WO2010086939A1 - パターンの重ね合わせ評価方法 - Google Patents
パターンの重ね合わせ評価方法 Download PDFInfo
- Publication number
- WO2010086939A1 WO2010086939A1 PCT/JP2009/006766 JP2009006766W WO2010086939A1 WO 2010086939 A1 WO2010086939 A1 WO 2010086939A1 JP 2009006766 W JP2009006766 W JP 2009006766W WO 2010086939 A1 WO2010086939 A1 WO 2010086939A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pattern
- evaluation
- overlay
- charged particle
- image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70633—Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/24—Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a method for evaluating overlay of fine patterns formed in the same region in different exposure steps.
- the overlay accuracy between the upper and lower layer patterns is an important evaluation item that affects the performance of semiconductor elements. ing.
- DP double patterning
- a double exposure technique which is one of the double patterning techniques, will be described with reference to FIG.
- a resist is applied on a lower layer film 1001 formed on a wafer (substrate) 1000 to form a first resist film 1002 (FIG. 10A), and this is exposed and developed to obtain a first time.
- a resist pattern 1002a is formed by exposure (FIG. 10B).
- the resist pattern 1002a is frozen and processed so as not to be exposed in the second exposure (FIG. 10C).
- a resist for the second exposure is applied thereon to form a second resist film 1003 (FIG.
- An object of the present invention is to provide an overlay evaluation method capable of evaluating the misalignment amount and the misalignment direction at an arbitrary position in an exposure shot.
- a pattern using the first pattern formed on the sample in the first exposure step and the second pattern formed on the sample in the second exposure step A method for evaluating overlay, the step of registering in a database information on a layout in which the first pattern and the second pattern are to be arranged, and the first pattern and the second pattern formed on the sample A step of acquiring an image of the pattern with a charged particle microscope, and comparing the layout information registered in the database with the image, and a shift amount and a shift between the first pattern and the second pattern
- a pattern overlay evaluation method characterized by comprising a step of obtaining a direction.
- FIG. 9 is an explanatory diagram of a layout information registration procedure when an arbitrary pattern on a wafer is set as an overlay evaluation pattern, where (a) is a layout registration flow, and (b) is a schematic diagram of an electron microscope image of an overlay evaluation target pattern.
- (C) is an evaluation target pattern region
- (d) is a contour line of the first pattern
- (e) is a contour line of the second pattern
- (f) is a first pattern and a second pattern arranged at ideal position coordinates.
- the outline of a pattern is shown. It is explanatory drawing of the layout information registration procedure in the case of automatically selecting the pattern suitable for overlay evaluation from design data, (a) is a layout registration flow, (b) is the overlay evaluation object selected from design data. Pattern (c) shows the design layout of the first pattern and the second pattern.
- FIG. 7 is an explanatory diagram of a layout information registration procedure when an overlay evaluation pattern with known layout information is created on a wafer, (a) is a layout registration flow, (b) is a first pattern suitable for overlay evaluation, The evaluation pattern area including the second pattern, (c) shows the design arrangement of the first pattern and the second pattern.
- FIG. 7 is an explanatory diagram of pattern deviation amount and deviation direction calculation, where (a) is a flow chart for calculating the deviation amount and deviation direction of a pattern, (b) is a schematic diagram of a scanning electron microscope image including a pattern to be evaluated, and (c) is a first diagram.
- FIG. 4D is a comparison diagram between the acquired image related to one pattern and the layout information, and FIG.
- FIG. 10 is an overall flowchart of a technique for simultaneously performing overlay evaluation and length measurement according to a third embodiment.
- FIG. 5A is a layout diagram of overlay evaluation patterns, where FIG. It is a top view which shows an example of the layout of the pattern for positioning, the pattern for automatic focusing, and a dimension evaluation pattern.
- FIG. 1A shows the configuration of a scanning electron microscope system having an overlay evaluation function according to this embodiment.
- the scanning electron microscope system according to the present embodiment includes a scanning electron microscope main body 10, an image processing / overall control unit 109, and a PC 110, and is connected to a data server 120 via a network.
- a scanning electron microscope (charged particle microscope) main body 10 includes an electron gun (charged particle generation source) 101, an acceleration electrode 103 that accelerates an electron beam (charged particle beam) 102 emitted from the electron gun 101, a focusing lens 104, an electron beam.
- a deflection electrode 105 that deflects the trajectory of the electron beam 102, an objective lens 106 that controls the focal position of the electron beam 102 so that the focal position where the electron beam 102 converges is located on the surface of the sample 107 on which the pattern is formed, and an electron beam 102
- the detector 108 detects a part of secondary electrons (signal from the sample) generated from the irradiated sample 107.
- the detection signal of the detector 108 is sent to the image processing / overall control unit 109 for processing, and a scanning electron microscope image is obtained.
- the scanning electron microscope image is processed by the arithmetic processing unit 112 in the PC 110 using information stored in the storage unit 111 in the PC 110, and information related to superposition is extracted.
- the result is sent to the data server 120 via the communication line and stored.
- the sample 107 is placed on a table (sample stage) 150, and the table 150 is controlled by the image processing / overall control unit 109 so that a desired region on the sample is positioned in the irradiation region of the electron beam 102.
- the PC 110 includes a storage unit 111, an arithmetic processing unit 112, and an input / output unit 113 including a display screen.
- FIG. 1B shows an overall flow of overlay evaluation performed by the arithmetic processing unit 110.
- S1 The scanning electron microscope main body 10 images the overlay evaluation pattern formed on the sample 107, and the image processing / overall control unit 109 processes a signal obtained by the imaging, and the scanning electron microscope Get an image.
- the purpose of this example is to calculate the pattern deviation amount and the rotational deviation angle in the X direction of FIG.
- the overlay evaluation pattern includes a pattern created in each process step to be evaluated in the region (evaluation pattern region) 202.
- both the pattern 203 hereinafter referred to as a first pattern
- the pattern 204 hereinafter referred to as a second pattern
- the first pattern 203 includes a pattern having a shape different from that of the second pattern 204.
- the overlay evaluation pattern includes a pattern other than a linear pattern that continues long in a direction parallel to any of the evaluated directions.
- the size of the pattern there is no limitation on the size of the pattern, but generally a pattern with a smaller line width and pitch has a smaller process margin and higher process management importance. For example, when a pattern is formed by a process with a minimum pitch of 90 nm. It is desirable that the patterns have the same pitch. In this case, in the overlay evaluation pattern as shown in FIG. 2A, the size of the pattern region 202 is approximately 400 nm square, and is reduced to a fraction of that of the conventional (several micrometers or more). It is possible.
- a pattern obtained by rotating the pattern shown in FIG. 2A by 90 degrees is used.
- a pattern including both the pattern shown in FIG. 2A and a pattern rotated by 90 degrees is used.
- the first exposure pattern in the double exposure process is the first pattern
- the second exposure pattern is the second pattern.
- the first pattern and the second pattern are the upper layer pattern and the lower layer pattern, respectively.
- a combination may be used.
- Information necessary for overlay evaluation includes the pattern shape, process step information for each part of the pattern (identification of the first pattern and the second pattern), an ideal positional relationship or distance between patterns created by each process step, and evaluation It is a position coordinate within the wafer and shot of the pattern.
- Layout information registration procedure A procedure for registering the layout information in the storage unit 111 of the scanning electron microscope system will be described. As a procedure, (1) when an arbitrary pattern on the wafer is set as an overlay evaluation pattern, (2) when a pattern suitable for overlay evaluation is automatically selected from the design data, (3) layout in advance Three cases in which an overlay evaluation pattern with known information is created on a wafer will be described.
- FIG. 3A shows a layout information registration flow when an arbitrary pattern on a wafer is set as an overlay evaluation pattern.
- S31 As shown in FIG. 3B, a scanning electron microscope image 301 including a pattern desired to be subjected to overlay evaluation is acquired. Since the imaging target is a resist pattern, an image is acquired under imaging conditions that consider both damage to the sample. For example, the acceleration voltage of primary electrons injected into the sample is 500V. In addition, since the size of the overlay evaluation pattern region is about 400 nm square, the imaging field of view is set to be larger than this, and the pattern outline is sharply acquired, so the pixel size is about 1 nm square. Take an image so that (S32): The evaluation target pattern area 302 is selected from the acquired image.
- the contour line extraction method is determined by the user using the input / output unit 113, and includes means for performing automatic extraction in the arithmetic processing unit 112.
- FIG. 4A shows a layout information registration flow when a pattern suitable for overlay evaluation is automatically selected from design data.
- S41 As shown in FIG. 4B, an evaluation pattern region 402 including a pattern suitable for overlay evaluation is automatically selected from design data 401 of a plurality of process steps to be evaluated.
- a pattern suitable for overlay evaluation is searched from a plurality of process step patterns to be evaluated in advance in a design data search area specified in advance. Details of the pattern suitable for overlay evaluation are as described in the above-mentioned section [Overlay evaluation pattern].
- search conditions such as an appropriate evaluation pattern size, the size of the evaluation pattern region, and a direction to be evaluated may be given.
- step S42 Design data of the overlay evaluation pattern selected in step S41 (including the first pattern outline 406, second pattern outline 407, position information of each pattern, etc.) (FIG. 4C) ) Is registered in the storage unit 111 for each process step pattern.
- the user may arbitrarily select from the design data instead of automatically selecting a pattern suitable for overlay evaluation.
- FIG. 5A shows a layout information registration flow in the case where an overlay evaluation pattern with known layout information is created on a wafer in advance.
- S51 As shown in FIG. 5B, an evaluation pattern region 502 including a first pattern 503 and a second pattern 504 suitable for overlay evaluation is created on the evaluation wafer for each process step. Details of the pattern suitable for overlay evaluation are as described in the above-mentioned section [Overlay evaluation pattern].
- S52 Design data of the overlay evaluation pattern created on the wafer in step S51 (including the first pattern outline 506, the second pattern outline 507, position information of each pattern, etc.) (FIG. 5 (c)) is registered in the storage unit 111 for each process step pattern.
- FIG. 6A shows a pattern shift amount and direction calculation flow in step S2 of FIG.
- a scanning electron microscope image 600 including an evaluation target pattern is acquired. Since the imaging target is a resist, an image is acquired under imaging conditions that consider both damage to the sample. For example, the acceleration voltage of primary electrons injected into the sample is 500V. Further, since the size of the overlay evaluation pattern is about 400 nm, the imaging field of view is set to be larger than this, and the pattern outline is sharply acquired, so that the pixel size is about 1 nm. Take an image. (Same as S31) (S62): As shown in FIGS.
- the acquired scanning electron microscope image 600 and the pattern shape information registered in the database for each process step are matched, and scanning electron microscope image shift amounts dX1 (653), dX2 (655), and rotation amount d ⁇ 1 (654) with respect to the registered pattern shape information of each process step. , D ⁇ 2 (656) is calculated.
- an overlay evaluation pattern area 1102 is set on each chip on the wafer 1111 and evaluation is performed.
- the result is fed back to the shot position correction of the exposure apparatus, so that the overlay accuracy can be improved.
- FIG. 11B In order to perform overlay evaluation within a shot based on the aberration of the exposure apparatus and transfer characteristics based on the mask design, as shown in FIG. 11B, a plurality of overlay evaluations are performed in a chip 1112 exposed in the same shot.
- a pattern area 1102 is set and evaluated. Since the size of the overlay evaluation pattern region 1102 described in the present embodiment is about 400 nm square, even if a region including a plurality of overlay evaluation pattern regions is formed in a chip of about several centimeters on each side. The influence on the integration density can be reduced. Since aberration correction is performed within one shot, when a plurality of chips are exposed in one shot, the evaluation pattern regions may be formed in a plurality of chips, and the number of evaluation pattern regions per chip can be determined. Can be reduced. [GUI (Graphical User Interface)]
- FIG. 7 shows an example of the overlay evaluation result GUI displayed on the input / output unit 113 of the scanning electron microscope system in step S3 of FIG.
- the table 702 includes the chip number 703, the in-chip coordinates 704, the shift amount 705 in the X direction of the second pattern with respect to the first pattern, the shift amount 706 in the Y direction, and the rotation angle 707 of each data.
- a misalignment amount distribution 711 in the wafer plane is displayed.
- a chip number selection button 712 on the display screen a misalignment amount distribution 713 on the corresponding chip is displayed.
- the chip number selection button 712 can select not only a specific chip but also display of the average of the chips.
- the image display unit 710, the table 702, the misalignment amount distribution 711 on the wafer surface, the misalignment amount distribution 713 on the chip, and the like are displayed on one screen in FIG.
- One result may be displayed on one screen, two results on one screen, and three results on one screen.
- the alignment error of the exposure apparatus can be corrected based on the evaluation result within the wafer surface. Further, aberration correction of the exposure apparatus can be performed based on the evaluation result in the chip. By optimizing the exposure process conditions, it is possible to correct misalignment within the chip, and an improvement in yield in the semiconductor manufacturing process can be expected.
- the contour line information is taken as an example of the pattern shape information.
- the contour line instead of the contour line, it may be replaced with a pattern region or a pattern center coordinate.
- the overlay evaluation pattern described in the present embodiment may also serve as a pattern dimension evaluation pattern or a pattern shape evaluation pattern.
- the overlay evaluation pattern may also serve as an automatic focusing pattern, a positioning pattern, and the like that are necessary in an automatic dimension measurement sequence using a scanning electron microscope.
- FIG. 1 An example of layout is shown in FIG.
- the movement to the positioning pattern 1201 is performed to calibrate the coordinate position with higher accuracy.
- the dimension evaluation coordinates 1203 After performing focusing in the automatic focusing pattern 1202, it moves to the dimension evaluation coordinates 1203 and performs imaging and dimension measurement.
- a pattern 1220 indicated by a broken line indicates a pattern formed by the first exposure
- a pattern 1221 indicated by a solid line indicates a pattern formed by the second exposure.
- the pattern (semiconductor pattern) used when manufacturing the semiconductor integrated circuit device has been described as an example.
- this technique is particularly high in pattern density and strict dimensional control accuracy for gate pattern formation. It is effective when applied to overlay evaluation in the DP process.
- the first and second main patterns are often repetitive patterns, and the first pattern for overlay evaluation is different from the second pattern in order to obtain the shift direction. It is necessary to select an appropriate design pattern in advance.
- the present invention is not limited to semiconductor patterns, and can be used for evaluation of superposition of fine patterns.
- an overlay evaluation method capable of evaluating the misalignment amount and the misalignment direction at an arbitrary position in the exposure shot. Thereby, it is possible to perform overlay management with high accuracy by feeding back to the exposure process.
- a charged particle microscope suitable for overlay evaluation, in which evaluation results of misalignment amount and displacement direction can be easily obtained.
- FIG. 8A shows an overall flow in the case where the dimension measurement and overlay evaluation performed in the scanning electron microscope 10 are performed simultaneously.
- the scanning electron microscope 10 captures a dimension measurement pattern that also serves as an overlay evaluation pattern, and the image processing / overall control unit 109 processes a signal obtained by the imaging, so that FIG. A scanning electron microscope image 800 as shown in FIG. Since the imaging target is a resist, an image is acquired under imaging conditions that consider both damage to the sample. For example, the acceleration voltage of primary electrons injected into the sample is 500V. In addition, since the size of the dimension measurement pattern that also serves as the overlay evaluation pattern is about 400 nm, the imaging field of view is set to be larger than this, and the pattern outline is sharply acquired. An image is taken so as to be about 1 nm.
- step 83 Simultaneously with step 83, the scanning electron microscope image of the identified pattern of each process step is collated with the layout information of the evaluation pattern registered in the storage unit 111 in advance, and the pattern of each process step is checked. The deviation amount and direction are calculated.
- step 85 The calculated pattern dimensions of each process step, the overlay displacement amount and the displacement direction are displayed on the input / output unit 113.
- the pattern pitch of each process is a high-density pattern with a relatively small process margin in the manufacturing process of this pattern.
- the conditions described in the overlay evaluation pattern of Example 1 are satisfied, it can be said to be a dimension measurement pattern that also serves as overlay evaluation.
- [Layout information], [Layout information registration procedure], [Pattern displacement amount and direction calculation], and [GUI] are the same as those described in the first embodiment, and thus description thereof is omitted.
- the same effect as in the first embodiment can be obtained. Furthermore, by performing pattern dimension measurement and overlay evaluation at the same time, overlay evaluation can be performed in the same amount of time as conventional dimension measurement. In dimension measurement, each process step is identified. It becomes possible.
- FIG. 9 shows an overall flow when dimensional measurement and overlay evaluation are performed simultaneously in the scanning electron microscope 10.
- the scanning electron microscope 10 images the positioning pattern of the dimension measurement pattern that also serves as the overlay evaluation pattern, and the image processing / overall control unit 109 processes the signal obtained by the imaging, A scanning electron microscope image is obtained. Since the imaging target is a resist, an image is acquired under imaging conditions that consider both damage to the sample. For example, the acceleration voltage of primary electrons injected into the sample is 500V. In addition, taking into account the positioning accuracy before positioning, an imaging field of view is set, and the contour of the pattern is acquired sharply, so imaging is performed so that the pixel size is about 1 nm.
- step 92 The relationship between the imaging coordinates in step 91 and the pattern position in the captured scanning electron microscope image is evaluated, and the movement amount to the dimension measurement pattern registered in advance is calculated.
- step 92 Based on the calculation result of step 92, the measurement position is moved to the imaging position of the dimension measurement pattern, the dimension measurement pattern is imaged, and the signal obtained by the imaging is processed by the image processing / overall control unit 109 and scanned. An electron microscope image is obtained.
- This pattern is a pattern suitable for pattern matching for positioning the dimension measurement pattern, and satisfies the conditions of the overlay evaluation pattern of the first embodiment.
- An example of the pattern is shown in FIG.
- Pattern conditions suitable for pattern matching include unique patterns other than repetitive patterns, and overlapping patterns such as patterns other than patterns that continue in the same direction with respect to the direction of movement to the dimension measurement pattern. Since the conditions are similar to the conditions for the evaluation pattern, the overlay evaluation pattern can be easily selected as the positioning pattern for the dimension measurement pattern.
- [Layout information], [Layout information registration procedure], [Pattern displacement amount and direction calculation], and [GUI] are the same as those described in the first embodiment, and thus description thereof is omitted.
- the same effect as in the first embodiment can be obtained. Furthermore, by performing pattern dimension measurement and overlay evaluation at the same time, it is possible to perform overlay evaluation in the same required time as conventionally performed dimension measurement.
- DESCRIPTION OF SYMBOLS 10 ... Scanning electron microscope main body, 101 ... Electron gun, 102 ... Electron beam, 103 ... Accelerating electrode, 104 ... Converging lens, 105 ... Deflection electrode, 106 ... Objective lens, 107 ... Sample, 108 ... Detector, 109 ... Image processing -Overall control unit, 110 ... PC, 111 ... storage unit, 112 ... arithmetic processing unit, 113 ... input / output unit, 120 data server, 150 ... sample stage, 202, 302, 502, 1102 ... evaluation pattern region, 203, 503 ... 1st pattern, 204, 504 ... 2nd pattern, 206, 306, 406, 506, 606 ...
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
露光ショット内の任意の位置で合わせずれ量とずれ方向とを評価することが可能なパターンの重ね合わせ評価方法を提供する。重ね合わせ評価パターンを用いるパターンの重ね合わせ評価方法であって、重ね合わせ評価パターンの画像を、電子顕微鏡10、109を用いて取得し(S1)、取得した画像と、記憶部111に登録されていた、重ね合わせ評価パターンが配置されるべきレイアウト情報とを比較して、各露光ステップのずれ量と方向とを算出(S2)し、評価結果を表示(S3)する。
Description
本発明は、異なる露光ステップで同一領域に形成される微細パターンの重ね合わせ評価方法に関する。
半導体製造工程において、多層に形成される各種薄膜に微細パターン(半導体パターン)を形成する際、上下層のパターン間の重ね合わせ精度が、半導体素子の性能を左右するものとして重要な評価項目となっている。
従来、上下層のパターン間の重ね合わせ評価は、特許文献1にあるように、あらかじめウエハ上に作り込まれた、重ね合わせ評価用パターンの光学像を取得し、画像解析により各層間のずれ量を評価していた。本手法により十分な重ね合わせ評価精度を得るためには、十分な分解能の光学像を取得することが必要である。これに対し、近年の半導体パターン微細化に伴い、必要な重ね合わせ評価精度も厳しくなり、取得可能な光学像の分解能では、必要な重ね合わせ評価精度が得られなくなってきた。
これを解決する手段として、特許文献2にあるような、あらかじめウエハ上に作り込まれた、重ね合わせ評価用パターンの分光波形を取得し、波形解析により各層間のずれ量を算出する方法が使われている。本手法を用いることで、十分な重ね合わせ評価精度を得ることができるようになっている。
パターンの微細化技術として、同一層上に異なる露光ステップでパターンを作り込み、高密度パターンを実現する、ダブルパターンニング(DP)の開発と実用化が進んでいる。ダブルパターンニング技術のひとつである、2重露光技術について図10を用いて説明する。まずウエハ(基板)1000上に形成された下層膜1001上にレジストを塗布して第1のレジスト膜1002を形成し(図10(a))、これを露光および現像することで、1回目の露光によるレジストパターン1002aを形成する(図10(b))。次に、このレジストパターン1002aをフリージングさせ2回目の露光において感光しないように処理する(図10(c))。この上に2回目露光用のレジストを塗布して第2のレジスト膜1003を形成し(図10(d))、2回目の露光により、1回目の露光によるパターンの隙間にレジストパターン1003aを形成する(図10(e))。以上の手法を用いることにより、1回の露光でレジストパターンの形成が可能な最小ピッチの半分のピッチで、レジストパターンを形成することが可能となる。
本技術の実用化に伴い、上下層のパターン間のずれのみならず、同一層上に異なる露光ステップで作り込まれたパターン間での重ね合わせ評価が必要となっている。しかしながら、特許文献2における分光波形解析による重ね合わせ評価手法では、上下層のパターンの識別は可能だが、同一層上にあるパターンの重ね合わせ評価を行う場合に、各露光ステップパターンの識別をすることができないという課題があり、相対的なずれ量の評価はできるものの、ずれ方向を評価することができない。つまり、評価結果を露光プロセスに適切にフィードバックして、ずれを修正することができない。
また、パターンの微細化に伴い重ね合わせ精度への要求が厳しくなると共に、マスクの製造誤差や、露光時のショット内(一度の露光光照射で露光される領域内。1ショットで1チップ~数チップ分が露光される)のひずみ等が無視できなくなり、露光ショットごとのマスク全体の合わせずれのみならず、露光ショット内における複数点での重ね合わせ評価が必要となっている。特許文献2による重ね合わせ評価では、あらかじめ作り込まれた評価専用パターンを用いる必要がある。この評価専用パターンは、最低数ミクロン程度の領域における繰り返しパターンである必要があるため、ショット内に複数箇所の専用パターンを分散させて配置することは、現実的でない。このことから、従来の重ね合わせ評価手法では、露光ショット内の任意の位置における重ね合わせ評価ができないという課題がある。
本発明の目的は、露光ショット内の任意の位置で合わせずれ量とずれ方向とを評価することが可能な重ね合わせ評価方法を提供することにある。
上記目的を達成するための一形態として、第1の露光ステップで試料上に形成された第1のパターンと第2の露光ステップで前記試料上に形成された第2のパターンとを用いるパターンの重ね合わせ評価方法であって、前記第1パターンと前記第2パターンとが配置されるべきレイアウトの情報をデータベースに登録するステップと、前記試料上に形成された前記第1のパターン及び前記第2のパターンの画像を荷電粒子顕微鏡により取得するステップと、前記データベースに登録されている前記レイアウトの情報と前記画像とを比較し、前記第1のパターンと前記第2のパターンのずれ量とずれの方向とを求めるステップとを有することを特徴とするパターンの重ね合わせ評価方法とする。
露光ショット内の任意の位置で合わせずれ量とずれ方向とを評価することが可能な重ね合わせ評価方法を提供することができる。
以下に、本発明による、荷電粒子顕微鏡の一例として、走査電子顕微鏡を用いた微細パターンの重ね合わせ評価手法について、図を用いて説明する。
本実施例に係る走査電子顕微鏡による半導体パターンの重ね合わせ評価手法に関して、走査電子顕微鏡システムの構成と全体フローを述べた後、各ステップについて詳述する。
[走査電子顕微鏡システム]
図1(a)に、本実施例による重ね合わせ評価機能を備えた走査電子顕微鏡システムの構成を示す。本実施例による走査電子顕微鏡システムは、走査電子顕微鏡本体10と画像処理・全体制御部109、PC110で構成され、ネットワークを介してデータサーバ120と繋がっている。
[走査電子顕微鏡システム]
図1(a)に、本実施例による重ね合わせ評価機能を備えた走査電子顕微鏡システムの構成を示す。本実施例による走査電子顕微鏡システムは、走査電子顕微鏡本体10と画像処理・全体制御部109、PC110で構成され、ネットワークを介してデータサーバ120と繋がっている。
走査電子顕微鏡(荷電粒子顕微鏡)本体10は、電子銃(荷電粒子発生源)101、電子銃101から発射された電子線(荷電粒子線)102を加速する加速電極103、集束レンズ104、電子線102の軌道を偏向させる偏向電極105、電子線102の収束する焦点位置がパターンが形成された試料107の表面に位置するように電子線102の焦点位置を制御する対物レンズ106、電子線102が照射された試料107から発生した2次電子(試料からの信号)の一部を検出する検出器108で構成される。この検出器108の検出信号は画像処理・全体制御部109に送られて処理され、走査電子顕微鏡画像が得られる。この走査電子顕微鏡画像が、PC110内の記憶部111に蓄積されている情報を用いて、PC110内の演算処理部112によって処理され、重ね合わせに関連する情報が抽出される。その結果は通信回線を介してデータサーバ120へ送られて記憶される。
試料107はテーブル(試料台)150に載置され、試料上の所望の領域が電子線102の照射領域に位置するように、テーブル150が画像処理・全体制御部109で制御される。
PC110は、記憶部111、演算処理部112、表示画面を備えた入出力部113を備えている。
[全体フロー]
図1(b)に、演算処理部110で行う、重ね合わせ評価の全体フローを示す。
(S1):走査電子顕微鏡本体10にて、試料107に形成されていた重ね合わせ評価パターンを撮像し、撮像して得られた信号を画像処理・全体制御部109で処理して、走査電子顕微鏡画像を得る。
(S2):演算処理部112において、あらかじめ記憶部111に登録しておいた、評価パターンのレイアウト情報と、取得した走査電子顕微鏡画像を照合し、各プロセス(露光)ステップのパターンのずれ量と方向を算出する。
(S3):算出した、各プロセス(露光)ステップのパターンずれ量と方向が、入出力部113に表示される。
以上が、重ね合わせ評価の全体フローである。各フローの詳細を、以下に説明する。
[重ね合わせ評価パターン]
重ね合わせ評価に用いるパターンの詳細を説明する。
PC110は、記憶部111、演算処理部112、表示画面を備えた入出力部113を備えている。
[全体フロー]
図1(b)に、演算処理部110で行う、重ね合わせ評価の全体フローを示す。
(S1):走査電子顕微鏡本体10にて、試料107に形成されていた重ね合わせ評価パターンを撮像し、撮像して得られた信号を画像処理・全体制御部109で処理して、走査電子顕微鏡画像を得る。
(S2):演算処理部112において、あらかじめ記憶部111に登録しておいた、評価パターンのレイアウト情報と、取得した走査電子顕微鏡画像を照合し、各プロセス(露光)ステップのパターンのずれ量と方向を算出する。
(S3):算出した、各プロセス(露光)ステップのパターンずれ量と方向が、入出力部113に表示される。
以上が、重ね合わせ評価の全体フローである。各フローの詳細を、以下に説明する。
[重ね合わせ評価パターン]
重ね合わせ評価に用いるパターンの詳細を説明する。
重ね合わせ評価パターンの例を、図2(a)に示す。本例は、図2のX方向へのパターンずれ量と、回転ずれ角度を算出することを目的としている。重ね合わせ評価パターンは、その領域(評価パターン領域)202内において、評価対象とする各プロセスステップで作られたパターンを含む。図2(a)に示す例では、2重露光プロセスにおける、1回目露光によるパターン203(以下、第1パターンと記す)と、2回目露光によるパターン204(以下、第2パターンと記す)の両方を含む。
また、第1パターン203は、第2パターン204とは異なる形状のパターンを含む。また、重ね合わせ評価パターンには、評価したいずれ方向と平行な方向へ長く続く直線パターン以外のパターンを含む。
パターンの大きさに限定はないが、一般的に線幅およびピッチの小さなパターンほどプロセスマージンが小さく、プロセス管理の重要性が高いことから、例えば、最小ピッチ90nmのプロセスでパターンが形成される場合には、同程度のピッチのパターンであることが望ましい。この場合、図2(a)に示すような重ね合わせ評価パターンでは、パターン領域202の大きさが、おおよそ400nm四方となり、従来(数マイクロメートル以上)と比較して、数分の一に小さくすることが可能である。
図2のY方向へのパターンずれ量を評価する場合には、図2(a)に示したパターンを90度回転させたパターンを用いる。また、図2のX方向、Y方向へのパターンずれ量を同時に評価する場合には、図2(a)に示したパターンと、これを90度回転させたパターンの両方を含むパターンを用いる。
なお、本実施例では、2重露光プロセスにおける1回目露光パターンを第1パターン、2回目露光パターンを第2パターンとしたが、第1パターンと第2パターンは、各々、上層パターンと下層パターンの組み合わせでも良い。
[レイアウト情報の内容]
図1(b)のS2のステップで用いる、記憶部111に登録された、重ね合わせ評価パターンのレイアウト情報の詳細を説明する。
[レイアウト情報の内容]
図1(b)のS2のステップで用いる、記憶部111に登録された、重ね合わせ評価パターンのレイアウト情報の詳細を説明する。
重ね合わせ評価に必要な情報は、パターン形状、パターン各部のプロセスステップ情報(第1パターンと第2パターンの識別)、各プロセスステップにより作成するパターン間での理想的な位置関係もしくは距離、および評価パターンのウエハ内およびショット内における位置座標である。
図2(a)に示した重ね合わせ評価パターンを例に挙げると、図2(b)、図2(c)、図2(d)に示すように、第1パターンの輪郭線206、第2パターンの輪郭線207、および第1パターンに対する第2パターンの理想的な相対位置座標208が、レイアウト情報として登録される。
[レイアウト情報登録手順]
これらのレイアウト情報を、走査電子顕微鏡システムの記憶部111に登録する手順を説明する。手順として、(1)ウエハ上にある任意のパターンを重ね合わせ評価パターンとして設定する場合、(2)設計データから、重ね合わせ評価に適したパターンを自動的に選択する場合、(3)あらかじめレイアウト情報が既知の重ね合わせ評価パターンを、ウエハ上に作りこんでおく場合の3つのケースについて説明する。
[レイアウト情報登録手順]
これらのレイアウト情報を、走査電子顕微鏡システムの記憶部111に登録する手順を説明する。手順として、(1)ウエハ上にある任意のパターンを重ね合わせ評価パターンとして設定する場合、(2)設計データから、重ね合わせ評価に適したパターンを自動的に選択する場合、(3)あらかじめレイアウト情報が既知の重ね合わせ評価パターンを、ウエハ上に作りこんでおく場合の3つのケースについて説明する。
(1)ウエハ上にある任意のパターンを重ね合わせ評価パターンとして設定する場合の、レイアウト情報登録フローを、図3(a)に示す。
(S31):図3(b)に示すように、重ね合わせ評価対象としたいパターンを含む走査電子顕微鏡画像301を取得する。撮像対象がレジストパターンであることから、サンプルへのダメージの両方を考慮した撮像条件で、画像を取得する。例えば、サンプルへ打ち込む一次電子の加速電圧は500Vとする。また、重ね合わせ評価用パターン領域の大きさが400nm四方程度であることから、撮像視野はこれより大きくなるように設定し、パターンの輪郭線を先鋭に取得するため、画素サイズは1nm四方程度となるように撮像する。
(S32):取得した画像から評価対象パターンの領域302を選択する。
(S33):図3(c)に示すように、選択された評価対象パターンの領域302において、パターンの輪郭線303を抽出する。輪郭線の抽出方法は、ユーザーが入出力部113を用いて決定する他、演算処理部112において、自動抽出を行う手段も含む。
(S34):図3(d)、図3(e)に示すように、各輪郭線303におけるプロセスステップごとにパターンを登録することで、第1パターン306と第2パターン307を識別し、記憶する。登録方法は、ユーザーがGUI(Graphical User Interface)上に示された輪郭線データに対し、パターンごとにプロセスステップを指定することで、登録する。
(S35):登録した各プロセスステップのパターン(306、307)が、理想的な相対位置関係になるように、座標を補正した輪郭線データ(図3(f))を記憶部111に登録する。
(S31):図3(b)に示すように、重ね合わせ評価対象としたいパターンを含む走査電子顕微鏡画像301を取得する。撮像対象がレジストパターンであることから、サンプルへのダメージの両方を考慮した撮像条件で、画像を取得する。例えば、サンプルへ打ち込む一次電子の加速電圧は500Vとする。また、重ね合わせ評価用パターン領域の大きさが400nm四方程度であることから、撮像視野はこれより大きくなるように設定し、パターンの輪郭線を先鋭に取得するため、画素サイズは1nm四方程度となるように撮像する。
(S32):取得した画像から評価対象パターンの領域302を選択する。
(S33):図3(c)に示すように、選択された評価対象パターンの領域302において、パターンの輪郭線303を抽出する。輪郭線の抽出方法は、ユーザーが入出力部113を用いて決定する他、演算処理部112において、自動抽出を行う手段も含む。
(S34):図3(d)、図3(e)に示すように、各輪郭線303におけるプロセスステップごとにパターンを登録することで、第1パターン306と第2パターン307を識別し、記憶する。登録方法は、ユーザーがGUI(Graphical User Interface)上に示された輪郭線データに対し、パターンごとにプロセスステップを指定することで、登録する。
(S35):登録した各プロセスステップのパターン(306、307)が、理想的な相対位置関係になるように、座標を補正した輪郭線データ(図3(f))を記憶部111に登録する。
(2)設計データから、重ね合わせ評価に適したパターンを自動的に選択する場合の、レイアウト情報登録フローを、図4(a)に示す。
(S41):図4(b)に示すように、評価対象とする複数のプロセスステップの設計データ401から、重ね合わせ評価に適したパターンを含む評価パターン領域402を自動的に選択する。自動選択の際には、あらかじめ指定した設計データの検索エリア内において、あらかじめ指定した評価対象とする複数のプロセスステップのパターンの中から、重ね合わせ評価に適したパターンを検索する。重ね合わせ評価に適したパターンの詳細については、先述の[重ね合わせ評価パターン]の項で説明した通りである。この他に、適切な評価パターンサイズ、評価パターン領域の大きさや、評価対象とする方向等の検索条件を与えても良い。
(S42):S41のステップにおいて選択した、重ね合わせ評価パターンの設計データ(第1パターンの輪郭線406、第2パターンの輪郭線407、各パターンの位置情報等を含む)(図4(c))を、各プロセスステップのパターンごとに、記憶部111に登録する。
なお、S41のステップにおいて、重ね合わせ評価に適したパターンを自動的に選択する代わりに、ユーザーが設計データから、任意に選択しても良い。
(S41):図4(b)に示すように、評価対象とする複数のプロセスステップの設計データ401から、重ね合わせ評価に適したパターンを含む評価パターン領域402を自動的に選択する。自動選択の際には、あらかじめ指定した設計データの検索エリア内において、あらかじめ指定した評価対象とする複数のプロセスステップのパターンの中から、重ね合わせ評価に適したパターンを検索する。重ね合わせ評価に適したパターンの詳細については、先述の[重ね合わせ評価パターン]の項で説明した通りである。この他に、適切な評価パターンサイズ、評価パターン領域の大きさや、評価対象とする方向等の検索条件を与えても良い。
(S42):S41のステップにおいて選択した、重ね合わせ評価パターンの設計データ(第1パターンの輪郭線406、第2パターンの輪郭線407、各パターンの位置情報等を含む)(図4(c))を、各プロセスステップのパターンごとに、記憶部111に登録する。
なお、S41のステップにおいて、重ね合わせ評価に適したパターンを自動的に選択する代わりに、ユーザーが設計データから、任意に選択しても良い。
(3)あらかじめ、レイアウト情報が既知の重ね合わせ評価パターンをウエハ上に作りこんでおく場合の、レイアウト情報登録フローを、図5(a)に示す。
(S51):図5(b)に示すように、重ね合わせ評価に適した第1パターン503、第2パターン504を含む評価パターン領域502を、プロセスステップごとに、評価ウエハ上に作りこむ。重ね合わせ評価に適したパターンの詳細については、先述の[重ね合わせ評価パターン]の項で説明した通りである。
(S52):S51のステップにおいてウエハ上に作りこんだ、重ね合わせ評価パターンの設計データ(第1パターンの輪郭線506、第2パターンの輪郭線507、各パターンの位置情報等を含む)(図5(c))を、各プロセスステップのパターンごとに、記憶部111に登録する。
(S51):図5(b)に示すように、重ね合わせ評価に適した第1パターン503、第2パターン504を含む評価パターン領域502を、プロセスステップごとに、評価ウエハ上に作りこむ。重ね合わせ評価に適したパターンの詳細については、先述の[重ね合わせ評価パターン]の項で説明した通りである。
(S52):S51のステップにおいてウエハ上に作りこんだ、重ね合わせ評価パターンの設計データ(第1パターンの輪郭線506、第2パターンの輪郭線507、各パターンの位置情報等を含む)(図5(c))を、各プロセスステップのパターンごとに、記憶部111に登録する。
以上の手段により、あらかじめ重ね合わせ評価パターンのレイアウト情報を記憶部111に登録しておく。
[パターンのずれ量とずれ方向算出]
図1(b)のS2のステップにおける、パターンのずれ量と方向算出フローを、図6(a)に示す。
[パターンのずれ量とずれ方向算出]
図1(b)のS2のステップにおける、パターンのずれ量と方向算出フローを、図6(a)に示す。
(S61):図6(b)に示すように、評価対象パターンを含む走査電子顕微鏡画像600を取得する。撮像対象がレジストであることから、サンプルへのダメージの両方を考慮した撮像条件で、画像を取得する。例えば、サンプルへ打ち込む一次電子の加速電圧は500Vとする。また、重ね合わせ評価用パターンの大きさが400nm程度であることから、撮像視野はこれより大きくなるように設定し、パターンの輪郭線を先鋭に取得するため、画素サイズは1nm程度となるように撮像する。(S31と同じ)
(S62):図6(c)、図6(d)に示すように、取得した走査電子顕微鏡画像600と、データベースに登録されていた、プロセスステップごとのパターン形状情報(第1パターンの輪郭線606、第2パターンの輪郭線607)のマッチングを行い、登録された各プロセスステップのパターン形状情報に対する、走査電子顕微鏡画像のずれ量dX1(653)、dX2(655)、回転量dθ1(654)、dθ2(656)を算出する。
(S62):図6(c)、図6(d)に示すように、取得した走査電子顕微鏡画像600と、データベースに登録されていた、プロセスステップごとのパターン形状情報(第1パターンの輪郭線606、第2パターンの輪郭線607)のマッチングを行い、登録された各プロセスステップのパターン形状情報に対する、走査電子顕微鏡画像のずれ量dX1(653)、dX2(655)、回転量dθ1(654)、dθ2(656)を算出する。
(S63):式(1)および(2)に従って、プロセスステップ間での相対的な、ずれ量dX、ずれ方向、回転量dθ、回転方向を算出する。
dX=dX2-dX1 (1)
dX>0;第2パターンは第1パターンに対し右に|dX|ずれている
dX≦0;第2パターンは第1パターンに対し左に|dX|ずれている
dθ=dθ2-dθ1 (2)
dθ>0;第2パターンは第1パターンに対し時計回りに|dθ|回転
dθ≦0;第2パターンは第1パターンに対し反時計回りに|dθ|回転
以上のステップにより、第1パターンに対する第2パターンのずれ量、回転量だけでなく、ずれ方向、回転方向を明らかにすることができた。
[重ね合わせ評価パターンのレイアウト]
重ね合わせ評価時の、ウエハ上およびチップ上における、重ね合わせ評価パターンのレイアウトの例を図11に示す。
dX=dX2-dX1 (1)
dX>0;第2パターンは第1パターンに対し右に|dX|ずれている
dX≦0;第2パターンは第1パターンに対し左に|dX|ずれている
dθ=dθ2-dθ1 (2)
dθ>0;第2パターンは第1パターンに対し時計回りに|dθ|回転
dθ≦0;第2パターンは第1パターンに対し反時計回りに|dθ|回転
以上のステップにより、第1パターンに対する第2パターンのずれ量、回転量だけでなく、ずれ方向、回転方向を明らかにすることができた。
[重ね合わせ評価パターンのレイアウト]
重ね合わせ評価時の、ウエハ上およびチップ上における、重ね合わせ評価パターンのレイアウトの例を図11に示す。
露光装置の合せ精度を評価するには、図11(a)に示すように、ウエハ1111上の各チップに、重ね合わせ評価パターン領域1102を設定し、評価を行う。ウエハ面内で、重ね合わせずれ量やずれ方向が異なる場合には、その結果を露光装置のショット位置補正にフィードバックすることで、重ね合わせ精度の向上が期待される。
露光装置の収差、マスクデザインによる転写特性による、ショット内での重ね合わせ評価を行うには、図11(b)に示すように、同一ショットで露光されたチップ1112内に、複数の重ね合わせ評価パターン領域1102を設定し、評価を行う。本実施例で説明した重ね合わせ評価パターン領域1102の大きさは400nm四方程度であることから、各辺数センチ程度のチップ内に、重ね合わせ評価パターン領域を複数個含む領域を作りこんだとしても、集積密度への影響を小さくできる。なお、収差補正は1ショット内で行うため、1ショットで複数チップを露光する場合には、複数チップ内に評価パターン領域を分散して形成すればよく、1チップ当たりの評価パターン領域の数を減らすことができる。
[GUI(Graphical User Interface)]
図1(b)のS3のステップで、走査電子顕微鏡システムの入出力部113に表示される、重ね合わせ評価結果のGUIの例を図7に示す。
[GUI(Graphical User Interface)]
図1(b)のS3のステップで、走査電子顕微鏡システムの入出力部113に表示される、重ね合わせ評価結果のGUIの例を図7に示す。
表示画面700上にある、重ね合わせ評価レシピ選択ボタン701により、結果を表示したいデータセットを選択し、結果表示ボタン708を押下すると、結果が表702に出力される。表702には、各データのチップ番号703、チップ内座標704、第1パターンに対する第2パターンのX方向のずれ量705、Y方向のずれ量706および回転角707が含まれる。また、重ね合わせ評価画像選択ボタン709により表示したい画像を選択すると、画像表示部710に、走査電子顕微鏡画像およびレイアウト情報が表示される。
また、この結果に基づき、ウエハ面内での合わせずれ量分布711が表示される。さらに、表示画面上にある、チップ番号選択ボタン712によりチップを選択すると、該当するチップ上における合わせずれ量分布713が表示される。チップ番号選択ボタン712では、特定のチップを選択できる他に、チップの平均を表示することを選択できる。なお、画面表示にあたり、図7では画像表示部710、表702、ウエハ面内での合わせずれ量分布711、チップ上における合わせずれ量分布713等々が一画面に表示されるように記載したが、一つの結果を一画面、二つの結果を一画面、三つの結果を一画面となるように表示してもよい。
走査電子顕微鏡を用いて、微小な領域での重ね合わせ評価が可能となることで、ウエハ面内だけでなくチップ内での重ね合わせずれ量分布の評価が可能となる。ウエハ面内の評価結果に基づき、露光装置の合わせ誤差を修正することが出来る。また、チップ内での評価結果に基づき、露光装置の収差補正を行うことができる。露光プロセス条件を最適化することで、チップ内での合わせずれ補正が可能となり、半導体製造プロセスにおける歩留まり向上が期待できる。
本実施例では、パターン形状情報として輪郭線情報を例に挙げたが、輪郭線の代わりに、パターン領域や、パターンの中心座標と置き換えても良い。
本実施例で説明した重ね合わせ評価パターンは、パターン寸法評価用パターンや、パターン形状評価用パターンを兼ねても良い。また、重ね合わせ評価パターンは、走査電子顕微鏡を用いた自動寸法計測シーケンスにおいて必要な、自動焦点合わせ用のパターンや、位置決め用のパターンなどを兼ねても良い。
レイアウトの例を図12に示す。自動寸法計測においては、まず位置決め用パターン1201に移動して、より高精度な座標位置の校正を行う。次に自動焦点合わせ用パターン1202において焦点合わせを行った後、寸法評価座標1203に移動して撮像および寸法計測を行う。このシーケンスにおいて、自動焦点合わせ時に取得される画像、もしくは、位置決め用に取得される画像を用いて、同時に重ね合わせ評価を行うことが可能となる。なお、破線で示したパターン1220が一回目の露光で形成されたパターン、実線で示したパターン1221が二回目の露光で形成されたパターンを示す。
以上、半導体集積回路装置を製造する際に用いられるパターン(半導体パターン)を例に説明を行なったが、本手法は、特に、よりパターン密度が高く,寸法管理精度も厳しい,ゲートパターン形成のためのDP工程での重ね合わせ評価に適用して有効である。ゲート形成のためのDP工程では、1回目と2回目の主パターンは繰り返しパターンであることが多く,ずれ方向を求めるために、重ね合わせ評価用の第1パターンと第2パターンとでは異なるように予め適切なデザインのパターンを選ぶことが必要である。なお、半導体パターンに限らず、微細なパターンの重ね合わせ評価に用いることも出来る。
本実施例によれば、露光ショット内の任意の位置で合わせずれ量とずれ方向とを評価することが可能な重ね合わせ評価方法を提供することが出来る。これにより、露光プロセスにフィードバックすることで高精度な重ね合わせ管理が可能となる。また、合わせずれ量とずれ方向の評価結果が容易に得られる、重ね合わせ評価に好適な荷電粒子顕微鏡を提供することが出来る。
実施例1で説明した手法による、走査電子顕微鏡による半導体パターンの重ね合わせ評価を、走査電子顕微鏡による半導体パターンの寸法計測と同時に行う手法に関して、全体フローを述べた後、各ステップについて詳述する。なお、実施例1に記載され、本実施例に未記載の事項は実施例1と同様である。
[全体フロー]
図8(a)に、走査電子顕微鏡10において行う、寸法計測および重ね合わせ評価を同時に行う場合の、全体フローを示す。
[全体フロー]
図8(a)に、走査電子顕微鏡10において行う、寸法計測および重ね合わせ評価を同時に行う場合の、全体フローを示す。
(S81):走査電子顕微鏡10にて、重ね合わせ評価用パターンを兼ねた寸法計測パターンを撮像し、撮像して得られた信号を画像処理・全体制御部109で処理して、図8(b)に示すような走査電子顕微鏡画像800を得る。撮像対象がレジストであることから、サンプルへのダメージの両方を考慮した撮像条件で、画像を取得する。例えば、サンプルへ打ち込む一次電子の加速電圧は500Vとする。また、重ね合わせ評価用パターンを兼ねた寸法計測パターンの大きさが400nm程度であることから、撮像視野はこれより大きくなるように設定し、パターンの輪郭線を先鋭に取得するため、画素サイズは1nm程度となるように撮像する。
(S82):演算処理部112において、あらかじめ記憶部111に登録しておいた、評価パターンのレイアウト情報と走査電子顕微鏡画像を照合し、図8(c)、図8(d)の第1パターン801および第2パターン802に示すように、各プロセスステップのパターンの識別を行う。
(S83):識別した、各プロセスステップのパターンにおいて、パターンの寸法計測を行う。
(S83):識別した、各プロセスステップのパターンにおいて、パターンの寸法計測を行う。
(S84):ステップ83と同時に、識別した各プロセスステップのパターンの走査電子顕微鏡画像と、あらかじめ記憶部111に登録しておいた、評価パターンのレイアウト情報とを照合し、各プロセスステップのパターンのずれ量と方向を算出する。
(S85):算出した、各プロセスステップのパターン寸法、および重ね合わせずれ量とずれ方向が、入出力部113に表示される。
(S85):算出した、各プロセスステップのパターン寸法、および重ね合わせずれ量とずれ方向が、入出力部113に表示される。
以上が、重ね合わせ評価を兼ねた寸法計測手順の全体フローである。各フローの詳細を、以下に説明する。
[重ね合わせ評価を兼ねた寸法計測パターン]
重ね合わせ評価を兼ねた寸法計測パターンの詳細を説明する。本パターンは、パターン製造プロセスにおいて、プロセス管理のために寸法を計測すべきパターン種において、実施例1の重ね合わせ評価パターンの条件を満たしているものとする。
[重ね合わせ評価を兼ねた寸法計測パターン]
重ね合わせ評価を兼ねた寸法計測パターンの詳細を説明する。本パターンは、パターン製造プロセスにおいて、プロセス管理のために寸法を計測すべきパターン種において、実施例1の重ね合わせ評価パターンの条件を満たしているものとする。
パターンの例を、図2(a)に示す。図2(a)に示す例では、各プロセスのパターンピッチが、本パターンの製造プロセスにおいて、プロセスマージンが比較的小さい、高密度パターンとなっている。同時に、実施例1の重ね合わせ評価パターンで説明した条件を満たしていることから、重ね合わせ評価を兼ねた寸法計測パターンといえる。
[レイアウト情報]および[レイアウト情報登録手順]および[パターンのずれ量と方向算出]および[GUI]については、実施例1で説明した内容と重複するため、説明を省略する。
[レイアウト情報]および[レイアウト情報登録手順]および[パターンのずれ量と方向算出]および[GUI]については、実施例1で説明した内容と重複するため、説明を省略する。
本実施例によれば、実施例1と同様の効果が得られる。さらに、パターンの寸法計測と重ね合わせ評価を同時に行うことで、従来から行っていた寸法計測と同じ所要時間で、重ね合わせ評価まで行える他、寸法計測においても、各プロセスステップを識別した計測を行うことが可能となる。
(位置決めマークで重ね合わせ評価+測長)
実施例1で説明した手法による、走査電子顕微鏡による半導体パターンの重ね合わせ評価を、走査電子顕微鏡による半導体パターンの寸法計測と同時に行う手法に関して、全体フローを述べた後、各ステップについて詳述する。なお、実施例1に記載され、本実施例に未記載の事項は実施例1と同様である。
[全体フロー]
図9に、走査電子顕微鏡10において行う、寸法計測および重ね合わせ評価を同時に行う場合の、全体フローを示す。
実施例1で説明した手法による、走査電子顕微鏡による半導体パターンの重ね合わせ評価を、走査電子顕微鏡による半導体パターンの寸法計測と同時に行う手法に関して、全体フローを述べた後、各ステップについて詳述する。なお、実施例1に記載され、本実施例に未記載の事項は実施例1と同様である。
[全体フロー]
図9に、走査電子顕微鏡10において行う、寸法計測および重ね合わせ評価を同時に行う場合の、全体フローを示す。
(S91):走査電子顕微鏡10にて、重ね合わせ評価用パターンを兼ねた寸法計測パターンの位置決め用パターンを撮像し、撮像して得られた信号を画像処理・全体制御部109で処理して、走査電子顕微鏡画像を得る。撮像対象がレジストであることから、サンプルへのダメージの両方を考慮した撮像条件で、画像を取得する。例えば、サンプルへ打ち込む一次電子の加速電圧は500Vとする。また、位置決め前の位置決め精度を考慮して、撮像視野を設定し、パターンの輪郭線を先鋭に取得するため、画素サイズは1nm程度となるように撮像する。
(S92):ステップ91における撮像座標と撮像した走査電子顕微鏡画像中のパターン位置の関係を評価し、あらかじめ登録された寸法計測パターンへの移動量を算出する。
(S93):ステップ92の算出結果に基づき、寸法計測パターンの撮像位置へ移動し、寸法計測パターンを撮像し、撮像して得られた信号を画像処理・全体制御部109で処理して、走査電子顕微鏡画像を得る。
(S93):ステップ92の算出結果に基づき、寸法計測パターンの撮像位置へ移動し、寸法計測パターンを撮像し、撮像して得られた信号を画像処理・全体制御部109で処理して、走査電子顕微鏡画像を得る。
(S94):ステップ93で得られた走査電子顕微鏡画像から、寸法計測パターンの寸法を計測する。
(S95):ステップ92から94と同時に、ステップ91で取得した、重ね合わせ評価用パターンを兼ねた寸法計測パターンの位置決め用パターンの走査電子顕微鏡画像と、あらかじめ記憶部111に登録しておいた評価パターンのレイアウト情報とを、演算処理部112において、照合し、各プロセスステップのパターンのずれ量と方向を算出する。
(S96):算出した、各プロセスステップのパターン寸法、および重ね合わせずれ量とずれ方向が、入出力部113に表示される。
(S95):ステップ92から94と同時に、ステップ91で取得した、重ね合わせ評価用パターンを兼ねた寸法計測パターンの位置決め用パターンの走査電子顕微鏡画像と、あらかじめ記憶部111に登録しておいた評価パターンのレイアウト情報とを、演算処理部112において、照合し、各プロセスステップのパターンのずれ量と方向を算出する。
(S96):算出した、各プロセスステップのパターン寸法、および重ね合わせずれ量とずれ方向が、入出力部113に表示される。
以上が、重ね合わせ評価を兼ねた寸法計測手順の全体フローである。各フローの詳細を、以下に説明する。
[重ね合わせ評価を兼ねた寸法計測パターンの位置決め用パターン]
重ね合わせ評価を兼ねた寸法計測パターンの位置決め用パターンの詳細を説明する。本パターンは、寸法計測パターンの位置決めのためのパターンマッチングに適したパターンにおいて、実施例1の重ね合わせ評価パターンの条件を満たしているものとする。パターンの例を、図2(a)に示す。パターンマッチングに適したパターンの条件は、繰り返しパターン以外のユニークなパターンが存在すること、および、寸法計測パターンへの移動方向に対し、同じ方向へ続くパターン以外のパターンが存在することといった、重ね合わせ評価用パターンの条件と類似の条件であることから、重ね合わせ評価用のパターンを、寸法計測パターンの位置決め用パターンに選定しやすい特徴がある。
[レイアウト情報]および[レイアウト情報登録手順]および[パターンのずれ量と方向算出]および[GUI]については、実施例1で説明した内容と重複するため、説明を省略する。
[重ね合わせ評価を兼ねた寸法計測パターンの位置決め用パターン]
重ね合わせ評価を兼ねた寸法計測パターンの位置決め用パターンの詳細を説明する。本パターンは、寸法計測パターンの位置決めのためのパターンマッチングに適したパターンにおいて、実施例1の重ね合わせ評価パターンの条件を満たしているものとする。パターンの例を、図2(a)に示す。パターンマッチングに適したパターンの条件は、繰り返しパターン以外のユニークなパターンが存在すること、および、寸法計測パターンへの移動方向に対し、同じ方向へ続くパターン以外のパターンが存在することといった、重ね合わせ評価用パターンの条件と類似の条件であることから、重ね合わせ評価用のパターンを、寸法計測パターンの位置決め用パターンに選定しやすい特徴がある。
[レイアウト情報]および[レイアウト情報登録手順]および[パターンのずれ量と方向算出]および[GUI]については、実施例1で説明した内容と重複するため、説明を省略する。
本実施例においては、寸法計測パターンの位置決め用パターンと、重ね合わせ評価用パターンとを兼ねる手順について説明したが、寸法計測パターンの位置決め用パターンの他に、走査電子顕微鏡でのパターン寸法計測に必要な、他の画像取得用パターンと兼ねてもよい。
本実施例に拠れば、実施例1と同様の効果が得られる。さらに、パターンの寸法計測と、重ね合わせ評価とを同時に行うことで、従来から行っていた寸法計測と同じ所要時間で、重ね合わせ評価まで行うことが可能となる。
10…走査電子顕微鏡本体、101…電子銃、102…電子線、103…加速電極、104…収束レンズ、105…偏向電極、106…対物レンズ、107…試料、108…検出器、109…画像処理・全体制御部、110…PC、111…記憶部、112…演算処理部、113…入出力部、120データサーバ、150…試料台、202,302,502、1102…評価パターン領域、203、503…第1パターン、204、504…第2パターン、206、306、406、506、606…第1パターンの輪郭線、207、307、407、507、607…第2パターンの輪郭線、600,800…走査電子顕微鏡画像、653、655…X方向のずれ量、654、656…回転量、700…表示画
面、701…重ね合わせ評価レシピ選択ボタン、708…結果表示ボタン、709…重ね合わせ評価画像選択ボタン、710…画像表示部、711…ウエハ面内での合わせずれ量分布、712…チップ番号選択ボタン、713…チップ上における合わせずれ量分布、1000、1111…基板(ウエハ)、1001…下層膜、1002…第1のレジスト膜、1002a…第1のレジストパターン、1003…第2のレジスト膜、1003a…第2のレジストパターン、1112…チップ。
面、701…重ね合わせ評価レシピ選択ボタン、708…結果表示ボタン、709…重ね合わせ評価画像選択ボタン、710…画像表示部、711…ウエハ面内での合わせずれ量分布、712…チップ番号選択ボタン、713…チップ上における合わせずれ量分布、1000、1111…基板(ウエハ)、1001…下層膜、1002…第1のレジスト膜、1002a…第1のレジストパターン、1003…第2のレジスト膜、1003a…第2のレジストパターン、1112…チップ。
Claims (15)
- 第1の露光ステップで試料上に形成された第1パターンと第2の露光ステップで前記試料上に形成された第2パターンとを用いるパターンの重ね合わせ評価方法であって、
前記第1パターンと前記第2パターンとが配置されるべきレイアウトの情報をデータベースに登録するステップと、
前記試料上に形成された前記第1パターン及び前記第2パターンの画像を荷電粒子顕微鏡により取得するステップと、
前記データベースに登録されている前記レイアウトの情報と前記画像とを比較し、前記第1パターンと前記第2パターンのずれ量とずれの方向とを求めるステップとを有することを特徴とするパターンの重ね合わせ評価方法。 - 請求項1記載のパターンの重ね合わせ評価方法において、
前記レイアウトの情報は、
予め形成された前記第1パターンと前記第2パターンの画像を荷電粒子顕微鏡により取得するステップと、
前記画像が含まれる評価パターン領域を選択するステップと、
前記第1パターンと前記第2パターンの輪郭線を抽出するステップと、
前記第1パターンと前記第2パターンとの相対位置座標を理想位置に補正するステップとを経て求められた補正された輪郭線データを含むことを特徴とするパターンの重ね合わせ評価方法。 - 請求項1記載のパターンの重ね合わせ評価方法において、
前記レイアウトの情報は、前記第1パターンと前記第2パターンの設計データから選択された情報が含まれることを特徴とするパターンの重ね合わせ評価方法。 - 請求項3記載のパターンの重ね合わせ評価方法において、
前記選択は、前記第1パターンと前記第2パターンの設計データから自動選択されたものであることを特徴とするパターンの重ね合わせ評価方法。 - 請求項1記載のパターンの重ね合わせ評価方法において、
前記レイアウトの情報には、前記第1パターン及び前記第2パターンの形状情報、プロセスステップ情報、前記第1パターン及び前記第2パターン間での目標相対位置情報が含まれることを特徴とするパターンの重ね合わせ評価方法。 - 請求項1記載のパターンの重ね合わせ評価方法において、
前記第1パターンと前記第2パターンの少なくとも一者は、寸法計測パターンを兼ねており、重ね合わせ評価と合わせて寸法評価も行なうことを特徴とするパターンの重ね合わせ評価方法。 - 請求項1記載のパターンの重ね合わせ評価方法において、
前記第1パターンと前記第2パターンの少なくとも一者は、寸法計測パターンの位置決め用パターンを兼ねており、前記位置決め用パターンの位置に基づいて前記寸法計測用パターンの位置を求めることにより、重ね合わせ評価と合わせて寸法評価も行なうことを特徴とするパターンの重ね合わせ評価方法。 - 荷電粒子発生源と、
前記荷電粒子発生源から放出された荷電粒子を偏向する偏向電極と、
第1の露光ステップおよび第2の露光ステップで形成された重ね合わせ評価パターンを備えた試料を載せる試料台と、
前記評価パターンへの前記荷電粒子の照射により前記評価パターンからの信号を検出する検出器と、
前記検出器からの検出信号を処理して画像を得る画像処理全体制御部と、
前記重ね合わせ評価パターンのレイアウト情報が登録される記憶部と、
前記画像と前記レイアウト情報とを用いて演算する演算処理部と、
前記演算処理部での演算結果に基づき、前記第1の露光ステップと前記第2の露光ステップとの重ね合わせずれ量と、ずれの方向とを含む情報を表示する表示画面を備えた入出力部とを有することを特徴とする荷電粒子顕微鏡。 - 請求項8記載の荷電粒子顕微鏡において、
前記レイアウト情報には、前記重ね合わせ評価パターンの形状情報、プロセスステップ情報、位置情報が含まれることを特徴とする荷電粒子顕微鏡。 - 請求項8記載の荷電粒子顕微鏡において、
前記入出力部は、重ね合わせ評価レシピ選択機能、重ね合わせ評価画像選択機能を有することを特徴とする荷電粒子顕微鏡。 - 請求項8記載の荷電粒子顕微鏡において、
前記試料は、複数のチップ領域を有するウエハであり、
前記入出力部は、前記ウエハの面内での合わせずれ量分布を前記表示画面に表示するための選択機能、および前記チップの面内における合わせずれ量分布を前記表示画面に表示するためのチップ選択機能を有することを特徴とする荷電粒子顕微鏡。 - 請求項8記載の荷電粒子顕微鏡において、
前記重ね合わせ評価パターンは、前記第1の露光ステップで形成される第1パターンと前記第2の露光ステップで形成される第2パターンとを含むことを特徴とする荷電粒子顕微鏡。 - 請求項12記載の荷電粒子顕微鏡において、
前記第1パターンと前記第2パターンとは形状が異なることを特徴とする荷電粒子顕微鏡。 - 請求項8記載の荷電粒子顕微鏡において、
前記重ね合わせ評価パターンは寸法計測パターンを兼ね、前記寸法計測パターンの計測結果は前記表示画面に表示されることを特徴とする荷電粒子顕微鏡。 - 請求項8記載の荷電粒子顕微鏡において、
前記重ね合わせ評価パターンは、寸法計測用位置決めパターンを兼ね、寸法計測結果は前記表示画面に表示されることを特徴とする荷電粒子顕微鏡。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/143,346 US20110268363A1 (en) | 2009-01-30 | 2009-12-10 | Method for evaluating superimposition of pattern |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009019318A JP2010177500A (ja) | 2009-01-30 | 2009-01-30 | パターンの重ね合わせ評価方法 |
JP2009-019318 | 2009-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010086939A1 true WO2010086939A1 (ja) | 2010-08-05 |
Family
ID=42395210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/006766 WO2010086939A1 (ja) | 2009-01-30 | 2009-12-10 | パターンの重ね合わせ評価方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20110268363A1 (ja) |
JP (1) | JP2010177500A (ja) |
WO (1) | WO2010086939A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI475597B (zh) * | 2012-02-08 | 2015-03-01 | Hitachi High Tech Corp | Pattern evaluation method and pattern evaluation device |
US10128140B2 (en) * | 2012-08-31 | 2018-11-13 | Semiconductor Technologies & Instruments Pte Ltd | System and method for automatically correcting for rotational misalignment of wafers on film frames |
JP5965819B2 (ja) * | 2012-10-26 | 2016-08-10 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置及び重ね合わせずれ量測定方法 |
JP5825502B2 (ja) * | 2013-02-27 | 2015-12-02 | 株式会社東京精密 | プローブ装置 |
JP2014187195A (ja) * | 2013-03-22 | 2014-10-02 | Toshiba Corp | パターンの重ね合わせずれ計測方法 |
CN103354212B (zh) * | 2013-06-25 | 2016-04-06 | 上海华力微电子有限公司 | 测算接触孔与多晶硅栅极对准偏差值的方法 |
CN103346100B (zh) * | 2013-06-27 | 2016-04-20 | 上海华力微电子有限公司 | 检测接触孔与多晶硅栅极对准度的方法 |
US10495982B2 (en) * | 2013-10-28 | 2019-12-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for real-time overlay error reduction |
CN105849882B (zh) * | 2013-12-26 | 2019-04-30 | 浜松光子学株式会社 | 图像处理方法、图像处理装置、图像处理程序及存储有图像处理程序的存储介质 |
CN117890371B (zh) * | 2024-01-18 | 2024-07-26 | 马鞍山芯乔科技有限公司 | 一种晶圆外观检测功能影像迭合的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08162383A (ja) * | 1994-11-30 | 1996-06-21 | Sony Corp | 重ね合わせ精度評価パターンおよびこれを用いた評価方法 |
JPH11251224A (ja) * | 1998-03-03 | 1999-09-17 | Toshiba Corp | パターン寸法測定方法 |
JP2002328015A (ja) * | 2001-04-27 | 2002-11-15 | Hitachi Ltd | 半導体検査システム |
JP2007147366A (ja) * | 2005-11-25 | 2007-06-14 | Hitachi High-Technologies Corp | 半導体パターン形状評価装置および形状評価方法 |
JP2007294521A (ja) * | 2006-04-21 | 2007-11-08 | Toshiba Corp | パターン合わせずれ計測方法およびプログラム |
JP2008058166A (ja) * | 2006-08-31 | 2008-03-13 | Hitachi High-Technologies Corp | パターンのずれ測定方法、及びパターン測定装置 |
JP2008232933A (ja) * | 2007-03-22 | 2008-10-02 | Hitachi High-Technologies Corp | 画像処理システム、及び走査型電子顕微鏡装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3927353B2 (ja) * | 2000-06-15 | 2007-06-06 | 株式会社日立製作所 | 比較検査における画像の位置合せ方法、比較検査方法及び比較検査装置 |
US6898306B1 (en) * | 2001-05-14 | 2005-05-24 | Ultratech, Inc. | Machine-independent alignment system and method |
US7138629B2 (en) * | 2003-04-22 | 2006-11-21 | Ebara Corporation | Testing apparatus using charged particles and device manufacturing method using the testing apparatus |
JP4943304B2 (ja) * | 2006-12-05 | 2012-05-30 | 株式会社 Ngr | パターン検査装置および方法 |
-
2009
- 2009-01-30 JP JP2009019318A patent/JP2010177500A/ja active Pending
- 2009-12-10 US US13/143,346 patent/US20110268363A1/en not_active Abandoned
- 2009-12-10 WO PCT/JP2009/006766 patent/WO2010086939A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08162383A (ja) * | 1994-11-30 | 1996-06-21 | Sony Corp | 重ね合わせ精度評価パターンおよびこれを用いた評価方法 |
JPH11251224A (ja) * | 1998-03-03 | 1999-09-17 | Toshiba Corp | パターン寸法測定方法 |
JP2002328015A (ja) * | 2001-04-27 | 2002-11-15 | Hitachi Ltd | 半導体検査システム |
JP2007147366A (ja) * | 2005-11-25 | 2007-06-14 | Hitachi High-Technologies Corp | 半導体パターン形状評価装置および形状評価方法 |
JP2007294521A (ja) * | 2006-04-21 | 2007-11-08 | Toshiba Corp | パターン合わせずれ計測方法およびプログラム |
JP2008058166A (ja) * | 2006-08-31 | 2008-03-13 | Hitachi High-Technologies Corp | パターンのずれ測定方法、及びパターン測定装置 |
JP2008232933A (ja) * | 2007-03-22 | 2008-10-02 | Hitachi High-Technologies Corp | 画像処理システム、及び走査型電子顕微鏡装置 |
Also Published As
Publication number | Publication date |
---|---|
US20110268363A1 (en) | 2011-11-03 |
JP2010177500A (ja) | 2010-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010086939A1 (ja) | パターンの重ね合わせ評価方法 | |
JP5986817B2 (ja) | オーバーレイ誤差測定装置、及びコンピュータープログラム | |
US8358832B2 (en) | High accuracy beam placement for local area navigation | |
US9087366B2 (en) | High accuracy beam placement for local area navigation | |
JP6038053B2 (ja) | パターン評価方法およびパターン評価装置 | |
US8767038B2 (en) | Method and device for synthesizing panorama image using scanning charged-particle microscope | |
US7473502B1 (en) | Imaging tool calibration artifact and method | |
US20160056014A1 (en) | Superposition Measuring Apparatus, Superposition Measuring Method, and Superposition Measuring System | |
US20090200465A1 (en) | Pattern measuring method and pattern measuring device | |
JP6423011B2 (ja) | パターン測定装置及び欠陥検査装置 | |
JP2007248087A (ja) | 試料寸法測定方法、及び試料寸法測定装置 | |
US11694312B2 (en) | Image enhancement for multi-layered structure in charged-particle beam inspection | |
JP6108684B2 (ja) | 局所領域ナビゲーション用の高精度ビーム配置 | |
US20240242334A1 (en) | Method for defect detection in a semiconductor sample in sample images with distortion | |
KR102309432B1 (ko) | 하전 입자선 장치 | |
TWI791191B (zh) | 用於自檢測影像提取圖案輪廓資訊之方法、輪廓提取設備、及相關之非暫時性電腦可讀媒體 | |
US20060274935A1 (en) | Method for measuring registration of overlapping material layers of an integrated circuit | |
JPH10199790A (ja) | 半導体チップおよび半導体製造用レチクル | |
JP2005340273A (ja) | 電子線露光装置及び電子線露光における露光位置補正方法 | |
JP2005285893A (ja) | 原版検査方法、露光方法及び電子線露光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09839131 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13143346 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09839131 Country of ref document: EP Kind code of ref document: A1 |