WO2010092928A1 - リニアイメージセンサ - Google Patents

リニアイメージセンサ Download PDF

Info

Publication number
WO2010092928A1
WO2010092928A1 PCT/JP2010/051802 JP2010051802W WO2010092928A1 WO 2010092928 A1 WO2010092928 A1 WO 2010092928A1 JP 2010051802 W JP2010051802 W JP 2010051802W WO 2010092928 A1 WO2010092928 A1 WO 2010092928A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor region
light receiving
concentration semiconductor
type
image sensor
Prior art date
Application number
PCT/JP2010/051802
Other languages
English (en)
French (fr)
Inventor
慶一 太田
貞治 滝本
寛 渡邉
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201080007754.XA priority Critical patent/CN102318066B/zh
Priority to EP10741205A priority patent/EP2398052A4/en
Priority to US13/148,514 priority patent/US8907386B2/en
Publication of WO2010092928A1 publication Critical patent/WO2010092928A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Definitions

  • the present invention relates to a linear image sensor in which long embedded photodiodes are arranged one-dimensionally.
  • a linear image sensor in which photodiodes are arranged one-dimensionally may be used in a barcode reader system or the like. In this case, the photodiodes need to be elongated in a direction perpendicular to the arrangement direction.
  • Patent Document 1 discloses this type of linear image sensor.
  • a plurality of light receiving portions each having a long pn junction photodiode are arranged one-dimensionally.
  • a pn junction photodiode is formed by an n-type semiconductor substrate and a p-type semiconductor region formed on the n-type semiconductor substrate, and is formed by the n-type semiconductor substrate and the p-type semiconductor region.
  • An amount of charge corresponding to the intensity of incident light is accumulated in the pn junction capacitor.
  • a transistor is formed adjacent to the pn junction photodiode, and charges accumulated in the pn junction photodiode are read out by this transistor.
  • a linear image sensor using an embedded photodiode instead of a pn junction photodiode has been devised.
  • the buried photodiode for example, an n-type low concentration semiconductor region is formed on a p-type substrate, and a thin p-type high concentration semiconductor region is formed on the surface of the n-type low concentration semiconductor region.
  • the n-type low-concentration semiconductor region can be completely depleted, so that the pn junction capacitance at the time of charge reading can be made apparently zero. As a result, the response speed can be increased.
  • an object of the present invention is to provide a linear image sensor capable of reducing unread reading of electric charges.
  • the linear image sensor of the present invention is a linear image sensor in which a plurality of elongated embedded photodiodes are arranged.
  • Each of the buried photodiodes includes a first semiconductor region of a first conductivity type, a second semiconductor region which is formed on the first semiconductor region and has a low second conductivity type impurity concentration and has a long shape, A first conductivity type third semiconductor region formed on the second semiconductor region so as to cover a surface of the second semiconductor region; a second conductivity type fourth semiconductor region for extracting charge from the second semiconductor region;
  • the fourth semiconductor region is arranged on the second semiconductor region so as to be separated from each other in the longitudinal direction.
  • the plurality of fourth semiconductor regions for taking out electric charges from the second semiconductor region are arranged apart from each other in the longitudinal direction.
  • the distance to the edge of the semiconductor region can be shortened. Therefore, in the embedded photodiode, a potential gradient to the fourth semiconductor region can be ensured, and unread reading of charges from the second semiconductor region can be reduced. As a result, afterimage generation can be suppressed.
  • a plurality of the fourth semiconductor regions are arranged along the central axis extending in the longitudinal direction of the second semiconductor region.
  • the distance from the fourth semiconductor region to the edge of the second semiconductor region can be further shortened.
  • a plurality of the fourth semiconductor regions are arranged along the long side extending in the longitudinal direction of the second semiconductor region.
  • the wiring connected to the fourth semiconductor region can be arranged on the first semiconductor region between the second semiconductor regions in the adjacent buried photodiodes, and the wiring allows the wiring in the photosensitive region. Covering a certain second semiconductor region can be reduced. As a result, the aperture ratio of the light sensitive region can be increased, and the sensitivity of light detection can be improved.
  • a plurality of the fourth semiconductor regions described above are alternately arranged in a zigzag pattern along both long sides extending in the longitudinal direction of the second semiconductor region.
  • the distance from the fourth semiconductor region to the edge of the second semiconductor region can be shortened even when the second semiconductor region becomes larger in the direction orthogonal to the longitudinal direction.
  • the linear image sensor described above is preferably a light-shielding film that covers the fourth semiconductor region and includes the light-shielding film extending in the arrangement direction.
  • the incident light straddles adjacent light receiving portions and is embedded in one light receiving portion.
  • the sensitivity of one light receiving portion is lowered by the amount corresponding to the fourth semiconductor region, and the light detection sensitivity of adjacent light receiving portions may vary.
  • the charge readout line connected to the fourth semiconductor region is an array of light receiving portions.
  • the incident light straddles the adjacent light receiving portions and one of the light receiving portions.
  • the sensitivity of one light receiving portion is lowered only by the charge readout line extending in the arrangement direction, and the light detection sensitivity of adjacent light receiving portions may vary.
  • the shape of the photosensitive region is symmetrical with respect to the central axis extending in the longitudinal direction of the light receiving unit. Can be. Therefore, even when light is irradiated across adjacent light receiving portions, it is possible to reduce variations in light detection sensitivity between adjacent light receiving portions.
  • FIG. 1 is a diagram showing a configuration of a linear image sensor according to an embodiment of the present invention.
  • FIG. 2 shows the first embodiment of the light receiving section shown in FIG. 1 and shows the light receiving section viewed from the front side.
  • FIG. 3 is a view showing a cross section of the light receiving portion along the line III-III in FIG.
  • FIG. 4 is a view of the light receiving portion of the comparative example of the present invention as seen from the front side.
  • FIG. 5 is a view showing a cross section of the light receiving portion along the line VV in FIG.
  • FIG. 6 shows the second embodiment of the light receiving unit shown in FIG. 1 and shows the light receiving unit viewed from the front side.
  • FIG. 7 is a view showing a cross section of the light receiving portion along the line VII-VII in FIG.
  • FIG. 8 shows the third embodiment of the light receiving unit shown in FIG. 1 and shows the light receiving unit viewed from the front side.
  • FIG. 9 is a view showing a cross section of the light receiving portion along the line IX-IX in FIG.
  • FIG. 10 is a diagram showing the light receiving unit viewed from the front surface side according to the fourth embodiment of the light receiving unit P (n) shown in FIG.
  • FIG. 11 is a view showing a cross section of the light receiving portion along the line XI-XI in FIG.
  • FIG. 12 shows a light receiving unit according to the third embodiment when light is incident on adjacent light receiving units.
  • FIG. 13 shows a light receiving unit according to the fourth embodiment when light is incident on adjacent light receiving units.
  • FIG. 14 shows a modification of the light receiving unit shown in FIG. 1 and shows the light receiving unit viewed from the front side.
  • FIG. 15 is a view showing a cross section of the light receiving portion along the line XV-XV in FIG.
  • FIG. 1 is a diagram illustrating a configuration of a linear image sensor according to an embodiment of the present invention.
  • the linear image sensor 1 shown in FIG. 1 includes N light receiving portions P (n) arranged one-dimensionally.
  • N is an integer of 2 or more
  • n is an arbitrary integer of 1 or more and N or less.
  • the processing unit and the like are omitted.
  • the light receiving unit P (n) having the characteristics of the present invention will be described by exemplifying a plurality of embodiments. [First Embodiment]
  • FIG. 2 shows the first embodiment of the light receiving portion P (n) shown in FIG. 1 and shows the light receiving portion P1 (n) as viewed from the front side.
  • FIG. It is a figure which shows the cross section of the light-receiving part P1 (n) along an III line.
  • the nth light receiving part P1 (n) is shown as a representative of the N light receiving parts P1 (n).
  • the light receiving portion P1 (n) includes an embedded photodiode PD1 (n) and a transistor T1 (n).
  • a p-type high-concentration semiconductor region 30 (to be described later) in the embedded photodiode PD1 (n) is omitted for easy understanding of the features of the present invention.
  • the embedded photodiode PD1 (n) includes a p-type substrate 10, an n-type low concentration semiconductor region 20 formed on the p-type substrate 10, and a p-type formed on the n-type low concentration semiconductor region 20.
  • a high concentration semiconductor region 30 and a plurality of n type high concentration semiconductor regions 40 formed on the n type low concentration semiconductor region 20 are provided.
  • the p-type substrate 10, the n-type low-concentration semiconductor region 20, the p-type high-concentration semiconductor region 30 and the n-type high-concentration semiconductor region 40 are respectively the first semiconductor region and the second semiconductor region described in the claims. It corresponds to a semiconductor region, a third semiconductor region, and a fourth semiconductor region, and p-type and n-type correspond to the first conductivity type and the second conductivity type described in the claims, respectively.
  • the p-type impurity concentration of the p-type substrate 10 is, for example, about 10 15 cm ⁇ 3 to 10 17 cm ⁇ 3 .
  • an n-type low concentration semiconductor region 20 is formed so as to be embedded in a part of the p-type substrate 10.
  • the n-type low concentration semiconductor region 20 has a long shape.
  • the thickness of the n-type low concentration semiconductor region 20 is about 0.6 to 1.0 ⁇ m
  • the n-type impurity concentration of the n-type low concentration semiconductor region 20 is about 10 16 cm ⁇ 3 to 10 18 cm ⁇ 3. Relatively low.
  • a p-type high concentration semiconductor region 30 and an n-type high concentration semiconductor region 40 are formed on the surface of the n-type low concentration semiconductor region 20.
  • the p-type high concentration semiconductor region 30 is formed so as to cover the surface of the n-type low concentration semiconductor region 20, and its thickness is as thin as 0.2 ⁇ m to 0.4 ⁇ m.
  • the p-type impurity concentration of the p-type high-concentration semiconductor region 30 is relatively high, such as about 10 17 cm ⁇ 3 to 10 19 cm ⁇ 3 .
  • the p-type substrate 10, the n-type low concentration semiconductor region 20 and the p-type high concentration semiconductor region 30 form a photosensitive region, and an amount of charge generated according to the light intensity incident on the photosensitive region is generated.
  • the pn junction formed by the p-type substrate 10 and the n-type low concentration semiconductor region 20 and the pn junction formed by the n-type low concentration semiconductor region 20 and the p-type high concentration semiconductor region 30 are accumulated.
  • the n-type impurity concentration of the n-type low-concentration semiconductor region 20 is low, the n-type low-concentration semiconductor region 20 can be completely depleted, and the charges generated at the pn junction can be completely read out. it can.
  • the n-type low-concentration semiconductor region 20 is completely formed. Even when depleted, the p-type high-concentration semiconductor region 30, that is, the substrate surface can be prevented from being depleted. As a result, leakage current (dark current) that can be generated due to charges that may be present on the substrate surface can be reduced, and the S / N ratio of light detection can be increased.
  • the n-type high concentration semiconductor region 40 is formed at a plurality of locations (for example, four locations) so as to be surrounded by the p-type high concentration semiconductor region 30. These n-type high concentration semiconductor regions 40 are arranged at substantially equal intervals along the central axis III-III extending in the longitudinal direction of the n-type low concentration semiconductor region 20.
  • the n-type high-concentration semiconductor region 40 has a relatively thin thickness of 0.2 ⁇ m to 0.4 ⁇ m, and the n-type high-concentration semiconductor region 40 has an n-type impurity concentration of about 10 19 cm ⁇ 3 to 10 21 cm ⁇ 3. High.
  • These n-type high-concentration semiconductor regions 40 are connected to the transistor T1 (n) through contacts, vias, and wirings 50.
  • the transistor T1 (n) includes an n-type high concentration semiconductor region DS corresponding to a drain and a source and a gate electrode G.
  • the transistor T1 (n) is formed adjacent to the embedded photodiode PD1 (n) in the longitudinal direction.
  • one of the n-type high-concentration semiconductor regions DS is formed in the embedded photodiode PD1 (n).
  • One of the n-type high-concentration semiconductor regions 40 is also used, and is connected to the wiring 50 to be connected to all the n-type high-concentration semiconductor regions 40.
  • the transistor T1 (n) is turned on according to the voltage applied to the gate electrode G, and charges from the n-type low-concentration semiconductor region 20 taken out through the n-type high-concentration semiconductor region 40 are transferred to one n-type. Data can be read from the high concentration semiconductor region DS to the other n-type high concentration semiconductor region DS.
  • the wiring 50 is disposed so as to extend in the longitudinal direction along the central axis III-III of the n-type low concentration semiconductor region 20.
  • the surface of the substrate and the side surface of the substrate are protected by the silicon oxide film 70.
  • a linear image sensor 1X according to a comparative example of the present invention includes N light receiving portions Px (n) arranged one-dimensionally, like the linear image sensor 1 of the first embodiment shown in FIG.
  • the light receiving portion Px (n) is different from the first embodiment in that it includes a buried photodiode PDx (n) instead of the buried photodiode PD1 (n).
  • Other configurations of the linear image sensor 1X are the same as those of the linear image sensor 1.
  • FIG. 4 is a view of the light receiving part Px (n) of the comparative example as viewed from the front side
  • FIG. 5 is a view showing a cross section of the light receiving part Px (n) along the line VV in FIG. 4 also omits the p-type high concentration semiconductor region 30 in the embedded photodiode PDx (n).
  • the embedded photodiode PDx (n) of the comparative example differs from the embedded photodiode PD (n) of the first embodiment in the number of n-type high concentration semiconductor regions 40.
  • the n-type high concentration semiconductor region 40 for taking out the charge is one end portion in the longitudinal direction of the n-type low concentration semiconductor region 20, and the transistor Tx ( Only one is formed at one end on the n) side.
  • the n-type high concentration semiconductor region 40 is formed integrally with the n-type high concentration semiconductor region DS corresponding to the drain and source of the transistor Tx (n).
  • the length in the n-type low-concentration semiconductor region 20 is changed from the n-type high-concentration semiconductor region 40 formed at one end in the longitudinal direction in the n-type low-concentration semiconductor region 20.
  • the distance to the edge on the other end side in the scale direction is long. Therefore, there is almost no potential gradient from the other end of the n-type low concentration semiconductor region 20 to the n-type high concentration semiconductor region 40, and it is difficult to take out the charge on the other end side of the n-type low concentration semiconductor region 20.
  • unread charges may occur.
  • an afterimage may occur.
  • the n-type low concentration semiconductor region (second semiconductor region; photosensitive region) 20 Since a plurality of n-type high-concentration semiconductor regions (fourth semiconductor regions) 40 for extracting charges from the n-type high-concentration semiconductor region 40 are spaced apart from each other in the longitudinal direction, the n-type low-concentration semiconductor region 20 The distance to the edge can be shortened. Therefore, in the embedded photodiode PD1 (n), a potential gradient to the fourth semiconductor region can be ensured, and unread reading of charges from the n-type low concentration semiconductor region 20 can be reduced. As a result, afterimage generation can be suppressed. [Second Embodiment]
  • FIG. 6 shows a second embodiment of the light receiving portion P (n) shown in FIG. 1, and shows the light receiving portion P2 (n) viewed from the front side.
  • FIG. It is a figure which shows the cross section of the light-receiving part P2 (n) along a VII line.
  • the nth light receiving part P2 (n) is shown as a representative of the N light receiving parts P2 (n).
  • the light receiving portion P2 (n) includes a buried photodiode PD2 (n) and the transistor T1 (n) described above.
  • a p-type high-concentration semiconductor region 30 (to be described later) in the embedded photodiode PD2 (n) is omitted for easy understanding of the features of the present invention.
  • the embedded photodiode PD2 (n) of the second embodiment differs from the embedded photodiode PD1 (n) of the first embodiment in the formation positions of the plurality of n-type high concentration semiconductor regions 40. That is, the plurality of n-type high concentration semiconductor regions 40 are arranged at substantially equal intervals along the long side extending in the longitudinal direction of the n-type low concentration semiconductor region 20. Other configurations of the embedded photodiode PD2 (n) are the same as those of the embedded photodiode PD1 (n).
  • the wiring 50 connected to the plurality of n-type high concentration semiconductor regions 40 of the embedded photodiode PD2 (n) is adjacent to the embedded photodiode PD2 ( n) on the p-type substrate 10 between the n-type low-concentration semiconductor regions 20.
  • the linear image sensor 1A including the embedded photodiode PD2 (n) and the light receiving unit P2 (n) according to the second embodiment can obtain the same advantages as those of the linear image sensor 1 according to the first embodiment.
  • the n-type high concentration for extracting charges from the n-type low concentration semiconductor region 20 is used.
  • the semiconductor region 40 is formed along the long side extending in the longitudinal direction of the n-type low concentration semiconductor region 20, and the wiring 50 connected to these n-type high concentration semiconductor regions 40 is formed in the n-type low concentration semiconductor region. Therefore, it is possible to reduce the covering of the n-type low-concentration semiconductor region 20 that is the photosensitive region with the wiring 50. As a result, the aperture ratio of the light sensitive region can be increased, and the sensitivity of light detection can be improved. [Third Embodiment]
  • FIG. 8 shows a third embodiment of the light receiving portion P (n) shown in FIG. 1 and shows the light receiving portion P3 (n) as viewed from the front side.
  • FIG. 9B is a view showing a cross section of the light receiving portion P3 (n) along the line IXb-IXb in FIG.
  • the nth light receiving part P3 (n) is shown as a representative of the N light receiving parts P3 (n).
  • the light receiving portion P3 (n) includes a buried photodiode PD3 (n) and the transistor T1 (n) described above.
  • a p-type high-concentration semiconductor region 30 to be described later
  • the embedded photodiode PD3 (n) is omitted for easy understanding of the features of the present invention.
  • the embedded photodiode PD3 (n) of the third embodiment differs from the embedded photodiode PD1 (n) of the first embodiment in the formation positions of the plurality of n-type high concentration semiconductor regions 40. That is, the plurality of n-type high-concentration semiconductor regions 40 are alternately arranged in a staggered manner at substantially equal intervals along both long sides extending in the longitudinal direction of the n-type low-concentration semiconductor region 20. . In other words, the plurality of n-type high-concentration semiconductor regions 40 are alternately arranged in a zigzag manner along both long sides extending in the longitudinal direction of the n-type low-concentration semiconductor region 20. Other configurations of the embedded photodiode PD3 (n) are the same as those of the embedded photodiode PD1 (n).
  • the wiring 50 connected to the plurality of n-type high concentration semiconductor regions 40 of the embedded photodiode PD3 (n) is adjacent to the embedded photodiode PD3 ( n) on the p-type substrate 10 between the n-type low-concentration semiconductor regions 20.
  • the linear image sensor 1B including the embedded photodiode PD3 (n) and the light receiving unit P3 (n) according to the third embodiment can obtain the same advantages as those of the linear image sensor 1 according to the first embodiment.
  • the plurality of n-type high concentration semiconductor regions 40 include the n-type low concentration semiconductor region. Since the n-type low-concentration semiconductor regions 20 are enlarged in a direction orthogonal to the longitudinal direction, the n-type high-concentration semiconductor regions 40 to the n-type The distance to the edge of the low concentration semiconductor region 20 can be appropriately shortened. Therefore, in the embedded photodiode PD3 (n), a potential gradient to the fourth semiconductor region can be ensured, and unread reading of charges from the n-type low concentration semiconductor region 20 can be appropriately reduced. [Fourth Embodiment]
  • FIG. 10 is a diagram showing the fourth embodiment of the light receiving portion P (n) shown in FIG. 1 and showing the light receiving portion P4 (n) viewed from the front side, and FIG. It is a figure which shows the cross section of the light-receiving part P4 (n) along a XI line.
  • the nth light receiving part P4 (n) is shown as a representative of the N light receiving parts P4 (n).
  • the light receiving portion P4 (n) includes a plurality of (for example, four) light shielding films 60 in addition to the light receiving portion P3 (n) of the third embodiment.
  • Other configurations of the light receiving unit P4 (n) are the same as those of the light receiving unit P3 (n).
  • a p-type high-concentration semiconductor region 30 to be described later in the embedded photodiode PD4 (n) is omitted for easy understanding of the characteristics of the present invention.
  • the light shielding film 60 extends in the arrangement direction of the light receiving portions P (n) shown in FIG.
  • Each of the plurality of light shielding films 60 is disposed so as to cover the n-type high concentration semiconductor region 40 and the wiring 50 connected to the n-type high concentration semiconductor region 40 and extending in the arrangement direction.
  • Al or the like is used as the material of the light shielding film, but it is preferable to use a light absorbing material such as TiN because scattering of detection light can be prevented.
  • FIG. 12 shows the light receiving part P3 (n) of the third embodiment when light is incident across the adjacent light receiving parts P3 (1) and P3 (2). It is light-receiving part P4 (n) of 4th Embodiment, Comprising: It is a figure when light injects ranging over adjacent light-receiving part P4 (1) and P4 (2).
  • the incident light A straddles adjacent light receiving parts P3 (1) and P3 (2) and one of the light receiving parts P3.
  • the sensitivity of one light receiving portion P3 (2) is equivalent to the n-type high concentration semiconductor region 40 and the wiring 50 extending in the arrangement direction. May decrease, and the light detection sensitivity of the adjacent light receiving portions P3 (1) and P3 (2) may vary.
  • the n-type high concentration semiconductor region 40 and the wiring 50 extending in the arrangement direction are covered.
  • the shape of the photosensitive region can be made symmetrical with respect to the central axis extending in the longitudinal direction of the light receiving portion P4 (n). That is, the asymmetry caused by the n-type high concentration semiconductor region 40 can be relaxed. Therefore, even when the light A is irradiated across the adjacent light receiving parts P4 (1) and P4 (2), the variation in the photodetection sensitivity of the adjacent light receiving parts P4 (1) and P4 (2). Can be reduced.
  • FIGS. 14 and 15 show a light receiving unit P5 (n) according to a modification of the present invention.
  • FIG. 14 shows a modification of the light receiving portion P (n) shown in FIG. 1 and shows the light receiving portion P5 (n) viewed from the front side.
  • FIG. 15 shows the XV-XV line in FIG. It is a figure which shows the cross section of the light-receiving part P5 (n) which follows.
  • the nth light receiving part P5 (n) is shown as a representative of the N light receiving parts P5 (n).
  • the light receiving portion P5 (n) includes a buried photodiode PD5 (n) and the transistor T1 (n) described above.
  • a p-type high-concentration semiconductor region 30 to be described later in the embedded photodiode PD5 (n) is omitted for easy understanding of the features of the present invention.
  • the n-type high concentration semiconductor regions 40 of the embedded photodiode PD5 (n) are arranged along the central axis extending in the longitudinal direction of the n-type low concentration semiconductor region 20.
  • the wiring 50 connected to the n-type high-concentration semiconductor region 40 is drawn out in the arrangement direction of the light receiving portions P5 (n), and between the n-type low-concentration semiconductor regions 20 in the adjacent buried photodiode PD5 (n).
  • the p-type substrate 10 may be extended.
  • the n-type high concentration semiconductor region 40 and the wiring 50 extending in the arrangement direction are covered so as to reduce the variation in the photodetection sensitivity of the adjacent light receiving portions P (n) caused by the wiring 50 extending in the arrangement direction.
  • the light shielding film 60 extending in the arrangement direction is preferably provided.
  • the embedded photodiode PD (n) and the transistor T (n) are directly formed on the p-type substrate 10, but may be formed on the n-type substrate.
  • a p-type well may be formed on the n-type substrate, and a similar configuration may be formed on the p-type well.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 本発明の一実施形態に係るリニアイメージセンサ1は、長尺形状の埋め込み型フォトダイオードPD(n)が複数配列されている。この埋め込み型フォトダイオードPD(n)各々は、第1導電型の第1半導体領域10と、第1半導体領域10上に形成され、第2導電型の不純物濃度が低く、長尺形状である第2半導体領域20と、第2半導体領域20の表面を覆うように、第2半導体領域20上に形成された第1導電型の第3半導体領域30と、第2半導体領域20から電荷を取り出すための第2導電型の第4半導体領域40とを備え、第4半導体領域40は、第2半導体領域20上において、長尺方向に複数離間して配置されている。

Description

リニアイメージセンサ
 本発明は、長尺形状の埋め込み型フォトダイオードを1次元配列したリニアイメージセンサに関するものである。
 フォトダイオードを1次元配列したリニアイメージセンサは、バーコードリーダシステムなどに用いられることがあり、この場合、フォトダイオードは、配列方向に直交する方向に長尺形状とする必要がある。特許文献1には、この種のリニアイメージセンサが開示されている。
 特許文献1に記載のリニアイメージセンサでは、長尺形状のpn接合型フォトダイオードを備える受光部が複数1次元配列されている。このリニアイメージセンサでは、pn接合型フォトダイオードがn型半導体基体とn型半導体基体上に形成されたp型半導体領域とで形成され、これらのn型半導体基体とp型半導体領域とによって形成されたpn接合容量に、入射光の強度に応じた量の電荷が蓄積される。また、このリニアイメージセンサでは、pn接合型フォトダイオードに隣接してトランジスタが形成されており、このトランジスタによってpn接合型フォトダイオードに蓄積された電荷が読み出される。しかしながら、このリニアイメージセンサでは、pn接合型フォトダイオードのpn接合容量に電荷を蓄積するため、pn接合領域が長尺形状に大きくなると、そのpn接合容量も大きくなり、応答速度が低下してしまうという問題があった。
 この問題点に関し、pn接合型フォトダイオードに代えて埋め込み型フォトダイオードを用いたリニアイメージセンサが考案されている。埋め込み型フォトダイオードでは、例えば、p型基板上にn型低濃度半導体領域が形成され、このn型低濃度半導体領域の表面に薄いp型高濃度半導体領域が形成される。この埋め込み型フォトダイオードによれば、n型低濃度半導体領域を完全に空乏化することができるので、電荷読み出し時のpn接合容量を見かけ上ゼロにすることができる。その結果、応答速度を高めることができる。
特開昭61-40056号公報
 しかしながら、埋め込み型フォトダイオードでは、長尺形状となった場合に長尺の片方の端から読み出そうとすると、長尺方向の読み出し部と反対側のエッジ部から読み出し部へのポテンシャルの勾配がほとんどなくなってしまい、n型低濃度半導体領域における長尺方向のエッジ部の電荷をドリフトにより読み出すことが困難となり、電荷の読み残しが発生してしまう。その結果、残像が発生してしまう可能性がある。
 そこで、本発明は、電荷の読み残しを低減することが可能なリニアイメージセンサを提供することを目的としている。
 本発明のリニアイメージセンサは、長尺形状の埋め込み型フォトダイオードが複数配列されたリニアイメージセンサである。この埋め込み型フォトダイオード各々は、第1導電型の第1半導体領域と、第1半導体領域上に形成され、第2導電型の不純物濃度が低く、長尺形状である第2半導体領域と、第2半導体領域の表面を覆うように、第2半導体領域上に形成された第1導電型の第3半導体領域と、第2半導体領域から電荷を取り出すための第2導電型の第4半導体領域とを備え、第4半導体領域は、第2半導体領域上において、長尺方向に複数離間して配置されている。
 このリニアイメージセンサによれば、第2半導体領域(光感応領域)から電荷を取り出すための第4半導体領域が、長尺方向に複数離間して配置されているので、第4半導体領域から第2半導体領域のエッジまでの距離を短くすることができる。したがって、埋め込み型フォトダイオードにおいて、第4半導体領域へのポテンシャル勾配を確保でき、第2半導体領域からの電荷の読み残しを低減することができる。その結果、残像の発生を抑制することができる。
 上記した第4半導体領域は、第2半導体領域の長尺方向に延びる中心軸に沿って複数配置されていることが好ましい。
 この構成によれば、第4半導体領域から第2半導体領域のエッジまでの距離をより短くすることができる。
 上記した第4半導体領域は、第2半導体領域の長尺方向に延びる長辺に沿って複数配置されていることが好ましい。
 この構成によれば、第4半導体領域に接続する配線を、隣り合う埋め込み型フォトダイオードにおける第2半導体領域の間の第1半導体領域上に配置することができ、この配線によって、光感応領域である第2半導体領域を被覆することを低減することができる。その結果、光感応領域の開口率を高めることができ、光検出の感度を向上することができる。
 上記した第4半導体領域は、第2半導体領域の長尺方向に延びる両長辺に沿って、千鳥状に交互に複数配置されていることが好ましい。
 この構成によれば、第2半導体領域が長尺方向に直交する方向に大きくなっても、第4半導体領域から第2半導体領域のエッジまでの距離を短くすることができる。
 上記したリニアイメージセンサは、第4半導体領域を被覆する遮光膜であって、配列方向に延びる当該遮光膜を備えることが好ましい。
 第4半導体領域が第2半導体領域の長尺方向に延びる長辺に沿って配置されている場合に、入射光が、隣り合う受光部に跨って、かつ、一方の受光部における埋め込み型フォトダイオードの電荷読み出しライン上に照射された場合、第4半導体領域分だけ一方の受光部の感度が低下し、隣り合う受光部の光検出感度にばらつきが生じることがある。
 同様に、第4半導体領域が、第2半導体領域の長尺方向に延びる中心軸に沿って複数配置された構造であっても、第4半導体領域に接続される電荷読み出しラインが受光部の配列方向に引き出され、隣り合う埋め込み型フォトダイオードにおける第2半導体領域の間の第1半導体領域上に延びている場合には、入射光が、隣り合う受光部に跨って、かつ、一方の受光部における埋め込み型フォトダイオードの電荷読み出しライン上に照射された場合、配列方向に延びる電荷読み出しラインだけ一方の受光部の感度が低下し、隣り合う受光部の光検出感度にばらつきが生じることがある。
 しかしながら、この構成によれば、第4半導体領域を被覆するように配列方向に延びる遮光膜を備えているので、受光部の長尺方向に延びる中心軸に対して光感応領域の形状を左右対称にすることができる。したがって、隣り合う受光部に跨って光が照射された場合であっても、隣り合う受光部の光検出感度のばらつきを低減することができる。
 本発明によれば、リニアイメージセンサにおいて、電荷の読み残しを低減することができる。その結果、残像の発生を抑制することができる。
図1は本発明の実施形態に係るリニアイメージセンサの構成を示す図である。 図2は図1に示す受光部の第1の実施形態であって、表面側から見た受光部を示す図である。 図3は図2におけるIII-III線に沿う受光部の断面を示す図である。 図4は本発明の比較例の受光部を表面側から見た図である。 図5は図4におけるV-V線に沿う受光部の断面を示す図である。 図6は図1に示す受光部の第2の実施形態であって、表面側から見た受光部を示す図である。 図7は図6におけるVII-VII線に沿う受光部の断面を示す図である。 図8は図1に示す受光部の第3の実施形態であって、表面側から見た受光部を示す図である。 図9は図8におけるIX-IX線に沿う受光部の断面を示す図である。 図10は図1に示す受光部P(n)の第4の実施形態であって、表面側から見た受光部を示す図である。 図11は図10におけるXI-XI線に沿う受光部の断面を示す図である。 図12は第3の実施形態の受光部であって、隣り合う受光部に跨って光が入射したときの図である。 図13は第4の実施形態の受光部であって、隣り合う受光部に跨って光が入射したときの図である。 図14は図1に示す受光部の変形例であって、表面側から見た受光部を示す図である。 図15は図14におけるXV-XV線に沿う受光部の断面を示す図である。
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
 図1は、本発明の実施形態に係るリニアイメージセンサの構成を示す図である。図1に示すリニアイメージセンサ1は、1次元配列されたN個の受光部P(n)を備えている。ここで、Nは2以上の整数であり、nは1以上N以下の任意の整数である。なお、図1では、本発明の特徴を明確にするために、各受光部P(n)の動作を制御するための制御部や、各受光部P(n)から読み出される信号を処理する信号処理部などが省略されている。以下では、本発明の特徴を有する受光部P(n)について、複数の実施形態を例示して説明する。
[第1の実施形態]
 図2は、図1に示す受光部P(n)の第1の実施形態であって、表面側から見た受光部P1(n)を示す図であり、図3は、図2におけるIII-III線に沿う受光部P1(n)の断面を示す図である。図2及び図3には、N個の受光部P1(n)を代表してn番目の受光部P1(n)が示されている。この受光部P1(n)は、埋め込み型フォトダイオードPD1(n)と、トランジスタT1(n)とを有している。また、図2では、本発明の特徴を分かり易くするために、埋め込み型フォトダイオードPD1(n)における後述するp型高濃度半導体領域30を省略して示す。
 埋め込み型フォトダイオードPD1(n)は、p型基板10と、このp型基板10上に形成されたn型低濃度半導体領域20と、このn型低濃度半導体領域20上に形成されたp型高濃度半導体領域30と、n型低濃度半導体領域20上に形成された複数のn型高濃度半導体領域40とを有している。なお、これらのp型基板10、n型低濃度半導体領域20、p型高濃度半導体領域30及びn型高濃度半導体領域40が、それぞれ、特許請求の範囲に記載した第1半導体領域、第2半導体領域、第3半導体領域及び第4半導体領域に相当し、p型及びn型が、それぞれ、特許請求の範囲に記載した第1導電型、第2導電型に相当する。
 p型基板10のp型不純物濃度は、例えば、1015cm-3~1017cm-3程度である。p型基板10上には、p型基板10の一部分に埋め込まれるように、n型低濃度半導体領域20が形成されている。
 n型低濃度半導体領域20は、長尺形状をなしている。例えば、n型低濃度半導体領域20の厚さは0.6μm~1.0μm程度であり、n型低濃度半導体領域20のn型不純物濃度は1016cm-3~1018cm-3程度と比較的低い。n型低濃度半導体領域20の表面には、p型高濃度半導体領域30及びn型高濃度半導体領域40が形成されている。
 p型高濃度半導体領域30は、n型低濃度半導体領域20の表面を覆うように形成されており、その厚さは0.2μm~0.4μmと薄い。p型高濃度半導体領域30のp型不純物濃度は1017cm-3~1019cm-3程度と比較的高い。
 これらのp型基板10、n型低濃度半導体領域20及びp型高濃度半導体領域30が光感応領域を形成しており、この光感応領域に入射した光強度に応じて発生した量の電荷が、p型基板10とn型低濃度半導体領域20とによって形成されるpn接合部、及び、n型低濃度半導体領域20とp型高濃度半導体領域30とによって形成されるpn接合部に蓄積される。
 このように、n型低濃度半導体領域20のn型不純物濃度が低いので、n型低濃度半導体領域20を完全に空乏化させることができ、pn接合部で発生した電荷を完全に読み出すことができる。
 また、n型低濃度半導体領域20の表面に薄いp型高濃度半導体領域30を形成し、このp型高濃度半導体領域30に基準電圧を印加することによって、n型低濃度半導体領域20を完全空乏化させた場合にもp型高濃度半導体領域30、すなわち基板表面が空乏化しないようにすることができる。その結果、基板表面に存在しうる電荷に起因して発生しうるリーク電流(暗電流)を低減することができ、光検出のS/N比を高めることができる。
 一方、n型高濃度半導体領域40は、p型高濃度半導体領域30に囲われるように、複数個所(例えば4箇所)に形成されている。これらのn型高濃度半導体領域40は、n型低濃度半導体領域20の長尺方向に延びる中心軸III-IIIに沿って、略等間隔に離間して配列されている。n型高濃度半導体領域40の厚さは0.2μm~0.4μmと比較的薄く、n型高濃度半導体領域40のn型不純物濃度は1019cm-3~1021cm-3程度と比較的高い。これらのn型高濃度半導体領域40は、コンタクト、ビア及び配線50を介してトランジスタT1(n)に接続されている。
 トランジスタT1(n)は、ドレイン、ソースに相当するn型高濃度半導体領域DSとゲート電極Gとから構成されている。トランジスタT1(n)は、埋め込み型フォトダイオードPD1(n)の長尺方向に隣接して形成されており、例えば、n型高濃度半導体領域DSの一方が、埋め込み型フォトダイオードPD1(n)におけるn型高濃度半導体領域40のうちの一つを兼用すると共に、配線50に接続されて、すべてのn型高濃度半導体領域40に接続されている。トランジスタT1(n)は、ゲート電極Gに印加される電圧に応じてオン状態となり、n型高濃度半導体領域40を介して取り出されるn型低濃度半導体領域20からの電荷を、一方のn型高濃度半導体領域DSから他方のn型高濃度半導体領域DSへ読み出すことができる。
 なお、配線50は、n型低濃度半導体領域20の中心軸III-IIIに沿って、長尺方向に延びるように配置されている。
 また、基板の表面及び基板の側面は、シリコン酸化膜70によって保護されている。
 以下では、本発明の比較例に係るリニアイメージセンサ1Xと比較しながら、第1の実施形態のリニアイメージセンサ1の作用効果を説明する。
 本発明の比較例に係るリニアイメージセンサ1Xは、図1に示す第1の実施形態のリニアイメージセンサ1と同様に、1次元配列されたN個の受光部Px(n)を備えており、この受光部Px(n)は、埋め込み型フォトダイオードPD1(n)に代えて埋め込み型フォトダイオードPDx(n)を備えている構成で第1の実施形態と異なっている。リニアイメージセンサ1Xの他の構成は、リニアイメージセンサ1と同一である。
 図4は、比較例の受光部Px(n)を表面側から見た図であり、図5は、図4におけるV-V線に沿う受光部Px(n)の断面を示す図である。図4でも、埋め込み型フォトダイオードPDx(n)におけるp型高濃度半導体領域30を省略して示す。
 比較例の埋め込み型フォトダイオードPDx(n)は、第1の実施形態の埋め込み型フォトダイオードPD(n)において、n型高濃度半導体領域40の個数が異なっている。すなわち、比較例の埋め込み型フォトダイオードPDx(n)では、電荷取り出しのためのn型高濃度半導体領域40が、n型低濃度半導体領域20における長尺方向の一端部であって、トランジスタTx(n)側の一端部に1つだけ形成されている。また、n型高濃度半導体領域40は、トランジスタTx(n)のドレイン、ソースに相当するn型高濃度半導体領域DSと一体的に形成されている。
 この比較例の埋め込み型フォトダイオードPDx(n)では、n型低濃度半導体領域20における長尺方向の一端部に形成されたn型高濃度半導体領域40から、n型低濃度半導体領域20における長尺方向の他端部側のエッジまでの距離が長い。そのため、n型低濃度半導体領域20の他端部からn型高濃度半導体領域40へのポテンシャル勾配がほとんどなくなってしまい、n型低濃度半導体領域20の他端部側の電荷を取り出すことが困難となり、電荷の読み残しが発生する可能性がある。その結果、残像が発生することがある。
 しかしながら、第1の実施形態の埋め込み型フォトダイオードPD1(n)及び受光部P1(n)を備えるリニアイメージセンサ1によれば、n型低濃度半導体領域(第2半導体領域;光感応領域)20から電荷を取り出すためのn型高濃度半導体領域(第4半導体領域)40が、長尺方向に複数離間して配置されているので、n型高濃度半導体領域40からn型低濃度半導体領域20のエッジまでの距離を短くすることができる。したがって、埋め込み型フォトダイオードPD1(n)において、第4半導体領域へのポテンシャル勾配を確保でき、n型低濃度半導体領域20からの電荷の読み残しを低減することができる。その結果、残像の発生を抑制することができる。
[第2の実施形態]
 図6は、図1に示す受光部P(n)の第2の実施形態であって、表面側から見た受光部P2(n)を示す図であり、図7は、図6におけるVII-VII線に沿う受光部P2(n)の断面を示す図である。図6及び図7には、N個の受光部P2(n)を代表してn番目の受光部P2(n)が示されている。この受光部P2(n)は、埋め込み型フォトダイオードPD2(n)と、上記したトランジスタT1(n)とを有している。また、図6では、本発明の特徴を分かり易くするために、埋め込み型フォトダイオードPD2(n)における後述するp型高濃度半導体領域30を省略して示す。
 第2の実施形態の埋め込み型フォトダイオードPD2(n)は、第1の実施形態の埋め込み型フォトダイオードPD1(n)において、複数のn型高濃度半導体領域40の形成位置が異なっている。すなわち、複数のn型高濃度半導体領域40は、n型低濃度半導体領域20の長尺方向に延びる長辺に沿って、略等間隔に離間して配列されている。埋め込み型フォトダイオードPD2(n)の他の構成は、埋め込み型フォトダイオードPD1(n)と同一である。
 また、第2の実施形態の受光部P2(n)では、埋め込み型フォトダイオードPD2(n)の複数のn型高濃度半導体領域40に接続される配線50が、隣り合う埋め込み型フォトダイオードPD2(n)におけるn型低濃度半導体領域20の間のp型基板10上に配置されている。
 この第2の実施形態の埋め込み型フォトダイオードPD2(n)及び受光部P2(n)を備えるリニアイメージセンサ1Aでも、第1の実施形態のリニアイメージセンサ1と同様の利点を得ることができる。
 また、第2の実施形態の埋め込み型フォトダイオードPD2(n)及び受光部P2(n)を備えるリニアイメージセンサ1Aによれば、n型低濃度半導体領域20から電荷を取り出すためのn型高濃度半導体領域40が、n型低濃度半導体領域20の長尺方向に延びる長辺に沿って形成されており、これらのn型高濃度半導体領域40に接続される配線50がn型低濃度半導体領域20の間に配置されているので、配線50によって光感応領域であるn型低濃度半導体領域20が被覆されることを低減することができる。その結果、光感応領域の開口率を高めることができ、光検出の感度を向上することができる。
[第3の実施形態]
 図8は、図1に示す受光部P(n)の第3の実施形態であって、表面側から見た受光部P3(n)を示す図であり、図9(a)は、図8におけるIXa-IXa線に沿う受光部P3(n)の断面を示す図である。また、図9(b)は、図8におけるIXb-IXb線に沿う受光部P3(n)の断面を示す図である。図8及び図9には、N個の受光部P3(n)を代表してn番目の受光部P3(n)が示されている。この受光部P3(n)は、埋め込み型フォトダイオードPD3(n)と、上記したトランジスタT1(n)とを有している。また、図8では、本発明の特徴を分かり易くするために、埋め込み型フォトダイオードPD3(n)における後述するp型高濃度半導体領域30を省略して示す。
 第3の実施形態の埋め込み型フォトダイオードPD3(n)は、第1の実施形態の埋め込み型フォトダイオードPD1(n)において、複数のn型高濃度半導体領域40の形成位置が異なっている。すなわち、複数のn型高濃度半導体領域40は、n型低濃度半導体領域20の長尺方向に延びる両長辺に沿って、千鳥状に交互に、略等間隔に離間して配列されている。換言すれば、複数のn型高濃度半導体領域40は、n型低濃度半導体領域20の長尺方向に延びる両長辺に沿って、交互にジグザグに離間して配列されている。埋め込み型フォトダイオードPD3(n)の他の構成は、埋め込み型フォトダイオードPD1(n)と同一である。
 また、第3の実施形態の受光部P3(n)では、埋め込み型フォトダイオードPD3(n)の複数のn型高濃度半導体領域40に接続される配線50が、隣り合う埋め込み型フォトダイオードPD3(n)におけるn型低濃度半導体領域20の間のp型基板10上に配置されている。
 この第3の実施形態の埋め込み型フォトダイオードPD3(n)及び受光部P3(n)を備えるリニアイメージセンサ1Bでも、第1の実施形態のリニアイメージセンサ1と同様の利点を得ることができる。
 また、第3の実施形態の埋め込み型フォトダイオードPD3(n)及び受光部P3(n)を備えるリニアイメージセンサ1Bによれば、複数のn型高濃度半導体領域40が、n型低濃度半導体領域20の両長辺に沿って千鳥状に交互に配列されているので、n型低濃度半導体領域20が長尺方向に直交する方向に大きくなっても、n型高濃度半導体領域40からn型低濃度半導体領域20のエッジまでの距離を適切に短くすることができる。したがって、埋め込み型フォトダイオードPD3(n)において、第4半導体領域へのポテンシャル勾配を確保でき、n型低濃度半導体領域20からの電荷の読み残しを適切に低減することができる。
[第4の実施形態]
 図10は、図1に示す受光部P(n)の第4の実施形態であって、表面側から見た受光部P4(n)を示す図であり、図11は、図10におけるXI-XI線に沿う受光部P4(n)の断面を示す図である。図10及び図11には、N個の受光部P4(n)を代表してn番目の受光部P4(n)が示されている。この受光部P4(n)は、第3の実施形態の受光部P3(n)に加えて複数(たとえば4個)の遮光膜60を備えている。受光部P4(n)の他の構成は受光部P3(n)と同一である。また、図10では、本発明の特徴を分かり易くするために、埋め込み型フォトダイオードPD4(n)における後述するp型高濃度半導体領域30を省略して示す。
 遮光膜60は、図1に示す受光部P(n)の配列方向に延びている。複数の遮光膜60は、それぞれ、n型高濃度半導体領域40、及び、そのn型高濃度半導体領域40に接続されて配列方向に延びる配線50を被覆するように配置されている。遮光膜の材料には、Alなどが用いられるが、光吸収性を有するもの、例えば、TiNなどが用いられると検出光の散乱と防ぐことができ、好ましい。
 ここで、第3の実施形態の受光部P3(n)と比較しながら、第4の実施形態の受光部P4(n)の作用効果を説明する。
 図12は、第3の実施形態の受光部P3(n)であって、隣り合う受光部P3(1),P3(2)に跨って光が入射したときの図であり、図13は、第4の実施形態の受光部P4(n)であって、隣り合う受光部P4(1),P4(2)に跨って光が入射したときの図である。
 図12に示すように、第3の実施形態の受光部P3(n)において、入射光Aが、隣り合う受光部P3(1),P3(2)に跨って、かつ、一方の受光部P3(2)における埋め込み型フォトダイオードPD3(2)の電荷読み出しライン上に照射された場合、n型高濃度半導体領域40及び配列方向に延びる配線50分だけ、一方の受光部P3(2)の感度が低下し、隣り合う受光部P3(1),P3(2)の光検出感度にばらつきが生じることがある。
 しかしながら、図13に示すように、この第4の実施形態の受光部P4(n)を備えるリニアイメージセンサ1Cによれば、n型高濃度半導体領域40及び配列方向に延びる配線50を被覆するように、配列方向に延びる遮光膜60を備えているので、受光部P4(n)の長尺方向に延びる中心軸に対して光感応領域の形状を左右対称にすることができる。すなわち、n型高濃度半導体領域40によって生じる分の非対称性を緩和することができる。したがって、隣り合う受光部P4(1),P4(2)に跨って光Aが照射された場合であっても、隣り合う受光部P4(1),P4(2)の光検出感度のばらつきを低減することができる。
 なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。例えば、配線50の形状、複数のn型高濃度半導体領域40の配列位置は、本実施形態に限られることはない。例えば、図14及び図15に、本発明の変形例に係る受光部P5(n)を示す。
 図14は、図1に示す受光部P(n)の変形例であって、表面側から見た受光部P5(n)を示す図であり、図15は、図14におけるXV-XV線に沿う受光部P5(n)の断面を示す図である。図14及び図15には、N個の受光部P5(n)を代表してn番目の受光部P5(n)が示されている。この受光部P5(n)は、埋め込み型フォトダイオードPD5(n)と、上記したトランジスタT1(n)とを有している。また、図14では、本発明の特徴を分かり易くするために、埋め込み型フォトダイオードPD5(n)における後述するp型高濃度半導体領域30を省略して示す。
 図14及び図15に示すように、埋め込み型フォトダイオードPD5(n)のn型高濃度半導体領域40が、n型低濃度半導体領域20の長尺方向に延びる中心軸に沿って配列されている構成において、n型高濃度半導体領域40に接続される配線50が受光部P5(n)の配列方向に引き出され、隣り合う埋め込み型フォトダイオードPD5(n)におけるn型低濃度半導体領域20の間のp型基板10上に延びていてもよい。この場合、配列方向に延びる配線50によって生ずる隣り合う受光部P(n)の光検出感度のばらつきを低減するために、n型高濃度半導体領域40及び配列方向に延びる配線50を被覆するように、配列方向に延びる遮光膜60を備えることが好ましい。
 また、本実施形態では、埋め込み型フォトダイオードPD(n)及びトランジスタT(n)がp型基板10上に直接形成されたが、n型基板上に形成されてもよい。この場合、n型基板上にp型ウエルを形成し、このp型ウエル上に同様の構成を形成すればよい。
 リニアイメージセンサの電荷の読み残しを低減する用途に適用することができる。
 1,1A,1B,1C,1X リニアイメージセンサ
 P(n),P1(n),P2(n),P3(n),P4(n),P5(n),Px(n) 受光部
 PD(n),PD1(n),PD2(n),PD3(n),PD4(n),PD5(n),PDx(n) 埋め込み型フォトダイオード
 10 p型基板(第1半導体領域)
 20 n型低濃度半導体領域(第2半導体領域)
 30 p型高濃度半導体領域(第3半導体領域)
 40 n型高濃度半導体領域(第4半導体領域)
 50 配線
 60 遮光膜
 70 シリコン酸化膜
 T(n),T1(n),Tx(n) トランジスタ
 DS n型高濃度半導体領域
 G ゲート電極

Claims (5)

  1.  長尺形状の埋め込み型フォトダイオードが複数配列されたリニアイメージセンサにおいて、
     前記埋め込み型フォトダイオード各々は、
     第1導電型の第1半導体領域と、
     前記第1半導体領域上に形成され、第2導電型の不純物濃度が低く、長尺形状である第2半導体領域と、
     前記第2半導体領域の表面を覆うように、前記第2半導体領域上に形成された第1導電型の第3半導体領域と、
     前記第2半導体領域から電荷を取り出すための第2導電型の第4半導体領域と、
    を備え、
     前記第4半導体領域は、前記第2半導体領域上において、長尺方向に複数離間して配置されている、
    リニアイメージセンサ。
  2.  前記第4半導体領域は、前記第2半導体領域の前記長尺方向に延びる中心軸に沿って複数配置されている、
    請求項1に記載のリニアイメージセンサ。
  3.  前記第4半導体領域は、前記第2半導体領域の前記長尺方向に延びる長辺に沿って複数配置されている、
    請求項1に記載のリニアイメージセンサ。
  4.  前記第4半導体領域は、前記第2半導体領域の前記長尺方向に延びる両長辺に沿って、千鳥状に交互に複数配置されている、
    請求項1に記載のリニアイメージセンサ。
  5.  前記第4半導体領域を被覆する遮光膜であって、配列方向に延びる当該遮光膜を備える、
    請求項1~4の何れか1項に記載のリニアイメージセンサ。
PCT/JP2010/051802 2009-02-13 2010-02-08 リニアイメージセンサ WO2010092928A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080007754.XA CN102318066B (zh) 2009-02-13 2010-02-08 线性图像传感器
EP10741205A EP2398052A4 (en) 2009-02-13 2010-02-08 LINEAR BLIND SENSOR
US13/148,514 US8907386B2 (en) 2009-02-13 2010-02-08 Linear image sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009031224A JP5271104B2 (ja) 2009-02-13 2009-02-13 リニアイメージセンサ
JP2009-031224 2009-02-13

Publications (1)

Publication Number Publication Date
WO2010092928A1 true WO2010092928A1 (ja) 2010-08-19

Family

ID=42561770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051802 WO2010092928A1 (ja) 2009-02-13 2010-02-08 リニアイメージセンサ

Country Status (6)

Country Link
US (1) US8907386B2 (ja)
EP (1) EP2398052A4 (ja)
JP (1) JP5271104B2 (ja)
KR (1) KR101647525B1 (ja)
CN (1) CN102318066B (ja)
WO (1) WO2010092928A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096549A1 (ja) * 2010-02-05 2011-08-11 国立大学法人静岡大学 光情報取得素子、光情報取得素子アレイ及びハイブリッド型固体撮像装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271104B2 (ja) 2009-02-13 2013-08-21 浜松ホトニクス株式会社 リニアイメージセンサ
JP5091886B2 (ja) * 2009-02-13 2012-12-05 浜松ホトニクス株式会社 イメージセンサ
JP5659625B2 (ja) 2010-08-24 2015-01-28 株式会社デンソー ソレノイド装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140056A (ja) 1984-07-31 1986-02-26 Nippon Telegr & Teleph Corp <Ntt> 半導体リニアイメ−ジセンサ−
JPH043473A (ja) * 1990-04-20 1992-01-08 Canon Inc 光電変換装置
JPH11112006A (ja) * 1997-10-06 1999-04-23 Canon Inc 光電変換装置と密着型イメージセンサ
JPH11298033A (ja) * 1998-03-09 1999-10-29 Integration Assoc Inc 分散型フォトダイオ―ド
JP2002324908A (ja) * 2001-03-15 2002-11-08 Koninkl Philips Electronics Nv 感光半導体コンポーネント
JP2006080306A (ja) * 2004-09-09 2006-03-23 Hamamatsu Photonics Kk ホトダイオードアレイおよび分光器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3410016B2 (ja) 1998-03-31 2003-05-26 株式会社東芝 増幅型固体撮像装置
KR100291179B1 (ko) * 1998-06-29 2001-07-12 박종섭 자기정렬된실리사이드층을갖는씨모스이미지센서및그제조방법
JP4258875B2 (ja) 1999-02-15 2009-04-30 株式会社ニコン 光電変換素子及び光電変換装置
JP3554244B2 (ja) 1999-02-25 2004-08-18 キヤノン株式会社 光電変換装置及びそれを用いたイメージセンサ並びに画像入力システム
JP4165785B2 (ja) * 1999-05-11 2008-10-15 横河電機株式会社 フォトダイオードアレイ
JP4109858B2 (ja) 2001-11-13 2008-07-02 株式会社東芝 固体撮像装置
TW516226B (en) * 2001-12-07 2003-01-01 Twinhan Technology Co Ltd CMOS image sensor structure with increased fill factor
JP4004484B2 (ja) * 2004-03-31 2007-11-07 シャープ株式会社 固体撮像素子の製造方法
JP2006041189A (ja) 2004-07-27 2006-02-09 Hamamatsu Photonics Kk 固体撮像素子
CN100394609C (zh) 2004-09-07 2008-06-11 三洋电机株式会社 固体摄像装置
JP2006093442A (ja) * 2004-09-24 2006-04-06 Hamamatsu Photonics Kk ホトダイオード、ホトダイオードアレイ、分光器およびホトダイオードの製造方法
JP4234116B2 (ja) * 2005-06-27 2009-03-04 Nttエレクトロニクス株式会社 アバランシ・フォトダイオード
JP4956944B2 (ja) * 2005-09-12 2012-06-20 三菱電機株式会社 アバランシェフォトダイオード
KR100969905B1 (ko) 2005-11-14 2010-07-13 파나소닉 전공 주식회사 공간 정보 검출 장치 및 이에 적합한 광검출 소자
KR100660336B1 (ko) 2005-12-28 2006-12-22 동부일렉트로닉스 주식회사 씨모스 이미지 센서
US7675097B2 (en) 2006-12-01 2010-03-09 International Business Machines Corporation Silicide strapping in imager transfer gate device
CA2682662A1 (en) 2007-03-30 2008-10-16 Panasonic Electric Works Co., Ltd. Image pickup device, spatial information detecting apparatus using the same device and method for taking out received-light output from the same device
JP5271104B2 (ja) 2009-02-13 2013-08-21 浜松ホトニクス株式会社 リニアイメージセンサ
JP5091886B2 (ja) * 2009-02-13 2012-12-05 浜松ホトニクス株式会社 イメージセンサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140056A (ja) 1984-07-31 1986-02-26 Nippon Telegr & Teleph Corp <Ntt> 半導体リニアイメ−ジセンサ−
JPH043473A (ja) * 1990-04-20 1992-01-08 Canon Inc 光電変換装置
JPH11112006A (ja) * 1997-10-06 1999-04-23 Canon Inc 光電変換装置と密着型イメージセンサ
JPH11298033A (ja) * 1998-03-09 1999-10-29 Integration Assoc Inc 分散型フォトダイオ―ド
JP2002324908A (ja) * 2001-03-15 2002-11-08 Koninkl Philips Electronics Nv 感光半導体コンポーネント
JP2006080306A (ja) * 2004-09-09 2006-03-23 Hamamatsu Photonics Kk ホトダイオードアレイおよび分光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2398052A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096549A1 (ja) * 2010-02-05 2011-08-11 国立大学法人静岡大学 光情報取得素子、光情報取得素子アレイ及びハイブリッド型固体撮像装置
US8907388B2 (en) 2010-02-05 2014-12-09 National University Corporation Shizuoka University Optical-information acquiring element, optical information acquiring element array, and hybrid solid-state imaging device
JP5648964B2 (ja) * 2010-02-05 2015-01-07 国立大学法人静岡大学 光情報取得素子、光情報取得素子アレイ及びハイブリッド型固体撮像装置

Also Published As

Publication number Publication date
JP5271104B2 (ja) 2013-08-21
KR101647525B1 (ko) 2016-08-10
CN102318066A (zh) 2012-01-11
CN102318066B (zh) 2014-07-16
KR20110118122A (ko) 2011-10-28
US20120018834A1 (en) 2012-01-26
EP2398052A4 (en) 2012-09-26
US8907386B2 (en) 2014-12-09
JP2010186935A (ja) 2010-08-26
EP2398052A1 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
US20090267121A1 (en) Solid-state image pickup device
JP5271104B2 (ja) リニアイメージセンサ
KR102670831B1 (ko) 광차단층을 구비한 디지털 엑스레이 검출장치 및 그 제조방법
JP2004096079A (ja) 光電変換装置、画像読取装置および光電変換装置の製造方法
CN110783355B (zh) 一种探测面板、其制作方法及检测装置
JP5091886B2 (ja) イメージセンサ
JP2010245078A (ja) 光電変換装置、エックス線撮像装置
WO2018054154A1 (zh) 光电探测器及光电探测装置
JP4391079B2 (ja) 固体撮像装置及び放射線撮像装置
KR101843284B1 (ko) 디지털 엑스레이 검출장치 및 그 제조방법
JP5452511B2 (ja) 固体撮像装置
JP2010073974A (ja) 光検出素子、光検出装置、及び、光検出機能付き表示装置
JP2009272452A (ja) 固体撮像装置
JP2010093118A (ja) 受光素子および受光装置
KR20180044680A (ko) 디지털 엑스레이 검출장치 및 그 제조방법
JP2005268564A (ja) 固体撮像素子及び固体撮像素子の製造方法
TWI709236B (zh) 具有受光構件的半導體裝置
KR102631651B1 (ko) 필팩터가 향상된 디지털 엑스레이 검출장치
US20240136373A1 (en) Imaging device
CN114616671A (zh) 光检测器
CN115516635A (zh) 光检测装置和光传感器的驱动方法
TWI229409B (en) Circuit layout and semiconductor substrate for photo-sensitive chip
EP1909075A2 (en) Spatial Correlation Photo Sensor
JPS58161474A (ja) 固体撮像装置
JP2005252301A (ja) 半導体装置及びそれを用いたイメージセンサ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007754.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117010055

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010741205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010741205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13148514

Country of ref document: US