WO2010091638A1 - 聚乙二醇脱除气体中SOx的方法 - Google Patents
聚乙二醇脱除气体中SOx的方法 Download PDFInfo
- Publication number
- WO2010091638A1 WO2010091638A1 PCT/CN2010/070622 CN2010070622W WO2010091638A1 WO 2010091638 A1 WO2010091638 A1 WO 2010091638A1 CN 2010070622 W CN2010070622 W CN 2010070622W WO 2010091638 A1 WO2010091638 A1 WO 2010091638A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyethylene glycol
- gas
- glycol solution
- sox
- desulfurization
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/507—Sulfur oxides by treating the gases with other liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1425—Regeneration of liquid absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1481—Removing sulfur dioxide or sulfur trioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/48—Sulfur dioxide; Sulfurous acid
- C01B17/50—Preparation of sulfur dioxide
- C01B17/60—Isolation of sulfur dioxide from gases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/69—Sulfur trioxide; Sulfuric acid
- C01B17/90—Separation; Purification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/202—Alcohols or their derivatives
- B01D2252/2023—Glycols, diols or their derivatives
- B01D2252/2026—Polyethylene glycol, ethers or esters thereof, e.g. Selexol
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/40—Absorbents explicitly excluding the presence of water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/302—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Definitions
- the existing flue gas, sulfur-containing industrial raw material gas and other exhaust gas desulfurization technologies mainly include wet de-sparing and dry de-sparing.
- the specific wet de-salting method includes water washing method, limestone and lime water method. Alkali metal solution method, alkali solution method, ammonia method and alcohol amine method; specific dry method is deoxidized iron, oxidation, manganese oxide, cobalt oxide, chromium oxide, molybdenum oxide and activated carbon.
- the water washing method, limestone and lime water method are mainly used; in developed countries, limestone and lime water methods, alkali metal solution method, alkali solution method, ammonia method and alcohol amine method are used.
- the water washing method consumes a large amount of water, and the water cannot be recycled.
- the discharge of sulfur-containing sewage causes serious secondary pollution, and the desulfurization effect is poor;
- the limestone and lime water methods are better than the water washing method, but produce more calcium sulfate, Solid waste such as calcium sulfite and calcium carbonate, limestone and calcium oxide are consumed in large quantities.
- the equipment is huge, the investment is large, and there is solid sediment in the absorption process, which is easy to cause equipment blockage.
- the solubility of limestone and calcium hydroxide in water is very small, calcium hydroxide mainly preferentially reacts with carbon dioxide during absorption. Again, it reacts with sulfur oxides. Therefore, the desulfurization effect of the lime water method is not ideal.
- the sewage discharge is more and the secondary pollution is more serious.
- the alkali metal solution method, the alkali solution method, the ammonia method and the alcohol amine method, etc. It is mainly used for flue gas with high sulfur dioxide content (such as steelmaking, copper smelting and other smelting tail gas, with a dioxide content of more than 8%) for desulfurization and recovery of sulfur dioxide. These methods require high technical requirements and energy consumption. Very large, high material requirements, not suitable for general flue gas desulfurization. At the same time, all flue gases, sulfur-containing industrial feedstock gases and other exhaust gas desulfurization methods currently used are quite corrosive to equipment.
- the low-temperature sterol method U-branch [4] is a method for physically adsorbing hydrogen sulfide, sulfur oxysulfide, carbon disulfide and carbon dioxide. It is now common for large chemical companies to use desulfurization and desulfurization of feedstock gas, but because of the low boiling point of sterols, Volatile, saturated vapor pressure, so it usually needs to operate under high pressure and low temperature (below -10 °C), high energy consumption, serious sterol loss, complicated process, cumbersome operation, high comprehensive operation cost; [5] is to use a mixed solution of 60% sterol and 40% diethanolamine to absorb hydrogen, carbon sulphide, sillicinated carbon and carbon dioxide in the gas, and then release hydrogen and sulfur by heating and decompression.
- the solution regeneration method can only be heated and decompressed to release hydrogen sulfide, sulfur oxycarbide, carbon disulfide and carbon dioxide mixed gas, and then converted by the Claus method (Claus) to release the sulfur-containing gas into Sulphur is horizontal, its energy consumption is high, the loss of sterol and diethanolamine is serious, the process is complicated, the operation is cumbersome, and the comprehensive operation cost is high.
- the above methods are mainly used for removing organic sulfur such as hydrogen sulfide, sulfur oxysulfide and carbon disulfide in the gas, and are not used for removing S0 2 and/or S0 3 in
- the buffer solution [7] containing acetic acid and ammonia containing Fe 2+ and Fe 3+ has been applied to the de-sparing of hemihydrate gas, which has high de-sparing efficiency and low corrosivity, but the solution will produce ion effect.
- salt effect solution instability; iron-alkali solution catalytic gas decarburization, desulfurization and de-cyanation method, aqueous solution of iron-containing alkaline material, wet desulfurization method has the ability to remove a variety of sulfur, and low sulfur content
- the gas desulfurization effect is better than the conventional gas wet desulfurization method.
- the main component of the polyethylene glycol solution of the present invention is polyethylene glycol, and the degree of polymerization of polyethylene glycol is greater than or equal to 2, and may be a mixed liquid of polyethylene glycol of various polymerization degrees.
- the molecular formula of polyethylene glycol is as follows:
- HO-C 2 H 4 -0- C 2 H4-OH has a degree of polymerization of 2;
- HO-C 2 H 4 -0- C 2 - 0- C 2 -OH has a degree of polymerization of 3;
- HO-C 2 H 4 -0- C2H4- O- C2H4- O- C2H4- O- C2H4-OH has a degree of polymerization of 5; and so on.
- the water in the polyethylene glycol solution needs to be removed, and the method for removing the water includes a heating rectification method and a water absorption agent absorption method. Can be mixed by these methods, remove polyethylene glycol after water The solution is recycled.
- the 9% of the total SOx content of the sulfur-containing gas is preferably less than 99. 9%, in order to achieve a better desulfurization effect, the total SOx content of the sulfur-containing gas should be less than 99.9%. (Volume ratio).
- the process conditions are not strictly limited, but it is preferred to use atmospheric pressure absorption or pressure absorption, and the absorption temperature is preferably -20 to 200 ° C.
- the polyethyl ether which absorbs SOx The diol solution is regenerated by one or more of a heating method, a vacuum method, an ultra wave method, a microwave method, and a radiation method, and the regeneration temperature is preferably 0 to 300 °C.
- the polyethylene glycol solution is a liquid fluid mainly containing polyethylene glycol, wherein the mass percentage of the polyethylene glycol is: polyethylene glycol > 80. 00%; the mass percentage of water is: water ⁇ 20. 00%.
- the polyethylene glycol desulfurization method of the present invention when the polyethylene glycol solution in which SOx is absorbed is regenerated by one or more of a heating method, a vacuum method, a super wave, a microwave method, and a radiation method, by-product 2 Oxidation and/or trioxide.
- polyethylene glycol having a degree of polymerization of 2 is taken as an example for better explanation.
- the polyethylene glycol solution of the present invention is not limited to a polyethylene glycol solution having a polymerization degree of 2, and it is not to be understood as being Limitations of the claims of the invention.
- a polyethylene glycol solution that absorbs sulfur dioxide or sulfur trioxide is converted into a rich liquid, which flows out from the bottom of the desulfurization tower and enters the regenerator for heating, vacuum, and super-wave.
- One or more of the methods of regeneration, microwave and radiation regenerate to release high purity sulfur dioxide and/or sulfur trioxide, which will undergo the following regeneration reactions in the regenerator.
- the regenerated polyethylene glycol solution (hereinafter referred to as "desulfurization liquid”) is recycled.
- the first process is the desulfurization absorption process
- the second process is the desulfurization liquid regeneration process
- the regeneration method used in the desulfurization liquid regeneration process is heating method, vacuum method, super wave method , microwave method and radiation method.
- the desulfurization absorption process may be a normal pressure absorption process or a pressure absorption process, and the desulfurization absorption process is as shown in FIG.
- the desulfurization absorption process takes place in the desulfurization tower. Normally, the SOx-containing gas enters the desulfurization tower from the bottom of the desulfurization tower, and the desulfurized liquid is regenerated. Often referred to as "lean liquid") from the top of the desulfurization tower into the desulfurization tower, in which the SOx gas in the desulfurization tower is in countercurrent contact with the desilsil solution, the SOx substance in the gas is absorbed by the decharge liquid, and then the SOx gas is removed. At the top of the desulfurization tower, the desulfurization liquid that absorbs the SOx in the gas is converted into a "rich liquid".
- both the gas and the lyophobic solution can be introduced from the top of the detachment tower, and the absorption process is carried out in the detachment tower to complete the absorption process.
- the second process the regeneration process of the desulfurization liquid, the regeneration methods used are heating method, vacuum method, super wave method, chopping method and radiation method.
- the schematic diagram of the heating regeneration process is shown in Figure 1.
- the regeneration method is the desulfurization of SOx absorption.
- the "rich liquid” enters the heating regenerator and is regenerated by heating to release S0 2 and/or S0 3 ; the deliquoring after regeneration by heating is usually called “semi-lean liquid” or “lean liquid”; Lean liquid” or
- the "lean liquid” can be sent directly to the desulfurization absorption process for reuse, or it can be sent to other regeneration modes for further regeneration, and then sent to the desulfurization absorption process for reuse.
- the schematic diagram of the vacuum regeneration process is shown in Figure 3.
- the regeneration method is the desulfurization of SOx absorption.
- the “rich liquid” enters the vacuum regenerator and is vacuum-regenerated. At this time, S0 2 and/or S0 3 are released; the liquid after regeneration by vacuum is usually called “semi-lean liquid” or “lean liquid”;
- the “semi-lean” or “lean” can be sent directly to the desulfurization absorption process for reuse, or it can be sent to other regeneration modes for further regeneration, and then sent to the desulfurization absorption process for reuse.
- the schematic diagram of the ultra-wave method and/or the microwave method or the radiation regeneration process is shown in Fig. 4.
- the regeneration mode is the desulfurization "rich liquid” that absorbs SOx into the superwave and/or microwave or radiation regenerator, and is super-waved. / or irradiation of microwave or radiation waves, S0 2 and / or S0 3 is released; deliquoring after regeneration by super-wave and / or microwave or radiation is usually called “semi-lean liquid” or "lean liquid”;"semi-poor
- the liquid “or “lean liquid” can be sent directly to the desulfurization absorption process for reuse, or it can be sent to other regeneration modes for further regeneration, and then sent to the desulfurization absorption process for repeated use.
- the regeneration methods such as wave method, microwave method and radiation method can also be combined in one regenerator by two or more methods.
- the method of removing the water by the heating rectification method or the water absorption agent may be used, or the method may be used in combination, and the polyethylene glycol solution after removing the water is recycled.
- the traditional wet desulfurization technology such as calcium desulfurization technology, ammonia desulfurization technology, etc.
- the conventional wet desulfurization technology is only applied to the lower sulfur content gas desulfurization, which the present invention refers to.
- the polyethylene glycol decalcification method can be used for both low stone content gas desulfurization and high sulfur content gas desulfurization; 2 traditional wet desulfurization technology throughout In the process of sulfur and regeneration, insoluble calcium or ammonium salt precipitates, causing blockage of equipment and pipelines.
- the polyethylene glycol desulfurization method referred to in the present invention does not substantially produce insoluble calcium or ammonium salt precipitation; 3 conventional wet method When the desulfurization technology is used for flue gas desulfurization, its by-products are calcium sulfate and calcium sulfite, or ammonium sulfate and ammonium sulfite.
- the by-product of the polyethylene glycol desulfurization method referred to in the present invention is high-purity liquid sulfur dioxide and/or Or sulfur trioxide, these by-products are important chemical raw materials, have a wide market and important application value; PEG desulfurization method has high purification degree, and can stably reduce the total sulfur content in the gas to 5mg/m 3 Below, the operating cost is low, the process is short, the investment is small, and the operation is simple.
- the polyethylene glycol desulfurization method of the invention has wide industrial use, and can be used for flue gas, incineration gas, coke oven gas, dye plant synthesis waste gas, chemical fiber plant sewage gas, Cros s 9% ⁇
- Figure 1 is a schematic illustration of the desulfurization absorption process.
- Fig. 2 is a schematic view showing the heating and regeneration mode of the desulfurization liquid.
- Fig. 3 is a schematic view showing the vacuum regeneration method of the liquid.
- Figure 4 is a schematic illustration of the super-wave and/or microwave and/or radiation regeneration of the desulfurization solution.
- Figure 5 is a gas-liquid equilibrium diagram of gas mixture absorption with sulfur dioxide and nitrogen at different temperatures of 298. 15K and 122.61KPa for different compositions of polyethylene glycol and aqueous solution.
- the polyethylene glycol desulfurization process of the present invention is described below in conjunction with specific embodiments.
- the embodiments described are intended to be illustrative of the invention and are not to be construed as limiting the scope of the invention.
- the first process is the desulfurization absorption process.
- the implementation scheme is shown in Figure 1, where (1) desulfurization tower, (2) contains SOx gas, (3) purge gas, (4) desulfurization lean liquid, (5) desulfurization Rich liquid.
- the SOx-containing gas (2) enters from the bottom of the desulfurization tower (1) and is in countercurrent contact with the desulfurized lean liquid (4); the SOx in the SOx-containing gas (2) is absorbed by the lean liquid (4), containing SOx gas ( 2) Conversion to a purge gas (3) from the top of the desulfurization tower (1); desulfurization lean liquid (4) absorbing SOx at the bottom of the desulfurization tower (1) to convert to a desulfurization rich liquid (5); desulfurization rich liquid (5) It flows out from the bottom of the desulfurization tower (1), is sent to the desulfurization liquid regeneration process, and is regenerated by one or more methods of heating, vacuum, ultra-wave, microwave, and radiation.
- the second process is the desulfurization liquid regeneration process.
- the regeneration methods used in the desulfurization liquid regeneration process include heating method, vacuum method, ultra-wave method, microwave method and radiation method.
- the embodiment of the heating regeneration mode is shown in Fig. 2, in which, (4) the depleted liquid, (5) the desulfurization solution, (7) the dioxide dioxide and/or the trioxide, (8) the stone foam And / or dust, (9) force hot regenerator.
- the desulfurized rich liquid (5) is sent to the heating regenerator (9), heated to release gaseous sulfur dioxide and/or sulfur trioxide (7), gaseous sulfur dioxide and/or sulfur trioxide (7). After some processing, it is converted into high-purity liquid dioxide and/or trioxide
- the product at the same time, will also be produced or enriched by sulfur foam and/or dust (8), which can be separated from the main body of the desulfurization liquid, and the separated foam and/or dust (8) can be further processed into a stone cross-product.
- the desulfurization rich liquid (5) is regenerated by the heating regenerator (9) and converted into desulfurized lean liquid (4); the desulfurized poor liquid (4) can be directly sent to the desulfurization absorption process for recycling. Further regeneration can also be carried out by vacuum regeneration and/or superwave and/or microwave and/or radiation regeneration.
- the embodiment of the vacuum regeneration mode is shown in Fig. 3, in which, (4) the depleted liquid, (5) the desulfurization solution, (7) the oxidized stone and/or the trioxide, (8) the stone foam And/or dust, (10) vacuum regenerator, (11) vacuum pump.
- the desulfurization rich liquid (5) is sent to a vacuum regenerator (10), which generates a vacuum under the action of the vacuum pump (11) to release gaseous sulfur dioxide and/or sulfur trioxide (7).
- Oxidation ⁇ and / or trioxide charge (7) can be converted into high-purity liquid sulfur dioxide and / or sulfur trioxide by-products through some processing methods, as well as sulfur or / or dust ( 8 ) production or enrichment , Separation from the main body of Deshilk liquid, Separation of Shike Mo and/or dust (8) can be further processed into sulfur cross-products, and some ash residue will be discharged;
- FIG. 4 An embodiment of the superwave and/or microwave and/or radiation regeneration mode is shown in Figure 4, wherein (4) desulfurized lean liquid, (5) desulfurized rich liquid, (6) superwave and/or microwave and/or radiation Regenerator, (7) Dioxide and/or trioxide, (8) sulphur and/or dust.
- the desulfurized rich liquid (5) is sent to a superwave and/or microwave and/or radiation regenerator (6)
- gaseous sulphur dioxide and/or trioxide (7) are released, and gaseous oxidization and/or trioxide charging (7) may be processed. It is converted into high-purity liquid sulfur dioxide and/or sulfur trioxide by-products.
- sulfur foam and/or dust (8) is produced or enriched to separate from the main body of the desulfurization solution.
- / or dust (8) can be further processed into ⁇ ⁇ yellow by-products, and some ash slag will be discharged; after the desulfurization rich liquid (5) is regenerated by superwave and / or microwave and / or radiation regenerator (6), It is converted into a desulfurized lean liquid (4); the desulfurized lean liquid (4) can be directly sent to the desulfurization absorption process for recycling, or can be sent to the heating regeneration and/or vacuum regeneration mode for further regeneration.
- the removal method includes a heating rectification method and a water absorption agent absorption method. These methods are used in combination, and the polyethylene glycol solution after water removal is recycled.
- Commonly used water absorbing agents are Ca0, anhydrous CaS0 4 , silica gel and water absorbing resin.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2752599A CA2752599C (en) | 2009-02-16 | 2010-02-10 | Method for removing sox from gas using polyethylene glycol |
EP10740927.8A EP2409752B1 (en) | 2009-02-16 | 2010-02-10 | Method for removing sox from gas using polyethylene glycol |
US13/201,521 US9017454B2 (en) | 2009-02-16 | 2010-02-10 | Method for removing SOx from gas using polyethylene glycol |
JP2011549426A JP5694957B2 (ja) | 2009-02-16 | 2010-02-10 | ポリエチレングリコールでガス中のSOxを除去する方法 |
BRPI1007816-9A BRPI1007816B1 (pt) | 2009-02-16 | 2010-02-10 | Método de absorção de SOx de um gás por meio de uma solução de polietileno glicol |
PL10740927T PL2409752T3 (pl) | 2009-02-16 | 2010-02-10 | Sposób usuwania SOx z gazu przy użyciu glikolu polietylenowego |
ES10740927T ES2760502T3 (es) | 2009-02-16 | 2010-02-10 | Método para retirar SOx de gas utilizando polietilenglicol |
MX2011008612A MX337698B (es) | 2009-02-16 | 2010-02-10 | Metodo para remover oxidos de azufre de un gas usando polietilenglicol. |
EA201171061A EA021209B1 (ru) | 2009-02-16 | 2010-02-10 | Способ удаления soиз газа с использованием полиэтиленгликоля |
AU2010213234A AU2010213234B2 (en) | 2009-02-16 | 2010-02-10 | Method for removing SOx from gas using polyethylene glycol |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100090581A CN101502741B (zh) | 2009-02-16 | 2009-02-16 | 聚乙二醇脱除气体中SOx的方法 |
CN200910009058.1 | 2009-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010091638A1 true WO2010091638A1 (zh) | 2010-08-19 |
Family
ID=40975196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/070622 WO2010091638A1 (zh) | 2009-02-16 | 2010-02-10 | 聚乙二醇脱除气体中SOx的方法 |
Country Status (12)
Country | Link |
---|---|
US (1) | US9017454B2 (zh) |
EP (1) | EP2409752B1 (zh) |
JP (1) | JP5694957B2 (zh) |
CN (1) | CN101502741B (zh) |
AU (1) | AU2010213234B2 (zh) |
BR (1) | BRPI1007816B1 (zh) |
CA (1) | CA2752599C (zh) |
EA (1) | EA021209B1 (zh) |
ES (1) | ES2760502T3 (zh) |
MX (1) | MX337698B (zh) |
PL (1) | PL2409752T3 (zh) |
WO (1) | WO2010091638A1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101502741B (zh) | 2009-02-16 | 2011-01-05 | 北京博源恒升高科技有限公司 | 聚乙二醇脱除气体中SOx的方法 |
CN102481512B (zh) * | 2009-05-05 | 2014-11-19 | 多尔夫凯塔尔化学制品(I)私人有限公司 | 从烃流中清除硫化氢的方法 |
CN102274676A (zh) * | 2011-06-10 | 2011-12-14 | 常州大学 | 基于微波和真空集成的解吸装置及其油气吸收回收方法 |
CN102380301A (zh) * | 2011-08-15 | 2012-03-21 | 西安热工研究院有限公司 | 石灰石-石膏湿法烟气脱硫复合增效剂 |
JP6080651B2 (ja) * | 2013-03-29 | 2017-02-15 | 新コスモス電機株式会社 | ガス検知装置 |
CN103432890B (zh) | 2013-09-10 | 2015-12-09 | 北京博源恒升高科技有限公司 | 改性聚乙二醇脱除气体中SOx的方法 |
CN103495340B (zh) | 2013-10-15 | 2015-11-18 | 北京博源恒升高科技有限公司 | 复合醇胺类溶液脱除气体中SOx的方法 |
CN103611391B (zh) * | 2013-12-12 | 2016-01-20 | 北京博源恒升高科技有限公司 | 乙二醇类复合溶液脱除气体中SOx的方法 |
CN103623689B (zh) | 2013-12-12 | 2016-06-29 | 北京博源恒升高科技有限公司 | 多元醇复合溶液脱除气体中SOx的方法 |
US9808789B2 (en) | 2014-04-22 | 2017-11-07 | Agency For Science, Technology And Research | Method for regenerating a used sorbent having a gas adsorbate adsorbed thereto |
CN105214457B (zh) * | 2014-06-05 | 2018-04-17 | 魏雄辉 | 一种烟道气脱硫脱硝工艺及设备 |
CN104190236B (zh) * | 2014-08-27 | 2016-09-07 | 浙江大学 | 一种仿生物钙化的二氧化碳捕获与释放方法及其专用溶液 |
CN106975323B (zh) * | 2017-04-06 | 2023-12-05 | 西安石油大学 | 一种失效天然气脱硫溶液再生装置 |
CN111054098B (zh) * | 2018-10-17 | 2023-11-28 | 中国石油化工股份有限公司 | 一种用于含有酸性气体的溶剂的再生方法及装置 |
CN111921370A (zh) * | 2020-07-16 | 2020-11-13 | 杭州斯曼特建材科技有限公司 | 一种高分子环保脱硫剂及其制备方法 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2333708A1 (de) | 1973-07-03 | 1975-01-23 | Dillinger Stahlbau | Verfahren zum entfernen von schwefelwasserstoff aus kohlenwasserstoffhaltigen gasen |
SU655410A1 (ru) | 1977-10-28 | 1979-04-05 | Всесоюзный научно-исследовательский институт природных газов | Абсорбент дл сушки и очистки углеводородных газов |
SU927282A1 (ru) | 1979-04-25 | 1982-05-15 | Всесоюзный Научно-Исследовательский И Проектный Институт По Подготовке @К Транспортировке И Переработке Природного Газа | Абсорбент дл очистки газов от кислых компонентов |
US4368178A (en) | 1981-05-26 | 1983-01-11 | Shell Oil Company | Process for the removal of H2 S and CO2 from gaseous streams |
FR2532190A1 (fr) | 1982-08-25 | 1984-03-02 | Raffinage Cie Francaise | Dispositif pour l'elimination a froid de l'hydrogene sulfure contenu dans un melange gazeux, par reaction sur de l'anhydride sulfureux, et pour la separation du soufre solide ainsi produit |
JPS6295118A (ja) | 1985-10-21 | 1987-05-01 | Mitsubishi Heavy Ind Ltd | グリコ−ルを用いる脱水方法 |
WO1990007467A1 (en) | 1988-12-23 | 1990-07-12 | Quaker Chemical Corporation | Composition and method for sweetening hydrocarbons |
SU1611411A1 (ru) | 1988-06-21 | 1990-12-07 | Всесоюзный Научно-Исследовательский И Проектный Институт По Переработке Газа | Способ очистки углеводородного газа от кислых компонентов |
CN1087110A (zh) | 1992-11-16 | 1994-05-25 | 魏雄辉 | 半水煤气脱硫脱氧新方法 |
JPH06228573A (ja) | 1993-02-08 | 1994-08-16 | Hitachi Ltd | 石炭ガス化プラントのテールガス処理法 |
CN1133817A (zh) | 1996-02-17 | 1996-10-23 | 魏雄辉 | 加压铁-碱溶液脱碳脱硫 |
RU2070423C1 (ru) | 1993-09-14 | 1996-12-20 | Акционерное общество Миннибаевский газоперерабатывающий завод | Установка для комплексной очистки нефтяного и природного газов |
WO2003011432A1 (de) | 2001-07-27 | 2003-02-13 | Uhde Gmbh | Verfahren zur entfernung von gasbestandteilen aus technischen gasen mittels ethylenglykoldimethylethern bei tieferen temperaturen |
WO2007077323A1 (fr) * | 2005-12-22 | 2007-07-12 | Institut Français du Pétrole | Procede de de s acidific ation d'un gaz avec une solution absorbante à régénération fractionnée avec controle de la teneur en eau de la solution |
CN101053746A (zh) * | 2007-06-06 | 2007-10-17 | 北京大学 | 乙二醇脱除烟道气中SOx的方法 |
CN101204639A (zh) * | 2006-12-21 | 2008-06-25 | 南化集团研究院 | 从酸性气流中除去硫醇的吸收剂和方法 |
CN101502741A (zh) * | 2009-02-16 | 2009-08-12 | 北京博源恒升高科技有限公司 | 聚乙二醇脱除气体中SOx的方法 |
US8905742B2 (en) | 2010-09-17 | 2014-12-09 | Synerdyne Corporation | Compact rotary platen 3D printer |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2139375A (en) * | 1937-06-14 | 1938-12-06 | Shell Dev | Removal of so from gases |
US3170766A (en) * | 1958-08-29 | 1965-02-23 | Laurence S Reid | Sulfur recovery apparatus |
FR2213793B2 (zh) * | 1972-09-22 | 1975-08-22 | Inst Francais Du Petrole | |
US4053575A (en) * | 1974-08-19 | 1977-10-11 | The United States Of America As Represented By The Secretary Of The Interior | Sulfur recovery from H2 S and SO2 -containing gases |
JPS6015376B2 (ja) * | 1977-11-24 | 1985-04-19 | 日本油脂株式会社 | 排ガスの脱硫方法 |
US4162145A (en) * | 1977-12-09 | 1979-07-24 | Phillips Petroleum Company | Regeneration of liquid absorbents |
US4240923A (en) * | 1978-05-30 | 1980-12-23 | Exxon Research & Engineering Co. | Process and amine-solvent absorbent for removing acidic gases from gaseous mixtures |
US4406867A (en) * | 1980-04-17 | 1983-09-27 | Union Carbide Corporation | Process for the purification of non-reacting gases |
DE3112661A1 (de) | 1981-03-31 | 1982-10-14 | Basf Ag, 6700 Ludwigshafen | Verfahren zur abtrennung von kondensierbaren aliphatischen kohlenwasserstoffen und sauren gasen aus erdgasen |
DE3237387A1 (de) * | 1982-10-08 | 1984-04-12 | Linde Ag, 6200 Wiesbaden | Verfahren zur entfernung unerwuenschter gasfoermiger bestandteile aus heissen rauchgasen |
DE3345056A1 (de) * | 1983-12-13 | 1985-06-20 | Linde Ag, 6200 Wiesbaden | Verfahren und vorrichtung zur entfernung von so(pfeil abwaerts)2(pfeil abwaerts) aus rauchgasen |
DE3501118A1 (de) * | 1985-01-15 | 1986-07-17 | Linde Ag, 6200 Wiesbaden | Verfahren zur entfernung von so(pfeil abwaerts)2(pfeil abwaerts) und no(pfeil abwaerts)x(pfeil abwaerts) aus gasen |
CH666194A5 (de) * | 1985-04-02 | 1988-07-15 | Rene Meier | Regenerierungseinrichtung. |
DE3612123A1 (de) * | 1985-09-27 | 1987-04-09 | Linde Ag | Verfahren zum auswaschen von no und/oder so(pfeil abwaerts)2(pfeil abwaerts) aus gasgemischen |
DE3624768A1 (de) * | 1986-07-22 | 1988-01-28 | Linde Ag | Verfahren zur verhinderung der korrosion von apparateteilen |
ATE179088T1 (de) * | 1993-11-09 | 1999-05-15 | Union Carbide Chem Plastic | Absorption von mercaptanen |
US5876677A (en) * | 1996-04-25 | 1999-03-02 | Mensinger; Michael C. | Ultrasound-assisted liquid redox absorber |
US6203599B1 (en) * | 1999-07-28 | 2001-03-20 | Union Carbide Chemicals & Plastics Technology Corporation | Process for the removal of gas contaminants from a product gas using polyethylene glycols |
WO2004108244A2 (de) | 2003-06-05 | 2004-12-16 | Basf Aktiengesellschaft | Verfahren zum entsäuern eines fluidstroms mittels einer inerten waschkolonne und vorrichtung hierzu |
-
2009
- 2009-02-16 CN CN2009100090581A patent/CN101502741B/zh active Active
-
2010
- 2010-02-10 AU AU2010213234A patent/AU2010213234B2/en active Active
- 2010-02-10 PL PL10740927T patent/PL2409752T3/pl unknown
- 2010-02-10 US US13/201,521 patent/US9017454B2/en active Active
- 2010-02-10 CA CA2752599A patent/CA2752599C/en active Active
- 2010-02-10 WO PCT/CN2010/070622 patent/WO2010091638A1/zh active Application Filing
- 2010-02-10 EP EP10740927.8A patent/EP2409752B1/en active Active
- 2010-02-10 ES ES10740927T patent/ES2760502T3/es active Active
- 2010-02-10 EA EA201171061A patent/EA021209B1/ru not_active IP Right Cessation
- 2010-02-10 MX MX2011008612A patent/MX337698B/es active IP Right Grant
- 2010-02-10 JP JP2011549426A patent/JP5694957B2/ja active Active
- 2010-02-10 BR BRPI1007816-9A patent/BRPI1007816B1/pt active IP Right Grant
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2333708A1 (de) | 1973-07-03 | 1975-01-23 | Dillinger Stahlbau | Verfahren zum entfernen von schwefelwasserstoff aus kohlenwasserstoffhaltigen gasen |
SU655410A1 (ru) | 1977-10-28 | 1979-04-05 | Всесоюзный научно-исследовательский институт природных газов | Абсорбент дл сушки и очистки углеводородных газов |
SU927282A1 (ru) | 1979-04-25 | 1982-05-15 | Всесоюзный Научно-Исследовательский И Проектный Институт По Подготовке @К Транспортировке И Переработке Природного Газа | Абсорбент дл очистки газов от кислых компонентов |
US4368178A (en) | 1981-05-26 | 1983-01-11 | Shell Oil Company | Process for the removal of H2 S and CO2 from gaseous streams |
FR2532190A1 (fr) | 1982-08-25 | 1984-03-02 | Raffinage Cie Francaise | Dispositif pour l'elimination a froid de l'hydrogene sulfure contenu dans un melange gazeux, par reaction sur de l'anhydride sulfureux, et pour la separation du soufre solide ainsi produit |
JPS6295118A (ja) | 1985-10-21 | 1987-05-01 | Mitsubishi Heavy Ind Ltd | グリコ−ルを用いる脱水方法 |
SU1611411A1 (ru) | 1988-06-21 | 1990-12-07 | Всесоюзный Научно-Исследовательский И Проектный Институт По Переработке Газа | Способ очистки углеводородного газа от кислых компонентов |
WO1990007467A1 (en) | 1988-12-23 | 1990-07-12 | Quaker Chemical Corporation | Composition and method for sweetening hydrocarbons |
CN1087110A (zh) | 1992-11-16 | 1994-05-25 | 魏雄辉 | 半水煤气脱硫脱氧新方法 |
JPH06228573A (ja) | 1993-02-08 | 1994-08-16 | Hitachi Ltd | 石炭ガス化プラントのテールガス処理法 |
RU2070423C1 (ru) | 1993-09-14 | 1996-12-20 | Акционерное общество Миннибаевский газоперерабатывающий завод | Установка для комплексной очистки нефтяного и природного газов |
CN1133817A (zh) | 1996-02-17 | 1996-10-23 | 魏雄辉 | 加压铁-碱溶液脱碳脱硫 |
WO2003011432A1 (de) | 2001-07-27 | 2003-02-13 | Uhde Gmbh | Verfahren zur entfernung von gasbestandteilen aus technischen gasen mittels ethylenglykoldimethylethern bei tieferen temperaturen |
WO2007077323A1 (fr) * | 2005-12-22 | 2007-07-12 | Institut Français du Pétrole | Procede de de s acidific ation d'un gaz avec une solution absorbante à régénération fractionnée avec controle de la teneur en eau de la solution |
CN101204639A (zh) * | 2006-12-21 | 2008-06-25 | 南化集团研究院 | 从酸性气流中除去硫醇的吸收剂和方法 |
CN101053746A (zh) * | 2007-06-06 | 2007-10-17 | 北京大学 | 乙二醇脱除烟道气中SOx的方法 |
CN101502741A (zh) * | 2009-02-16 | 2009-08-12 | 北京博源恒升高科技有限公司 | 聚乙二醇脱除气体中SOx的方法 |
US8905742B2 (en) | 2010-09-17 | 2014-12-09 | Synerdyne Corporation | Compact rotary platen 3D printer |
Non-Patent Citations (8)
Title |
---|
BENSON, H.E., PARRISH, R.W.: "HiPure Process Removes C02/H2S", HYDROCARBON PROCESSING, April 1974 (1974-04-01), pages 81 - 82 |
DAI WENBIN, TANG HONGQING, COMPUTER AND APPLIED CHEMISTRY, vol. 11, no. 1, 1994, pages 44 - 51 |
F. C. RIESENFELD, A. L. KOHL: "Gas Purification", 1982, CHINA BUILDING INDUSTRY PRESS |
JENETT, E.: "Giammarco-Vetrocoke Process", THE OIL AND GAS JOURNAL, 30 April 1962 (1962-04-30), pages 72 - 79 |
MA BIN, COAL CHEMICAL INDUSTRY, vol. 68, 1994, pages 35 - 38 |
SHI, YAJUN ET AL.: "Removal of Sulfides from Claus Tail Gas by Liquid-phase Catalytic Reaction (PEG 400 Method).", CHEMICAL WORLD., vol. 2, February 1980 (1980-02-01), pages 35 - 36 * |
WEI XIONGHUI, DAI QIANYUAN, CHEN ZHONGMING, SHAO KESHENG, ZHANG CHENDING: "The Principle of Desulfurization of Gases with Buffering Solution of Basic Ironic Salts", JOURNAL OF CHEMICAL INDUSTRY AND ENGINEERING, vol. 49, no. 1, 1998, pages 48 - 58 |
ZH. PRIKL. KHIM., vol. 66, no. 10, 1993, pages 2383 - 2385 |
Also Published As
Publication number | Publication date |
---|---|
EP2409752A4 (en) | 2012-08-15 |
CN101502741B (zh) | 2011-01-05 |
ES2760502T3 (es) | 2020-05-14 |
JP5694957B2 (ja) | 2015-04-01 |
JP2012517890A (ja) | 2012-08-09 |
MX2011008612A (es) | 2011-12-06 |
AU2010213234A1 (en) | 2011-09-08 |
EA021209B1 (ru) | 2015-04-30 |
US20110315014A1 (en) | 2011-12-29 |
EA201171061A1 (ru) | 2012-04-30 |
BRPI1007816A2 (pt) | 2016-02-23 |
BRPI1007816B1 (pt) | 2020-03-10 |
AU2010213234B2 (en) | 2017-07-06 |
CA2752599A1 (en) | 2010-08-19 |
CA2752599C (en) | 2016-08-16 |
EP2409752A1 (en) | 2012-01-25 |
CN101502741A (zh) | 2009-08-12 |
PL2409752T3 (pl) | 2020-04-30 |
US9017454B2 (en) | 2015-04-28 |
MX337698B (es) | 2016-03-14 |
EP2409752B1 (en) | 2019-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010091638A1 (zh) | 聚乙二醇脱除气体中SOx的方法 | |
AU2015271405B2 (en) | Process and device for desulphurization and denitration of flue gas | |
WO2015055104A1 (zh) | 复合醇胺类溶液脱除气体中SOx的方法 | |
WO2015085880A1 (zh) | 乙二醇类复合溶液脱除气体中SOx的方法 | |
CN101053746B (zh) | 乙二醇脱除烟道气中sox的方法 | |
WO2015085879A1 (zh) | 多元醇复合溶液脱除气体中SOx的方法 | |
JP6480457B2 (ja) | 変性ポリエチレングリコール溶液でガス中のSOxを除去する方法 | |
CN103879970B (zh) | 一种从烟气中回收二氧化硫制取硫磺的生产工艺 | |
CN104437045A (zh) | 一种去除废气中酸性气体的吸收剂及去除方法 | |
CN104338429A (zh) | 一种回收废气中二氧化硫的吸收剂及回收方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10740927 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1686/MUMNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2752599 Country of ref document: CA Ref document number: MX/A/2011/008612 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010213234 Country of ref document: AU Ref document number: 2011549426 Country of ref document: JP Ref document number: 2010740927 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2010213234 Country of ref document: AU Date of ref document: 20100210 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13201521 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201171061 Country of ref document: EA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1007816 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1007816 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110816 |