WO2010087402A1 - プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属箔張積層板及びプリント配線板 - Google Patents
プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属箔張積層板及びプリント配線板 Download PDFInfo
- Publication number
- WO2010087402A1 WO2010087402A1 PCT/JP2010/051140 JP2010051140W WO2010087402A1 WO 2010087402 A1 WO2010087402 A1 WO 2010087402A1 JP 2010051140 W JP2010051140 W JP 2010051140W WO 2010087402 A1 WO2010087402 A1 WO 2010087402A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- resin
- mass
- carbon atoms
- metal foil
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0326—Organic insulating material consisting of one material containing O
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1802—C2-(meth)acrylate, e.g. ethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/145—Organic substrates, e.g. plastic
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1807—C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1808—C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1811—C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1812—C12-(meth)acrylate, e.g. lauryl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1818—C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/42—Plated through-holes or plated via connections
- H05K3/425—Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
- H05K3/427—Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
Definitions
- the present invention relates to a prepreg, a film with resin, a metal foil with resin, a metal foil-clad laminate, and a printed wiring board.
- connection material that is, a flexible wiring board material
- a connection material is required to have adhesiveness, heat resistance, flexibility, electrical insulation and long-term reliability.
- an electronic material that satisfies these requirements, specifically, a resin composition in which a curing agent is blended with an acrylic resin such as an acrylonitrile butadiene resin or a carboxy-containing acrylonitrile butadiene resin has been used (see, for example, Patent Document 1). .
- acrylic resins Compared to other flexible resins, acrylic resins have excellent features such as (1) having an appropriate tack force, (2) easy to introduce functional groups, and (3) transparency.
- Ion migration is a phenomenon in which a metal that forms wiring, circuit patterns, or electrodes on or in an insulating material moves on or in the insulating material under the influence of a potential difference during energization in a high-humidity environment. is there.
- Patent Document 2 proposes a method of adding an inorganic ion exchanger.
- the present invention suppresses the occurrence of ion migration while exhibiting excellent bending resistance when producing a printed wiring board, and has excellent insulation reliability, prepreg, resin-coated metal foil and metal foil-clad laminate, and It aims at providing the printed wiring board using these.
- the present invention is a prepreg formed by impregnating a fiber base material with a resin composition, the resin composition contains an acrylic resin, and is derived from a carbonyl group in an IR spectrum of a cured product of the resin composition.
- -1 vicinity of peak height (P CO) derived from nitrile groups to 2240 cm -1 vicinity of peak height ratio (P CN / P CO) in (P CN) to provide the prepreg is 0.001 or less ( Invention of the first prepreg).
- the present invention is also a prepreg formed by impregnating a fiber base material with a resin composition, wherein the resin composition contains an acrylic resin, and the acrylic resin is represented by the following formula (1). 5 to 30 parts by mass of a compound, 0.5 to 30 parts by mass of a functional group-containing monomer, and other monomers that are copolymerizable with these components and have no nitrile group in the structure
- a prepreg which is an acrylic resin obtained by polymerizing a monomer mixture in which 40 to 94.5 parts by mass (monomer other than the above two components) is blended so that the total mass part becomes 100 parts by mass (Invention of the second prepreg)
- R 1 represents a hydrogen atom or a methyl group
- R 2 represents a cycloalkyl group having 5 to 10 carbon atoms, a cycloalkylalkyl group having 6 to 13 carbon atoms, an aryl group having 6 to 10 carbon atoms, or carbon
- An aralkyl group of formula 7 to 13 is shown.
- the cycloalkylalkyl group means an alkyl group in which a hydrogen atom is substituted with a cycloalkyl group.
- the present invention provides a resin-coated metal foil comprising a B-stage resin layer formed using a resin composition, and a metal foil provided on at least one surface of the resin layer,
- An object provides a metal foil with a resin, which is the resin composition described in the invention of the first prepreg.
- the present invention relates to a resin-coated film in which a B-stage resin film formed using a resin composition is provided on a support film, and the resin composition is described in the first prepreg invention.
- a resin-coated film that is a resin composition is provided.
- the present invention provides a resin-coated metal foil comprising a B-stage resin layer formed using a resin composition, and a metal foil provided on at least one surface of the resin layer,
- the object provides a metal foil with a resin, which is the resin composition described in the invention of the second prepreg.
- the present invention is a film with a resin in which a B-stage resin film formed using a resin composition is provided on a support film, and the resin composition is described in the invention of the second prepreg. A resin-coated film that is a resin composition is provided.
- the present invention is a metal foil-clad laminate comprising: a substrate in which a fiber base material is embedded in a cured resin body; and a metal foil provided on at least one surface of the substrate, the cured resin body Provides a metal foil-clad laminate that is formed by curing the resin composition described in the first prepreg invention.
- the present invention is a metal foil-clad laminate comprising: a substrate in which a fiber base material is embedded in a cured resin body; and a metal foil provided on at least one surface of the substrate, the cured resin body Provides a metal foil-clad laminate that is formed by curing the resin composition described in the invention of the second prepreg.
- the film with resin, the metal foil with resin, and the metal foil-clad laminate the occurrence of ion migration is suppressed while exhibiting excellent bending resistance when a printed wiring board is produced. Excellent insulation reliability.
- the resin-coated metal foil, and the metal foil-clad laminate (hereinafter, sometimes referred to as the first invention) using the resin composition described in the present invention
- the P CN / P CO of 0.001 or less means that the nitrile group is not substantially contained in the resin composition, that is, it is contained only as an impurity even if it is contained. According to the present invention, the above-described effects can be obtained by having such a configuration. When P CN / P CO is larger than 0.001, migration resistance is particularly deteriorated.
- the “cured body of the resin composition” is a state in which the resin composition is cured to the C-stage state.
- the resin composition is cured at 170 ° C. for 90 minutes and 4.0 MPa. It is a hardened body.
- “Peak height around 1730 cm ⁇ 1 derived from carbonyl group (P CO )” and “Peak height around 2240 cm ⁇ 1 derived from nitrile group (P CN )” are, for example, IR described in Examples What is required by the measurement method. In IR measurement, measurement by the KBr tablet method is preferable. In the measurement by the ATR method, the peak on the high wave number side tends to be small.
- substrate in which the fiber base material is embedded in the cured resin body generally refers to a substrate obtained by curing the prepreg to the C-stage state.
- unreacted functional groups may partially remain in the resin (composition).
- the acrylic resin is a compound represented by the following formula (1) 5 to 30 parts by mass, a functional group-containing monomer 0.5 to 30 parts by mass, and a monomer copolymerizable with these components.
- R 1 represents a hydrogen atom or a methyl group
- R 2 represents a cycloalkyl group having 5 to 10 carbon atoms, a cycloalkylalkyl group having 6 to 13 carbon atoms, an aryl group having 6 to 10 carbon atoms, or carbon
- An aralkyl group of formula 7 to 13 is shown.
- Specific examples of the other monomers include monomers selected from acrylic esters, methacrylic esters, aromatic vinyl compounds, and N-substituted maleimides.
- the invention of the second prepreg and a film with resin using the resin composition described in the invention, a metal foil with resin, and a metal foil-clad laminate (hereinafter sometimes referred to as the second invention). ),
- the presence of a nitrile group in the resin composition is used as a raw material monomer of an acrylic resin that does not contain a nitrile group, which can be the main factor of its existence.
- the acrylic resin comprises 5 to 30 parts by mass of a compound represented by the following formula (1), 0.5 to 30 parts by mass of a functional group-containing monomer, and a monomer copolymerizable with these components
- Acrylic polymer obtained by polymerizing a monomer mixture containing 40 to 94.5 parts by mass of other monomers having no nitrile group in the structure so that the total mass is 100 parts by mass.
- a prepreg that is a resin is provided.
- R 1 represents a hydrogen atom or a methyl group
- R 2 represents a cycloalkyl group having 5 to 10 carbon atoms, a cycloalkylalkyl group having 6 to 13 carbon atoms, an aryl group having 6 to 10 carbon atoms, or carbon
- An aralkyl group of formula 7 to 13 is shown.
- the acrylic resin is a methacrylic acid ester or an acrylic acid ester having a cycloalkyl group having 5 to 10 carbon atoms in the ester portion as the compound represented by the formula (1).
- Acrylic resin that is, methacrylic acid ester or acrylate ester having a cycloalkyl group having 5 to 10 carbon atoms in the ester portion, 0.5 to 30 parts by mass of a functional group-containing monomer, and these 40 to 94.5 parts by mass of other monomers that are copolymerizable with the above components and have no nitrile group in the structure so that the total mass part is 100 parts by mass
- An acrylic resin obtained by polymerizing the monomer mixture is preferable, and thereby the insulation reliability is further improved.
- the cycloalkyl group having 5 to 10 carbon atoms preferably contains at least one group selected from the group consisting of a cyclohexyl group, a norbornyl group, a tricyclodecanyl group, an isobornyl group, and an adamantyl group. This further improves the insulation reliability.
- the acrylic resin preferably has a weight average molecular weight (Mw) of 50,000 to 1,500,000. Thereby, adhesiveness and intensity
- Mw weight average molecular weight
- the present invention also provides a printed wiring board comprising at least one of the prepreg, the film with resin, the metal foil with resin, and the metal foil-clad laminate of the first and second inventions.
- a printed wiring board exhibits excellent bending resistance, suppresses the occurrence of ion migration, and has excellent insulation reliability.
- resin-coated film, resin-coated metal foil, and metal foil-clad laminate of the present invention while exhibiting excellent bending resistance when producing a printed wiring board, it suppresses the occurrence of ion migration and provides insulation. Excellent reliability.
- production of ion migration is suppressed and the insulation reliability is excellent, expressing the outstanding bending resistance.
- FIG. 1 is a perspective view showing an embodiment of a prepreg according to the present invention.
- a prepreg 100 shown in FIG. 1 is a sheet-like prepreg composed of a fiber base material and a resin composition impregnated therein. This thickness is preferably 20 to 100 ⁇ m, and when the thickness of the prepreg is in this range, it has good flexibility.
- the fiber base material in the prepreg 100 is a flexible fiber base material that can be bent arbitrarily, and the thickness thereof is preferably 10 to 80 ⁇ m.
- the form of the fiber substrate can be appropriately selected from those generally used when producing metal foil-clad laminates and multilayer printed wiring boards, but fiber substrates such as woven fabrics and nonwoven fabrics are usually used.
- the fibers constituting the fiber substrate include glass, alumina, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, and other inorganic fibers, aramid, polyetherketone, polyetherimide, polyether Examples thereof include organic fibers such as sulfone, carbon and cellulose, and mixed papers thereof. Among these, glass fiber is preferable.
- a glass cloth (also referred to as “glass cloth”) that is a woven cloth of glass fibers is preferable as the fiber base material.
- the glass cloth used for this invention can give various coupling processes, such as an aminosilane and an epoxy silane, as a surface treatment as needed.
- the resin composition of the present invention preferably contains no nitrile group.
- the nitrile group has a peak height (P CO ) near 1730 cm ⁇ 1 derived from a carbonyl group. as long as the ratio of the peak heights of the near derived 2240cm -1 (P CN) (P CN / P CO) is 0.001 or less, even if the slightly containing nitrile groups as an impurity. This ratio can be determined by measuring the transmission IR spectrum of the cured product of the resin composition.
- the carbonyl group is a functional group characteristic of an acrylic resin contained as an essential component in the resin composition, and the peak height of the carbonyl group (—CO) is used as a reference for defining the amount of nitrile group. Is adopted.
- the resin composition contains an acrylic resin.
- the acrylic resin a polymer obtained by polymerizing an acrylic ester or a methacrylic ester alone, an acrylic ester, a methacrylic ester, a functional group-containing monomer, a monomer copolymerizable with these components, or the like.
- a copolymer obtained by copolymerizing the monomer mixture can be used.
- the monomer in the monomer mixture is preferably one that does not contain a nitrile group in order to suppress the occurrence of ion migration to a higher degree, and also contains a nitrogen atom to further improve the insulation reliability. It is preferable that there are no carbon atoms, hydrogen atoms and oxygen atoms.
- the acrylic resin preferably does not contain a nitrile group, and 5 to 30 parts by mass of a compound represented by the following formula (1), 0.5 to 30 parts by mass of a functional group-containing monomer, and these components
- a compound represented by the following formula (1) An acrylic resin obtained by polymerizing a monomer mixture containing 40 to 94.5 parts by mass of a copolymerizable monomer (other than the above two components) so that the total mass is 100 parts by mass. It is more preferable.
- the compounding amount of the compound represented by the following formula (1) is more preferably 10 to 30 parts by mass in terms of hygroscopicity.
- R 1 represents a hydrogen atom or a methyl group
- R 2 represents a cycloalkyl group having 5 to 10 carbon atoms, a cycloalkylalkyl group having 6 to 13 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a carbon number
- An aralkyl group having 7 to 13 carbon atoms, and a cycloalkyl group having 5 to 10 carbon atoms or an aralkyl group having 7 to 13 carbon atoms is preferable.
- Examples of the cycloalkyl group having 5 to 10 carbon atoms in R 2 include a cyclohexyl group, a norbornyl group, a tricyclodecanyl group, an isobornyl group, and an adamantyl group. From the viewpoint of low hygroscopicity, tricyclodecanyl is used. The group is particularly preferred.
- Examples of the cycloalkylalkyl group having 6 to 13 carbon atoms in R 2 include those in which one hydrogen atom in the alkyl group having 1 to 3 carbon atoms is substituted with the above cycloalkyl group having 5 to 10 carbon atoms.
- Specific examples thereof include a cyclohexylmethyl group, a cyclohexylethyl group, a cyclohexylpropyl group, a norbornylmethyl group, a tricyclodecanylmethyl group, an isobornylmethyl group, and an adamantylmethyl group.
- Examples of the aryl group having 6 to 10 carbon atoms in R 2 include a phenyl group and a naphthyl group.
- Examples of the aralkyl group having 7 to 13 carbon atoms in R 2 include those in which one hydrogen atom in the alkyl group having 1 to 3 carbon atoms is substituted with the aryl group having 6 to 10 carbon atoms. Specific examples thereof include a benzyl group, a phenethyl group, and a naphthylmethyl group, and a benzyl group is particularly preferable from the viewpoint of low hygroscopicity.
- the acrylic resin as a compound represented by the above formula (1), a methacrylic acid ester or an acrylic acid ester having a cycloalkyl group having 5 to 10 carbon atoms in the ester portion (hereinafter referred to as “alicyclic monomer”).
- alicyclic monomer a methacrylic acid ester or an acrylic acid ester having a cycloalkyl group having 5 to 10 carbon atoms in the ester portion
- a monomer mixture containing 40 to 94.5 parts by mass of a monomer (other than the above-mentioned components) copolymerizable with these components so that the total mass is 100 parts by mass. It is more preferable that it is an acrylic resin.
- the blending amount of the alicyclic monomer is more preferably 10 to 30 parts by mass from the viewpoint of hygroscopicity.
- the blending amount of the alicyclic monomer is less than 5 parts by mass, the hygroscopicity tends to increase, and if it exceeds 30 parts by mass, the mechanical strength tends to decrease. If the blending amount of the functional group-containing monomer is less than 0.5 parts by mass, the adhesiveness tends to be low, and the strength tends to decrease, and if it exceeds 30 parts by mass, a crosslinking reaction occurs when copolymerizing. In addition, the storage stability tends to deteriorate.
- the alicyclic monomer includes at least one group selected from the group consisting of a cyclohexyl group, a norbornyl group, a tricyclodecanyl group, an isobornyl group, and an adamantyl group as the cycloalkyl group having 5 to 10 carbon atoms.
- Methacrylic acid ester or acrylic acid ester containing is preferable.
- alicyclic monomers include cyclopentyl acrylate, cyclohexyl acrylate, methyl cyclohexyl acrylate, norbornyl acrylate, norbornyl acrylate, phenyl norbornyl acrylate, isobornyl acrylate, bornyl acrylate , Menthyl acrylate, fentyl acrylate, adamantyl acrylate, tricyclo [5.2.1.0 2,6 ] deca-8-yl acrylate, tricyclo [5.2.1.0 2,6 ] decaacrylate -4-methyl, cyclodecyl acrylate, cyclopentyl methacrylate, cyclohexyl methacrylate, methyl cyclohexyl methacrylate, trimethyl cyclohexyl methacrylate, norbornyl methacrylate, norbornyl methyl methacrylate, phenyl norbornyl methacrylate , Is
- dec-8-yl tricyclo [5.2.1.0 2,6 ] dec-4-methyl methacrylate, and cyclodecyl methacrylate.
- These can be used alone or in admixture of two or more.
- methacrylic acid ester and acrylic acid ester as an alicyclic monomer.
- cyclohexyl acrylate isobornyl acrylate, norbornyl methyl acrylate, tricyclo [5.2.1.0 2,6 ] dec-8-yl acrylate, tricyclo acrylate [ 5.2.1.0 2,6 ] dec-4-methyl, adamantyl acrylate, cyclopentyl methacrylate, cyclohexyl methacrylate, methyl cyclohexyl methacrylate, tricyclohexyl methacrylate, norbornyl methacrylate, norbornyl methyl methacrylate, Isobornyl methacrylate, bornyl methacrylate, menthyl methacrylate, adamantyl methacrylate, tricyclo [5.2.1.0 2,6 ] dec-8-yl methacrylate, tricyclo [5.2.1.0 2, methacrylate] 6] Deka 4-methyl, methacrylate consequent Dec
- cyclohexyl acrylate isobornyl acrylate, norbornyl acrylate, tricyclohexyl acrylate [5.2.1.0 2,6 ] dec-8-yl, tricyclohexyl acrylate [5 .2.1.0 2,6 ] dec-4-methyl and adamantyl acrylate are particularly preferred.
- the alicyclic monomer preferably has no nitrile group in its structure.
- the functional group-containing monomer is a monomer having a functional group and at least one polymerizable carbon-carbon double bond in the molecule.
- the functional group include a carboxyl group, a hydroxyl group, and an acid anhydride. It preferably has at least one functional group selected from the group consisting of a group, an amino group, an amide group and an epoxy group.
- Specific examples of functional group-containing monomers include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, and itaconic acid, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl acrylate.
- the functional group-containing monomer preferably has no nitrile group in its structure.
- an epoxy group-containing monomer is preferable in terms of storage stability
- an acrylic ester or methacrylic ester having a glycidyl group is preferable in terms of increasing heat resistance by reacting with a crosslinking component other than an acrylic resin.
- Particularly preferred are glycidyl acid and glycidyl methacrylate.
- the monomer copolymerizable with the above components is not particularly limited as long as it does not impair the low hygroscopicity, heat resistance and stability of the polymer, but it does not have a nitrile group in its structure. Is preferred.
- monomers copolymerizable with the above components include methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, acrylic acid t-butyl, pentyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, dodecyl acrylate, octadecyl acrylate, etc., alkyl alkyl acrylates such as butoxyethyl acrylate Acrylic esters such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, pentyl methacrylate,
- Aromatic vinyl compounds N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, Ni-propylmaleimide, N-butylmaleimide, Ni-butylmaleimide, Nt-butyl Rumareimido, N- lauryl maleimide, N- cyclohexyl maleimide, N- benzyl maleimide and N- substituted maleimides such as N- phenyl maleimide. These can be used alone or in admixture of two or more.
- alkyl acrylates or alkyl methacrylates are preferable, and methyl acrylate, ethyl acrylate, and n-butyl acrylate are more preferable.
- the blending ratio of the acrylic resin is preferably 10 to 90% by mass, more preferably 15 to 70% by mass, based on the entire solid content of the resin composition (that is, the total amount of components other than the solvent). If it is less than 10% by mass, the bendability tends to decrease, and if it exceeds 90% by mass, the flame retardancy tends to decrease.
- the polymerization method for producing the acrylic resin existing methods such as bulk polymerization, suspension polymerization, solution polymerization, precipitation polymerization, and emulsion polymerization can be applied.
- the suspension polymerization method is most preferable in terms of cost.
- Suspension polymerization is performed in an aqueous medium by adding a suspending agent.
- the suspending agent include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, and polyacrylamide, and poorly soluble inorganic substances such as calcium phosphate and magnesium pyrophosphate.
- nonionic water-soluble polymers such as polyvinyl alcohol are preferable.
- This water-soluble polymer is preferably used in an amount of 0.01 to 1 part by mass with respect to 100 parts by mass of the total amount of the monomer mixture.
- radical polymerization initiators include benzoyl peroxide, lauroyl peroxide, di-t-butylperoxyhexahydroterephthalate, t-butylperoxy-2-ethylhexanoate, 1,1-t-butylperoxy-3 , 3,5-trimethylcyclohexane, t-butylperoxyisopropyl carbonate, and other organic peroxides, azobisisobutyronitrile, azobis-4-methoxy-2,4-dimethylvaleronitrile, azobiscyclohexanone-1-carbonitrile Azo compounds such as azodibenzoyl, water-soluble catalysts such as potassium persulfate and ammonium persulfate, and redox catalysts based on a combination of peroxides or persulfates and reducing agents, all those that can be used for normal radical polymerization
- a mercaptan compound When performing the above polymerization, a mercaptan compound, thioglycol, carbon tetrachloride, ⁇ -methylstyrene dimer or the like can be added as necessary as a molecular weight modifier.
- the polymerization temperature can be appropriately selected from 0 to 200 ° C., preferably 40 to 120 ° C.
- the molecular weight of the acrylic resin is not particularly limited, but the weight average molecular weight (converted to standard polystyrene by gel permeation chromatography) is preferably in the range of 10,000 to 2,000,000, preferably 100,000 to 1 , 500,000 is particularly preferable. If the weight average molecular weight is less than 10,000, the adhesiveness and strength tend to be low, and if it exceeds 2,000,000, the solubility in a solvent tends to decrease and the workability tends to deteriorate.
- the resin composition preferably further contains a thermosetting resin and a curing agent. Moreover, it is preferable that the said resin composition does not contain the component which has a nitrile group in the composition.
- the thermosetting resin is preferably a resin having a glycidyl group, and preferably contains a high molecular weight resin component for the purpose of improving flexibility and heat resistance.
- a resin having a glycidyl group for example, epoxy resin, polyimide resin, polyamideimide resin, triazine resin, phenol resin, melamine resin, polyester resin, cyanate ester resin, modified resins of these resins, etc. are used. It is done. Two or more kinds of these resins may be used in combination, and various solvent solutions may be used as necessary.
- any solvent such as alcohol, ether, ketone, amide, aromatic hydrocarbon, ester, and nitrile may be used, and a mixed solvent using several kinds may be used. However, since the same solvent system has better adhesion between the resins, the same solvent system is desirable.
- Epoxy resins include bisphenol A, biphenyl novolac type epoxy resins, naphthalene type epoxy resins, novolak type phenol resins, orthocresol novolac type phenol resins and other polyhydric alcohols such as 1,4-butanediol and epichlorohydrin.
- N-glycidyl derivatives of compounds having polyglycidyl esters, amines, amides or heterocyclic nitrogen bases obtained by reacting a polybasic acid such as polyglycidyl ether, phthalic acid or hexahydrophthalic acid obtained by reaction with epichlorohydrin And alicyclic epoxy resins.
- the curing agent various conventionally known ones can be used.
- an epoxy resin is used as the resin
- dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, phenol novolac examples thereof include polyfunctional phenols such as cresol novolac, naphthalene type phenol resin, and triazine ring-containing cresol novolak.
- the amount of the curing agent varies depending on the type of the curing agent. For example, in the case of an amine, the amount of active hydrogen equivalent of the amine and the epoxy equivalent of the epoxy resin are preferably approximately equal.
- the amount is preferably about 0.001 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin.
- polyfunctional phenol or acid anhydride when polyfunctional phenol or acid anhydride is used at the time of curing, such an amount that the phenolic hydroxyl group or carboxyl group is 0.6 to 1.2 equivalent per 1 equivalent of epoxy resin is preferable.
- accelerators are used for the purpose of promoting the reaction between the resin and the curing agent.
- the type and amount of the accelerator are not particularly limited.
- imidazole compounds, organophosphorus compounds, tertiary amines, quaternary ammonium salts, blocked isocyanates, etc. are used, and two or more kinds are used in combination. May be.
- the compounding ratio of the thermosetting resin is preferably 5 to 90% by mass, more preferably 10 to 60% by mass, based on the entire solid content of the resin composition.
- the blending ratio of the curing agent is preferably 1 to 95% by mass and more preferably 1 to 30% by mass with respect to the entire solid content of the resin composition.
- the resin composition may contain a flame retardant, a flow regulator, a coupling agent, an antioxidant and the like.
- the prepreg 100 is obtained, for example, by immersing or coating the above-described resin composition on a fiber base material, impregnating and drying.
- the conditions for producing the prepreg 100 there are no particular restrictions on the conditions for producing the prepreg 100.
- a solvent solution varnish
- the solvent is dried at a temperature at which it can be volatilized, and the solvent used in the varnish must be volatilized by 80% by mass or more. preferable. Therefore, it is preferable that the drying temperature is 80 ° C. to 180 ° C., and the amount of impregnation of the varnish is 30 to 80% by mass with respect to the total amount of the varnish solid and the base material. .
- the solvent may be any solvent such as alcohol, ether, ketone, amide, aromatic hydrocarbon, ester, and nitrile, and a mixed solvent of several types may be used.
- FIG. 2 is a partial cross-sectional view showing an embodiment of a metal foil-clad laminate according to the present invention.
- a metal foil-clad laminate 200 shown in FIG. 2 includes a substrate 30 composed of one prepreg 100 and two metal foils 10 provided in close contact with both surfaces of the substrate 30.
- the metal foil-clad laminate 200 is obtained, for example, by stacking metal foil on both sides of the prepreg 100, and heating and pressing.
- the heating and pressurizing conditions are not particularly limited, but usually the molding temperature is 80 ° C. to 250 ° C., the molding pressure is 0.5 MPa to 8.0 MPa, preferably the molding temperature is 130 ° C. to 230 ° C., and the molding pressure is 1.5 MPa to 5.0 MPa.
- the thickness of the metal foil-clad laminate 200 is preferably 200 ⁇ m or less, and more preferably 20 to 180 ⁇ m. If this thickness exceeds 200 ⁇ m, the flexibility is lowered, and cracks may easily occur during bending. Moreover, a metal foil-clad laminate having a thickness of less than 20 ⁇ m is extremely difficult to manufacture.
- the metal foil for example, a copper foil, an aluminum foil, and a nickel foil are generally used. However, in the metal foil-clad laminate of this embodiment, a copper foil is preferable.
- the thickness is preferably 0.01 ⁇ m to 35 ⁇ m in order to improve the flexibility of the metal foil with resin, and the bendability is improved by using a copper foil having a thickness of 20 ⁇ m or less.
- an electrolytic copper foil or a rolled copper foil can be selected.
- the method of heating and pressing the above-described prepreg and metal foil in a superimposed manner includes a press lamination method and a hot roll continuous lamination method, and is not particularly limited. In the present embodiment, it is preferable to use a hot press lamination method in vacuum from the viewpoint of efficiently forming a metal foil-clad laminate.
- the embodiment of the metal foil-clad laminate is not limited to the above-described embodiment.
- a plurality of prepregs 100 may be used to make the substrate a multilayer fiber reinforced resin layer, or a metal foil may be provided only on one side of the substrate.
- FIG. 3 is a partial cross-sectional view showing an embodiment of the printed wiring board of the present invention obtained by forming a wiring pattern on the metal foil-clad laminate 200 described above.
- a printed wiring board 300 shown in FIG. 3 mainly includes the above-described substrate 30 and a wiring pattern 11 formed of patterned metal foil provided on both surfaces of the substrate 30.
- a plurality of through holes 70 are formed through the substrate 30 in a direction substantially orthogonal to the main surface, and a metal plating layer 60 having a predetermined thickness is formed on the hole wall of the through hole 70.
- the printed wiring board 300 is obtained by forming a wiring pattern on the metal foil 10.
- the wiring pattern can be formed by a conventionally known method such as a subtractive method.
- the printed wiring board 300 is suitably used as a printed wiring board to be bent or a rigid flexible wiring board.
- the metal foil with resin of the present embodiment is provided with a B-stage resin film made of the above resin composition and a metal foil provided on at least one surface of the resin film.
- a copper foil, an aluminum foil, or a nickel foil is generally used as the metal foil.
- a copper foil is preferable.
- the thickness is preferably 0.01 ⁇ m to 35 ⁇ m in order to improve the flexibility of the metal foil with resin, and the bendability is improved by using a copper foil having a thickness of 20 ⁇ m or less.
- the thickness of the resin film is preferably 5 to 90 ⁇ m. When the thickness of the resin film is 5 to 90 ⁇ m, good flexibility can be maintained.
- the film with resin of the present embodiment is obtained by providing a B-stage resin film made of the above resin composition on a support film.
- a multilayer wiring board can be obtained by transferring a resin film of a resin-coated film to a wiring forming surface of a printed wiring board, peeling a support film, and repeatedly heating and pressing a metal foil or a printed wiring board.
- the resin film of the attached film has the same characteristics as the resin film of the metal foil with resin.
- polyethylene terephthalate or the like is preferably used for the support film.
- Example 1 295 g of tricyclo [5.2.1.0 2,6 ] dec-8-yl acrylate (manufactured by Hitachi Chemical Co., Ltd., FA-513AS, see formula (A) below), 288 g of ethyl acrylate (EA), 387 g of n-butyl acrylate (BA) and 30 g of glycidyl methacrylate (GMA) were mixed, and 2 g of lauroyl peroxide and 0.16 g of n-octyl mercaptan were further dissolved in the obtained monomer mixture A, Body mixture B.
- EA ethyl acrylate
- BA 387 g of n-butyl acrylate
- GMA glycidyl methacrylate
- thermosetting resin varnish a resin composition comprising the components shown in Table 1 was dissolved in methyl ethyl ketone and methyl isobutyl ketone and adjusted to a resin solid content of 30% by mass to prepare a thermosetting resin varnish.
- thermosetting resin varnish was prepared in the same manner as in Example 1 except that the monomer mixture A having the composition ratio shown in Tables 2 to 8 was used.
- thermosetting resin varnish was prepared in the same manner as in Example 1 except that the acrylic resin B prepared by the following method was used in place of the acrylic resin A.
- the acrylic resin B prepared by the following method was used in place of the acrylic resin A.
- Into a 1 L flask 285 g of tricyclo [5.2.1.0 2,6 ] dec-8-yl acrylate (manufactured by Hitachi Chemical Co., Ltd., FA-513AS), 280 g of ethyl acrylate (EA), 385 g of n-butyl acrylate (BA), 50 g of glycidyl methacrylate (GMA), 400 g of methyl isobutyl ketone and 0.1 g of azobisisobutyronitrile were added and mixed in a nitrogen atmosphere for 60 minutes. Thereafter, the mixture was heated to 80 ° C. for 30 minutes and polymerized for 3 hours to synthesize acrylic resin B.
- thermosetting resin varnish was prepared in the same manner as in Example 1 except that the acrylic resin C synthesized by the following method was used in place of the acrylic resin A.
- the acrylic resin C synthesized by the following method was used in place of the acrylic resin A.
- Into a 1 L flask 285 g of tricyclo [5.2.1.0 2,6 ] dec-8-yl acrylate (manufactured by Hitachi Chemical Co., Ltd., FA-513AS), 280 g of ethyl acrylate (EA), 385 g of n-butyl acrylate (BA), 50 g of glycidyl methacrylate (GMA), 150 g of methyl isobutyl ketone and 0.1 g of azobisisobutyronitrile were added and mixed in a nitrogen atmosphere for 60 minutes. Thereafter, the mixture was heated to 80 ° C. for 30 minutes and polymerized for 3 hours to synthesize acrylic resin C.
- thermosetting resin varnish was used in the same manner as in Example 1 except that the monomer mixture A having the composition ratio shown in Tables 4 and 5 was used and each component was blended at the resin composition blend ratios shown in Tables 4 and 5. Was prepared.
- Example 35 Using an acrylic resin having the same composition as that used in Example 34, a resin composition composed of the components shown in Table 9 was dissolved in methyl ethyl ketone and methyl isobutyl ketone, and the resin solid content was adjusted to 30% by mass. A resin varnish was prepared.
- Example 36 Using an acrylic resin having the same composition as that used in Example 34, a resin composition composed of the components shown in Table 10 was dissolved in methyl ethyl ketone and methyl isobutyl ketone, and the resin solid content was adjusted to 30% by mass. A resin varnish was prepared.
- Example 37 An acrylic resin was synthesized in the same manner as in Example 1 using the monomer mixture A having the composition ratio shown in Table 8, and the resin composition comprising the components shown in Table 11 was dissolved in methyl ethyl ketone and methyl isobutyl ketone to obtain a resin solid.
- the thermosetting resin varnish was prepared by adjusting the content to 30% by mass.
- thermosetting resin varnish was prepared in the same manner as in Example 37 except that an acrylic resin having the same composition as that used in Comparative Example 2 was used.
- thermosetting resin varnish was prepared in the same manner as in Example 37 except that each component was blended at the blending ratio shown in Table 8 to synthesize an acrylic resin.
- thermosetting resin varnishes obtained in Examples 1 to 37 and Comparative Examples 1 to 5 were evaluated by the following methods. The results are shown in Tables 2-8.
- Weight average molecular weight (Mw) The weight average molecular weight was measured using gel permeation chromatography (eluent: tetrahydrofuran, column: Gelpack GL-A100M manufactured by Hitachi Chemical Co., Ltd., standard polystyrene conversion).
- thermosetting resin varnishes prepared in Examples 1 to 37 and Comparative Examples 1 to 5 on a copper foil having a thickness of 18 ⁇ m were dried so that the resin thickness would be 60 ⁇ m.
- the resin coated copper foil was obtained by coating with a horizontal coating machine and heating and drying in a drying furnace at 80 to 140 ° C. with a residence time of 5 to 15 minutes.
- the prepreg was applied to a glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 ⁇ m) with a vertical coater so that the thickness of the prepreg after drying was 55 ⁇ m to 65 ⁇ m, and 120 to 150 ° C. And dried for 20 minutes.
- a comb-shaped pattern circuit (circuit thickness 9 ⁇ m) with electrodes having a line width of 50 ⁇ m and a space between lines of 50 ⁇ m is formed on one side of a 0.3 mm thick double-sided copper-clad laminate (MCL-E-679F manufactured by Hitachi Chemical Co., Ltd.). The entire opposite surface was etched.
- the resin side of the copper foil with resin, or the prepreg and copper foil, or the film with resin and copper foil are laminated together, and the press is performed at 170 ° C. for 90 minutes and 4.0 MPa. After pressing under the conditions, what etched the outer layer copper foil was made into the evaluation board
- an acrylic resin is applied onto the surface with the electrode-shaped comb pattern circuit formed using an applicator so that the thickness after drying is 60 ⁇ m or more. Thus, an evaluation substrate was produced. Specifically, the drying was performed under the conditions of drying at 80 ° C./10 minutes and then drying at 135 ° C./10 minutes.
- IR measurement The resin of the evaluation substrate was scraped off, the transmission IR spectrum was measured by the KBr tablet method, and the vertical axis was displayed as absorbance. IR measurement was performed using FT-IR6300 manufactured by JASCO Corporation (light source: high-intensity ceramic light source, detector: DLATGS). Measurement resolution was measured at 4.
- Peak height (P CN ) around 2240 cm ⁇ 1 derived from a nitrile group Most peak of absorbance was higher point peak point between the two points of 2270 cm -1 and 2220cm -1.
- a straight line baseline between the two points of the absorbance at 2270 cm -1 and 2220cm -1, a peak height derived from the difference in absorbance between a point and the peak point is the wave number and the peak point in the nitrile group on this baseline ( PCN ).
- Peak height (P CO ) near 1730 cm ⁇ 1 derived from a carbonyl group Most peak of absorbance was higher point peak point between the two points of 1670 cm -1 and 1860 cm -1.
- FIG. 4 is a diagram showing IR spectrum measurement results for Example 9 and Comparative Example 1.
- the vertical axis represents absorbance and the horizontal axis represents wave number.
- no peak derived from a nitrile group is observed in the IR spectrum of Example 9.
- the peak height was set to zero.
- the resin on the electrode of the comb pattern circuit with electrodes is removed, the electrode and the ion migration tester are connected, and the resistance value is continuously measured in a thermostatic chamber adjusted to a temperature of 85 ° C. and a humidity of 85%. It was. The applied / measured voltage was 50V.
- MIG-87C trade name, manufactured by IMV Co., Ltd.
- a sample was placed in a thermostatic bath, and a voltage was applied 3 hours after reaching a temperature of 85 ° C. and a humidity of 85%.
- the state of ion migration after 85 hours 85 ° C. test 120 hrs and 1000 hrs was observed with a microscope.
- FIG. 5 is a photomicrograph of the electrode portion after the 120 hrs insulation reliability evaluation test of the evaluation substrate of Example 1
- FIG. 6 is the electrode portion after the 120 hrs insulation reliability evaluation test of the evaluation substrate of Comparative Example 1.
- FIG. 7 is a photomicrograph of the electrode part after the 120 hrs insulation reliability evaluation test of the evaluation substrate of Comparative Example 2.
- a resin-coated copper foil (thickness 60 ⁇ m, of which copper foil thickness 18 ⁇ m) is bonded to both sides of the prepreg, or a resin-coated film and a copper foil are laminated together, and the thickness is 0.1 mm under a press condition of 170 ° C., 90 minutes, 4.0 MPa.
- a double-sided copper-clad laminate (manufactured by Hitachi Chemical Co., Ltd., TC-C-300, copper foil thickness 18 ⁇ m) was prepared. The copper foil on the outside of the double-sided copper-clad laminate was etched on both sides, and a test piece having a size of width 10 mm ⁇ length 100 mm was cut out.
- test piece is placed on a table with a pin having a diameter of 0.25 mm, and the test piece is locally bent by reciprocating the roller 10 times with a force of 500 gf on the test piece in the portion where the pin is pinched. What was bent without breaking was “A”, and what was broken was “B”.
- the thickness of the prepreg after drying the thermosetting resin varnishes prepared in Examples 1 to 37 and Comparative Examples 1 to 5 on a glass cloth WEX-1027 (Asahi Schavel Co., Ltd., thickness 19 ⁇ m) is 55 ⁇ m to 65 ⁇ m.
- the prepreg was prepared by coating with a vertical coater and drying by heating at 120 to 150 ° C. for 20 minutes.
- Example 13 and 14 contain only a few nitrile group can not detect the P CN (P CN / P CO ⁇ 0.001), there is no occurrence of ion migration was good.
- P CN / P CO ⁇ 0.0007 ( 0.001 or less) after 1000hrs also no generation of ion migration, is excellent in high and stable the resistance value of the insulation reliability, P CN In Comparative Example 4 where / P CO > 0.001, a decrease in the insulation resistance value was observed from 120 hrs to 1000 hrs.
- the evaluation substrates of Examples 22 to 27 are more preferable in that they are further excellent in flame retardancy.
- the evaluation substrate of Example 8 showed good results with respect to ion migration and bendability, but the storage elastic modulus at 25 ° C. was very small as compared with the evaluation substrates of other examples.
- the copper foil with resin, the film with resin and the prepreg of Example 8 had a very strong tack as compared with those prepared in other Examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
なお本発明において、シクロアルキルアルキル基とは、水素原子がシクロアルキル基で置換されたアルキル基を意味する。
さらに本発明は、樹脂組成物を用いて形成されるB-ステージの樹脂膜を支持フィルム上に設けてなる樹脂付きフィルムであって、樹脂組成物が、前記第1のプリプレグの発明で記載した樹脂組成物である樹脂付きフィルムを提供する。
さらに本発明は、樹脂組成物を用いて形成されるB-ステージの樹脂層と、該樹脂層の少なくとも一方面上に設けられた金属箔と、を備える樹脂付き金属箔であって、樹脂組成物が、前記第2のプリプレグの発明で記載した樹脂組成物である樹脂付き金属箔を提供する。
さらに本発明は、樹脂組成物を用いて形成されるB-ステージの樹脂膜を支持フィルム上に設けてなる樹脂付きフィルムであって、樹脂組成物が、前記第2のプリプレグの発明で記載した樹脂組成物である樹脂付きフィルムを提供する。
さらに本発明は、繊維基材が樹脂硬化体に埋設されてなる基板と、該基板の少なくとも一方面上に設けられた金属箔と、を備える金属箔張積層板であって、前記樹脂硬化体が、前記第2のプリプレグの発明で記載した樹脂組成物を硬化して形成されてなるものである金属箔張積層板を提供する。
上記PCN/PCOが0.001以下であることは、樹脂組成物中にニトリル基が実質的に含まれない、すなわち含まれていたとしても不純物として含む程度であることを意味する。本発明によれば、このような構成を有することにより、上述の効果が得られる。PCN/PCOが0.001より大きいと、特に耐マイグレーション性が低下する。
上記その他の単量体の具体例としては、アクリル酸エステル、メタクリル酸エステル、芳香族ビニル化合物、N-置換マレイミド類から選択される単量体が挙げられる。
即ち、前記アクリル樹脂が、下記式(1)で表される化合物5~30質量部、官能基含有単量体0.5~30質量部、及び、これらの成分と共重合可能な単量体であってその構造中にニトリル基を持たない、その他の単量体40~94.5質量部を、総質量部が100質量部となるように配合した単量体混合物を重合してなるアクリル樹脂であるプリプレグを提供する。
また、上記炭素数5~10のシクロアルキル基は、シクロヘキシル基、ノルボルニル基、トリシクロデカニル基、イソボルニル基、及びアダマンチル基からなる群から選ばれる少なくとも1種の基を含むことが好ましい。これにより、絶縁信頼性がさらに向上する。
さらに低吸湿性及び接着性の点からアクリル酸シクロヘキシル、アクリル酸イソボルニル、アクリル酸ノルボルニル、アクリル酸トリシクロヘキシル[5.2.1.02,6]デカ-8-イル、アクリル酸トリシクロヘキシル[5.2.1.02,6]デカ-4-メチル、アクリル酸アダマンチルが特に好ましい。
ここで脂環式単量体は、その構造中にニトリル基を持たないことが好ましい。
これらの中で、保存安定性の点でエポキシ基含有モノマーが好ましく、アクリル樹脂以外の架橋成分と反応することで耐熱性が上がる点でグリシジル基を有するアクリル酸エステル又はメタクリル酸エステルが好ましく、アクリル酸グリシジル、メタクリル酸グリシジルが特に好ましい。
また、上記樹脂組成物は、その組成物中にニトリル基を有する成分を含まないことが好ましい。
本実施形態の樹脂付きフィルムは、上述の樹脂組成物からなるB-ステージの樹脂膜を支持フィルム上に設けたものである。プリント配線板の配線形成面に樹脂付きフィルムの樹脂膜を転写し、支持フィルムを剥離して、金属箔又はプリント配線板などを重ね加熱及び加圧することによって多層配線板を得ることができ、樹脂付きフィルムの樹脂膜は樹脂付き金属箔の樹脂膜と同様の特性を有する。支持フィルムにはポリエチレンテレフタレートなどが好ましく用いられる。
アクリル酸トリシクロ[5.2.1.02,6]デカ-8-イル(日立化成工業(株)製、FA-513AS、下記式(A)参照)295g、アクリル酸エチル(EA)288g、アクリル酸n-ブチル(BA)387g、メタクリル酸グリシジル(GMA)30gを混合し、得られた単量体混合物Aにさらに過酸化ラウロイル2g、n-オクチルメルカプタン0.16gを溶解させて、単量体混合物Bとした。
表2~8に示す組成比の単量体混合物Aを用いた他は、実施例1と同様として、熱硬化性樹脂ワニスを調製した。
アクリル樹脂Aに代えて、下記の方法で調製したアクリル樹脂Bを用いた他は、実施例1と同様にして、熱硬化性樹脂ワニスを調製した。
容量が1Lのフラスコに、アクリル酸トリシクロ[5.2.1.02,6]デカ-8-イル(日立化成工業(株)製、FA-513AS)285g、アクリル酸エチル(EA)280g、アクリル酸n-ブチル(BA)385g、メタクリル酸グリシジル(GMA)50g、メチルイソブチルケトン400g及びアゾビスイソブチロニトリル0.1gを入れ、窒素雰囲気下で60分間混合した。その後、80℃まで30分間加熱し、3時間重合させてアクリル樹脂Bを合成した。
アクリル樹脂Aに代えて、下記の方法で合成したアクリル樹脂Cを用いた他は、実施例1と同様にして、熱硬化性樹脂ワニスを調製した。
容量が1Lのフラスコに、アクリル酸トリシクロ[5.2.1.02,6]デカ-8-イル(日立化成工業(株)製、FA-513AS)285g、アクリル酸エチル(EA)280g、アクリル酸n-ブチル(BA)385g、メタクリル酸グリシジル(GMA)50g、メチルイソブチルケトン150g及びアゾビスイソブチロニトリル0.1gを入れ、窒素雰囲気下で60分間混合した。その後、80℃まで30分間加熱し、3時間重合させてアクリル樹脂Cを合成した。
表4、5に示す組成比の単量体混合物Aを用い、かつ表4、5に示す樹脂組成物配合比で各成分を配合した他は実施例1と同様にして、熱硬化性樹脂ワニスを調製した。
実施例34で用いたものと同じ組成のアクリル樹脂を用いて、表9に示す成分からなる樹脂組成物をメチルエチルケトン及びメチルイソブチルケトンに溶解し樹脂固形分30質量%に調整して、熱硬化性樹脂ワニスを調製した。
実施例34で用いたものと同じ組成のアクリル樹脂を用いて、表10に示す成分からなる樹脂組成物をメチルエチルケトン及びメチルイソブチルケトンに溶解し樹脂固形分30質量%に調整して、熱硬化性樹脂ワニスを調製した。
表8に示す組成比の単量体混合物Aを用い、実施例1と同様の方法でアクリル樹脂を合成し、表11に示す成分からなる樹脂組成物をメチルエチルケトン及びメチルイソブチルケトンに溶解し樹脂固形分30質量%に調整して、熱硬化性樹脂ワニスを調製した。
比較例2で用いたのと同じ組成のアクリル樹脂を用いた他は実施例37と同様にして、熱硬化性樹脂ワニスを調製した。
表8に示す配合比で各成分を配合してアクリル樹脂を合成した他は実施例37と同様にして、熱硬化性樹脂ワニスを調製した。
重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(溶離液:テトラヒドロフラン、カラム:日立化成工業(株)製 Gelpack GL-A100M、標準ポリスチレン換算)を用いて測定した。
厚みが18μmの銅箔(日本電解(株)製、HLA18)の上に実施例1~37及び比較例1~5で調製した熱硬化性樹脂ワニスを乾燥後の樹脂の厚みが60μmになるように横型塗工機で塗布し、80~140℃の乾燥炉において滞留時間5~15分で加熱、乾燥して樹脂付き銅箔を得た。
(樹脂付きフィルムの作製)
厚みが70μm厚のポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム(株)製 ピューレックスA70-25)の上に実施例1~37、比較例1~5で作製したワニスを乾燥後の樹脂の厚みが60μmになるように横型塗工機で塗布し、80~140℃の乾燥炉を滞留時間5~15分で加熱、乾燥して樹脂付きフィルムを得た。
(プリプレグの作製)
プリプレグはガラスクロスWEX-1027(旭シュエーベル(株)製、厚み19μm)に調製したワニスを乾燥後のプリプレグの厚みが55μm~65μmになるように縦型塗工機で塗布し、120~150℃、20分加熱乾燥したものとした。
(評価基板の作製)
厚み0.3mmの両面銅張積層板(日立化成工業(株)製 MCL-E-679F)の片側にライン幅50μm、ライン間スペース50μmの電極付き櫛形パターン回路(回路厚み9μm)をエッチングで作製し、反対面は全面をエッチングした。この基板の電極付き櫛形パターン回路形成面上に樹脂付き銅箔の樹脂側、またはプリプレグと銅箔、または樹脂付きフィルムと銅箔を張り合わせて積層し、170℃、90分、4.0MPaのプレス条件でプレスした後、外層銅箔をエッチングしたものを評価基板とした。
なお、後述するアクリル樹脂単体の絶縁信頼性評価用の評価基板については、上記電極付き櫛形パターン回路形成面上にアクリル樹脂を乾燥後の厚みが60μm以上となるようにアプリケータを用いて塗布して、評価基板を作製した。乾燥は、具体的には80℃/10分乾燥し、続いて135℃/10分乾燥する条件で行った。
評価基板の樹脂を削り取り、KBr錠剤法により透過IRスペクトルを測定し、縦軸を吸光度で表示した。IRの測定は日本分光(株)製 FT-IR6300を使用した(光源:高輝度セラミック光源、検出器:DLATGS)。測定分解能は4で測定した。
2270cm-1と2220cm-1の2点の間で最も吸光度のピークが高い点をピーク点とした。2270cm-1と2220cm-1における吸光度の2点間の直線をベースラインとし、このベースライン上でピーク点と同波数である点とピーク点との吸光度の差をニトリル基に由来するピーク高さ(PCN)とした。
(カルボニル基に由来する1730cm-1付近のピーク高さ(PCO))
1670cm-1と1860cm-1の2点の間で最も吸光度のピークが高い点をピーク点とした。1670cm-1と1860cm-1における吸光度の2点間の直線をベースラインとし、このベースライン上でピーク点と同波数である点とピーク点との吸光度の差をカルボニル基に由来するピーク高さ(PCO)とした。
評価基板について、電極付き櫛形パターン回路の電極上の樹脂を除去して該電極とイオンマイグレーションテスタ間を結線し、温度85℃、湿度85%に調整した恒温槽内で抵抗値の連続測定を行った。印加/測定電圧は50Vとした。イオンマイグレーションテスタはMIG-87C(IMV(株)製、商品名)を用いた。恒温槽内にサンプルを入れ、温度85℃、湿度85%に達してから3hrs後に電圧を印加した。
顕微鏡観察により85℃85%試験120hrs及び1000hrs後のイオンマイグレーションの状態を観察した。図5は、実施例1の評価基板の120hrsの絶縁信頼性評価試験後の電極部の顕微鏡写真であり、図6は、比較例1の評価基板の120hrsの絶縁信頼性評価試験後の電極部の顕微鏡写真であり、図7は、比較例2の評価基板の120hrsの絶縁信頼性評価試験後の電極部の顕微鏡写真である。
図5~7から明らかであるように、比較例1では、電極間にデンドライトが発生し、比較例2では、電極間のスペース部にデンドライトが発生しかけているのに対して、実施例1では、電極間にデンドライトの発生が見られない。
樹脂付き銅箔の樹脂面に厚みが18μmの銅箔(日本電解(株)製、HLA18)の粗化面を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製し、外側の銅箔は両面エッチングしたものを試験片とした。
(弾性率の測定)
弾性率はDVE(UBM製、型番:Rheogel-E-4000)を用いて測定した。測定条件は、引張りモード、振幅:5μm、周波数10Hz、チャック間距離:20mmとした。
プリプレグの両側に樹脂付き銅箔(厚み60μm、うち銅箔厚み18μm)の樹脂側、又は樹脂付きフィルムと銅箔を張り合わせ、170℃、90分、4.0MPaのプレス条件で厚み0.1mmの両面銅張積層板(日立化成工業(株)製、TC-C-300、銅箔厚み18μm)を作製した。両面銅張積層板の外側の銅箔は両面エッチングし、幅10mm×長さ100mmのサイズの試験片を切り出した。この試験片を、0.25mm径のピンを挟んで台上に置き、ピンが挟まれている部分の試験片上でローラを500gfの力で10往復させることによって試験片を局所的に折り曲げて、破断することなく折り曲げられたものを「A」とし、破断したものを「B」とした。
ガラスクロスWEX-1027(旭シュエーベル(株)製、厚み19μm)に実施例1~37及び比較例1~5で調製した熱硬化性樹脂ワニスを乾燥後のプリプレグの厚みが55μm~65μmになるように縦型塗工機で塗布し、120~150℃で20分加熱乾燥し、プリプレグを作製した。
また、実施例22~27の評価基板は、さらに難燃性に優れる点でより好ましい。また、絶縁信頼性は、組成が等しいワニスを用いた場合、樹脂付き銅箔、樹脂付きフィルム又はプリプレグで評価した結果は同様の結果であり、差は見られなかった。また、実施例8の評価基板は、イオンマイグレーションと折り曲げ性については良好な結果を示したが、他の実施例の評価基板に比べ、25℃での貯蔵弾性率が非常に小さかった。また、実施例8の樹脂付き銅箔、樹脂付きフィルム及びプリプレグは、他の実施例で作製したものに比べ、タックが非常に強かった。
実施例1~37及び比較例1~5で合成したアクリル樹脂について、上述の方法により、絶縁信頼性の評価を行った。その結果を表2~8に示す。
表2~8から明らかであるように、実施例1~37のアクリル樹脂についてはイオンマイグレーションが発生していないのに対して、比較例1~5のアクリル樹脂についてはイオンマイグレーションが発生している。この結果は、イオンマイグレーションの発生の有無が、アクリル樹脂中のニトリル基の量によって決まることを意味している。
Claims (17)
- 繊維基材に樹脂組成物を含浸して形成されたプリプレグであって、
前記樹脂組成物は、アクリル樹脂を含有し、
前記樹脂組成物の硬化体のIRスペクトルにおいて、カルボニル基に由来する1730cm-1付近のピーク高さ(PCO)に対するニトリル基に由来する2240cm-1付近のピーク高さ(PCN)の比(PCN/PCO)が0.001以下であるプリプレグ。 - 前記アクリル樹脂が、式(1)で表される化合物として、エステル部分に炭素数5~10のシクロアルキル基を有するメタクリル酸エステル又はアクリル酸エステルを用いるものである、請求項2記載のプリプレグ。
- 前記炭素数5~10のシクロアルキル基が、シクロヘキシル基、ノルボルニル基、トリシクロデカニル基、イソボルニル基、及びアダマンチル基からなる群から選ばれる少なくとも1種の基を含む、請求項2又は3記載のプリプレグ。
- 繊維基材に樹脂組成物を含浸して形成されたプリプレグであって、
前記樹脂組成物は、アクリル樹脂を含有し、
前記アクリル樹脂が、下記式(1)で表される化合物5~30質量部、官能基含有単量体0.5~30質量部、及び、これらの成分と共重合可能な単量体であってその構造中にニトリル基を持たない、その他の単量体40~94.5質量部を、総質量部が100質量部となるように含有する単量体混合物を重合してなるアクリル樹脂であるプリプレグ。
- 前記アクリル樹脂が、式(1)で表される化合物として、エステル部分に炭素数5~10のシクロアルキル基を有するメタクリル酸エステル又はアクリル酸エステルを用いるものである、請求項5記載のプリプレグ。
- 前記炭素数5~10のシクロアルキル基が、シクロヘキシル基、ノルボルニル基、トリシクロデカニル基、イソボルニル基、及びアダマンチル基からなる群から選ばれる少なくとも1種の基を含む、請求項6記載のプリプレグ。
- 前記その他の単量体が、アクリル酸エステル、メタクリル酸エステル、芳香族ビニル化合物、N-置換マレイミド類から選択されるものである、請求項5~7のいずれか一項に記載のプリプレグ。
- 前記アクリル樹脂の重量平均分子量(Mw)が50,000~1,500,000である、請求項1~8のいずれか一項に記載のプリプレグ。
- 前記官能基含有単量体が、分子内にカルボキシル基、ヒドロキシル基、酸無水物基、アミノ基、アミド基及びエポキシ基からなる群より選ばれる少なくとも1種の官能基を有する単量体である、請求項2~9のいずれか一項に記載のプリプレグ。
- 樹脂組成物を用いて形成されるB-ステージの樹脂膜を支持フィルム上に設けてなる樹脂付きフィルムであって、
前記樹脂組成物はアクリル樹脂を含有し、
前記樹脂組成物の硬化体のIRスペクトルにおいて、カルボニル基に由来する1730cm-1付近のピーク高さ(PCO)に対するニトリル基に由来する2240cm-1付近のピーク高さ(PCN)の比(PCN/PCO)が0.001以下である樹脂付きフィルム。 - 樹脂組成物を用いて形成されるB-ステージの樹脂膜を支持フィルム上に設けてなる樹脂付きフィルムであって、
前記樹脂組成物は、アクリル樹脂を含有し、
前記アクリル樹脂が、下記式(1)で表される化合物5~30質量部、官能基含有単量体0.5~30質量部、及び、これらの成分と共重合可能な単量体であってその構造中にニトリル基を持たない、その他の単量体40~94.5質量部を、総質量部が100質量部となるように含有する単量体混合物を重合してなるアクリル樹脂である樹脂付きフィルム。
- 樹脂組成物を用いて形成される樹脂層と、該樹脂層の少なくとも一方面上に設けられた金属箔と、を備える樹脂付き金属箔であって、
前記樹脂組成物はアクリル樹脂を含有し、
前記樹脂組成物の硬化体のIRスペクトルにおいて、カルボニル基に由来する1730cm-1付近のピーク高さ(PCO)に対するニトリル基に由来する2240cm-1付近のピーク高さ(PCN)の比(PCN/PCO)が0.001以下である樹脂付き金属箔。 - 樹脂組成物を用いて形成される樹脂層と、該樹脂層の少なくとも一方面上に設けられた金属箔と、を備える樹脂付き金属箔であって、
前記樹脂組成物は、アクリル樹脂を含有し、
前記アクリル樹脂が、下記式(1)で表される化合物5~30質量部、官能基含有単量体0.5~30質量部、及び、これらの成分と共重合可能な単量体であってその構造中にニトリル基を持たない、その他の単量体40~94.5質量部を、総質量部が100質量部となるように含有する単量体混合物を重合してなるアクリル樹脂である樹脂付き金属箔。
- 繊維基材が樹脂硬化体に埋設されてなる基板と、該基板の少なくとも一方面上に設けられた金属箔と、を備える金属箔張積層板であって、
前記樹脂硬化体が、アクリル樹脂を含有する樹脂組成物を硬化して形成されており、
前記樹脂組成物の硬化体のIRスペクトルにおいて、カルボニル基に由来する1730cm-1付近のピーク高さ(PCO)に対するニトリル基に由来する2240cm-1付近のピーク高さ(PCN)の比(PCN/PCO)が0.001以下である金属箔張積層板。 - 繊維基材が樹脂硬化体に埋設されてなる基板と、該基板の少なくとも一方面上に設けられた金属箔と、を備える金属箔張積層板であって、
前記樹脂硬化体が、アクリル樹脂を含有する樹脂組成物を硬化して形成されており、
前記アクリル樹脂が、下記式(1)で表される化合物5~30質量部、官能基含有単量体0.5~30質量部、及び、これらの成分と共重合可能な単量体であってその構造中にニトリル基を持たない、その他の単量体40~94.5質量部を、総質量部が100質量部となるように含有する単量体混合物を重合してなるアクリル樹脂である金属箔張積層板。
- 請求項1~10のいずれか一項に記載のプリプレグ、請求項11~12のいずれか一項に記載の樹脂付きフィルム、請求項13~14のいずれか一項に記載の樹脂付き金属箔、及び請求項15~16のいずれか一項に記載の金属箔張積層板の少なくともいずれかを用いてなるプリント配線板。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080005573.3A CN102300909B (zh) | 2009-01-28 | 2010-01-28 | 预浸料坯、带有树脂的膜、带有树脂的金属箔、覆金属箔层叠板及印制电路板 |
US13/145,840 US20110272185A1 (en) | 2009-01-28 | 2010-01-28 | Pregreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board |
KR1020117017683A KR101297040B1 (ko) | 2009-01-28 | 2010-01-28 | 프리프레그, 수지 부착 필름, 수지 부착 금속박, 금속박장 적층판 및 인쇄 배선판 |
US15/831,667 US10251265B2 (en) | 2009-01-28 | 2017-12-05 | Pregreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009017332 | 2009-01-28 | ||
JP2009-017332 | 2009-01-28 | ||
JP2009-144561 | 2009-06-17 | ||
JP2009144561 | 2009-06-17 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/145,840 A-371-Of-International US20110272185A1 (en) | 2009-01-28 | 2010-01-28 | Pregreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board |
US15/831,667 Division US10251265B2 (en) | 2009-01-28 | 2017-12-05 | Pregreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010087402A1 true WO2010087402A1 (ja) | 2010-08-05 |
Family
ID=42395660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051140 WO2010087402A1 (ja) | 2009-01-28 | 2010-01-28 | プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属箔張積層板及びプリント配線板 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20110272185A1 (ja) |
JP (2) | JP5921800B2 (ja) |
KR (1) | KR101297040B1 (ja) |
CN (1) | CN102300909B (ja) |
WO (1) | WO2010087402A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104280967A (zh) * | 2014-10-31 | 2015-01-14 | 京东方科技集团股份有限公司 | 阵列基板及其制造方法、显示面板和显示装置 |
WO2016147817A1 (ja) * | 2015-03-19 | 2016-09-22 | 三菱瓦斯化学株式会社 | ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法 |
US9894761B2 (en) * | 2015-06-12 | 2018-02-13 | Panasonic Intellectual Property Management Co., Ltd. | Prepreg, metal-clad laminated plate and printed wiring board |
JP6972651B2 (ja) * | 2016-05-13 | 2021-11-24 | 昭和電工マテリアルズ株式会社 | 樹脂組成物、プリプレグ、樹脂付き金属箔、積層板及びプリント配線板 |
EP3456779B1 (en) | 2016-05-13 | 2023-03-01 | Showa Denko Materials Co., Ltd. | Prepreg, metal foil with resin, laminate and printed wiring board |
KR102326454B1 (ko) | 2017-03-07 | 2021-11-17 | 삼성디스플레이 주식회사 | 전자 장치 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006274099A (ja) * | 2005-03-30 | 2006-10-12 | Kaneka Corp | プリプレグ用硬化性組成物及びそれを硬化させてなるプリプレグ |
JP2007191675A (ja) * | 2005-05-26 | 2007-08-02 | Hitachi Chem Co Ltd | 硬化性樹脂組成物、プリプレグ、金属張積層板、封止材、感光性フィルム、レジストパターンの形成方法、及び、プリント配線板 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3238168A (en) * | 1962-05-21 | 1966-03-01 | Staley Mfg Co A E | Copolymers of alkyl half esters of itaconic acid and aqueous solutions thereof |
US4020209A (en) * | 1973-05-04 | 1977-04-26 | E. I. Du Pont De Nemours And Company | Coated fabrics and laminated articles therefrom |
US3932932A (en) * | 1974-09-16 | 1976-01-20 | International Telephone And Telegraph Corporation | Method of making multilayer printed circuit board |
JPH08283535A (ja) | 1995-04-14 | 1996-10-29 | Toshiba Chem Corp | フレキシブル印刷回路板用接着剤組成物 |
EP1085968B1 (en) * | 1998-06-08 | 2003-05-14 | Complastik Corporation | Composite articles including prepregs, preforms, laminates and sandwich moldings, and methods of making the same |
JP2001207020A (ja) * | 2000-01-28 | 2001-07-31 | Hitachi Chem Co Ltd | 配線板用エポキシ樹脂組成物、配線板用プリプレグ及びそれを用いた金属箔張積層板 |
JP2002134907A (ja) | 2000-10-30 | 2002-05-10 | Toray Ind Inc | フレキシブルプリント配線板用銅張積層板およびフレキシブルプリント配線板 |
JP3811120B2 (ja) | 2002-11-08 | 2006-08-16 | 株式会社巴川製紙所 | 半導体装置用接着テープ |
JP2004263135A (ja) * | 2003-03-04 | 2004-09-24 | Mitsubishi Rayon Co Ltd | (メタ)アクリル系樹脂組成物、樹脂成形品並びに樹脂成形品の製造方法 |
TW200510501A (en) * | 2003-09-10 | 2005-03-16 | Sumitomo Chemical Co | Acrylic resin composition |
JP2006152260A (ja) * | 2004-10-26 | 2006-06-15 | Hitachi Chem Co Ltd | 複合体、これを用いたプリプレグ、金属箔張積層板及び多層印刷配線板並びに多層印刷配線板の製造方法 |
JP2006219664A (ja) * | 2005-01-13 | 2006-08-24 | Hitachi Chem Co Ltd | 硬化性樹脂組成物、プリプレグ、基板、金属箔張積層板、樹脂付金属箔及びプリント配線板 |
JP4634856B2 (ja) * | 2005-05-12 | 2011-02-16 | 利昌工業株式会社 | 白色プリプレグ、白色積層板、及び金属箔張り白色積層板 |
KR101348757B1 (ko) * | 2006-02-03 | 2014-01-07 | 주식회사 동진쎄미켐 | 유기 절연막용 수지 조성물 및 그 제조 방법, 상기 수지조성물을 포함하는 표시판 |
JP5056099B2 (ja) * | 2006-04-07 | 2012-10-24 | 日立化成工業株式会社 | 硬化性樹脂組成物、樹脂含浸基材、プリプレグ、基板、接着層付金属箔及びプリント配線板 |
-
2010
- 2010-01-28 WO PCT/JP2010/051140 patent/WO2010087402A1/ja active Application Filing
- 2010-01-28 US US13/145,840 patent/US20110272185A1/en not_active Abandoned
- 2010-01-28 CN CN201080005573.3A patent/CN102300909B/zh active Active
- 2010-01-28 JP JP2010017057A patent/JP5921800B2/ja active Active
- 2010-01-28 KR KR1020117017683A patent/KR101297040B1/ko active IP Right Grant
-
2014
- 2014-09-01 JP JP2014177344A patent/JP5935845B2/ja active Active
-
2017
- 2017-12-05 US US15/831,667 patent/US10251265B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006274099A (ja) * | 2005-03-30 | 2006-10-12 | Kaneka Corp | プリプレグ用硬化性組成物及びそれを硬化させてなるプリプレグ |
JP2007191675A (ja) * | 2005-05-26 | 2007-08-02 | Hitachi Chem Co Ltd | 硬化性樹脂組成物、プリプレグ、金属張積層板、封止材、感光性フィルム、レジストパターンの形成方法、及び、プリント配線板 |
Also Published As
Publication number | Publication date |
---|---|
CN102300909A (zh) | 2011-12-28 |
KR20110110257A (ko) | 2011-10-06 |
US20180098425A1 (en) | 2018-04-05 |
JP2011021174A (ja) | 2011-02-03 |
US10251265B2 (en) | 2019-04-02 |
JP2014221923A (ja) | 2014-11-27 |
KR101297040B1 (ko) | 2013-08-14 |
US20110272185A1 (en) | 2011-11-10 |
JP5921800B2 (ja) | 2016-05-24 |
JP5935845B2 (ja) | 2016-06-15 |
CN102300909B (zh) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5935845B2 (ja) | プリプレグ | |
JP7287432B2 (ja) | 樹脂組成物、プリプレグ、樹脂付き金属箔、積層板、プリント配線板及び樹脂組成物の製造方法 | |
JP2007146121A (ja) | 粘弾性樹脂組成物、これを用いた金属箔張積層板、プリプレグ、樹脂付き金属箔及び樹脂フィルム。 | |
JP2007138152A (ja) | プリント配線板用樹脂組成物、プリプレグ、基板、金属箔張積層板、樹脂付金属箔及びプリント配線板 | |
JP2010209140A (ja) | プリプレグ、金属張り積層板及びプリント配線板 | |
JP2008007756A (ja) | 粘弾性樹脂組成物、プリプレグ、導体張積層板、樹脂付き金属箔及び樹脂フィルム | |
JP2009185170A (ja) | プリプレグ、金属張り積層板およびプリント配線板 | |
WO2017051510A1 (ja) | プリプレグ、金属張積層板、配線板、並びに、配線板材料の熱応力の測定方法 | |
WO2017195344A1 (ja) | プリプレグ、金属箔付きプリプレグ、積層板、金属張積層板及びプリント回路基板 | |
JP5699742B2 (ja) | リン含有アクリル樹脂及びその製造方法、アクリル樹脂組成物、樹脂フィルム、プリプレグ、樹脂付金属箔、金属箔張積層板、ならびにプリント配線板 | |
JP6451204B2 (ja) | 樹脂組成物、プリプレグ、樹脂付き金属箔、及びこれらを用いた積層板及びプリント配線板 | |
JP6972651B2 (ja) | 樹脂組成物、プリプレグ、樹脂付き金属箔、積層板及びプリント配線板 | |
JP2013035881A (ja) | 熱硬化性樹脂組成物、bステージ化した樹脂フィルム、金属箔、銅張板および多層ビルドアップ基板 | |
JP5056099B2 (ja) | 硬化性樹脂組成物、樹脂含浸基材、プリプレグ、基板、接着層付金属箔及びプリント配線板 | |
JP2008266513A (ja) | 硬化性樹脂組成物、プリプレグ、積層板、接着層付金属箔、フィルムシート及びこれらを使用したプリント配線板 | |
JP2001196714A (ja) | 回路基板およびその製造方法 | |
JP7070074B2 (ja) | 樹脂組成物、プリプレグ、樹脂付き金属箔、積層板及びプリント配線板 | |
JP2020023622A (ja) | 熱硬化性樹脂組成物、プリプレグ、樹脂付き金属箔、積層体、プリント配線板及び半導体パッケージ | |
TW202126741A (zh) | 預浸體、附有金屬箔之預浸體、積層板、覆金屬積層板及印刷電路基板 | |
TW201739828A (zh) | 預浸體、附有金屬箔之預浸體、積層板、覆金屬積層板及印刷電路基板 | |
JP2008108955A (ja) | 配線板材料、樹脂含浸基材、プリプレグ、樹脂付き金属箔、積層板及びプリント回路板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080005573.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10735867 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117017683 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10735867 Country of ref document: EP Kind code of ref document: A1 |