WO2010092972A1 - Led発光素子用複合材料基板、その製造方法及びled発光素子 - Google Patents

Led発光素子用複合材料基板、その製造方法及びled発光素子 Download PDF

Info

Publication number
WO2010092972A1
WO2010092972A1 PCT/JP2010/051935 JP2010051935W WO2010092972A1 WO 2010092972 A1 WO2010092972 A1 WO 2010092972A1 JP 2010051935 W JP2010051935 W JP 2010051935W WO 2010092972 A1 WO2010092972 A1 WO 2010092972A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
led light
substrate
emitting element
thickness
Prior art date
Application number
PCT/JP2010/051935
Other languages
English (en)
French (fr)
Inventor
廣津留 秀樹
秀雄 塚本
庸介 石原
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CN201080007859.5A priority Critical patent/CN102318093B/zh
Priority to US13/148,712 priority patent/US9387532B2/en
Priority to EP10741249.6A priority patent/EP2398081B1/en
Priority to JP2010550532A priority patent/JP5713684B2/ja
Priority to KR1020167030579A priority patent/KR20160129920A/ko
Publication of WO2010092972A1 publication Critical patent/WO2010092972A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12007Component of composite having metal continuous phase interengaged with nonmetal continuous phase

Definitions

  • the present invention relates to a composite material substrate for a light emitting diode (hereinafter referred to as LED) element, a method for producing the same, and an LED light emitting element using the composite material substrate.
  • LED light emitting diode
  • An LED is an element that emits light when a forward current is passed through a pn junction of a semiconductor, and is manufactured using a III-V group semiconductor crystal such as GaAs or GaN.
  • a III-V group semiconductor crystal such as GaAs or GaN.
  • the LED includes a p-type layer and an n-type layer obtained by epitaxially growing a group III-V semiconductor crystal on a single crystal growth substrate, and a photoactive layer sandwiched between the p-type layer and the n-type layer.
  • a group III-V semiconductor crystal such as GaN is epitaxially grown on a growth substrate such as single crystal sapphire, and then an electrode or the like is formed to form an LED light emitting element (Patent Document 1).
  • a single crystal growth substrate such as a single crystal sapphire substrate has a problem that the thermal conductivity is not good.
  • the thermal conductivity is about 40 W / mK, and the heat generated in a III-V group semiconductor element such as GaN cannot be sufficiently dissipated.
  • a method has been proposed in which a group III-V semiconductor crystal is epitaxially grown on a single crystal growth substrate, then a high thermal conductivity substrate is joined through a metal layer, and then the single crystal growth substrate is removed.
  • Patent Document 3 materials such as copper having excellent thermal conductivity have been studied as substrates having high thermal conductivity, but they have a large difference in linear thermal expansion coefficient from group III-V semiconductor crystals and are sufficiently satisfactory for high-power LEDs. It wasn't.
  • JP 2005-117006 A Japanese Patent Publication No. 5-73252 JP 2006-128710 A
  • the present invention provides a substrate for an LED light-emitting element having a small difference in linear thermal expansion coefficient from the group III-V semiconductor crystal constituting the LED, excellent in thermal conductivity, and suitable for high-power LEDs, and a method for manufacturing the same.
  • the purpose is to provide.
  • Another object of the present invention is to provide a method for producing an LED light emitting device using such a substrate for LED light emitting device and an LED light emitting device produced by such a method.
  • a porous body having at least one selected from silicon carbide, aluminum nitride, silicon nitride, diamond, graphite, yttrium oxide, and magnesium oxide and having a porosity of 10 to 50% by volume is made of aluminum.
  • a composite material substrate for an LED light-emitting element formed by forming a metal layer containing the above metal so as to have a thickness of 0.5 to 15 ⁇ m.
  • the porous body has a three-point bending strength of 50 MPa or more, and the aluminum alloy is impregnated in the porous body at an impregnation pressure of 30 MPa or more by a melt forging method.
  • the thickness of the composite material body is 0.05 to 0.5 mm, and the surface roughness (Ra) is 0.01 to 0.5 ⁇ m.
  • the thickness of the composite material body is 0.05 to 0.5 mm, the surface roughness (Ra) is 0.01 to 2 ⁇ m, and one surface after forming the metal layer has a surface roughness. (Ra) Processed to 0.01 to 0.5 ⁇ m.
  • the composite material substrate has a thermal conductivity of 100 to 500 W / mK at a temperature of 25 ° C., a linear thermal expansion coefficient of 4 to 9 ⁇ 10 ⁇ 6 / K at a temperature of 25 ° C. to 150 ° C., The three-point bending strength is 50 MPa or more, and the volume resistivity is 10 ⁇ 9 to 10 ⁇ 5 ⁇ ⁇ m.
  • the composite material substrate has a thickness of 0.05 mm to 0.5 mm, a surface roughness (Ra) of at least one main surface of 0.01 to 0.5 ⁇ m, and a temperature of 25 ° C.
  • the weight reduction amount of at least one main surface when immersed in a 5N HCl solution and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute is 0.2 mg / cm 2 or less.
  • a method for manufacturing a composite material substrate for an LED light emitting device (A) preparing a porous body comprising at least one selected from silicon carbide, aluminum nitride, silicon nitride, diamond, graphite, yttrium oxide and magnesium oxide and having a porosity of 10 to 50% by volume; (B) impregnating the porous body with aluminum or pure aluminum, and processing to a predetermined plate thickness and surface roughness to form a composite material body; (C) The metal layer containing one or more metals selected from Ni, Co, Pd, Cu, Ag, Au, Pt and Sn on the surface of the composite material body has a thickness of 0.5 to 15 ⁇ m.
  • the manufacturing method which comprises the process of forming is provided.
  • the porous body in the step (a), has a three-point bending strength of 50 MPa or more, and in the step (b), the aluminum alloy or pure aluminum is impregnated by a melt forging method. The porous body is impregnated at 30 MPa or more.
  • the thickness of the composite material body in the step (b), is 0.05 to 0.5 mm, and the surface roughness (Ra) is 0.01 to 0.5 ⁇ m.
  • the thickness of the composite material body is 0.05 to 0.5 mm
  • the surface roughness (Ra) is 0.01 to 2 ⁇ m
  • the metal layer One side of the composite material formed is processed to a surface roughness (Ra) of 0.01 to 0.5 ⁇ m.
  • a method for manufacturing an LED light emitting device (1) A III-V group semiconductor crystal is epitaxially grown on one main surface of a disk-like or plate-like single crystal growth substrate, (2) The above-mentioned composite material substrate for LED light emitting device according to the present invention is bonded to the surface of the group III-V semiconductor crystal via a metal layer, and the single crystal growth substrate is subjected to any of laser irradiation, etching, and grinding. Removed by some method, (3) Provided is a manufacturing method comprising a step of cutting the surface of the group III-V semiconductor crystal on the side from which the single crystal growth substrate has been removed, forming an electrode, and then performing a cutting process.
  • the single crystal growth substrate is made of a material selected from the group consisting of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si.
  • the single crystal growth substrate is surface coated with a material selected from the group consisting of AlN, SiC, GaN, GaAs.
  • the group III-V semiconductor crystal is any one of GaN, GaAs, and GaP.
  • the present invention also discloses an LED light-emitting element that can be manufactured by any one of the above-described LED light-emitting element manufacturing methods.
  • a high thermal conductivity composite material substrate for an LED light-emitting element having a small difference in linear thermal expansion coefficient from the group III-V semiconductor crystal constituting the LED can be obtained.
  • a high-output LED light-emitting element excellent in heat dissipation and reliability can be provided.
  • the composite material substrate for an LED light emitting device having the above-described structure is excellent in chemical resistance against an acid and an alkaline solution used at the time of manufacturing the LED light emitting device, is electrically conductive, and is a group III-V semiconductor crystal constituting the LED. Electrodes can be formed on both sides. Therefore, it is possible to reduce the manufacturing process of the LED light emitting element and increase the light emission amount per unit area.
  • the present invention relates to an LED light emitting element and a composite material substrate used for the LED light emitting element.
  • the manufacture of the LED light-emitting element will be described, and the manufacture of the composite material substrate will also be described therein.
  • the LED light emitting device is manufactured using a single crystal growth substrate, a III-V semiconductor crystal, and a composite material substrate.
  • the single crystal growth substrate is required to be made of a material having a small difference in lattice constant from the group III-V semiconductor crystal to be epitaxially grown and having few defects. From the standpoints of crystallinity and uniformity, it is common to process and use a single crystal material. These single crystal growth substrates are required to withstand the temperature and atmosphere in the process of epitaxially growing a group III-V semiconductor crystal. Therefore, the material for the single crystal growth substrate used in the present invention is preferably selected from the group of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si. Furthermore, the single crystal growth substrate used in the present invention is preferably surface-coated with a material selected from the group consisting of AlN, SiC, GaN, and GaAs.
  • the group III-V semiconductor crystal constituting the LED is preferably GaN, GaAs, or GaP from the viewpoint of conversion efficiency as an LED light emitting element. These group III-V semiconductor crystals have high luminous efficiency, and are selectively used depending on the application. The III-V semiconductor crystal is selected according to the optimum emission wavelength for each application.
  • a III-V group semiconductor crystal is grown on one main surface of these single crystal growth substrates by epitaxial growth.
  • the epitaxial growth of the III-V semiconductor crystal is preferably carried out by metal organic vapor phase epitaxy (MOCVD method) or halide vapor phase epitaxy (HVPE method).
  • MOCVD method is suitable for growing a group III-V semiconductor crystal having good crystallinity
  • HVPE method has a high crystal growth rate and can grow a group III-V semiconductor crystal efficiently.
  • These methods are publicly known, and implementation conditions can be set as appropriate.
  • the epitaxial growth method is not limited to the above method as long as it can grow a group III-V semiconductor crystal.
  • the epitaxially grown III-V group semiconductor crystal can be subjected to a surface treatment in order to further improve the light emission characteristics.
  • the surface may be etched or polished.
  • the composite material substrate according to the present invention is bonded to the surface of the epitaxially grown group III-V semiconductor crystal.
  • the surface of the group III-V semiconductor crystal is deposited by a method such as vapor deposition or sputtering.
  • a metal layer is formed.
  • the metal layer is preferably formed using indium, aluminum, gold, silver, or an alloy thereof.
  • the thickness of the metal layer is not preferable because the linear thermal expansion coefficient of the metal is different from that of the group III-V semiconductor crystal, and if it is extremely thick, the adhesion is lowered.
  • the thickness of the metal layer is preferably 0.5 to 10 ⁇ m, and more preferably 0.5 to 2 ⁇ m.
  • a metal layer is similarly formed on the surface of the composite material substrate on the side to be joined to the group III-V semiconductor crystal by vapor deposition or sputtering.
  • the metal layer is preferably formed using indium, aluminum, gold, silver, and alloys thereof in the same manner as the metal layer on the surface of the III-V semiconductor crystal.
  • the characteristics required for the composite material substrate are (1) having a strength capable of withstanding bonding, and (2) that there is no inclusion such as a void or a foreign substance on the bonding surface, and the bonding surface is flat.
  • the three-point bending strength of the composite material substrate needs to be 50 MPa or more, preferably 200 MPa or more.
  • the surface roughness (Ra) of the composite material substrate needs to be 0.01 to 0.5 ⁇ m, and preferably 0.01 to 0.2 ⁇ m.
  • the joining of the III-V semiconductor crystal and the composite material substrate is performed by heating in a state where the joining surfaces are aligned while applying pressure as necessary.
  • the heating temperature varies depending on the type of the metal layer, but is generally 250 ° C. to 550 ° C.
  • the pressure for pressurization is generally 2 to 20 MPa.
  • the linear thermal expansion coefficient of the composite material substrate at a temperature of 25 ° C. to 150 ° C. is preferably 4 to 9 ⁇ 10 ⁇ 6 / K. More preferably, it is 4 to 7 ⁇ 10 ⁇ 6 / K.
  • the linear thermal expansion coefficient with the III-V group semiconductor crystal or growth substrate to be joined Due to the difference, warpage may occur after bonding, the peeling of the bonding layer may occur when used as an LED light-emitting element, and the III-V group semiconductor crystal may be broken.
  • the composite material substrate of the present invention serves as a base substrate for LED light-emitting elements.
  • Most of the heat generated in the III-V semiconductor device is radiated through the substrate, and the substrate is required to have high heat dissipation characteristics.
  • the thermal conductivity of the composite material substrate at a temperature of 25 ° C. is preferably 100 to 500 W / mK, and more preferably 150 to 500 W / mK. If the thermal conductivity is less than 100 W / mK, the heat generated in the III-V group semiconductor element cannot be sufficiently dissipated, and the temperature of the element increases, particularly in the case of a high-power LED that requires a large current to flow. And the accompanying decrease in device life are undesirable.
  • the upper limit value of the thermal conductivity is not limited in terms of characteristics, but the substrate material becomes extremely expensive.
  • the thickness of the composite material substrate is thin. On the other hand, it is necessary to have strength that can withstand the holding of the III-V group semiconductor element and the handling when manufacturing the LED light emitting element. Is required.
  • the thickness of the composite material substrate is preferably 0.05 mm to 0.5 mm, and more preferably 0.05 mm to 0.3 mm. When the thickness of the composite material substrate exceeds 0.5 mm, the heat dissipation characteristics of the LED light-emitting element deteriorate, which is not preferable.
  • the composite material substrate of the present invention can be thinned by polishing or the like, if necessary, after bonding with a III-V semiconductor crystal.
  • the group III-V semiconductor crystal and the composite material substrate are joined via the metal layer, and then the single crystal growth substrate is removed.
  • the single crystal growth substrate is generally removed by laser irradiation from the single crystal growth substrate side.
  • the single crystal growth substrate can be removed by polishing or etching.
  • the III-V group semiconductor crystal surface from which the single crystal growth substrate has been removed is polished and etched as necessary to finish it into the desired surface shape, and then an electrode is formed by a method such as vapor deposition or sputtering. To do. Further, it is cut into a predetermined shape by laser cutting or dicing to manufacture an LED light emitting element.
  • the composite material substrate of the present invention requires chemical resistance characteristics in the LED light emitting device manufacturing process.
  • the composite material substrate has a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C., respectively.
  • the weight loss per unit area of at least one principal surface when immersed for 1 minute is preferably 0.2 mg / cm 2 or less, and more preferably 0.1 mg / cm 2 or less. If the weight loss per unit area when immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C.
  • the metal in the composite material This is not preferable because characteristics such as thermal conductivity are reduced due to elution of components, and chipping occurs when cutting into a predetermined shape by laser cutting or dicing, resulting in a decrease in yield of LED light emitting elements.
  • one main surface of the composite material substrate is bonded to the group III-V semiconductor crystal via the metal layer, so that the non-bonded surface satisfies the above-mentioned chemical resistance characteristics. Anything is acceptable.
  • the substrate itself has conductivity. For this reason, electrodes can be formed on both surfaces of the III-V semiconductor crystal constituting the LED.
  • an insulating material such as a sapphire substrate as the substrate, it is necessary to remove a part of the upper p-type or n-type III-V group semiconductor crystal by etching or the like and form an electrode on the same surface side.
  • the manufacturing process of the LED light-emitting element can be simplified.
  • the volume resistivity of the composite material of the present invention is preferably 10 ⁇ 9 to 10 ⁇ 5 ⁇ ⁇ m. When the volume resistivity exceeds 10 ⁇ 5 ⁇ ⁇ m, the luminous efficiency is lowered, which is not preferable.
  • the lower limit of the volume resistivity is not limited in terms of characteristics, but is generally 10 ⁇ 9 ⁇ ⁇ m or more from the material composition.
  • a method for manufacturing a composite material substrate having the above-described characteristics will be described below.
  • substrate is divided roughly into two types, the impregnation method and the powder metallurgy method. Of these, what is actually commercialized in terms of characteristics such as thermal conductivity is the impregnation method.
  • There are various impregnation methods and there are a method performed at normal pressure and a method performed under high pressure (high pressure forging method). High pressure forging methods include a molten metal forging method and a die casting method.
  • a method suitable for the present invention is a high-pressure forging method in which impregnation is performed under high pressure, and a molten forging method is preferable to obtain a dense composite having excellent characteristics such as thermal conductivity.
  • the molten metal forging method is a method in which a ceramic material or a compact is loaded into a high-pressure vessel, and a molten material such as an aluminum alloy is impregnated at high temperature and high pressure to obtain a composite material.
  • the composite material is manufactured by a molten metal forging method. It is necessary to use a material having a high thermal conductivity and a low linear thermal expansion coefficient as the raw material ceramics. For this reason, in this invention, 1 or more types chosen from silicon carbide, aluminum nitride, silicon nitride, diamond, graphite, yttrium oxide, and magnesium oxide are used.
  • the composite material of the present invention can adjust the thermal conductivity and the linear thermal expansion coefficient to the above-described ranges by impregnating these ceramics with an aluminum alloy or pure aluminum to form a composite.
  • the composite material is a composite material containing 50 to 90% by volume of these ceramics, with the balance being made of an aluminum alloy or pure aluminum.
  • the ceramic content is preferably 70 to 85% by volume.
  • the ceramic content is less than 50% by volume, the linear thermal expansion coefficient of the obtained composite material is increased, which is not preferable as a substrate material for an LED light-emitting element.
  • the ceramic content exceeds 90% by volume, the aluminum alloy or pure aluminum cannot be sufficiently impregnated at the time of compounding, and as a result, the thermal conductivity is lowered, which is not preferable.
  • Ceramics can be compounded in the form of powder, but a porous body having a porosity of 10 to 50% by volume (hereinafter referred to as a preform) by forming a molded body using an inorganic binder or performing a sintering treatment. ) Is preferably combined.
  • the porosity of the preform is adjusted by adjusting the particle size of the raw material powder, molding pressure, sintering conditions, and the like.
  • the preform can be molded by a general ceramic powder molding method such as press molding or cast molding. Further, the preform is processed into a flat plate shape or a cylindrical shape as needed.
  • a preform having a three-point bending strength of 50 MPa or more is preferably used in order to process the final shape into a plate shape having a plate thickness of 0.05 mm to 0.5 mm. If the strength of the preform is low, warping may occur when processing the plate into a plate having a thickness of 0.05 mm to 0.5 mm by grinding or the like.
  • the preform is fixed with a jig coated with a release agent, and a plurality of layers are laminated and connected with bolts and nuts to form a laminate.
  • a jig for fixing the preform an iron or graphite jig can be used.
  • tool can also be laminated
  • the release plate a stainless plate or a ceramic plate can be used, and there is no particular limitation as long as it is a dense body that is not impregnated with an aluminum alloy by a molten metal forging method.
  • mold release agents such as graphite, boron nitride, an alumina, can be used. Furthermore, it is preferable to apply a release agent after coating the surface of a jig or a release plate with alumina sol or the like.
  • the obtained laminated body is heated at a temperature of about 600 to 800 ° C., and then placed in a high-pressure vessel, one or two or more aluminum alloys heated to the melting point or more as quickly as possible to prevent the temperature of the laminated body from decreasing.
  • a composite material is obtained by supplying a molten metal and pressurizing the molten metal at a pressure of 30 MPa or more and impregnating the aluminum alloy in the voids of the preform. For the purpose of removing distortion during impregnation, the impregnated product may be annealed.
  • the heating temperature of the laminate is less than 600 ° C.
  • the aluminum alloy is not sufficiently combined, and the properties such as the thermal conductivity of the resulting composite material are deteriorated.
  • the heating temperature exceeds 800 ° C.
  • the surface of the ceramic powder is oxidized at the time of compounding with the aluminum alloy, and the characteristics such as the thermal conductivity of the resulting composite material are deteriorated.
  • the pressure at the time of impregnation if it is less than 30 MPa, the composite of the aluminum alloy becomes insufficient, and the properties such as the thermal conductivity of the resulting composite material are lowered, which is not preferable.
  • the impregnation pressure is 50 MPa or more.
  • any aluminum alloy used in the art can be used, but in one embodiment, 70% by mass of aluminum is used.
  • the aluminum alloy contained above is preferably used. If the aluminum content is less than 70% by mass, the thermal conductivity of the aluminum alloy is lowered, which is not preferable.
  • the aluminum alloy preferably has a melting point as low as possible in order to sufficiently penetrate into the voids of the preform when impregnated.
  • An example of such an aluminum alloy is an aluminum alloy containing 5 to 25% by mass of silicon.
  • 0.3 to 2.0% by mass of magnesium is contained, the bond between the ceramic and the metal part becomes stronger, which is preferable.
  • the metal components other than aluminum, silicon, and magnesium in the aluminum alloy are not particularly limited as long as the characteristics do not change extremely. For example, copper or the like may be included.
  • the obtained composite material has a columnar shape, it is contoured to a predetermined size using a diamond grindstone with a cylindrical grinder or the like, and then 0.1 to 0.1 to the final shape with a multi-wire saw, an inner peripheral blade cutter, etc. Cut to a thickness of about 0.5 mm.
  • the cutting method is not particularly limited, but it is preferable to cut with a multi-wire saw having a small cutting margin and suitable for mass production. Cutting with a multi-wire saw can employ processing using a loose abrasive type and a wire to which an abrasive such as diamond is attached.
  • the plate-like composite material after the cutting process is a processing machine such as a double-sided grinding machine, a rotary grinding machine, a surface grinding machine, or a lapping machine, and has a plate thickness of 0.05 to 0.5 mm and a surface roughness (Ra). Surface processing is performed so that the thickness becomes 0.01 to 0.5 ⁇ m. In the surface processing, in order to further reduce the surface roughness, the surface processing may be performed by a lapping machine after the surface processing is performed by a double-sided grinder, a rotary grinder, a surface grinder, or the like.
  • the surface of the composite material substrate is surfaced to a predetermined surface roughness only on one side (bonded surface). Processing may be performed.
  • the thickness is 0.05 to 0.5 mm and the surface roughness (Ra) is determined by a processing machine such as a double-side grinding machine, a rotary grinding machine, a surface grinding machine, or a lapping machine.
  • a processing machine such as a double-side grinding machine, a rotary grinding machine, a surface grinding machine, or a lapping machine.
  • the outer periphery is first processed into a predetermined shape with a water jet machine, electric discharge machine, laser machine, dicing machine, cylindrical grinder, etc., and then double-sided grinder and rotary grinding machine Surface processing is performed with a processing machine such as a board, surface grinder, or lapping machine so that the plate thickness is 0.05 to 0.5 mm and the surface roughness (Ra) is 0.01 to 0.5 ⁇ m. You can also.
  • Ni, Co, Pd, Cu A metal layer containing one or more metals selected from Ag, Au, Pt, and Sn is formed.
  • the metal layer thickness is 0.5 ⁇ m or less, pinholes in the metal layer are generated, and the chemical resistance is lowered, which is not preferable.
  • the metal layer thickness exceeds 15 ⁇ m, peeling due to a difference in thermal expansion between the metal layer and the composite material, and the linear thermal expansion coefficient of the composite material provided with the obtained metal layer are unfavorable.
  • the metal layer thickness is more preferably 2 to 10 ⁇ m.
  • the material of the metal layer a metal containing one or more selected from Ni, Co, Pd, Cu, Ag, Au, Pt, and Sn can be adopted, and these composite metals can also be used.
  • the metal layer may contain nonmetallic elements such as P and B.
  • electroless plating or electrolytic plating is generally used. It is also possible to cover the surface of the plate-shaped composite material body with the above-described metal by a technique such as vapor deposition other than plating.
  • two plate-like composite materials are bonded together with wax, adhesive, etc., the surface is washed, and then the surface is Ni, Co, Pd, Cu having a thickness of 0.5 to 15 ⁇ m by electroless plating or electrolytic plating.
  • One or more metal layers selected from Ag, Au, Pt, Sn are formed, and then the wax, adhesive, etc. are removed, and a metal is formed on one main surface and side surface of the plate-shaped composite material body. Layers can also be formed.
  • the surface is washed, and then the surface is Ni or Co having a thickness of 0.5 to 15 ⁇ m by electroless plating or electrolytic plating.
  • Pd, Cu, Ag, Au, Pt, Sn one or more metal layers are formed, and then the coating layer is removed to form metal on one main surface and side surfaces of the plate-shaped composite material Layers can also be formed.
  • the composite material is processed into a plate shape by outer periphery processing and cutting, etc., to form a composite material body having a plate thickness of 0.05 to 0.5 mm and a surface roughness (Ra) of 0.01 to 0.2 ⁇ m,
  • a composite material body having a plate thickness of 0.05 to 0.5 mm and a surface roughness (Ra) of 0.01 to 0.2 ⁇ m
  • one or more metal layers selected from Ni, Co, Pd, Cu, Ag, Au, Pt, and Sn having a thickness of 0.5 to 15 ⁇ m are formed on the surface by electroless plating or electrolytic plating. Form.
  • surface processing can be performed by using a lapping machine or the like so that the surface roughness (Ra) is 0.01 to 0.5 ⁇ m.
  • SiC powder A Silicon carbide powder (hereinafter also referred to as SiC) powder A (manufactured by Taiyo Random Co., Ltd., NG-60, average particle size 200 ⁇ m) 1800 g, silicon carbide powder B (manufactured by Taiyo Random Co., Ltd., NG-600, average particle size 20 ⁇ m) 900 g , 300 g of silicon carbide powder C (manufactured by Taiyo Random Co., Ltd., NC-6000, average particle size 2 ⁇ m) and 150 g of a molding binder (methyl cellulose, manufactured by Shin-Etsu Chemical Co., Ltd., “Metroze”) are weighed and mixed with a stirring mixer. After mixing for a minute, press-molded into a cylindrical shape having a size of ⁇ 55 mm ⁇ 110 mm at a surface pressure of 10 MPa, and then CIP-molded at a molding pressure of 100 MPa to produce a molded body
  • the obtained molded body was degreased in an air atmosphere at a temperature of 600 ° C. for 2 hours and then baked in an argon atmosphere at a temperature of 2100 ° C. for 2 hours to produce a SiC preform having a porosity of 20%.
  • the obtained SiC preform was processed into a shape having an outer dimension of ⁇ 52 mm ⁇ 100 mm using a diamond grindstone at a machining center. Further, a three-point bending strength measurement specimen (3 mm ⁇ 4 mm ⁇ 40 mm) was prepared by grinding, and the three-point bending strength was measured. The three-point bending strength was 120 MPa.
  • a boron nitride mold release agent was applied to the obtained SiC preform and inserted into a cylindrical graphite jig having an outer dimension of 70 mm ⁇ 70 mm ⁇ 100 mm (inner diameter: ⁇ 52.5 mm ⁇ 100 mm) to obtain a structure.
  • a release plate is prepared by applying a graphite release material to a 70 mm ⁇ 100 mm ⁇ 0.8 mmt stainless plate, and the four structures are released so as to have a shape of 140.8 mm ⁇ 140.8 mm ⁇ 100 mm.
  • 12 mm thick iron plates were placed on both sides and connected with 8 M10 bolts to form one laminate.
  • the laminate is preheated to a temperature of 700 ° C. in an electric furnace and then placed in a pre-heated press mold having an inner diameter of ⁇ 400 mm ⁇ 300 mmH, and contains 12% by mass of silicon and 1% by mass of magnesium.
  • the molten metal (temperature: 800 ° C.) was poured and pressurized at 100 MPa for 25 minutes to impregnate the SiC preform with the aluminum alloy. After cooling to room temperature, it cut
  • the obtained composite material was annealed at a temperature of 530 ° C. for 3 hours in order to remove strain at the time of impregnation.
  • thermo expansion coefficient measurement specimen (diameter 3 mm, length 10 mm), a thermal conductivity measurement specimen (25 mm ⁇ 25 mm ⁇ 1 mm), and a three-point bending strength measurement test by grinding.
  • a body (3 mm ⁇ 4 mm ⁇ 40 mm) and a test body for measuring volume resistivity (50 mm ⁇ 50 mm ⁇ 5 mm) were prepared.
  • the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. was measured with a thermal dilatometer (Seiko Denshi Kogyo Co .; TMA300), and the thermal conductivity at a temperature of 25 ° C.
  • the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. is 4.9 ⁇ 10 ⁇ 6 / K
  • the thermal conductivity at a temperature of 25 ° C. is 250 W / mK
  • the three-point bending strength is 350 MPa
  • the volume resistivity is 8 ⁇ . 10 ⁇ 7 ⁇ ⁇ m.
  • the outer periphery of the composite material was processed into a cylindrical shape of ⁇ 50.8 mm ⁇ 100 mm using a diamond grindstone with a cylindrical grinder.
  • the obtained cylindrical composite material was cut into a disk shape having a plate thickness of 0.2 mm at a cutting cutting speed of 0.2 mm / min using diamond abrasive grains with a multi-wire saw.
  • a disc-shaped composite material is ground to a thickness of 0.12 mm using a # 600 diamond grindstone on a double-sided grinder, and then polished to a thickness of 0.1 mm using diamond grains on a lapping machine.
  • ultrasonic cleaning was performed in pure water and then in isopropyl alcohol, followed by drying to prepare a composite material body.
  • Ra surface roughness
  • a plating layer (metal layer) having a thickness of 5 ⁇ m (Ni—P: 4 ⁇ m + Ni—B: 1 ⁇ m) is formed on the surface of the composite material.
  • a composite material substrate was formed.
  • the characteristic value of the obtained composite material substrate was calculated by calculating from the physical property value of the plating layer metal and the physical property value of the composite material body before plating in accordance with the composite law at the volume ratio. The results are shown in Table 1. Further, the composite substrate after plating was immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the weight loss per unit area by each treatment was measured. Furthermore, the surface roughness (Ra) of the composite material substrate after plating was measured with a surface roughness meter. The results are shown in Table 2.
  • an alloy layer 6 of silver / tin alloy was deposited on the surface of the p-type GaN semiconductor layer 5 to a thickness of 2 ⁇ m by vacuum deposition.
  • a silver / tin alloy layer 7 having a thickness of 2 ⁇ m was vapor-deposited on the surface of one side of the LED light emitting element composite substrate 8 by the same method. As shown in FIG. 1, the two substrates were laminated so that the silver / tin alloy layers 6 and 7 were in contact with each other, and bonded at a temperature of 400 ° C. under a pressure of 5 MPa for 5 minutes.
  • the obtained bonded body was irradiated with a nitrogen gas laser from the sapphire substrate 1 side (output 40 MW / cm 2 ), and the sapphire substrate 1 was peeled off.
  • the n-type GaN buffer layer 2 was decomposed into Ga and nitrogen by laser irradiation, and the sapphire substrate 1 could be peeled off by the generated nitrogen gas.
  • n-type GaN buffer layer 2 exposed on the surface is removed by etching, and then a transparent conductor layer 9 of indium tin oxide is formed as shown in FIG. 2 (shown upside down from FIG. 1). did.
  • Au was vapor-deposited as an n-type electrode, and it was set as each LED light emitting element by dicing.
  • Example 2 to 12, Comparative Example 1 The composite material body (composite material before electroless plating treatment) of ⁇ 50.8 mm ⁇ 0.1 mmt produced in Example 1 was subjected to electroless plating treatment, and a metal layer shown in Table 4 was formed on the surface. .
  • Table 3 shows the characteristic values of the obtained composite material substrate. Further, the composite substrate after plating was immersed in a 5N HCl solution at a temperature of 25 ° C. and a 10N NaOH solution at a temperature of 75 ° C. for 1 minute, and the weight loss per unit area by each treatment was measured. Furthermore, the surface roughness (Ra) of the composite material substrate after plating was measured with a surface roughness meter. The results are shown in Table 4. In Table 4, Comparative Example 1 is a test result for a composite material body in which a metal layer is not formed.
  • Example 13 A 1 ⁇ m Au layer was formed on the surface of the composite material body of ⁇ 50.8 mm ⁇ 0.1 mmt produced in Example 1 by vapor deposition.
  • Table 5 shows the characteristic values of the obtained composite material substrate. Further, the same evaluation as in Example 1 was performed on the obtained composite material substrate. The results are shown in Table 6.
  • Example 14 Two composite material bodies of ⁇ 50.8 mm ⁇ 0.1 mmt produced in Example 1 were bonded together with a wax-based adhesive, and after the surface was washed, electroless Ni—P plating treatment was performed, and the exposed surface was 5 ⁇ m. An Ni—P layer was formed. After the plating treatment, the wax-based adhesive was removed to obtain a composite material substrate provided with a metal layer on one main surface and side surfaces. Table 5 shows the characteristic values of the obtained composite material substrate. Moreover, about the obtained composite material board
  • Example 15 After coating one main surface of the composite material body of ⁇ 50.8 mm ⁇ 0.1 mmt produced in Example 1 with a plating resist, the surface was washed and subjected to electroless Ni—P plating treatment, and 5 ⁇ m Ni—P was applied to the surface. A layer was formed. After the plating treatment, the plating resist was removed with acetone to produce a composite material substrate having a metal layer on one main surface and side surfaces. Table 5 shows the characteristic values of the obtained composite material substrate. Moreover, about the obtained composite material board
  • Example 16 After processing the composite material produced in Example 1 into a shape of ⁇ 50.8 mm ⁇ 0.2 mmt, the surface was washed and subjected to electroless Ni—P plating treatment to form a 3 ⁇ m Ni—P layer on the surface. Thereafter, using a # 800 diamond grindstone with a surface grinder, grinding was carried out to a plate thickness of 0.1 mm to produce a composite material substrate having a metal layer on one main surface and side surfaces. Table 5 shows the characteristic values of the obtained composite material. Moreover, about the obtained composite material board
  • the obtained molded body was dried at a temperature of 120 ° C. for 1 hour and then fired in a nitrogen atmosphere at a temperature of 1400 ° C. for 2 hours to obtain a SiC preform having a porosity of 35%.
  • the obtained SiC preform was processed into a shape having an outer dimension of ⁇ 52 mm ⁇ 50 mm using a diamond grindstone at a machining center.
  • a three-point bending strength measurement specimen (3 mm ⁇ 4 mm ⁇ 40 mm) was prepared by grinding, and the three-point bending strength was measured. As a result, the three-point bending strength was 50 MPa.
  • Boron nitride release agent was applied to the obtained SiC preform and inserted into a cylindrical iron jig having an outer dimension of 70 mm ⁇ 70 mm ⁇ 50 mm (inner diameter: ⁇ 52.5 mm ⁇ 50 mm) to obtain a structure.
  • a release plate is produced by applying a graphite release material to a 70 mm ⁇ 70 mm ⁇ 0.8 mmt stainless plate, and the four structures are released so as to have a shape of 140.8 mm ⁇ 140.8 mm ⁇ 50 mm. They were stacked with a plate in between.
  • a ceramic board having a ceramic fiber content of 10% by volume and a thickness of 10 mm is sandwiched between both sides, an iron plate having a thickness of 12 mm is disposed, and connected with eight M10 bolts to form a single laminate.
  • the laminate was preheated to various temperatures shown in Table 7 in an electric furnace, and then placed in a preheated press mold having an inner diameter of ⁇ 400 mm ⁇ 300 mmH, and 12% by mass of silicon and 1% by mass of magnesium.
  • a molten aluminum alloy containing 100% (temperature: 800 ° C.) was poured and pressurized at each pressure shown in Table 7 for 25 minutes to impregnate the SiC preform with the aluminum alloy.
  • a thermal expansion coefficient measurement specimen (diameter 3 mm, length 10 mm), a thermal conductivity measurement specimen (25 mm ⁇ 25 mm ⁇ 1 mm), a three-point bending strength measurement test by grinding.
  • a body (3 mm ⁇ 4 mm ⁇ 40 mm) and a test body for measuring volume resistivity (50 mm ⁇ 50 mm ⁇ 5 mm) were prepared.
  • the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., the three-point bending strength, and the volume resistivity were measured in the same manner as in Example 1.
  • the shape could not be maintained at the time of processing the specimen, and the characteristics could not be evaluated.
  • the obtained composite material was processed into a cylindrical shape of ⁇ 50.8 mm ⁇ 50 mm using a diamond grindstone with a cylindrical grinder.
  • the cylindrical composite material was cut into a disk shape with a plate thickness of 0.25 mm at a cutting cutting speed of 5 mm / min using a diamond blade with an inner peripheral cutting machine.
  • the disc-shaped composite material was ground to a plate thickness of 0.2 mm using a # 800 diamond grindstone with a double-sided grinder to produce a composite material substrate.
  • an Au / tin alloy is vapor-deposited to a thickness of 1.5 ⁇ m to form an alloy layer 6. Formed.
  • an Au / tin alloy layer 7 having a thickness of 1.5 ⁇ m was deposited on the surface of one side of the composite substrate 8 for LED light emitting device of Example 17 in the same manner. Both substrates were laminated so that the Au / tin alloy layers 6 and 7 were in contact with each other, and held at a temperature of 500 ° C. under a pressure of 5 MPa for 5 minutes for bonding. In the obtained bonded body, the single crystal Si layer was removed by etching by acid treatment, and then the SiC layer was completely removed by grinding.
  • the surface of the exposed n-type GaN layer 3 was roughened by etching, and then a transparent conductor layer of indium tin oxide was formed.
  • Au was vapor-deposited as an n-type electrode, and individual LED light-emitting elements were formed by laser processing.
  • Example 21 1800 g of silicon carbide powder A (average particle size: 200 ⁇ m), 900 g of silicon carbide powder B (average particle size: 20 ⁇ m), 300 g of aluminum nitride powder (F grade, average particle size: 2 ⁇ m), and molding binder (methylcellulose) ) 150 g was weighed and mixed for 30 minutes with a stirring mixer, then press-molded into a cylindrical shape having a size of ⁇ 55 mm ⁇ 110 mm at a surface pressure of 10 MPa, and then CIP-molded at a molding pressure of 100 MPa to prepare a compact.
  • the obtained molded body was degreased in an air atmosphere at a temperature of 600 ° C. for 2 hours and then calcined in an argon atmosphere at a temperature of 1950 ° C. for 2 hours to obtain a preform having a porosity of 15%.
  • the obtained preform was processed into a shape with an outer dimension of ⁇ 52 mm ⁇ 100 mm using a diamond grindstone at a machining center.
  • a three-point bending strength measurement specimen (3 mm ⁇ 4 mm ⁇ 40 mm) was prepared by grinding, and the three-point bending strength was measured. As a result, the three-point bending strength was 125 MPa.
  • the obtained preform was processed in the same manner as in Example 1 (see Table 7 for preheating temperature and impregnation pressure) to obtain a composite material for LED light-emitting elements having a shape of ⁇ 52 mm ⁇ 100 mm. From the obtained composite material for LED light-emitting elements, a test body was produced in the same manner as in Example 1, and the characteristics were evaluated.
  • the obtained composite material for LED light-emitting element was subjected to outer periphery processing into a cylindrical shape of ⁇ 50.8 mm ⁇ 100 mm using a diamond grindstone with a cylindrical grinder, and then the plate thickness was 0 as in Example 1. Processed into a 15 mm disk. Next, the disc-shaped composite material for an LED light-emitting element was polished to a thickness of 0.1 mm using a diamond abrasive grain with a lapping machine to produce an LED light-emitting element composite material substrate.
  • Example 22 Weigh out 2880 g of aluminum nitride powder (average particle size 2 ⁇ m), 120 g of yttrium oxide powder (manufactured by Shin-Etsu Rare Earth, UU grade, average particle size 1 ⁇ m), 150 g of molded binder (methylcellulose), and 150 g of pure water, and mix by stirring. After mixing with a machine for 30 minutes, it was press-molded into a cylindrical shape having a size of ⁇ 55 mm ⁇ 110 mm at a surface pressure of 10 MPa, and then CIP-molded at a molding pressure of 100 MPa to produce a compact.
  • the obtained molded body was degreased in an air atmosphere at a temperature of 600 ° C. for 2 hours and then calcined in a nitrogen atmosphere at a temperature of 1780 ° C. for 4 hours to obtain a preform having a porosity of 22%.
  • the obtained preform was processed into a shape having an outer dimension of ⁇ 52 mm ⁇ 100 mm using a diamond grindstone at a machining center.
  • a three-point bending strength measurement specimen (3 mm ⁇ 4 mm ⁇ 40 mm) was prepared by grinding, and the three-point bending strength was measured.
  • the three-point bending strength was 90 MPa.
  • Example 2 the obtained preform was treated in the same manner as in Example 1 except that pure aluminum was used instead of the aluminum alloy (see Table 7 for preheating temperature and impregnation pressure), and ⁇ 52 mm ⁇ 100 mm A composite material for an LED light emitting element having a shape was obtained. From the obtained composite material for LED light-emitting elements, a test body was produced in the same manner as in Example 1, and the characteristics were evaluated.
  • the composite material for LED light emitting element was subjected to outer peripheral processing into a cylindrical shape of ⁇ 50.8 mm ⁇ 100 mm using a diamond grindstone with a cylindrical grinder, and then the plate thickness was adjusted to 0.15 mm in the same manner as in Example 1. processed.
  • the obtained disc-shaped composite material for LED light emitting element was polished to a thickness of 0.1 mm using diamond abrasive grains on a lapping machine to produce a composite material substrate for LED light emitting element.
  • Example 23 2790 g of silicon nitride powder (Denki Kagaku Kogyo, NP-200, average particle size: 1 ⁇ m), 150 g of yttrium oxide powder (average particle size: 1 ⁇ m), magnesium oxide powder (MJ-30, manufactured by Iwatani Chemical Co., Ltd.) : 1 ⁇ m) Weighing 60g, mixing with a stirrer / mixer for 30 minutes, press-molding it into a disk with a size of ⁇ 55mm ⁇ 10mm at a surface pressure of 10MPa, then CIP molding at a molding pressure of 100MPa to produce a compact did.
  • the obtained molded body was fired at a temperature of 1880 ° C. for 4 hours under a nitrogen pressurized atmosphere of 0.9 MPa to obtain a preform having a porosity of 13%.
  • the obtained preform was processed into a shape with an outer dimension of ⁇ 52 mm ⁇ 5 mm using a diamond grindstone at a machining center.
  • a three-point bending strength measurement specimen (3 mm ⁇ 4 mm ⁇ 40 mm) was prepared by grinding, and the three-point bending strength was measured. As a result, the three-point bending strength was 150 MPa.
  • Example 2 the obtained preform was processed in the same manner as in Example 1 (see Table 7 for preheating temperature and impregnation pressure) to obtain a composite material for LED light emitting element having a ⁇ 52 mm ⁇ 10 mm shape. From the obtained composite material for LED light-emitting elements, a test body was produced in the same manner as in Example 1, and the characteristics were evaluated.
  • the obtained composite material for LED light-emitting element was subjected to outer periphery processing into a disk shape of ⁇ 50.8 mm ⁇ 5 mm with a water jet processing machine. Next, after grinding into a disk shape with a plate thickness of 0.22 mm using a # 230 diamond grindstone on a surface grinder, grinding is performed to a plate thickness of 0.2 mm using a # 800 diamond grindstone to produce LED light emission. A composite material substrate for an element was produced.
  • Example 24 7 g of diamond powder A (Diamond Innovations, MBG-600, average particle size: 120 ⁇ m) and 3 g of diamond powder B (Diamond Innovations, MBG-600, average particle size: 15 ⁇ m) for 10 minutes in an alumina mortar After mixing, after inserting a graphite jig (2) having an outer dimension ⁇ 52.4 mm ⁇ 9 mm into a cylindrical graphite jig (1) having an outer dimension 70 mm ⁇ 70 mm ⁇ 20 mm (inner diameter ⁇ 52.5 mm ⁇ 20 mm) Then, 10 g of the diamond mixed powder was filled, and a graphite jig (2) was further inserted on the upper surface of the diamond mixed powder to obtain a structure.
  • a graphite jig (2) having an outer dimension ⁇ 52.4 mm ⁇ 9 mm into a cylindrical graphite jig (1) having an outer dimension 70 mm ⁇ 70 mm ⁇ 20 mm (inner diameter ⁇ 52.5 mm ⁇
  • a release plate is prepared by applying a graphite release material to a 70 mm ⁇ 70 mm ⁇ 0.8 mmt stainless steel plate, and this structure is laminated with the release plate interposed therebetween, and an iron plate having a thickness of 12 mm is disposed above and below. And it connected with eight bolts of M10, and it was set as one laminated body.
  • this laminate was processed in the same manner as in Example 1 (see Table 7 for preheating temperature and impregnation pressure), and the LED light emission was in the shape of 70 mm ⁇ 70 mm ⁇ 20 mm and surrounded by a graphite jig.
  • a composite material for the device was obtained.
  • the obtained composite material for LED light-emitting element has a structure surrounded by a graphite jig, and is a surface grinder from both main surface sides (70 mm ⁇ 70 mm) until the composite material made of aluminum-diamond is exposed. Then, grinding was performed using a diamond grindstone to form a plate shape of 70 mm ⁇ 70 mm ⁇ 2 mmt.
  • the outer periphery was processed into a disk shape of ⁇ 50.8 mm ⁇ 2 mm with a water jet processing machine.
  • thermo expansion coefficient measurement specimen (2 mm ⁇ 3 mm ⁇ 10 mm)
  • thermal conductivity measurement specimen 25 mm ⁇ 25 mm ⁇ 1 mm
  • three-point bending are performed by grinding.
  • a strength measurement specimen (2 mm ⁇ 4 mm ⁇ 40 mm)
  • a volume resistivity test specimen 35 mm ⁇ 35 mm ⁇ 2 mm
  • the obtained composite material for LED light emitting element was ground into a disk shape having a plate thickness of 0.16 mm using a # 230 diamond grindstone with a surface grinder, and then a plate thickness of 0.15 mm using a # 400 diamond grindstone.
  • the composite substrate for LED light-emitting elements was produced by grinding up to.
  • a release plate is prepared by applying a graphite release material to a 100 mm ⁇ 100 mm ⁇ 0.8 mmt stainless plate, and isotropic graphite molded body having a shape of 100 mm ⁇ 100 mm ⁇ 100 mm (G458 manufactured by Tokai Carbon Co., Ltd./porosity: 13 volumes) %) was placed on both sides of a release plate, and 12 mm thick iron plates were arranged and connected with eight M10 bolts to form a single laminate. Next, this laminate was processed in the same manner as in Example 1 (see Table 7 for preheating temperature and impregnation pressure) to obtain a composite material having a shape of 100 mm ⁇ 100 mm ⁇ 100 mm. A test body was produced from the obtained composite material in the same manner as in Example 1, and the characteristics were evaluated.
  • the obtained composite material for LED light-emitting element was cut with a diamond saw and then subjected to outer periphery processing into a cylindrical shape of ⁇ 50.8 mm ⁇ 100 mm using a diamond grindstone with a cylindrical grinder.
  • the obtained cylindrical composite material for LED light-emitting elements was cut into a disk shape having a plate thickness of 0.4 mm at a cutting cutting speed of 0.5 mm / min using diamond abrasive grains with a multi-wire saw.
  • the obtained disc-shaped composite material for LED light-emitting elements was ground to a plate thickness of 0.3 mm using a # 600 diamond grindstone with a double-sided grinding machine to obtain a composite material substrate for LED light-emitting elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)

Abstract

 LEDを構成するIII-V族半導体結晶と線熱膨張率の差が小さく、かつ熱伝導性に優れ、高出力LED用として好適なLED発光素子用基板を提供する。 炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド、黒鉛、酸化イットリウム及び酸化マグネシウムの中から選ばれる1種以上からなり、気孔率が10~50体積%、3点曲げ強度が50MPa以上である多孔体に、溶湯鍛造法にて含浸圧力30MPa以上でアルミニウム合金又は純アルミニウムを含浸し、板厚0.05~0.5mmで、表面粗さ(Ra)0.01~0.5μmに切断及び/又は研削加工した後、表面にNi、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上の金属層を、厚みが0.5~15μmとなるように形成して、LED発光素子用複合材料基板を製造する。

Description

LED発光素子用複合材料基板、その製造方法及びLED発光素子
 本発明は、発光ダイオード(以下LEDと云う)素子用の複合材料基板、その製造方法及びその複合材料基板を用いたLED発光素子に関する。
 LEDは、半導体のpn接合に順方向電流を流すと発光する素子であり、GaAs、GaN等のIII-V族半導体結晶を用いて製造される。近年、半導体のエピタキシャル成長技術と発光素子プロセス技術の進歩により、変換効率の優れるLEDが開発され、様々な分野において幅広く使用されている。
 LEDは、単結晶成長基板上にIII-V族半導体結晶をエピタキシャル成長させたp型層とn型層及び両者に挟まれる光活性層から構成される。一般的には、単結晶サファイア等の成長基板上に、GaN等のIII-V族半導体結晶をエピタキシャル成長させた後、電極等を形成しLED発光素子を形成する(特許文献1)。
 単結晶成長基板上に、III-V族半導体結晶をエピタキシャル成長させる場合、単結晶成長基板とIII-V族半導体結晶の格子定数が異なるため、良好な単結晶を成長させることが難しい。このため、サファイア基板上に低温でGaN等のバッファー層を形成し、その上にGaNをエピタキシャル成長させる方法が提案されている(特許文献2)。しかし、この手法を用いても、サファイア基板とバッファー層のGaN等との線熱膨張係数差のために、エピタキシャル成長後の基板に反りが発生したり、最悪の場合には基板が割れるという課題がある。よって、線熱膨張係数がIII-V族半導体結晶に近い基板材料が求められている。
 また、単結晶サファイア基板等の単結晶成長基板は、熱伝導性が良くないという課題もある。単結晶サファイアの場合、熱伝導率が40W/mK程度であり、GaN等のIII-V族半導体素子で発生する熱を十分に放熱することができない。特に、大電流を流す高出力LEDでは素子の温度が上昇して、発光効率の低下や素子寿命の低下が起きるという課題がある。このため、単結晶成長基板上にIII-V族半導体結晶をエピタキシャル成長させた後に、金属層を介して高熱伝導性の基板を接合し、その後、単結晶成長基板を除去する方法が提案されている(特許文献3)。このため、高熱伝導性の基板として、熱伝導性に優れる銅等の材料が検討されているが、III-V族半導体結晶と線熱膨張係数差が大きく、高出力LED用に十分満足できるものではなかった。
特開2005-117006号公報 特公平5-73252号公報 特開2006-128710号公報
 よって、本発明は、LEDを構成するIII-V族半導体結晶と線熱膨張率の差が小さく、かつ熱伝導性に優れ、高出力LED用として好適なLED発光素子用基板及びその製造方法を提供することを目的とする。
 また本発明は、このようなLED発光素子用基板を用いてLED発光素子を製造する方法並びにかかる方法によって製造されるLED発光素子を提供することも目的とする。
 本発明の一態様では、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド、黒鉛、酸化イットリウム及び酸化マグネシウムの中から選ばれる1種以上からなり、気孔率が10~50体積%である多孔体にアルミニウム合金又は純アルミニウムを含浸し、所定の板厚、表面粗さの複合材料体に加工した後、表面にNi、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上の金属を含む金属層を、厚みが0.5~15μmとなるように形成してなるLED発光素子用複合材料基板が提供される。一態様では、前記多孔体は、50MPa以上の3点曲げ強度を有し、前記アルミニウム合金は、溶湯鍛造法にて含浸圧力30MPa以上で前記多孔体に含浸せしめられる。一実施態様では、前記複合材料体の板厚は、0.05~0.5mmで、表面粗さ(Ra)が0.01~0.5μmとされる。他の実施態様では、前記複合材料体の板厚は、0.05~0.5mmで、表面粗さ(Ra)が0.01~2μmとされ、かつ金属層形成後の片面が表面粗さ(Ra)0.01~0.5μmに加工される。
 また本発明の好ましい実施態様では、複合材料基板は、温度25℃の熱伝導率が100~500W/mK、温度25℃~150℃の線熱膨張係数が4~9×10-6/K、3点曲げ強度が50MPa以上、体積固有抵抗が10-9~10-5Ω・mである。また他の実施態様では、複合材料基板は、板厚が0.05mm~0.5mmで、少なくとも一主面の表面粗さ(Ra)が0.01~0.5μmであり、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液にそれぞれ1分間浸漬したときの少なくとも一主面の重量減少量が0.2mg/cm以下である。
 本発明の他の態様では、LED発光素子用複合材料基板の製造方法であって、
 (a)炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド、黒鉛、酸化イットリウム及び酸化マグネシウムの中から選ばれる1種以上からなり、気孔率が10~50体積%である多孔体を準備し、
 (b)前記多孔体にアルミニウム又は純アルミニウムを含浸させ、所定の板厚、表面粗さに加工して複合材料体を形成し、
 (c)前記複合材料体の表面にNi、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上の金属を含む金属層を、厚みが0.5~15μmとなるように形成する
工程を具備してなる製造方法が提供される。
 ここで、一実施態様では、工程(a)において、前記多孔体が50MPa以上の3点曲げ強度を有し、工程(b)において、前記アルミニウム合金又は純アルミニウムを、溶湯鍛造法にて含浸圧力30MPa以上で前記多孔体に含浸せしめる。他の実施態様では、工程(b)において、複合材料体の板厚を0.05~0.5mmに、表面粗さ(Ra)を0.01~0.5μmにする。他の実施態様では、工程(b)において、複合材料体の板厚を0.05~0.5mmに、表面粗さ(Ra)を0.01~2μmにし、工程(c)において、金属層を形成した複合材料体の片面を表面粗さ(Ra)0.01~0.5μmに加工する。
 本発明の更なる態様では、LED発光素子の製造方法であって、
 (1)円板状又は平板状の単結晶成長基板の一主面上に、III-V族半導体結晶をエピタキシャル成長させ、
 (2)前記III-V族半導体結晶の表面に金属層を介して、本発明に係る前述のLED発光素子用複合材料基板を接合し、前記単結晶成長基板をレーザー照射、エッチング、研削のいずれかの方法により除去し、
 (3)前記単結晶成長基板が除去された側のIII-V族半導体結晶の表面を加工し、電極形成を行った後、切断加工する
工程を具備してなる製造方法が提供される。
 ここで、一実施態様では、単結晶成長基板は、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siからなる群から選ばれる材料製である。他の実施態様では、単結晶成長基板は、AlN、SiC、GaN、GaAsからなる群から選ばれる材料で表面コーティングされる。また一実施態様では、III-V族半導体結晶は、GaN、GaAs、GaPのいずれかである。更に本発明では、上記何れかのLED発光素子の製造方法によって製造され得るLED発光素子も開示される。
 本発明によれば、LEDを構成するIII-V族半導体結晶と線熱膨張率の差の小さい、高熱伝導性のLED発光素子用複合材料基板が得られる。このLED発光素子用複合材料基板を用いることにより、放熱性、信頼性に優れた高出力のLED発光素子を提供することができる。更に、上記構成のLED発光素子用複合材料基板は、LED発光素子製造時に使用される酸及びアルカリ溶液に対する耐薬品性に優れると共に、導電性であり、LEDを構成するIII-V族半導体結晶の両面に電極を形成することができる。そのため、LED発光素子の製造プロセスの低減、並びに単位面積当たりの発光量の増加を達成できる。
本発明の実施例1に係るLED発光素子の製造例を説明するための概略断面図で、サファイア成長基板上にバッファー層を介して形成した半導体層に本発明の一実施例に係る複合材料基板を接合した状態を示す。 図1と同様の図で、成長基板を除去した後に透明導電層を形成した状態を示す。 本発明の実施例17に係るLED発光素子の製造例を説明するための概略断面図で、Si成長基板上に形成した半導体層に本発明の一実施例に係る複合材料基板を接合した状態を示す。
 本発明は、LED発光素子と、該LED発光素子に使用される複合材料基板に関する。以下、LED発光素子の製造について記述し、その中で複合材料基板の製造についても説明する。
 本発明の実施形態において、LED発光素子は、単結晶成長基板、III-V族半導体結晶、複合材料基板を用いて製造される。
 単結晶成長基板は、エピタキシャル成長させるIII-V族半導体結晶との格子定数の差が小さく、かつ欠陥の少ない材料からなるものが必要である。結晶性と均一性の点から、単結晶材料を加工して用いるのが一般的である。これらの単結晶成長基板は、III-V族半導体結晶をエピタキシャル成長させる工程における温度、雰囲気に耐えることが必要である。このため、本発明で用いる単結晶成長基板用の材料は、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siの群から選ばれることが好ましい。更に、本発明で用いる単結晶成長基板は、AlN、SiC、GaN、GaAsの群から選ばれる材料で表面コーティングされることが好ましい。
 LEDを構成するIII-V族半導体結晶は、LED発光素子としての変換効率の点から、GaN、GaAs、GaPのいずれかであることが好ましい。これらのIII-V族半導体結晶は高い発光効率が得られ、用途に応じて使い分けられる。またIII-V族半導体結晶は、用途毎の最適発光波長に応じて選択される。
 本発明の一実施形態では、先ず、これらの単結晶成長基板の一主面上にエピタキシャル成長で、III-V族半導体結晶を成長させる。III-V族半導体結晶のエピタキシャル成長は、有機金属気相成長法(MOCVD法)又はハライド気相エピタキシャル法(HVPE法)により行うことが好ましい。MOCVD法は、結晶性の良いIII-V族半導体結晶を成長させるのに適しており、HVPE法は、結晶成長速度が速く、効率よくIII-V族半導体結晶を成長させることができる。これらの方法は公知であり、実施条件は適宜設定することができる。但し、エピタキシャル成長の方法は、III-V族半導体結晶を成長させることのできる方法であれば、前記の方法に限定されるものではない。
 エピタキシャル成長させたIII-V族半導体結晶は、発光特性を更に向上させるため、表面処理を施すことも可能である。また、結晶表面の均一性等を向上させるため、表面をエッチング処理や研磨処理することもある。本発明では、エピタキシャル成長させたIII-V族半導体結晶の表面に本発明に係る複合材料基板を接合するが、その前に、III-V族半導体結晶の表面に蒸着法、スパッタ法等の手法により、金属層を形成する。金属層は、インジウム、アルミニウム、金、銀又はこれらの合金を用いて形成するのが好ましい。金属層の厚みは、金属の線熱膨張係数がIII-V族半導体結晶と異なる為、極端に厚いと密着性が低下して好ましくない。金属層の熱伝導率が低い場合は、放熱の面からも好ましくない。このため、金属層の厚みは、0.5~10μmであることが好ましく、更に好ましくは、0.5~2μmである。
 次に、III-V族半導体結晶に接合するため、複合材料基板のIII-V族半導体結晶に接合される側の表面にも、同様に蒸着法、スパッタ法等により、金属層を形成する。金属層は、III-V族半導体結晶の表面の金属層と同様に、インジウム、アルミニウム、金、銀及びこれらの合金を用いて形成するのが好ましい。複合材料基板に求められる特性は、(1)接合に耐え得る強度を有することと、(2)接合面にボイドや異物等の介在物が無く、接合面が平坦であることである。(1)の条件を満たすには、複合材料基板の3点曲げ強度が50MPa以上である必要があり、好ましくは200MPa以上である。(2)の条件を満たすには、複合材料基板の表面粗さ(Ra)が0.01~0.5μmである必要があり、好ましくは、0.01~0.2μmである。
 III-V族半導体結晶と複合材料基板の接合は、必要に応じて加圧を行いながら、接合面を合わせた状態で加熱して行う。加熱温度は金属層の種類によって異なるが、一般に250℃~550℃である。加圧の圧力は、2~20MPaが一般的である。
 複合材料基板は、III-V族半導体結晶と接合して用いる為、両材料の線熱膨張係数の差が小さいことが重要である。このため、複合材料基板の温度25℃~150℃の線熱膨張係数が4~9×10-6/Kであることが好ましい。更に好ましくは、4~7×10-6/Kである。複合材料基板の温度25℃~150℃での線熱膨張係数が4~9×10-6/Kの範囲を外れた場合、接合するIII-V族半導体結晶又は成長基板との線熱膨張係数差により、接合後に反りが発生したり、LED発光素子として使用する際に接合層の剥離が発生したり、III-V族半導体結晶が割れてしまう場合があり好ましくない。
 本発明の複合材料基板は、LED発光素子のベース基板となる。当該基板を介して、III-V族半導体素子で発生する熱の大半を放熱することとなり、当該基板には高い放熱特性が要求される。このため、複合材料基板の温度25℃での熱伝導率は、100~500W/mKであることが好ましく、更に好ましくは、150~500W/mKである。熱伝導率が100W/mK未満では、III-V族半導体素子で発生する熱を十分に放熱することができず、特に大電流を流す必要のある高出力LEDでは、素子の温度が上がり発光効率の低下、それに伴う素子寿命の低下が起こり好ましくない。一方、熱伝導率の上限値に関しては、特性面からの制約はないが、基板材料が極端に高価になってしまう。
 また放熱性の面から、複合材料基板の板厚は薄い方が好ましいが、一方で、III-V族半導体素子の保持及びLED発光素子作製時のハンドリング等に耐え得る強度が必要なため、一定の板厚が必要である。一実施形態では、複合材料基板の板厚は、0.05mm~0.5mmが好ましく、0.05mm~0.3mmがより好ましい。複合材料基板の板厚が0.5mmを超えるとLED発光素子の放熱特性が低下して好ましくない。本発明の複合材料基板は、III-V族半導体結晶と接合した後、必要に応じて研磨等により薄板化することもできる。
 本発明では、III-V族半導体結晶と複合材料基板とを金属層を介して接合した後、単結晶成長基板を除去する。単結晶成長基板の除去は、単結晶成長基板側よりレーザー照射を行い除去する方法が一般的である。この他にも、研磨やエッチングにより単結晶成長基板を除去することもできる。単結晶成長基板を除去したIII-V族半導体結晶面は、必要に応じて表面の研磨、エッチングを行い、所望する表面形状に仕上げた後、蒸着法、スパッタ法等の手法により、電極を形成する。更に、レーザーカット又はダイシングにて所定形状に切断して、LED発光素子を製造する。
 本発明の複合材料基板には、LED発光素子製造プロセスでの耐薬品特性が必要であり、具体的には、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液にそれぞれ1分間浸漬したときの少なくとも一主面の単位面積当たりの重量減少量が0.2mg/cm以下が好ましく、更に好ましくは、重量減少量が0.1mg/cm以下である。温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液にそれぞれ1分間浸漬したときの単位面積当たりの重量減少量が0.2mg/cmを超えると、複合材料中の金属成分の溶出に伴う熱伝導率等の特性低下が発生すると共に、レーザーカット又はダイシングにて所定形状に切断する際にチッピングが発生し、LED発光素子の歩留まりが低下するために好ましくない。本発明の複合材料基板の実使用においては、複合材料基板の一主面は、III-V族半導体結晶と金属層を介して接合されるため、非接合面が、上述した耐薬品特性を満たすものであればよい。
 本発明の複合材料基板は、基板自体が導電性を有している。このため、LEDを構成するIII-V族半導体結晶の両面に電極を形成することができる。サファイア基板等の絶縁材料を基板として用いる従来の方法では、上部のp型又はn型のIII-V族半導体結晶の一部をエッチング等で除去して、同一面側に電極を形成する必要があるが、本発明では、かかる必要がないので、LED発光素子の製造プロセスの簡略化が可能である。更に、p型又はn型の片方のIII-V族半導体結晶の一部をエッチング等で除去して電極形成する必要がないため、LED発光素子の単位面積当たりの発光量を増加させることができる。本発明の複合材料の体積固有抵抗は、10-9~10-5Ω・mが好ましい。体積固有抵抗が10-5Ω・mを超えると、発光効率の低下等が起こり好ましくない。体積固有抵抗の下限値は、特性面での制約はないが、材料組成から10-9Ω・m以上が一般的である。
 上述した特性を有する複合材料基板の製造方法について、以下に説明する。
 複合材料基板に使用される複合材料の製法は、含浸法と粉末冶金法の2種に大別される。このうち、熱伝導率等の特性面から実際に商品化されているのは、含浸法によるものである。含浸法にも種々の製法があり、常圧で行う方法と、高圧下で行う方法(高圧鍛造法)がある。高圧鍛造法には、溶湯鍛造法とダイキャスト法がある。本発明に好適な方法は、高圧下で含浸を行う高圧鍛造法であり、熱伝導率等の特性に優れた緻密な複合体を得るには溶湯鍛造法が好ましい。溶湯鍛造法は、高圧容器内に、セラミックス粉末又は成形体を装填し、これにアルミニウム合金等の溶湯を高温、高圧下で含浸させて複合材料を得る方法である。
 よって、本発明の一実施形態では、複合材料は、溶湯鍛造法により製造される。原料であるセラミックスは、熱伝導率が高く、線熱膨張係数の小さい材料を用いる必要がある。このため、本発明では、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド、黒鉛、酸化イットリウム及び酸化マグネシウムの中から選ばれる1種類以上を用いる。本発明の複合材料は、これらのセラミックスにアルミニウム合金又は純アルミニウムを含浸させて複合化することにより、熱伝導率及び線熱膨張係数を上述した範囲に調整することができる。一実施形態では、複合材料は、これらのセラミックスを50~90体積%含有し、残部がアルミニウム合金又は純アルミニウムからなる複合材料である。セラミックスの含有量は、好ましくは70~85体積%である。セラミックスの含有量が50体積%未満では、得られる複合材料の線熱膨張係数が大きくなり、LED発光素子用の基板材料として好ましくない。一方、セラミックスの含有量が90体積%を超えると、複合化時にアルミニウム合金又は純アルミニウムを十分に含浸させることができず、その結果、熱伝導率が低下してしまい好ましくない。
 セラミックスは、粉末のまま複合化することもできるが、無機バインダーを用いて成形体を作製するか、焼結処理を行って10~50体積%の気孔率を有する多孔体(以下プリフォームと云う)を作製して複合化することが好ましい。このプリフォームの気孔率の調整は、原料粉末の粒度調整、成形圧力、焼結条件等によって行う。プリフォームの成形方法は、プレス成形、鋳込み成形等の一般的なセラミックス粉末の成形方法で成形することができる。また、プリフォームは、必要に応じて平板状や円柱状に加工して用いる。更に、本発明の一実施形態では、最終形状として板厚が0.05mm~0.5mmの板状に加工するため、3点曲げ強度が50MPa以上のプリフォームを用いることが好ましい。プリフォームの強度が低いと、研削加工等で板厚を0.05mm~0.5mmの板状に加工する際に、反りが発生することがある。
 プリフォームは、離型剤を塗布した治具等で固定し、複数個を積層してボルト-ナット等で連結して積層体とする。プリフォームを固定する治具は、鉄製や黒鉛製の治具を用いることができる。また、個々の治具は、離型剤を塗布した離型板を挟んで積層し、積層体とすることもできる。離型板としては、ステンレス板やセラミックス板を使用することができ、溶湯鍛造法にてアルミニウム合金が含浸されない緻密体であれば特に制限はない。また、治具や離型板に塗布する離型剤については、黒鉛、窒化ホウ素、アルミナ等の離型剤が使用できる。更に、好ましくは、治具や離型板表面をアルミナゾル等によりコーティングした後、離型剤を塗布することが好ましい。
 得られた積層体は、温度600~800℃程度で加熱後、高圧容器内に1個または2個以上配置し、積層体の温度低下を防ぐために出来るだけ速やかに、融点以上に加熱したアルミニウム合金の溶湯を給湯して30MPa以上の圧力で加圧し、アルミニウム合金をプリフォームの空隙中に含浸させることで、複合材料が得られる。なお、含浸時の歪み除去の目的で、含浸品のアニール処理を行うこともある。
 積層体の加熱温度は、温度600℃未満では、アルミニウム合金の複合化が不十分となり、得られる複合材料の熱伝導率等の特性が低下してしまう。また、加熱温度が800℃を超えると、アルミニウム合金との複合化時に、セラミックス粉末の表面の酸化が起こり、得られる複合材料の熱伝導率等の特性が低下してしまう。更に、含浸時の圧力に関しては、30MPa未満では、アルミニウム合金の複合化が不十分となり、得られる複合材料の熱伝導率等の特性が低下してしまい好ましくない。好ましくは、含浸圧力は、50MPa以上である。
 本発明の複合材料基板に使用される複合材料中のアルミニウム合金は、当該分野において使用されているアルミニウム合金であれば如何なるものでも使用することができるが、一実施形態では、アルミニウムを70質量%以上含有するアルミニウム合金が好適に使用される。アルミニウムの含有量が70質量%未満では、アルミニウム合金の熱伝導率が低下し好ましくない。また、アルミニウム合金は、含浸時にプリフォームの空隙内に十分に浸透するために融点がなるべく低いことが好ましい。このようなアルミニウム合金として、例えばシリコンを5~25質量%含有したアルミニウム合金が挙げられる。更にマグネシウムを0.3~2.0質量%含有させると、セラミックスと金属部分との結合がより強固になり好ましい。アルミニウム合金中のアルミニウム、シリコン、マグネシウム以外の金属成分に関しては、極端に特性が変化しない範囲であれば特に制限はなく、例えば銅等が含まれていても良い。
 次に、得られた複合材料の加工方法の例を説明する。得られた複合材料が円柱状の形状である場合、円筒研削盤等によりダイヤモンド砥石を用いて所定寸法に外形加工した後、マルチワイヤーソー、内周刃切断機等で最終形状より0.1~0.5mm程度厚い板厚に切断加工する。切断方法については、特に限定はないが、切断代が少なく量産性に適したマルチワイヤーソーでの切断が好適である。マルチワイヤーソーでの切断は、遊離砥粒タイプ及びダイヤモンド等の研削材を付着したワイヤーを用いた加工が採用できる。切断加工後の板状の複合材料は、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.05~0.5mm、且つ、表面粗さ(Ra)が0.01~0.5μmになるように面加工を行う。面加工に際しては、表面粗さを、更に小さくするために、両面研削盤、ロータリー研削盤、平面研削盤等で面加工した後、ラップ盤で仕上げ加工を行うこともある。また、LED発光素子の製造工程で、本発明の複合材料基板をIII-V族半導体結晶と接合後に研磨加工する場合は、複合材料基板の片面(接合面)のみに、所定の表面粗さまで面加工を行うこともある。
 得られた複合材料が板状である場合、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.05~0.5mm、且つ、表面粗さ(Ra)が0.01~0.5μmになるように面加工を行った後、ウォータージェット加工機、放電加工機、レーザー加工機、ダイシングマシン、円筒研削盤等で所定形状に外周加工を行う。得られた複合材料が板状である場合、先にウォータージェット加工機、放電加工機、レーザー加工機、ダイシングマシン、円筒研削盤等で所定形状に外周加工を行い、その後両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.05~0.5mm、且つ、表面粗さ(Ra)が0.01~0.5μmになるように面加工を行うこともできる。
 次に、上記のようにして所定の板厚、表面粗さの板状に加工された複合材料体の表面を洗浄後、表面に厚みが0.5~15μmのNi、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上の金属を含む金属層を形成する。金属層厚が0.5μm以下では、金属層のピンホールが発生し、耐薬品性が低下して好ましくない。一方、金属層厚が15μmを超えると、金属層と複合材料の熱膨張差による剥離や、得られる金属層を付与した複合材料の線熱膨張係数が大きくなり好ましくない。金属層厚に関しては、より好ましくは2~10μmである。金属層の材質は、Ni、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上を含む金属が採用でき、これらの複合金属も使用可能である。また金属層には、P、B等の非金属元素が含まれていてもよい。金属層を付与する手法としては、無電解めっき又は電解めっきによることが一般的である。めっき以外の蒸着法等の手法により、板状の複合材料体の表面に、上述した金属を被覆することも可能である。
 また、2枚の板状の複合材料体をワックス、接着剤等で張り合わせ、表面を洗浄後、無電解めっき又は電解めっきにより、表面に厚みが0.5~15μmのNi、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上の金属層を形成し、次に、ワックス、接着剤等を除去して、板状の複合材料体の一主面及び側面に金属層を形成することもできる。
 更には、板状の複合材料体の一主面を、有機シートやレジストにより被覆した後、表面を洗浄後、無電解めっき又は電解めっきにより、表面に厚みが0.5~15μmのNi、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上の金属層を形成し、次に、被覆層を除去して、板状の複合材料の一主面及び側面に金属層を形成することもできる。
 また、複合材料を板状に外周加工及び切断等して、板厚が0.05~0.5mmで、表面粗さ(Ra)が0.01~0.2μmの複合材料体にした後、表面を洗浄後、無電解めっき又は電解めっきにより、表面に厚みが0.5~15μmのNi、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上の金属層を形成する。次に、一主面をラップ盤等で、表面粗さ(Ra)が0.01~0.5μmになるように面加工を行うこともできる。
 以下、本発明を実施例によって詳細に説明するが、本発明がかかる実施例によって限定されるものではない。
(実施例1)
〈LED発光素子用複合材料基板の作製〉
 炭化珪素(以下、SiCともいう)粉末A(大平洋ランダム社製、NG-60、平均粒子径200μm)1800g、炭化珪素粉末B(大平洋ランダム社製、NG-600、平均粒子径20μm)900g、炭化珪素粉末C(大平洋ランダム社製、NC-6000、平均粒子径2μm)300g、及び成形バインダー(メチルセルロース、信越化学工業社製、「メトローズ」)150gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×110mmの寸法の円柱状に面圧10MPaでプレス成形した後、成形圧力100MPaでCIP成形して成形体を作製した。
 得られた成形体を、大気雰囲気中、温度600℃で2時間脱脂処理後、アルゴン雰囲気下、温度2100℃で2時間焼成して、気孔率が20%のSiCプリフォームを作製した。得られたSiCプリフォームを、マシニングセンターでダイヤモンド製の砥石を用いて、外形寸法がΦ52mm×100mmの形状に加工した。さらに、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。3点曲げ強度は120MPaであった。
 得られたSiCプリフォームに窒化硼素の離型剤を塗布し、外形寸法:70mm×70mm×100mm(内径寸法:Φ52.5mm×100mm)の筒状の黒鉛治具に挿入して構造体とした。次に、70mm×100mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、140.8mm×140.8mm×100mmの形状となる様に構造体4個を離型板を挟んで積層して、両側に12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。次に、積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいた内径Φ400mm×300mmHのプレス型内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度:800℃)を注ぎ、100MPaの圧力で25分間加圧してSiCプリフォームにアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断し、離型板を剥がし、旋盤で黒鉛治具部分を除去してΦ52mm×100mm形状の複合材料を得た。得られた複合材料は、含浸時の歪み除去のために530℃の温度で3時間アニール処理を行った。
 次に、得られた複合材料から、研削加工により熱膨張係数測定用試験体(直径3mm長さ10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(3mm×4mm×40mm)、体積固有抵抗測定用試験体(50mm×50mm×5mm)を作製した。それぞれの試験体を用いて、温度25℃~150℃の熱膨張係数を熱膨張計(セイコー電子工業社製;TMA300)で、温度25℃での熱伝導率をレーザーフラッシュ法(アルバック社製;TC3000)で、3点曲げ強度を曲げ強度試験機で、体積固有抵抗を4端子法(JIS R1637に準拠)で測定した。その結果、温度25℃~150℃の熱膨張係数は4.9×10-6/K、温度25℃での熱伝導率は250W/mK、3点曲げ強度は350MPa、体積固有抵抗は8×10-7Ω・mであった。
 複合材料を、円筒研削盤でダイヤモンドの砥石を用いて、Φ50.8mm×100mmの円柱形状に外周加工を行った。得られた円柱形状の複合材料を、マルチワイヤーソーでダイヤモンド砥粒を用い、切断切り込み速度0.2mm/minで、板厚0.2mmの円板状に切断加工を行った。円板状の複合材料を、両面研削盤で#600のダイヤモンド砥石を用いて板厚0.12mmに研削加工した後、ラップ盤でダイヤモンドの砥粒を用いて、板厚0.1mmでまで研磨加工を行った後、純水中、次にイソプロピルアルコール中で超音波洗浄を行い、乾燥して複合材料体を作製した。表面粗さ(Ra)を表面粗さ計で測定した結果、Ra0.04μmであった。
 次に、この複合材料体に対して、無電解Ni―P及びNi-Bめっきを行い、複合材料の表面に5μm厚(Ni-P:4μm+Ni-B:1μm)のめっき層(金属層)を形成し複合材料基板とした。得られた複合材料基板の特性値は、めっき層金属の物性値とめっき前の複合材料体の物性値から、体積比率にて複合則に沿って計算して算出した。結果を表1に示す。また、めっき後の複合材料基板を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき後の複合材料基板の表面粗さ(Ra)を表面粗さ計で測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<LED発光素子の作製>
 図1の構造図を適宜参照して説明する。
 板厚が0.5mmの単結晶サファイア基板1(成長基板)上に、アンモニアガスとトリメチルガリウムを使用し、キャリアガスとして水素と窒素の混合ガスを用いて、温度1100℃でMOCVD法により、次の(1)~(4)のGaN単結晶2~5を4μmの厚さに成長させた。
  (1)n型GaNバッファー層  符号2
  (2)n型GaN半導体層    符号3
  (3)GaN活性層(発光層)  符号4
  (4)p型GaN半導体層    符号5
 次に、p型GaN半導体層5の表面に、真空蒸着法で、銀/錫合金の合金層6を2μmの厚さに蒸着した。一方、LED発光素子用複合材料基板8の片側の表面にも、同様の方法で銀/錫合金の合金層7を2μmの厚さに蒸着した。図1に示すように、両基板を銀/錫合金層6,7が接するように積層し、温度400℃で、5MPaの加圧下で5分間保持して接合した。得られた接合体は、サファイア基板1側から、窒素ガスレーザーを照射し(出力40MW/cm)、サファイア基板1を剥離した。レーザー照射により、n型GaNバッファー層2がGaと窒素に分解され、発生した窒素ガスによりサファイア基板1を剥離することができた。
 その後、表面に露出したn型GaNバッファー層2をエッチングにより除去した後、図2(図1とは上下逆に示されている)に示すように、酸化インジウム錫の透明導電体層9を形成した。その後、n型電極としてAuを蒸着して、ダイシングにより、個々のLED発光素子とした。
(実施例2~12,比較例1)
 実施例1で作製したΦ50.8mm×0.1mmtの複合材料体(無電解めっき処理前の複合材料)に条件を変えて無電解めっき処理を行い、表面に表4に示す金属層を形成した。得られた複合材料基板の特性値を表3に示す。また、めっき後の複合材料基板を、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液に1分間浸漬し、個々の処理による単位面積当たりの重量減少量を測定した。更に、めっき後の複合材料基板を表面粗さ(Ra)を表面粗さ計で測定した。その結果を表4に示す。尚、表4中、比較例1は、金属層を形成していない複合材料体についての試験結果である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(実施例13)
 実施例1で作製したΦ50.8mm×0.1mmtの複合材料体について、蒸着法にて表面に1μmのAu層を形成した。得られた複合材料基板の特性値を表5に示す。また、得られた複合材料基板について、実施例1と同様の評価を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(実施例14)
 実施例1で作製したΦ50.8mm×0.1mmtの複合材料体2枚を、ワックス系の接着剤にて貼り合わせ、表面を洗浄後に、無電解Ni-Pめっき処理を行い、露出表面に5μmのNi-P層を形成した。めっき処理後に、ワックス系の接着剤を除去して、一主面及び側面に金属層を付与した複合材料基板を得た。得られた複合材料基板の特性値を表5に示す。また、得られた複合材料基板について、非めっき面を耐薬品テープで被覆し、実施例1と同様の評価を行った。結果は先の表6に併せて示す。
(実施例15)
 実施例1で作製したΦ50.8mm×0.1mmtの複合材料体の一主面をめっきレジストで被覆後、表面を洗浄して無電解Ni-Pめっき処理を行い、表面に5μmのNi-P層を形成した。めっき処理後に、めっきレジストをアセトンで除去して、一主面及び側面に金属層を付与した複合材料基板を作製した。得られた複合材料基板の特性値を表5に示す。また、得られた複合材料基板について、非めっき面を耐薬品テープで被覆し、実施例1と同様の評価を行った。結果は先の表6に併せて示す。
(実施例16)
 実施例1で作製した複合材料をΦ50.8mm×0.2mmtの形状に加工した後、表面を洗浄して無電解Ni-Pめっき処理を行い、表面に3μmのNi-P層を形成した。その後、平面研削盤にてで#800のダイヤモンド砥石を用いて、板厚0.1mmに研削加工を行い、一主面及び側面に金属層を付与した複合材料基板を作製した。得られた複合材料の特性値を表5に示す。また、得られた複合材料基板について、非めっき面を耐薬品テープで被覆し、実施例1と同様の評価を行った。結果は先の表6に併せて示す。
(実施例17~20、比較例2~4)
〈LED発光素子用複合材料基板の作製〉
 炭化珪素粉末D(大平洋ランダム社製、NG-80、平均粒子径:150μm)1300g、炭化珪素粉末E(屋久島電工社製、GC-1000F、平均粒子径:10μm)700g、シリカゾル(日産化学社製:スノーテックス)300gを秤取し、攪拌混合機で30分間混合した後、Φ60mm×55mmの寸法の円柱状に面圧30MPaでプレス成形して成形体を作製した。得られた成形体を、温度120℃で1時間乾燥後、窒素雰囲気下、温度1400℃で2時間焼成して、気孔率が35%のSiCプリフォームを得た。得られたSiCプリフォームを、マシニングセンターでダイヤモンド砥石を用いて、外形寸法が、Φ52mm×50mmの形状に加工した。得られたSiCプリフォームより、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。その結果、3点曲げ強度が、50MPaであった。
 得られたSiCプリフォームに窒化硼素の離型剤を塗布し、外形寸法70mm×70mm×50mm(内径寸法:Φ52.5mm×50mm)の筒状の鉄製治具に挿入し構造体とした。次に、70mm×70mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、140.8mm×140.8mm×50mmの形状となる様に構造体4個を離型板を挟んで積層した。両側にセラミックス繊維含有量が10体積%、厚み10mmのセラミックスボードを挟んで、厚12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。
 次に、積層体を電気炉で、表7に示す様々な温度に予備加熱した後、あらかじめ加熱しておいた内径Φ400mm×300mmHのプレス型内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度:800℃)を注ぎ、表7に示す各圧力で25分間加圧してSiCプリフォームにアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断し、離型板及び鉄製治具を剥がした後、機械加工により両端のセラミックス繊維を10体積%含有するアルミニウム合金層を除去してΦ52.5mm×50mm形状の複合材料を得た。得られた複合材料は、含浸時の歪み除去のために530℃の温度で3時間アニール処理を行った。
Figure JPOXMLDOC01-appb-T000007
 次に、得られた複合材料より、研削加工により熱膨張係数測定用試験体(直径3mm長さ10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(3mm×4mm×40mm)、体積固有抵抗測定用試験体(50mm×50mm×5mm)を作製した。それぞれの試験体を用いて、実施例1と同様の方法で、温度25℃~150℃の熱膨張係数、温度25℃での熱伝導率、3点曲げ強度、体積固有抵抗を測定した。比較例2は、試験体加工時に形状が保持出来ず、特性評価が出来なかった。
 得られた複合材料を、円筒研削盤でダイヤモンドの砥石を用いて、Φ50.8mm×50mmの円柱形状に外周加工を行った。次に、円柱形状の複合材料を、内周刃切断機でダイヤモンド製の刃を用い、切断切り込み速度5mm/minで、板厚0.25mmの円板状に切断加工を行った。円板状の複合材料を、両面研削盤で#800のダイヤモンド砥石を用いて、板厚0.2mmに研削加工を行い、複合材料基板を作製した。
 次に、この複合材料の表面を洗浄後、無電解Ni―P及びNi-Bめっきを行い、複合材料の表面に4μm厚(Ni-P:3μm+Ni-B:1μm)のめっき層を形成した。得られた複合材料の物性値を表8に示す。また、実施例1と同様の評価を行った結果を表9に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
〈LED発光素子の作製〉
 次に、実施例17のLED発光素子用複合材料基板を用いたLED発光素子の作製例を、図3を適宜参照しながら、記載する。
 板厚が0.5mmの単結晶Si基材11上に、CVD法でSiC層(表面コーティング層)10を2μm形成して成長基板1を作製した後、アンモニアガスと塩化ガリウムを使用し、キャリアガスとして水素ガスを用いて、温度1050℃でHVPE法により、次の(1)~(3)のGaN単結晶3~5を4μmの厚さに成長させた。
(1)n型GaN半導体層    符号3
(2)GaN活性層(発光層)  符号4
(3)p型GaN半導体層    符号5
 次に、p型GaN半導体層5の表面に、真空蒸着法で、銀を0.5μmの厚さに蒸着した後、Au/錫合金を1.5μmの厚さに蒸着して合金層6を形成した。一方、実施例17のLED発光素子用複合材料基板8の片側の表面にも、同様の方法でAu/錫合金の合金層7を1.5μmの厚さに蒸着した。両基板をAu/錫合金層6,7が接する様に積層し、温度500℃で、5MPaの加圧下で5分間保持し接合した。得られた接合体は、酸処理により単結晶Si層をエッチング除去した後、研削加工によりSiC層を完全に除去した。
 その後、露出したn型GaN層3の表面をエッチングにより、表面粗化した後、酸化インジウム錫の透明導電体層を形成した。次に、n型電極としてAuを蒸着して、レーザー加工により、個々のLED発光素子とした。
(実施例21)
 炭化珪素粉末A(平均粒子径:200μm)1800g、炭化珪素粉末B(平均粒子径:20μm)900g、窒化アルミニウム粉末(トクヤマ社製、Fグレード、平均粒子径:2μm)300g、及び成形バインダー(メチルセルロース)150gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×110mmの寸法の円柱状に面圧10MPaでプレス成形した後、成形圧力100MPaでCIP成形して成形体を作製した。
 得られた成形体を、大気雰囲気中、温度600℃で2時間脱脂処理後、アルゴン雰囲気下、温度1950℃で2時間焼成して、気孔率が15%のプリフォームを得た。得られたプリフォームを、マシニングセンターでダイヤモンド砥石を用い、外形寸法が、Φ52mm×100mmの形状に加工した。研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。その結果、3点曲げ強度が、125MPaであった。
 得られたプリフォームを実施例1と同様の方法で処理して(予備加熱温度、含浸圧力は表7参照)、Φ52mm×100mm形状のLED発光素子用複合材料を得た。得られたLED発光素子用複合材料より、実施例1と同様に試験体を作製し特性評価を行った。
 次に、得られたLED発光素子用複合材料を、円筒研削盤でダイヤモンドの砥石を用いてΦ50.8mm×100mmの円柱形状に外周加工を行った後、実施例1と同様にして板厚0.15mmの円板状に加工した。次に、円板状のLED発光素子用複合材料を、ラップ盤でダイヤモンドの砥粒を用いて板厚0.1mmでまで研磨加工を行ってLED発光素子用複合材料基板を作製した。
 次に、この複合材料の表面を洗浄後、無電解Ni―P及びNi-Bめっきを行い、複合材料の表面に4μm厚(Ni-P:3μm+Ni-B:1μm)のめっき層を形成した。得られた複合材料の物性値を表8に示す。また、実施例1と同様の評価を行った結果を表9に示す。
(実施例22)
 窒化アルミニウム粉末(平均粒子径2μm)2880g、酸化イットリウム粉末(信越レア・アース社製、UUグレード、平均粒子径1μm)120g、及び成形バインダー(メチルセルロース)150g、純水150gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×110mmの寸法の円柱状に面圧10MPaでプレス成形した後、成形圧力100MPaでCIP成形して成形体を作製した。
 得られた成形体を、大気雰囲気中、温度600℃で2時間脱脂処理後、窒素雰囲気下、温度1780℃で4時間焼成して、気孔率が22%のプリフォームを得た。得られたプリフォームは、マシニングセンターでダイヤモンド砥石を用いて、外形寸法が、Φ52mm×100mmの形状に加工した。得られたプリフォームより、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。3点曲げ強度は90MPaであった。
 次に、得られたプリフォームを、アルミニウム合金の代わりに純アルミニウムを使用した以外は、実施例1と同様の方法で処理して(予備加熱温度、含浸圧力は表7参照)、Φ52mm×100mm形状のLED発光素子用複合材料を得た。得られたLED発光素子用複合材料より、実施例1と同様に試験体を作製し特性評価を行った。
 次に、LED発光素子用複合材料を、円筒研削盤でダイヤモンドの砥石を用いてΦ50.8mm×100mmの円柱形状に外周加工を行った後、実施例1と同様にして板厚0.15mmに加工した。得られた円板状のLED発光素子用複合材料は、ラップ盤でダイヤモンドの砥粒を用いて板厚0.1mmまで研磨加工を行ってLED発光素子用複合材料基板を作製した。
 次に、この複合材料の表面を洗浄後、無電解Ni―P及びNi-Bめっきを行い、複合材料の表面に4μm厚(Ni-P:3μm+Ni-B:1μm)のめっき層を形成した。得られた複合材料の物性値を表8に示す。また、実施例1と同様の評価を行った結果を表9に示す。
(実施例23)
 窒化珪素粉末(電気化学工業社製、NP-200、平均粒子径:1μm)2790g、酸化イットリウム粉末(平均粒子径:1μm)150g、酸化マグネシウム粉末(岩谷化学社製、MJ-30、平均粒子径:1μm)60gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×10mmの寸法の円板状に面圧10MPaでプレス成形した後、成形圧力100MPaでCIP成形して成形体を作製した。
 得られた成形体を、0.9MPaの窒素加圧雰囲気下、温度1880℃で4時間焼成して、気孔率が13%のプリフォームを得た。得られたプリフォームは、マシニングセンターでダイヤモンド砥石を用いて、外形寸法が、Φ52mm×5mmの形状に加工した。得られたプリフォームより、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。その結果、3点曲げ強度が、150MPaであった。
 次に、得られたプリフォームを実施例1と同様の方法で処理して(予備加熱温度、含浸圧力は表7参照)、Φ52mm×10mm形状のLED発光素子用複合材料を得た。得られたLED発光素子用複合材料より、実施例1と同様に試験体を作製し特性評価を行った。
 得られたLED発光素子用複合材料を、ウォータージェット加工機でΦ50.8mm×5mmの円板形状に外周加工を行った。次に、平面研削盤で#230のダイヤモンド砥石を用いて板厚0.22mmの円板形状に研削加工後、#800のダイヤモンド砥石を用いて板厚0.2mmまで研削加工を行ってLED発光素子用複合材料基板を作製した。
 次に、この複合材料の表面を洗浄後、無電解Ni―P及びNi-Bめっきを行い、複合材料の表面に4μm厚(Ni-P:3μm+Ni-B:1μm)のめっき層を形成した。得られた複合材料の物性値を表8に示す。また、実施例1と同様の評価を行った結果を表9に示す。
(実施例24)
 ダイヤモンド粉末A(Diamond Innovations社製、MBG-600、平均粒子径:120μm)7gとダイヤモンド粉末B(Diamond Innovations社製、MBG-600、平均粒子径:15μm)3gを、アルミナ製の乳鉢で10分間混合した後、外形寸法70mm×70mm×20mm(内径寸法Φ52.5mm×20mm)の筒状の黒鉛治具(1)に、外形寸法Φ52.4mm×9mmの黒鉛治具(2)を挿入した後、ダイヤモンドの混合粉末10gを充填し、更に、ダイヤモンドの混合粉末の上面に黒鉛治具(2)を挿入して構造体とした。次に、70mm×70mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、この構造体を、離型板を挟んで積層し、上下に12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。
 次に、この積層体を実施例1と同様の方法で処理して(予備加熱温度、含浸圧力は表7参照)、70mm×70mm×20mmの形状で周囲が黒鉛治具に囲まれたLED発光素子用複合材料を得た。得られたLED発光素子用複合材料は、黒鉛治具に囲まれた構造となっており、アルミニウム-ダイヤモンドからなる複合材料が露出するまで、両主面側(70mm×70mm)より、平面研削盤でダイヤモンド砥石を用いて研削加工を行い、70mm×70mm×2mmtの板状形状に加工した。次に、ウォータージェット加工機で、Φ50.8mm×2mmの円板形状に外周加工を行った。
 次に、得られたLED発光素子用複合材料より、研削加工により熱膨張係数測定用試験体(2mm×3mm×10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(2mm×4mm×40mm)、体積固有抵抗測定用試験体(35mm×35mm×2mm)を作製した。それぞれの試験体を用いて、実施例1と同様にして評価を行った。
 得られたLED発光素子用複合材料を、平面研削盤で#230のダイヤモンド砥石を用いて板厚0.16mmの円板形状に研削加工後、#400のダイヤモンド砥石を用いて板厚0.15mmでまで研削加工を行ってLED発光素子用複合材料基板を作製した。
 次に、この複合材料の表面を洗浄後、無電解Ni―P及びNi-Bめっきを行い、複合材料の表面に4μm厚(Ni-P:3μm+Ni-B:1μm)のめっき層を形成した。得られた複合材料の物性値を表8に示す。また、実施例1と同様の評価を行った結果を表9に示す。
(実施例25)
 100mm×100mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、形状100mm×100mm×100mmの等方性黒鉛成形体(東海カーボン社製G458/気孔率:13体積%)を、離型板を挟んで両側に12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。次に、この積層体を実施例1と同様の方法で処理して(予備加熱温度、含浸圧力は表7参照)、100mm×100mm×100mmの形状の複合材料を得た。得られた複合材料より、実施例1と同様に試験体を作製し特性評価を行った。
 得られたLED発光素子用複合材料は、ダイヤモンドソーで切断加工後、円筒研削盤でダイヤモンドの砥石を用いて、Φ50.8mm×100mmの円柱形状に外周加工を行った。得られたLED発光素子用円柱形状の複合材料を、マルチワイヤーソーでダイヤモンド砥粒を用いて、切断切り込み速度0.5mm/minで板厚0.4mmの円板状に切断加工した。得られたLED発光素子用円板状の複合材料を、両面研削盤で#600のダイヤモンド砥石を用いて板厚0.3mmに研削加工を行ってLED発光素子用複合材料基板とした。
 次に、この複合材料の表面を洗浄後、無電解Ni―P及びNi-Bめっきを行い、複合材料の表面に4μm厚(Ni-P:3μm+Ni-B:1μm)のめっき層を形成した。得られた複合材料の物性値を表8に示す。また、実施例1と同様の評価を行った結果を表9に示す。
1  成長基板
2  成長基板上に形成された窒化物のバッファー層
3  n型のIII-V族半導体層
4  発光層
5  p型のIII-V族半導体層
6  合金層(反射層)
7  合金層
8  複合材料基板
9  透明導電層
10 表面コーティング層
11 基材

Claims (15)

  1.  炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド、黒鉛、酸化イットリウム及び酸化マグネシウムの中から選ばれる1種以上からなり、気孔率が10~50体積%である多孔体にアルミニウム合金又は純アルミニウムを含浸し、所定の板厚、表面粗さの複合材料体に加工した後、表面にNi、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上の金属を含む金属層を、厚みが0.5~15μmとなるように形成してなるLED発光素子用複合材料基板。
  2.  前記多孔体が、50MPa以上の3点曲げ強度を有し、前記アルミニウム合金又は純アルミニウムが、溶湯鍛造法にて含浸圧力30MPa以上で前記多孔体に含浸せしめられる請求項1に記載の複合材料基板。
  3.  前記複合材料体の板厚が0.05~0.5mmで、表面粗さ(Ra)が0.01~0.5μmとされる請求項1又は2に記載の複合材料基板。
  4.  前記複合材料体の板厚が0.05~0.5mmで、表面粗さ(Ra)が0.01~2μmとされ、更に前記金属層の形成後の片面が表面粗さ(Ra)0.01~0.5μmに加工されてなる請求項1又は2に記載の複合材料基板。
  5.  温度25℃の熱伝導率が100~500W/mK、温度25℃~150℃の線熱膨張係数が4~9×10-6/K、3点曲げ強度が50MPa以上、体積固有抵抗が10-9~10-5Ω・mである請求項1又は2に記載の複合材料基板。
  6.  板厚が0.05mm~0.5mmで、少なくとも一主面の表面粗さ(Ra)が0.01~0.5μmであり、温度25℃の5規定のHCl溶液及び温度75℃の10規定のNaOH溶液にそれぞれ1分間浸漬したときの少なくとも一主面の重量減少量が0.2mg/cm以下である請求項5に記載の複合材料基板。
  7.  LED発光素子用複合材料基板の製造方法であって、
     (a)炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド、黒鉛、酸化イットリウム及び酸化マグネシウムの中から選ばれる1種以上からなり、気孔率が10~50体積%である多孔体を準備し、
     (b)前記多孔体にアルミニウム又は純アルミニウムを含浸させ、所定の板厚、表面粗さに加工して複合材料体を形成し、
     (c)前記複合材料体の表面にNi、Co、Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上の金属を含む金属層を、厚みが0.5~15μmとなるように形成する
    工程を具備してなる製造方法。
  8.  工程(a)において、前記多孔体が50MPa以上の3点曲げ強度を有し、前記工程(b)において、前記アルミニウム合金又は純アルミニウムを、溶湯鍛造法にて含浸圧力30MPa以上で前記多孔体に含浸せしめる、請求項7に記載の製造方法。
  9.  工程(b)において、複合材料体の板厚を0.05~0.5mmに、表面粗さ(Ra)を0.01~0.5μmにする請求項7に記載の製造方法。
  10.  工程(b)において、複合材料体の板厚を0.05~0.5mmに、表面粗さ(Ra)を0.01~2μmにし、
     工程(c)において、金属層を形成した複合材料体の片面を表面粗さ(Ra)0.01~0.5μmに加工する、請求項7に記載の製造方法。
  11.  LED発光素子の製造方法であって、
     (1)円板状又は平板状の単結晶成長基板の一主面上に、III-V族半導体結晶をエピタキシャル成長させ、
     (2)前記III-V族半導体結晶の表面に金属層を介して、請求項1から6の何れか一項に記載のLED発光素子用複合材料基板を接合した後、前記単結晶成長基板をレーザー照射、エッチング、研削のいずれかの方法により除去し、
     (3)前記単結晶成長基板が除去された側のIII-V族半導体結晶の表面を加工し、電極形成を行った後、切断加工する
    工程を具備してなる製造方法。
  12.  単結晶成長基板が、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siからなる群から選ばれる材料製である請求項11に記載のLED発光素子の製造方法。
  13.  単結晶成長基板が、AlN、SiC、GaN、GaAsからなる群から選ばれる材料で表面コーティングされる請求項11又は12に記載のLED発光素子の製造方法。
  14.  III-V族半導体結晶が、GaN、GaAs、GaPのいずれかである請求項11から13の何れか一項に記載のLED発光素子の製造方法。
  15.  請求項11から14の何れか一項に記載のLED発光素子の製造方法によって得ることができるLED発光素子。
PCT/JP2010/051935 2009-02-13 2010-02-10 Led発光素子用複合材料基板、その製造方法及びled発光素子 WO2010092972A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080007859.5A CN102318093B (zh) 2009-02-13 2010-02-10 用于led发光元件的复合材料基板、其制造方法及led发光元件
US13/148,712 US9387532B2 (en) 2009-02-13 2010-02-10 Composite substrate for LED light emitting element, method of production of same, and LED light emitting element
EP10741249.6A EP2398081B1 (en) 2009-02-13 2010-02-10 Composite substrate for led light emitting element, method of production of same, and led light emitting element
JP2010550532A JP5713684B2 (ja) 2009-02-13 2010-02-10 Led発光素子用複合材料基板、その製造方法及びled発光素子
KR1020167030579A KR20160129920A (ko) 2009-02-13 2010-02-10 Led 발광소자용 복합재료 기판, 그 제조 방법 및 led 발광소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009031184 2009-02-13
JP2009-031184 2009-02-13

Publications (1)

Publication Number Publication Date
WO2010092972A1 true WO2010092972A1 (ja) 2010-08-19

Family

ID=42561814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051935 WO2010092972A1 (ja) 2009-02-13 2010-02-10 Led発光素子用複合材料基板、その製造方法及びled発光素子

Country Status (7)

Country Link
US (1) US9387532B2 (ja)
EP (1) EP2398081B1 (ja)
JP (1) JP5713684B2 (ja)
KR (2) KR20110134878A (ja)
CN (1) CN102318093B (ja)
TW (1) TWI526261B (ja)
WO (1) WO2010092972A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012058656A2 (en) * 2010-10-29 2012-05-03 Ritedia Corporation Stress regulated semiconductor and associated methods
JP2013012623A (ja) * 2011-06-30 2013-01-17 Denki Kagaku Kogyo Kk Led発光素子用保持基板、その製造方法及びled発光素子
WO2013013138A1 (en) * 2011-07-20 2013-01-24 Mossey Creek Solar, LLC Substrate for use in preparing solar cells
US8778784B2 (en) 2010-09-21 2014-07-15 Ritedia Corporation Stress regulated semiconductor devices and associated methods
CN104451238A (zh) * 2014-12-02 2015-03-25 常熟市东涛金属复合材料有限公司 一种电子封装用新型高导热率金属复合材料的制备方法
US9006086B2 (en) 2010-09-21 2015-04-14 Chien-Min Sung Stress regulated semiconductor devices and associated methods
JP2016007634A (ja) * 2014-06-25 2016-01-18 デンカ株式会社 アルミニウム−炭化珪素質複合体及びその製造方法
EP2910545A4 (en) * 2012-10-19 2016-06-01 Kao Corp PROCESS FOR PREPARING N, N-DIALKYLHOMOFARNESIC ACID AMID
US9543493B2 (en) 2011-11-22 2017-01-10 Mossey Creek Technologies, Inc. Packaging for thermoelectric subcomponents
US9911909B2 (en) 2013-04-15 2018-03-06 Mossey Creek Technologies, Inc. Method for producing a thermoelectric material
US9908282B2 (en) 2010-05-25 2018-03-06 Mossey Creek Technologies, Inc. Method for producing a semiconductor using a vacuum furnace
EP2757604B1 (en) * 2011-09-13 2018-06-13 Denka Company Limited Method of manufacturing a clad material for led light-emitting element holding substrate
US10919811B2 (en) 2015-07-31 2021-02-16 Denka Company Limited Aluminum-silicon-carbide composite and method of manufacturing same
WO2022249918A1 (ja) * 2021-05-26 2022-12-01 デンカ株式会社 アルミニウム-ダイヤモンド系複合体の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501432B (zh) * 2009-07-17 2015-09-21 Denki Kagaku Kogyo Kk Led晶片接合體、led封裝、及led封裝之製造方法
CN102484188B (zh) 2009-07-31 2015-02-18 电气化学工业株式会社 Led搭载用晶片及其制造方法、以及使用该晶片的led搭载结构体
JP5881280B2 (ja) * 2010-08-20 2016-03-09 デンカ株式会社 Led発光素子用保持基板の製造方法及びled発光素子の製造方法
CN103540830B (zh) * 2013-11-14 2015-08-26 湖南航天工业总公司 一种制备碳化硅和金刚石颗粒增强铝基复合材料的方法
WO2015141729A1 (ja) * 2014-03-18 2015-09-24 電気化学工業株式会社 アルミニウム-炭化珪素質複合体及びパワーモジュール用ベース板
JP6839981B2 (ja) * 2014-07-24 2021-03-10 デンカ株式会社 複合体及びその製造方法
JP6497616B2 (ja) * 2015-03-26 2019-04-10 株式会社アライドマテリアル ヒートスプレッダ
US11824229B2 (en) 2017-09-20 2023-11-21 Nexgen Materials, Llc Manufacturing enhanced graphite metallic bipolar plate materials
JP7107951B2 (ja) * 2017-09-22 2022-07-27 株式会社トクヤマ Iii族窒化物単結晶基板
EP3875267A4 (en) * 2018-10-31 2022-08-03 Mitsubishi Materials Corporation METALLIC FILM OXIDE CARBON ELEMENT AND THERMAL PLATE
WO2023200492A2 (en) * 2021-10-12 2023-10-19 Slt Technologies, Inc. Aluminum-containing nitride ceramic matrix composite, method of making, and method of use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573252B2 (ja) 1987-01-31 1993-10-14 Toyoda Gosei Kk
JP2004288788A (ja) * 2003-03-20 2004-10-14 Shin Etsu Handotai Co Ltd 発光素子及び発光素子の製造方法
JP2005117006A (ja) 2003-10-08 2005-04-28 Shogen Koden Kofun Yugenkoshi 窒化物の発光装置
JP2006128710A (ja) 2004-10-28 2006-05-18 Lumileds Lighting Us Llc パッケージ統合された薄膜led
JP2008098526A (ja) * 2006-10-13 2008-04-24 Toyoda Gosei Co Ltd 発光素子

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218216A (en) 1987-01-31 1993-06-08 Toyoda Gosei Co., Ltd. Gallium nitride group semiconductor and light emitting diode comprising it and the process of producing the same
US4988645A (en) * 1988-12-12 1991-01-29 The United States Of America As Represented By The United States Department Of Energy Cermet materials prepared by combustion synthesis and metal infiltration
JPH0361556A (ja) * 1989-07-31 1991-03-18 Ricoh Co Ltd 光プリントヘッド
JP2512250B2 (ja) 1991-09-13 1996-07-03 松下電器産業株式会社 動画表示ワ―クステ―ション
JPH11130568A (ja) * 1997-10-24 1999-05-18 Denki Kagaku Kogyo Kk 複合体とそれを用いたヒートシンク
EP1055650B1 (en) * 1998-11-11 2014-10-29 Totankako Co., Ltd. Carbon-based metal composite material, method for preparation thereof and use thereof
JP3468358B2 (ja) * 1998-11-12 2003-11-17 電気化学工業株式会社 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
JP3496816B2 (ja) * 1999-06-25 2004-02-16 電気化学工業株式会社 金属−セラミックス複合体とそれを用いた放熱部品
US6485816B2 (en) * 2000-01-31 2002-11-26 Ngk Insulators, Ltd. Laminated radiation member, power semiconductor apparatus, and method for producing the same
AU2002218493A1 (en) * 2000-11-29 2002-06-11 Denki Kagaku Kogyo Kabushiki Kaisha Integral-type ceramic circuit board and method of producing same
WO2004005216A1 (ja) * 2002-07-09 2004-01-15 Kenichiro Miyahara 薄膜形成用基板、薄膜基板、光導波路、発光素子、及び発光素子搭載用基板
JP4001169B2 (ja) * 2003-03-14 2007-10-31 住友電気工業株式会社 半導体装置
CN100541845C (zh) 2003-07-09 2009-09-16 日亚化学工业株式会社 发光器件及照明装置
JP4244210B2 (ja) 2004-09-08 2009-03-25 電気化学工業株式会社 アルミニウム−セラミックス複合体及びその製造方法
JP5413707B2 (ja) * 2005-06-06 2014-02-12 Dowaエレクトロニクス株式会社 金属−セラミック複合基板及びその製造方法
KR20080077094A (ko) 2006-01-13 2008-08-21 덴끼 가가꾸 고교 가부시키가이샤 알루미늄-탄화규소질 복합체 및 그것을 사용한 방열 부품
US9318327B2 (en) * 2006-11-28 2016-04-19 Cree, Inc. Semiconductor devices having low threading dislocations and improved light extraction and methods of making the same
JP5273922B2 (ja) * 2006-12-28 2013-08-28 株式会社アライドマテリアル 放熱部材および半導体装置
JP2008263126A (ja) 2007-04-13 2008-10-30 Oki Data Corp 半導体装置、該半導体装置の製造方法、ledヘッド、及び画像形成装置
JP5172232B2 (ja) 2007-07-25 2013-03-27 電気化学工業株式会社 アルミニウム−セラミックス複合体とその製造方法
CN102149655B (zh) 2008-07-17 2013-10-23 电气化学工业株式会社 铝-金刚石类复合体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573252B2 (ja) 1987-01-31 1993-10-14 Toyoda Gosei Kk
JP2004288788A (ja) * 2003-03-20 2004-10-14 Shin Etsu Handotai Co Ltd 発光素子及び発光素子の製造方法
JP2005117006A (ja) 2003-10-08 2005-04-28 Shogen Koden Kofun Yugenkoshi 窒化物の発光装置
JP2006128710A (ja) 2004-10-28 2006-05-18 Lumileds Lighting Us Llc パッケージ統合された薄膜led
JP2008098526A (ja) * 2006-10-13 2008-04-24 Toyoda Gosei Co Ltd 発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2398081A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908282B2 (en) 2010-05-25 2018-03-06 Mossey Creek Technologies, Inc. Method for producing a semiconductor using a vacuum furnace
US8778784B2 (en) 2010-09-21 2014-07-15 Ritedia Corporation Stress regulated semiconductor devices and associated methods
US9006086B2 (en) 2010-09-21 2015-04-14 Chien-Min Sung Stress regulated semiconductor devices and associated methods
WO2012058656A2 (en) * 2010-10-29 2012-05-03 Ritedia Corporation Stress regulated semiconductor and associated methods
WO2012058656A3 (en) * 2010-10-29 2012-07-19 Ritedia Corporation Stress regulated semiconductor and associated methods
JP2013012623A (ja) * 2011-06-30 2013-01-17 Denki Kagaku Kogyo Kk Led発光素子用保持基板、その製造方法及びled発光素子
WO2013013138A1 (en) * 2011-07-20 2013-01-24 Mossey Creek Solar, LLC Substrate for use in preparing solar cells
US8828791B2 (en) 2011-07-20 2014-09-09 Mossey Creek Solar, LLC Substrate for use in preparing solar cells
EP2757604B1 (en) * 2011-09-13 2018-06-13 Denka Company Limited Method of manufacturing a clad material for led light-emitting element holding substrate
US9543493B2 (en) 2011-11-22 2017-01-10 Mossey Creek Technologies, Inc. Packaging for thermoelectric subcomponents
EP2910545A4 (en) * 2012-10-19 2016-06-01 Kao Corp PROCESS FOR PREPARING N, N-DIALKYLHOMOFARNESIC ACID AMID
US9518037B2 (en) 2012-10-19 2016-12-13 Kao Corporation Method for producing N,N-dialkylhomofarnesic acid amide
US9911909B2 (en) 2013-04-15 2018-03-06 Mossey Creek Technologies, Inc. Method for producing a thermoelectric material
JP2016007634A (ja) * 2014-06-25 2016-01-18 デンカ株式会社 アルミニウム−炭化珪素質複合体及びその製造方法
CN104451238A (zh) * 2014-12-02 2015-03-25 常熟市东涛金属复合材料有限公司 一种电子封装用新型高导热率金属复合材料的制备方法
US10919811B2 (en) 2015-07-31 2021-02-16 Denka Company Limited Aluminum-silicon-carbide composite and method of manufacturing same
WO2022249918A1 (ja) * 2021-05-26 2022-12-01 デンカ株式会社 アルミニウム-ダイヤモンド系複合体の製造方法

Also Published As

Publication number Publication date
JPWO2010092972A1 (ja) 2012-08-16
US20110316040A1 (en) 2011-12-29
TWI526261B (zh) 2016-03-21
US9387532B2 (en) 2016-07-12
KR20110134878A (ko) 2011-12-15
EP2398081A1 (en) 2011-12-21
KR20160129920A (ko) 2016-11-09
CN102318093A (zh) 2012-01-11
CN102318093B (zh) 2016-05-25
JP5713684B2 (ja) 2015-05-07
EP2398081A4 (en) 2014-11-12
EP2398081B1 (en) 2018-05-09
TW201105439A (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP5713684B2 (ja) Led発光素子用複合材料基板、その製造方法及びled発光素子
JP5789512B2 (ja) Led搭載用ウエハとその製造方法、及びそのウエハを用いたled搭載構造体
JP5988977B2 (ja) 半導体素子用放熱部品
JP2021059782A (ja) 半導体素子用放熱部品
JP7104620B2 (ja) アルミニウム-ダイヤモンド系複合体及び放熱部品
JP6105262B2 (ja) アルミニウム−ダイヤモンド系複合体放熱部品
WO2015163395A1 (ja) アルミニウム-ダイヤモンド系複合体及びこれを用いた放熱部品
JP5296638B2 (ja) Led搭載構造体、その製造方法、及びled搭載用基板
JP2012038948A (ja) Led発光素子用金属基複合材料基板、その製造方法及びled発光素子。
JP2010109081A (ja) Led発光素子用金属基複合材料基板及びそれを用いたled発光素子
JP5881280B2 (ja) Led発光素子用保持基板の製造方法及びled発光素子の製造方法
JP2013012623A (ja) Led発光素子用保持基板、その製造方法及びled発光素子
JP5759376B2 (ja) Ledチップ接合体の製造方法
JP2010267892A (ja) Led搭載構造体、その製造方法、及びled搭載用基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007859.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741249

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010741249

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010550532

Country of ref document: JP

Ref document number: 13148712

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117021088

Country of ref document: KR

Kind code of ref document: A