WO2010090283A1 - 真空装置 - Google Patents

真空装置 Download PDF

Info

Publication number
WO2010090283A1
WO2010090283A1 PCT/JP2010/051703 JP2010051703W WO2010090283A1 WO 2010090283 A1 WO2010090283 A1 WO 2010090283A1 JP 2010051703 W JP2010051703 W JP 2010051703W WO 2010090283 A1 WO2010090283 A1 WO 2010090283A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
vacuum
unit
carry
vacuum processing
Prior art date
Application number
PCT/JP2010/051703
Other languages
English (en)
French (fr)
Inventor
友亮 尾崎
克史 岸本
宣幸 谷川
裕介 福岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP10738614A priority Critical patent/EP2395265A1/en
Priority to US13/147,466 priority patent/US20110283623A1/en
Priority to JP2010549520A priority patent/JPWO2010090283A1/ja
Publication of WO2010090283A1 publication Critical patent/WO2010090283A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Definitions

  • the present invention relates to a vacuum apparatus, and more particularly to a vacuum apparatus having a vacuum vessel.
  • a vacuum apparatus provided with a load lock chamber or the like includes a vacuum container having an opening for taking in and out an object to be processed such as a substrate, and a door for closing the opening.
  • the door is provided so that it can be opened and closed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9-199293
  • the door and the main body are connected by a hinge.
  • the door opening / closing mechanism has a vertical drive mechanism.
  • the door may be tilted with the hinge as a fulcrum due to gravity. Further, according to the technique disclosed in Japanese Patent Laid-Open No. 10-303277, a large force is required when the door is moved against gravity. These problems become more pronounced when the door weight increases.
  • one object of the present invention is to provide a vacuum apparatus that can stably support a door.
  • Another object of the present invention is to provide a vacuum apparatus capable of opening and closing the door with a small force.
  • the vacuum device of the present invention has a vacuum vessel, a door, and a first rail.
  • the vacuum container has an opening.
  • the door is for closing the opening.
  • the first rail extends in the first direction at a distance from the opening in plan view.
  • the first rail supports the door so as to be movable along the first direction.
  • the first rail has a portion facing the opening in a second direction intersecting the first direction in plan view.
  • the first rail has a first movable portion that is movable along the second direction.
  • the door since the door is supported by the rail, the door can be stably supported.
  • each of the first and second directions preferably intersects the direction of gravity.
  • the vacuum device further includes a first drive unit for moving the first movable unit.
  • the door can be moved in the second direction and applied to the opening.
  • the vacuum apparatus further includes a second driving unit for moving the door along the first direction.
  • the door can be moved closer to or away from the opening along the first direction.
  • the second drive unit is attached to the door so as to define a position of the door in the first direction and to freely position the door in the second direction.
  • the first rail has a tapered portion such that the dimension in the second direction becomes smaller toward the upper side.
  • the door also has a portion that sandwiches the tapered portion in the second direction.
  • the vacuum apparatus further includes a second rail.
  • the second rail extends in the first direction at a distance from the opening in plan view.
  • the second rail has a portion facing the opening in the second direction in plan view.
  • the second rail guides the door along the first direction.
  • the second rail has a second movable part that is movable along the second direction.
  • the door can be stably supported.
  • FIG. 8 is a schematic sectional view taken along line VIII-VIII in each of FIGS. 6 and 7; It is a top view which shows schematically the structure of the vacuum apparatus in Embodiment 2 of this invention, and is a figure which shows a closed state.
  • FIG. 10 is a schematic sectional view taken along line XX in FIG. 9.
  • FIG. 9 is a cross sectional view schematically showing a configuration of a vacuum device in a third embodiment.
  • FIG. 5 is a functional block diagram schematically showing a configuration of a vacuum device in a third embodiment. It is a front view which shows the conveyance mechanism and to-be-processed object of the apparatus of FIG.
  • FIG. 14 is a schematic cross-sectional view taken along line XIV-XIV in FIG. 11. It is sectional drawing which shows schematically the 1st process of the vacuum processing method using the apparatus of FIG. It is sectional drawing which shows schematically the 2nd process of the vacuum processing method using the apparatus of FIG. It is sectional drawing which shows roughly the 3rd process of the vacuum processing method using the apparatus of FIG. It is sectional drawing which shows roughly the 4th process of the vacuum processing method using the apparatus of FIG.
  • FIG. 9 is a plan view schematically showing a configuration of a vacuum device in a fourth embodiment.
  • arrows x, y, and z in each figure indicate a three-dimensional orthogonal coordinate system xyz in which the z direction is opposite to the direction of gravity.
  • the vacuum apparatus of this Embodiment has the vacuum vessel 20, the door 22, and the support rail 31 (1st rail).
  • the vacuum vessel 20 has an opening 21 parallel to the zx plane.
  • the vacuum container 20 is, for example, a load lock chamber that has a plurality of step portions (a plurality of regions) inside and stores a substrate in each step portion.
  • substrate is a glass substrate used for manufacture of a thin film solar cell or a display apparatus, for example. Such a glass substrate is usually larger in size than a silicon substrate for a semiconductor device. In a mass production process, it may be necessary to store a large number of substrates in the vacuum vessel 20 at the same time. For this reason, the size of the opening 21 is increased, and as a result, the door 22 is increased in size and weight.
  • the door 22 is for closing the opening 21.
  • the door 22 has a plurality of wheels 41 attached to an axis along the y direction on the lower side of the door 22.
  • the plurality of wheels 41 and 41 are provided at positions sandwiching the center of gravity of the door 22 in the x direction.
  • the support rail 31 extends in the x direction (first direction) at an interval from the opening 21 in the y direction in plan view (field of view parallel to the xy plane).
  • the support rail 31 supports the door 22 so as to be movable along the x direction.
  • the support rail 31 has a portion facing the opening 21 in the y direction (second direction) intersecting the x direction in plan view.
  • the support rail 31 has a support rail fixing portion 31F and a support rail movable portion 31M.
  • the support rail fixing portion 31F is fixed to the floor surface on which the vacuum device is installed.
  • the support rail movable portion 31M is configured to be movable along the y direction as indicated by an arrow C2 (FIG. 2).
  • the support rail 31 has a tapered portion T such that the dimension W in the y direction becomes smaller toward the upper side.
  • the tapered portion T is sandwiched between the wheels 41 of the door 22 in the y direction.
  • door 22 is moved along the x direction. As a result, the door 22 is moved to a position facing the opening 21 in the y direction, and the wheel 41 is placed on the support rail movable portion 31M.
  • door 22 and support rail movable portion 31 ⁇ / b> M are moved toward opening 21 along the y direction.
  • the door 22 closes the opening 21.
  • This movement is performed by applying a force in the direction of the arrow C2 to at least one of the door 22 and the support rail movable portion 31M.
  • the method of opening the door 22 can be performed by the reverse procedure to the above.
  • a comparative example will be described.
  • the vacuum device of the comparative example is supported by a hinge 941 provided on the right side of the door 22 in the figure so as to be opened and closed. That is, the left side of the door 22 in the figure is not supported by the hinge 941. Therefore, as indicated by the dashed arrow R, the door 22 is easy to tilt.
  • the vacuum container 20 When the exhaust of the vacuum container 20 is started with the door 22 tilted, the vacuum container 20 may not be sufficiently decompressed due to a leak between the vacuum container 20 and the door 22. Moreover, when the inclination of the door 22 is corrected by a method such as bolting, the number of man-hours increases.
  • the door 22 since the door 22 is supported by the support rail 31, the door 22 can be stably supported. Therefore, the occurrence of the inclination of the door 22 can be suppressed.
  • the door 22 is not moved in the gravitational direction (z direction) but in the x and y directions intersecting the gravitational direction. Therefore, the force required for the movement of the door 22 can be reduced.
  • the wheel 41 of the door 22 sandwiches the tapered portion T in the y direction. Thereby, the position in the y direction of the door 22 is stabilized. Therefore, the opening 21 can be closed more reliably.
  • the vacuum device of the present embodiment includes a support rail drive unit 30 (first drive unit) and a door drive unit 51 (second drive). Part), a roller 42, a guide rail 32 (second rail), a guide rail driving part 52, and an O-ring 61.
  • the support rail drive unit 30 includes a main body 30A and a rod 30B that is expanded and contracted by the main body 30A.
  • the main body 30A is fixed to the floor surface FL.
  • the rod 30B extends in the y direction, and the tip thereof is coupled to the support rail movable portion 31M. With this configuration, the support rail driving unit 30 can move the support rail movable unit 31M along the y direction.
  • the door drive unit 51 includes a displacement part 51A, a track part 51B, a holding part 51C, and a protruding part 51D.
  • the protruding portion 51D is fixed to the door 22 and protrudes from the door 22 along the y direction.
  • the track portion 51B is provided so that the relative position with respect to the floor surface FL is fixed, and extends along the x direction.
  • the displacement portion 51A is configured to be driven along the track portion 51B.
  • One end of the holding portion 51C is connected to the displacement portion 51A.
  • the other end of the holding portion 51C holds the protruding portion 51D in the x direction.
  • the door drive unit 51 is attached to the door 22 so as to define the position of the door 22 in the x direction and to freely position the door 22 in the y direction. With this configuration, the door driving unit 51 can move the door 22 along the x direction and does not hinder the displacement of the door 22 in the y direction.
  • the roller 42 has an axis along the z direction and is attached to the upper side of the door 22.
  • the guide rail 32 is fixed to the floor surface FL by using an appropriate fixing member, and has a portion facing the opening 21 in the y direction in plan view.
  • the guide rail 32 extends in the x direction with a space from the opening 21 in plan view.
  • the guide rail 32 is configured to guide the roller 42 attached to the door 22 along the x direction.
  • the guide rail 32 has a guide rail fixing part 32F and a guide rail movable part 32M (second movable part).
  • the guide rail movable portion 32M is configured to be movable along the y direction.
  • the guide rail drive unit 52 includes a main body 52A and a rod 52B that is expanded and contracted by the main body 52A.
  • the main body 52A is fixed to the floor surface FL.
  • the rod 52B extends in the y direction, and the tip is connected to the guide rail movable portion 32M. With this configuration, the guide rail driving unit 52 can move the guide rail movable unit 32M along the y direction.
  • the same effect as in the first embodiment can be obtained.
  • the door 22 can be moved to ay direction by moving the rail movable part 31M of the state which is supporting the door 22 by the support rail drive part 30. FIG. As a result, the door 22 can be applied to the opening 21.
  • the door drive unit 51 can move the door 22 closer to or away from the opening 21 along the x direction. Thereby, the door 22 can be fully opened in the visual field parallel to the opening 21 (FIG. 4).
  • the door driving unit 51 is attached to the door 22 so that the position of the door 22 in the y direction is free. Thereby, the operation of the door 22 along the y direction can be prevented from being hindered by the door driving unit 51.
  • the door 22 can be prevented from being tilted around the support rail 31.
  • the member fixed to the floor surface FL does not necessarily have to be directly connected to the floor surface FL, and is fixed so that the relative position with the floor surface FL does not change. Just do it. More specifically, the member fixed to the floor surface FL may be fixed to the floor surface FL via a fixing frame, for example.
  • a vacuum processing apparatus 1A (vacuum apparatus) includes a vacuum processing chamber 101 in which vacuum processing is performed and a preliminary vacuum chamber 102 (vacuum container) used as a load lock chamber. And a gate valve 103 connected thereto.
  • An exhaust device 113 a for exhausting the inside of the vacuum processing chamber 101 is connected to the vacuum processing chamber 101.
  • the preliminary vacuum chamber 102 is connected to an exhaust device 113 b for exhausting the interior of the preliminary vacuum chamber 102.
  • the exhaust devices 113a and 113b are, for example, vacuum pumps.
  • a plurality of electrode pairs each having a parallel plate type electrode structure are provided.
  • Each electrode pair has a cathode electrode 105 and an anode electrode 106.
  • Each of the plurality of electrode pairs constitutes vacuum processing sections 104a to 104e (also collectively referred to as 104) for processing the workpiece 107.
  • a power source (not shown) for supplying AC power is connected to the cathode electrode 105.
  • the anode electrode 106 is grounded.
  • the workpiece 107 is installed so as to be parallel to the anode electrode 106.
  • a vacuum processing side heating device 110 for heating the object to be processed 107 is installed on the anode electrode 106 side of the vacuum processing unit 104.
  • the vacuum processing side heating device 110 is, for example, a heater that uses heat generated by a resistor or a lamp heater.
  • the vacuum processing side heating device 110 is not necessarily integrated with the anode electrode 106 and may be provided separately from the anode electrode 106.
  • the vacuum processing chamber 101 is provided with a gas introduction part 112a for introducing a gas used for vacuum processing such as plasma processing. Between the exhaust device 113a and the vacuum processing chamber 101, a pressure adjusting valve 118 is provided for keeping the pressure of the gas introduced from the gas introduction part 112a in the vacuum processing chamber 101 constant.
  • the workpiece 107 is subjected to plasma processing (vacuum processing) by plasma generated between the cathode electrode 105 and the anode electrode 106. More specifically, a film formation process by plasma CVD (Chemical vapor deposition) is performed as a vacuum process.
  • plasma processing vacuum processing
  • CVD Chemical vapor deposition
  • carry-in portions 108a to 108e each including heaters (load-in-side heating devices) 111a to 111e (also collectively referred to as 111) for preheating the object 107 to be processed. Also called).
  • the carry-in unit 108 is for placing an object 107 to be processed in the vacuum processing chamber 101.
  • unloading portions 119a to 119e (also collectively referred to as 119) are provided for accommodating the workpiece 107 that has been vacuum processed in the vacuum processing chamber 101.
  • Each of the carry-in units 108a to 108e and the carry-out units 119a to 119e is a predetermined distance 117 in the direction x (the vertical direction in FIG. 11 and also referred to as the arrangement direction) perpendicular to the conveyance direction y of the workpiece 107. They are arranged apart from each other and are configured to be simultaneously movable by a predetermined distance 117 in the arrangement direction x.
  • Each of the carry-in unit 108 and the carry-out unit 119 may have a configuration that can be independently moved in the x direction by the carry-in unit moving device 150a and the carry-out unit moving device 150b (FIG. 12).
  • the carry-in unit 108 and the carry-out unit 119 may have a configuration that can move in the x direction integrally with each other.
  • the carry-in unit moving device 150a and the carry-out unit moving device 150b are interlocked so that the carry-in unit 108 and the carry-out unit 119 can move together.
  • a frame that integrally supports the carry-in part 108 and the carry-out part 119 and a rail for sliding (sliding) the frame in the x direction may be provided.
  • the movement direction of the carry-in unit 108 and the carry-out unit 119 is the x direction.
  • this movement direction is not limited to the x direction, and the transfer unit 202A of the vacuum processing unit 104 described later is connected to the conveyance unit 202A.
  • Any direction may be employed so that the carry-in unit 108 and the carry-out unit 119 can move to a position where the workpiece 107 can be easily delivered between them.
  • the carry-in unit 108 and the carry-out unit 119 are arranged by arranging (arranging) the carry-in unit 108 and the carry-out unit 119 in a direction including at least one of the components in the x direction and the z direction.
  • the structure which can move to the (arranged) direction should just be provided.
  • the arrangement direction of each set of the carry-in units 108a to 108e, the carry-out units 119a to 119e, and the vacuum processing units 104a to 104e is the x direction as shown in FIG. For example, it may be in the z direction.
  • the preliminary vacuum chamber 102 is provided with a gas introduction portion 112b for gradually introducing a leak gas when the preliminary vacuum chamber 102 is opened to the atmosphere.
  • a gas introduction portion 112b for gradually introducing a leak gas when the preliminary vacuum chamber 102 is opened to the atmosphere.
  • On the outer wall of the preliminary vacuum chamber 102 an opening parallel to the zx plane, a door 22 for opening and closing the opening, and the door 22 are supported in order to put the workpiece 107 into and out of the outside.
  • Support rails 31 for the purpose.
  • the configurations of the door 22 and the support rail 31 are substantially the same as those in the first embodiment.
  • the door 22 has a position and a size such that an operator or the like can move the workpiece 107 accommodated therein without moving the carry-in unit 108 and the carry-out unit 119.
  • the length of the door 22 in the z direction is larger than the length of the workpiece in the z direction.
  • the length of the door 22 in the x direction is larger than the length of the region including the carry-in unit 108 and the carry-out unit 119 in the x direction.
  • the size of the opening can be increased to such an extent that an operator or the like can access all of the carry-in unit 108 and the carry-out unit. Therefore, after placing the workpiece 107 on the carry-in unit 108, the carry-in unit 108.
  • the unprocessed object 107 can be taken out from the unloading unit 119 without moving the unloading unit 119.
  • the door 22 is larger than a certain size. Further, in order to give such a large door enough strength to withstand atmospheric pressure, the thickness of the door 22 needs to be increased to some extent, and a material having high strength is selected as the material of the door 22. There is a need.
  • the size of the door 22 is larger than 1000 ⁇ 1000 mm, for example. Moreover, the thickness of the door 22 exceeds 20 mm, for example.
  • an aluminum alloy or steel can be used as the steel, for example, stainless steel can be used.
  • the weight of the door 22 is, for example, 50 kg or more, in some cases 100 kg or more, and even 200 kg or more.
  • the length of the support rail 31 is also long.
  • the length of the support rail 31 is 1000 mm or more, for example.
  • a material of the support rail 31 for example, an aluminum alloy, a copper alloy, or steel can be used.
  • the steel for example, stainless steel can be used.
  • the gate valve 103 provided between the vacuum processing chamber 101 and the preliminary vacuum chamber 102 can be opened and closed. By opening the gate valve 103, the interior of the vacuum processing chamber 101 and the interior of the preliminary vacuum chamber 102 can be communicated with each other. . Thus, the workpiece 107 can be transported between the vacuum processing chamber 101 and the preliminary vacuum chamber 102 while maintaining the vacuum state.
  • the vacuum processing chamber 101 and the preliminary vacuum chamber 102 are provided with a transport mechanism.
  • the transfer mechanism only needs to be able to transfer the workpiece 107 from the loading unit 108 to the vacuum processing unit 104 and to transfer the workpiece 107 from the vacuum processing unit 104 to the unloading unit 119. It may be provided in either or both of the chambers 102.
  • the carry-in unit 108 and the carry-out unit 119 can be moved in their relative directions (arrangement direction x), the vacuum processing unit 104 and the carry-in unit 108, and the vacuum processing unit 104 and the carry-out unit 119 are It is configured so that it can be arranged linearly along the conveyance direction y of the workpiece 107. That is, as described above, the vacuum processing apparatus 1A is equipped with moving means for the carry-in unit 108 and the carry-out unit 119, and is configured so that the workpiece 107 can be conveyed linearly by the conveyance mechanism.
  • the transport mechanism of the vacuum processing apparatus 1A (FIG. 11) includes a carry-in transport apparatus 202B provided in the carry-in section 108 and a carry-out transport apparatus 202C provided in the carry-out section 119. And a vacuum processing side transfer device 202A provided in the vacuum processing unit 104. Since each of the transfer devices 202A, 202B, and 202C has a function of moving and holding the workpiece 107 and has a substantially similar configuration, the vacuum processing side transfer device 202A will be described below.
  • the workpiece 107 is placed on a driving roller 202c having a rotation axis in the horizontal direction.
  • the workpiece 107 is supported from the side by the driven roller 202a and the driven roller 202b.
  • the drive roller 202c is rotated by a motor or the like, and moves the workpiece 107 linearly in the transport direction y.
  • the vacuum processing apparatus 1A can transport the workpiece 107 before being subjected to vacuum processing to the vacuum processing unit 104 to perform vacuum processing on the processing surface 107a.
  • the to-be-processed object 107 after a process can be conveyed to the carrying-out part 119.
  • the transfer device 202B of the carry-in unit 108 and the transfer device 202A of the vacuum processing unit 104 carry the workpiece 107 before being vacuum processed from the carry-in unit 108 to the vacuum processing unit 104, and the vacuum processing unit 104.
  • the transfer device 202 ⁇ / b> A and the transfer device 202 ⁇ / b> C of the carry-out unit 119 carry out the workpiece 107 after the vacuum processing from the vacuum processing unit 104 to the carry-out unit 119.
  • the driven rollers 202a and 202b, guides, rails, grooves, and the like can be used. That is, it is possible to employ a transport system having a simple configuration in which a propulsive force is applied to the workpiece 107 by a motor or the like.
  • the workpiece 107 is installed so that the workpiece surface 107a is parallel to the yz plane, but as described above, the workpiece 107 may be held at any angle.
  • control apparatus 100 (FIG. 12) is connected to each apparatus included in the vacuum processing apparatus 1A via a cable or an interface, and the following steps are mainly performed by operations of the control apparatus 100.
  • the control device 100 includes a memory 98 that stores a program for controlling the vacuum processing apparatus 1A, and a CPU 99 that reads the program and controls the vacuum processing apparatus 1A.
  • the vacuum processing performed by the vacuum processing apparatus 1A is controlled by software executed on the control device 100.
  • the control apparatus 100 introduce
  • the interior of the preliminary vacuum chamber 102 is opened to the atmosphere by opening the door 22.
  • the workpiece 107 before being vacuum-processed is placed in the carry-in unit 108.
  • the door 22 is sealed.
  • the gate valve 103 is opened at a timing at which the carry-in unit 108 is moved to a predetermined position (the position where the carry-in unit 108 and the vacuum processing unit 104 are arranged in a straight line) for carrying the workpiece 107. It may be before, after or open.
  • the control device 100 forms a film on the workpiece 107 carried into the vacuum processing unit 104 by a plasma CVD method.
  • the vacuum processing side heating device 110 in the vacuum processing chamber 101 is always turned on while the vacuum processing device 1A is in operation, and the control device 100 keeps the temperature of the workpiece 107 at 170 ° C., for example.
  • the output is controlled by.
  • a reaction gas composed of hydrogen gas and silane gas is introduced into the vacuum processing chamber 101 from the gas introduction part 112a.
  • the pressure in the vacuum processing chamber 101 is adjusted to a predetermined pressure by the pressure adjustment valve 118.
  • high-frequency power for example, a frequency of 13.56 MHz
  • plasma is generated between the cathode electrode 105 and the anode electrode 106.
  • the reactive gas is decomposed by this plasma, and a silicon film is formed on the workpiece 107.
  • the control device 100 stops supplying power to the cathode electrode 105.
  • the control device 100 stops the introduction of the reaction gas and evacuates the vacuum processing chamber 101.
  • the workpiece installation process, the heating process, and the carry-in / carry-out part moving process are performed in parallel during the vacuum process.
  • the control device 100 starts evacuation of the preliminary vacuum chamber 102 by operating the exhaust device 113b. And the control apparatus 100 heats the to-be-processed object 107 before vacuum processing by turning ON the power supply of the heater 111.
  • FIG. 1 the control device 100 starts evacuation of the preliminary vacuum chamber 102 by operating the exhaust device 113b.
  • the control apparatus 100 heats the to-be-processed object 107 before vacuum processing by turning ON the power supply of the heater 111.
  • ⁇ Processing object unloading step> The temperature of the object to be processed 107 in the preliminary vacuum chamber 102 before the vacuum processing reaches a predetermined temperature, the degree of vacuum in the preliminary vacuum chamber 102 reaches a predetermined degree of vacuum, and vacuum processing. After the vacuum processing step in the chamber 101 is completed and the pressure in the vacuum processing chamber 101 reaches a desired pressure, the gate valve 103 is opened. Next, the conveyance device 202C and the conveyance device 202B linearly carry out the workpiece 107 after the vacuum processing from the vacuum processing unit 104 to the carry-out unit 119 (FIG. 15).
  • the transfer device 202B can linearly move the workpiece 107 before vacuum processing accommodated in the loading unit 108 to the vacuum processing unit 104, that is, the loading unit 108.
  • the vacuum processing unit 104 are arranged on the axis, the control device 100 operates the carry-in unit moving device 150a and the carry-out unit moving device 150b to move the carry-in unit 108 and the carry-out unit 119 along the direction x0 (FIG. 15). And move it by a predetermined distance 117.
  • the vacuum processing side transfer device 202A and the loading side transfer device 202B linearly transfer the processing object 107 before being vacuum processed from the loading unit 108 to the vacuum processing unit 104 ( FIG. 16).
  • the gate valve 103 is sealed and the heater 111 is turned off.
  • a silicon film is formed by the plasma CVD method on the workpiece 107 that has been carried into the vacuum processing unit 104 and before vacuum processing.
  • this vacuum processing step the same processing as the above-described vacuum processing step is performed. While performing this process, the following processing object extraction process, loading part / unloading part movement process, processing object installation process, heating process, and loading part / unloading part movement process are performed in parallel. .
  • control device 100 starts evacuating the preliminary vacuum chamber 102.
  • the control device 100 heats the workpiece 107 before being vacuum processed in the carry-in unit 108 by turning on the power of the heater 111.
  • the loading unit moving device a and the unloading unit moving device 150b are operated so that the processed object 107 can be unloaded linearly from the vacuum processing unit 104 to the unloading unit 119.
  • the carry-in part 108 and the carry-out part 119 move along the direction x1 (FIG. 18). That is, the control device 100 arranges the vacuum processing unit 104 and the carry-out unit 119 so as to be aligned on the axis in the transport direction y (FIG. 11).
  • control device 100 repeatedly performs the carry-in part / unload-part movement process from the above-described workpiece carry-out process.
  • the workpiece 107 can be replaced efficiently, and cooling of the workpiece 107 that has already been vacuum-processed and vacuumed during the vacuum processing step. Since the workpiece 107 to be processed can be heated, the tact time of the vacuum processing apparatus 1A (working time required for one workpiece 107) can be shortened.
  • the length of the door 22 in the x direction is larger than the length of the region including the carry-in unit 108 and the carry-out unit 119 in the x direction, as shown in FIG.
  • the size of the opening can be increased to such an extent that an operator or the like can access all of the carry-in unit 108 and the carry-out unit, so that the carry-in units 108a to 108e and the carry-out units 119a to 119e do not move.
  • the workpiece 107 can be disposed from the outside of the preliminary vacuum chamber 102 to the carry-in portions 108a to 108e, and the respective workpieces 107 held in the carry-out portions 119a to 119e are moved to the outside of the preliminary vacuum chamber 102. It is possible to take out.
  • the door 22 when the door 22 is longer than the region including the carry-in part 108 and the carry-out part 119 in the x direction, the size of the door 22 increases, and thus the weight thereof also increases.
  • the door 22 having such a large weight is stably supported by the support rail 31 as in the first embodiment.
  • the door 22 and the mechanism for supporting the door 22 are not limited to those according to the configuration of the first embodiment, and may be based on the configuration of the second embodiment, for example.
  • each of the carry-in unit 108 and the carry-out unit 119 is provided. However, when a longer tact time is allowed, a portion serving as both the carry-in unit 108 and the carry-out unit 119 may be provided. .
  • the heaters 111a to 111e may not be provided. Further, the position where the transport mechanism is provided may not be inside the vacuum apparatus.
  • a film formation process by plasma CVD is performed as a vacuum process.
  • the vacuum process is not limited to this. For example, a film formation process by a sputtering method or a vapor deposition method, or a plasma etching process. It may be.
  • the vacuum apparatus 1B of the present embodiment includes a plurality of vacuum processing chambers 101 (multi-chambers), a transfer chamber 103C, a preliminary vacuum chamber 102, a door 22, a support rail 31, and the like.
  • a plurality of vacuum processing chambers 101 are provided in this embodiment.
  • the transfer chamber 103 ⁇ / b> C is configured to be able to transfer the workpiece 107 between each of the plurality of vacuum processing chambers 101 and the preliminary vacuum chamber 102.
  • the configuration of the transfer chamber 103 ⁇ / b> C includes a mechanism for rotating the workpiece 107 in order to transfer the workpiece 107 between the preliminary vacuum chamber 102 and the specific vacuum processing chamber 101.
  • the carry-in unit moving device 150a and the carry-out unit moving device 150b may be omitted.
  • the present invention can be applied particularly advantageously to a vacuum apparatus having a vacuum vessel.
  • 1A vacuum processing device (vacuum device), 20 vacuum vessel, 21 opening, 22 door, 30 support rail drive, 30A body, 30B rod, 31 support rail, 31F support rail fixing part, 31M support rail movable part, 32 Guide rail, 32F guide rail fixing part, 32M guide rail movable part, 41 wheels, 42 rollers, 51 door drive part, 51A displacement part, 51B track part, 51C pinching part, 51D protruding part, 52 guide rail drive part, 52A Main unit, 52B rod, 61 O-ring, 101 vacuum processing chamber, 102 preliminary vacuum chamber (vacuum vessel), 103 gate valve, 103C transfer chamber, 104, 104a to 104e, vacuum processing unit, 107 workpiece, 107a surface to be processed , 108, 108a to 108e carry-in part, 1 1,111a ⁇ 111e heaters, 119,119a ⁇ 119e unloading unit, FL floor, T tapered portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 真空容器(20)は、開口部を有する。扉(22)は、開口部を塞ぐためのものである。第1レール(31)は、平面視において開口部と間隔を空けて第1方向に延在している。また第1レール(31)は、扉(22)を第1方向に沿って移動可能に支持している。また第1レール(31)は、平面視において第1方向と交差する第2方向に開口部と対向する部分を有する。また第1レールは、第2方向に沿って移動可能な第1可動部(31M)を有する。

Description

真空装置
 本発明は、真空装置に関し、特に、真空容器を有する真空装置に関するものである。
 ロードロック室などを備えた真空装置は、基板などの被処理物を出し入れするための開口部を有する真空容器と、この開口部を塞ぐための扉とを有する。扉は開閉動作を行なえるように設けられている。
 特開平9-199293号公報(特許文献1)によれば、扉と本体(真空容器)とは、蝶番により接続されている。
 また特開平10-303277号公報(特許文献2)によれば、扉開閉機構は上下駆動機構を有する。
特開平9-199293号公報 特開平10-303277号公報
 上記特開平9-199293号公報の技術によれば、扉が重力によって蝶番を支点として傾いてしまうことがある。また上記特開平10-303277号公報の技術によれば、扉を重力に逆らって動かす際に大きな力が必要になる。これらの問題は、扉の重量が大きくなった場合に、より顕著となってくる。
 それゆえ本発明の一の目的は、扉を安定的に支持することができる真空装置を提供することである。また本発明の他の目的は、扉の開閉動作を小さな力で行なうことができる真空装置を提供することである。
 本発明の真空装置は、真空容器と、扉と、第1レールとを有する。真空容器は、開口部を有する。扉は、開口部を塞ぐためのものである。第1レールは、平面視において開口部と間隔を空けて第1方向に延在している。また第1レールは、扉を第1方向に沿って移動可能に支持している。また第1レールは、平面視において第1方向と交差する第2方向に開口部と対向する部分を有する。また第1レールは、第2方向に沿って移動可能な第1可動部を有する。
 本発明の真空装置によれば、扉がレールによって支持されるので、扉を安定的に支持することができる。
 上記の真空装置において好ましくは、第1および第2方向の各々は重力方向と交差している。
 これにより、扉を移動させるのに必要な力を小さくすることができる。
 上記の真空装置において好ましくは、真空装置は、第1可動部を移動させるための第1駆動部をさらに有する。
 これにより、扉が第1可動部に支持された状態で第1駆動部が駆動されることで、扉を第2方向に移動させて開口部にあてがうことができる。
 上記の真空装置において好ましくは、真空装置は、扉を第1方向に沿って移動させるための第2駆動部をさらに有する。
 これにより、第1方向に沿って扉を開口部に近づけたり遠ざけたりすることができる。
 上記の真空装置において好ましくは、第2駆動部は、扉の第1方向における位置を規定し、かつ扉の第2方向における位置を自由にするように、扉に取り付けられている。
 これにより、第2方向に沿った扉の動作が第2駆動部によって妨げられないようにすることができる。
 上記の真空装置において好ましくは、第1レールは、第2方向における寸法が上方ほど小さくなるようなテーパー部を有する。また扉は、第2方向においてテーパー部を挟み込む部分を有する。
 これにより扉の第2方向における位置が安定化される。
 上記の真空装置において好ましくは、真空装置は第2レールをさらに有する。第2レールは、平面視において開口部と間隔を空けて第1方向に延在している。また第2レールは、平面視において第2方向に開口部と対向する部分を有する。また第2レールは、扉を第1方向に沿って導いている。また第2レールは、第2方向に沿って移動可能な第2可動部を有する。
 これにより扉の移動が第1レールだけでなく第2レールによっても規制されるので、扉が第1レール周りに傾くことを防止することができる。
 以上説明したように、本発明によれば、扉を安定的に支持することができる。
本発明の実施の形態1における真空装置の構成を概略的に示す斜視図であり、全開状態を示す図である。 本発明の実施の形態1における真空装置の構成を概略的に示す斜視図であり、閉状態を示す図である。 比較例の真空装置の構成を概略的に示す斜視図である。 本発明の実施の形態2における真空装置の構成を概略的に示す正面図であり、全開状態を示す図である。 本発明の実施の形態2における真空装置の構成を概略的に示す平面図であり、全開状態を示す図である。 本発明の実施の形態2における真空装置の構成を概略的に示す正面図であり、半開状態を示す図である。 本発明の実施の形態2における真空装置の構成を概略的に示す平面図であり、半開状態を示す図である。 図6および図7の各々の線VIII-VIIIに沿った概略断面図である。 本発明の実施の形態2における真空装置の構成を概略的に示す平面図であり、閉状態を示す図である。 図9の線X-Xに沿った概略断面図である。 実施の形態3における真空装置の構成を概略的に示す断面図である。 実施の形態3における真空装置の構成を概略的に示す機能ブロック図である。 図11の装置の搬送機構および被処理物を示す正面図である。 図11の線XIV-XIVに沿う概略断面図である。 図11の装置を用いた真空処理方法の第1工程を概略的に示す断面図である。 図11の装置を用いた真空処理方法の第2工程を概略的に示す断面図である。 図11の装置を用いた真空処理方法の第3工程を概略的に示す断面図である。 図11の装置を用いた真空処理方法の第4工程を概略的に示す断面図である。 実施の形態4における真空装置の構成を概略的に示す平面図である。
 以下、本発明の実施の形態について図に基づいて説明する。なお各図における矢印x、yおよびzは、z方向を重力方向と反対方向とする3次元直交座標系xyzを示す。
 (実施の形態1)
 図1および図2を参照して、本実施の形態の真空装置は、真空容器20と、扉22と、支持レール31(第1レール)とを有する。
 真空容器20は、zx面と平行な開口部21を有する。真空容器20は、たとえば、内部に複数の段部(複数の領域)を有し、各段部に基板が収められるロードロック室である。この基板は、たとえば薄膜太陽電池やディスプレイ装置の製造に用いられるガラス基板である。このようなガラス基板は、通常、半導体装置用のシリコン基板に比してサイズが大きい。また量産工程においては多数の基板が同時に真空容器20に収められる必要がある場合がある。このため開口部21のサイズが大きくなり、その結果、扉22はサイズおよび重量が大きくなる。
 扉22は、開口部21を塞ぐためのものである。また扉22は扉22の下側に、y方向に沿った軸に取り付けられた複数の車輪41を有する。好ましくは、複数の車輪41、41はx方向において扉22の重心を挟む位置に設けられている。
 支持レール31は、平面視(xy面に平行な視野)において開口部21とy方向に間隔を空けてx方向(第1方向)に延在している。また支持レール31は、扉22をx方向に沿って移動可能に支持している。また支持レール31は、平面視においてx方向と交差するy方向(第2方向)に開口部21と対向する部分を有する。
 また支持レール31は、支持レール固定部31Fと、支持レール可動部31Mとを有する。支持レール固定部31Fは、真空装置が設置される床面に対して固定されている。支持レール可動部31Mは、矢印C2(図2)に示すように、y方向に沿って移動可能に構成されている。また支持レール31は、y方向における寸法Wが上方ほど小さくなるようなテーパー部Tを有する。このテーパー部Tは、y方向において扉22の車輪41によって挟み込まれている。
 次に扉22を閉じる方法について説明する。
 図1を参照して、まず矢印C1に示すように、扉22がx方向に沿って移動される。これにより、扉22が開口部21とy方向に対向する位置へ移動され、かつ車輪41が支持レール可動部31Mに載せられる。
 図2を参照して、矢印C2に示すように、扉22および支持レール可動部31Mが開口部21に向かってy方向に沿って移動される。これにより、扉22が開口部21を塞ぐ。この移動は、扉22および支持レール可動部31Mの少なくともいずれかに対して矢印C2方向に力を加えることにより行なわれる。
 なお扉22を開ける方法は、上記と逆の手順により行なうことができる。
 次に比較例について説明する。
 図3を参照して、比較例の真空装置は、扉22の図中の右側部に設けられた蝶番941によって開閉自在に支持されている。すなわち扉22の図中の左側部は蝶番941に支持されていない。よって、破線矢印Rで示すように、扉22が傾きやすい。
 扉22が傾いた状態で真空容器20の排気が開始されると、真空容器20と扉22との間のリークによって、真空容器20が十分に減圧されないことがある。また扉22の傾き
がボルト止めなどの方法によって矯正される場合、工数が増加してしまう。
 本実施の形態によれば、扉22が支持レール31によって支持されているので、扉22を安定的に支持することができる。よって扉22の傾きの発生を抑制することができる。
 また扉22は、重力方向(z方向)ではなく、重力方向と交差するxおよびy方向に移動される。よって扉22の移動に必要な力を小さくすることができる。
 また扉22の車輪41は、y方向においてテーパー部Tを挟み込んでいる。これにより扉22のy方向における位置が安定化される。よって、より確実に開口部21を塞ぐことができる。
 (実施の形態2)
 図4~図10を参照して、本実施の形態の真空装置は、実施の形態1の構成に加えて、支持レール駆動部30(第1駆動部)と、扉駆動部51(第2駆動部)と、ローラー42と、ガイドレール32(第2レール)と、ガイドレール駆動部52と、Oリング61とを有する。
 支持レール駆動部30は、本体部30Aと、本体部30Aによって伸縮されるロッド30Bとを有する。本体部30Aは床面FLに対して固定されている。またロッド30Bはy方向に延在し、かつその先端が支持レール可動部31Mに連結されている。この構成により、支持レール駆動部30は、支持レール可動部31Mをy方向に沿って移動させることができる。
 扉駆動部51は、変位部51Aと、軌道部51Bと、狭持部51Cと、突出部51Dとを有する。突出部51Dは、扉22に固定されており、扉22からy方向に沿って突出している。軌道部51Bは、床面FLに対する相対的位置が固定されるように設けられており、かつx方向に沿って延びている。変位部51Aは、軌道部51Bに沿って駆動されるように構成されている。狭持部51Cの一方端は、変位部51Aに連結されている。また狭持部51Cの他方端は、突出部51Dをx方向において狭持している。すなわち扉駆動部51は、扉22のx方向における位置を規定し、かつ扉22のy方向における位置を自由にするように、扉22に取り付けられている。この構成により、扉駆動部51は、扉22をx方向に沿って移動させることができ、かつ扉22のy方向の変位を妨げない。
 ローラー42は、z方向に沿った軸を有し、扉22の上側に取り付けられている。
 ガイドレール32は、適当な固定用部材を用いることによって床面FLに対して固定されており、平面視においてy方向に開口部21と対向する部分を有する。またガイドレール32は、平面視において開口部21と間隔を空けてx方向に延在している。またガイドレール32は、扉22に取り付けられたローラー42を、x方向に沿って導くように構成されている。
 またガイドレール32は、ガイドレール固定部32Fと、ガイドレール可動部32M(第2可動部)とを有する。ガイドレール可動部32Mはy方向に沿って移動可能に構成されている。
 ガイドレール駆動部52は、本体部52Aと、本体部52Aによって伸縮されるロッド52Bとを有する。本体部52Aは床面FLに対して固定されている。またロッド52Bはy方向に伸び、かつ先端がガイドレール可動部32Mに連結されている。この構成により、ガイドレール駆動部52は、ガイドレール可動部32Mをy方向に沿って移動させることができる。
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 本実施の形態によれば、実施の形態1と同様の効果が得られる。
 また、扉22を支持している状態のレール可動部31Mを支持レール駆動部30によって移動することで、扉22をy方向に移動させることができる。これにより扉22を開口部21にあてがうことができる。
 また扉駆動部51によって、x方向に沿って扉22を開口部21に近づけたり遠ざけたりすることができる。これにより開口部21に平行な視野(図4)において、扉22を全開にすることができる。
 また扉駆動部51は、扉22のy方向における位置を自由にするように、扉22に取り付けられている。これにより、y方向に沿った扉22の動作が扉駆動部51によって妨げられないようにすることができる。
 また扉22の移動がガイドレール32によっても規制されるので、扉22が支持レール31周りに傾くことを防止することができる。
 なお上記各実施の形態において、床面FLに対して固定されている部材は、必ずしも床面FLに直接連結されている必要はなく、床面FLとの相対位置が変化しないように固定されていればよい。より具体的には床面FLに対して固定されている部材は、たとえば固定用のフレームを介して床面FLに固定されていてもよい。
 (実施の形態3)
 図11および図12を参照して、真空処理装置1A(真空装置)は、真空処理が行われる真空処理室101と、ロードロック室として用いられる予備真空室102(真空容器)と、両者を互いに接続しているゲートバルブ103とを有する。真空処理室101には真空処理室101内を排気するための排気装置113aが接続されている。また予備真空室102には予備真空室102内を排気するための排気装置113bが接続されている。排気装置113a,113bは、たとえば真空ポンプである。
 真空処理室101内には、各々が平行平板型の電極構造を有する複数の電極対が設けられている。各電極対はカソード電極105およびアノード電極106を有する。この複数の電極対のそれぞれが、被処理物107を処理するための真空処理部104a~104e(総称して104ともいう)を構成している。カソード電極105には交流電力を供給するための電源(図示せず)が接続されている。アノード電極106は接地されている。被処理物107はアノード電極106と平行になるように設置される。真空処理部104のアノード電極106側に、被処理物107を加熱するための真空処理側加熱装置110が設置されている。真空処理側加熱装置110は、たとえば、抵抗体の発熱を利用したヒータ、またはランプヒータである。なお真空処理側加熱装置110は必ずしもアノード電極106と一体である必要はなく、アノード電極106と分離して設けられていてもよい。
 また、真空処理室101には、プラズマ処理などの真空処理に使用するガスを導入するガス導入部112aが設けられている。排気装置113aおよび真空処理室101の間には、ガス導入部112aから導入されたガスの真空処理室101内における圧力を一定に保つための圧力調整バルブ118が設けられている。
 本実施の形態においては、カソード電極105とアノード電極106との間に発生するプラズマによって被処理物107がプラズマ処理(真空処理)される。より具体的には真空処理としてプラズマCVD(Chemical vapor deposition)による成膜処理が行われる。
 予備真空室102内には、被処理物107を予備過熱するためのヒータ(搬入側加熱装置)111a~111e(総称して111ともいう)をそれぞれが含む搬入部108a~108e(総称して108ともいう)が設けられている。搬入部108は、真空処理室101において真空処理されることになる被処理物107が配置されるためのものである。また予備真空室102内には、真空処理室101で真空処理された後の被処理物107を収容するための搬出部119a~119e(総称して119ともいう)が設けられている。搬入部108a~108eのそれぞれと搬出部119a~119eとは、被処理物107の搬送方向yと垂直な方向x(図11における縦方向であって、配列方向ともいう。)に所定距離117だけ離れて配置されており、また配列方向xに所定距離117だけ同時に移動可能に構成されている。
 搬入部108および搬出部119のそれぞれは、搬入部移動装置150aおよび搬出部移動装置150b(図12)によって独立にx方向へ移動できる構成を有してもよい。あるいは搬入部108および搬出部119は互いに一体となってx方向へ移動できる構成を有してもよい。真空処理装置1A自体の装置構成を簡略化するためには、搬入部移動装置150aおよび搬出部移動装置150bが連動することによって搬入部108および搬出部119が一体となって移動することができるような構成が好ましい。このために、搬入部108および搬出部119を一体に支持するフレームと、このフレームをx方向に摺動(スライド)させるためのレールとが設けられてもよい。
 なお本実施の形態においては搬入部108および搬出部119の移動方向はx方向であるが、この移動方向はx方向に限定されるものではなく、後述する真空処理部104の搬送装置202Aとの間で被処理物107を受け渡しし易い位置まで搬入部108および搬出部119が移動できるようにするための方向であればよい。具体的には、x方向およびz方向の少なくともいずれかの成分を含む方向に搬入部108および搬出部119が並べられ(配列され)ることで、搬入部108および搬出部119を、並べられた(配列された)方向へと移動できる構成が設けられればよい。
 また本実施の形態においては搬入部108a~108e、搬出部119a~119e、および真空処理部104a~104eの各組の配列方向が図11に示すようにx方向であるが、この配列方向は、たとえばz方向であってもよい。
 予備真空室102には、予備真空室102内を大気開放する際に徐々にリーク用ガスを導入するためのガス導入部112bが設けられている。予備真空室102の外壁には、外部との間で被処理物107を出し入れするために、zx面と平行な開口部と、この開口部を開閉するための扉22と、扉22を支持するための支持レール31とを有する。扉22および支持レール31の構成は実施の形態1とほぼ同様である。
 本実施の形態においては、扉22は、搬入部108および搬出部119を移動することなく作業者などがそれらに収容されている被処理物107の出し入れができるような位置および大きさを有する。具体的には、扉22のz方向の長さは被処理物のz方向の長さよりも大きくされている。また扉22のx方向の長さは、搬入部108および搬出部119を含む領域のx方向の長さよりも大きくされている。これにより作業者などが搬入部108および搬出部の全てにアクセスし得る程度に開口部の大きさを大きくすることができるので、搬入部108へ被処理物107を載置した後に、搬入部108と搬出部119とを移動させることなく、搬出部119から被処理物107を取出すことができる。
 上記の諸要件を満たすために、扉22は、ある程度以上に大きなものとなる。またこのように大きな扉に対して、大気圧に耐えるだけの強度を付与するために、扉22の厚さをある程度大きくする必要があり、また扉22の材料として大きな強度を有する材料を選択する必要がある。扉22の大きさは、たとえば1000×1000mmよりも大きい。また扉22の厚さは、たとえば20mmを超える。また扉22の材料としては、たとえば、アルミニウム合金または鋼を用いることができ、鋼としては、たとえばステンレス鋼を用いることができる。このような扉22の重量は、たとえば50kg以上となり、場合によっては100kg以上となり、さらには200kg以上となり得る。
 なお扉22の大きさが大きい場合、支持レール31の長さも長くなる。支持レール31の長さは、たとえば1000mm以上である。支持レール31の材料としては、たとえば、アルミニウム合金、銅合金、または鋼を用いることができ、鋼としては、たとえば、ステンレス鋼を用いることができる。
 真空処理室101および予備真空室102の間に設けられたゲートバルブ103は開閉可能であり、ゲートバルブ103を開けることによって、真空処理室101内部と予備真空室102内部とを連通することができる。これにより真空状態を維持したままで真空処理室101と予備真空室102との間で被処理物107を搬送することができる。
 真空処理室101および予備真空室102には搬送機構が設けられている。搬送機構は、搬入部108から真空処理部104への被処理物107の搬送と、真空処理部104から搬出部119への被処理物107の搬送とができればよく、真空処理室101または予備真空室102のいずれかまたは両方に設けられていればよい。
 本実施の形態においては、搬入部108および搬出部119をそれらの相対方向(配列方向x)に移動可能とし、真空処理部104および搬入部108が、また真空処理部104および搬出部119が、被処理物107の搬送方向yに沿って直線的に並び得るように構成されている。つまり前述したように真空処理装置1Aは、搬入部108および搬出部119のための移動手段を装備しており、搬送機構によって被処理物107を直線的に搬送できるように構成されている。
 さらに図12~図14を参照して、真空処理装置1A(図11)の搬送機構は、搬入部108に設けられた搬入側搬送装置202Bと、搬出部119に設けられた搬出側搬送装置202Cと、真空処理部104に設けられた真空処理側搬送装置202Aとを有する。搬送装置202A、202B、および202Cの各々は、被処理物107を移動させ、また保持する機能を持ち、ほぼ同様の構成となっているため、以下では真空処理側搬送装置202Aについて説明する。
 図13および図14に示すように、被処理物107は、水平方向に回動軸を有する駆動ローラー202c上に載置されている。被処理物107は、従動ローラー202aおよび従動ローラー202bにより側方から支持されている。駆動ローラー202cは、モータなどによって回動されるものであって、被処理物107を直線的に搬送方向yへと移動させるものである。
 この構成により本実施の形態の真空処理装置1Aは、真空処理が施される前の被処理物107を真空処理部104に搬送して被処理面107aに真空処理を施すことができ、また真空処理が施された後の被処理物107を搬出部119に搬送することができる。詳しくは、搬入部108の搬送装置202Bと真空処理部104の搬送装置202Aとが、真空処理される前の被処理物107を搬入部108から真空処理部104へと搬入し、真空処理部104の搬送装置202Aと搬出部119の搬送装置202Cとが、真空処理された後の被処理物107を真空処理部104から搬出部119へと搬出する。被処理物107を搬送方向yに沿って直線的に移動させる場合、このように従動ローラー202a、202bやガイドやレールや溝などを利用することができる。つまり被処理物107にモータなどにより推進力を与えるような簡易な構成の搬送系を採用することができる。
 本実施の形態においては被処理物107は被処理面107aがyz面に平行となるように設置されるが、前述したように、被処理物107はどのような角度で保持されてもよい。
 次に真空処理装置1Aを用いた真空処理方法について、以下に説明する。なお真空処理装置1Aに含まれる各装置には、ケーブルやインタフェースを介して制御装置100(図12)が接続されており、以下の工程は主に制御装置100による操作によって行われるものである。具体的には制御装置100には、真空処理装置1Aを制御するためのプログラムが記憶されているメモリー98と、当該プログラムを読み込んで真空処理装置1Aを制御するCPU99とが内蔵されている。本実施の形態においては、真空処理装置1Aによって行われる真空処理は、制御装置100上で実行されるソフトウェアによって制御される。
 <被処理物設置工程> まず制御装置100は、ガス導入部112bを開放することで予備真空室102内に窒素ガスを導入する。予備真空室102内が大気圧になると、扉22が開放されることで予備真空室102内部が大気開放される。この状態において、真空処理される前の被処理物107が搬入部108に配置される。次に扉22が密閉される。
 <加熱工程> 次に排気装置113bによって予備真空室102内が排気される。またヒータ111の電源がオンされることで被処理物107が加熱される。
 <被処理物搬入工程> 被処理物107の温度が所定の温度になり、かつ予備真空室102内の真空度が所定の真空度に達した後、ゲートバルブ103が開放される。そして搬送機構によって予備真空室102内の搬入部108から真空処理室101内の真空処理部104へと真空処理前の被処理物107が搬入される。被処理物107が真空処理部104へ搬入された後、ヒータ111の電源がオフになり、ゲートバルブ103が遮断される。ここで、被処理物107を搬送するための所定位置(搬入部108と真空処理部104とが一直線上に並ぶ位置)まで搬入部108が移動されるタイミングについては、ゲートバルブ103が開放される前であっても後であっても開放中であってもよいものとする。
 <真空処理工程> 制御装置100は、真空処理部104に搬入された被処理物107に対して、プラズマCVD法により成膜を行う。真空処理室101内の真空処理側加熱装置110は、真空処理装置1Aの稼動中は常に電源が入れられており、被処理物107の温度を、たとえば170℃に保持するように、制御装置100によってその出力が制御されている。
 具体的には、ゲートバルブ103が遮断されると、水素ガスおよびシランガスからなる反応ガスがガス導入部112aから真空処理室101内に導入される。圧力調整バルブ118によって真空処理室101内の圧力が所定の圧力に調整される。次に、カソード電極105に高周波電力(たとえば13.56MHzの周波数)が給電されると、カソード電極105とアノード電極106との間にプラズマが発生する。このプラズマにより反応ガスが分解されて、被処理物107上にシリコン膜が成膜される。所望の膜厚のシリコン膜が成膜された後、制御装置100はカソード電極105への給電を停止する。制御装置100は、反応ガスの導入を止めて、真空処理室101内を真空排気する。
 <被処理物設置工程> 一方、真空処理室101で成膜が行われている期間、予備真空室102においては、制御装置100は、搬出部119の温度が所定の温度に下がった後に、ガス導入部112bから予備真空室102内に窒素ガスを導入する。予備真空室102内が大気圧になった後に、扉22が開放されて予備真空室102内が大気開放される。新たな真空処理前の被処理物107が搬入部108に配置されると、扉22が密閉される。
 ここで、被処理物設置工程と加熱工程と搬入部・搬出部移動工程とは(これらの工程をまとめて設置工程とする)、真空処理工程の実施中に並行して実施される。
 <加熱工程> 次に制御装置100は、排気装置113bを稼動することによって予備真空室102内の真空排気を開始する。そして制御装置100は、ヒータ111の電源をオンすることによって、真空処理される前の被処理物107を加熱する。
 <搬入部・搬出部移動工程> 次に、先の工程で真空処理された被処理物107を、真空処理部104から搬出部119に搬送方向yに沿って直線的に搬出できるように、搬入部108および搬出部119がx方向に所定距離117だけ移動する。つまり制御装置100により、真空処理部104および搬出部119が搬送方向yの軸線上に並べられる。ただし本工程は、被処理物設置工程の後に実施されればよく、ヒータ111による被処理物107の加熱中に実施されてもよい。
 <被処理物搬出工程> 予備真空室102内の真空処理前の被処理物107の温度が所定の温度になり、かつ予備真空室102内の真空度が所定の真空度に達し、かつ真空処理室101内の真空処理工程が終了し、かつ真空処理室101内の圧力が所望の圧力となった後に、ゲートバルブ103が開放される。次に、真空処理された後の被処理物107を、真空処理部104から搬出部119へと、搬送装置202Cおよび搬送装置202Bが直線的に搬出する(図15)。
 <搬入部・搬出部移動工程> 次に搬送装置202Bが搬入部108に収容されている真空処理前の被処理物107を真空処理部104まで直線的に移動できるように、つまり、搬入部108と真空処理部104とが軸線上に並ぶように、制御装置100は搬入部移動装置150aと搬出部移動装置150bとを作動させて搬入部108および搬出部119を方向x0(図15)に沿って所定距離117だけ移動させる。
 <被処理物搬入工程> 次に真空処理側搬送装置202Aと搬入側搬送装置202Bとが、真空処理される前の被処理物107を搬入部108から真空処理部104へ直線的に搬入する(図16)。真空処理前の被処理物107が真空処理部104に搬入された後、ゲートバルブ103が密閉され、ヒータ111の電源がオフされる。
 <真空処理工程> 前述したように、真空処理部104に搬入された真空処理前の被処理物107にプラズマCVD法によってシリコン膜が成膜される。本真空処理工程は前述した真空処理工程と同一の処理が行われるものである。本工程を実施している間に、以下の被処理物取出工程、搬入部・搬出部移動工程、被処理物設置工程、加熱工程、および搬入部・搬出部移動工程が並行して実施される。
 <被処理物取出工程> 既に予備真空室102に搬出されている処理された被処理物107の温度が所定の温度に下がった後、ガス導入部112bから予備真空室102内に窒素ガスが導入される。予備真空室102内の圧力が大気圧とほぼ同一になると、扉22が開放されることで予備真空室102が大気開放される。そして、処理された被処理物107が搬出部119から取出される(図17)。
 <被処理物設置工程> そして真空処理される前の新たな被処理物107が搬入部108に配置される(図18)。次に扉22が密閉される。
 <加熱工程> 次に制御装置100は、予備真空室102内の真空排気を開始する。制御装置100は、ヒータ111の電源をオンすることで、真空処理される前の被処理物107を搬入部108において加熱する。
 <搬入部・搬出部移動工程> 次に、処理された被処理物107を真空処理部104から搬出部119に直線的に搬出できるように、搬入部移動装置aおよび搬出部移動装置150bが作動して搬入部108と搬出部119とが方向x1(図18)に沿って移動する。すなわち制御装置100は、真空処理部104および搬出部119を搬送方向yの軸線上に並ぶように配置させる(図11)。
 以降、制御装置100は、上記の被処理物搬出工程から搬入部・搬出部移動工程を繰り返し行う。このような一連の工程を実施することにより、被処理物107の入れ替えを効率的に行うことができ、また、真空処理工程実施中に、既に真空処理された被処理物107の冷却、および真空処理されることになる被処理物107の加熱を行うことができるので、真空処理装置1Aのタクトタイム(1つの被処理物107に必要な作業時間)を短縮することができる。
 また本実施の形態によれば、扉22のx方向の長さは、図11に示すように、搬入部108および搬出部119を含む領域のx方向の長さよりも大きくされている。これにより、作業者などが搬入部108および搬出部の全てにアクセスし得る程度に開口部の大きさを大きくすることができるので、搬入部108a~108eおよび搬出部119a~119eを移動することなく、予備真空室102の外部から搬入部108a~108eへ被処理物107を配置することが可能であり、かつ搬出部119a~119eに保持されたそれぞれの被処理物107を予備真空室102外部へと取出すことが可能である。
 上記のように扉22が、x方向において搬入部108および搬出部119を含む領域よりも長い場合、扉22の大きさが大きくなるので、その重量も大きくなる。本実施の形態においては、このように重量の大きい扉22が、実施の形態1と同様に、支持レール31によって安定的に支持される。ただし扉22と、それを支持するための機構とは、実施の形態1の構成によるものに限定されるものではなく、たとえば実施の形態2の構成によるものであってもよい。
 なお本実施の形態においては搬入部108および搬出部119の各々が設けられるが、より長いタクトタイムが許容される場合、搬入部108および搬出部119の各々を兼ねた部分が設けられてもよい。またヒータ111a~111eは設けられなくてもよい。また搬送機構が設けられる位置は真空装置の内部でなくてもよい。また本実施の形態においては真空処理としてプラズマCVDによる成膜処理が行われるが、真空処理はこれに限定されるものではなく、たとえば、スパッタ法や蒸着法などによる成膜処理、またはプラズマエッチング処理であってもよい。
 (実施の形態4)
 主に図19を参照して、本実施の形態の真空装置1Bは、複数の真空処理室101(マルチチャンバー)と、搬送室103Cと、予備真空室102と、扉22と、支持レール31とを有する。実施の形態3においては1つの真空処理室101が設けられるが、本実施の形態では複数の真空処理室101が設けられる。搬送室103Cは、複数の真空処理室101の各々と予備真空室102との間で被処理物107を搬送することができるように構成されている。たとえば、この搬送室103Cの構成は、予備真空室102と、特定の真空処理室101との間で被処理物107を搬送するために、被処理物107を回転させる機構を含む。なお本実施の形態においては、搬送室107が設けられることから、搬入部移動装置150aおよび搬出部移動装置150bはなくてもよい。
 なお、上記以外の構成については、上述した実施の形態3の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、真空容器を有する真空装置に特に有利に適用することができる。
 1A 真空処理装置(真空装置)、20 真空容器、21 開口部、22 扉、30 支持レール駆動部、30A 本体部、30B ロッド、31 支持レール、31F 支持レール固定部、31M 支持レール可動部、32 ガイドレール、32F ガイドレール固定部、32M ガイドレール可動部、41 車輪、42 ローラー、51 扉駆動部、51A 変位部、51B 軌道部、51C 狭持部、51D 突出部、52 ガイドレール駆動部、52A 本体部、52B ロッド、61 Oリング、101 真空処理室、102 予備真空室(真空容器)、103 ゲートバルブ、103C 搬送室、104,104a~104e 真空処理部、107 被処理物、107a 被処理面、108,108a~108e 搬入部、111,111a~111e ヒータ、119,119a~119e 搬出部、FL 床面、T テーパー部。

Claims (9)

  1.  開口部を有する真空容器(20)と、
     前記開口部を塞ぐための扉(22)と、
     平面視において前記開口部と間隔を空けて第1方向(X)に延在し、かつ前記扉を前記第1方向に沿って移動可能に支持し、かつ平面視において前記第1方向と交差する第2方向(Y)に前記開口部と対向する部分を有する第1レール(31)とを備え、
     前記第1レールは、前記第2方向に沿って移動可能な第1可動部(31M)を有する、真空装置。
  2.  前記第1および第2方向の各々は重力方向(Z)と交差している、請求の範囲第1項に記載の真空装置。
  3.  前記第1可動部を移動させるための第1駆動部(30)をさらに備えた、請求の範囲第1項または第2項に記載の真空装置。
  4.  前記扉を前記第1方向に沿って移動させるための第2駆動部(51)をさらに備えた、請求の範囲第1項~第3項のいずれかに記載の真空装置。
  5.  前記第2駆動部は、前記扉の前記第1方向における位置を規定し、かつ前記扉の前記第2方向における位置を自由にするように、前記扉に取り付けられている、請求の範囲第4項に記載の真空装置。
  6.  前記第1レールは、前記第2方向における寸法が上方ほど小さくなるようなテーパー部(T)を有し、
     前記扉は、前記第2方向において前記テーパー部を挟み込む部分(41)を有する、請求の範囲第1項~第5項のいずれかに記載の真空装置。
  7.  平面視において前記開口部と間隔を空けて前記第1方向に延在し、かつ平面視において前記第2方向に前記開口部と対向する部分を有し、かつ前記扉を前記第1方向に沿って導く第2レール(32)をさらに備え、
     前記第2レールは、前記第2方向に沿って移動可能な第2可動部(32M)を有する、請求の範囲第1項~第6項のいずれかに記載の真空装置。
  8.  前記真空装置は複数の被処理物を一括して扱うためのものであり、
     前記真空容器は、前記複数の被処理物のそれぞれを配置するための複数の領域を有する、請求の範囲第1項~第7項のいずれかに記載の真空装置。
  9.  前記複数の領域は一の方向に沿って一の長さに渡って配列されており、
     前記扉は前記一の方向において前記一の長さよりも大きい長さを有する、請求の範囲第8項に記載の真空装置。
PCT/JP2010/051703 2009-02-06 2010-02-05 真空装置 WO2010090283A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10738614A EP2395265A1 (en) 2009-02-06 2010-02-05 Vacuum device
US13/147,466 US20110283623A1 (en) 2009-02-06 2010-02-05 Vacuum device
JP2010549520A JPWO2010090283A1 (ja) 2009-02-06 2010-02-05 真空装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-026418 2009-02-06
JP2009026418 2009-02-06

Publications (1)

Publication Number Publication Date
WO2010090283A1 true WO2010090283A1 (ja) 2010-08-12

Family

ID=42542174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051703 WO2010090283A1 (ja) 2009-02-06 2010-02-05 真空装置

Country Status (4)

Country Link
US (1) US20110283623A1 (ja)
EP (1) EP2395265A1 (ja)
JP (1) JPWO2010090283A1 (ja)
WO (1) WO2010090283A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208896A (ja) * 1992-01-30 1993-08-20 Mitsubishi Heavy Ind Ltd 箱型真空容器
JPH05229642A (ja) * 1992-02-14 1993-09-07 Murata Mach Ltd トラバース装置
JPH0692430A (ja) * 1992-09-14 1994-04-05 Daifuku Co Ltd 自走台車使用の搬送設備
JPH09199293A (ja) 1996-01-18 1997-07-31 Nikon Corp 高周波を用いる処理装置および密封容器
JPH10303277A (ja) 1997-04-28 1998-11-13 Toshiba Corp 扉開閉装置
JP2001214975A (ja) * 2000-02-02 2001-08-10 Shimadzu Corp 加圧装置および液晶注入装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2157678A (en) * 1938-04-11 1939-05-09 Richard H Schielke Refrigerator door
US6017105A (en) * 1998-11-03 2000-01-25 Steris Corporation Horizontal sliding door guidance method
US6799394B2 (en) * 2002-01-18 2004-10-05 Shen Tsung-Lin Apparatus for sealing a vacuum chamber
JP3794964B2 (ja) * 2002-02-06 2006-07-12 三菱重工業株式会社 クラスタ型真空処理装置
US7357427B2 (en) * 2004-06-25 2008-04-15 Kelsan Technologies Corp. Method and apparatus for applying liquid compositions in rail systems
US7871232B2 (en) * 2005-05-12 2011-01-18 Lutz David W Line feed system with indexing cart

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208896A (ja) * 1992-01-30 1993-08-20 Mitsubishi Heavy Ind Ltd 箱型真空容器
JPH05229642A (ja) * 1992-02-14 1993-09-07 Murata Mach Ltd トラバース装置
JPH0692430A (ja) * 1992-09-14 1994-04-05 Daifuku Co Ltd 自走台車使用の搬送設備
JPH09199293A (ja) 1996-01-18 1997-07-31 Nikon Corp 高周波を用いる処理装置および密封容器
JPH10303277A (ja) 1997-04-28 1998-11-13 Toshiba Corp 扉開閉装置
JP2001214975A (ja) * 2000-02-02 2001-08-10 Shimadzu Corp 加圧装置および液晶注入装置

Also Published As

Publication number Publication date
JPWO2010090283A1 (ja) 2012-08-09
US20110283623A1 (en) 2011-11-24
EP2395265A1 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
KR100854142B1 (ko) 로드 로크 장치 및 기판 처리 시스템
JP4406666B2 (ja) 真空処理装置および真空処理工場
JP2010526446A5 (ja)
TW200931577A (en) Vacuum treatment system, and method for carrying substrate
JP2010526446A (ja) フラットな基板の処理装置
JP2001257250A (ja) デュアル基板ロードロック・プロセス装置
JP4280785B2 (ja) 真空処理装置および真空処理方法
CN111334763B (zh) 成膜装置
JP2008251991A (ja) ロードロック装置および昇圧方法
US20120155994A1 (en) Vacuum processing device and vacuum processing factory
JP2009164426A (ja) プラズマcvd装置
KR101898340B1 (ko) 로드록 장치에 있어서의 기판 냉각 방법, 기판 반송 방법, 및 로드록 장치
KR20150085112A (ko) 성막 장치
WO2010090283A1 (ja) 真空装置
JP4885023B2 (ja) ロードロック装置および基板の処理システム
KR101688842B1 (ko) 기판 처리 장치
JP5286593B2 (ja) 複数テーブル方式シーム溶接装置及びシーム溶接方法。
JP2010135505A (ja) 真空装置
CN111668143A (zh) 基板收容装置
JP6906559B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP4839097B2 (ja) 真空装置
JP2006108348A (ja) 基板処理装置
JP2012052207A (ja) 基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738614

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010738614

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010549520

Country of ref document: JP

Ref document number: 13147466

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE