WO2010079730A1 - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector Download PDF

Info

Publication number
WO2010079730A1
WO2010079730A1 PCT/JP2010/000001 JP2010000001W WO2010079730A1 WO 2010079730 A1 WO2010079730 A1 WO 2010079730A1 JP 2010000001 W JP2010000001 W JP 2010000001W WO 2010079730 A1 WO2010079730 A1 WO 2010079730A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
sputtering target
ultrasonic flaw
inspected
flaw detection
Prior art date
Application number
PCT/JP2010/000001
Other languages
French (fr)
Japanese (ja)
Inventor
上野順
石川正武
Original Assignee
Ueno Jun
Ishikawa Masatake
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueno Jun, Ishikawa Masatake filed Critical Ueno Jun
Publication of WO2010079730A1 publication Critical patent/WO2010079730A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts

Definitions

  • the present invention relates to an ultrasonic flaw detection apparatus that performs flaw detection inspection of an inspection object having a cylindrical outer shape.
  • a sputtering apparatus that forms a film on a substrate is used.
  • the sputtering apparatus has a sputtering target that emits desired atoms by collision with ionized gas or the like.
  • This sputtering target is manufactured, for example, by bonding a plate-like target member to a backing plate with a bonding material.
  • the backing plate and the target member are desired to be uniformly filled with a bonding material over the entire bonding surface.
  • the sputtering target is normally inspected for the filling rate of the bonding material between the target member and the backing plate by using a nondestructive ultrasonic flaw detector during manufacture.
  • the ultrasonic flaw detection apparatus includes a probe that transmits ultrasonic waves and receives reflections thereof, a mechanism that moves the probes in the XY directions in a horizontal plane, and the like, and is a plate-like sputtering target placed in a liquid On the other hand, the probe is moved in the XY direction while transmitting an ultrasonic wave, and the entire surface of the sputtering target is scanned by the probe (see Patent Document 1).
  • cylindrical sputtering targets have become widespread, for example, for the production of solar cells. Since the cylindrical sputtering target cannot be inspected by the ultrasonic flaw detection apparatus as described above, the product may be shipped without inspecting the bonding material.
  • the present invention has been made in view of the above points, and an ultrasonic flaw detection apparatus having a simple configuration and a low cost while appropriately performing flaw detection inspection of a cylindrical inspection target such as a cylindrical sputtering target. Its purpose is to provide.
  • the present invention is an ultrasonic flaw detection apparatus that performs a flaw detection inspection of a cylindrical object to be inspected, and transmits ultrasonic waves to the surface of the inspection object and receives reflections thereof.
  • a probe a probe moving mechanism that linearly moves the probe relative to the object to be inspected in an axial direction and a radial direction in a horizontal plane, and rotation of the probe moving mechanism in the circumferential direction of the object to be inspected
  • a power transmission mechanism that converts the movement into a rotational movement of the object to be inspected.
  • the linear movement in the radial direction of the probe moving mechanism is converted into the rotational movement in the circumferential direction of the object to be inspected and the object to be inspected is rotationally moved, a drive source for rotating the object to be inspected is necessary.
  • an ultrasonic flaw detector with a simple configuration and low cost can be realized.
  • an existing ultrasonic flaw detection apparatus that performs flaw detection inspection of a plate-shaped object to be inspected can be used. Therefore, an inexpensive ultrasonic flaw detector can be realized accordingly. Furthermore, it becomes possible to perform a flaw detection inspection of a plate-shaped inspection object using the ultrasonic flaw detection apparatus.
  • the probe movement mechanism includes an axial movement mechanism that holds the probe and moves the probe in the axial direction, and a radial movement mechanism that moves the axial movement mechanism in the radial direction
  • the power transmission mechanism Is a connecting member that is connected to the axial movement mechanism and pushes the shaft of the object to be inspected as the axial movement mechanism moves in the radial direction, and the radial direction of the object to be inspected that is pressed by the connecting member
  • a rack and pinion mechanism that changes the linear movement to the rotational movement.
  • the linear motion of the probe moving mechanism can be converted into the rotational motion of the object to be inspected with a simple mechanism.
  • the rack and pinion mechanism is used, the rotational distance of the object to be inspected can be controlled accurately and strictly.
  • the gear of the rack and pinion mechanism is attached to the shaft of the object to be inspected, the rack is arranged toward the radial direction, and the diameter of the pitch circle of the gear is set to the same diameter as the object to be inspected. It may be.
  • the radial movement distance of the probe and the rotation distance on the surface of the object to be inspected are the same, for example, the one-way movement control of the probe in a plate-like ultrasonic flaw detector is directly used as the radial movement control. Can be used.
  • the connecting member and the shaft of the object to be inspected may be connected by a universal joint.
  • the inspection object may be a sputtering target obtained by bonding a target member to a backing member with a bonding material.
  • an ultrasonic flaw detector with a simple configuration and at a low cost while appropriately performing flaw detection inspection of an inspection object having a cylindrical outer shape.
  • FIG. 1 is an explanatory view of a longitudinal section showing an outline of the configuration of the ultrasonic flaw detector 1 according to the present embodiment
  • FIG. 2 is an explanatory view when the ultrasonic flaw detector 1 is seen from a plane.
  • the duplicate description is abbreviate
  • the ultrasonic flaw detector 1 includes a liquid tank 10 in which a liquid is stored, and an installation table in which a cylindrical sputtering target A as an object to be inspected is installed. 11, a probe 12 that transmits ultrasonic waves to the surface of the sputtering target A and receives reflections thereof, an axial direction (X direction) and a radial direction (Y shown in FIG. 2) in the horizontal plane with respect to the sputtering target A.
  • a probe moving mechanism 13 that linearly moves in the direction
  • a power transmission mechanism 14 that rotates the sputtering target A by converting the linear movement in the Y direction of the probe moving mechanism 13 into a circumferential rotational movement of the sputtering target A
  • a control unit 15 and the like for controlling the driving of the probe 12 and the probe moving mechanism 13 are provided.
  • the probe moving mechanism 13 has an X-direction moving mechanism 20 that holds the probe 12 and moves it in the X direction, and a Y-direction moving mechanism 21 that moves the X-direction moving mechanism 20 in the Y direction.
  • the X-direction moving mechanism 20 includes, for example, a slider 30 that holds the probe 12, a rail 31 that is attached to the slider 30 and extends in the X direction, a drive unit 32 such as a motor that drives the slider 30, and the like.
  • the rail 31 is formed, for example, from one end portion in the X direction above the installation base 11 to the other end portion, so that the probe 12 extends from the outside of one end in the X direction of the sputtering target A to the outside of the other end. I can move.
  • the Y-direction moving mechanism 21 includes a rail 40 that holds the rail 31 of the X-direction moving mechanism 20 and extends in the Y direction, and a drive unit 41 that drives the rail 40 in the Y direction. Yes.
  • the rail 40 is formed, for example, from the vicinity of one end in the Y direction above the installation base 11 to the vicinity of the other end, so that the probe 12 can move at least from one end to the other end in the Y direction of a rack 61 described later. .
  • the probe 12 can move in the vertical direction (Z direction) as a part of the slider 30 expands and contracts.
  • the power transmission mechanism 14 is connected to the rail 31 of the X-direction moving mechanism 20 and presses the axis B of the sputtering target A as the rail 31 moves in the Y direction, and the sputtering target pressed by the connecting member 50.
  • a rack and pinion mechanism 51 that changes the linear movement of A in the Y direction into a rotational movement is included.
  • a bearing 52 is attached to the axis B of the sputtering target A, and a connecting member 50 is connected to the bearing 52.
  • the gear 60 of the rack and pinion mechanism 51 is fixed to the axis B of the sputtering target A.
  • the rack 61 that meshes with the gear 60 is installed on the installation table 11 in the Y direction.
  • the probe 12 is positioned above the axis B of the sputtering target A that is positioned by the rack and pinion mechanism 51.
  • the diameter of the pitch circle P is set to be the same as the diameter of the sputtering target A as shown in FIG. Thereby, the moving distance ( ⁇ y in FIG. 3) of the gear 60 in the Y direction matches the rotational distance of the surface of the sputtering target A.
  • the control unit 15 has, for example, a display screen, and the flaw detection result on the entire surface of the sputtering target A is imaged and displayed. The image is displayed by planarizing the cylindrical surface of the sputtering target A, for example.
  • the sputtering target A is obtained by bonding a cylindrical target member C to the outer periphery of a cylindrical backing member E with a bonding material D as shown in FIG.
  • the bonding material D is interposed on the entire joint surface between the inner peripheral surface of the cylindrical target member C and the outer peripheral surface of the backing member E.
  • the material of the target member C Al, Cu, Mo, ITO, Si, AZO, or the like is used, and as the bonding material D, for example, In, Sn, resin, or the like is used.
  • stainless steel (SUS) or Ti is used as the material of the backing member E.
  • the shaft B is fixed to the axis of the sputtering target A
  • the gear 60 is attached to the shaft B
  • the shaft B is attached to the bearing 52.
  • the gear 60 is placed on the rack 61 and meshes with the rack 61.
  • the sputtering target A is first arranged near one end in the Y direction of the rack 61 (upper side in FIG. 2).
  • the liquid is stored in the liquid tank 10 and the sputtering target A is immersed.
  • the probe 12 is positioned outside one end (on the left side in FIG. 1) on the axis of the sputtering target A.
  • FIG. 5 shows the locus of movement of the probe 12 on the surface of the sputtering target A in the flaw detection inspection described below.
  • the flaw detection inspection is started.
  • the X-direction moving mechanism 20 causes, for example, the one end side of the sputtering target A on the axis of the sputtering target A (FIG. 1, It moves from the left side of FIG.
  • the probe 12 can detect flaws in a predetermined region having a width in the Y direction at a time, flaw detection in a band-like portion having a width near the top of the sputtering target A is detected by a single scan of the probe 12 in the X direction.
  • the Y-direction moving mechanism 21 moves the X-direction moving mechanism 20 in the Y direction (downward in FIG. 2) by a predetermined distance, whereby the axis B is pushed in the Y direction via the connecting member 50, and the rack and pinion The sputtering target A is rotated in the Y direction by the mechanism 51.
  • the flaw detection detection position by the probe 12 on the surface of the sputtering target A is shifted.
  • the rotation distance ⁇ y on the surface of the sputtering target A at this time is the same as the movement distance ⁇ y in the Y direction of the X direction moving mechanism 20.
  • the predetermined distance ⁇ y is determined by, for example, a single flaw detection detection width of the probe 12, and is set so that there is no gap between flaw detection detection positions adjacent in the Y direction.
  • the X-direction moving mechanism 20 causes one end on the axis of the sputtering target A from the other end side (the right side in FIG. 1 and FIG. 5). Returned to the section side (left side in FIGS. 1 and 5).
  • the Y-direction moving mechanism 21 moves the X-direction moving mechanism 20 by a predetermined distance ⁇ y in the Y direction, the axis B is pushed in the Y direction via the connecting member 50, and the sputtering target A is moved to Y by the rack and pinion mechanism 51. Rotated in the direction.
  • the probe 12 transmits the ultrasonic wave again and receives the reflection, the other end of the sputtering target A from the one end side (the right side in FIGS. 1 and 5) on the axis of the sputtering target A by the X-direction moving mechanism 20. Move to the part side (left side in FIGS. 1 and 5). Thereafter, this is repeated.
  • the probe 12 is reciprocated in the X direction and the sputtering target A is rotated by the predetermined distance ⁇ y in the Y direction. Inspection ends.
  • the reception results received in each scan of the probe 12 are respectively calculated in the control unit 15, and the flaw detection results on the entire surface of the sputtering target A are joined by joining the flaw detection results on the top of the sputtering target A by the scans. Is obtained.
  • the flaw detection result is shown as a planar image in which the sputtering target A is developed, for example.
  • the sputtering target A is separately rotated.
  • An ultrasonic flaw detector 1 that does not require a drive source, has a simple configuration, and is inexpensive can be realized.
  • the driving of the probe moving mechanism 13 that moves the probe 12 in two directions in the horizontal plane is used, for example, an existing ultrasonic flaw detector that performs flaw detection on a plate-like sputtering target can be used. Therefore, an inexpensive ultrasonic flaw detector 1 can be realized accordingly.
  • a flaw detection inspection of a plate-like sputtering target can be performed using the ultrasonic flaw detection apparatus 1.
  • the probe moving mechanism 13 includes an X direction moving mechanism 20 that holds the probe 12 and moves it in the X direction, and a Y direction moving mechanism 21 that moves the X direction moving mechanism 20 in the Y direction. Is connected to the X-direction moving mechanism 20 and pushes the axis B of the sputtering target A as the X-direction moving mechanism 20 moves in the Y direction, and the Y direction of the sputtering target A pushed by the connecting member 50. And a rack and pinion mechanism 51 for changing the linear movement to the rotational movement. Thereby, the linear motion of the probe moving mechanism 13 can be converted into the rotational motion of the sputtering target A with a simple configuration.
  • the rotational distance ⁇ y of the sputtering target A can be accurately controlled. Furthermore, since the sputtering target A is rotated along the rack 61, it can be applied to sputtering targets A having various diameters.
  • the gear 60 of the rack and pinion mechanism 51 is attached to the axis B of the sputtering target A, the rack 61 is arranged in the Y direction, and the diameter of the pitch circle P of the gear 60 is set to the same diameter as the sputtering target A.
  • the moving distance in the radial direction of the probe 12 and the rotational distance on the surface of the sputtering target A become the same.
  • the movement control in the Y direction of the probe in an ultrasonic flaw detector for a plate-like sputtering target is used as it is.
  • the flaw detection inspection of the cylindrical sputtering target A can be performed.
  • a control program etc. can be utilized as it is, for example, the cheaper ultrasonic flaw detector 1 is realizable.
  • the connecting member 50 and the axis B of the sputtering target A may be connected by a universal joint 70 as a universal joint.
  • the universal joint 70 makes the connecting member 50 rotatable around the axis B, for example. In such a case, since play can be made between the axis B of the sputtering target A and the connecting member 50, for example, alignment when the axis B and the connecting member 50 are fixed becomes easy.
  • the object to be inspected is the sputtering target A, but the present invention can also be applied to flaw detection inspection of other objects to be inspected.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Provided is an ultrasonic flaw detector which has a simple configuration and a low cost, while correctly detecting and inspecting flaws of a cylindrical sputtering target. The ultrasonic flaw detector has: a probe which transmits and receives ultrasonic waves to and from the surface of the sputtering target; a probe shifting mechanism which linearly shifts the probe in the X direction and the Y direction within the horizontal plane with respect to the sputtering target; and a power transmitting mechanism, which converts the linear shift in the Y direction performed by the probe shifting mechanism into a rotational shift in the circumferential direction of the sputtering target and rotationally shifts the sputtering target.

Description

超音波探傷装置Ultrasonic flaw detector
 本発明は、外形が円柱状の被検査体の探傷検査を行う超音波探傷装置に関する。 The present invention relates to an ultrasonic flaw detection apparatus that performs flaw detection inspection of an inspection object having a cylindrical outer shape.
 例えば半導体装置の製造プロセス等では、基板に成膜を行うスパッタリング装置が用いられている。スパッタリング装置は、イオン化したガスなどの衝突により所望の原子を放出するスパッタリングターゲットを有している。このスパッタリングターゲットは、例えば板状のターゲット部材をボンディング材によりバッキングプレートにボンディングさせて製造されている。 For example, in a manufacturing process of a semiconductor device, a sputtering apparatus that forms a film on a substrate is used. The sputtering apparatus has a sputtering target that emits desired atoms by collision with ionized gas or the like. This sputtering target is manufactured, for example, by bonding a plate-like target member to a backing plate with a bonding material.
 ところで、上述のスパッタリング装置におけるスパッタリング処理時には、イオンの衝突等によりターゲット部材の温度が上昇するため、ターゲット部材を冷却する必要がある。このため、バッキングプレート内には、通常冷却機構が設けられている。 By the way, at the time of the sputtering process in the above-described sputtering apparatus, the temperature of the target member rises due to ion collision or the like, and thus the target member needs to be cooled. For this reason, a normal cooling mechanism is provided in the backing plate.
 例えばスパッタリングターゲットにおいて、ボンディング材が欠落した部分があると、剥がれの原因になるだけでなく、冷却してもその部分のバッキングプレートとターゲット部材との熱交換が十分に行われず、当該部分のターゲット部材が高温になり、破損の原因となる。このため、バッキングプレートとターゲット部材は、接合面の全面にボンディング材が一様に充填されていることが望まれている。 For example, if there is a part where the bonding material is missing in the sputtering target, not only will it cause peeling, but even if it is cooled, the heat exchange between the backing plate and the target member will not be performed sufficiently, and the target in that part The member becomes hot and causes damage. For this reason, the backing plate and the target member are desired to be uniformly filled with a bonding material over the entire bonding surface.
  このため、スパッタリングターゲットは、通常製造時に非破壊試験の超音波探傷装置を用いて、ターゲット部材とバッキングプレートとの間のボンディング材の充填率が検査されている。 For this reason, the sputtering target is normally inspected for the filling rate of the bonding material between the target member and the backing plate by using a nondestructive ultrasonic flaw detector during manufacture.
 上記超音波探傷装置は、超音波を発信しその反射を受信するプローブと、当該プローブを水平面内のX-Y方向に移動する機構等を有し、液中に置かれた板状のスパッタリングターゲットに対し、プローブを超音波を発信させながらX-Y方向に移動させ、当該プローブによりスパッタリングターゲットの全面を走査することによって行っている(特許文献1参照)。 The ultrasonic flaw detection apparatus includes a probe that transmits ultrasonic waves and receives reflections thereof, a mechanism that moves the probes in the XY directions in a horizontal plane, and the like, and is a plate-like sputtering target placed in a liquid On the other hand, the probe is moved in the XY direction while transmitting an ultrasonic wave, and the entire surface of the sputtering target is scanned by the probe (see Patent Document 1).
日本特許公開公報2004-132725号Japanese Patent Publication No. 2004-132725
 しかしながら、近年、例えば太陽電池の製造用として、円筒状のスパッタリングターゲットが普及している。円筒状のスパッタリングターゲットは、上述のような超音波探傷装置では検査できないため、ボンディング材の検査を行わないまま、製品を出荷することがある。 However, in recent years, cylindrical sputtering targets have become widespread, for example, for the production of solar cells. Since the cylindrical sputtering target cannot be inspected by the ultrasonic flaw detection apparatus as described above, the product may be shipped without inspecting the bonding material.
  また、円筒状のスパッタリングターゲットを検査できる超音波探傷装置の開発も進められているが、当該装置は、例えば固定されたプローブに対し、円筒状のスパッタリングターゲットを専用の駆動機構で軸回転させ、プローブによりスパッタリングターゲットの表面のデータを取得し、データ処理によりスパッタリングターゲット全面の探傷を検出している。このため、装置の構造やソフトウェアの構成が複雑化し、その結果、当該装置が非常に高価になっている。 In addition, the development of an ultrasonic flaw detector capable of inspecting a cylindrical sputtering target is also underway, but the apparatus rotates the cylindrical sputtering target with a dedicated drive mechanism, for example, with respect to a fixed probe, Data on the surface of the sputtering target is acquired by a probe, and flaw detection on the entire surface of the sputtering target is detected by data processing. For this reason, the structure of the apparatus and the software configuration are complicated, and as a result, the apparatus is very expensive.
 本発明は、かかる点に鑑みてなされたものであり、円筒状のスパッタリングターゲットなどの外形が円柱状の被検査体の探傷検査を適正に行いつつ、構成が簡易で安価な超音波探傷装置を提供することをその目的とする。 The present invention has been made in view of the above points, and an ultrasonic flaw detection apparatus having a simple configuration and a low cost while appropriately performing flaw detection inspection of a cylindrical inspection target such as a cylindrical sputtering target. Its purpose is to provide.
 上記目的を達成するための本発明は、外形が円柱状の被検査体の探傷検査を行う超音波探傷装置であって、前記被検査体の表面に対し超音波を発信しその反射を受信するプローブと、前記プローブを前記被検査体に対し水平面内の軸方向と径方向に直線移動させるプローブ移動機構と、前記プローブ移動機構の前記径方向の直線移動を前記被検査体の周方向の回転移動に変換して、前記被検査体を回転移動させる動力伝達機構と、を有する。 In order to achieve the above object, the present invention is an ultrasonic flaw detection apparatus that performs a flaw detection inspection of a cylindrical object to be inspected, and transmits ultrasonic waves to the surface of the inspection object and receives reflections thereof. A probe, a probe moving mechanism that linearly moves the probe relative to the object to be inspected in an axial direction and a radial direction in a horizontal plane, and rotation of the probe moving mechanism in the circumferential direction of the object to be inspected A power transmission mechanism that converts the movement into a rotational movement of the object to be inspected.
 本発明によれば、プローブ移動機構の径方向の直線移動を被検査体の周方向の回転移動に変換して、被検査体を回転移動させるので、別途被検査体を回転させる駆動源が必要なく、構成が簡易で安価な超音波探傷装置を実現できる。また、プローブを水平面内の2方向に移動できるプローブ移動機構の駆動を利用するので、例えば板状の被検査体の探傷検査を行う既存の超音波探傷装置を利用することができる。よって、その分安価な超音波探傷装置を実現できる。さらに、当該超音波探傷装置を用いて、板状の被検査体の探傷検査を行うことも可能になる。 According to the present invention, since the linear movement in the radial direction of the probe moving mechanism is converted into the rotational movement in the circumferential direction of the object to be inspected and the object to be inspected is rotationally moved, a drive source for rotating the object to be inspected is necessary. In addition, an ultrasonic flaw detector with a simple configuration and low cost can be realized. In addition, since the driving of the probe moving mechanism that can move the probe in two directions in the horizontal plane is used, for example, an existing ultrasonic flaw detection apparatus that performs flaw detection inspection of a plate-shaped object to be inspected can be used. Therefore, an inexpensive ultrasonic flaw detector can be realized accordingly. Furthermore, it becomes possible to perform a flaw detection inspection of a plate-shaped inspection object using the ultrasonic flaw detection apparatus.
 前記プローブ移動機構は、前記プローブを保持して前記軸方向に移動させる軸方向移動機構と、前記軸方向移動機構を前記径方向に移動させる径方向移動機構と、を有し、前記動力伝達機構は、前記軸方向移動機構に連結され当該軸方向移動機構の前記径方向への移動に伴い前記被検査体の軸を押す連結部材と、前記連結部材により押された被検査体の前記径方向への直線移動を回転移動に変えるラック・ピニオン機構と、を有していてもよい。この場合、簡単な機構でプローブ移動機構の直線運動を被検査体の回転運動に変換できる。また、ラック・ピニオン機構を用いるので、被検査体の回転距離の制御を正確かつ厳密に行うことができる。 The probe movement mechanism includes an axial movement mechanism that holds the probe and moves the probe in the axial direction, and a radial movement mechanism that moves the axial movement mechanism in the radial direction, and the power transmission mechanism Is a connecting member that is connected to the axial movement mechanism and pushes the shaft of the object to be inspected as the axial movement mechanism moves in the radial direction, and the radial direction of the object to be inspected that is pressed by the connecting member And a rack and pinion mechanism that changes the linear movement to the rotational movement. In this case, the linear motion of the probe moving mechanism can be converted into the rotational motion of the object to be inspected with a simple mechanism. Further, since the rack and pinion mechanism is used, the rotational distance of the object to be inspected can be controlled accurately and strictly.
 前記ラック・ピニオン機構の歯車は、前記被検査体の軸に取り付けられ、ラックは、前記径方向に向けて配置され、前記歯車のピッチ円の径は、前記被検査体と同じ径に設定されていてもよい。かかる場合、プローブの径方向の移動距離と被検査体の表面上の回転距離が同じになるので、例えば板状の超音波探傷装置におけるプローブの一方向の移動制御をそのまま径方向の移動制御に利用することができる。これにより、板状の被検査体の探傷検査の例えば制御プログラム等をそのまま利用して、円柱状の被検査体の探傷検査を行うことができるので、さらに安価な超音波探傷装置を実現できる。 The gear of the rack and pinion mechanism is attached to the shaft of the object to be inspected, the rack is arranged toward the radial direction, and the diameter of the pitch circle of the gear is set to the same diameter as the object to be inspected. It may be. In this case, since the radial movement distance of the probe and the rotation distance on the surface of the object to be inspected are the same, for example, the one-way movement control of the probe in a plate-like ultrasonic flaw detector is directly used as the radial movement control. Can be used. As a result, it is possible to perform a flaw detection inspection of a cylindrical inspection object by using, for example, a control program for a flaw detection inspection of a plate-shaped inspection object as it is, thereby realizing a further inexpensive ultrasonic inspection apparatus.
 前記連結部材と前記被検査体の軸は、自在継手により接続されていてもよい。 The connecting member and the shaft of the object to be inspected may be connected by a universal joint.
 前記被検査体は、ターゲット部材をボンディング材によりバッキング部材にボンディングしたスパッタリングターゲットであってもよい。 The inspection object may be a sputtering target obtained by bonding a target member to a backing member with a bonding material.
 本発明によれば、外形が円柱状の被検査体の探傷検査を適正に行いつつ、構成が簡易で安価な超音波探傷装置を実現できる。 According to the present invention, it is possible to realize an ultrasonic flaw detector with a simple configuration and at a low cost while appropriately performing flaw detection inspection of an inspection object having a cylindrical outer shape.
超音波探傷装置の構成を示す縦断面の説明図である。It is explanatory drawing of the longitudinal cross-section which shows the structure of an ultrasonic flaw detector. 超音波探傷装置の平面から見たときの説明図である。It is explanatory drawing when it sees from the plane of an ultrasonic flaw detector. ラック・ピニオン機構の説明図である。It is explanatory drawing of a rack and pinion mechanism. スパッタリングターゲットの断面図である。It is sectional drawing of a sputtering target. スパッタリングターゲットを展開したときのプローブの移動の軌跡を示す説明図である。It is explanatory drawing which shows the locus | trajectory of the movement of a probe when a sputtering target is expand | deployed. 連結部材とスパッタリングターゲットの軸を接続するユニバーサルジョイントを示す説明図である。It is explanatory drawing which shows the universal joint which connects a connection member and the axis | shaft of a sputtering target.
 以下、図面を参照して、本発明の好ましい実施の形態について説明する。図1は、本実施の形態にかかる超音波探傷装置1の構成の概略を示す縦断面の説明図であり、図2は、超音波探傷装置1を平面から見た場合の説明図である。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of a longitudinal section showing an outline of the configuration of the ultrasonic flaw detector 1 according to the present embodiment, and FIG. 2 is an explanatory view when the ultrasonic flaw detector 1 is seen from a plane. In addition, in this specification and drawing, about the component which has the substantially same function structure, the duplicate description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 超音波探傷装置1は、例えば図1に示すように液体が貯留される液体槽10と、当該液体槽10内に収容され、被検査体としての円筒状のスパッタリングターゲットAが設置される設置台11と、スパッタリングターゲットAの表面に対し超音波を発信しその反射を受信するプローブ12と、プローブ12をスパッタリングターゲットAに対し水平面内の軸方向(X方向)と径方向(図2に示すY方向)に直線移動させるプローブ移動機構13と、プローブ移動機構13のY向の直線移動をスパッタリングターゲットAの周方向の回転移動に変換して、スパッタリングターゲットAを回転移動させる動力伝達機構14と、プローブ12やプローブ移動機構13の駆動等を制御する制御部15等を有している。 For example, as shown in FIG. 1, the ultrasonic flaw detector 1 includes a liquid tank 10 in which a liquid is stored, and an installation table in which a cylindrical sputtering target A as an object to be inspected is installed. 11, a probe 12 that transmits ultrasonic waves to the surface of the sputtering target A and receives reflections thereof, an axial direction (X direction) and a radial direction (Y shown in FIG. 2) in the horizontal plane with respect to the sputtering target A. A probe moving mechanism 13 that linearly moves in the direction), a power transmission mechanism 14 that rotates the sputtering target A by converting the linear movement in the Y direction of the probe moving mechanism 13 into a circumferential rotational movement of the sputtering target A, A control unit 15 and the like for controlling the driving of the probe 12 and the probe moving mechanism 13 are provided.
 例えばプローブ移動機構13は、プローブ12を保持してX方向に移動させるX方向移動機構20と、X方向移動機構20をY方向に移動させるY方向移動機構21を有している。 For example, the probe moving mechanism 13 has an X-direction moving mechanism 20 that holds the probe 12 and moves it in the X direction, and a Y-direction moving mechanism 21 that moves the X-direction moving mechanism 20 in the Y direction.
 X方向移動機構20は、例えばプローブ12を保持するスライダ30と、当該スライダ30が取り付けられX方向に延びるレール31と、スライダ30を駆動させるモータ等の駆動部32等を有している。レール31は、例えば設置台11の上方のX方向の一端部から他端部に亘って形成され、これによりプローブ12は、スパッタリングターゲットAのX方向の一端の外方から他端の外方まで移動できる。 The X-direction moving mechanism 20 includes, for example, a slider 30 that holds the probe 12, a rail 31 that is attached to the slider 30 and extends in the X direction, a drive unit 32 such as a motor that drives the slider 30, and the like. The rail 31 is formed, for example, from one end portion in the X direction above the installation base 11 to the other end portion, so that the probe 12 extends from the outside of one end in the X direction of the sputtering target A to the outside of the other end. I can move.
 Y方向移動機構21は、例えば図2に示すようにX方向移動機構20のレール31を保持しY方向に延びるレール40と、当該レール40をY方向に駆動させる駆動部41等を有している。 For example, as shown in FIG. 2, the Y-direction moving mechanism 21 includes a rail 40 that holds the rail 31 of the X-direction moving mechanism 20 and extends in the Y direction, and a drive unit 41 that drives the rail 40 in the Y direction. Yes.
 レール40は、例えば設置台11の上方のY方向の一端部付近から他端部付近に亘って形成され、これによりプローブ12は、少なくとも後述するラック61のY方向の一端から他端まで移動できる。なお、プローブ12は、例えば図1に示すようにスライダ30の一部が伸縮して上下方向(Z方向)にも移動できる。 The rail 40 is formed, for example, from the vicinity of one end in the Y direction above the installation base 11 to the vicinity of the other end, so that the probe 12 can move at least from one end to the other end in the Y direction of a rack 61 described later. . For example, as shown in FIG. 1, the probe 12 can move in the vertical direction (Z direction) as a part of the slider 30 expands and contracts.
 動力伝達機構14は、例えばX方向移動機構20のレール31に連結されレール31のY方向への移動に伴いスパッタリングターゲットAの軸Bを押す連結部材50と、連結部材50により押されたスパッタリングターゲットAのY方向への直線移動を回転移動に変えるラック・ピニオン機構51等を有している。 For example, the power transmission mechanism 14 is connected to the rail 31 of the X-direction moving mechanism 20 and presses the axis B of the sputtering target A as the rail 31 moves in the Y direction, and the sputtering target pressed by the connecting member 50. A rack and pinion mechanism 51 that changes the linear movement of A in the Y direction into a rotational movement is included.
 スパッタリングターゲットAの軸Bには、軸受52が取り付けられ、当該軸受52に連結部材50が連結されている。ラック・ピニオン機構51の歯車60は、スパッタリングターゲットAの軸Bに固定されている。また、図2に示すように歯車60と噛み合うラック61は、設置台11上にY方向に向けて設置されている。プローブ12は、ラック・ピニオン機構51により位置決めされるスパッタリングターゲットAの軸Bの上方に位置している。 A bearing 52 is attached to the axis B of the sputtering target A, and a connecting member 50 is connected to the bearing 52. The gear 60 of the rack and pinion mechanism 51 is fixed to the axis B of the sputtering target A. As shown in FIG. 2, the rack 61 that meshes with the gear 60 is installed on the installation table 11 in the Y direction. The probe 12 is positioned above the axis B of the sputtering target A that is positioned by the rack and pinion mechanism 51.
 歯車60は、例えば図3に示すようにピッチ円Pの径がスパッタリングターゲットAの径と同じに設定されている。これにより、歯車60のY方向の移動距離(図3中のΔy)と、スパッタリングターゲットAの表面の回転距離が一致する。 In the gear 60, for example, the diameter of the pitch circle P is set to be the same as the diameter of the sputtering target A as shown in FIG. Thereby, the moving distance (Δy in FIG. 3) of the gear 60 in the Y direction matches the rotational distance of the surface of the sputtering target A.
 図1に示す制御部15は、例えばコンピュータにより構成され、記憶されている制御プログラムを実行することにより、プローブ12、X方向移動機構20、Y方向移動機構21等の駆動を制御する。また、プローブ12による超音波の反射の受信結果は、例えば制御部15に出力され、当該制御部15において、スパッタリングターゲットAの表面全面の探傷結果が演算され、出力される。制御部15は、例えば表示画面を有し、スパッタリングターゲットAの表面全面の探傷結果が画像化されて表示される。当該画像は、例えばスパッタリングターゲットAの円筒表面を平面化して表示される。 1 is configured by, for example, a computer and controls driving of the probe 12, the X-direction moving mechanism 20, the Y-direction moving mechanism 21, and the like by executing a stored control program. The reception result of the reflection of the ultrasonic wave by the probe 12 is output to the control unit 15, for example, and the control unit 15 calculates and outputs the flaw detection result on the entire surface of the sputtering target A. The control unit 15 has, for example, a display screen, and the flaw detection result on the entire surface of the sputtering target A is imaged and displayed. The image is displayed by planarizing the cylindrical surface of the sputtering target A, for example.
 次に、以上のように構成された超音波探傷装置1を用いたスパッタリングターゲットAの探傷検査について説明する。 Next, the flaw detection inspection of the sputtering target A using the ultrasonic flaw detection apparatus 1 configured as described above will be described.
 スパッタリングターゲットAは、例えば図4に示すように円筒状のターゲット部材Cをボンディング材Dにより円筒状のバッキング部材Eの外周に接着したものである。ボンディング材Dは、円筒状のターゲット部材Cの内周面とバッキング部材Eの外周面との接合面の全面に介在されている。なお、ターゲット部材Cの材料としては、Al、Cu、Mo、ITO、Si、AZO等が用いられ、ボンディング材Dとしては、例えばIn、Sn、樹脂等が用いられる。また、バッキング部材Eの材料としては、ステンレス(SUS)やTiが用いられる。 The sputtering target A is obtained by bonding a cylindrical target member C to the outer periphery of a cylindrical backing member E with a bonding material D as shown in FIG. The bonding material D is interposed on the entire joint surface between the inner peripheral surface of the cylindrical target member C and the outer peripheral surface of the backing member E. As the material of the target member C, Al, Cu, Mo, ITO, Si, AZO, or the like is used, and as the bonding material D, for example, In, Sn, resin, or the like is used. As the material of the backing member E, stainless steel (SUS) or Ti is used.
 探傷検査では、先ず図1に示したようにスパッタリングターゲットAの軸心に軸Bが固定され、当該軸Bに歯車60が取り付けられ、その後軸Bが軸受52に取り付けられる。このとき、歯車60は、ラック61上に載置され、ラック61と噛み合っている。図2に示すように初めスパッタリングターゲットAは、ラック61のY方向の一端付近(図2の上側)に配置される。 In the flaw detection inspection, first, as shown in FIG. 1, the shaft B is fixed to the axis of the sputtering target A, the gear 60 is attached to the shaft B, and then the shaft B is attached to the bearing 52. At this time, the gear 60 is placed on the rack 61 and meshes with the rack 61. As shown in FIG. 2, the sputtering target A is first arranged near one end in the Y direction of the rack 61 (upper side in FIG. 2).
 次に、液体槽10内に液体が貯留され、スパッタリングターゲットAが浸漬される。その後、例えば図1に示すようにプローブ12がスパッタリングターゲットAの軸上の一端部(図1の左側)の外方に位置される。ここで、図5は、以下の探傷検査のスパッタリングターゲットA表面上のプローブ12の移動の軌跡を示す。そして、探傷検査が開始され、先ずプローブ12が超音波を発信しその反射を受信しながら、X方向移動機構20により、例えばスパッタリングターゲットAの軸上をスパッタリングターゲットAの一端部側(図1、図5の左側)から他端部側(図1、図5の右側)に移動する。これにより、スパッタリングターゲットAの頂部分の探傷、つまり、ターゲット部材Cとバンキング部材Eとの間にボンディング材Dが充填されているか否かが検出される。プローブ12は、一度にY方向に幅のある所定領域の探傷を検出できるので、一回のプローブ12のX方向のスキャンにより、スパッタリングターゲットAの頂上付近の幅のある帯状部分の探傷が検出される。 Next, the liquid is stored in the liquid tank 10 and the sputtering target A is immersed. Thereafter, for example, as shown in FIG. 1, the probe 12 is positioned outside one end (on the left side in FIG. 1) on the axis of the sputtering target A. Here, FIG. 5 shows the locus of movement of the probe 12 on the surface of the sputtering target A in the flaw detection inspection described below. Then, the flaw detection inspection is started. First, while the probe 12 transmits an ultrasonic wave and receives the reflection, the X-direction moving mechanism 20 causes, for example, the one end side of the sputtering target A on the axis of the sputtering target A (FIG. 1, It moves from the left side of FIG. 5 to the other end side (right side of FIGS. 1 and 5). Thereby, it is detected whether the top of the sputtering target A is flawed, that is, whether or not the bonding material D is filled between the target member C and the banking member E. Since the probe 12 can detect flaws in a predetermined region having a width in the Y direction at a time, flaw detection in a band-like portion having a width near the top of the sputtering target A is detected by a single scan of the probe 12 in the X direction. The
 その後、Y方向移動機構21によりX方向移動機構20がY方向(図2の下方向)に所定距離移動され、それにより、連結部材50を介して軸BがY方向に押され、ラック・ピニオン機構51によりスパッタリングターゲットAがY方向に回転される。こうして、スパッタリングターゲットAの表面上のプローブ12による探傷検出位置がずらされる。図3に示したようにこのときのスパッタリングターゲットAの表面上の回転距離Δyは、X方向移動機構20のY方向の移動距離Δyと同じになる。この所定距離Δyは、例えばプローブ12の一回の探傷検出幅により定められ、Y方向に隣り合う探傷検出位置に隙間ができないように設定されている。 Thereafter, the Y-direction moving mechanism 21 moves the X-direction moving mechanism 20 in the Y direction (downward in FIG. 2) by a predetermined distance, whereby the axis B is pushed in the Y direction via the connecting member 50, and the rack and pinion The sputtering target A is rotated in the Y direction by the mechanism 51. Thus, the flaw detection detection position by the probe 12 on the surface of the sputtering target A is shifted. As shown in FIG. 3, the rotation distance Δy on the surface of the sputtering target A at this time is the same as the movement distance Δy in the Y direction of the X direction moving mechanism 20. The predetermined distance Δy is determined by, for example, a single flaw detection detection width of the probe 12, and is set so that there is no gap between flaw detection detection positions adjacent in the Y direction.
 次に、プローブ12が超音波を発信しその反射を受信しながら、X方向移動機構20によりスパッタリングターゲットAの軸上をスパッタリングターゲットAの他端部側(図1、図5の右側)から一端部側(図1、図5の左側)に戻される。次に、Y方向移動機構21によりX方向移動機構20がY方向に所定距離Δy移動され、連結部材50を介して軸BがY方向に押され、ラック・ピニオン機構51によりスパッタリングターゲットAがY方向に回転される。その後、再びプローブ12が超音波を発信しその反射を受信しながら、X方向移動機構20によりスパッタリングターゲットAの軸上をスパッタリングターゲットAの一端部側(図1、図5の右側)から他端部側(図1、図5の左側)に移動する。以降、これが繰り返される。こうして、図5に示すようにプローブ12のX方向の往復移動と、スパッタリングターゲットAのY方向への所定距離Δyの回転が繰り返され、スパッタリングターゲットAが一周すると、スパッタリングターゲットAの表面全面の探傷検査が終了する。 Next, while the probe 12 emits an ultrasonic wave and receives its reflection, the X-direction moving mechanism 20 causes one end on the axis of the sputtering target A from the other end side (the right side in FIG. 1 and FIG. 5). Returned to the section side (left side in FIGS. 1 and 5). Next, the Y-direction moving mechanism 21 moves the X-direction moving mechanism 20 by a predetermined distance Δy in the Y direction, the axis B is pushed in the Y direction via the connecting member 50, and the sputtering target A is moved to Y by the rack and pinion mechanism 51. Rotated in the direction. After that, while the probe 12 transmits the ultrasonic wave again and receives the reflection, the other end of the sputtering target A from the one end side (the right side in FIGS. 1 and 5) on the axis of the sputtering target A by the X-direction moving mechanism 20. Move to the part side (left side in FIGS. 1 and 5). Thereafter, this is repeated. Thus, as shown in FIG. 5, the probe 12 is reciprocated in the X direction and the sputtering target A is rotated by the predetermined distance Δy in the Y direction. Inspection ends.
 プローブ12の各スキャンで受信された受信結果は、それぞれ制御部15において演算され、各スキャンによるスパッタリングターゲットAの頂上の帯状部分の探傷結果を繋ぎ合せることによって、スパッタリングターゲットAの表面全面の探傷結果が得られる。当該探傷結果は、例えばスパッタリングターゲットAを展開した平面画像として示される。 The reception results received in each scan of the probe 12 are respectively calculated in the control unit 15, and the flaw detection results on the entire surface of the sputtering target A are joined by joining the flaw detection results on the top of the sputtering target A by the scans. Is obtained. The flaw detection result is shown as a planar image in which the sputtering target A is developed, for example.
 以上の実施の形態によれば、プローブ移動機構13のY方向の直線移動をスパッタリングターゲットAの周方向の回転移動に変換して、スパッタリングターゲットAを回転移動させるので、別途スパッタリングターゲットAを回転させる駆動源が必要なく、構成が簡易で安価な超音波探傷装置1を実現できる。また、プローブ12を水平面内の2方向に移動させるプローブ移動機構13の駆動を利用するので、例えば板状のスパッタリングターゲットの探傷を行う既存の超音波探傷装置を利用することができる。よって、その分安価な超音波探傷装置1を実現できる。さらに、当該超音波探傷装置1を用いて、板状のスパッタリングターゲットの探傷検査を行うこともできる。 According to the above embodiment, since the linear movement in the Y direction of the probe moving mechanism 13 is converted into the rotational movement in the circumferential direction of the sputtering target A and the sputtering target A is rotated, the sputtering target A is separately rotated. An ultrasonic flaw detector 1 that does not require a drive source, has a simple configuration, and is inexpensive can be realized. In addition, since the driving of the probe moving mechanism 13 that moves the probe 12 in two directions in the horizontal plane is used, for example, an existing ultrasonic flaw detector that performs flaw detection on a plate-like sputtering target can be used. Therefore, an inexpensive ultrasonic flaw detector 1 can be realized accordingly. Furthermore, a flaw detection inspection of a plate-like sputtering target can be performed using the ultrasonic flaw detection apparatus 1.
 プローブ移動機構13は、プローブ12を保持してX方向に移動させるX方向移動機構20と、X方向移動機構20をY方向に移動させるY方向移動機構21と、を有し、動力伝達機構14は、X方向移動機構20に連結され当該X方向移動機構20のY方向への移動に伴いスパッタリングターゲットAの軸Bを押す連結部材50と、連結部材50により押されたスパッタリングターゲットAのY方向への直線移動を回転移動に変えるラック・ピニオン機構51と、を有している。これにより、簡単な構成でプローブ移動機構13の直線運動をスパッタリングターゲットAの回転運動に変換できる。また、ラック・ピニオン機構51を用いるので、スパッタリングターゲットAの回転距離Δyを正確に制御できる。さらに、スパッタリングターゲットAをラック61に沿って回転させるので、多様な径のスパッタリングターゲットAにも対応できる。 The probe moving mechanism 13 includes an X direction moving mechanism 20 that holds the probe 12 and moves it in the X direction, and a Y direction moving mechanism 21 that moves the X direction moving mechanism 20 in the Y direction. Is connected to the X-direction moving mechanism 20 and pushes the axis B of the sputtering target A as the X-direction moving mechanism 20 moves in the Y direction, and the Y direction of the sputtering target A pushed by the connecting member 50. And a rack and pinion mechanism 51 for changing the linear movement to the rotational movement. Thereby, the linear motion of the probe moving mechanism 13 can be converted into the rotational motion of the sputtering target A with a simple configuration. Moreover, since the rack and pinion mechanism 51 is used, the rotational distance Δy of the sputtering target A can be accurately controlled. Furthermore, since the sputtering target A is rotated along the rack 61, it can be applied to sputtering targets A having various diameters.
 ラック・ピニオン機構51の歯車60は、スパッタリングターゲットAの軸Bに取り付けられ、ラック61は、Y方向に向けて配置され、歯車60のピッチ円Pの径は、スパッタリングターゲットAと同じ径に設定されている。これにより、プローブ12の径方向の移動距離とスパッタリングターゲットAの表面上の回転距離が同じになるので、例えば板状のスパッタリングターゲットの超音波探傷装置におけるプローブのY方向の移動制御をそのまま利用して、円柱状のスパッタリングターゲットAの探傷検査を行うことができる。これにより、例えば制御プログラム等をそのまま利用できるので、より安価な超音波探傷装置1を実現できる。 The gear 60 of the rack and pinion mechanism 51 is attached to the axis B of the sputtering target A, the rack 61 is arranged in the Y direction, and the diameter of the pitch circle P of the gear 60 is set to the same diameter as the sputtering target A. Has been. As a result, the moving distance in the radial direction of the probe 12 and the rotational distance on the surface of the sputtering target A become the same. For example, the movement control in the Y direction of the probe in an ultrasonic flaw detector for a plate-like sputtering target is used as it is. Thus, the flaw detection inspection of the cylindrical sputtering target A can be performed. Thereby, since a control program etc. can be utilized as it is, for example, the cheaper ultrasonic flaw detector 1 is realizable.
 以上の実施の形態において、連結部材50とスパッタリングターゲットAの軸Bは、自在継手としてのユニバーサルジョイント70により接続されていてもよい。このユニバーサルジョイント70は、例えば連結部材50を軸Bの軸周りに回転可能にするものである。かかる場合、スパッタリングターゲットAの軸Bと連結部材50との間に遊びができるので、例えば軸Bと連結部材50との固定時の位置合わせが簡単になる。 In the above embodiment, the connecting member 50 and the axis B of the sputtering target A may be connected by a universal joint 70 as a universal joint. The universal joint 70 makes the connecting member 50 rotatable around the axis B, for example. In such a case, since play can be made between the axis B of the sputtering target A and the connecting member 50, for example, alignment when the axis B and the connecting member 50 are fixed becomes easy.
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。例えば以上の実施の形態では、被検査体がスパッタリングターゲットAであったが、本発明は、他の被検査体の探傷検査にも適用できる。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood. For example, in the above embodiment, the object to be inspected is the sputtering target A, but the present invention can also be applied to flaw detection inspection of other objects to be inspected.
  1 超音波探傷装置
 12 プローブ
 13 プローブ移動機構
 14 動力伝達機構
 20 X方向移動機構
 21 Y方向移動機構
 50 連結部材
 51 ラック・ピニオン機構
  A スパッタリングターゲット
DESCRIPTION OF SYMBOLS 1 Ultrasonic flaw detector 12 Probe 13 Probe moving mechanism 14 Power transmission mechanism 20 X direction moving mechanism 21 Y direction moving mechanism 50 Connecting member 51 Rack and pinion mechanism A Sputtering target

Claims (5)

  1. 外形が円柱状の被検査体の探傷検査を行う超音波探傷装置であって、
     軸を水平方向に向けて配置された被検査体の表面に対し超音波を発信しその反射を受信するプローブと、
     前記プローブを前記被検査体に対し水平面内の前記被検査体の軸方向と径方向に直線移動させるプローブ移動機構と、
     前記プローブ移動機構の前記径方向の直線移動を前記被検査体の周方向の回転移動に変換して、前記被検査体を回転移動させる動力伝達機構と、を有する、超音波探傷装置。
    An ultrasonic flaw detection apparatus that performs flaw detection inspection on a cylindrical object to be inspected,
    A probe that emits ultrasonic waves to the surface of an object to be inspected arranged with its axis oriented horizontally, and receives the reflection thereof;
    A probe moving mechanism that linearly moves the probe in the axial direction and the radial direction of the test object in a horizontal plane with respect to the test object;
    An ultrasonic flaw detection apparatus comprising: a power transmission mechanism that converts the linear movement of the probe moving mechanism in the radial direction into a rotational movement of the inspection object in the circumferential direction to rotate the inspection object.
  2.  前記プローブ移動機構は、前記プローブを保持して前記軸方向に移動させる軸方向移動機構と、前記軸方向移動機構を前記径方向に移動させる径方向移動機構と、を有し、
     前記動力伝達機構は、前記軸方向移動機構に連結され当該軸方向移動機構の前記径方向への移動に伴い前記被検査体の軸を押す連結部材と、前記連結部材により押された被検査体の前記径方向への直線移動を回転移動に変えるラック・ピニオン機構と、を有する、請求項1に記載の超音波探傷装置。
    The probe movement mechanism includes an axial movement mechanism that holds the probe and moves the probe in the axial direction, and a radial movement mechanism that moves the axial movement mechanism in the radial direction,
    The power transmission mechanism is connected to the axial movement mechanism and connected to the inspection object pressed by the connection member, the connection member pressing the shaft of the inspection object as the axial movement mechanism moves in the radial direction. An ultrasonic flaw detection apparatus according to claim 1, further comprising: a rack and pinion mechanism that changes the linear movement of the radial direction in the radial direction into a rotational movement.
  3.  前記ラック・ピニオン機構の歯車は、前記被検査体の軸に取り付けられ、ラックは、前記径方向に向けて配置され、
     前記歯車のピッチ円の径は、前記被検査体と同じ径に設定されている、請求項2に記載の超音波探傷装置。
    The gear of the rack and pinion mechanism is attached to the shaft of the object to be inspected, and the rack is arranged toward the radial direction,
    The ultrasonic flaw detector according to claim 2, wherein a diameter of a pitch circle of the gear is set to the same diameter as that of the inspection object.
  4.  前記連結部材と前記被検査体の軸は、自在継手により接続されている、請求項2又は3に記載の超音波探傷装置。 The ultrasonic flaw detector according to claim 2 or 3, wherein the connecting member and the shaft of the object to be inspected are connected by a universal joint.
  5.  前記被検査体は、ターゲット部材をボンディング材によりバッキング部材にボンディングしたスパッタリングターゲットである、請求項1~3のいずれかに記載の超音波探傷装置。 The ultrasonic flaw detector according to any one of claims 1 to 3, wherein the object to be inspected is a sputtering target in which a target member is bonded to a backing member with a bonding material.
PCT/JP2010/000001 2009-01-08 2010-01-04 Ultrasonic flaw detector WO2010079730A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-002447 2009-01-08
JP2009002447A JP4327242B1 (en) 2009-01-08 2009-01-08 Ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
WO2010079730A1 true WO2010079730A1 (en) 2010-07-15

Family

ID=41149088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000001 WO2010079730A1 (en) 2009-01-08 2010-01-04 Ultrasonic flaw detector

Country Status (3)

Country Link
JP (1) JP4327242B1 (en)
TW (1) TW201033607A (en)
WO (1) WO2010079730A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108375591A (en) * 2018-05-07 2018-08-07 丹东市中讯科技有限公司 A kind of flaw detection radiation-emitting device, flaw detection ray reception device and failure detector

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759578B (en) * 2011-04-28 2015-03-18 光洋应用材料科技股份有限公司 Sputtering target detection mechanism
JP2013002961A (en) * 2011-06-16 2013-01-07 Jfe Steel Corp Ultrasonic flaw detection method and device for round-bar steel
DE102011051419A1 (en) * 2011-06-28 2013-01-03 Solar Applied Materials Technology Corp. Detection arrangement for sputtering targets, has controller which is electrically connected with moving assembly and axle driving apparatus to control driving operation of moving assembly and axle driving apparatus
CN103185743B (en) * 2011-12-28 2015-06-17 光洋应用材料科技股份有限公司 Tubular sputtering coating target material detection mechanism
CN102830178A (en) * 2012-08-09 2012-12-19 江苏三合声源超声波科技有限公司 Support for ultrasonic flaw detection
CN104634881A (en) * 2015-01-12 2015-05-20 江苏三合声源超声波科技有限公司 Crawling car for automatic ultrasonic aluminum alloy bar flaw detection device
CN111366124B (en) * 2020-05-11 2021-08-13 深圳市卓立勘测工程有限公司 Underground pipeline deformation degree measuring system and measuring method
CN111812203A (en) * 2020-08-10 2020-10-23 宁波江丰电子材料股份有限公司 Ultrasonic detection method for cobalt target welded product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819555A (en) * 1981-07-27 1983-02-04 Olympus Optical Co Ltd Scanning of cylindrical sample for ultrasonic microscope
JPH0357958A (en) * 1989-07-27 1991-03-13 Hitachi Constr Mach Co Ltd Ultrasonic flaw detection apparatus
JPH03142356A (en) * 1989-10-30 1991-06-18 Hitachi Constr Mach Co Ltd Ultrasonic flaw detector
JP2004132725A (en) * 2002-10-08 2004-04-30 Mitsui Mining & Smelting Co Ltd Method for inspecting sputtering target
JP2008122090A (en) * 2006-11-08 2008-05-29 Daido Steel Co Ltd Ultrasonic flaw detection method of rod material, and ultrasonic flaw detection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819555A (en) * 1981-07-27 1983-02-04 Olympus Optical Co Ltd Scanning of cylindrical sample for ultrasonic microscope
JPH0357958A (en) * 1989-07-27 1991-03-13 Hitachi Constr Mach Co Ltd Ultrasonic flaw detection apparatus
JPH03142356A (en) * 1989-10-30 1991-06-18 Hitachi Constr Mach Co Ltd Ultrasonic flaw detector
JP2004132725A (en) * 2002-10-08 2004-04-30 Mitsui Mining & Smelting Co Ltd Method for inspecting sputtering target
JP2008122090A (en) * 2006-11-08 2008-05-29 Daido Steel Co Ltd Ultrasonic flaw detection method of rod material, and ultrasonic flaw detection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108375591A (en) * 2018-05-07 2018-08-07 丹东市中讯科技有限公司 A kind of flaw detection radiation-emitting device, flaw detection ray reception device and failure detector

Also Published As

Publication number Publication date
JP4327242B1 (en) 2009-09-09
TW201033607A (en) 2010-09-16
JP2010160052A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
WO2010079730A1 (en) Ultrasonic flaw detector
JP5155692B2 (en) Ultrasonic inspection equipment
JP4839333B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP5355660B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
US9804129B2 (en) Apparatus for inspecting a tube
JP2007187593A (en) Inspection device for piping and inspection method for piping
CN104535653A (en) Phased-array ultrasonic detection device for the inner-hole defects of hole parts
CN214473004U (en) Ultrasonic phased array pipeline detection device for small-diameter pipe weld joint
CN103760240A (en) Automatic detecting device for defects of flange and detecting method thereof
JP4592530B2 (en) Ultrasonic flaw detection method and apparatus
JP4690291B2 (en) Underwater inspection device and underwater inspection method
JP6298371B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2010038820A (en) Ultrasonic inspection device
EP1798550B1 (en) Device for inspecting the interior of a material
JP5495820B2 (en) In-pipe scale measuring device and measuring method
KR102000941B1 (en) An X-Ray Investigating Apparatus with Nano Scale Resolution and a Method for Correcting an Error of the Same
EP3320334A1 (en) Method and system for inspecting a rail wheel with phased array probes
JP2008510977A (en) System for forming ultrasound images by transmission using at least one piezoelectric film
KR101885756B1 (en) Ultrasonic sensor module structure of ultrasonic inspection device for performing non-destructive test
JP2005300363A (en) Ultrasonic flaw detecting system and ultrasonic flaw detecting test method
JP6494369B2 (en) Ultrasonic inspection equipment
JP5959677B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP4583550B2 (en) Matrix crack detection method for carbon fiber reinforced plastic laminates
JP6128635B2 (en) Machined hole position measuring device
KR101206613B1 (en) Double rotation waveguide ultrasonic sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10729150

Country of ref document: EP

Kind code of ref document: A1