WO2010090190A1 - Laser exposure device - Google Patents

Laser exposure device Download PDF

Info

Publication number
WO2010090190A1
WO2010090190A1 PCT/JP2010/051447 JP2010051447W WO2010090190A1 WO 2010090190 A1 WO2010090190 A1 WO 2010090190A1 JP 2010051447 W JP2010051447 W JP 2010051447W WO 2010090190 A1 WO2010090190 A1 WO 2010090190A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly
eye lens
laser light
lens
laser
Prior art date
Application number
PCT/JP2010/051447
Other languages
French (fr)
Japanese (ja)
Inventor
祐二 棚田
大助 石井
梶山 康一
水村 通伸
畑中 誠
浩平 松井
池田 武司
Original Assignee
株式会社ブイ・テクノロジー
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー, 凸版印刷株式会社 filed Critical 株式会社ブイ・テクノロジー
Priority to CN2010800064003A priority Critical patent/CN102308364A/en
Publication of WO2010090190A1 publication Critical patent/WO2010090190A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70083Non-homogeneous intensity distribution in the mask plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70583Speckle reduction, e.g. coherence control or amplitude/wavefront splitting

Definitions

  • the present invention relates to a laser exposure apparatus including a fly-eye lens in which a plurality of condensing lenses are arranged in a plane substantially orthogonal to the optical axis of laser light, and more specifically, interference fringes of laser light generated by the fly-eye lens. And a laser exposure apparatus that enables uniform exposure by reducing illuminance unevenness of laser light.
  • a conventional laser exposure apparatus includes a beam expander that expands the diameter of the laser beam and a fly that equalizes the intensity distribution of the laser beam with the expanded diameter in order to uniformly irradiate the object with the laser beam.
  • Optical integrators such as eye lenses are used.
  • an optical path difference adjusting member is provided between the beam expander and the fly-eye lens in order to reduce interference fringes caused by interference of the light transmitted through the fly-eye lens due to the coherency of the laser light.
  • the optical path difference adjusting member is provided only between the beam expander and the fly-eye lens, so that the interference fringes due to the transmitted light of the fly-eye lens are completely removed.
  • the present invention addresses such problems, averages the interference fringes of the laser light produced by the fly-eye lens, and reduces the unevenness of the illuminance of the laser light to enable uniform exposure.
  • the purpose is to provide.
  • a laser exposure apparatus includes a laser light source that emits laser light and a plurality of lenses arranged in a plane substantially orthogonal to the optical axis of the laser light, and temporarily emits emitted light.
  • a first fly-eye lens that diverges radially after condensing and expands a cross-sectional shape of the laser light; and a first fly-eye lens disposed on the laser light incident side of the first fly-eye lens.
  • First phase difference generating means for generating a phase difference in the laser light respectively incident on each of the condenser lenses, and a condenser for emitting the first fly-eye lens and converting the laser light having an enlarged cross-sectional shape into parallel light
  • a second fly-eye that has a lens and a plurality of lenses arranged side by side in a plane substantially orthogonal to the optical axis of the condenser lens, and uniformizes the light intensity distribution in the illumination area of the photomask by the laser light.
  • a second phase difference occurrence that causes a phase difference in the laser light that is disposed on the laser light incident side of the second fly-eye lens and is incident on each condenser lens of the second fly-eye lens.
  • laser light is radiated from the laser light source, and incident on the first phase difference generating means disposed on the laser light incident side of the first fly-eye lens without expanding the beam diameter
  • the first phase difference generating means generates a phase difference between the laser beams respectively incident on the plurality of condensing lenses arranged in a plane substantially orthogonal to the optical axis of the first fly-eye lens.
  • the coherency of the laser light emitted from the fly-eye lens is reduced, the light emitted from each condenser lens is once condensed by the first fly-eye lens, and then diverged radially to expand the cross-sectional shape of the laser light.
  • the laser light whose cross-sectional shape is enlarged by the lens is converted into parallel light, and the second fly-eye lens is arranged on the optical axis of the second fly-eye lens by the second phase difference generating means arranged on the laser light incident side of the second fly-eye lens.
  • the second phase difference generating means arranged on the laser light incident side of the second fly-eye lens.
  • Nearly orthogonal plane A phase difference is caused in the laser light respectively incident on the plurality of condensing lenses arranged side by side to reduce the coherency of the laser light emitted from the second fly-eye lens again, and the second fly-eye lens reduces the light intensity.
  • the photomask is irradiated with a uniform distribution.
  • a transparent parallel plane rotating plate that is inclined with respect to the optical axis and rotates about the optical axis is provided on the laser beam incident side of the condenser lens.
  • a laser which is provided on the laser beam incident side of the condenser lens and is rotated around the optical axis of the transparent parallel plane rotating plate arranged to be inclined with respect to the optical axis and incident on the second fly-eye lens. The incident angle of light is changed.
  • the first and second phase difference generating means are used for the plurality of laser beams respectively incident on the condensing lenses of the first and second raiai lenses. Since the phase difference is generated and the coherency of the laser light emitted from the first and second fly-eye lenses is reduced, interference fringes generated in the illumination area can be reduced as compared with the prior art. Further, as compared with the case where one fly-eye lens is used, the intensity distribution of the laser light can be made more uniform, and the illuminance unevenness can be further reduced. Therefore, the photomask can be uniformly illuminated to enable uniform exposure, and a fine pattern can be easily exposed on the object to be exposed. In addition, since the first fly-eye lens has both a laser beam homogenizing function and a beam diameter expanding function, it is not necessary to provide a separate beam expander, and the number of parts can be reduced.
  • the incident angle of the laser beam incident on the second fly-eye lens can be changed during exposure. Therefore, the illumination area on the photomask by the laser light emitted from each condensing lens of the second fly-eye lens can be finely moved in accordance with the rotation of the parallel plane rotating plate, and is generated in the illumination area on the photomask.
  • the interference fringes of the laser light can be averaged and made inconspicuous. Thereby, the illumination intensity nonuniformity of a laser beam can be reduced further, and a to-be-exposed body can be exposed more uniformly.
  • FIG. 1 is a front view showing a first embodiment of a laser exposure apparatus according to the present invention.
  • This laser exposure apparatus exposes an object to be exposed by irradiating a laser beam through a photomask, and includes a laser light source 1, a first fly-eye lens 2, a first optical path difference adjusting member 3, A first condenser lens 4, a parallel plane rotating plate 5, a second fly's eye lens 6, a second optical path difference adjusting member 7, and a second condenser lens 8 are provided.
  • the laser light source 1 is an ultraviolet pulse laser oscillator, and an excimer laser or a YAG laser can be used.
  • a first fly-eye lens 2 is provided in front of the laser light source 1 in the radiation direction of the laser light.
  • the first fly-eye lens 2 once functions to condense the laser light emitted from the laser light source 1 and then diverge it radially to expand the cross-sectional shape of the laser light.
  • the light intensity distribution in the incident side surface of the second fly's eye lens 6 is made uniform, and a plurality of condensing lenses 2a are arranged in a plane substantially orthogonal to the optical axis of the laser beam, for example, 3 vertical ⁇ 3 horizontal. They are arranged in a matrix.
  • a first optical path difference adjusting member 3 is provided on the laser light incident side of the first fly-eye lens 2.
  • the first optical path difference adjusting member 3 reduces the coherency of the laser light emitted from the first fly-eye lens 2 and emits a plurality of laser lights emitted from the respective condensing lenses 2 a of the first fly-eye lens 2. Is to suppress interference on the incident side surface of the second fly-eye lens 6, and a phase difference is applied to a plurality of laser beams respectively incident on the condenser lenses 2 a of the first fly-eye lens 2. This is the first phase difference generating means to be generated.
  • the first optical path difference adjusting member 3 is different in length in the axial direction parallel to the optical axis and has a refractive index of 1 corresponding to each condenser lens 2a of the first fly-eye lens 2.
  • a larger rod-shaped transparent member 3a such as quartz glass or transparent glass, is provided, and the optical path lengths of a plurality of laser beams respectively incident on the condenser lenses 2a of the first fly-eye lens 2 are provided. It plays a function of changing.
  • a first condenser lens 4 is provided on the downstream side of the first fly-eye lens 2 in the traveling direction of the laser light.
  • the first condenser lens 4 is a plano-convex lens in which the radial laser beam emitted from the first fly-eye lens 2 is converted into parallel light, and the light incident side is flat.
  • the first fly-eye lens 2 is arranged so as to substantially match the rear focal position.
  • a parallel plane rotating plate 5 is provided on the optical path between the first fly-eye lens 2 and the first condenser lens 4.
  • the plane-parallel rotating plate 5 is for changing the incident angle of laser light incident on a second fly's eye lens 6 described later, and is provided with a transparent, for example, glass disc tilted with respect to the optical axis. This rotates around the optical axis. Thereby, the illumination area of the laser light on the photomask 9 is finely moved, and the interference fringes of the laser light generated by the second fly-eye lens 6 generated on the photomask 9 are averaged to be inconspicuous. Further, the illuminance unevenness of the laser light emitted from the first fly-eye lens 3 through the first optical path difference adjusting member 3 is reduced.
  • FIG. 2 is an explanatory diagram showing the relationship between the position of the plane-parallel rotating plate 5, the incident angle of the laser light incident on the second fly-eye lens 6, and changes in the illumination area on the photomask 9.
  • the plane-parallel rotating plate 5 rotates around the optical axis
  • the plane-parallel rotating plate 5 reciprocates as indicated by arrows in the front view of FIG.
  • the parallel plane rotating plate 5 is located at the position indicated by the solid line in FIG. 5A
  • the laser light is refracted by the parallel plane rotating plate 5 as indicated by the solid line, and the laser beam is refracted at a constant incident angle.
  • the light enters the condenser lens 6 a of the second fly-eye lens 6.
  • the laser light is refracted by the plane-parallel rotating plate 5 as indicated by the broken line, which is different from the above.
  • the light enters the condenser lens 6a at an incident angle.
  • the illumination area 10 on the photomask 9 illuminated by the laser beam emitted from the second fly-eye lens 6 moves from the area indicated by the solid line to the area indicated by the broken line in FIG.
  • the intensity unevenness of the laser light emitted from the first fly-eye lens 2 is reduced.
  • the illumination area 10 on the photomask 9 is finely moved, and the light and dark pattern of the interference fringes and the illuminance unevenness generated on the photomask 9 due to the interference of the plurality of laser beams emitted from the second fly-eye lens 6 Can be averaged and made inconspicuous.
  • a second fly-eye lens 6 is provided on the downstream side of the first condenser lens 4 in the traveling direction of the laser light.
  • the second fly-eye lens 6 makes the light intensity distribution in the illumination area 10 of the photomask 9 uniform, and a plurality of condensing lenses in a plane substantially perpendicular to the optical axis of the first condenser lens 4.
  • 6a is arranged in a matrix of, for example, 12 vertical x 4 horizontal, and is a double fly-eye lens in which two identical fly-eye lenses are combined.
  • a second optical path difference adjusting member 7 is provided on the laser beam incident side of the second fly-eye lens 6.
  • the second optical path difference adjusting member 7 reduces the coherency of the laser light emitted from the second fly-eye lens 6 and emits a plurality of laser lights emitted from the respective condenser lenses 6 a of the second fly-eye lens 6.
  • the second optical path difference adjusting member 7 has different lengths in the axial direction parallel to the optical axis, corresponding to the four columns of condensing lenses 6a of the second fly-eye lens 6, respectively.
  • a plate-shaped transparent member 7a having a refractive index larger than 1 such as quartz glass or transparent glass is formed by superimposing them in the horizontal direction and vertically incident on each condenser lens 6a of the second fly-eye lens 6. It functions to change the optical optical path length between columns adjacent to each other in the horizontal direction of the laser beams in the columns.
  • a second condenser lens 8 is provided on the downstream side of the second fly-eye lens 6 in the traveling direction of the laser light.
  • the second condenser lens 8 is used to convert the laser light emitted from the second fly-eye lens 6 into parallel light so as to enter the photomask 9 vertically, and the two light incident sides are flat. It is configured by combining plano-convex lenses, and is arranged such that its front focal position substantially matches the rear focal position of the second fly-eye lens 6.
  • reference numerals 11, 12, and 13 denote planar reflection mirrors that bend the optical path.
  • the laser light emitted from the laser light source 1 is reflected by the two reflecting mirrors 11 and 12 and enters the first optical path difference adjusting member 3.
  • the first optical path difference adjusting member 3 corresponds to each condenser lens 2 a of the first fly-eye lens 2, and has a plurality of refractive indexes greater than 1, each having a different axial length parallel to the optical axis. Therefore, the plurality of laser beams emitted from the plurality of transparent members 3a of the first optical path difference adjusting member 3 are out of phase with each other.
  • the plurality of laser beams emitted from the plurality of transparent members 3 a of the first optical path difference adjusting member 3 are respectively incident on the corresponding condensing lenses 2 a of the first fly-eye lens 2.
  • the plurality of laser beams emitted from the respective condensing lenses 2a of the first fly-eye lens 2 are condensed at the rear focal points of the respective condensing lenses 3a and then radiate radially.
  • the laser beams incident on the condenser lenses 2a of the first fly-eye lens 2 are out of phase with each other, so that the coherency of the laser beams emitted from the first fly-eye lens 2 is reduced. .
  • the second fly-eye lens 6 illuminated by the plurality of laser beams emitted from the respective condensing lenses 2a, the interference of the respective laser beams is suppressed, the generation of interference fringes is suppressed, and the second fly-eye lens is suppressed.
  • the lens 6 is illuminated substantially uniformly.
  • the radial laser beam emitted from the first fly-eye lens 3 is collimated by the first condenser lens 4 and then enters the second fly-eye lens 6 through the second optical path difference adjusting member 7. .
  • the laser beam incident side of the first condenser lens 4 is provided with a parallel plane rotating plate 5 in which a transparent disk made of, for example, glass is inclined with respect to the optical axis, and this is centered on the optical axis. Since it is rotating, the position of the chief ray of the laser beam that is refracted by the parallel plane rotating plate 5 and emitted therefrom is incident on the first condenser lens 4 as shown in FIG. 2A. It changes in the radial direction of the lens 4. As a result, the incident angle of the laser light incident on the second fly-eye lens 6 changes as shown in FIG. At the same time, the illuminance unevenness of the laser light incident on the second fly's eye lens 6 is averaged.
  • the laser light emitted from the first condenser lens 4 has a second optical path difference formed by combining a plurality of transparent members 7a each having a different axial length parallel to the optical axis and a refractive index larger than 1.
  • the second fly-eye lens 6 is illuminated by being divided into a plurality of laser beams.
  • the optical optical path length of each laser beam passing through each transparent member 7a of the second optical path difference adjusting member 7 is different, between each laser beam emitting the second optical path difference adjusting member 7, There is a phase difference.
  • each condenser lens 6a of the second fly's eye lens 6 is once condensed at the focal point of each condenser lens 6a, and then radiates and enters the plane reflecting mirror 13.
  • the laser light is reflected by the plane reflection mirror 13, is then made parallel light by the second condenser lens 8, and enters the photomask 9 substantially perpendicularly to illuminate the photomask 9 uniformly.
  • the second optical path difference adjusting member 7 is configured by superimposing plate-like transparent members 7a having different lengths in the optical axis direction and long in the vertical direction in the horizontal direction.
  • the laser light having the same phase is incident on the condensing lenses 6a arranged in the vertical direction of the fly-eye lens 6 of No. 2, and the phase of the condensing lenses 6a arranged in the horizontal direction is made incident on the condensing lenses 6a arranged in the horizontal direction. Since different laser beams are incident, the in-phase laser beams emitted from the condenser lenses 6 a arranged in the vertical direction of the second fly-eye lens 6 are incident on the illumination region 10 on the photomask 9.
  • the parallel plane rotating plate 5 is provided on the incident side of the first condenser lens 4 and is rotated about its optical axis.
  • the incident angle of the laser light incident on the eye lens 6 changes. Therefore, as shown in FIG. 2B, the illumination area 10 by the laser light on the photomask 9 is finely moved, the light and dark patterns of the interference fringes are averaged and become inconspicuous, and the illuminance unevenness of the laser light is averaged. , Uniform exposure can be performed.
  • FIG. 3 is a front view showing a second embodiment of the laser exposure apparatus according to the present invention.
  • the second embodiment is different from the first embodiment in that a collimation mirror 14 is arranged at the position of the plane reflection mirror 13 in place of the second condenser lens 8.
  • the front focal position of the collimation mirror 14 is substantially matched with the rear focal position of the second fly-eye lens 6.
  • the laser light emitted from the second fly-eye lens 6 can be converted into parallel light and incident perpendicularly on the photomask 9.
  • the second optical path difference adjusting member 7 corresponds to each of the four columns of condensing lenses 6a of the second fly-eye lens 6 and is parallel to the optical axis.
  • the plate-like transparent members 7a having different lengths in the axial direction are formed by superimposing them in the lateral direction
  • the present invention is not limited to this, and each of the second fly-eye lenses 6 is collected. It may be formed by combining rod-shaped transparent members having different lengths in the axial direction parallel to the optical axis corresponding to the optical lens 6a. In this case, since the phases of the laser beams emitted from the condenser lenses 6a of the second fly-eye lens 6 are all different, the possibility that the laser beams interfere with each other on the photomask 9 is reduced.
  • phase difference generating means is an optical path difference adjusting member.
  • present invention is not limited to this, and a phase plate provided corresponding to each condenser lens of the fly-eye lens. There may be.

Abstract

The device is provided with a first fly eye lens (2) to enlarge the cross-sectional shape of a laser beam, a first light path difference adjustment member (3) that is provided on the laser beam incident side of the first fly eye lens (2) and creates phase differences in the laser beam that enters each condenser lens (2a) of the first fly eye lens (2), a condenser lens (4) for transforming the laser beam exiting the light path difference adjustment member (3) into parallel light, a second fly eye lens (6) to produce uniform light intensity distribution by the laser beam in a photomask illumination area, and a second light path difference adjustment member (7) that is provided on the laser beam incident side of the second fly eye lens (6) and creates phase differences in the laser beam that enters each condenser lenses (6a) of the second fly eye lens (6). As a result, interference patterns in the laser beam created by the first fly eye lens are averaged out, and uneven lighting by the laser beam is reduced.

Description

レーザ露光装置Laser exposure equipment
 本発明は、レーザ光の光軸に略直交する面内に複数の集光レンズを並べて配置したフライアイレンズを備えて成るレーザ露光装置に関し、詳しくは、フライアイレンズにより生じるレーザ光の干渉縞を平均化すると共に、レーザ光の照度ムラを低減して均一な露光を可能にするレーザ露光装置に係るものである。 The present invention relates to a laser exposure apparatus including a fly-eye lens in which a plurality of condensing lenses are arranged in a plane substantially orthogonal to the optical axis of laser light, and more specifically, interference fringes of laser light generated by the fly-eye lens. And a laser exposure apparatus that enables uniform exposure by reducing illuminance unevenness of laser light.
 従来のレーザ露光装置は、レーザ光を被露光体に均一に照射させるために、レーザ光の径を拡大するビームエキスパンダ、及び径が拡大されたレーザ光の強度分布を均一化するためのフライアイレンズ等のオプティカルインテグレータ等が用いられている。更に、レーザ光のコヒーレンシー(可干渉性)によりフライアイレンズの透過光が干渉して発生する干渉縞を低減させるために、ビームエキスパンダとフライアイレンズとの間に光路差調整部材を設けたものがある(例えば、特許文献1参照)。 A conventional laser exposure apparatus includes a beam expander that expands the diameter of the laser beam and a fly that equalizes the intensity distribution of the laser beam with the expanded diameter in order to uniformly irradiate the object with the laser beam. Optical integrators such as eye lenses are used. Furthermore, an optical path difference adjusting member is provided between the beam expander and the fly-eye lens in order to reduce interference fringes caused by interference of the light transmitted through the fly-eye lens due to the coherency of the laser light. There are some (see, for example, Patent Document 1).
特開2004-12757号公報JP 2004-12757 A
 しかし、このような従来のレーザ露光装置においては、光路差調整部材がビームエキスパンダとフライアイレンズとの間だけに設けられているため、フライアイレンズの透過光による干渉縞を完全には除去することができず、僅かに残った干渉縞により被露光体上に照度ムラが発生して微細なパターンの形成を困難にしていた。 However, in such a conventional laser exposure apparatus, the optical path difference adjusting member is provided only between the beam expander and the fly-eye lens, so that the interference fringes due to the transmitted light of the fly-eye lens are completely removed. However, it is difficult to form a fine pattern due to uneven illuminance on the object to be exposed due to slightly remaining interference fringes.
 そこで、本発明は、このような問題点に対処し、フライアイレンズにより生じるレーザ光の干渉縞を平均化すると共に、レーザ光の照度ムラを低減して均一な露光を可能にするレーザ露光装置を提供することを目的とする。 Accordingly, the present invention addresses such problems, averages the interference fringes of the laser light produced by the fly-eye lens, and reduces the unevenness of the illuminance of the laser light to enable uniform exposure. The purpose is to provide.
 上記目的を達成するために、本発明によるレーザ露光装置は、レーザ光を放射するレーザ光源と、前記レーザ光の光軸に略直交する面内に複数のレンズが並べて配置され、射出光を一旦集光した後、放射状に発散させてレーザ光の断面形状を拡大する第1のフライアイレンズと、前記第1のフライアイレンズのレーザ光の入射側に配置され、前記第1のフライアイレンズの各集光レンズに夫々入射するレーザ光に位相差を生じさせる第1の位相差生起手段と、前記第1のフライアイレンズを射出し断面形状が拡大されたレーザ光を平行光にするコンデンサーレンズと、前記コンデンサーレンズの光軸に略直交する面内に複数のレンズが並べて配置され、レーザ光によるフォトマスクの照明領域内の光強度分布を均一化する第2のフライアイレンズと、前記第2のフライアイレンズのレーザ光の入射側に配置され、前記第2のフライアイレンズの各集光レンズに夫々入射するレーザ光に位相差を生じさせる第2の位相差生起手段と、を備えたものである。 In order to achieve the above object, a laser exposure apparatus according to the present invention includes a laser light source that emits laser light and a plurality of lenses arranged in a plane substantially orthogonal to the optical axis of the laser light, and temporarily emits emitted light. A first fly-eye lens that diverges radially after condensing and expands a cross-sectional shape of the laser light; and a first fly-eye lens disposed on the laser light incident side of the first fly-eye lens. First phase difference generating means for generating a phase difference in the laser light respectively incident on each of the condenser lenses, and a condenser for emitting the first fly-eye lens and converting the laser light having an enlarged cross-sectional shape into parallel light A second fly-eye that has a lens and a plurality of lenses arranged side by side in a plane substantially orthogonal to the optical axis of the condenser lens, and uniformizes the light intensity distribution in the illumination area of the photomask by the laser light. And a second phase difference occurrence that causes a phase difference in the laser light that is disposed on the laser light incident side of the second fly-eye lens and is incident on each condenser lens of the second fly-eye lens. Means.
 このような構成により、レーザ光源からレーザ光を放射し、そのビーム径を拡大せずに第1のフライアイレンズのレーザ光の入射側に配置された第1の位相差生起手段に入射させ、該第1の位相差生起手段で第1のフライアイレンズの光軸に略直交する面内に並べて配置された複数の集光レンズに夫々入射するレーザ光に位相差を生じさせて第1のフライアイレンズを射出するレーザ光のコヒーレンシーを低下させ、第1のフライアイレンズで各集光レンズの射出光を一旦集光した後、放射状に発散させてレーザ光の断面形状を拡大し、コンデンサーレンズでこの断面形状が拡大されたレーザ光を平行光にし、第2のフライアイレンズのレーザ光の入射側に配置された第2の位相差生起手段で第2のフライアイレンズの光軸に略直交する面内に並べて配置された複数の集光レンズに夫々入射するレーザ光に位相差を生じさせて第2のフライアイレンズを射出するレーザ光のコヒーレンシーを再度低下させ、第2のフライアイレンズで光強度分布を均一化してフォトマスクに照射させる。 With such a configuration, laser light is radiated from the laser light source, and incident on the first phase difference generating means disposed on the laser light incident side of the first fly-eye lens without expanding the beam diameter, The first phase difference generating means generates a phase difference between the laser beams respectively incident on the plurality of condensing lenses arranged in a plane substantially orthogonal to the optical axis of the first fly-eye lens. The coherency of the laser light emitted from the fly-eye lens is reduced, the light emitted from each condenser lens is once condensed by the first fly-eye lens, and then diverged radially to expand the cross-sectional shape of the laser light. The laser light whose cross-sectional shape is enlarged by the lens is converted into parallel light, and the second fly-eye lens is arranged on the optical axis of the second fly-eye lens by the second phase difference generating means arranged on the laser light incident side of the second fly-eye lens. Nearly orthogonal plane A phase difference is caused in the laser light respectively incident on the plurality of condensing lenses arranged side by side to reduce the coherency of the laser light emitted from the second fly-eye lens again, and the second fly-eye lens reduces the light intensity. The photomask is irradiated with a uniform distribution.
 また、前記コンデンサーレンズのレーザ光の入射側に、光軸に対して傾いて配置され、光軸を中心に回転する透明な平行平面回転板を設けた。これにより、コンデンサーレンズのレーザ光の入射側に設けられ、光軸に対して傾いて配置された透明な平行平面回転板を光軸を中心に回転し、第2のフライアイレンズに入射するレーザ光の入射角度を変化させる。 In addition, a transparent parallel plane rotating plate that is inclined with respect to the optical axis and rotates about the optical axis is provided on the laser beam incident side of the condenser lens. As a result, a laser which is provided on the laser beam incident side of the condenser lens and is rotated around the optical axis of the transparent parallel plane rotating plate arranged to be inclined with respect to the optical axis and incident on the second fly-eye lens. The incident angle of light is changed.
 請求項1に係るレーザ露光装置の発明によれば、第1及び第2の二つの位相差生起手段で第1及び第2のライアイレンズの各集光レンズに夫々入射する複数のレーザ光に位相差を生じさせて、第1及び第2のフライアイレンズを射出するレーザ光のコヒーレンシーを低減させているので、照明領域に発生する干渉縞を従来技術に増して低減することができる。また、一つのフライアイレンズを使用した場合に比べて、レーザ光の強度分布をより均一化して照度ムラをより低減することができる。したがって、フォトマスクを均一に照明して均一な露光を可能にし、被露光体に微細なパターンの露光を容易に行なうことができる。また、第1のフライアイレンズは、レーザ光の均一化機能とビーム径拡大機能の両方を有しているので、別にビームエキスパンダを備える必要が無く、部品点数を減らすことができる。 According to the laser exposure apparatus of the first aspect of the present invention, the first and second phase difference generating means are used for the plurality of laser beams respectively incident on the condensing lenses of the first and second raiai lenses. Since the phase difference is generated and the coherency of the laser light emitted from the first and second fly-eye lenses is reduced, interference fringes generated in the illumination area can be reduced as compared with the prior art. Further, as compared with the case where one fly-eye lens is used, the intensity distribution of the laser light can be made more uniform, and the illuminance unevenness can be further reduced. Therefore, the photomask can be uniformly illuminated to enable uniform exposure, and a fine pattern can be easily exposed on the object to be exposed. In addition, since the first fly-eye lens has both a laser beam homogenizing function and a beam diameter expanding function, it is not necessary to provide a separate beam expander, and the number of parts can be reduced.
 また、請求項2に係る発明によれば、第2のフライアイレンズに入射するレーザ光の入射角度を露光中に変化させることができる。したがって、第2のフライアイレンズの各集光レンズを射出したレーザ光によるフォトマスク上の照明領域を平行平面回転板の回転に伴って微動させることができ、フォトマスク上の照明領域に発生するレーザ光の干渉縞を平均化して目立たなくすることができる。これにより、レーザ光の照度ムラをより一層低減することができ、被露光体をより均一に露光することができる。 Further, according to the invention of claim 2, the incident angle of the laser beam incident on the second fly-eye lens can be changed during exposure. Therefore, the illumination area on the photomask by the laser light emitted from each condensing lens of the second fly-eye lens can be finely moved in accordance with the rotation of the parallel plane rotating plate, and is generated in the illumination area on the photomask. The interference fringes of the laser light can be averaged and made inconspicuous. Thereby, the illumination intensity nonuniformity of a laser beam can be reduced further, and a to-be-exposed body can be exposed more uniformly.
本発明によるレーザ露光装置の第1の実施形態を示す正面図である。It is a front view which shows 1st Embodiment of the laser exposure apparatus by this invention. 上記レーザ露光装置の平行平面回転板の位置と、第2のフライアイレンズに入射するレーザ光の入射角度及びフォトマスク上の照明領域の変化との関係を示す説明図である。It is explanatory drawing which shows the relationship between the position of the parallel plane rotating plate of the said laser exposure apparatus, the incident angle of the laser beam which injects into a 2nd fly eye lens, and the change of the illumination area on a photomask. 本発明によるレーザ露光装置の第2の実施形態を示す正面図である。It is a front view which shows 2nd Embodiment of the laser exposure apparatus by this invention.
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明によるレーザ露光装置の第1の実施形態を示す正面図である。このレーザ露光装置は、フォトマスクを介して被露光体にレーザ光を照射して露光するもので、レーザ光源1と、第1のフライアイレンズ2と、第1の光路差調整部材3と、第1のコンデンサーレンズ4と、平行平面回転板5と、第2のフライアイレンズ6と、第2の光路差調整部材7と、第2のコンデンサーレンズ8とを備えて成る。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a front view showing a first embodiment of a laser exposure apparatus according to the present invention. This laser exposure apparatus exposes an object to be exposed by irradiating a laser beam through a photomask, and includes a laser light source 1, a first fly-eye lens 2, a first optical path difference adjusting member 3, A first condenser lens 4, a parallel plane rotating plate 5, a second fly's eye lens 6, a second optical path difference adjusting member 7, and a second condenser lens 8 are provided.
 上記レーザ光源1は、紫外線パルスレーザ発振器であり、エキシマレーザ又はYAGレーザ等を使用することができる。 The laser light source 1 is an ultraviolet pulse laser oscillator, and an excimer laser or a YAG laser can be used.
 上記レーザ光源1のレーザ光の放射方向前方には、第1のフライアイレンズ2が設けられている。この第1のフライアイレンズ2は、レーザ光源1から放射されたレーザ光を一旦集光した後、放射状に発散させてレーザ光の断面形状を拡大するビームエキスパンダの機能を果たすと共に、後述の第2のフライアイレンズ6の入射側面内における光強度分布を均一化するもので、レーザ光の光軸に略直交する面内に複数の集光レンズ2aを例えば縦3個×横3個のマトリクス状に並べて配置したものである。 A first fly-eye lens 2 is provided in front of the laser light source 1 in the radiation direction of the laser light. The first fly-eye lens 2 once functions to condense the laser light emitted from the laser light source 1 and then diverge it radially to expand the cross-sectional shape of the laser light. The light intensity distribution in the incident side surface of the second fly's eye lens 6 is made uniform, and a plurality of condensing lenses 2a are arranged in a plane substantially orthogonal to the optical axis of the laser beam, for example, 3 vertical × 3 horizontal. They are arranged in a matrix.
 上記第1のフライアイレンズ2のレーザ光の入射側には、第1の光路差調整部材3が設けられている。この第1の光路差調整部材3は、第1のフライアイレンズ2を射出したレーザ光のコヒーレンシーを低減して、第1のフライアイレンズ2の各集光レンズ2aを射出した複数のレーザ光が第2のフライアイレンズ6の入射側面上で干渉するのを抑制するためのものであり、第1のフライアイレンズ2の各集光レンズ2aに夫々入射する複数のレーザ光に位相差を生じさせる第1の位相差生起手段となるものである。 A first optical path difference adjusting member 3 is provided on the laser light incident side of the first fly-eye lens 2. The first optical path difference adjusting member 3 reduces the coherency of the laser light emitted from the first fly-eye lens 2 and emits a plurality of laser lights emitted from the respective condensing lenses 2 a of the first fly-eye lens 2. Is to suppress interference on the incident side surface of the second fly-eye lens 6, and a phase difference is applied to a plurality of laser beams respectively incident on the condenser lenses 2 a of the first fly-eye lens 2. This is the first phase difference generating means to be generated.
 具体的には、第1の光路差調整部材3は、第1のフライアイレンズ2の各集光レンズ2aに対応して、光軸に平行な軸方向の長さが夫々異なり屈折率が1よりも大きいロッド状の透明部材3a、例えば石英ガラスや透明ガラス等を設けたものであり、第1のフライアイレンズ2の各集光レンズ2aに夫々入射する複数のレーザ光の光学的光路長を変える機能を果たしている。 Specifically, the first optical path difference adjusting member 3 is different in length in the axial direction parallel to the optical axis and has a refractive index of 1 corresponding to each condenser lens 2a of the first fly-eye lens 2. A larger rod-shaped transparent member 3a, such as quartz glass or transparent glass, is provided, and the optical path lengths of a plurality of laser beams respectively incident on the condenser lenses 2a of the first fly-eye lens 2 are provided. It plays a function of changing.
 上記レーザ光の進行方向にて第1のフライアイレンズ2の下流側には、第1のコンデンサーレンズ4が設けられている。この第1のコンデンサーレンズ4は、第1のフライアイレンズ2を射出した放射状のレーザ光を平行光にするためのものであり、光の入射側が平らな平凸レンズで、その前焦点位置を第1のフライアイレンズ2の後焦点位置に略合致させて配置されている。 A first condenser lens 4 is provided on the downstream side of the first fly-eye lens 2 in the traveling direction of the laser light. The first condenser lens 4 is a plano-convex lens in which the radial laser beam emitted from the first fly-eye lens 2 is converted into parallel light, and the light incident side is flat. The first fly-eye lens 2 is arranged so as to substantially match the rear focal position.
 上記第1のフライアイレンズ2と第1のコンデンサーレンズ4との間の光路上には、平行平面回転板5が設けられている。この平行平面回転板5は、後述の第2のフライアイレンズ6に入射するレーザ光の入射角度を変えるためのものであり、透明な例えばガラスの円板が光軸に対して傾けて設けられ、これが光軸を中心に回転するようになっている。これにより、フォトマスク9上のレーザ光の照明領域を微動させて、フォトマスク9上に発生する第2のフライアイレンズ6によるレーザ光の干渉縞を平均化して目立たなくしている。また、第1の光路差調整部材3を経て第1のフライアイレンズ3から放射されるレーザ光の照度ムラを低減させている。 A parallel plane rotating plate 5 is provided on the optical path between the first fly-eye lens 2 and the first condenser lens 4. The plane-parallel rotating plate 5 is for changing the incident angle of laser light incident on a second fly's eye lens 6 described later, and is provided with a transparent, for example, glass disc tilted with respect to the optical axis. This rotates around the optical axis. Thereby, the illumination area of the laser light on the photomask 9 is finely moved, and the interference fringes of the laser light generated by the second fly-eye lens 6 generated on the photomask 9 are averaged to be inconspicuous. Further, the illuminance unevenness of the laser light emitted from the first fly-eye lens 3 through the first optical path difference adjusting member 3 is reduced.
 図2は平行平面回転板5の位置と、第2のフライアイレンズ6に入射するレーザ光の入射角度及びフォトマスク9上の照明領域の変化との関係を示す説明図である。平行平面回転板5が光軸を中心に回転したとき、平行平面回転板5は、図2(a)の正面図において矢印で示すように往復移動する。この場合、平行平面回転板5が同図(a)に実線で示す位置にあるときは、レーザ光は、この平行平面回転板5により実線で示すように屈折されて、一定の入射角度で第2のフライアイレンズ6の集光レンズ6aに入射する。 FIG. 2 is an explanatory diagram showing the relationship between the position of the plane-parallel rotating plate 5, the incident angle of the laser light incident on the second fly-eye lens 6, and changes in the illumination area on the photomask 9. When the plane-parallel rotating plate 5 rotates around the optical axis, the plane-parallel rotating plate 5 reciprocates as indicated by arrows in the front view of FIG. In this case, when the parallel plane rotating plate 5 is located at the position indicated by the solid line in FIG. 5A, the laser light is refracted by the parallel plane rotating plate 5 as indicated by the solid line, and the laser beam is refracted at a constant incident angle. The light enters the condenser lens 6 a of the second fly-eye lens 6.
 一方、平行平面回転板5が回転して、図2(a)に破線で示す位置に達したときには、レーザ光は、この平行平面回転板5により破線で示すように屈折されて、上記と異なる入射角度で上記集光レンズ6aに入射することになる。その結果、第2のフライアイレンズ6を射出したレーザ光により照明されるフォトマスク9上の照明領域10は、同図(b)に実線で示す領域から破線で示す領域に移動する。このように、平行平面回転板5を回転して第2のフライアイレンズ6に入射するレーザ光の入射角度を変化させることにより、第1のフライアイレンズ2を射出したレーザ光の強度ムラを平均化すると共に、フォトマスク9上の照明領域10を微動させて、第2のフライアイレンズ6を射出した複数のレーザ光の干渉によりフォトマスク9上に発生する干渉縞の明暗模様及び照度ムラを平均化させ、目立たなくすることができる。 On the other hand, when the plane-parallel rotating plate 5 rotates and reaches the position indicated by the broken line in FIG. 2A, the laser light is refracted by the plane-parallel rotating plate 5 as indicated by the broken line, which is different from the above. The light enters the condenser lens 6a at an incident angle. As a result, the illumination area 10 on the photomask 9 illuminated by the laser beam emitted from the second fly-eye lens 6 moves from the area indicated by the solid line to the area indicated by the broken line in FIG. As described above, by rotating the plane-parallel rotating plate 5 and changing the incident angle of the laser light incident on the second fly-eye lens 6, the intensity unevenness of the laser light emitted from the first fly-eye lens 2 is reduced. While averaging, the illumination area 10 on the photomask 9 is finely moved, and the light and dark pattern of the interference fringes and the illuminance unevenness generated on the photomask 9 due to the interference of the plurality of laser beams emitted from the second fly-eye lens 6 Can be averaged and made inconspicuous.
 上記レーザ光の進行方向にて第1のコンデンサーレンズ4の下流側には、第2のフライアイレンズ6が設けられている。この第2のフライアイレンズ6は、フォトマスク9の照明領域10内における光強度分布を均一化するもので、第1のコンデンサーレンズ4の光軸に略直交する面内に複数の集光レンズ6aを例えば縦12個×横4個のマトリクス状に並べて配置したもので、同じフライアイレンズを二つ組み合わせたダブルフライアイレンズである。 A second fly-eye lens 6 is provided on the downstream side of the first condenser lens 4 in the traveling direction of the laser light. The second fly-eye lens 6 makes the light intensity distribution in the illumination area 10 of the photomask 9 uniform, and a plurality of condensing lenses in a plane substantially perpendicular to the optical axis of the first condenser lens 4. 6a is arranged in a matrix of, for example, 12 vertical x 4 horizontal, and is a double fly-eye lens in which two identical fly-eye lenses are combined.
 上記第2のフライアイレンズ6のレーザ光の入射側には、第2の光路差調整部材7が設けられている。この第2の光路差調整部材7は、第2のフライアイレンズ6を射出したレーザ光のコヒーレンシーを低減して、第2のフライアイレンズ6の各集光レンズ6aを射出した複数のレーザ光がフォトマスク9上で干渉するのを抑制するためのものであり、第2のフライアイレンズ6の各集光レンズ6aに夫々入射する複数のレーザ光に位相差を生じさせる第2の位相差生起手段となるものである。 A second optical path difference adjusting member 7 is provided on the laser beam incident side of the second fly-eye lens 6. The second optical path difference adjusting member 7 reduces the coherency of the laser light emitted from the second fly-eye lens 6 and emits a plurality of laser lights emitted from the respective condenser lenses 6 a of the second fly-eye lens 6. Is a second phase difference that causes a phase difference in a plurality of laser beams respectively incident on the condenser lenses 6a of the second fly-eye lens 6. It is a means of occurrence.
 具体的には、第2の光路差調整部材7は、第2のフライアイレンズ6の縦4列の集光レンズ6aに夫々対応して、光軸に平行な軸方向の長さが夫々異なり屈折率が1よりも大きい板状の透明部材7a、例えば石英ガラスや透明ガラス等を横方向に重ね合わせて形成され、第2のフライアイレンズ6の各集光レンズ6aに夫々入射する縦4列のレーザ光の横方向に隣り合う列間の光学的光路長を変える機能を果たすものである。 Specifically, the second optical path difference adjusting member 7 has different lengths in the axial direction parallel to the optical axis, corresponding to the four columns of condensing lenses 6a of the second fly-eye lens 6, respectively. A plate-shaped transparent member 7a having a refractive index larger than 1 such as quartz glass or transparent glass is formed by superimposing them in the horizontal direction and vertically incident on each condenser lens 6a of the second fly-eye lens 6. It functions to change the optical optical path length between columns adjacent to each other in the horizontal direction of the laser beams in the columns.
 上記レーザ光の進行方向にて第2のフライアイレンズ6の下流側には、第2のコンデンサーレンズ8が設けられている。この第2のコンデンサーレンズ8は、第2のフライアイレンズ6を射出したレーザ光を平行光にして、フォトマスク9に垂直に入射させるためのものであり、光の入射側が平らな二枚の平凸レンズを組み合わせて構成され、その前焦点位置を第2のフライアイレンズ6の後焦点位置に略合致させて配置されている。なお、図1において、符号11,12,13は、光路を折り曲げる平面反射ミラーである。 A second condenser lens 8 is provided on the downstream side of the second fly-eye lens 6 in the traveling direction of the laser light. The second condenser lens 8 is used to convert the laser light emitted from the second fly-eye lens 6 into parallel light so as to enter the photomask 9 vertically, and the two light incident sides are flat. It is configured by combining plano-convex lenses, and is arranged such that its front focal position substantially matches the rear focal position of the second fly-eye lens 6. In FIG. 1, reference numerals 11, 12, and 13 denote planar reflection mirrors that bend the optical path.
 次に、このように構成されたレーザ露光装置の動作について説明する。
 レーザ光源1から放射されたレーザ光は、二つの反射ミラー11,12で反射されて、第1の光路差調整部材3に入射する。この第1の光路差調整部材3は、第1のフライアイレンズ2の各集光レンズ2aに対応して、光軸に平行な軸方向の長さが夫々異なり屈折率が1よりも大きい複数の透明部材3aを組み合わせて構成したものであるため、第1の光路差調整部材3の複数の透明部材3aを射出する複数のレーザ光は、互いに位相がずれたものとなっている。
Next, the operation of the thus configured laser exposure apparatus will be described.
The laser light emitted from the laser light source 1 is reflected by the two reflecting mirrors 11 and 12 and enters the first optical path difference adjusting member 3. The first optical path difference adjusting member 3 corresponds to each condenser lens 2 a of the first fly-eye lens 2, and has a plurality of refractive indexes greater than 1, each having a different axial length parallel to the optical axis. Therefore, the plurality of laser beams emitted from the plurality of transparent members 3a of the first optical path difference adjusting member 3 are out of phase with each other.
 第1の光路差調整部材3の複数の透明部材3aを射出した複数のレーザ光は、第1のフライアイレンズ2の対応する集光レンズ2aに夫々入射する。そして、第1のフライアイレンズ2の各集光レンズ2aを射出した複数のレーザ光は、夫々各集光レンズ3aの後焦点に集光した後、放射状に発散する。この場合、第1のフライアイレンズ2の各集光レンズ2aに入射する各レーザ光は、互いに位相がずれているため、第1のフライアイレンズ2を射出するレーザ光のコヒーレンシーが低減される。したがって、各集光レンズ2aを射出した複数のレーザ光によって照明される第2のフライアイレンズ6上では、各レーザ光の干渉が抑制されて干渉縞の発生が抑制され、第2のフライアイレンズ6が略均一に照明されることになる。 The plurality of laser beams emitted from the plurality of transparent members 3 a of the first optical path difference adjusting member 3 are respectively incident on the corresponding condensing lenses 2 a of the first fly-eye lens 2. The plurality of laser beams emitted from the respective condensing lenses 2a of the first fly-eye lens 2 are condensed at the rear focal points of the respective condensing lenses 3a and then radiate radially. In this case, the laser beams incident on the condenser lenses 2a of the first fly-eye lens 2 are out of phase with each other, so that the coherency of the laser beams emitted from the first fly-eye lens 2 is reduced. . Accordingly, on the second fly-eye lens 6 illuminated by the plurality of laser beams emitted from the respective condensing lenses 2a, the interference of the respective laser beams is suppressed, the generation of interference fringes is suppressed, and the second fly-eye lens is suppressed. The lens 6 is illuminated substantially uniformly.
 第1のフライアイレンズ3を射出した放射状のレーザ光は、第1のコンデンサーレンズ4により平行光にされた後、第2の光路差調整部材7を経て第2のフライアイレンズ6に入射する。このとき、第1のコンデンサーレンズ4のレーザ光の入射側には、透明な例えばガラスの円板を光軸に対して傾けて配置した平行平面回転板5が設けられ、これが光軸を中心に回転しているため、平行平面回転板5で屈折されてこれを射出するレーザ光の主光線の第1のコンデンサーレンズ4に入射する位置は、図2(a)に示すように第1のコンデンサーレンズ4の半径方向に変化することになる。これにより、同図(a)に示すように、第2のフライアイレンズ6に入射するレーザ光の入射角度が変化する。同時に、第2のフライアイレンズ6に入射するレーザ光の照度ムラが平均化される。 The radial laser beam emitted from the first fly-eye lens 3 is collimated by the first condenser lens 4 and then enters the second fly-eye lens 6 through the second optical path difference adjusting member 7. . At this time, the laser beam incident side of the first condenser lens 4 is provided with a parallel plane rotating plate 5 in which a transparent disk made of, for example, glass is inclined with respect to the optical axis, and this is centered on the optical axis. Since it is rotating, the position of the chief ray of the laser beam that is refracted by the parallel plane rotating plate 5 and emitted therefrom is incident on the first condenser lens 4 as shown in FIG. 2A. It changes in the radial direction of the lens 4. As a result, the incident angle of the laser light incident on the second fly-eye lens 6 changes as shown in FIG. At the same time, the illuminance unevenness of the laser light incident on the second fly's eye lens 6 is averaged.
 一方、第1のコンデンサーレンズ4を射出したレーザ光は、光軸に平行な軸方向の長さが夫々異なり屈折率が1よりも大きい複数の透明部材7aを組み合わせて構成した第2の光路差調整部材7において、複数のレーザ光に分割されて第2のフライアイレンズ6を照明する。このとき、第2の光路差調整部材7の各透明部材7aを通過する各レーザ光の光学的光路長が異なるために、第2の光路差調整部材7を射出する各レーザ光間には、位相差が生じている。したがって、第2のフライアイレンズ6を射出するレーザ光のコヒーレンシーが低減され、第2のフライアイレンズ6の各集光レンズ6aを射出してフォトマスク9に照射する各レーザ光の干渉が抑制されることになる。 On the other hand, the laser light emitted from the first condenser lens 4 has a second optical path difference formed by combining a plurality of transparent members 7a each having a different axial length parallel to the optical axis and a refractive index larger than 1. In the adjustment member 7, the second fly-eye lens 6 is illuminated by being divided into a plurality of laser beams. At this time, since the optical optical path length of each laser beam passing through each transparent member 7a of the second optical path difference adjusting member 7 is different, between each laser beam emitting the second optical path difference adjusting member 7, There is a phase difference. Therefore, the coherency of the laser light emitted from the second fly-eye lens 6 is reduced, and the interference of each laser light emitted from the condenser lens 6a of the second fly-eye lens 6 and applied to the photomask 9 is suppressed. Will be.
 第2のフライアイレンズ6の各集光レンズ6aを射出したレーザ光は、夫々各集光レンズ6aの焦点に一旦集光した後、放射状に発散して平面反射ミラー13に入射する。そして、レーザ光は、平面反射ミラー13で反射された後、第2のコンデンサーレンズ8によって平行光にされてフォトマスク9に略垂直に入射し、フォトマスク9上を均一に照明する。 The laser light emitted from each condenser lens 6a of the second fly's eye lens 6 is once condensed at the focal point of each condenser lens 6a, and then radiates and enters the plane reflecting mirror 13. The laser light is reflected by the plane reflection mirror 13, is then made parallel light by the second condenser lens 8, and enters the photomask 9 substantially perpendicularly to illuminate the photomask 9 uniformly.
 ここで、上記第1の実施形態においては、第2の光路差調整部材7が光軸方向の長さが異なり縦方向に長い板状の透明部材7aを横方向に重ね合わせて構成され、第2のフライアイレンズ6の縦方向に並んだ各集光レンズ6aに対しては、同位相のレーザ光が入射するようにし、横方向に並んだ各集光レンズ6aに対しては、位相の異なったレーザ光が入射するようにしているため、フォトマスク9上の照明領域10には、第2のフライアイレンズ6の縦方向に並んだ各集光レンズ6aから射出した同位相のレーザ光による干渉縞が僅かながら発生するおそれがある。しかし、上記第1の実施形態においては、第1のコンデンサーレンズ4の入射側に平行平面回転板5を設けて、これをその光軸を中心に回転するようにしているので、第2のフライアイレンズ6に入射するレーザ光の入射角度が変化する。そのため、図2(b)に示すようにフォトマスク9上のレーザ光による照明領域10が微動して、上記干渉縞の明暗模様が平均化されて目立たなくなると共にレーザ光の照度ムラが平均化され、均一な露光を行うことができる。 Here, in the first embodiment, the second optical path difference adjusting member 7 is configured by superimposing plate-like transparent members 7a having different lengths in the optical axis direction and long in the vertical direction in the horizontal direction. The laser light having the same phase is incident on the condensing lenses 6a arranged in the vertical direction of the fly-eye lens 6 of No. 2, and the phase of the condensing lenses 6a arranged in the horizontal direction is made incident on the condensing lenses 6a arranged in the horizontal direction. Since different laser beams are incident, the in-phase laser beams emitted from the condenser lenses 6 a arranged in the vertical direction of the second fly-eye lens 6 are incident on the illumination region 10 on the photomask 9. There is a possibility that interference fringes due to the above occur slightly. However, in the first embodiment, the parallel plane rotating plate 5 is provided on the incident side of the first condenser lens 4 and is rotated about its optical axis. The incident angle of the laser light incident on the eye lens 6 changes. Therefore, as shown in FIG. 2B, the illumination area 10 by the laser light on the photomask 9 is finely moved, the light and dark patterns of the interference fringes are averaged and become inconspicuous, and the illuminance unevenness of the laser light is averaged. , Uniform exposure can be performed.
 図3は本発明によるレーザ露光装置の第2の実施形態を示す正面図である。この第2の実施形態において、第1の実施形態と異なる点は、第2のコンデンサーレンズ8に替えて平面反射ミラー13の位置にコリメーションミラー14を配置したものである。この場合、コリメーションミラー14の前焦点位置を第2のフライアイレンズ6の後焦点位置に略合致させる。これにより、第2のフライアイレンズ6を射出したレーザ光を平行光にして、フォトマスク9に垂直に入射させることができる。 FIG. 3 is a front view showing a second embodiment of the laser exposure apparatus according to the present invention. The second embodiment is different from the first embodiment in that a collimation mirror 14 is arranged at the position of the plane reflection mirror 13 in place of the second condenser lens 8. In this case, the front focal position of the collimation mirror 14 is substantially matched with the rear focal position of the second fly-eye lens 6. As a result, the laser light emitted from the second fly-eye lens 6 can be converted into parallel light and incident perpendicularly on the photomask 9.
 なお、上記第1及び第2の実施形態においては、第2の光路差調整部材7が第2のフライアイレンズ6の縦4列の集光レンズ6aに夫々対応して、光軸に平行な軸方向の長さが夫々異なる板状の透明部材7aを横方向に重ね合わせて形成したものである場合について説明したが、本発明はこれに限られず、第2のフライアイレンズ6の各集光レンズ6aに対応して光軸に平行な軸方向の長さが夫々異なるロッド状の透明部材を組み合わせて形成したものであってもよい。この場合、第2のフライアイレンズ6の各集光レンズ6aを射出する各レーザ光の位相が全て異なるため、各レーザ光がフォトマスク9上で干渉するおそれは少なくなる。 In the first and second embodiments, the second optical path difference adjusting member 7 corresponds to each of the four columns of condensing lenses 6a of the second fly-eye lens 6 and is parallel to the optical axis. Although the case where the plate-like transparent members 7a having different lengths in the axial direction are formed by superimposing them in the lateral direction has been described, the present invention is not limited to this, and each of the second fly-eye lenses 6 is collected. It may be formed by combining rod-shaped transparent members having different lengths in the axial direction parallel to the optical axis corresponding to the optical lens 6a. In this case, since the phases of the laser beams emitted from the condenser lenses 6a of the second fly-eye lens 6 are all different, the possibility that the laser beams interfere with each other on the photomask 9 is reduced.
 また、上記実施形態においては、位相差生起手段が光路差調整部材である場合について説明したが、本発明はこれに限られず、フライアイレンズの各集光レンズに対応して設けた位相板であってもよい。 In the above embodiment, the case where the phase difference generating means is an optical path difference adjusting member has been described. However, the present invention is not limited to this, and a phase plate provided corresponding to each condenser lens of the fly-eye lens. There may be.
 1…レーザ光源
 2…第1のフライアイレンズ(フライアイレンズ)
 2a…第1のフライアイレンズの集光レンズ
 3…第1の光路差調整部材(第1の位相差生起手段)
 3a…第1の光路差調整部材の透明部材
 4…第1のコンデンサーレンズ
 5…平行平面回転板
 6…第2のフライアイレンズ
 6a…第2のフライアイレンズの集光レンズ
 7…第2の光路差調整部材(第2の位相差生起手段)
 7a…第2の光路差調整部材の透明部材
 8…第2のコンデンサーレンズ
 9…フォトマスク
 10…フォトマスク上の照明領域
DESCRIPTION OF SYMBOLS 1 ... Laser light source 2 ... 1st fly eye lens (fly eye lens)
2a ... Condensing lens of the first fly-eye lens 3 ... First optical path difference adjusting member (first phase difference generating means)
3a: Transparent member of first optical path difference adjusting member 4 ... First condenser lens 5 ... Parallel plane rotating plate 6 ... Second fly-eye lens 6a ... Condensing lens of second fly-eye lens 7 ... Second Optical path difference adjusting member (second phase difference generating means)
7a: Transparent member of second optical path difference adjusting member 8 ... Second condenser lens 9 ... Photomask 10 ... Illumination area on photomask

Claims (2)

  1.  レーザ光を放射するレーザ光源と、
     前記レーザ光の光軸に略直交する面内に複数のレンズが並べて配置され、射出光を一旦集光した後、放射状に発散させてレーザ光の断面形状を拡大する第1のフライアイレンズと、
     前記第1のフライアイレンズのレーザ光の入射側に配置され、前記第1のフライアイレンズの各集光レンズに夫々入射するレーザ光に位相差を生じさせる第1の位相差生起手段と、
     前記第1のフライアイレンズを射出し断面形状が拡大されたレーザ光を平行光にするコンデンサーレンズと、
     前記コンデンサーレンズの光軸に略直交する面内に複数のレンズが並べて配置され、レーザ光によるフォトマスクの照明領域内の光強度分布を均一化する第2のフライアイレンズと、
     前記第2のフライアイレンズのレーザ光の入射側に配置され、前記第2のフライアイレンズの各集光レンズに夫々入射するレーザ光に位相差を生じさせる第2の位相差生起手段と、
    を備えたことを特徴とするレーザ露光装置。
    A laser light source that emits laser light;
    A first fly-eye lens in which a plurality of lenses are arranged side by side in a plane substantially orthogonal to the optical axis of the laser light, and after converging the emitted light, the first fly-eye lens expands the cross-sectional shape of the laser light by diverging radially; ,
    First phase difference generating means that is arranged on the laser beam incident side of the first fly-eye lens and that causes a phase difference in the laser light incident on each condenser lens of the first fly-eye lens;
    A condenser lens that emits the first fly-eye lens and converts the laser light having an enlarged cross-sectional shape into parallel light;
    A second fly-eye lens in which a plurality of lenses are arranged side by side in a plane substantially orthogonal to the optical axis of the condenser lens, and the light intensity distribution in the illumination area of the photomask by the laser light is made uniform;
    Second phase difference generating means disposed on the laser beam incidence side of the second fly's eye lens and causing a phase difference in the laser light respectively incident on each condenser lens of the second fly's eye lens;
    A laser exposure apparatus comprising:
  2.  前記コンデンサーレンズのレーザ光の入射側に、光軸に対して傾いて配置され、光軸を中心に回転する透明な平行平面回転板を設けたことを特徴とする請求項1記載のレーザ露光装置。 2. A laser exposure apparatus according to claim 1, wherein a transparent parallel plane rotating plate is provided on the laser beam incident side of the condenser lens so as to be inclined with respect to the optical axis and to rotate about the optical axis. .
PCT/JP2010/051447 2009-02-03 2010-02-02 Laser exposure device WO2010090190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800064003A CN102308364A (en) 2009-02-03 2010-02-02 Laser exposure device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-022631 2009-02-03
JP2009022631A JP5639745B2 (en) 2009-02-03 2009-02-03 Laser exposure equipment

Publications (1)

Publication Number Publication Date
WO2010090190A1 true WO2010090190A1 (en) 2010-08-12

Family

ID=42542084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051447 WO2010090190A1 (en) 2009-02-03 2010-02-02 Laser exposure device

Country Status (5)

Country Link
JP (1) JP5639745B2 (en)
KR (1) KR101634329B1 (en)
CN (1) CN102308364A (en)
TW (1) TWI463270B (en)
WO (1) WO2010090190A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269936A (en) * 2011-06-01 2011-12-07 长春理工大学 Method and system for simulating moth compound eye optical antireflection structure pattern
US9134537B2 (en) 2011-04-05 2015-09-15 V Technology Co., Ltd. Laser lighting device
US10281730B2 (en) 2015-10-11 2019-05-07 Dolby Laboratories Licensing Corporation Optical system for image projectors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5803222B2 (en) * 2011-04-05 2015-11-04 株式会社ブイ・テクノロジー Laser illumination device
JP6002964B2 (en) * 2012-01-31 2016-10-05 株式会社ブイ・テクノロジー Laser illumination device
JP6345963B2 (en) * 2014-03-28 2018-06-20 株式会社Screenホールディングス Light irradiation apparatus and drawing apparatus
CN108037641A (en) * 2017-12-14 2018-05-15 中国科学院长春光学精密机械与物理研究所 A kind of moth ocular structure preparation system based on efficient intensity distribution and preparation method thereof
JP2021009274A (en) * 2018-07-09 2021-01-28 レーザーテック株式会社 Light source, inspection device, and production method and inspection method of euv light

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259533A (en) * 1988-04-11 1989-10-17 Nikon Corp Illuminating optic device
JPH04225214A (en) * 1990-12-27 1992-08-14 Nikon Corp Lighting optical apparatus
JPH1062710A (en) * 1996-08-22 1998-03-06 Nikon Corp Illumination optical system
JP2003218017A (en) * 2001-11-16 2003-07-31 Ricoh Co Ltd Laser lighting optical system, aligner using the same, laser processing device, and projection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885433B2 (en) * 1990-11-15 2005-04-26 Nikon Corporation Projection exposure apparatus and method
US5742426A (en) * 1995-05-25 1998-04-21 York; Kenneth K. Laser beam treatment pattern smoothing device and laser beam treatment pattern modulator
JP3826047B2 (en) * 2002-02-13 2006-09-27 キヤノン株式会社 Exposure apparatus, exposure method, and device manufacturing method using the same
JP3969197B2 (en) 2002-06-06 2007-09-05 石川島播磨重工業株式会社 Laser irradiation device
JP2007206566A (en) * 2006-02-03 2007-08-16 Seiko Epson Corp Projector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259533A (en) * 1988-04-11 1989-10-17 Nikon Corp Illuminating optic device
JPH04225214A (en) * 1990-12-27 1992-08-14 Nikon Corp Lighting optical apparatus
JPH1062710A (en) * 1996-08-22 1998-03-06 Nikon Corp Illumination optical system
JP2003218017A (en) * 2001-11-16 2003-07-31 Ricoh Co Ltd Laser lighting optical system, aligner using the same, laser processing device, and projection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134537B2 (en) 2011-04-05 2015-09-15 V Technology Co., Ltd. Laser lighting device
CN102269936A (en) * 2011-06-01 2011-12-07 长春理工大学 Method and system for simulating moth compound eye optical antireflection structure pattern
US10281730B2 (en) 2015-10-11 2019-05-07 Dolby Laboratories Licensing Corporation Optical system for image projectors
US10545351B2 (en) 2015-10-11 2020-01-28 Dolby Laboratories Licensing Corporation Optical system for image projectors
US10845607B2 (en) 2015-10-11 2020-11-24 Dolby Laboratories Licensing Corporation Optical system for image projectors
US11307428B2 (en) 2015-10-11 2022-04-19 Dolby Laboratories Licensing Corporation Optical system for image projectors

Also Published As

Publication number Publication date
TW201115279A (en) 2011-05-01
JP5639745B2 (en) 2014-12-10
JP2010182731A (en) 2010-08-19
KR101634329B1 (en) 2016-07-08
TWI463270B (en) 2014-12-01
CN102308364A (en) 2012-01-04
KR20110120872A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
WO2010090190A1 (en) Laser exposure device
KR100755229B1 (en) Method for forming crystallization film and its equipment
JP6025369B2 (en) Optical apparatus, lithographic apparatus, and method of manufacturing a device for conditioning a radiation beam for use by an object
JP4546019B2 (en) Exposure equipment
CN104488362B (en) Radiation source
WO2011048877A1 (en) Laser exposure device
JP5087060B2 (en) Radiation source and lithographic apparatus
JP2005032972A (en) Light condensing optical system, light source unit, lighting optical apparatus, and aligner
US7741622B2 (en) Exposure device
JP5753260B2 (en) Illumination optical system for microlithography and projection exposure system having such an illumination optical system
JP2013074299A (en) Micro-lithographic projection exposure apparatus
KR102048129B1 (en) Euv light source for generating a usable output beam for a projection exposure apparatus
JP2008210814A (en) Modulator
US20070058149A1 (en) Lighting system and exposure apparatus
JPH1062710A (en) Illumination optical system
JP2009157325A (en) Exposure illumination device and method for adjusting displacement of exposure pattern
WO2019176876A1 (en) Lamp unit
JP2009182191A (en) Exposure lighting device
JP2008288590A (en) Assembly provided with radiation source, reflector and contaminant barrier
KR20050062164A (en) Exposure system of display device
JP2006295068A (en) Irradiator
CN108020994B (en) Lighting device
JPS6381420A (en) Illuminating device
JP2013167832A (en) Polarized light irradiation method, manufacturing method of exposed material, and exposure apparatus
KR20160034806A (en) Illumination optical device, exposure apparatus, and method of manufacturing article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006400.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117016451

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738522

Country of ref document: EP

Kind code of ref document: A1