WO2010087063A1 - ポリオレフィン系樹脂組成物 - Google Patents
ポリオレフィン系樹脂組成物 Download PDFInfo
- Publication number
- WO2010087063A1 WO2010087063A1 PCT/JP2009/069327 JP2009069327W WO2010087063A1 WO 2010087063 A1 WO2010087063 A1 WO 2010087063A1 JP 2009069327 W JP2009069327 W JP 2009069327W WO 2010087063 A1 WO2010087063 A1 WO 2010087063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyolefin resin
- resin composition
- group
- polymerization
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/20—Carboxylic acid amides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/524—Esters of phosphorous acids, e.g. of H3PO3
- C08K5/526—Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/544—Silicon-containing compounds containing nitrogen
- C08K5/5455—Silicon-containing compounds containing nitrogen containing at least one group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
Definitions
- the present invention relates to a polyolefin-based resin composition, and more specifically, a specific phenol-based antioxidant masked with an organoaluminum compound and a phosphorus-based antioxidant before or during polymerization of an olefin-based monomer.
- the present invention relates to a polyolefin resin composition stabilized by adding to a catalyst system or a polymerization system and polymerizing.
- Polyolefins such as polyethylene have poor stability to heat and light, and are easily oxidized / degraded at the stage of use that is exposed to high temperature molding and heat and light, and the life required for plastic products cannot be obtained. is there. Therefore, stabilizers such as phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, hydroxylamine compounds, hindered amine compounds, UV absorbers, and acid scavengers are added to prevent oxidation / deterioration. It is generally done. As described above, various stabilizers are selected and blended depending on the use, and the practical use is being promoted. Further, the gel generated during the resin molding process may cause problems in the appearance of the final product and functional problems such as adhesiveness, and suppression of the generation is also required.
- stabilizers such as phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, hydroxylamine compounds, hindered amine compounds, UV absorbers, and acid scavengers are added to prevent oxidation / deterioration. It is generally
- a stabilizer As a method of adding a stabilizer to a polyolefin, a polyolefin resin obtained by polymerizing an olefin monomer and a stabilizer are mixed, melted and kneaded by a processing molding machine such as an extruder, and the stabilizer is dispersed in the polyolefin resin. And a method of adding a stabilizer before or during the polymerization of the olefinic monomer.
- the method of blending a polyolefin resin and a stabilizer by melt-kneading has a problem that a stabilizer must be added more than necessary in order to cope with poor dispersion of the stabilizer itself in the polyolefin resin.
- Patent Document 1 discloses a production method in which ⁇ -olefin is polymerized in the presence of a phosphorus antioxidant. Yes. Compared with a mixture of an antioxidant and a polymer obtained by polymerizing an ⁇ -olefin without using a phosphorus-based antioxidant, an ⁇ -olefin polymerized in the presence of a phosphorus-based antioxidant. It is shown that a better stabilization effect can be obtained.
- Patent Document 2 discloses that a polymer having excellent color retention in contact with water can be obtained without inhibiting the polymerization of olefins by using a specific phosphorus-based antioxidant during polymerization. Yes.
- Patent Document 3 has an ester bond such as tetrakis (3- (3,5-ditert-butyl-4-hydroxyphenyl) propionyloxymethyl) methane, which is a stabilizer generally used for polyolefins. It is disclosed that phenolic antioxidants are not suitable for addition before polymerization because they reduce the catalytic activity of the polymerization catalyst.
- Patent Document 4 a phenolic antioxidant masked with an organoaluminum compound is added before or during polymerization of a monomer having an ethylenically unsaturated bond, and a stabilizing polymer is obtained.
- a method of manufacturing is described.
- JP-A-63-92613 JP-A-8-208731 Japanese Patent Laid-Open No. 5-271355 JP 2006-52241 A JP 2006-282985 A
- the addition of the stabilizer before or during the polymerization of the olefin monomer provides the advantage that the process of blending the stabilizer by melt kneading after the polymerization can be obtained, but the catalyst activity of the polymerization catalyst is reduced, Since the polyolefin resin is colored by the interaction between the stabilizer and the catalyst metal, there is a problem that the selection and management of the polymerization conditions become complicated.
- Patent Document 4 and Patent Document 5 no specific study has been made on the blending amounts of phenolic antioxidants and phosphorus antioxidants and the effects thereof, and when a polyolefin resin is molded. There was no description about suppressing the generated gel.
- the objective of this invention is providing the polyolefin resin composition excellent in the stabilization effect and cost performance.
- Another object of the present invention is to provide a stabilized polyolefin resin composition that suppresses the generation of gel.
- the present inventors have found that a stabilizer is required by combining a specific phenolic antioxidant and a phosphorus antioxidant at the time of polymerization of an olefin monomer.
- the inventors have found that the above object can be achieved by suppressing the amount and suppressing the gel generated during the molding process, and have completed the present invention.
- the polyolefin resin composition of the present invention has the following general formula (I), (Wherein R is an alkyl group having 1 to 30 carbon atoms which may have a branched and / or cycloalkyl group, an alkylene group having 2 to 30 carbon atoms, or a carbon atom which may have a substituent)
- 0.001 to 0.5 parts by mass of the phenolic antioxidant represented by the general formula (I) and 0.001 to 3 parts by mass of a phosphorus antioxidant are added to 100 parts by mass of the olefin monomer. It is
- the olefin monomer is preferably ethylene, and R in the general formula (I) is an alkyl group having 12 to 24 carbon atoms which may have a branch.
- the phosphorus antioxidant is preferably tris (2,4-ditert-butylphenyl) phosphite, and the organoaluminum compound is preferably trialkylaluminum.
- the olefin monomer polymerization catalyst is preferably a transition metal catalyst, and the olefin monomer polymerization catalyst is preferably a Ziegler-Natta catalyst.
- the polyelephine-based resin composition of the present invention is extruded using a single-screw extruder so that the weight-average molecular weight of the polyolefin-based resin after extrusion at 280 ° C. according to JIS K 6921-2 is extruded. It is preferably 50% or more of the weight average molecular weight of the previous polyolefin resin, and when the film is formed by pressing for 5 minutes at 230 ° C. under a load of 11 MPa using a press machine, 1 cm 2 of the film It is preferable that the number of occurrences of the per gel is 2 or less.
- the required amount of stabilizer can be greatly reduced, and a polyolefin resin composition excellent in stabilizing effect and cost performance can be provided. Moreover, generation
- production of a gel can be suppressed and the stabilized polyolefin resin composition can be provided.
- the phenolic antioxidant used in the present invention is a compound represented by the following general formula (I), and is 0.001 to 0.5 parts by mass, preferably 0 to 100 parts by mass of the olefinic monomer. 0.005 to 0.3 parts by mass are used.
- R is an alkyl group having 1 to 30 carbon atoms which may have a branched and / or cycloalkyl group, an alkenyl group having 2 to 30 carbon atoms, or a carbon atom which may have a substituent
- alkyl group having 1 to 30 carbon atoms which may have a branch and represented by R in the general formula (I) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Secondary butyl, tertiary butyl, isobutyl, pentyl, isopentyl, tertiary pentyl, hexyl, heptyl, n-octyl, isooctyl, tertiary octyl, nonyl, isononyl, decyl Group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group and the like.
- Phenol antioxidants with fewer than 12 carbon atoms in the alkyl group may easily volatilize, and if the alkyl group has more than 24 carbon atoms, the ratio of phenol to the molecular weight of the phenolic antioxidant will decrease. Therefore, the stabilization effect may be reduced.
- these alkyl groups may be interrupted by an oxygen atom, a sulfur atom, or the following aryl group, and a hydrogen atom in the alkyl group is, for example, a hydroxy group, a cyano group, an alkenyl group, an alkenyloxy group, etc.
- Chain aliphatic group pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, pyridine, pyridazine, pyrimidine, pyrazine, piperidine, piperazine, morpholine, 2H-pyran, 4H-pyran, phenyl Substituted with a cyclic aliphatic group such as biphenyl, triphenyl, naphthalene, anthracene, pyrrolidine, pyridin, indolizine, indole, isoindole, indazole, purine, quinolidine, quinoline, isoquinoline, or cycloalkyl group There. These interruptions or substitutions may be combined.
- alkenyl group having 2 to 30 carbon atoms represented by R in the general formula (I) examples include alkenyl groups corresponding to the above alkyl groups such as vinyl group, propenyl group, butenyl group, hexenyl group and oleyl group. It may be either linear or branched, and the position of the double bond is not particularly limited.
- the alkenyl group may be interrupted by an oxygen atom, a sulfur atom, or the following aryl group, and the hydrogen atom in the alkenyl group is a chain fatty acid such as a hydroxy group, a cyano group, an alkenyl group, or an alkenyloxy group.
- Examples of the cycloalkyl group having 3 to 12 carbon atoms which may have a substituent represented by R in the general formula (I) include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
- a cyclooctyl group, a cyclononyl group, a cyclodecyl group, etc., and a hydrogen atom in the cycloalkyl group may be substituted with an alkyl group, an alkenyl group, an alkenyloxy group, a hydroxy group, or a cyano group, and the alkyl
- the group may be interrupted by an oxygen atom or a sulfur atom.
- Examples of the aryl group having 6 to 18 carbon atoms which may have a substituent represented by R in the general formula (I) include, for example, a phenyl group, a methylphenyl group, a butylphenyl group, and an octylphenyl group. 4-hydroxyphenyl group, 3,4,5-trimethoxyphenyl group, 4-tert-butylphenyl group, biphenyl group, naphthyl group, methylnaphthyl group, anthracenyl group, phenanthryl group, benzyl-phenylethyl group, 1- And phenyl-1-methylethyl group.
- a hydrogen atom in the aryl group may be substituted with an alkyl group, an alkenyl group, an alkenyloxy group, a hydroxy group, or a cyano group, and the alkyl group may be interrupted with an oxygen atom or a sulfur atom. Good.
- the present invention is not limited by the following compounds.
- the phenolic antioxidant masked with organoaluminum is obtained by replacing the hydrogen of the phenolic hydroxyl group of the phenolic antioxidant with an organoaluminum compound, such as hydrogen such as water, alcohol, and acid. It represents a phenolic antioxidant that has been masked so that it can be regenerated into phenol by treatment with a donor compound.
- organoaluminum compound such as hydrogen such as water, alcohol, and acid.
- organoaluminum compound such as hydrogen such as water, alcohol, and acid.
- organoaluminum compound such as hydrogen such as water, alcohol, and acid.
- organoaluminum compound such as hydrogen such as water, alcohol, and acid.
- organoaluminum compound such as hydrogen such as water, alcohol, and acid.
- organoaluminum compound such as hydrogen such as water, alcohol, and acid.
- organic aluminum which is usually present in a polymerization system using a polymerization catalyst of an olefin resin and does not inhibit the polymer
- the organoaluminum compound for example, alkylaluminum, alkylaluminum hydride and the like can be used, but alkylaluminum is preferable, and trialkylaluminum is particularly preferable, and specifically, trimethylaluminum, triethylaluminum, tri-n. -Propyl aluminum, triisobutyl aluminum, tri-n-hexyl aluminum, tri-n-octyl aluminum and the like. Any of the organoaluminum compounds can be used as a mixture. Moreover, the aluminoxane obtained by reaction of alkylaluminum or alkylaluminum hydride and water can be used similarly.
- the masking of the above-mentioned phenolic antioxidant is only required by mixing and stirring an organoaluminum compound such as trialkylaluminum and a phenolic antioxidant in an inert solvent.
- organoaluminum compound such as trialkylaluminum and a phenolic antioxidant
- it when the by-produced compound does not affect the polymer, it can be used as it is, but when the by-produced compound inhibits the polymerization, it is used after removing the compound by distillation under reduced pressure or the like. It is preferable.
- the inert solvent examples include aliphatic and aromatic hydrocarbon compounds.
- the aliphatic hydrocarbon compound examples include saturated hydrocarbon compounds such as n-pentane, n-hexane, n-heptane, n-octane, isooctane and purified kerosene, and cyclic saturated hydrocarbons such as cyclopentane, cyclohexane and cycloheptane.
- the aromatic hydrocarbon compound include compounds such as benzene, toluene, ethylbenzene, and xylene. Of these compounds, n-hexane or n-heptane is preferably used.
- the concentration of the trialkylaluminum salt in the inert solvent is preferably in the range of 0.001 to 0.5 mol / L, particularly preferably 0.01 to 0.1 mol / L.
- the phosphorus-based antioxidant used in the present invention may be any one that is generally used as an antioxidant for olefinic resins.
- (2,4-Ditert-butylphenyl) phosphite is preferred.
- Such a phosphorus-based antioxidant is, in a polyolefin resin composition obtained by polymerizing an olefin monomer, 0.001 to 3 parts by mass, preferably 0.001 to 3 parts by mass with respect to 100 parts by mass of the polyolefin resin. 0.5 parts by mass, more preferably 0.005 to 0.5 parts by mass is used.
- the method for adding the phosphorus-based antioxidant in the present invention is not particularly limited, but when added as a single powder or liquid, it is difficult to supply to the polymerization apparatus and the dispersion in the resulting polyolefin resin is not uniform. Therefore, it is preferable to add it as a slurry. In order to make a slurry, a slurry can be easily obtained by adding the above-mentioned phosphorus antioxidant to an inert solvent that does not affect the polymerization and stirring.
- Examples of the olefin monomer used in the present invention include ethylene, propylene, 1-butene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene and vinyl. And cycloalkane, styrene or derivatives thereof.
- Examples of the polymerization catalyst used in the present invention include compounds of Group 3 to 11 transition metals of the periodic table (for example, titanium, zirconium, hafnium, vanadium, iron, nickel, lead, platinum, yttrium, samarium, etc.).
- Typical examples include a Ziegler-Natta type catalyst comprising a titanium-containing solid transition metal component and an organometallic component, and a transition metal compound of Groups 4 to 6 of the periodic table having at least one cyclopentadienyl skeleton.
- a metallocene catalyst comprising a catalyst component can be mentioned.
- the polymerization of the olefin-based monomer needs to be performed in an inert gas atmosphere such as nitrogen, but may be performed in an inert solvent such as pentane, hexane, heptane, toluene, and xylene.
- an active hydrogen compound, a particulate carrier, an organoaluminum compound, an ion exchange layered compound, and an inorganic silicate may be added as long as polymerization is not inhibited.
- the polymerization of the olefin monomer is carried out by polymerizing the olefin monomer by a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, a polymerization method combining these, a single-stage polymerization method or a multi-stage polymerization method.
- the copolymer can be produced by copolymerizing ethylene and at least one olefin unit (excluding ethylene) selected from the group consisting of olefin units having 2 to 12 carbon atoms. Also, it can be produced without distinction between batch type and continuous type.
- the catalyst can be decomposed, for example by adding water (steam) or alcohol.
- the stabilized polyolefin resin composition of the present invention can further contain other ordinary additives as required.
- the polyolefin resin composition of the present invention is mixed with other additives in a blending amount according to the purpose, and melt-kneaded with a molding processing machine such as an extruder to granulate. And a molding method.
- additives include, for example, UV absorbers, hindered amine compounds, heavy metal deactivators, nucleating agents, flame retardants, metal soaps, hydrotalcite, fillers, lubricants, antistatic agents, pigments, dyes, plastics
- the phenolic antioxidant, phosphorus antioxidant, other phenolic antioxidant, and phosphorus antioxidant used in the present invention may be added to the polyolefin resin composition and molded. Good.
- ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
- 2-hydroxybenzophenones such as 2-; 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5 -Dicumylphenyl) benzotriazole, 2,2'-methylenebis (4- 3-octyl-6-benzotriazolylphenol), 2- (2-hydroxy-3-tert-butyl-5-carboxyphenyl) benzotriazole polyethylene glycol ester, 2- [2-hydroxy-3- (2-acryloyl) Oxyethyl) -5-methylphenyl] benzotriazole, 2- [2-hydroxy-3- (2-methacryloyloxyethyl) -5-
- hindered amine light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1 , 2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2,2, 6,6-Tetramethyl-4-piperidyl) di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl- -Piperidyl) -di (tridecyl) -1,
- nucleating agent examples include carboxylic acids such as sodium benzoate, aluminum 4-tert-butylbenzoate, sodium adipate and disodium bicyclo [2.2.1] heptane-2,3-dicarboxylate.
- Metal salts sodium bis (4-tert-butylphenyl) phosphate, sodium-2,2′-methylenebis (4,6-ditert-butylphenyl) phosphate and lithium-2,2′-methylenebis (4,6-di) Phosphoric acid ester metal salts such as tert-butylphenyl) phosphate, polyhydric alcohol derivatives such as dibenzylidene sorbitol, bis (methylbenzylidene) sorbitol, bis (p-ethylbenzylidene) sorbitol, and bis (dimethylbenzylidene) sorbitol, N, N ′, N ′′ -tris [2-methylcyclohexane Sil] -1,
- the flame retardant examples include aromatic phosphates such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-xylenyl phosphate, and resorcinol bis (diphenyl phosphate).
- aromatic phosphates such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-xylenyl phosphate, and resorcinol bis (diphenyl phosphate).
- Esters such as divinyl phenylphosphonate, diallyl phenylphosphonate and phenylphosphonic acid (1-butenyl), phenyl diphenylphosphinate, methyl diphenylphosphinate, 9,10-dihydro-9-oxa-10-phospha Phosphinic acid esters such as phenanthrene-10-oxide derivatives, phosphazene compounds such as bis (2-allylphenoxy) phosphazene and dicresyl phosphazene, melamine phosphate, melamine pyrophosphate, Melamine phosphate, melam polyphosphate, ammonium polyphosphate, phosphorus-containing vinylbenzyl compounds and phosphorus-based flame retardants such as red phosphorus, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, brominated bisphenol A type epoxy resin, bromine Phenol novolac epoxy resin, hexabromobenzene
- antioxidants examples include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, stearyl (3,5-ditert-butyl- 4-hydroxyphenyl) propionate, distearyl (3,5-ditert-butyl-4-hydroxybenzyl) phosphonate, tridecyl-3,5-ditert-butyl-4-hydroxybenzylthioacetate, thiodiethylenebis [(3 , 5-ditert-butyl-4-hydroxyphenyl) propionate], 4,4′-thiobis (6-tert-butyl-m-cresol), 2-octylthio-4,6-di (3,5-ditert Tributyl-4-hydroxyphenoxy) -s-triazine, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), bi [3,3-bis (4-hydroxy-3-tert-butylphen
- the use of the polyolefin resin composition obtained by the present invention is not particularly limited, and can be formed into a known extrusion molding, injection molding, hollow molding, blow, film, sheet, etc., for automobile parts, building materials, agriculture It can be used for materials, packaging materials, daily goods, toys and the like.
- the polyolefin-based resin composition used at this time has a weight-average molecular weight of the polyolefin-based resin after extrusion at 280 ° C. according to JIS K 6921-2 using a single screw extruder. Those having a weight average molecular weight of 50% or more of the previous polyolefin resin can be suitably used.
- a film is formed by pressing for 5 minutes under the conditions of 230 ° C. and a load of 11 MPa using a press machine, it is also preferable to use a film in which the number of gel occurrences per 1 cm 2 of the film is 2 or less. it can.
- Example 1 According to the following procedures ([1] Preparation of catalyst slurry, [2] Preparation of phenoxide solution, [3] Preparation of phosphite solution, [4] Polymerization of olefin monomer), a polyolefin resin composition was obtained.
- a catalyst slurry was prepared by adding heptane to the solid titanium catalyst component synthesized by the above production method so that the heptane slurry was 5 mg / mL.
- the inside of the autoclave was replaced with a propylene atmosphere, hydrogen (0.34 L; standard state conversion) was added, and prepolymerization (600 rpm) was performed at a propylene pressure of 0.098 MPa (G) at 50 ° C. for 5 minutes. Thereafter, a polymerization reaction was carried out at a propylene pressure of 0.59 MPa (G) and 70 ° C. for 1 hour. After purging the gas, 5 mL of ethanol was added to the reaction solution and stirred for 5 minutes to stop the polymerization reaction, followed by desolvation under reduced pressure, and then drying in vacuum at 40 ° C. for 10 hours to obtain a polyolefin resin composition Got.
- the resulting mixture was mixed with a polyolefin-based resin and granulated with a single-screw extruder (apparatus: Plastmill ⁇ manufactured by Toyo Seiki Seisakusho Co., Ltd., extrusion temperature: 230 ° C., screw rotation speed: 50 rpm) to obtain pellets.
- a single-screw extruder apparatus: Plastmill ⁇ manufactured by Toyo Seiki Seisakusho Co., Ltd., extrusion temperature: 230 ° C., screw rotation speed: 50 rpm
- the weight average molecular weight was determined by gel permeation chromatography (apparatus: GPC2000, manufactured by Waters, column: two Styragel HT6E and one Styragel HT2, manufactured by Waters, measurement temperature: 135 ° C., solvent: orthodichlorobenzene, concentration: 6 mg / 10 g).
- GPC2000 gel permeation chromatography
- column two Styragel HT6E and one Styragel HT2
- concentration concentration: 6 mg / 10 g.
- a phenolic antioxidant ⁇ 3- (3,5-ditert-butyl-4-hydroxyphenyl) -N-octadecylpropionamide> masked with an organoaluminum compound was used as an olefin monomer.
- a phosphorus antioxidant ⁇ Tris (2,4-ditertiarybutylphenyl) phosphite> added after polymerization of the olefin monomer a satisfactory stabilization effect of the polyolefin resin composition is It was not obtained.
- a phenolic antioxidant and a phosphorus antioxidant masked with an organoaluminum compound were added during the polymerization of the olefin monomer, an excellent stabilizing effect was obtained.
- the required amount of stabilizer can be reduced by combining a specific phenolic antioxidant masked with an organoaluminum compound and a phosphorus antioxidant and adding them before or during polymerization of the olefinic monomer. It was confirmed that a polyolefin-based resin composition excellent in stabilization effect and cost performance was obtained by being greatly reduced.
- Example 2 According to the following procedures ([1] Preparation of catalyst slurry, [2] Preparation of phenoxide solution, [3] Preparation of phosphite solution, [4] Ethylene polymerization), a polyethylene resin composition was obtained.
- the solid titanium catalyst component (Ziegler catalyst) was obtained by thoroughly washing with n-heptane until no free titanium compound was detected in the washing solution.
- a catalyst slurry was prepared by adding n-heptane as a heptane slurry to the solid titanium catalyst component synthesized by the above production method so that the titanium content was 0.16 mg / mL.
- Comparative Example 2-2 For 100 parts by mass of the polyethylene powder obtained in Comparative Example 2-1, 3- (3,5-ditert-butyl-4-hydroxyphenyl) -N-octadecylpropionamide and tris (2,4-ditert. Tributylphenyl) phosphite was added and mixed in an amount of 0.01 parts by mass.
- a film was prepared from the polyethylene resin composition obtained by the above method using a 50-ton heating and cooling press (manufactured by Toho Machinery Co., Ltd .; TBD-50-2).
- the pressing conditions are as follows: after heating the polyethylene resin composition on the press plate at a temperature 10 ° C. higher than the temperature to be pressed, degassing is performed twice, and then the temperature is lowered to 190 ° C. or 230 ° C. The film was pressed for 5 minutes under the condition of a load of 11 MPa to produce a film having a thickness of 150 ⁇ m.
- Comparative Example 2-1 a large amount of gel was generated in a film prepared by pressing a polyethylene powder not stabilized with an antioxidant with a press. Further, from Comparative Example 2-2, 100 parts by mass of polyethylene powder not stabilized with an antioxidant was added with a phenolic antioxidant and a phosphorus antioxidant masked with an organoaluminum compound in an amount of 0. The film prepared by mixing 01 parts by mass and produced by a press machine was not satisfactory because a large number of gels were generated. Further, from Comparative Example 2-3, a commercially available octadecyl-3- (3 ′, 5′-di-t-) was added to a polyethylene-based antioxidant not stabilized with an antioxidant.
- a phenolic antioxidant and a phosphorus antioxidant were added in an amount three times that of Example 2, and a film produced with a press machine was also used. Many gels were generated and were not satisfactory.
- the polyethylene resin composition of the present invention obtained by adding a phenolic antioxidant and a phosphorus antioxidant masked with an organoaluminum compound during the polymerization of ethylene significantly suppresses the generation of gel. did.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
(式中、Rは分岐および/またはシクロアルキル基を有してもよい炭素原子数1~30のアルキル基または炭素原子数2~30のアルキレン基、置換基を有してもよい炭素原子数3~12のシクロアルキル基、置換基を有してもよい炭素原子数6~18のアリール基を表す)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したもの、および、リン系酸化防止剤を、オレフィン系モノマーの重合前又は重合中に、触媒系又は重合系に添加して重合したポリオレフィン系樹脂を含有するポリオレフィン系樹脂組成物において、
前記オレフィン系モノマー100質量部に対し、前記一般式(I)で表されるフェノール系酸化防止剤を0.001~0.5質量部、リン系酸化防止剤を0.001~3質量部添加してなることを特徴とするものである。
本発明に用いられるフェノール系酸化防止剤は、下記一般式(I)で表される化合物であり、オレフィン系モノマー100質量部に対して、0.001~0.5質量部、好ましくは、0.005~0.3質量部となるように用いられる。
(式中、Rは分岐および/またはシクロアルキル基を有してもよい炭素原子数1~30のアルキル基または炭素原子数2~30のアルケニル基、置換基を有してもよい炭素原子数3~12のシクロアルキル基、置換基を有してもよい炭素原子数6~18のアリール基を表す)
下記の手順([1]触媒スラリーの調製、[2]フェノキシド溶液の調製、[3]ホスファイト溶液の調製、[4]オレフィン系モノマーの重合)に従い、ポリオレフィン系樹脂組成物を得た。
無水塩化マグネシウム4.76g(50mmol)、デカン25mL及び2-エチルへキシルアルコール23.4mL(150mmol)を加えて、130℃で2時間加熱反応を行い均一溶液とした後、さらに無水フタル酸1.11g(7.5mmol)を添加し、130℃を維持しながら1時間撹拌して、無水フタル酸を該均一溶液に溶解させた。次に、均一溶液を室温に冷却し、-20℃に保持された四塩化チタン200mL(1.8mol)中に1時間にわたって全量滴下装入した。装入終了後、4時間かけて110℃まで昇温した。110℃に到達後、ジイソブチルフタレート2.68mL(12.5mmol)を加え、110℃を維持しながら2時間撹拌して反応させた。反応終了後、熱時ろ過にて残渣を採取し、該残渣を200mLの四塩化チタンにて再懸濁させた後、再び110℃まで加熱して2時間反応させた。反応終了後、再び熱時ろ過で残渣を採取し、110℃のデカン及びヘキサンにて、洗液中に遊離しているチタン化合物が検出されなくなるまで充分に洗浄して固体チタン触媒成分を得た。この固体チタン触媒成分の一部を乾燥して触媒組成を分析したところ、チタン3.1質量%、塩素56.0質量%、マグネシウム17.0質量%及びイソブチルフタレート20.9質量%であった。以上の製造方法にて合成された固体チタン触媒成分に、ヘプタンスラリーとして5mg/mLとなるようにヘプタンを加えて触媒スラリーを調製した。
窒素置換したフラスコに、3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)-N-オクタデシルプロピオンアミド(1.03g,1.94mmol)及び、乾燥ヘプタン65.5mLを加えた。撹拌しながら、トリエチルアルミニウム/ヘプタン溶液3.0mL(1mol/L)を滴下し、フェノキシド溶液を調製した。
窒素置換したフラスコに、トリス(2,4-ジ第三ブチルフェニル)ホスファイト0.9g(1.4mmol)及び乾燥ヘプタン30mLを加えて、ホスファイト溶液を調製した。
窒素置換したオートクレーブに、乾燥ヘプタン600mL及びトリエチルアルミニウム/ヘプタン溶液2.2mL(1mol/L)を加えた。さらに、上記[2]で調製したフェノキシド溶液1.4mL、上記[3]で調製したホスファイト溶液0.7mL、乾燥ヘプタン100mLにジシクロペンチルジメトキシシラン1.2g(5.3mmol)を撹拌して溶解させたヘプタン溶液4.1mL、及び上記[1]で調製した触媒スラリー4.0mLを順次加えた。オートクレーブ内をプロピレン雰囲気に置換し、水素(0.34L;標準状態換算)を入れ、プロピレン圧0.098MPa(G)、50℃で5分間プレ重合(600rpm)を行った。その後、プロピレン圧0.59MPa(G)、70℃で1時間重合反応を行った。気体をパージ後、反応液にエタノール5mLを加え5分間撹拌して重合反応を停止させた後、減圧脱溶媒を行い、次いで、真空中、40℃で10時間乾燥して、ポリオレフィン系樹脂組成物を得た。
上記実施例1の[4]オレフィン系モノマーの重合において、ホスファイト溶液0.7mLを用いなかった以外は、実施例1の[4]と同様に実施して、ポリオレフィン系樹脂を重合した。次に、トリス(2,4-ジ第三ブチルフェニル)ホスファイトが100ppmになるように、ポリオレフィン系樹脂と混合し、単軸押出機(装置:株式会社東洋精機製作所製プラストミルμ、押出温度:230℃、スクリュー回転速度:50rpm)で造粒してペレットを得た。
上記実施例1の[4]オレフィン系モノマーの重合において、フェノキシド溶液1.4mL及びホスファイト溶液0.7mLを用いなかった以外は、実施例1の[4]と同様に実施して、ポリオレフィン系樹脂組成物を重合した。次に、トリス(2,4-ジ第三ブチルフェニル)ホスファイト及びテトラキス〔メチレン-3-(3,5-ジ第三ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタンを各々500ppmずつ、得られたポリオレフィン系樹脂と混合し、単軸押出機(装置:株式会社東洋精機製作所製プラストミルμ、押出温度:230℃、スクリュー回転速度:50rpm)で造粒してペレットを得た。
上記の方法で得られたポリオレフィン系樹脂組成物またはペレットを単軸押出機(装置:株式会社東洋精機製作所製プラストミルμ、押出温度:280℃、スクリュー回転速度:50rpm)による造粒を5回繰返して実施し、造粒の回数毎にポリオレフィン系樹脂の重量平均分子量を測定して、ポリオレフィン系樹脂の安定化効果を評価した。重量平均分子量は、ゲルパーミエーションクロマトグラフ(装置:ウォーターズ社製GPC2000型、カラム:ウォーターズ社製Styragel HT6E 2本とStyragel HT2 1本、測定温度:135℃、溶媒:オルトジクロロベンゼン、濃度:6mg/10g)により測定した。尚、比較例1及び参考例1のポリオレフィン系樹脂組成物は、すでに1回押出加工をしているので、実施例1のポリオレフィン樹脂組成物と単軸押出機による押出回数が同数となるように評価した。
2)化合物2:トリス(2,4-ジ第三ブチルフェニル)ホスファイト
3)比較化合物:テトラキス〔メチレン-3-(3,5-ジ第三ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン
下記の手順([1]触媒スラリーの調製、[2]フェノキシド溶液の調製、[3]ホスファイト溶液の調製、[4]エチレン重合)に従い、ポリエチレン樹脂組成物を得た。
窒素置換したフラスコに、ジエトキシマグネシウム31.2g(273mmol)、トリブトキシチタニウムクロライド41.2g(136mmol)及びn-ブタノール10.1gを加えて、150℃で6時間加熱反応を行い均一溶液とした後、室温に冷却して、n-ヘプタン200mLを加えた。次いで、40℃に昇温して、エチルアルミニウムセスキクロライド20.6g(82.6mmol)を滴下し、1時間撹拌して反応させた。
反応終了後、n-ヘプタンにて、洗浄液中に遊離しているチタン化合物が検出されなくなるまで十分に洗浄して、固体チタン触媒成分(チーグラー触媒)を得た。以上の製造方法にて合成した固体チタン触媒成分に、ヘプタンスラリーとして、チタン含有量が0.16mg/mLとなるようにn-ヘプタンを加えて触媒スラリーを調製した。
窒素置換したフラスコに、3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)-N-オクタデシルプロピオンアミド1.03g(1.94mmol)及び、乾燥ヘプタン65.5mLを加え、撹拌しながら、トリエチルアルミニウム/n-ヘプタン溶液3.0mL(1mol/L)を滴下し、フェノキシド溶液を調製した。
窒素置換したフラスコに、トリス(2,4-ジ第三ブチルフェニル)ホスファイト0.50g(0.77mmol)及び乾燥ヘプタン20mLを加えて、撹拌し、ホスファイト溶液を調製した。
窒素置換したオートクレーブに、乾燥ヘプタン600mL及びトリエチルアルミニウム/n-ヘプタン溶液2.94mL(1mol/L)を加えた。さらに、上記[2]で調製したフェノキシド溶液0.50mL、上記[3]で調製したホスファイト溶液0.22mL、及び上記[1]で調製した触媒スラリー4.0mLを順次加えた。オートクレーブ内をエチレンで窒素をパージした後、エチレン圧0.098MPa(G)、50℃で5分間プレ重合(600rpm)を行った。その後、水素圧0.23MPa(G)、エチレン圧0.36MPa(G)の条件で、30分かけて80℃に昇温し、圧力を維持したまま75分間重合反応を行った(600rpm)。気体をパージ後、反応液にエタノール5mLを加え5分間撹拌して重合反応を停止させた後、減圧脱溶媒を行い、次いで、真空中、40℃で10時間乾燥して、パウダー状のポリエチレン樹脂組成物を得た。
上記実施例2の[4]エチレンの重合において、フェノキシド溶液0.50mL及びホスファイト溶液0.22mLを用いなかった以外は、実施例2の[4]と同様に重合し、ポリエチレンパウダーを得た。
上記比較例2-1で得たポリエチレンパウダー100質量部に対して、3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)-N-オクタデシルプロピオンアミド及びトリス(2,4-ジ第三ブチルフェニル)ホスファイトを、それぞれ0.01質量部ずつ加えて混合した。
上記比較例2-1で得たポリエチレンパウダー100質量部に対して、オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート及び、トリス(2,4-ジ第三ブチルフェニル)ホスファイトを、それぞれ0.03質量部ずつ加えて混合した。
上記の方法で得られたポリエチレン樹脂組成物を、50トン加熱冷却式プレス(東邦マシナリー株式会社製;TBD-50-2)を用いてフィルムを作成した。プレス条件は、余熱として、プレスする温度よりも10℃高い温度で、ポリエチレン樹脂組成物をプレス板に置いて加熱し、ガス抜きを二回行った後、温度を190℃又は230℃に下げて、荷重11MPaの条件で、5分間プレスし、厚みが150μmのフィルムを作製した。得られたフィルムに対し、縞見ルーペ(カートン光学株式会社製R412;倍率7倍、19mmΦ)を用いて、1平方センチメートルあたりのゲルの個数を測定した。測定は任意の地点で9回行い、その平均値を算出した。これらの結果について下記表2に示す。
2)化合物A:トリス(2,4-ジ第三ブチルフェニル)ホスファイト
4)比較化合物:オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート
Claims (9)
- 下記一般式(I)、
(式中、Rは分岐および/またはシクロアルキル基を有してもよい炭素原子数1~30のアルキル基または炭素原子数2~30のアルキレン基、置換基を有してもよい炭素原子数3~12のシクロアルキル基、置換基を有してもよい炭素原子数6~18のアリール基を表す)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したもの、および、リン系酸化防止剤を、オレフィン系モノマーの重合前又は重合中に、触媒系又は重合系に添加して重合したポリオレフィン系樹脂を含有するポリオレフィン系樹脂組成物において、
前記オレフィン系モノマー100質量部に対し、前記一般式(I)で表されるフェノール系酸化防止剤を0.001~0.5質量部、リン系酸化防止剤を0.001~3質量部添加してなることを特徴とするポリオレフィン系樹脂組成物。 - 前記オレフィン系モノマーがエチレンである請求項1記載のポリオレフィン系樹脂組成物。
- 前記一般式(I)中のRが、分岐を有してもよい炭素原子数12~24のアルキル基である請求項1記載のポリオレフィン系樹脂組成物。
- 前記リン系酸化防止剤が、トリス(2,4-ジ第三ブチルフェニル)ホスファイトである請求項1記載のポリオレフィン系樹脂組成物。
- 前記有機アルミニウム化合物が、トリアルキルアルミニウムである請求項1記載のポリオレフィン系樹脂組成物。
- 前記オレフィン系モノマーの重合触媒が、遷移金属触媒である請求項1記載のポリオレフィン系樹脂組成物。
- 前記オレフィン系モノマーの重合触媒が、チーグラー・ナッタ型触媒である請求項6記載のポリオレフィン系樹脂組成物。
- 単軸押出機を用いて、JIS K 6921-2に準じ280℃で押出加工を行った後のポリオレフィン系樹脂の重量平均分子量が、押出加工をする前のポリオレフィン系樹脂の重量平均分子量の50%以上である請求項1記載のポリオレフィン系樹脂組成物。
- プレス機を用いて、230℃、荷重11MPaの条件で5分間プレスしてフィルム成形したとき、該フィルムの1cm2あたりのゲルの発生箇所数が2個以下である請求項1記載のポリオレフィン系樹脂組成物。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801556765A CN102300918A (zh) | 2009-01-28 | 2009-11-13 | 聚烯烃系树脂组合物 |
US13/146,511 US20120022212A1 (en) | 2009-01-28 | 2009-11-13 | Polyolefin resin composition |
EP09839252.5A EP2392615B1 (en) | 2009-01-28 | 2009-11-13 | Polyolefin resin composition |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-017163 | 2009-01-28 | ||
JP2009017163 | 2009-01-28 | ||
JP2009-036346 | 2009-02-19 | ||
JP2009036346 | 2009-02-19 | ||
JP2009254466A JP2010215892A (ja) | 2009-01-28 | 2009-11-05 | ポリオレフィン系樹脂組成物 |
JP2009-254466 | 2009-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010087063A1 true WO2010087063A1 (ja) | 2010-08-05 |
Family
ID=42395330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/069327 WO2010087063A1 (ja) | 2009-01-28 | 2009-11-13 | ポリオレフィン系樹脂組成物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120022212A1 (ja) |
EP (1) | EP2392615B1 (ja) |
JP (1) | JP2010215892A (ja) |
KR (1) | KR20110107865A (ja) |
CN (1) | CN102300918A (ja) |
TW (1) | TW201035201A (ja) |
WO (1) | WO2010087063A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012032908A1 (ja) * | 2010-09-10 | 2012-03-15 | 株式会社Adeka | 安定化ポリマーの製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130237114A1 (en) * | 2010-11-16 | 2013-09-12 | Adeka Corporation | Method for stabilizing polymer for long term, method for producing nonwoven fabric, and method for producing elastomer composition |
JP5808906B2 (ja) * | 2010-11-25 | 2015-11-10 | 株式会社Adeka | ポリマーの製造方法 |
JP5734826B2 (ja) * | 2011-12-20 | 2015-06-17 | 株式会社Adeka | オレフィン樹脂組成物の製造方法 |
KR101850984B1 (ko) | 2015-06-15 | 2018-04-20 | 주식회사 엘지화학 | 섬유 제조용 폴리올레핀 및 이를 포함하는 섬유 |
JP6909594B2 (ja) | 2017-03-03 | 2021-07-28 | 株式会社Adeka | 安定化されたオレフィン系樹脂組成物の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006282985A (ja) * | 2005-03-11 | 2006-10-19 | Adeka Corp | 安定化されたポリマーの製造方法 |
JP2007009078A (ja) * | 2005-06-30 | 2007-01-18 | Fujifilm Holdings Corp | ポリオレフィン樹脂組成物及びそのゲル発生抑制方法、並びに画像記録材料用支持体及びその製造方法 |
WO2009147967A1 (ja) * | 2008-06-05 | 2009-12-10 | 株式会社Adeka | アルミニウムフェノキシド化合物及び該化合物を用いた安定化ポリマーの製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3126079B2 (ja) * | 1992-12-25 | 2001-01-22 | 三菱製紙株式会社 | 樹脂被覆紙 |
-
2009
- 2009-11-05 JP JP2009254466A patent/JP2010215892A/ja active Pending
- 2009-11-13 US US13/146,511 patent/US20120022212A1/en not_active Abandoned
- 2009-11-13 EP EP09839252.5A patent/EP2392615B1/en not_active Not-in-force
- 2009-11-13 CN CN2009801556765A patent/CN102300918A/zh active Pending
- 2009-11-13 KR KR1020117019863A patent/KR20110107865A/ko not_active Application Discontinuation
- 2009-11-13 WO PCT/JP2009/069327 patent/WO2010087063A1/ja active Application Filing
- 2009-12-18 TW TW098143665A patent/TW201035201A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006282985A (ja) * | 2005-03-11 | 2006-10-19 | Adeka Corp | 安定化されたポリマーの製造方法 |
JP2007009078A (ja) * | 2005-06-30 | 2007-01-18 | Fujifilm Holdings Corp | ポリオレフィン樹脂組成物及びそのゲル発生抑制方法、並びに画像記録材料用支持体及びその製造方法 |
WO2009147967A1 (ja) * | 2008-06-05 | 2009-12-10 | 株式会社Adeka | アルミニウムフェノキシド化合物及び該化合物を用いた安定化ポリマーの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2392615A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012032908A1 (ja) * | 2010-09-10 | 2012-03-15 | 株式会社Adeka | 安定化ポリマーの製造方法 |
US9447200B2 (en) | 2010-09-10 | 2016-09-20 | Adeka Corporation | Method for producing stabilized polymer |
Also Published As
Publication number | Publication date |
---|---|
EP2392615A1 (en) | 2011-12-07 |
EP2392615A4 (en) | 2014-05-21 |
KR20110107865A (ko) | 2011-10-04 |
JP2010215892A (ja) | 2010-09-30 |
CN102300918A (zh) | 2011-12-28 |
EP2392615B1 (en) | 2016-12-21 |
TW201035201A (en) | 2010-10-01 |
US20120022212A1 (en) | 2012-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2474561B1 (en) | Method for recycling of phenolic antioxidant agent, process for production of olefin polymer, polyolefin powder, and fibers | |
EP2615118B1 (en) | Method for producing stabilized polymer | |
JP5596327B2 (ja) | 食品・医療・水道用パイプ用途のポリオレフィン系樹脂組成物 | |
WO2010087063A1 (ja) | ポリオレフィン系樹脂組成物 | |
JP5808885B2 (ja) | オレフィン重合体の製造方法 | |
JP6579955B2 (ja) | 安定化されたポリマーの製造方法 | |
JP6909594B2 (ja) | 安定化されたオレフィン系樹脂組成物の製造方法 | |
JP2011052178A (ja) | 安定化されたオレフィン重合体の製造方法 | |
JP6905820B2 (ja) | 安定剤組成物および安定化された重合体の製造方法 | |
JP2011074294A (ja) | ポリオレフィンパウダー及びそれを用いて得られる繊維 | |
JP2013199551A (ja) | 家電材料用及び自動車内装材料用オレフィン樹脂組成物の製造方法 | |
JP2017226750A (ja) | 安定化された重合体の製造方法 | |
JP2017125116A (ja) | ポリエチレン樹脂組成物の製造方法 | |
JP2022085729A (ja) | オレフィン系樹脂組成物、その製造方法、およびその成形品 | |
JP5808906B2 (ja) | ポリマーの製造方法 | |
JP2011052176A (ja) | フェノール系酸化防止剤の再生方法およびオレフィン重合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980155676.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09839252 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13146511 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2009839252 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009839252 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1702/MUMNP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20117019863 Country of ref document: KR Kind code of ref document: A |