country of ref document: EP

Kind code of ref document: A1