WO2010092693A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2010092693A1
WO2010092693A1 PCT/JP2009/052564 JP2009052564W WO2010092693A1 WO 2010092693 A1 WO2010092693 A1 WO 2010092693A1 JP 2009052564 W JP2009052564 W JP 2009052564W WO 2010092693 A1 WO2010092693 A1 WO 2010092693A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflectance
low
solar cell
module
sealing member
Prior art date
Application number
PCT/JP2009/052564
Other languages
English (en)
French (fr)
Inventor
隆 石原
浩昭 森川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP09840013.8A priority Critical patent/EP2398063A4/en
Priority to US13/145,365 priority patent/US20110297207A1/en
Priority to CN2009801567454A priority patent/CN102318079A/zh
Priority to JP2010550393A priority patent/JPWO2010092693A1/ja
Priority to PCT/JP2009/052564 priority patent/WO2010092693A1/ja
Publication of WO2010092693A1 publication Critical patent/WO2010092693A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell module.
  • a general crystalline solar cell in which electrodes are formed on the entire back surface of a substrate for a solar cell is a filler sandwiched between a module glass which is a front surface side sealing member and a back sheet which is a back surface side sealing member.
  • a plurality of crystalline solar cells (hereinafter referred to as cells) are used as solar cell modules (hereinafter referred to as modules) which are separated by a predetermined distance in the in-plane direction of the module glass.
  • a high-reflectance backsheet having a high light reflection characteristic such as white as the backsheet
  • the light that has reached the backsheet is efficiently reflected and re-entered into the cell for effective use of light. That is, the reflected light from the high reflectance back sheet exposed in the area between adjacent cells is reflected again by the module glass and enters the cell again, thereby increasing the light generation current and increasing the generated power of the module.
  • a high-reflectance backsheet having a high light reflection characteristic such as white as the backsheet
  • the use of the high reflectivity backsheet increases the reflected light emitted by the high reflectivity backsheet exposed between the cells and emitted outside through the cells. For this reason, strong light is reflected in a specific direction determined by the installation angle and installation height of the module and the orbit of the sun, and unnecessary light damage is caused to the place where the reflected light is received.
  • this light damage can be suppressed by using a low reflectance backsheet having low light reflection characteristics, and for example, a backsheet having a low reflectance such as black or blue other than white can be used. Since the reflected light on the low reflectance backsheet is smaller than when the high reflectance backsheet is used, the amount of reflected light radiated to the outside through the cells is reduced, and light pollution can be suppressed. However, the amount of light that is reflected by the low-reflectance backsheet and module glass and enters the cell again is reduced. For this reason, when a low reflectance backsheet is used, the output of a solar cell module becomes small compared with the case where a high reflectance backsheet is used.
  • a solar cell having a structure that suppresses carrier recombination on the back surface of the crystalline solar cell by covering a region other than the formation portion of the back electrode on the back surface of the substrate for the solar cell with a passivation film (hereinafter referred to as back surface passivation type solar cell). Called a battery).
  • a film that can suppress the interface state to be low with respect to crystalline silicon such as a silicon oxide film (SiOx), a silicon nitride film (SiN), or a silicon oxynitride film (SiON), is used. Since these films are basically transparent dielectric films, the light reaching the back surface of the solar cell substrate is transmitted to the outside through the passivation film.
  • the back surface passivation type solar cell has a plurality of cells in the filler sandwiched between the module glass and the back sheet.
  • the module is used as a package separated by a predetermined distance in the inward direction.
  • a high-reflectance backsheet with high light reflection characteristics such as white as the backsheet, the light that has reached the backsheet can be efficiently reflected and re-entered into the cell for effective use of light. . That is, the light reflected by the high reflectance back sheet exposed in the area between adjacent cells is reflected again by the module glass and enters the cell again, thereby increasing the light generation current and increasing the generated power of the module. be able to.
  • the light that has reached the backside of the solar cell substrate is transmitted to the outside through the passivation film, so that more reflected light from the back sheet is obtained compared to a general crystalline solar cell.
  • the current generated in the cell can be increased.
  • the recombination of carriers can be suppressed by reducing the interface state between the solar cell substrate and the passivation film, the voltage is also improved.
  • the reflected light on the back surface of the module passes between the cells to the outside, as in the case of a module using a general cell in which electrodes are formed on the entire back surface. There is a problem of causing light pollution by being emitted.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a solar cell module capable of realizing high output and light pollution control while corresponding to the thinning of the solar cell substrate.
  • a solar cell module includes a filler sandwiched between a front-side sealing member and a rear-side sealing member having translucency.
  • a solar cell module in which a plurality of solar cells electrically connected therein are embedded in a space apart in the in-plane direction of the surface side sealing member, and the solar cells are second on one side.
  • a first conductivity type semiconductor substrate having an impurity diffusion layer in which a conductivity type impurity element is diffused, an antireflection film formed on the impurity diffusion layer, and penetrating the antireflection film into the impurity diffusion layer.
  • the sealing member is a high-reflectance portion having a high reflectance in which at least an area corresponding to the solar battery cell has an average reflectance of 50% or more with respect to light having a wavelength in the range of 400 nm to 1200 nm, and is adjacent to the sealing member.
  • any position between the surface of the antireflection film of the solar cell and the back-side sealing member And a low reflectance part having a low reflectance with an average reflectance of less than 50% for light having a wavelength in the range of 400 nm to 1200 nm.
  • the present invention there is an effect that it is possible to obtain a solar cell module capable of realizing high output and light pollution control while corresponding to thinning of the solar cell substrate.
  • FIG. 1 is a cross-sectional view showing the configuration of the solar cell module according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the solar battery cell according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing a configuration of a conventional solar cell module in which the back-side sealing member is composed only of a high reflectance back sheet.
  • FIG. 4 is a cross-sectional view showing a configuration of a conventional solar cell module in which the back-side sealing member is composed only of a low reflectance backsheet.
  • FIG. 5 is sectional drawing which shows the structure of the solar cell module concerning Embodiment 2 of this invention.
  • FIG. 6 is sectional drawing which shows the structure of the solar cell module concerning Embodiment 3 of this invention.
  • FIG. 1 is a cross-sectional view showing the configuration of the solar cell module according to Embodiment 1 of the present invention.
  • a solar cell module 10 (hereinafter referred to as module 10) according to the present embodiment has a configuration (not shown) in which a plurality of back surface passivation type solar cells 1 (hereinafter referred to as cells 1) are electrically connected.
  • FIG. 2 is a cross-sectional view showing a configuration of the cell 1 according to the first embodiment.
  • an n-type impurity diffusion layer 3 is formed by phosphorous diffusion on the light receiving surface side of a semiconductor substrate 2 made of P-type polycrystalline silicon, and an antireflection film made of a silicon nitride film. 4 is formed.
  • the semiconductor substrate 2 which is a substrate for solar cells, a P-type single crystal or polycrystalline silicon substrate can be used.
  • the semiconductor substrate 2 is not limited to this, and an n-type silicon substrate may be used.
  • fine irregularities are formed as a texture structure on the surface of the cell 1 on the light receiving surface side of the semiconductor substrate 2. The micro unevenness increases the area for absorbing light from the outside on the light receiving surface, suppresses the reflectance on the light receiving surface, and has a structure for confining light.
  • a surface electrode 5 electrically connected to the impurity diffusion layer 3 is provided on the light receiving surface side of the semiconductor substrate 2.
  • a grid electrode and a bus electrode are provided, and a plurality of elongated grid electrodes are provided side by side on the light receiving surface side of the semiconductor substrate 2, and the bus electrode electrically connected to the grid electrode is substantially the same as the grid electrode. They are provided so as to be orthogonal to each other, and are respectively electrically connected to the impurity diffusion layer 3 at the bottom portion.
  • the grid electrode and the bus electrode are made of a silver material.
  • a back surface electrode 6 made of an aluminum material is partially provided on the back surface (surface opposite to the light receiving surface) of the semiconductor substrate 2 in the same manner as the front surface electrode 5 (bus electrode). And the area
  • the module 10 is sandwiched between a front surface side sealing member 21 disposed on the front surface side of the module 10 and a high reflectivity back sheet 23 which is a back surface side sealing member disposed on the back surface side of the module 10.
  • a plurality of cells 1 are packaged in a filler (sealing agent) 22 separated by a predetermined distance in the in-plane direction of the module glass 21. Adjacent cells 1 are electrically connected.
  • the front-side sealing member 21 is made of a light-transmitting material, and for example, module glass is used (hereinafter referred to as module glass 21).
  • the filler (sealant) 22 includes a surface-side filler (sealant) 22a that seals the surface side of the cell 1, and a back-side filler (sealant) 22b that seals the back side of the cell 1. And consist of For example, EVA (ethylene vinyl acetate) resin is used for the front side filler (sealant) 22a and the back side filler (sealant) 22b, and the cell 1 is sandwiched between these two EVA resins.
  • EVA ethylene vinyl acetate
  • the high reflectivity backsheet 23 is a high reflectivity portion that exhibits a metallic color such as silver or white, and has high light reflectivity. Further, a low reflectance portion having a low reflectance of light is formed on the surface of the high reflectance backsheet 23 on the module glass 21 side, in a region corresponding to between adjacent cells 1 and an outer peripheral portion of the module 10.
  • a low reflectivity backsheet 24 is provided.
  • the high reflectance means that the average reflectance for light having a wavelength in the range of 400 nm to 1200 nm is 50% or more. Further, the low reflectance means that the average reflectance for light having a wavelength in the range of 400 nm to 1200 nm is less than 50%.
  • the dark color means a color having a low reflectance of light.
  • the high reflectivity back sheet 23 is a high reflectivity back sheet having both high reflectivity and insulation, which is formed by adding a white pigment to an insulating resin or the like. Further, by covering the metal foil with an insulating resin or the like, a high reflectivity back sheet having both high reflectivity and insulating properties can be configured.
  • the low reflectivity backsheet 24 is on the module glass 21 side of the high reflectivity backsheet 23, and the area corresponding to the adjacent cells 1 and the area of the outer peripheral portion of the module 10 are dark. It is the coating part formed by being painted.
  • the low reflectance backsheet 24 may be formed by adding a dark pigment partially to a predetermined position of the high reflectance backsheet 23.
  • a low reflectance material portion for example, a low reflectance backsheet may be laminated at a predetermined position on the high reflectance backsheet 23.
  • the module 10 packaged with two cells 1 is shown, but the number of cells 1 is not limited to this and may be configured with a large number of cells 1. it can.
  • the incident light 31 which is sunlight and directly irradiated to the cell 1 is reflected by the high reflectivity back sheet 23 after passing through the cell 1 and becomes reflected light 32, and again.
  • the light enters the cell 1. Further, a part of the incident light 31 is reflected by the surface of the antireflection film 4 to become reflected light 33, further reflected by the module glass 21 and incident again on the cell 1 (not shown), and the module glass as it is. And light (not shown) going out through 21. A part of the incident light 31 is reflected by the surface of the passivation film 7 to become reflected light 34, and is incident on the cell 1 again.
  • the light reflected by the low reflectance back sheet 24 and further reflected by the module glass 21 and entering the cell 1 again is reduced.
  • the light reaching the back surface of the semiconductor substrate 2 is transmitted to the outside through the passivation film 7.
  • the generated current can be greatly increased by the reflected light 32 on the high reflectivity backsheet 23 immediately below the back surface of the cell 1 occupying most of the area of the module 10.
  • the voltage is also improved. Therefore, high output can be obtained in the module 10.
  • the back electrode 6 is partially formed without being formed on the entire surface of the semiconductor substrate 2, so that warpage due to a difference in thermal expansion coefficient between the semiconductor substrate 2 and the back electrode 6 is generated. Can be suppressed.
  • FIG. 3 shows a conventional module in which the back-side sealing member is composed of only the high-reflectance backsheet 23, is the surface on the module glass 21 side, and corresponds to the area between the adjacent cells 1 and the module 10
  • FIG. 3 shows the structure of the module in which the low reflectance back sheet
  • the incident light 35 that is sunlight and directly irradiated between the adjacent cells 1 is reflected by the high-reflectance backsheet 23 to become reflected light 36a.
  • the reflected light 36a is reflected light from the high reflectance back sheet 23 since the reflected light 36a is reflected light from the high reflectance back sheet 23, most of the reflected light 36a is not absorbed and more reflected light 37 is radiated to the outside through the cells 1, and unnecessary light to the outside. Cause harm. A part of the reflected light 36 a is reflected by the surface of the module glass 21 to become reflected light 38 and enters the cell 1 again.
  • FIG. 4 shows a conventional module in which the back-side sealing member is composed of only the low-reflectance backsheet 24 and the high-reflectance backsheet 23 is not provided in the area corresponding to the backside of the cell 1.
  • FIG. 4 In this case, most of the incident light 35, which is sunlight and directly irradiated between the adjacent cells 1, is absorbed by the low reflectance backsheet 24, and the reflected light 36 becomes slight. Thereby, the reflected light 36b radiated
  • the incident light 31 that is sunlight and directly irradiates the cell 1 is reflected by the low reflectance backsheet 24 after passing through the cell 1 and becomes reflected light 32a. Is absorbed and the amount of reflected light 36 becomes small, which causes a decrease in output and prevents an increase in output.
  • an n-type impurity diffusion layer 3 is formed by phosphorous diffusion on the light-receiving surface side of a p-type polycrystalline silicon substrate that is the semiconductor substrate 2.
  • the n-type impurity diffusion layer 3 formed on the end surface and the back surface is removed by, for example, etching.
  • an antireflection film 4 is formed on the impurity diffusion layer 3.
  • the surface electrode 5 is formed so as to be electrically connected to the n-type impurity diffusion layer 3.
  • Various methods can be used as a method for obtaining conduction.
  • the surface electrode 5 can be formed by fire-through generally used in the mass production process of solar cells.
  • a passivation film 7 is formed on the back surface portion of the semiconductor substrate 2 where the p-type polycrystalline silicon is exposed.
  • the back electrode 6 is formed so as to be electrically connected to the p-type polycrystalline silicon.
  • Various methods can be used for the conduction, but for example, it can be formed by fire-through generally used when the surface electrode 5 is formed in a mass production process of a solar cell.
  • the back surface electrode 6 can be formed by printing after removing the passivation film 7 of the portion where the back surface electrode 6 is to be formed by laser.
  • the front surface electrode 5 and the back surface electrode 6 are formed as separate steps. However, forming the front and back surface electrodes simultaneously by, for example, fire-through makes the process more mass-productive.
  • a method for manufacturing the module 10 will be described.
  • a front surface side filler (sealing agent) 22a On the module glass 21, a front surface side filler (sealing agent) 22a, a plurality of cells 1 interconnected to extract power to the outside, a back surface side filler (sealing agent) 22b, a high reflectance back
  • the sheets 23 are stacked in this order, they are heated and pressed in a vacuum, for example.
  • the module glass 21 to the high reflectance back sheet 23 are integrated by the front surface side filler (sealing agent) 22a and the back surface side filler (sealing agent) 22b, and the module 10 is completed.
  • the low reflectance backsheet 24 which is a low reflectance part is previously formed in the area
  • the low-reflectance backsheet 24 is on the module glass 21 side of the high-reflectivity backsheet 23, and the area corresponding to the space between the adjacent cells 1 and the area of the outer periphery of the module 10 are painted in a dark color and dried. To form.
  • the light transmitted through the cell 1 is reflected by the high-reflectance backsheet 23 and incident again on the cell 1, thereby increasing the generated current of the cell 1.
  • the output can be increased, and at the same time, the light incident between the adjacent cells 1 is reflected by the low-reflectance backsheet 24, thereby suppressing the occurrence of unnecessary light reflection outside the module 10. it can.
  • the back electrode 6 is partially formed without being formed on the entire surface of the semiconductor substrate 2, so that no warpage due to the difference in thermal expansion coefficient between the semiconductor substrate 2 and the back electrode 6 occurs. . Therefore, according to the module 10 concerning this Embodiment, the solar cell module which implement
  • FIG. FIG. 5 is a cross-sectional view showing the configuration of the module 40 according to the second embodiment of the present invention. Similar to the module 10, the module 40 according to the present embodiment has a configuration (not shown) in which a plurality of cells 1 are directly electrically connected. In FIG. 5, the same members as those in FIG.
  • the module 40 according to the second embodiment is different from the module 10 according to the first embodiment in that the low reflectivity portion 41 having a low reflectivity is the surface in the area between the adjacent cells 1 and the outer peripheral area of the module 10. It is that it is arrange
  • the low-reflectance sheet 41 for example, a sheet darkened by mixing a dark pigment into a filler (sealing agent) 22 made of transparent EVA resin can be used.
  • the low reflectance part 41 is not limited to this, If it has a low reflectance and can arrange
  • the incident light 31 which is sunlight and directly irradiated to the cell 1 is reflected by the high reflectivity backsheet 23 after passing through the cell 1 to become reflected light 32, and again.
  • the light enters the cell 1. Further, a part of the incident light 31 is reflected by the surface of the antireflection film 4 to become reflected light 33, further reflected by the module glass 21 and incident again on the cell 1 (not shown), and the module glass as it is. And light (not shown) going out through 21. A part of the incident light 31 is reflected by the surface of the passivation film 7 to become reflected light 34, and is incident on the cell 1 again.
  • the light reflected by the low reflectivity portion 41 and further reflected by the module glass 21 and entering the cell 1 again is reduced.
  • the light reaching the back surface of the semiconductor substrate 2 is transmitted to the outside through the passivation film 7.
  • the generated current can be significantly increased by the reflected light 32 on the high reflectivity backsheet 23 immediately below the back surface of the cell 1 occupying most of the area of the module 40.
  • the voltage is also improved. Therefore, high output can be obtained in the module 40.
  • the back electrode 6 is partially formed without being formed on the entire surface of the semiconductor substrate 2, so that warpage due to a difference in thermal expansion coefficient between the semiconductor substrate 2 and the back electrode 6 is generated. Can be suppressed.
  • a method for manufacturing the module 40 will be described.
  • the steps after the manufacturing of the cell 1 will be described.
  • a surface side filler (sealing agent) 22a and a plurality of cells 1 interconnected to take out electric power are stacked in this order.
  • a dark pigment is disposed in a region between the adjacent cells 1, and further, the back surface side filler (sealing agent) 22b and the high reflectance back sheet 23 are arranged. After stacking in this order, these are heated and pressed in a vacuum, for example.
  • the module glass 21 to the high reflectance back sheet 23 are integrated by the front surface side filler (sealing agent) 22a and the back surface side filler (sealing agent) 22b, and the module 10 is completed. Further, a low reflectance portion 41 is formed by a dark pigment between the front surface side filler (sealing agent) 22a and the back surface side filler (sealing agent) 22b in the region between the adjacent cells 1. .
  • the light transmitted through the cell 1 is reflected by the high-reflectance backsheet 23 and is incident again on the cell 1, thereby increasing the generated current of the cell 1.
  • the output can be increased at the same time, and at the same time, the light incident between the adjacent cells 1 is reflected by the low reflectivity portion 41, thereby suppressing the occurrence of unnecessary light reflection to the outside of the module 10.
  • the back electrode 6 is partially formed without being formed on the entire surface of the semiconductor substrate 2, so that warpage due to a difference in thermal expansion coefficient between the semiconductor substrate 2 and the back electrode 6 is generated. Can be suppressed. Therefore, according to the module 40 concerning this Embodiment, the solar cell module which implement
  • FIG. 6 is a cross-sectional view showing a configuration of a module 50 according to the third embodiment of the present invention. Similar to the module 10, the module 50 according to the present embodiment has a configuration (not shown) in which a plurality of cells 1 are electrically connected directly. In FIG. 6, the same members as those in FIG.
  • the module 50 according to the third embodiment is different from the module 10 according to the first embodiment in that the low reflectance sheet 51 which is a low reflectance portion having a low reflectance corresponds to a region between adjacent cells 1. That is, it is arranged across the area. Also, in the outer peripheral region of the module 10, the back surface of the passivation film 7 and the front surface of the low reflectivity sheet 51 are disposed in the same position in the thickness direction of the module 10.
  • the low reflectivity sheet 51 for example, a sheet made of the same material as the high reflectivity back sheet 23 and painted in a dark color can be used. In addition, it is also possible to use a material that is darkened by mixing a dark pigment into a sheet of the same material as the filler (sealing agent) 22. Further, the arrangement position of the low reflectance sheet 51 is not limited to this, and the area corresponding to the area between the adjacent cells 1 and the outer peripheral area of the module 10, which is the passivation film 7 and the high reflectance backsheet. What is necessary is just to arrange
  • the incident light 31 which is sunlight and directly irradiated to the cell 1 is reflected by the high reflectivity backsheet 23 after passing through the cell 1 to become reflected light 32, and again.
  • the light enters the cell 1. Further, a part of the incident light 31 is reflected by the surface of the antireflection film 4 to become reflected light 33, further reflected by the module glass 21 and incident again on the cell 1 (not shown), and the module glass as it is. And light (not shown) going out through 21. A part of the incident light 31 is reflected by the surface of the passivation film 7 to become reflected light 34, and is incident on the cell 1 again.
  • the light reflected by the low reflectivity sheet 51 and further reflected by the module glass 21 and entering the cell 1 again is reduced.
  • the light reaching the back surface of the semiconductor substrate 2 is transmitted to the outside through the passivation film 7.
  • the generated current can be significantly increased by the reflected light 32 on the high reflectivity backsheet 23 immediately below the back surface of the cell 1 occupying most of the area of the module 50.
  • the voltage is also improved. Therefore, high output can be obtained in the module 50.
  • the back electrode 6 is partially formed without being formed on the entire surface of the semiconductor substrate 2, thereby causing warpage due to the difference in thermal expansion coefficient between the semiconductor substrate 2 and the back electrode 6. Can be suppressed.
  • a method for manufacturing the module 50 will be described.
  • the steps after the manufacturing of the cell 1 will be described.
  • a surface side filler (sealing agent) 22a and a plurality of cells 1 interconnected to take out electric power are stacked in this order.
  • the low reflectance sheet 51 is disposed across the adjacent cells 1 (passivation film 7).
  • the low reflectance sheet 51 is also disposed in the area that becomes the outer peripheral area of the module 10 so as to be placed on the cell 1 (passivation film 7).
  • the back surface side filler (sealing agent) 22b and the high reflectance back sheet 23 are stacked in this order, these are heated and pressed in a vacuum, for example.
  • the module glass 21 to the high reflectance back sheet 23 are integrated by the front surface side filler (sealing agent) 22a and the back surface side filler (sealing agent) 22b, and the module 10 is completed.
  • the light transmitted through the cell 1 is reflected by the high-reflectance back sheet 23 and is incident on the cell 1 again to increase the generated current of the cell 1.
  • the output can be increased at the same time, and at the same time, the light incident between the adjacent cells 1 is reflected by the low reflectivity sheet 51, thereby suppressing the occurrence of unnecessary light reflection to the outside of the module 50.
  • the back electrode 6 is partially formed without being formed on the entire surface of the semiconductor substrate 2, so that warpage due to the difference in thermal expansion coefficient between the semiconductor substrate 2 and the back electrode 6 can be generated. Can be suppressed. Therefore, according to the module 50 concerning this Embodiment, the solar cell module which implement
  • the solar cell module according to the present invention is useful for thinning the solar cell substrate.

Landscapes

  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 透光性を有する表面側封止部材と裏面側封止部材との間に狭持された充填材の中に電気的に接続された複数の太陽電池セルが表面側封止部材の面内方向において離間して埋設されてなる太陽電池モジュールであって、裏面側封止部材は、少なくとも太陽電池セルに対応する領域が、400nm~1200nmの範囲の波長の光に対する平均の反射率が50%以上である高反射率を有する高反射率部とされ、隣接する太陽電池セル間の領域または太陽電池モジュールの厚み方向においてこの領域に対応した領域には、太陽電池セルの反射防止膜の表面と裏面側封止部材との間のいずれかの位置に、400nm~1200nmの範囲の波長の光に対する平均の反射率が50%未満である低反射率を有する低反射率部を備える。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関するものである。
 太陽電池等の光起電力装置の性能向上には、光起電力装置に入射した光の有効利用が重要である。特に結晶系太陽電池においては、コスト低減を目的とした太陽電池用基板の薄肉化の推進により、従来以上に結晶系太陽電池の裏面側に到達する光は増大する。そこで、この結晶系太陽電池の裏面側まで透過した光を有効に利用することで、結晶系太陽電池の性能向上を図ることができる。
 太陽電池用基板の裏面全面に電極を形成した一般的な結晶系太陽電池は、表面側封止部材であるモジュールガラスと裏面側封止部材であるバックシートとの間に狭持された充填材の中に複数の結晶系太陽電池セル(以下、セルと呼ぶ)をモジュールガラスの面内方向において所定の距離だけ離間させてパッケージとした太陽電池モジュール(以下、モジュールと呼ぶ)として使用される。そして、バックシートとして白色などの光反射特性の高い高反射率バックシートを用いることで、バックシートに到達した光を効率良く反射させてセルに再入射させて光の有効利用を図っている。すなわち、隣接するセル間の領域に露出した高反射率バックシートによる反射光がモジュールガラスで再度反射して再度セルに入射することにより、光発生電流が増加し、モジュールの発生電力を増大させることができる(例えば、特許文献1参照)。
 しかし、高反射率バックシートを用いることにより、セル間に露出した高反射率バックシートによる反射光であってセル間を通って外部へ放射される反射光も増大する。このため、モジュールの設置角度や設置高さと太陽の軌道とにより決まる特定の方向に強い光を反射することになり、その反射光を受ける場所に不要な光害をもたらす。
 そこで、光反射特性の低い低反射率バックシートを用いることで、この光害を抑制することができ、例えば白色以外の黒色、青色など低反射率の色のバックシートを用いることができる。低反射率バックシートでの反射光は高反射率バックシートの使用時と比べると小さくなるため、セル間を通って外部へ放射される反射光も少なくなり、光害を抑制することができる。しかし、低反射率バックシートおよびモジュールガラスで反射して再度セルに入射する光も少なくなる。このため、低反射率バックシートを用いた場合は、高反射率バックシートを使用した場合と比べると太陽電池モジュールの出力が小さくなる。
特開2002-100788号公報
 ところで、上記のような一般的な結晶系太陽電池では、裏面電極を太陽電池用基板の裏面の全面に形成しているため、太陽電池用基板の薄肉化を進めると、太陽電池用基板の材料と裏面電極の材料との熱膨張係数の違いから発生する応力により、結晶系太陽電池に反りが生じる。この反りは、後のアセンブリ工程で結晶系太陽電池の割れやクラックを引き起こす原因となり、大きな問題となっている。特に、材料消費を抑制するために太陽電池の薄型化が課題となっている結晶シリコン系太陽電池において大きな問題となっている。
 このため、裏面電極を太陽電池用基板の全面に形成せずに部分的に形成することで上述した熱膨張係数の違いから発生する応力を低減する方法の開発が進められている。例えば、太陽電池用基板の裏面における裏面電極の形成部以外の領域をパッシベーション膜で覆うことで、結晶系太陽電池の裏面でのキャリア再結合を抑制する構造の太陽電池(以下、裏面パッシベーション型太陽電池と呼ぶ)が提案されている。パッシベーション膜としては、シリコン酸化膜(SiOx)、シリコン窒化膜(SiN)、シリコン酸窒化膜(SiON)など、結晶シリコンに対して界面準位を低く抑制できる膜が用いられる。これらの膜は、基本的に透明な誘電体膜であるため、太陽電池用基板の裏面に到達した光は、このパッシベーション膜を通して外部に透過していく。
 また、裏面パッシベーション型太陽電池も、裏面全面に電極を形成した結晶系太陽電池と同様に、モジュールガラスとバックシートとの間に狭持された充填材の中に複数のセルをモジュールガラスの面内方向において所定の距離だけ離間させてパッケージとしたモジュールとして使用される。そして、バックシートとして白色などの光反射特性の高い高反射率バックシートを用いることで、バックシートに到達した光を効率良く反射させてセルに再入射させて光の有効利用を図ることができる。すなわち、隣接するセル間の領域に露出した高反射率バックシートによる反射光がモジュールガラスで再度反射して再度セルに入射することにより、光発生電流を増加させて、モジュールの発生電力を増大させることができる。
 ここで、裏面パッシベーション型太陽電池では、太陽電池用基板の裏面に到達した光がパッシベーション膜を通して外部に透過していくため、一般の結晶系太陽電池に比べてバックシートによる反射光を多く得ることができ、セルでの発生電流を大きくすることができる。また、太陽電池用基板とパッシベーション膜との間の界面準位を低減することでキャリアの再結合を抑制できるため電圧も向上する。
 しかし、裏面パッシベーション型太陽電池においては、セル間の領域ではなく、モジュールの大部分の面積を占めるセルの裏面の直下におけるバックシートでの反射光による発生電流の大幅な増大を期待しているため、バックシートとして全面に低反射率バックシートを用いることは致命的な出力減少を引き起こし、高出力化が図れない、という問題がある。
 一方、高反射率バックシートを用いた場合には、裏面全面に電極を形成した一般的なセルを用いたモジュールの場合と同様に、モジュールの裏面での反射光がセル間を通って外部へ放射されることにより光害を引き起こす、という問題がある。
 したがって、裏面パッシベーション型太陽電池モジュールにおいては、高出力化と光害抑制とを両立させることは困難であった。
 本発明は、上記に鑑みてなされたものであって、太陽電池用基板の薄肉化に対応しつつ高出力化と光害抑制とを実現可能な太陽電池モジュールを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池モジュールは、透光性を有する表面側封止部材と裏面側封止部材との間に狭持された充填材の中に電気的に接続された複数の太陽電池セルが前記表面側封止部材の面内方向において離間して埋設されてなる太陽電池モジュールであって、前記太陽電池セルは、一面側に第2導電型の不純物元素が拡散された不純物拡散層を有する第1導電型の半導体基板と、前記不純物拡散層上に形成された反射防止膜と、前記反射防止膜を貫通して前記不純物拡散層に電気的に接続する第1電極と、前記半導体基板の他面側に形成されたパッシベーション膜と、前記パッシベーション膜に埋設されて前記半導体基板の他面側に電気的に接続する第2電極と、を備えてなり、前記裏面側封止部材は、少なくとも前記太陽電池セルに対応する領域が、400nm~1200nmの範囲の波長の光に対する平均の反射率が50%以上である高反射率を有する高反射率部とされ、隣接する前記太陽電池セル間の領域または前記太陽電池モジュールの厚み方向においてこの領域に対応した領域には、前記太陽電池セルの反射防止膜の表面と前記裏面側封止部材との間のいずれかの位置に、400nm~1200nmの範囲の波長の光に対する平均の反射率が50%未満である低反射率を有する低反射率部を備えること、を特徴とする。
 本発明によれば、太陽電池用基板の薄肉化に対応しつつ高出力化と光害抑制とを実現可能な太陽電池モジュールが得られる、という効果を奏する。
図1は、本発明の実施の形態1にかかる太陽電池モジュールの構成を示す断面図である。 図2は、本実施の形態1にかかる太陽電池セルの構成を示す断面図である。 図3は、裏面側封止部材が高反射率バックシートのみからなる従来の太陽電池モジュールの構成を示す断面図である。 図4は、裏面側封止部材が低反射率バックシートのみからなる従来の太陽電池モジュールの構成を示す断面図である。 図5は、本発明の実施の形態2にかかる太陽電池モジュールの構成を示す断面図である。 図6は、本発明の実施の形態3にかかる太陽電池モジュールの構成を示す断面図である。
符号の説明
 1 裏面パッシベーション型太陽電池セル(セル)
 2 半導体基板
 3 不純物拡散層
 4 反射防止膜
 5 表面電極
 6 裏面電極
 7 パッシベーション膜
 10 太陽電池モジュール(モジュール)
 21 表面側封止部材(モジュールガラス)
 22 充填材(封止剤)
 22a 表面側充填材(封止剤)
 22b 裏面側充填材(封止剤)
 23 高反射率バックシート
 24 低反射率バックシート
 31 入射光
 32 反射光
 32a 反射光
 33 反射光
 34 反射光
 35 入射光
 36 反射光
 36a 反射光
 36b 反射光
 37 反射光
 38 反射光
 40 太陽電池モジュール(モジュール)
 41 低反射率シート
 41 低反射率部
 50 太陽電池モジュール(モジュール)
 51 低反射率シート
 以下に、本発明にかかる太陽電池モジュールの実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述により限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
 図1は、本発明の実施の形態1にかかる太陽電池モジュールの構成を示す断面図である。本実施の形態にかかる太陽電池モジュール10(以下、モジュール10と呼ぶ)は、複数の裏面パッシベーション型太陽電池セル1(以下、セル1と呼ぶ)が電気的に接続された構成(図示せず)を有する。図2は、本実施の形態1にかかるセル1の構成を示す断面図である。
 まず、図2を参照してセル1の構成を説明する。本実施の形態にかかるセル1においては、P型多結晶シリコンからなる半導体基板2の受光面側にリン拡散によってn型の不純物拡散層3が形成されているとともにシリコン窒化膜よりなる反射防止膜4が形成されている。太陽電池用基板である半導体基板2としてはP型の単結晶もしくは多結晶のシリコン基板を用いることができる。なお、半導体基板2はこれに限定されるものではなく、n型のシリコン基板を用いてもよい。また、セル1の半導体基板2の受光面側の表面には、テクスチャー構造として微小凹凸が形成されている。微小凹凸は、受光面において外部からの光を吸収する面積を増加し、受光面における反射率を抑え、光を閉じ込める構造となっている。
 また、半導体基板2の受光面側には、不純物拡散層3に電気的に接続した表面電極5が設けられている。表面電極5としては、グリッド電極とバス電極とが設けられ、半導体基板2の受光面側に長尺細長のグリッド電極が複数並べて設けられ、このグリッド電極と導通するバス電極が該グリッド電極と略直交するように設けられており、それぞれ底面部において不純物拡散層3に電気的に接続している。グリッド電極およびバス電極は銀材料により構成されている。一方、半導体基板2の裏面(受光面と反対側の面)には、アルミニウム材料からなる裏面電極6が表面電極5(バス電極)と同様に部分的に設けられている。そして、半導体基板2の裏面における裏面電極6の形成されていない領域は、透光性を有するパッシベーション膜7で覆われている。
 次に、図1を参照してモジュール10の構成を説明する。モジュール10は、モジュール10の表面側に配置された表面側封止部材21とモジュール10の裏面側に配置された裏面側封止部材である高反射率バックシート23との間に狭持された充填材(封止剤)22の中に、複数のセル1がモジュールガラス21の面内方向において所定の距離だけ離間してパッケージされている。隣接するセル1同士は、電気的に接続されている。
 表面側封止部材21は、透光性を有する材料からなり、例えばモジュールガラスが用いられる(以下、モジュールガラス21と呼ぶ)。充填材(封止剤)22は、セル1の表面側を封止する表面側充填材(封止剤)22aと、セル1の裏面側を封止する裏面側充填材(封止剤)22bと、からなる。表面側充填材(封止剤)22aおよび裏面側充填材(封止剤)22bは、例えばEVA(エチレンビニルアセテート)樹脂が用いられ、これら2枚のEVA樹脂によりセル1を挟み込む。
 高反射率バックシート23は、銀色などの金属色または白色などを呈し、光の高反射率を有する高反射率部である。また、高反射率バックシート23のモジュールガラス21側の表面であって、隣接するセル1間に対応する領域およびモジュール10の外周部の領域には、光の低反射率を有する低反射率部である低反射率バックシート24が設けられている。ここで、高反射率とは、400nm~1200nmの範囲の波長の光に対する平均の反射率が50%以上であることを意味する。また、低反射率とは、400nm~1200nmの範囲の波長の光に対する平均の反射率が50%未満であることを意味する。また、暗色とは、光の反射率が低反射率である色を意味する。
 本実施の形態では、高反射率バックシート23は、絶縁樹脂等に白色顔料を添加することにより形成した、高反射率と絶縁性とを兼ね備えた高反射率バックシートとされる。また、金属箔を絶縁樹脂等で覆うことにより、高反射率と絶縁性とを兼ね備えた高反射率バックシートを構成することもできる。
 また、本実施の形態では、低反射率バックシート24は、高反射率バックシート23のモジュールガラス21側であって、隣接するセル1間に対応する領域およびモジュール10の外周部の領域が暗色に塗装されることにより形成された塗装部である。また、低反射率バックシート24は、高反射率バックシート23の所定の位置に部分的に暗色の顔料を添加することにより形成されてもよい。また、高反射率バックシート23上の所定の位置に低反射率材料部、例えば低反射率バックシートを積層してもよい。
 なお、図1においては、2つのセル1を備えてパッケージされたモジュール10を示しているが、セル1の数量はこれに限定されるものではなく、多数のセル1を備えて構成することができる。
 以上のように構成されたモジュール10においては、太陽光であってセル1に直接照射した入射光31は、セル1を透過した後に高反射率バックシート23で反射して反射光32となり、再度セル1に入射する。また、入射光31の一部は、反射防止膜4の表面で反射して反射光33となり、さらにモジュールガラス21で反射して再度セル1に入射する光(図示せず)と、そのままモジュールガラス21を通って外部に出て行く光(図示せず)と、に分かれる。また、入射光31の一部は、パッシベーション膜7の表面で反射して反射光34となり、再度セル1に入射する。
 また、太陽光であって隣接するセル1間に直接照射した入射光35は、低反射率バックシート24でそのほとんどが吸収され、反射光36はわずかとなる。これにより、セル1間を通って外部へ放射される反射光36が少なくなり、外部への不要な光害を抑制することができる。
 一方、低反射率バックシート24で反射し、さらにモジュールガラス21で反射して再度セル1に入射する光も少なくなる。しかし、セル1では半導体基板2の裏面に到達した光がパッシベーション膜7を通して外部に透過していく。そして、モジュール10の大部分の面積を占めるセル1の裏面直下での高反射率バックシート23での反射光32により、発生電流の大幅な増大を図ることができる。また、半導体基板2とパッシベーション膜7との間の界面準位を低減することでキャリアの再結合を抑制できるため電圧も向上する。したがって、モジュール10においては、高出力を得ることができる。
 また、モジュール10においては、裏面電極6を半導体基板2の全面に形成せずに部分的に形成することで、半導体基板2と裏面電極6との熱膨張係数の差に起因した反りの発生が抑制できる。
 図3は、従来のモジュールであって、裏面側封止部材が高反射率バックシート23のみからなり、モジュールガラス21側の表面であって、隣接するセル1間に対応する領域およびモジュール10の外周部の領域に低反射率部である低反射率バックシート24が設けられていないモジュールの構成を示す断面図である。この場合は、太陽光であって隣接するセル1間に直接照射した入射光35は、高反射率バックシート23で反射して反射光36aとなる。反射光36aは、高反射率バックシート23での反射光であるので、そのほとんどが吸収されず、セル1間を通って外部へ放射される反射光37も多くなり、外部への不要な光害を引き起こす。なお、反射光36aの一部は、モジュールガラス21の表面で反射して反射光38となり、再度セル1に入射する。
 図4は、従来のモジュールであって、裏面側封止部材が低反射率バックシート24のみからなり、セル1の裏面に対応する領域に高反射率バックシート23が設けられていないモジュールの構成を示す断面図である。この場合は、太陽光であって隣接するセル1間に直接照射した入射光35は、低反射率バックシート24でそのほとんどが吸収され、反射光36はわずかとなる。これにより、セル1間を通って外部へ放射される反射光36bが少なくなり、外部への不要な光害を抑制することができる。
 しかし、太陽光であってセル1に直接照射した入射光31は、セル1を透過した後に低反射率バックシート24で反射して反射光32aとなるが、低反射率バックシート24でそのほとんどが吸収され、反射光36はわずかとなるため、出力減少を引き起こし、高出力化が図れない。
 次に、モジュール10の製造方法について説明する。まず、セル1の製造方法について説明する。まず、半導体基板2であるp型の多結晶シリコン基板の受光面側にリン拡散によってn型の不純物拡散層3を形成する。次に、端面および裏面に形成されたn型の不純物拡散層3を例えばエッチングにより除去する。次に、不純物拡散層3上に反射防止膜4を形成する。その後、表面電極5をn型の不純物拡散層3と導通を取るように形成する。導通の取り方としては様々な手法を用いることができるが、例えば太陽電池の量産工程で表面電極5を形成する場合に一般的に用いられているファイヤスルーによって形成することができる。
 次に、p型の多結晶シリコンが露出した半導体基板2の裏面部分にパッシベーション膜7を形成する。その後、裏面電極6をp型多結晶シリコンと導通を取るように形成する。導通の取り方は様々な手法を用いることができるが、例えば太陽電池の量産工程で表面電極5を形成する場合に一般的に用いられているファイヤスルーによって形成することができる。また、その他にも、例えば裏面電極6を形成する部分のパッシベーション膜7をレーザにより除去加工した後、裏面電極6を印刷して形成することもできる。なお,ここでは表面電極5と裏面電極6を別工程として形成したが,表裏面電極を同時に例えばファイヤスルーにより形成することで,より量産性の高いプロセスとなる。
 次に、モジュール10の製造方法について説明する。モジュールガラス21上に、表面側充填材(封止剤)22a、外部に電力を取り出すために相互接続を行った複数枚のセル1、裏面側充填材(封止剤)22b、高反射率バックシート23をこの順で重ねた後、これらを例えば真空中で加熱プレスする。これにより、モジュールガラス21から高反射率バックシート23までが表面側充填材(封止剤)22aおよび裏面側充填材(封止剤)22bにより一体化し、モジュール10が完成する。
 なお、高反射率バックシート23には、隣接するセル1間に対応する領域およびモジュール10の外周部の領域に、予め低反射率部である低反射率バックシート24を形成しておく。ここでは、低反射率バックシート24は、高反射率バックシート23のモジュールガラス21側であって、隣接するセル1間に対応する領域およびモジュール10の外周部の領域を暗色に塗装し、乾燥させることにより形成する。
 上述したように、本実施の形態にかかるモジュール10によれば、セル1を透過した光を高反射率バックシート23で反射させてセル1に再度入射させることによりセル1の発生電流を増加させて出力を増大させることができると同時に、隣り合うセル1間に入射した光を低反射率バックシート24で反射させることにより、モジュール10の外部への不要な光反射の発生を抑制することができる。また、モジュール10においては、裏面電極6を半導体基板2の全面に形成せずに部分的に形成することで、半導体基板2と裏面電極6との熱膨張係数の差に起因した反りが発生しない。したがって、本実施の形態にかかるモジュール10によれば、太陽電池の高出力化、薄型化および低光害を実現した太陽電池モジュールが得られる。
実施の形態2.
 図5は、本発明の実施の形態2にかかるモジュール40の構成を示す断面図である。本実施の形態にかかるモジュール40は、モジュール10と同様に、複数のセル1が電気的に直接接続された構成(図示せず)を有する。なお、図5においては、図1と同じ部材については同じ符号を付すことで詳細な説明は省略する。
 実施の形態2にかかるモジュール40が実施の形態1にかかるモジュール10と異なる点は、低反射率を有する低反射率部41が、隣接するセル1間の領域およびモジュール10の外周領域において、表面側充填材(封止剤)22aと裏面側充填材(封止剤)22bとの間に配置されていることである。低反射率シート41としては、例えば透明なEVA樹脂からなる充填材(封止剤)22に暗色の顔料を混入させることにより暗色化したものを使用することができる。なお、低反射率部41はこれに限定されることはなく、低反射率を有して隣接するセル1間に配置できるものであればEVA樹脂に限らない。
 以上のように構成されたモジュール40においては、太陽光であってセル1に直接照射した入射光31は、セル1を透過した後に高反射率バックシート23で反射して反射光32となり、再度セル1に入射する。また、入射光31の一部は、反射防止膜4の表面で反射して反射光33となり、さらにモジュールガラス21で反射して再度セル1に入射する光(図示せず)と、そのままモジュールガラス21を通って外部に出て行く光(図示せず)と、に分かれる。また、入射光31の一部は、パッシベーション膜7の表面で反射して反射光34となり、再度セル1に入射する。
 また、太陽光であって隣接するセル1間に直接照射した入射光35は、隣接するセル1間の領域に配置された低反射率部41でそのほとんどが吸収され、反射光36はわずかとなる。これにより、セル1間を通って外部へ放射される反射光36が少なくなり、外部への不要な光害を抑制することができる。
 一方、低反射率部41で反射し、さらにモジュールガラス21で反射して再度セル1に入射する光も少なくなる。しかし、セル1では半導体基板2の裏面に到達した光がパッシベーション膜7を通して外部に透過していく。そして、モジュール40の大部分の面積を占めるセル1の裏面直下での高反射率バックシート23での反射光32により、発生電流の大幅な増大を図ることができる。また、半導体基板2とパッシベーション膜7との間の界面準位を低減することでキャリアの再結合を抑制できるため電圧も向上する。したがって、モジュール40においては、高出力を得ることができる。
 また、モジュール40においては、裏面電極6を半導体基板2の全面に形成せずに部分的に形成することで、半導体基板2と裏面電極6との熱膨張係数の差に起因した反りの発生が抑制できる。
 次に、モジュール40の製造方法について説明する。セル1の製造方法については、実施の形態1を参照することとし、ここではセル1作製後の工程について説明する。まず、モジュールガラス21上に、表面側充填材(封止剤)22a、外部に電力を取り出すために相互接続を行った複数枚のセル1をこの順で重ねる。次に、表面側充填材(封止剤)22a上における、隣接するセル1間の領域に暗色の顔料を配置し、さらに裏面側充填材(封止剤)22b、高反射率バックシート23をこの順で重ねた後、これらを例えば真空中で加熱プレスする。これにより、モジュールガラス21から高反射率バックシート23までが表面側充填材(封止剤)22aおよび裏面側充填材(封止剤)22bにより一体化し、モジュール10が完成する。また、隣接するセル1間の領域における表面側充填材(封止剤)22aと裏面側充填材(封止剤)22bとの間には、暗色の顔料により低反射率部41が形成される。
 上述したように、本実施の形態にかかるモジュール40によれば、セル1を透過した光を高反射率バックシート23で反射させてセル1に再度入射させることによりセル1の発生電流を増加させて出力を増大させることができると同時に、隣り合うセル1間に入射した光を低反射率部41で反射させることにより、モジュール10の外部への不要な光反射の発生を抑制することができる。また、モジュール40においては、裏面電極6を半導体基板2の全面に形成せずに部分的に形成することで、半導体基板2と裏面電極6との熱膨張係数の差に起因した反りの発生が抑制できる。したがって、本実施の形態にかかるモジュール40によれば、太陽電池の高出力化、薄型化および低光害を実現した太陽電池モジュールが得られる。
実施の形態3.
 図6は、本発明の実施の形態3にかかるモジュール50の構成を示す断面図である。本実施の形態にかかるモジュール50は、モジュール10と同様に、複数のセル1が電気的に直接接続された構成(図示せず)を有する。なお、図6においては、図1と同じ部材については同じ符号を付すことで詳細な説明は省略する。
 実施の形態3にかかるモジュール50が実施の形態1にかかるモジュール10と異なる点は、低反射率を有する低反射率部である低反射率シート51が、隣接するセル1間の領域に対応する領域において、またがって配置されていることである。また、モジュール10の外周領域においても、モジュール10の厚み方向において同様の位置にパッシベーション膜7の裏面と低反射率シート51の表側の面が当接するように配置されていることである。
 低反射率シート51としては、例えば高反射率バックシート23と同一材料のシートに暗色に塗装されたものを用いることができる。また、充填材(封止剤)22と同一材料のシートに暗色の顔料を混入させることにより暗色化したものを使用することもできる。また、低反射率シート51の配置位置は、これに限定されることはなく、隣接するセル1間の領域に対応する領域およびモジュール10の外周領域であってパッシベーション膜7と高反射率バックシート23の表面側との間のいずれかの位置に配置されればよい。
 以上のように構成されたモジュール50においては、太陽光であってセル1に直接照射した入射光31は、セル1を透過した後に高反射率バックシート23で反射して反射光32となり、再度セル1に入射する。また、入射光31の一部は、反射防止膜4の表面で反射して反射光33となり、さらにモジュールガラス21で反射して再度セル1に入射する光(図示せず)と、そのままモジュールガラス21を通って外部に出て行く光(図示せず)と、に分かれる。また、入射光31の一部は、パッシベーション膜7の表面で反射して反射光34となり、再度セル1に入射する。
 また、太陽光であって隣接するセル1間に直接照射した入射光35は、隣接するセル1間の領域に配置された低反射率シート51でそのほとんどが吸収され、反射光36はわずかとなる。これにより、セル1間を通って外部へ放射される反射光36が少なくなり、外部への不要な光害を抑制することができる。
 一方、低反射率シート51で反射し、さらにモジュールガラス21で反射して再度セル1に入射する光も少なくなる。しかし、セル1では半導体基板2の裏面に到達した光がパッシベーション膜7を通して外部に透過していく。そして、モジュール50の大部分の面積を占めるセル1の裏面直下での高反射率バックシート23での反射光32により、発生電流の大幅な増大を図ることができる。また、半導体基板2とパッシベーション膜7との間の界面準位を低減することでキャリアの再結合を抑制できるため電圧も向上する。したがって、モジュール50においては、高出力を得ることができる。
 また、モジュール50においては、裏面電極6を半導体基板2の全面に形成せずに部分的に形成することで、半導体基板2と裏面電極6との熱膨張係数の差に起因した反りの発生が抑制できる。
 次に、モジュール50の製造方法について説明する。セル1の製造方法については、実施の形態1を参照することとし、ここではセル1作製後の工程について説明する。まず、モジュールガラス21上に、表面側充填材(封止剤)22a、外部に電力を取り出すために相互接続を行った複数枚のセル1をこの順で重ねる。次に、隣接するセル1(パッシベーション膜7)にまたがって低反射率シート51を配置する。また、モジュール10の外周領域となる領域にもセル1(パッシベーション膜7)に載せるように低反射率シート51を配置する。
 さらに裏面側充填材(封止剤)22b、高反射率バックシート23をこの順で重ねた後、これらを例えば真空中で加熱プレスする。これにより、モジュールガラス21から高反射率バックシート23までが表面側充填材(封止剤)22aおよび裏面側充填材(封止剤)22bにより一体化し、モジュール10が完成する。
 上述したように、本実施の形態にかかるモジュール50によれば、セル1を透過した光を高反射率バックシート23で反射させてセル1に再度入射させることによりセル1の発生電流を増加させて出力を増大させることができると同時に、隣り合うセル1間に入射した光を低反射率シート51で反射させることにより、モジュール50の外部への不要な光反射の発生を抑制することができる。また、モジュール50においては、裏面電極6を半導体基板2の全面に形成せずに部分的に形成することで、半導体基板2と裏面電極6との熱膨張係数の差に起因した反りの発生を抑制できる。したがって、本実施の形態にかかるモジュール50によれば、太陽電池の高出力化、薄型化および低光害を実現した太陽電池モジュールが得られる。
 以上のように、本発明にかかる太陽電池モジュールは、太陽電池用基板の薄肉化に有用である。

Claims (9)

  1.  透光性を有する表面側封止部材と裏面側封止部材との間に狭持された充填材の中に電気的に接続された複数の太陽電池セルが前記表面側封止部材の面内方向において離間して埋設されてなる太陽電池モジュールであって、
     前記太陽電池セルは、
     一面側に第2導電型の不純物元素が拡散された不純物拡散層を有する第1導電型の半導体基板と、
     前記不純物拡散層上に形成された反射防止膜と、
     前記反射防止膜を貫通して前記不純物拡散層に電気的に接続する第1電極と、
     前記半導体基板の他面側に形成されたパッシベーション膜と、
     前記パッシベーション膜に埋設されて前記半導体基板の他面側に電気的に接続する第2電極と、
     を備えてなり、
     前記裏面側封止部材は、
     少なくとも前記太陽電池セルに対応する領域が、400nm~1200nmの範囲の波長の光に対する平均の反射率が50%以上である高反射率を有する高反射率部とされ、
     隣接する前記太陽電池セル間の領域または前記太陽電池モジュールの厚み方向においてこの領域に対応した領域には、前記太陽電池セルの反射防止膜の表面と前記裏面側封止部材との間のいずれかの位置に、400nm~1200nmの範囲の波長の光に対する平均の反射率が50%未満である低反射率を有する低反射率部を備えること、
     を特徴とする太陽電池モジュール。
  2.  前記裏面側封止部材が、前記高反射率を有する高反射率シートであり、
     前記低反射率部は、前記高反射率シートの前記太陽電池セル側であって前記太陽電池セル間の領域に対応した領域に前記低反射率を有する色の塗装がなされた塗装部であること、
     を特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記裏面側封止部材が、前記高反射率を有する高反射率シートであり、
     前記低反射率部は、前記高反射率シートの前記太陽電池セル側であって前記太陽電池セル間の領域に対応した領域に前記低反射率を有する低反射率材料部が配置されてなること、
     を特徴とする請求項1に記載の太陽電池モジュール。
  4.  前記裏面側封止部材は、前記高反射率を有する高反射率シートであり、
     前記低反射率部は、前記高反射率シートの前記太陽電池セル間の領域に対応した領域に前記低反射率を有する低反射率材料が部分的に混入されてなること、
     を特徴とする請求項1に記載の太陽電池モジュール。
  5.  前記裏面側封止部材は、前記高反射率を有する高反射率シートであり、
     前記低反射率部は、前記太陽電池セル間の領域に前記低反射率を有する低反射率材料部が配置されてなること、
     を特徴とする請求項1に記載の太陽電池モジュール。
  6.  前記低反射率材料部は、前記低反射率を有する低反射率材料が前記充填材に部分的に混入されてなること、
     を特徴とする請求項5に記載の太陽電池モジュール。
  7.  前記裏面側封止部材は、前記高反射率を有する高反射率シートからなり、
     前記低反射率部は、前記太陽電池セル間の領域に対応する領域であって前記パッシベーション膜と前記裏面側封止部材との間のいずれかの位置に、前記低反射率を有する低反射率材料部が配置されてなること、
     を特徴とする請求項1に記載の太陽電池モジュール。
  8.  前記低反射率材料部は、前記高反射率シートと同一材料のシートに前記低反射率を有する色の塗装がなされた塗装部であること、
     を特徴とする請求項7に記載の太陽電池モジュール。
  9.  前記低反射率材料部は、前記高反射率シートと同一材料のシートに前記低反射率を有する低反射率材料が混入されてなること、
     を特徴とする請求項7に記載の太陽電池モジュール。
PCT/JP2009/052564 2009-02-16 2009-02-16 太陽電池モジュール WO2010092693A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09840013.8A EP2398063A4 (en) 2009-02-16 2009-02-16 SOLAR BATTERY MODULE
US13/145,365 US20110297207A1 (en) 2009-02-16 2009-02-16 Solar battery module
CN2009801567454A CN102318079A (zh) 2009-02-16 2009-02-16 太阳能电池模块
JP2010550393A JPWO2010092693A1 (ja) 2009-02-16 2009-02-16 太陽電池モジュール
PCT/JP2009/052564 WO2010092693A1 (ja) 2009-02-16 2009-02-16 太陽電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052564 WO2010092693A1 (ja) 2009-02-16 2009-02-16 太陽電池モジュール

Publications (1)

Publication Number Publication Date
WO2010092693A1 true WO2010092693A1 (ja) 2010-08-19

Family

ID=42561545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052564 WO2010092693A1 (ja) 2009-02-16 2009-02-16 太陽電池モジュール

Country Status (5)

Country Link
US (1) US20110297207A1 (ja)
EP (1) EP2398063A4 (ja)
JP (1) JPWO2010092693A1 (ja)
CN (1) CN102318079A (ja)
WO (1) WO2010092693A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146433A (ja) * 2010-01-12 2011-07-28 Toyota Motor Corp 太陽電池モジュール
WO2012124465A1 (ja) * 2011-03-16 2012-09-20 三洋電機株式会社 太陽電池モジュール
WO2013089132A1 (ja) * 2011-12-15 2013-06-20 シャープ株式会社 太陽電池モジュール及び太陽光発電装置
WO2013168612A1 (ja) * 2012-05-09 2013-11-14 三洋電機株式会社 太陽電池モジュール
JP2014183289A (ja) * 2013-03-21 2014-09-29 Dexerials Corp 太陽電池モジュール、及び結晶系太陽電池モジュールの製造方法
JP2015185712A (ja) * 2014-03-25 2015-10-22 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP2015533028A (ja) * 2012-10-25 2015-11-16 サンパワー コーポレイション 裏面反射板付き両面受光型太陽電池モジュール
JP2016034025A (ja) * 2014-07-30 2016-03-10 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール
WO2016143249A1 (ja) * 2015-03-11 2016-09-15 パナソニックIpマネジメント株式会社 太陽電池モジュール
WO2016157684A1 (ja) * 2015-03-30 2016-10-06 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP2017069467A (ja) * 2015-09-30 2017-04-06 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート、及び、それを用いた太陽電池モジュール
WO2017154384A1 (ja) * 2016-03-10 2017-09-14 株式会社カネカ 太陽電池モジュール
JP2018010955A (ja) * 2016-07-13 2018-01-18 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート及びそれを用いてなる太陽電池モジュール

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009044052A1 (de) * 2009-09-18 2011-03-24 Schott Solar Ag Kristalline Solarzelle, Verfahren zur Herstellung einer solchen sowie Verfahren zur Herstellung eines Solarzellenmoduls
CN102800730A (zh) * 2012-07-09 2012-11-28 友达光电股份有限公司 光伏装置
EP2725628B1 (en) * 2012-10-23 2020-04-08 LG Electronics, Inc. Solar cell module
US9780253B2 (en) * 2014-05-27 2017-10-03 Sunpower Corporation Shingled solar cell module
KR20170027956A (ko) * 2015-09-03 2017-03-13 엘지전자 주식회사 태양 전지 모듈
TWI573283B (zh) * 2016-03-03 2017-03-01 上銀光電股份有限公司 太陽能板模組
US20190207047A1 (en) * 2016-05-24 2019-07-04 Eterbright Solar Corporation Solar Panel Module
TWI661668B (zh) * 2017-07-25 2019-06-01 海力雅集成股份有限公司 太陽能模組
IT201800003348A1 (it) * 2018-03-07 2019-09-07 Coveme S P A Foglio multistrato preformato riflettente per modulo fotovoltaico e metodo di realizzazione
KR102389882B1 (ko) * 2018-10-31 2022-04-21 한양대학교 산학협력단 기공 형성 깊이가 제어된 다공성 중합체 필름의 제조방법 및 이로부터 제조된 다공성 중합체 필름
EP4059057A4 (en) * 2019-11-12 2023-12-20 Solaria Corporation TWO-SIDED PHOTOVOLTAIC MODULE

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128678A (ja) * 1983-12-15 1985-07-09 Fuji Electric Corp Res & Dev Ltd 太陽電池モジユ−ル
JPH07326789A (ja) * 1994-05-30 1995-12-12 Kyocera Corp 太陽電池モジュール
JPH11307791A (ja) * 1998-04-22 1999-11-05 Sanyo Electric Co Ltd 太陽電池モジュール
JPH11307795A (ja) * 1998-04-22 1999-11-05 Sanyo Electric Co Ltd 太陽電池モジュール
JP2001148500A (ja) * 1999-11-22 2001-05-29 Sanyo Electric Co Ltd 太陽電池モジュール
JP2002100788A (ja) 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd 太陽電池カバー材用バックシート及びそれを用いた太陽電池モジュール
JP2003188399A (ja) * 2001-12-19 2003-07-04 Fuji Electric Co Ltd 太陽電池モジュール
JP2003243689A (ja) * 2001-12-13 2003-08-29 Asahi Glass Co Ltd 太陽電池用カバーガラス、その製法及び該カバーガラスを使用した太陽電池モジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250946A (ja) * 1984-05-29 1985-12-11 凸版印刷株式会社 太陽電池モジュール用裏面保護シート
JPH0710958U (ja) * 1993-07-23 1995-02-14 旭硝子株式会社 太陽電池モジュール
JPH08204220A (ja) * 1995-01-31 1996-08-09 Mitsubishi Electric Corp 太陽電池セル、太陽電池モジュール及び太陽電池モジュール群
JP2002158368A (ja) * 2000-11-21 2002-05-31 Sanyo Electric Co Ltd 太陽電池モジュール
JP2005294395A (ja) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd 太陽電池モジュール
JP5214087B2 (ja) * 2004-05-06 2013-06-19 恵和株式会社 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール
JP2006073707A (ja) * 2004-09-01 2006-03-16 Kyocera Corp 太陽電池モジュール
KR100974226B1 (ko) * 2007-03-23 2010-08-06 엘지전자 주식회사 유전체를 이용한 태양전지의 후면 반사막 및 패시베이션층형성

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128678A (ja) * 1983-12-15 1985-07-09 Fuji Electric Corp Res & Dev Ltd 太陽電池モジユ−ル
JPH07326789A (ja) * 1994-05-30 1995-12-12 Kyocera Corp 太陽電池モジュール
JPH11307791A (ja) * 1998-04-22 1999-11-05 Sanyo Electric Co Ltd 太陽電池モジュール
JPH11307795A (ja) * 1998-04-22 1999-11-05 Sanyo Electric Co Ltd 太陽電池モジュール
JP2001148500A (ja) * 1999-11-22 2001-05-29 Sanyo Electric Co Ltd 太陽電池モジュール
JP2002100788A (ja) 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd 太陽電池カバー材用バックシート及びそれを用いた太陽電池モジュール
JP2003243689A (ja) * 2001-12-13 2003-08-29 Asahi Glass Co Ltd 太陽電池用カバーガラス、その製法及び該カバーガラスを使用した太陽電池モジュール
JP2003188399A (ja) * 2001-12-19 2003-07-04 Fuji Electric Co Ltd 太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2398063A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146433A (ja) * 2010-01-12 2011-07-28 Toyota Motor Corp 太陽電池モジュール
WO2012124465A1 (ja) * 2011-03-16 2012-09-20 三洋電機株式会社 太陽電池モジュール
WO2013089132A1 (ja) * 2011-12-15 2013-06-20 シャープ株式会社 太陽電池モジュール及び太陽光発電装置
JPWO2013168612A1 (ja) * 2012-05-09 2016-01-07 パナソニックIpマネジメント株式会社 太陽電池モジュール
WO2013168612A1 (ja) * 2012-05-09 2013-11-14 三洋電機株式会社 太陽電池モジュール
JP2015533028A (ja) * 2012-10-25 2015-11-16 サンパワー コーポレイション 裏面反射板付き両面受光型太陽電池モジュール
JP2014183289A (ja) * 2013-03-21 2014-09-29 Dexerials Corp 太陽電池モジュール、及び結晶系太陽電池モジュールの製造方法
JP2015185712A (ja) * 2014-03-25 2015-10-22 パナソニックIpマネジメント株式会社 太陽電池モジュール
US10141464B2 (en) 2014-07-30 2018-11-27 Lg Electronics Inc. Solar cell module
JP2016034025A (ja) * 2014-07-30 2016-03-10 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール
US10608130B2 (en) 2014-07-30 2020-03-31 Lg Electronics Inc. Solar cell module
WO2016143249A1 (ja) * 2015-03-11 2016-09-15 パナソニックIpマネジメント株式会社 太陽電池モジュール
US10840402B2 (en) 2015-03-11 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
JPWO2016143249A1 (ja) * 2015-03-11 2017-09-21 パナソニックIpマネジメント株式会社 太陽電池モジュール
WO2016157684A1 (ja) * 2015-03-30 2016-10-06 パナソニックIpマネジメント株式会社 太陽電池モジュール
JPWO2016157684A1 (ja) * 2015-03-30 2017-11-02 パナソニックIpマネジメント株式会社 太陽電池モジュール
US10879410B2 (en) 2015-03-30 2020-12-29 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
JP2017069467A (ja) * 2015-09-30 2017-04-06 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート、及び、それを用いた太陽電池モジュール
JPWO2017154384A1 (ja) * 2016-03-10 2019-01-10 株式会社カネカ 太陽電池モジュール
WO2017154384A1 (ja) * 2016-03-10 2017-09-14 株式会社カネカ 太陽電池モジュール
JP2018010955A (ja) * 2016-07-13 2018-01-18 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート及びそれを用いてなる太陽電池モジュール
JP2021101490A (ja) * 2016-07-13 2021-07-08 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート及びそれを用いてなる太陽電池モジュール

Also Published As

Publication number Publication date
EP2398063A1 (en) 2011-12-21
CN102318079A (zh) 2012-01-11
US20110297207A1 (en) 2011-12-08
EP2398063A4 (en) 2015-02-11
JPWO2010092693A1 (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
WO2010092693A1 (ja) 太陽電池モジュール
US9564547B2 (en) Solar cell module and method of manufacturing the same
ES2936389T3 (es) Célula solar
US20130306130A1 (en) Solar module apparatus with edge reflection enhancement and method of making the same
US20170018672A1 (en) High power solar cell module
US20140373911A1 (en) Solar cell
US20130167898A1 (en) Bifacial solar cell module
EP2509117A1 (en) Photoelectric conversion module, method for manufacturing same, and power generation device
US20140209151A1 (en) Solar cell module
KR102085039B1 (ko) 태양전지 모듈 및 이의 제조 방법
JP5968244B2 (ja) 光電変換モジュールおよびその製造方法
JP2003197943A (ja) 太陽電池素子及び太陽電池モジュール
JP2006286789A (ja) 太陽電池モジュール
JP5225415B2 (ja) 太陽電池モジュール
CN115000213A (zh) 光伏电池及其制造方法、光伏组件
JP2023180192A (ja) 太陽電池及び光起電力モジュール
EP3188253B1 (en) Solar battery module
JP2016025119A (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
KR102173647B1 (ko) 태양전지 모듈
US10629763B2 (en) Solar cell module
US20170301815A1 (en) Solar-cell module
KR101685350B1 (ko) 태양 전지 모듈
KR20150062731A (ko) 리본 및 이를 포함하는 태양 전지 모듈
JP5885677B2 (ja) 太陽電池モジュール及びその製造方法
JP6192562B2 (ja) 太陽電池素子および太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156745.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010550393

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13145365

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009840013

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE