WO2010087015A1 - 神経再生誘導管 - Google Patents
神経再生誘導管 Download PDFInfo
- Publication number
- WO2010087015A1 WO2010087015A1 PCT/JP2009/051702 JP2009051702W WO2010087015A1 WO 2010087015 A1 WO2010087015 A1 WO 2010087015A1 JP 2009051702 W JP2009051702 W JP 2009051702W WO 2010087015 A1 WO2010087015 A1 WO 2010087015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- collagen
- nerve regeneration
- cells
- nerve
- sodium chloride
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/24—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/32—Materials or treatment for tissue regeneration for nerve reconstruction
Definitions
- the present invention relates to a nerve regeneration-inducing tube for reconnecting peripheral nerves cut or excised in an accident or surgery by utilizing the elongation of nerve cells. More specifically, the present invention uses collagen as a scaffold for nerve regeneration, which is used to fix the extending direction of a cut or excised nerve tissue and to join the cut sites without being disturbed by surrounding tissues. The present invention relates to a nerve regeneration induction tube.
- peripheral nerve damage due to accidents cannot be repaired.
- peripheral nerves have to be excised with general surgery.
- autologous nerve transplantation was the only measure other than direct anastomosis.
- the results were never satisfactory, the recovery of perception and motor ability was poor, and there were also sequelae due to erroneous control.
- patients who suffer from not only aftereffects such as pain and sensory deficits, but also abnormal perception of the affected area, particularly pain.
- Patent Document 1 discloses a nerve regeneration assisting material composed of a bundle of collagen fibers coated with laminin and fibronectin as a nerve regeneration tube composed of such a biodegradable polymer.
- Patent Document 2 is composed of a biodegradable absorbent material tube and a collagen body having a cavity penetrating the tube along the tube substantially parallel to the axis of the biodegradable absorbable material.
- An artificial neural tube filled with a matrix gel containing is disclosed.
- Patent Document 3 discloses a tube of biodegradable absorbable material and an artificial neural tube in which a collagen fiber bundle covered with laminin is inserted into the lumen of the tube substantially parallel to the axis of the tube.
- Patent Document 4 discloses a nerve reconstruction base material having a structure in which fibers made of a bioabsorbable material are bundled.
- Patent Document 5 discloses a support such as a sponge, tube, or coil made of collagen.
- Patent Document 6 discloses a support comprising a sponge-like fine matrix made of a biodegradable material or a bioabsorbable material, and a linear biological tissue guide route or organ guide route.
- Patent Document 7 discloses a nerve regeneration tube including a sponge made of a biodegradable polymer material and a reinforcing material made of a biodegradable polymer having a longer decomposition and absorption period than that of the sponge, the inner surface of which is made of a sponge. Yes.
- the present invention was devised in view of the current state of the prior art, and its purpose is to induce nerve regeneration using collagen excellent in nerve cell adhesion, cell proliferation and differentiation-inducing ability as a scaffold for nerve regeneration. To provide a tube.
- the sodium chloride content is 2.0% by weight or less, preferably 0.1 to 1.5% by weight in a dry state.
- the purification of collagen is performed by isoelectric precipitation at a pH of 6.0 or more and less than 10.0, and the nerve regeneration-inducing tube is formed on a tubular body made of a biodegradable polymer.
- the biodegradable polymer is selected from the group consisting of polyglycolic acid, polylactic acid, and lactic acid-caprolactone copolymer, and the tubular body has an inner diameter of 0.1. 20 mm, outer diameter 0.15 to 25 mm, and length 1.0 to 150 mm.
- the present invention uses a purified collagen in which the concentration of sodium chloride, which is inevitably mixed in the collagen production process, is reduced to 2% by weight or less, so that the adhesiveness, cell proliferation and differentiation inducing ability of nerve cells are achieved. It is possible to provide an excellent nerve regeneration induction tube.
- the nerve regeneration-inducing tube of the present invention is characterized by using collagen purified as a scaffold for nerve regeneration so that the concentration of sodium chloride mixed in the collagen production process is 2% by weight or less in a dry state.
- Collagen plays a role as a matrix for various cells, so it has a good affinity for tissues when applied to a living body as a medical material, and has been conventionally used as a scaffold for the growth of nerve cells.
- Conventional collagen used as a scaffold for nerve regeneration is generally made from pork skin collected and frozen at a meat inspection station, neutral protease is added to this, heated, and washed repeatedly with sodium chloride solution. After dehydration, wash with isopropanol and acetone, dry under reduced pressure to make a degreased chip, add this degreased chip into acetic acid solution, adjust pH with hydrochloric acid, add and decompose pepsin, sodium hydroxide solution Adjust to high pH (virus inactivation step 1), adjust to low pH with hydrochloric acid (virus inactivation step 2), adjust to pH 2-3 with sodium hydroxide and filter, add sodium chloride solution Salt out, concentrate by centrifugation, add / dissolve the concentrate in purified water, add sodium chloride solution again to salt out, concentrate by centrifugation, and freeze-dry. It is produced by.
- the sodium chloride concentration of the collagen used is 4% by weight, including a commercially available product. That was all.
- the present inventor considered that the concentration of sodium chloride in collagen affects the survival and growth of nerve cells, and if this concentration is too high, the cell membrane is destroyed by osmotic pressure. Therefore, when collagen purified so as to reduce the sodium chloride content was used in the nerve regeneration induction tube, this nerve regeneration induction tube exhibited extremely superior cell adhesion and cell proliferation than those using conventional collagen. I found out.
- the present invention was processed to reduce the concentration of sodium chloride in the dry state as a scaffold for nerve regeneration-inducing tubes to 2.0% by weight or less, preferably 0.1 to 1.5% by weight.
- This sodium chloride concentration is measured by atomic absorption photometry (ashing).
- the sodium chloride concentration should be low, but it is considered that the lower limit is about 0.1% by weight in terms of technical aspects and collagen stability.
- the treatment for reducing the salt concentration includes isoelectric point precipitation (concentration) as described later, and a method by dialysis, and any known method can be used in the present invention.
- the sodium chloride concentration is measured by atomic absorption spectrophotometry.
- Samples 1 to 4 g are placed in a quartz beaker, carbonized by gradually raising the temperature on an electric heater, and finally spent 6 to 8 hours in a muffle furnace. Ashing (500 ° C.), the residue is redissolved with a 10% by weight aqueous hydrochloric acid solution, diluted to a final concentration of 1% by weight, and measured by flame atomic absorption spectrometry using acetylene-air. The measurement wavelength at this time is 589.6 nm.
- the collagen used in the nerve regeneration-inducing tube of the present invention can be produced by any conventionally known method.
- the above-mentioned conventional collagen commercially available for medical use is used as a starting material, and this collagen is cooled at 2 to 10 ° C. Is dissolved in distilled water for injection, adjusted to pH 6.0 or more and less than 10.0 with sodium hydroxide solution, subjected to isoelectric precipitation, centrifuged, the supernatant discarded, and the precipitate freeze-dried Can be manufactured. It has been found that the use of such an isoelectric range collagen exhibits an extremely excellent cell differentiation inducing ability, and the present invention has finally been completed.
- collagen having an isoelectric point of pH 6.0 or more and less than 10.0 as a scaffold for nerve regeneration has not been elucidated in detail, but is less than pH 6.0 and 10 It is possible that factors that have a low affinity for cells are contained in the fraction that precipitates at 0.0 or more, and conversely, collagen that precipitates at pH 6.0 or more and less than 10.0 is particularly compatible with cells. It is possible that the property is high.
- unpurified collagen is composed of a type I collagen and a type III collagen in a ratio of approximately 7: 3, but the influence of the change in the composition ratio of the type I and type III is also considered.
- a more preferable isoelectric point range is pH 7.0 or more and 9.5 or less, and further preferably pH 8.0 or more and 9.0 or less.
- the nerve regeneration-inducing tube of the present invention can be produced according to a conventionally known method. For example, it is formed by coating a tubular body made of a biodegradable polymer with collagen and filling the inside of the tubular body with collagen. can do.
- the size of the tubular body is generally 0.1 to 20 mm in inner diameter, 0.15 to 25 mm in outer diameter, and 1.0 to 150 mm in length, although it depends on the part of the nerve to be regenerated and the required strength.
- biodegradable polymer constituting the tubular body examples include polyglycolic acid, polylactic acid, lactic acid-caprolactone polymer, glycolic acid-caprolactone copolymer, polydioxanone, glycolic acid-trimethylene carboxylic acid and the like. From the viewpoint of easy availability and handling, it is preferable to use polyglycolic acid, polylactic acid, lactic acid-caprolactone copolymer, particularly polyglycolic acid.
- a biodegradable polymer may be used independently and may be used in mixture of 2 or more types.
- tubular body a product obtained by molding the biodegradable polymer into a porous tubular body may be used, or a tubular body obtained by bundling a plurality of ultrafine fibers of the biodegradable polymer. It may be used. What is necessary is just to adjust suitably the pore diameter and porosity of a porous body or a stitch (mesh) according to the intended use and intensity
- the diameter of the ultrafine fiber made of a biodegradable polymer is preferably 1 to 50 ⁇ m. If the fiber diameter is too small, the fiber gap becomes dense, so that it is difficult for collagen to permeate or the flexibility of the tubular body may be reduced. On the other hand, if the fiber diameter is too large, the amount of collagen retained decreases, and the nerve growth rate may not increase or the strength of the tubular body may be insufficient. More preferably, the diameter of the ultrafine fiber is 3 to 40 ⁇ m, and more preferably 6 to 30 ⁇ m.
- the number of ultrafine fibers is 10 to 50, and more preferably 20 to 40.
- the pore size of the mesh is preferably about 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m.
- the proliferation of cells and tissues may be inhibited due to the invasion of capillaries and the decrease in water permeability. If it exceeds about 300 ⁇ m, the tissue may enter excessively and the growth of cells and tissues may be inhibited.
- the outer surface of the tubular body is covered by applying a collagen solution a plurality of times by a method known to those skilled in the art, and the inside (lumen) of the tubular body is filled with collagen.
- the collagen solution may contain laminin, heparan sulfate proteoglycan, entactin and growth factor.
- growth factors EGF (epidermal growth factor), ⁇ FGF (fibroblast growth factor), NGF (nerve growth factor), PDGF (platelet derived growth factor), IGF-1 (insulin-like growth factor), TGF- ⁇ ( Transforming growth factors).
- EGF epidermal growth factor
- ⁇ FGF fibroblast growth factor
- NGF nerve growth factor
- PDGF platelet derived growth factor
- IGF-1 insulin-like growth factor
- TGF- ⁇ Transforming growth factors
- the tubular body coated and filled with collagen is preferably subjected to freezing, lyophilization, and crosslinking treatment to crosslink the collagen.
- Freezing is preferably performed at ⁇ 10 to ⁇ 196 ° C., more preferably at ⁇ 20 to ⁇ 80 ° C. for 3 to 48 hours.
- the frozen collagen solution is lyophilized under vacuum at an initial temperature of ⁇ 40 to ⁇ 80 ° C. for about 12 to 48 hours.
- freeze-drying fine ice between collagen molecules is vaporized and the collagen sponge is refined.
- crosslinking method examples include ⁇ -ray crosslinking, ultraviolet crosslinking, electron beam crosslinking, thermal dehydration crosslinking, glutaraldehyde crosslinking, epoxy crosslinking, and water-soluble carbodiimide crosslinking, but it is easy to control the degree of crosslinking and perform crosslinking treatment.
- Thermal dehydration crosslinking that does not affect the living body is preferred.
- the thermal dehydration crosslinking treatment is performed under vacuum, for example, at a temperature of about 105 to 150 ° C., more preferably about 120 to 150 ° C., and even more preferably about 140 ° C., for example, about 6 to 24 hours, more preferably about 6 to 12 hours. More preferably, it is performed for about 12 hours. If the crosslinking temperature is too high, the strength of the biodegradable absorbent material may be reduced. Moreover, when the crosslinking temperature is too low, there is a possibility that sufficient crosslinking reaction does not occur.
- Measurement of sodium chloride concentration by atomic absorption spectrophotometry takes 1 to 4 g of sample in a quartz beaker, gradually raises the temperature on an electric heater and carbonizes it, and finally ashes in a muffle furnace over 6 to 8 hours. (500 ° C). The residue is redissolved in a 10% by weight aqueous hydrochloric acid solution, diluted to a final concentration of 1% by weight, and measured by flame atomic absorption spectrometry using acetylene-air. The measurement wavelength is 589.6 nm.
- Experiment 1 Collagen gel culture experiment Purpose of this experiment Normally, two-dimensional culture on the bottom of a well plate is fundamental in cell culture experiments. However, when three-dimensional culture is performed, it is said that the behavior of cells during two-dimensional culture is greatly different, and if the ability to regenerate nerves is evaluated, three-dimensional culture is considered to be a system that is closer to reality. . Therefore, the purpose of this experiment was to perform three-dimensional culture with a collagen gel and check whether the behavior of cultured cells differs depending on the type of collagen.
- Collagen used in this experiment (1) Collagen of Comparative Example “NMP Collagen PS” manufactured by Nippon Ham Co., Ltd. was used as collagen of Comparative Example.
- the collagen of this comparative example is produced by performing a degreasing process and a purification process using pig skin as a starting material, and the degreasing process includes a repeated washing step with a sodium chloride solution. Includes a salting-out step with sodium chloride.
- the collagen of this comparative example contained 4.0% by weight of sodium chloride in a dry state as measured by atomic absorption spectrophotometry (ashing).
- Collagen of the Invention Example A part of the collagen of the above Comparative Example was used as a starting material and purified by isoelectric precipitation at a pH of 8 or more and less than 9, to prepare a collagen of the invention example.
- This collagen of the present invention contained 1.0% by weight of sodium chloride in a dry state as measured by atomic absorption spectrophotometry (ashing).
- PC12 cells (cells derived from rat adrenal pheochromocytoma manufactured by Dainippon Pharmaceutical Laboratories) were cultured in DMEM medium in advance to passage number 6, and the cells were collected by centrifugation. The number of cells was adjusted to 1 ⁇ 10 6 cells in 15 ml of DMEM medium and suspended, and 15 ⁇ l of 50 ⁇ g / ml NGF (cell growth factor, manufactured by R & D systems Inc., phosphate buffer solution) was added to prepare a culture solution. .
- the DMEM medium is RPMI 1640 liquid medium (Dainippon Pharmaceutical Laboratory Products, glutamic acid-free and sodium bicarbonate included), 500 ml of fetal calf serum (Dainippon Pharmaceutical Laboratories), and horse serum (Dainippon Pharmaceutical Laboratories). ) 5 ml of 50 ml, 200 mM glutamine solution (manufactured by Dainippon Pharmaceutical Laboratory Products, 29.23 mg / ml) is added and mixed. (2) 300 ⁇ l of the prepared culture solution was dropped into wells of a collagen gel medium prepared in advance. (3) The well plate was cultured in an incubator (37 ° C., CO 2 concentration 5.0%) for 4 days.
- Experiment 2 Collagen coat adhesion experiment Purpose of this experiment In order to compare the cell adhesiveness of the collagen of the present invention and conventional collagen, the cells floating with an aspirator after culturing with both collagens are aspirated and removed, and only the cells that adhere to the plate are measured, The purpose was to confirm whether there was a significant difference in cell adhesion depending on the type of collagen by comparing the numbers.
- collagen coat (1) The collagen of the example of the present invention used in Experiment 1 and the collagen of the comparative example were diluted with hydrochloric acid so as to be 0.05% by weight, and each of 8 wells of a 24-well microplate (manufactured by IWAKI) 300 ⁇ l of these collagen solutions were added to the wells and allowed to stand in the refrigerator for 1 hour. (2) After standing for 1 hour, the collagen solution in each well was sucked with an aspirator, and the collagen coat adhering to the well was naturally dried in a clean bench for 1 hour.
- PC12 cells (cells derived from rat adrenal pheochromocytoma made by Dainippon Pharmaceutical Laboratories) were previously cultured in DMEM medium to passage number 6, and the cells were collected by centrifugation, The number of cells was adjusted to 5 ⁇ 10 6 cells in 25 ml of DMEM medium, suspended, and 25 ⁇ l of 50 ⁇ g / ml NGF (cell growth factor, manufactured by R & D systems Inc., phosphate buffer solution) was added to prepare a culture solution. . (2) 300 ⁇ l of the prepared culture solution was added to each well of a collagen-coated well plate prepared in advance. (3) The well plate was cultured in an incubator (37 ° C., CO 2 concentration 5.0%) for 5 days.
- PC12 cells (cells derived from rat adrenal pheochromocytoma made by Dainippon Pharmaceutical Laboratories) were previously cultured in DMEM medium to passage number 6, and the cells were collected by centrifugation, The number of cells was adjusted to 1 ⁇ 10 6 cells in 15 ml of DMEM medium and suspended, and 15 ⁇ l of 50 ⁇ g / ml NGF (cell growth factor, manufactured by R & D systems Inc., phosphate buffer solution) was added to prepare a culture solution. .
- NGF cell growth factor, manufactured by R & D systems Inc., phosphate buffer solution
- 300 ⁇ l of the prepared culture solution was dropped into each well of a collagen-coated well plate prepared in advance.
- the well plate was cultured in an incubator (37 ° C., CO 2 concentration 5.0%) for 5 days.
- Experiment 4 Cell differentiation evaluation experiment by neural crest cell culture using collagen having different isoelectric points. The purpose of this experiment was to investigate how much the difference in isoelectric point of collagen has on cell differentiation.
- Neural crest-derived pigment cells (Kurabo, Code No.KM-4009MP) were added to a special medium (Kurabo, Code No. M-254-500 + Code No. S-002-5) 3.75 ⁇ 10 It diluted so that it might become 4 cells / ml, and 500 microliters was seed
- the cells were cultured at 37 ° C. in a CO 2 concentration of 5.0% for 4 days.
- 500 ⁇ l of a special medium was newly added, and subsequently cultured at 37 ° C. in a CO 2 concentration of 5.0% for 3 days.
- 500 ⁇ l of a special medium was newly added and further cultured for 4 days at 37 ° C. in a CO 2 concentration of 5.0%, and then the degree of cell differentiation in each well was observed.
- the nerve regeneration-inducing tube of the present invention is extremely useful because it has excellent cell adhesiveness, cell proliferation ability, and cell differentiation-inducing ability, and thus is widely applied in nerve regeneration medicine.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
なお、原子吸光光度法による塩化ナトリウム濃度の測定は、試料1~4gを石英ビーカーにとり、電熱器上で徐々に温度を上げて炭化させた後、最終的にマッフル炉で6~8時間かけて灰化し(500℃)、残渣を10重量%塩酸水溶液で再溶解後、終濃度1重量%になるように希釈し、アセチレン-空気によるフレーム原子吸光法にて測定する。このときの測定波長は589.6nmである。
原子吸光光度法による塩化ナトリウム濃度の測定は、試料1~4gを石英ビーカーにとり、電熱器上で徐々に温度を上げて炭化させた後、最終的にマッフル炉で6~8時間かけて灰化する(500℃)。残渣を10重量%塩酸水溶液で再溶解後、終濃度1重量%になるように希釈し、アセチレン-空気によるフレーム原子吸光法にて測定する。なお、測定波長は589.6nmである。
1.本実験の目的
通常、細胞培養実験ではウェルプレート底面での二次元培養が基本である。しかし、三次元培養を行った場合は二次元培養時の細胞の挙動とは大きく異なると言われており、神経再生能を評価するならば三次元培養がより実際に近い系であると考えられる。そこで、本実験ではコラーゲンゲルで三次元培養を行い、コラーゲンの種類によって培養細胞の挙動が異なるかどうかを確認することを目的とした。
(1)比較例のコラーゲン
日本ハム(株)製の「NMPコラーゲンPS」を比較例のコラーゲンとして使用した。この比較例のコラーゲンは、豚皮を出発原料として脱脂処理及び精製処理を行うことにより製造されたものであり、脱脂処理には塩化ナトリウム溶液での繰り返しの洗浄工程が含まれており、精製処理には塩化ナトリウムによる塩析工程が含まれている。この比較例のコラーゲンは、原子吸光光度法(灰化)により測定すると、乾燥状態で4.0重量%の塩化ナトリウムを含有していた。
(2)本発明例のコラーゲン
上記の比較例のコラーゲンの一部を出発原料として利用し、これをpH8以上9未満の等電点沈殿により精製して本発明例のコラーゲンを調製した。この本発明例のコラーゲンは、原子吸光光度法(灰化)により測定すると、乾燥状態で1.0重量%の塩化ナトリウムを含有していた。
上記で準備した2種類のコラーゲンをそれぞれ常法に従って塩酸に溶解させ、0.5重量%コラーゲン-塩酸溶液を調製した。このうち、本発明例のコラーゲン溶液を24ウェルマイクロプレート(IWAKI製)の8個のウェルに300μlずつ加え、比較例のコラーゲン溶液を同じプレートの別の8個のウェルに300μlずつ加えた。その後、プレートをインキュベーター内で37℃で30分間静置した。
(1)PC12細胞(大日本製薬ラボラトリープロダクツ製のラット副腎褐色細胞腫由来の細胞)をDMEM培地で予め継代数6まで培養しておき、遠心分離で細胞を回収後、DMEM培地15mlに1×106個となるように細胞数を調整して懸濁し、50μg/mlNGF(細胞増殖因子、R&D systems Inc.製、リン酸緩衝溶液)を15μl加えて培養液を調製した。
なお、DMEM培地とは、RPMI 1640液体培地(大日本製薬ラボラトリープロダクツ製、グルタミン酸不含有、重曹含有)500mlにウシ胎児血清(大日本製薬ラボラトリープロダクツ製)25ml、ウマ血清(大日本製薬ラボラトリープロダクツ製)50ml、200mMグルタミン液(大日本製薬ラボラトリープロダクツ製、29.23mg/ml)5mlを添加して混合したものである。
(2)調製した培養液を予め作成したコラーゲンゲル培地のウェルに300μlずつ滴下した。
(3)ウェルプレートをインキュベーター内(37℃、CO2濃度5.0%)で4日間培養した。
4日間の培養後、コラーゲンゲル内の細胞の様子を顕微鏡で観察し、代表例を写真撮影した。その結果を図1及び図2に示す。
(1)4日間培養後の生存細胞数を測定するため、ウェルに1重量%コラーゲナーゼ溶液を50μlずつ滴下し、ウェルごと軽く攪拌しながら37℃、30分間でコラーゲンゲルを溶解させた。
(2)コラーゲンゲル溶解後、MTTアッセイ溶液を各ウェルに50μl加え、インキュベーター内で30分間静置した。
(3)30分間静置後、450nmでの吸光度を測定し、各コラーゲンゲルについて8個のウェルでの吸光度の値から平均値及び標準偏差を求め、図3にグラフとして表した。なお、図3のグラフでは本発明例のコラーゲンの吸光度は比較例のコラーゲンゲルの平均吸光度を100とした相対値として表されている。また、吸光度は生存細胞数と正比例する。
(1)細胞の様子の観察
図1及び図2の対比から明らかなように、本発明例のコラーゲンを使用した培養(図1)では比較例のコラーゲンを使用した培養(図2)より細胞が良く増殖しており、神経突起の伸長も著しい。
(2)生存細胞数の測定
図3から明らかなように、本発明例のコラーゲンを使用した培養の吸光度は比較例のコラーゲンを使用した培養の吸光度より平均39%高く、この差は統計学的にも有意な差であった(p<0.01)。従って、図3の結果から、本発明例のコラーゲンは比較例のコラーゲンより有意に高い細胞増殖能を有することがわかる。
(3)以上の結果から、本発明例のコラーゲンは比較例の従来のコラーゲンより細胞増殖能及び分化誘導能において優れているといえる。
1.本実験の目的
本発明例のコラーゲンと従来のコラーゲンの細胞接着性の比較を行うため、両コラーゲンでの培養後にアスピレーターで浮遊する細胞を吸引、除去し、プレートに接着する細胞のみを測定し、その数を比較することによりコラーゲンの種類によって細胞の接着性に有意な差があるかどうかを確認することを目的とした。
(1)実験1で使用した本発明例のコラーゲンと比較例のコラーゲンを0.05重量%になるように塩酸で希釈し、24ウェルマイクロプレート(IWAKI製)のそれぞれ8個のウェルにこれらのコラーゲン溶液を300μlずつ入れ、1時間冷蔵庫に静置した。
(2)1時間静置後、各ウェルのコラーゲン溶液をアスピレーターで吸引し、ウェルに付着しているコラーゲンコートをクリーンベンチ内で1時間自然乾燥させた。
(1)PC12細胞(大日本製薬ラボラトリープロダクツ製のラット副腎褐色細胞腫由来の細胞)をDMEM培地で予め継代数6まで培養しておき、遠心分離で細胞を回収後、DMEM培地25mlに5×106個となるように細胞数を調整して懸濁し、50μg/mlNGF(細胞増殖因子、R&D systems Inc.製、リン酸緩衝溶液)を25μl加えて培養液を調製した。
(2)予め作成していたコラーゲンコートウェルプレートの各ウェルに、調製した培養液を300μlずつ入れた。
(3)ウェルプレートをインキュベーター内(37℃、CO2濃度5.0%)で5日間培養した。
(1)浮遊細胞及びきちんと接着していない細胞を取り除くため、ウェルプレートを85度に傾けながら、培地をすべて吸引した。このとき、接着細胞を吸引しないように注意した。
(2)その後、DMEM培地300μlとMTTアッセイ溶液30μlを各ウェルに加え、インキュベーター内で30分静置した。
(3)30分静置後、450nmでの吸光度を測定し、各コラーゲンコートについて8個のウェルでの吸光度の値から平均値及び標準偏差を求め、図4にグラフとして表した。なお、図4のグラフでは本発明例のコラーゲンコートの吸光度は比較例のコラーゲンコートの平均吸光度を100とした相対値として表されている。
図4から明らかなように、本発明例のコラーゲンコートの接着細胞数を表す吸光度は比較例のコラーゲンコートの吸光度より平均で49%高く、この差は統計学的にも有意な差であった(0.01<p<0.05)。再生医療における足場の細胞接着性は非常に重要な要素であり、図4の結果から、本発明のコラーゲンは従来のコラーゲンに比べて神経再生の足場として用いるのに好適であることがわかる。
1.本実験の目的
コラーゲン中の塩化ナトリウム含有濃度の違いが細胞の生存および増殖にどれくらい影響があるかを調べることを目的とした。
(1)実験1で使用した本発明例のコラーゲン、これに塩化ナトリウムを加えて塩化ナトリウム濃度を5重量%、10重量%に調整したもの、実験1で使用した比較例のコラーゲン、これに塩化ナトリウムを加えて塩化ナトリウム濃度を5重量%、10重量%に調整したものを用意した(図5のコラーゲンコート1~6参照)。各コラーゲンを0.01重量%塩酸溶液になるように調整し、24ウェルマイクロプレート(IWAKI製)を2枚使って、各コラーゲンを4個のウェルに300μlずつ滴下し、1時間冷蔵庫に静置した。
(2)1時間静置後、各ウェルのコラーゲン溶液をアスピレーターで吸引し、ウェルに付着しているコラーゲンコートをクリーンベンチ内で1時間自然乾燥させた。
(1)PC12細胞(大日本製薬ラボラトリープロダクツ製のラット副腎褐色細胞腫由
来の細胞)をDMEM培地で予め継代数6まで培養しておき、遠心分離で細胞を回収後、DMEM培地15mlに1×106個となるように細胞数を調整して懸濁し、50μg/mlNGF(細胞増殖因子、R&D systems Inc.製、リン酸緩衝溶液)を15μl加えて培養液を調製した。
(2)調製した培養液を、予め作成したコラーゲンコートウェルプレートの各ウェルに300μlずつ滴下した。
(3)ウェルプレートをインキュベーター内(37℃、CO2濃度5.0%)で5日間培養した。
(1)MTTアッセイ溶液を各ウェルに30μlずつ加え、インキュベーター内で30分静置した。
(2)30分静置後、450nmでの吸光度を測定し、各コラーゲンコートについて8個のウェルでの吸光度の値から平均値及び標準偏差を求め、図6、7にグラフとして表した。なお、図6、7のグラフでは本発明例のコラーゲンコートの吸光度は比較例のコラーゲンコートの平均吸光度を100とした相対値として表されている。
図6及び7から明らかなように、吸光度はコラーゲンの塩化ナトリウム濃度が低いほど大きくなる傾向があり、本発明例のコラーゲン(コラーゲンコート1(塩化ナトリウム濃度1重量%))を使用した培養の吸光度は、比較例のコラーゲン(コラーゲンコート6(塩化ナトリウム濃度10重量%))を使用した培養の吸光度より平均で27%高く、この差は統計学的にも有意な差であった(p<0.01)。図6及び7の結果から、塩化ナトリウム濃度が低い本発明例のコラーゲンは比較例のコラーゲンに比べ細胞増殖能において優れていることがわかる。
1.本実験の目的
コラーゲンの等電点の違いが細胞分化にどの程度の影響があるかを調べることを目的とした。
(1)6gのNMPコラーゲンPSにMilliQ水を加え、Total1000mlの0.6重量%コラーゲン溶液を調製した。
(2)氷上で1~3日攪拌し、コラーゲンを水に完全溶解させた。
(3)1N NaOHを滴下し、pH5.5の状態で沈殿を含むコラーゲン溶液200mlを別容器に回収した。
(4)1N NaOHの滴下を続け、同様にpH8.5の状態、及びpH10.2の状態で各々200mlを別容器に回収した。
(5)得られた3つのサンプルを遠沈管に移し、3,000rpmで45分間遠心分離を行なった。
(6)各遠沈管の上清を廃棄し、沈殿を-40℃で終夜凍結後、凍結乾燥機で2日間処理した。
(7)前記得られたサンプルを順に、サンプル1(pH5.5)、サンプル2(pH8.5)、サンプル3(pH10.2)とした。
なお、各コラーゲンサンプルにおいて、塩化ナトリウム濃度は1.2重量%であった。
(1)前記サンプル1、2、3の各300mgに0.001M HClを加え、Total 10mlの0.3重量%コラーゲン溶液を調製した。
(2)Voltexで混合した後、4℃で終夜放置しコラーゲンを完全溶解させた。
(3)0.3重量%濃度の各サンプル1mlに0.001M HCl9mlを加えよく混合し、0.03重量%コラーゲン溶液を調製した。
(4)24ウェルマイクロプレート(IWAKI製)の各ウェルに、前記0.03重量%コラーゲン溶液を200μlずつ分注し、室温(20℃)で10分間放置した。
(5)コラーゲン溶液を吸引し、1ml PBS(-)を添加後吸引して洗浄、更に再度洗浄を繰り返した。
(6)そのままクリーンベンチ内に静置して乾燥させた。
(1)神経冠由来色素細胞(クラボウ製、Code No.KM-4009MP)を専用培地(クラボウ製、Code No.M-254-500+Code No.S-002-5)で3.75×104cells/mlになるよう希釈し、各ウェルに500μlずつ播種した。
(2)37℃、CO2濃度5.0%中にて4日間培養した。
(3)培地を吸引後、新たに専用培地を500μl添加し、引き続き37℃、CO2濃度5.0%中にて3日間培養した。
(4)培地を吸引後、新たに専用培地を500μl添加して、37℃、CO2濃度5.0%中にてさらに4日間培養した後、各ウェルの細胞分化の度合いを観察した。
図8~10から明らかなように、コラーゲンの等電点の違いにより細胞分化のレベルに顕著な差が見られ、サンプル2(pH8.5)において顕著に分化促進されていることが細胞形態の観察から確認できる。
さらに、図11、12より、生存する全細胞中における分化した細胞の割合を算出した場合、pH5.5、pH10.2に比べてpH8.5において細胞分化率(%)が高いことが確認できる。
細胞分化率(%)=分化した細胞数/生存する全細胞数
一般的に、コラーゲンは生体内では約2週間で代謝・吸収されることから鑑みて、培養11日後に40%以上の細胞分化率を有していれば、実際の神経再生の場において良好な結果が得られるものと考えられる。細胞分化率は50%以上がより好ましく、60%以上がさらに好ましく、70%以上がさらにより好ましい。
Claims (4)
- コラーゲンを神経再生の足場として使用する神経再生誘導管において、塩化ナトリウム含有濃度を乾燥状態で2.0重量%以下になるように処理したコラーゲンを使用することを特徴とする神経再生誘導管。
- 塩化ナトリウム含有濃度を乾燥状態で0.1~1.5重量%になるように処理したコラーゲンを使用することを特徴とする請求項1に記載の神経再生誘導管。
- コラーゲンがpH6.0以上、10.0未満の等電点沈殿により精製処理されたものであることを特徴とする請求項1又は2に記載の神経再生誘導管。
- 生分解性ポリマーからなる管状体にコラーゲンを被覆し、さらに管状体の内部にコラーゲンを充填して形成されることを特徴とする請求項1~3のいずれかに記載の神経再生誘導管。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980158621XA CN102387821B (zh) | 2009-02-02 | 2009-02-02 | 神经再生诱导管 |
PL09839205T PL2404622T3 (pl) | 2009-02-02 | 2009-02-02 | Rurka wywołująca regenerację nerwu |
EP15182940.5A EP2987508B1 (en) | 2009-02-02 | 2009-02-02 | Nerve regeneration-inducing tube |
US13/147,234 US8741328B2 (en) | 2009-02-02 | 2009-02-02 | Nerve regeneration-inducing tube |
ES09839205.3T ES2555978T3 (es) | 2009-02-02 | 2009-02-02 | Tubo inductor de la regeneración nerviosa |
JP2009512087A JP4572996B2 (ja) | 2009-02-02 | 2009-02-02 | 神経再生誘導管 |
PCT/JP2009/051702 WO2010087015A1 (ja) | 2009-02-02 | 2009-02-02 | 神経再生誘導管 |
EP09839205.3A EP2404622B1 (en) | 2009-02-02 | 2009-02-02 | Nerve regeneration-inducing tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/051702 WO2010087015A1 (ja) | 2009-02-02 | 2009-02-02 | 神経再生誘導管 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010087015A1 true WO2010087015A1 (ja) | 2010-08-05 |
Family
ID=42395286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/051702 WO2010087015A1 (ja) | 2009-02-02 | 2009-02-02 | 神経再生誘導管 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8741328B2 (ja) |
EP (2) | EP2987508B1 (ja) |
JP (1) | JP4572996B2 (ja) |
CN (1) | CN102387821B (ja) |
ES (1) | ES2555978T3 (ja) |
PL (1) | PL2404622T3 (ja) |
WO (1) | WO2010087015A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3288626A4 (en) | 2015-04-27 | 2019-01-23 | Reflex Medical Inc. | SYSTEMS AND METHODS FOR SYMPATHETIC CARDIO-PULMONARY NEUROMODULATION |
WO2017139487A1 (en) | 2016-02-09 | 2017-08-17 | Northwind Medical, Inc. | Methods, agents, and devices for local neuromodulation of autonomic nerves |
EP3478287A4 (en) | 2016-06-29 | 2020-04-08 | Tulavi Therapeutics, Inc. | TREATMENT OF SEPTICEMIA AND ASSOCIATED INFLAMMATORY CONDITIONS BY LOCAL NEUROMODULATION OF THE AUTONOMOUS NERVOUS SYSTEM |
CA3105343A1 (en) | 2018-07-02 | 2020-01-09 | Corinne Bright | Methods and devices for in situ formed nerve cap |
US20210315587A1 (en) | 2018-07-02 | 2021-10-14 | Tulavi Therapeutics, Inc. | Methods and devices for in situ formed nerve cap with rapid release |
CN111956869B (zh) * | 2020-08-07 | 2024-03-08 | 中南大学湘雅医院 | 一种缓慢促进神经生长的泵 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05237139A (ja) | 1992-02-27 | 1993-09-17 | Nippon Ham Kk | 神経再生補助材及びその製造法 |
JPH08283666A (ja) * | 1995-04-07 | 1996-10-29 | Sumitomo Bakelite Co Ltd | コラーゲンゲルの処理方法 |
JPH08283667A (ja) * | 1995-04-14 | 1996-10-29 | Sumitomo Bakelite Co Ltd | コラーゲン賦形物およびその製造方法 |
WO1998022155A1 (fr) * | 1996-11-20 | 1998-05-28 | Tapic International Co., Ltd. | Canal rachidien artificiel |
WO1999063908A1 (fr) * | 1998-06-10 | 1999-12-16 | Tapic International Co., Ltd. | Tube neural artificiel |
JP2000325463A (ja) | 1999-05-18 | 2000-11-28 | Koken Co Ltd | 神経再建用基材 |
JP2001070436A (ja) | 1999-09-02 | 2001-03-21 | Koken Co Ltd | 生体管構造を形成するためのコラーゲン支持体 |
JP2002320630A (ja) | 2001-04-26 | 2002-11-05 | Nipro Corp | 生体組織または器官再生用器具 |
JP2003019196A (ja) | 2001-07-09 | 2003-01-21 | Gunze Ltd | 神経再生チューブ |
JP2005343853A (ja) * | 2004-06-04 | 2005-12-15 | Hokuyo Kk | 可溶性魚コラーゲン、その製造方法及びコラーゲン化粧料 |
WO2009017224A1 (ja) * | 2007-08-02 | 2009-02-05 | Toyo Boseki Kabushiki Kaisha | 神経再生誘導管 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0662679B2 (ja) * | 1985-06-21 | 1994-08-17 | 新田ゼラチン株式会社 | 組織親和性コラ−ゲンとその製法 |
US4863668A (en) * | 1988-09-22 | 1989-09-05 | University Of Utah | Method of forming fibrin-collagen nerve and body tissue repair material |
CA2241911A1 (en) | 1996-11-01 | 1998-05-14 | Genetics Institute, Inc. | Secreted proteins |
JP4968976B2 (ja) * | 1998-03-06 | 2012-07-04 | 慶彦 清水 | コラーゲン材及びその製法 |
CZ301649B6 (cs) * | 2000-06-28 | 2010-05-12 | Ed. Geistlich Soehne Ag Fur Chemische Industrie Incorporated Under The Laws Of Switzerland | Trubice pro regeneraci nervu a zpusob jejich výroby |
GB0030583D0 (en) * | 2000-12-15 | 2001-01-31 | Univ Nottingham | Nerve regeneration |
JP3966045B2 (ja) | 2002-04-03 | 2007-08-29 | ニプロ株式会社 | コラーゲン不織布、その製造方法、その処理方法および装置 |
JP4789284B2 (ja) * | 2002-10-30 | 2011-10-12 | 太田 耕二 | コラーゲン入り化粧品 |
EP1618856B1 (en) * | 2003-03-31 | 2011-06-08 | Teijin Limited | Composite of support substrate and collagen, and process for producing support substrate and composite |
JP2005143979A (ja) * | 2003-11-18 | 2005-06-09 | Gunze Ltd | 神経再生用チューブ |
JP4292094B2 (ja) * | 2004-02-24 | 2009-07-08 | グンゼ株式会社 | 神経再生チューブ |
CN1312179C (zh) * | 2004-09-23 | 2007-04-25 | 中国海洋大学 | 一种通过调节酸碱度使淡水鱼皮胶原蛋白改性的方法 |
CN1891179A (zh) * | 2005-07-01 | 2007-01-10 | 于海鹰 | 医用胶原蛋白神经管及其制造工艺 |
JP4765602B2 (ja) * | 2005-12-14 | 2011-09-07 | ニプロ株式会社 | 再生医療用器具の包装体及び再生医療用器具用の処理方法 |
JP2007261966A (ja) * | 2006-03-28 | 2007-10-11 | Fujifilm Corp | Iv型コラーゲンの製造方法 |
JP4596335B2 (ja) * | 2007-12-07 | 2010-12-08 | 東洋紡績株式会社 | 神経再生誘導管の製造方法 |
JP5702515B2 (ja) * | 2007-12-28 | 2015-04-15 | 東洋紡株式会社 | 神経再生誘導管 |
-
2009
- 2009-02-02 ES ES09839205.3T patent/ES2555978T3/es active Active
- 2009-02-02 JP JP2009512087A patent/JP4572996B2/ja active Active
- 2009-02-02 WO PCT/JP2009/051702 patent/WO2010087015A1/ja active Application Filing
- 2009-02-02 CN CN200980158621XA patent/CN102387821B/zh not_active Expired - Fee Related
- 2009-02-02 EP EP15182940.5A patent/EP2987508B1/en active Active
- 2009-02-02 EP EP09839205.3A patent/EP2404622B1/en active Active
- 2009-02-02 US US13/147,234 patent/US8741328B2/en active Active
- 2009-02-02 PL PL09839205T patent/PL2404622T3/pl unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05237139A (ja) | 1992-02-27 | 1993-09-17 | Nippon Ham Kk | 神経再生補助材及びその製造法 |
JPH08283666A (ja) * | 1995-04-07 | 1996-10-29 | Sumitomo Bakelite Co Ltd | コラーゲンゲルの処理方法 |
JPH08283667A (ja) * | 1995-04-14 | 1996-10-29 | Sumitomo Bakelite Co Ltd | コラーゲン賦形物およびその製造方法 |
WO1998022155A1 (fr) * | 1996-11-20 | 1998-05-28 | Tapic International Co., Ltd. | Canal rachidien artificiel |
WO1999063908A1 (fr) * | 1998-06-10 | 1999-12-16 | Tapic International Co., Ltd. | Tube neural artificiel |
JP2000325463A (ja) | 1999-05-18 | 2000-11-28 | Koken Co Ltd | 神経再建用基材 |
JP2001070436A (ja) | 1999-09-02 | 2001-03-21 | Koken Co Ltd | 生体管構造を形成するためのコラーゲン支持体 |
JP2002320630A (ja) | 2001-04-26 | 2002-11-05 | Nipro Corp | 生体組織または器官再生用器具 |
JP2003019196A (ja) | 2001-07-09 | 2003-01-21 | Gunze Ltd | 神経再生チューブ |
JP2005343853A (ja) * | 2004-06-04 | 2005-12-15 | Hokuyo Kk | 可溶性魚コラーゲン、その製造方法及びコラーゲン化粧料 |
WO2009017224A1 (ja) * | 2007-08-02 | 2009-02-05 | Toyo Boseki Kabushiki Kaisha | 神経再生誘導管 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2404622A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP4572996B2 (ja) | 2010-11-04 |
CN102387821A (zh) | 2012-03-21 |
EP2987508B1 (en) | 2019-07-03 |
EP2404622A1 (en) | 2012-01-11 |
EP2404622B1 (en) | 2015-12-02 |
JPWO2010087015A1 (ja) | 2012-07-26 |
EP2404622A4 (en) | 2013-01-23 |
EP2987508A1 (en) | 2016-02-24 |
US8741328B2 (en) | 2014-06-03 |
PL2404622T3 (pl) | 2016-06-30 |
ES2555978T3 (es) | 2016-01-12 |
US20110288569A1 (en) | 2011-11-24 |
CN102387821B (zh) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7871638B2 (en) | Composite material containing a calcium phosphate gradient | |
ES2610802T3 (es) | Biomaterial para sutura | |
JP5702515B2 (ja) | 神経再生誘導管 | |
JP4572996B2 (ja) | 神経再生誘導管 | |
EP2682135A1 (en) | Non-woven fabric containing bone prosthetic material | |
US20150023911A1 (en) | Device-based methods for localized delivery of cell-free carriers with stress-induced cellular factors | |
WO2010081408A1 (zh) | 一种生物活性组织再生膜及其制备方法 | |
JP6118905B2 (ja) | 心臓修復パッチの新しいスキャフォールド | |
JP7209377B2 (ja) | 組織工学医療デバイス | |
JP4893915B2 (ja) | 移植材料 | |
JP5454980B2 (ja) | 間葉系細胞増殖促進剤およびそれを含有する骨格系生体材料 | |
CN114558170A (zh) | 一种含生长因子颅骨修复聚醚醚酮材料及其制备方法 | |
JP6092091B2 (ja) | Bmp−2に対し親和性をもつペプチド | |
JP4626725B2 (ja) | 細胞培養用コラーゲン | |
EP3695856A1 (en) | Biomaterials comprising a scaffold containing a mineral compound, and uses thereof as bone substitutes | |
JP2002017847A (ja) | 細胞外マトリックス結合型生体融和材料およびその製造方法、細胞外マトリックス製剤およびその製造方法 | |
JP2009034374A (ja) | 神経再生誘導管 | |
KR101681886B1 (ko) | 지르코니아 결합능을 가지는 펩타이드 | |
JP2022552097A (ja) | 新規な多孔性スキャフォールドおよびその製造方法 | |
KR20160034557A (ko) | 골 재생을 유도하는 PLGA-Silk 하이브리드 구조체 제조 방법 | |
TWI403326B (zh) | 促進硬骨分化之方法及其組合物,以及硬骨植入物及其製造方法 | |
Chandy | Nerve tissue engineering on degradable scaffold | |
JP5229937B2 (ja) | 骨再生剤及び骨を再生する方法 | |
Yuan et al. | Injectable calcium phosphate cement integrated with BMSCs-encapsulated microcapsules for bone tissue regeneration | |
Pulat | Developing Peptide Modified Novel Bioactive Materials for Bone Tissue Engineering Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980158621.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009512087 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09839205 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13147234 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009839205 Country of ref document: EP |